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Abstract

In this thesis, three novel machine learning techniques are introduced to address distinct
yet interrelated challenges involved in financial risk management tasks. These approaches
collectively offer a comprehensive strategy, beginning with the precise classification of credit
risks, advancing through the nuanced forecasting of financial asset volatility, and ending
with the strategic optimisation of financial asset portfolios.

Firstly, a Hybrid Dual-Resampling and Cost-Sensitive technique has been proposed to com-
bat the prevalent issue of class imbalance in financial datasets, particularly in credit risk
assessment. The key process involves the creation of heuristically balanced datasets to ef-
fectively address the problem. It uses a resampling technique based on Gaussian mixture
modelling to generate a synthetic minority class from the minority class data and concur-
rently uses k-means clustering on the majority class. Feature selection is then performed
using the Extra Tree Ensemble technique. Subsequently, a cost-sensitive logistic regression
model is then applied to predict the probability of default using the heuristically balanced
datasets. The results underscore the effectiveness of our proposed technique, with superior
performance observed in comparison to other imbalanced preprocessing approaches. This
advancement in credit risk classification lays a solid foundation for understanding individual
financial behaviours, a crucial first step in the broader context of financial risk management.

Building on this foundation, the thesis then explores the forecasting of financial asset volatil-
ity, a critical aspect of understanding market dynamics. A novel model that combines a
Triple Discriminator Generative Adversarial Network with a continuous wavelet transform
is proposed. The proposed model has the ability to decompose volatility time series into
signal-like and noise-like frequency components, to allow the separate detection and mon-
itoring of non-stationary volatility data. The network comprises of a wavelet transform
component consisting of continuous wavelet transforms and inverse wavelet transform com-
ponents, an auto-encoder component made up of encoder and decoder networks, and a
Generative Adversarial Network consisting of triple Discriminator and Generator networks.
The proposed Generative Adversarial Network employs an ensemble of unsupervised loss
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derived from the Generative Adversarial Network component during training, supervised
loss and reconstruction loss as part of its framework. Data from nine financial assets are
employed to demonstrate the effectiveness of the proposed model. This approach not only
enhances our understanding of market fluctuations but also bridges the gap between indi-
vidual credit risk assessment and macro-level market analysis.

Finally the thesis ends with a proposal of a novel technique for Portfolio optimisation. This
involves the use of a model-free reinforcement learning strategy for portfolio optimisation
using historical Low, High, and Close prices of assets as input with weights of assets as
output. A deep Capsules Network is employed to simulate the investment strategy, which
involves the reallocation of the different assets to maximise the expected return on invest-
ment based on deep reinforcement learning. To provide more learning stability in an online
training process, a Markov Differential Sharpe Ratio reward function has been proposed
as the reinforcement learning objective function. Additionally, a Multi-Memory Weight
Reservoir has also been introduced to facilitate the learning process and optimisation of
computed asset weights, helping to sequentially re-balance the portfolio throughout a spec-
ified trading period. The use of the insights gained from volatility forecasting into this
strategy shows the interconnected nature of the financial markets. Comparative experi-
ments with other models demonstrated that our proposed technique is capable of achieving
superior results based on risk-adjusted reward performance measures.

In a nut-shell, this thesis not only addresses individual challenges in financial risk manage-
ment but it also incorporates them into a comprehensive framework; from enhancing the
accuracy of credit risk classification, through the improvement and understanding of market
volatility, to optimisation of investment strategies. These methodologies collectively show
the potential of the use of machine learning to improve financial risk management.
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Chapter 1

Introduction

In the dynamic field of financial risk management, the use of advanced machine learning
techniques has emerged as a transformative force. This introduction sets the stage for our
research into the complex connection between machine learning and financial risk man-
agement, where novel methodologies are developed and applied to address some critical
challenges in the field. This chapter establishes the context and motivation for our research
and outlines the specific contributions made in this thesis in the field of computer science
and financial risk management.

1.1 Background

In the current information age, everything around us is data-driven and digitally recorded
(Sarker, 2021). This has provided individuals, organisations, and society with the oppor-
tunity to collect large amounts of data (Injadat et al., 2021). There exist different kinds of
data, such as the Internet of Things (IoT) data, cybersecurity data, financial data, smart
city data, business data, smartphone data, social media data, health data plus many more
(Sarker, 2021). These data can be structured, semi-structured, or unstructured. The ability
to extract insights from these data can be used to build different intelligent applications
in various domains such as finance (Sarker, 2021). However, humans do not have the cog-
nitive ability to analyse and understand such large amounts of data due to information
overload (Injadat et al., 2021). Thus, data management tools and techniques with the ca-
pability to extract useful insights from a large amount of data are needed. As evidenced
by their remarkable successes in the fields of computer vision, natural language processing,
and robotics, machine learning (ML) techniques can provide a mechanism for humans to
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process such large amounts of data, gain insight into the behaviour of the data, and make
a more informed decision as required.

The 2007–2009 global financial crisis exposed the weak financial risk management (FRM)
practises in place at the time. Prior to this, each risk type was managed independently
of the others through a process called risk decomposition, which entailed the identification
and management of each individual risk separately. The financial performance of a firm
can be negatively affected by various adverse events, such as financial market movements,
defaults on loans, fraud, cybercrime, and loss of customers. Based on these sources of
risk factors, the main types of risk faced by most financial institutions can be categorised
as credit risk, market risk, and operational risk. Credit risk refers to the uncertainties
involved in one party’s inability to perform its contractual financial obligations to another
party. An example is a debtor’s failure to pay the interest or principal on a loan and
a counter-party’s failure to perform a settlement. The creditworthiness of households is
important because it does not only influence the lending decisions of financial institutions
but rather it also impacts the broader economic stability. Financial risk management tasks
have been shown to be generally challenging because they use sparse and complex data
structures. Subsequently, identifying, quantifying, and managing risk plays a crucial role
in any institution.

Financial risk management primarily entails the minimisation of losses and the maximisa-
tion of profits by firms, and the processes involved in these tasks are information-driven
(Crouhy et al., 2014a). Machine learning technologies and methods have recently been
adapted for a variety of financial risk management tasks because the modern investor has
become sophisticated and therefore demands complex financial products from financial in-
stitutions (Fabozzi et al., 2021). This current trend has led to the difficulties of these firms
in accurately evaluating the exposure of their large and complex financial portfolios to the
evolving financial markets using classical and statistical approaches. Therefore, the need to
manage these risks holistically through a risk aggregation procedure has attracted ubiqui-
tous interest in the use of machine learning and deep learning for financial risk management.

Portfolio optimisation is a formal mathematical approach used to make investment decisions
in a collection of financial assets. Portfolios are a combination of a feasible set of assets
and are specified in terms of weights. It involves maximising the returns of an investment
portfolio while minimising the risks associated with it (Soleymani and Paquet, 2020).

Machine learning is a broad area and covers various classes of algorithms for pattern recog-
nition and decision making (Dixon et al., 2020). In recent times, the popularity of machine
learning approaches to learning has been on the rise (Sarker, 2021). This is due to the recent
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progress attained by machine learning models, which have consistently shown their ability
to detect abstract patterns in data with greater accuracy levels exceeding that of human
experts (Nichols et al., 2019). Extending classical methods also use deep neural networks
that typically consist of more than one hidden layer, organised in deep nested network
architectures for their operations (Janiesch et al., 2021). Machine learning algorithms can
be grouped into four main categories; these are supervised learning, unsupervised learning,
semi-supervised learning, and reinforcement learning (Sarker, 2021).

Supervised Learning: Supervised learning is a type of machine learning algorithm that
learns from labelled data to help predict outcomes of unseen data (Bishop, 2006; Sarker,
2021). Under this, a function that maps an input to an output is used to learn a machine-
learning task. It uses labelled training data and a collection of training examples to predict
the outcomes of the target vectors. Supervised learning tasks can be sub-grouped into clas-
sification and regression tasks. The most significant distinction between classification tasks
and regression tasks is that classification tasks predict distinct class labels, while regression
tasks predict continuous values(Bishop, 2006; Sarker, 2021). On the other hand, a regres-
sion task is a type of supervised machine learning algorithm that allows the prediction of
continuous values using the value of one or more independent predictor variables. Regres-
sion models are used in different fields such as share price forecasting, volatility forecasting,
cost estimation, trend analysis, marketing, time series estimation, house price prediction
and many more (Bishop, 2006). Classification is a type of supervised learning method in
machine learning, in which the aim is to assign each input variable to one of the finite
numbers of discrete categories (Bishop, 2006).

In the machine learning domain, classification tasks play a crucial role in analysing data and
making predictions. For instance, in classification tasks like fraud detection, the goal is to
predict the class of given data points, such as determining whether a transaction is ’fraud’
or ’not fraud.’ Another example is the prediction of house prices, where supervised learning
techniques help estimate property values based on various features. Similarly, financial risk
management relies on supervised learning to assess credit risk, which involves estimating
the probability of default (Pd) for borrowers. This estimation is pivotal in valuing credit
derivatives, gauging a borrower’s creditworthiness, and determining economic or regulatory
capital for financial institutions. Examples of supervised learning include spam detection,
text classification, and prediction of house prices.

The foundation of credit risk lies in the Probability of Default (Pd), Exposure at Default
(Ead), and Loss Given Default (Lgd) (Thomas, 2009). These interconnected drivers under-
pin the credit risk assessment and are particularly critical as default occurrences increase,
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causing a decrease in recovered amounts. The probability of default (Pd) is defined as the
likelihood that a borrower will not be able to pay a loan on the agreed time schedule.
The accurate estimation of Pd, especially for imbalanced datasets, is vital in financial risk
management, given its profound implications for risk valuation and capital allocation. The
Exposure At Default, Ead, represents the amount owed by the debtor at the time of default
and cannot be greater than the loan amount originally granted. It is used by financial in-
stitutions to estimate potential losses and for them to set aside capital reserves accordingly.
This helps financial institutions to manage and mitigate risks, price loans appropriately,
and maintain adequate capital reserves. The Loss Given Default(Lgd) on the other hand
is the fraction of the investment a financial institution stands to lose should the debtor
default. It is calculated as the final loss a bank or a financial institution suffers when a
borrower defaults and is represented as a percentage of total exposure when the account
falls into arrears.

Unsupervised learning: Unsupervised learning is a type of machine learning algorithm
in which unlabelled datasets are analysed without human interaction or interference. There-
fore, it involves the finding of patterns within the data without the presence of any ground
truth or labelled data (Sarker, 2021). It is a data-driven process widely used to extract fea-
tures and identify meaningful trends and structures (Sarker, 2021). It also involves grouping
of the data into clusters or arranging them into organised groups for exploratory purposes.
Examples of unsupervised learning tasks are clustering, Generative Adversarial Networks
(GANs)(Goodfellow et al., 2014), density estimation (Biprodip and Mahit, 2017), feature
learning, dimensionality reduction, and anomaly detection (Sarker, 2021).

Semi-supervised: Semi-supervised learning is a type of machine learning algorithm that
can be defined as a combination of supervised and unsupervised learning algorithms since it
uses both labelled and unlabelled data in its operation (Sarker, 2021). Using this hybridi-
sation concept, machine learning algorithms can learn to label unlabelled data. Therefore,
it falls between learning “with supervision” and learning “without supervision”. In the real
world, where unlabelled data are in abundance and labelled data are scarce, the use of
semi-supervised learning can be a useful tool (He et al., 2016). The main aim of a semi-
supervised learning algorithm is to provide better results for prediction tasks compared to
prediction tasks produced solely from the use of the labelled data. Semi-supervised learning
can be used in applications such as machine translation, fraud detection, data labelling,
and text classification (Sarker, 2021).
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Reinforcement learning: Reinforcement learning is a type of machine learning algo-
rithm that enables agents and machines to find the appropriate actions to take in a given
situation to maximise the reward (Bishop, 2006; Silver et al., 2014). Reinforcement learning
is different from other machine learning paradigms, such as supervised learning, because
it is goal-directed learning through interaction with only a reward signal since there is no
supervisor present and the actions of agents affect the subsequent data received. It is also
different from the unsupervised learning paradigm because its sole aim is to maximise the
reward signal rather than trying to find hidden structures. Under this method, there ex-
ists a sequence of states and actions in which the algorithm interacts with its environment
(Bishop, 2006).

1.2 Motivation

Previous research has attempted to apply machine learning techniques to financial risk
management; however, these efforts remain fragmented. While various methodologies have
been explored, there remains a need for an integrated solution that addresses challenges
such as data unavailability, data quality concerns such as an imbalanced dataset, noisy data,
non-stationarity of data and algorithm-based issues such as model non-convergence. Our
work bridges these gaps by proposing innovative techniques that include data balancing,
volatility forecasting, and portfolio optimisation.

Imbalanced data sets occur in financial credit data, where the number of defaulters or bad
payers (positive class observations), is significantly lower than the number of non-defaulters
or good payers (negative class observations). Therefore, it is essential to investigate and
implement a robust estimation technique to predict the probability of default (Pd) for
consumers, since incorrect Pd results in a false valuation of risk, an incorrect rating, and
incorrect pricing of financial instruments.

The prices of financial assets and interest rates continuously change, driving the values of
securities and other financial assets up and down. These price movements referred to as
volatility, create the potential for loss, as they are deemed to be the engine of market risk.
Depending on the underlying assets, these market risks can take the form of interest rate
risk, equity risk, and currency risk. Therefore, it is important to investigate other novel
techniques to accurately estimate the volatility of financial markets, since financial markets
serve as the foundation of every economy.

Although advances have been made in the use of deep reinforcement learning for portfolio
optimisation with which excellent results have been obtained (Jiang et al., 2017; Liang
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et al., 2018), there are still some gaps in the existing literature on how to maximise the
profitability of a portfolio using deep reinforcement learning. Nine challenges have been
identified with the use of reinforcement learning in real-life scenarios (Dulac-Arnold et al.,
2021). There are issues such as sample efficiency, credit assignment, and exploration versus
exploitation. The specification of a reward function may not represent the intention of
the designer and may cause problems (Li, 2022). Issues such as delusional bias results
in behaviours such as overestimation or under-estimation, instability and divergence in
learning algorithms (Lu et al., 2018), and Markov reward expressivity (Abel et al., 2022)
have been identified by researchers as some of the issues in reinforcement learning. The
Deep Deterministic Policy Gradient (DDPG) algorithm has been tested against different
trading problems to find optimal or near-optimal control strategies in dynamic portfolio
optimisation and reinforcement learning (Chaouki et al., 2020). However, the performance
of the model might be limited to the specific trading problems and scenarios tested, which
could possibly affect its ability to generalise and might also be susceptible to the problem of
delusional bias. Liang et al. (2018), compared DDPG with other algorithms under various
settings, which offered good insights into parameter tuning and feature selection, with a
focus on the China stock market adding value due to its unique characteristics. However,
the findings of their work were limited to the Chinese stock market, and as such may not be
directly applicable to other markets due to differences in market dynamics and regulations.

Cui et al. (2024) also proposed a Deep Reinforcement Learning (DRL) hyper-heuristic
approach that incorporated domain knowledge and low-level trading strategies and was de-
signed to narrow down the search space and improve portfolio optimisation. However, the
model might suffer from more complexities without the ability to generalise well to different
market conditions due to the integration of domain knowledge and trading strategies. Lu-
carelli and Borrotti (2020) used local agents to learn asset behaviours and a global agent for
the reward function to provide a balanced approach to understanding both individual asset
dynamics and the overall portfolio performance. However, the use of both local and global
agents might introduce challenges in the coordination and synthesis of the different learning
components. This could also lead to complexities in defining and optimising the reward
function that aligns with investment goals. The works of Pigorsch and Schäfer (2021) also
proposed the High-Dimensional Stock Portfolio Trading with Deep Reinforcement Learning
which has the ability to handle high-dimensional portfolios and accommodate datasets with
data gaps and varying history lengths making them highly versatile. However, the model
requires an increased computational resources to operate efficiently due to its ability to
handle high-dimensional data and complex scenarios.

The determination of a reward signal has been shown to be the most challenging part of
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the design of a reinforcement learning problem (Littman et al., 2017; Dulac-Arnold et al.,
2021). Existing reward functions result in sub-optimal convergence and unstable results.
Therefore, it is essential to investigate and design other novel reward functions to address
these shortcomings.

Furthermore, existing reinforcement learning approaches of researchers, such as Jiang et al.
(2017); Almahdi and Yang (2017); Liang et al. (2018); Soleymani and Paquet (2020), use
a model-free RL algorithm made of single buffer memory that does not consider the insta-
bility and risk associated with the noisy and non-stationary financial market environment
in its operations. Therefore, it is essential to investigate and introduce a robust and ef-
ficient replay memory design together with a training scheme capable of overcoming the
shortcomings of existing ones.

1.3 Connection between Credit Risk, Volatility Fore-
casting, and Portfolio Optimisation

Improved credit risk assessments, improved forecasting volatility and the effective optimi-
sation of financial asset portfolios are interrelated and collectively contribute to effective
financial risk management strategies. Credit risk assessment is fundamental in financial risk
management since it influences investment decisions and risk evaluations. Accurate credit
risk predictions can affect the volatility forecasts of financial assets, because it directly af-
fects investor confidence and market stability. Additionally, the volatility of financial assets
is an important component in the construction of optimised portfolios. Effective volatility
forecasting enables more informed decisions in portfolio construction, balancing potential
returns against associated risks.

Finally, portfolio optimisation relies on both credit risk assessments and volatility forecasts.
A detailed understanding of these elements enables better allocation of assets which ensures
that portfolios are not only diversified but also tailored to withstand market fluctuations
and credit risk events. The application of effective machine learning techniques to these 3
areas has the potential to change the current approach to financial risk management. The
use of advanced machine learning algorithms can lead to accurate credit risk assessments,
more reliable volatility forecasts, and efficient portfolio optimisations. This enhances the
overall stability and performance of the financial markets in the long run.
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1.4 Aims and Objectives

The overarching aim of this research is to explore and investigate the problems inherent in
the application of machine learning to financial risk management tasks. Based on the main
aim described above, the main objectives of this research are the following.

• Investigate the use of machine learning techniques to enhance credit risk assessment
on imbalanced datasets using a novel Hybrid Dual Resampling and Cost-Sensitive
Learning Technique (HDRCS), which results in a better imbalance ratio obtained
heuristically.

• Investigate and improve the forecasting of noisy, non-stationary, and unavailable fi-
nancial datasets such as volatility using Generative Adversarial Network (GAN) and
continuous wavelet transform.

• Investigate and optimise portfolio performance and asset allocation using the Capsules
Neural Network and the Multi-Memory Weight Reservoir (MMWR) training scheme
capable of improving the robustness of reinforcement learning agents.

• Design a stable and effective reward function for reinforcement learning-based port-
folio optimisation. This will be monitored by performing a combination of empirical
testing, statistical analysis, and qualitative evaluation. The empirical testing will in-
volve the running of the RL model multiple times with the same settings to observe
the variability in the performance metrics used. It will also be bench-marked against
other reward functions to assess the model’s performance using alternative reward
structures

These objectives served as a road map through which the aim of this research has been
achieved. Consequently, it has led to the development, investigation and evaluation of a
series of techniques, with a number of research contributions being made.

The next section highlights the contributions that have been made in this thesis.

1.5 Summary of Contributions

The research and investigations conducted in this thesis on the application of machine
learning techniques to financial risk management have led to a number of contributions in
this domain. A summary of the contributions made in this thesis is as follows:

8



1.5. SUMMARY OF CONTRIBUTIONS Page 9

• Proposed the Hybrid Dual Resampling with Cost-sensitive Technique (HDRCS), which
is a fully featured technique for imbalanced data sets and involves the simultaneous
use of Gaussian Mixture Model Oversampling Technique (GMMOT) to over-sample
the minority class, the cluster-based under-sampling technique (CBUT) to reduce the
excess number of data points and Cost-sensitive logistic regression (CSLR) algorithm
on the resampled data. The significance of the HDRCS approach lies in its potential
to improve credit risk assessment and help address the challenge involved in the use
of imbalanced data. It allows financial institutions to make more accurate credit de-
cisions, minimising the risk of false valuations, incorrect risk ratings, and mispriced
financial instruments.

• Proposed continuous wavelet transform triple discriminator GAN network (cwt-TriGAN)
which utilises continuous wavelet transform and ensemble loss function obtained from
a three discriminator network, which overcomes the problem of mode collapse, leading
to improved forecasting of volatility time series. Previous studies have not utilised
this architecture. Detailed experiments have been undertaken on nine financial assets
using the cwt-TriGAN and other models, such as TimeGAN and RCGAN.

• Empirical investigation to determine the effect of time steps on the accuracy of the
volatility prediction has been undertaken. Additionally, reconstruction techniques
used to obtain the original volatility for the output of the continuous wavelet transform
have been investigated.

• Proposed a Multi-Memory Weight Reservoir (MMWR) training scheme using Cap-
sules Neural Network, which facilitates and improves the optimisation process of the
portfolio weights. This helps in the sequential re-balancing of the portfolio through-
out the trading period using a continuous action space. This methodology addresses
challenges such as sample efficiency and exploration-exploitation trade-offs, provid-
ing investors with a tool to navigate complex and dynamic market conditions. The
practical impact of MMWR extends to investment practises, where its adoption can
lead to more resilient and adaptive portfolios that optimise risk-adjusted returns in
volatile markets.

• Proposed discounted cumulative reward function known as a Markov differential
Sharpe ratio that provides stability and optimises the training process. The sig-
nificance of the proposed Markov differential Sharpe ratio lies in its ability to provide
stability and optimise the training process in portfolio optimisation using reinforce-
ment learning. This proposed technique ensures that the learning process results in
optimal portfolio weights over time.

9
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1.6 Outline of Thesis

The rest of this thesis is organised as follows: Chapter 2 covers the fundamentals of
the main machine learning algorithms used in this thesis. This includes the background
information on density estimation using the Gaussian Mixture Model (GMM), background
information on the use of deep learning models such as the use of Long short-term memory
(LSTM) and Generative Adversarial Networks (GAN) for time-series forecasting. The same
chapter also introduces the concept of a continuous wavelet transform and the basic concepts
of reinforcement learning.

Chapter 3 also introduces the background of the financial risk management techniques
used in this thesis. It provides the relevant financial background on credit risk modelling,
market risk, volatility forecasting, and portfolio optimisation concepts used in this thesis.

Chapter 4 of this thesis elaborates on the use of our proposed Hybrid Dual Resampling
with Cost-Sensitive Technique (HDRCS) to overcome the problem of insufficient and im-
balanced credit datasets. It captures and evaluates the novel Hybrid Dual Resampling with
a Cost-sensitive Technique using the Gaussian mixture model to model the credit risk of
imbalanced datasets. The technique involves the simultaneous use of cluster-based under-
sampling of the majority class, the use of the Gaussian Mixture Model (GMM) to over-
sample the minority class, and a cost-sensitive learning algorithm. This chapter also covers
the general background in the field of data imbalance and credit risk modelling using Logis-
tic Regression. It reviews some of the resampling techniques for imbalanced datasets such

10
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as the Synthetic Minority Oversampling Technique (SMOTE), Gaussian Mixture Model
Oversampling, and Cluster Based Under-sampling Techniques (CBUT).

Chapter 5 also covers detailed information on the novel triple-discriminator used within
the proposed Continuous Wavelet Transform Triple Discriminator Generative Adversarial
Network (cwt-TriGAN) for volatility estimation. It captures the detailed architecture of the
proposed cwt-TriGAN, including the in-depth operation of the eight component functions
that make up our proposed cwt-TriGAN and evaluates the results of other forecasting
techniques.

Chapter 6 covers the use of CapsNet-based reinforcement learning for portfolio optimi-
sation. It covers our proposed Multi-Memory Weight Reservoir (MMWR) training scheme
using Capsules Neural Network and also captures the proposed Markov differential Sharpe
ratio for portfolio optimisation.

Finally, Chapter 7 covers the conclusion and future work of the proposed novel tech-
niques used in this thesis.

11



Chapter 2

Machine Learning Preliminaries

2.1 Introduction

This chapter provides the relevant preliminaries on the machine learning algorithms used
in this thesis. Hence, the basic machine learning background knowledge of our proposed
contributions is introduced here. This includes background information on logistic regres-
sion, Gaussian Mixture Model (GMM) density estimation, deep learning for time-series
forecasting, and reinforcement learning, respectively.

2.2 Logistic Regression

Logistic regression is a predictive analytic model used in classification problems and can
be used to explain the relationship between a dependent binary output and one or more
independent variables. Consider data for learning consisting of (xi, yi), i = 1, 2, ..., N , where
xi = (xi1 , xi2 , ..., xin) ∈ Rn is a vector of covariates and yi ∈ {0, 1} is a dependent variable.
The Logistic Regression model predicts y as a function of x with the assumption that the
independent variables are linearly related to the log odds.

Let y = p(y = 1|x) = 1 − p(y = 0|x). Logistic Regression model assumes the probability
pi = p(y = 1|xi) depends on n covariates xi1 , xi2 , ..., xin through:

log
 pi

1− pi

 = β0 + β1xi1+, ...,+βnxin

= [1 xT
i ]T β

12
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The probability defined in (2.1) below:

pi =
 exp

(
[1 xT

i ]T β

1 + exp
(
[1 xT

i ]T β
)
 (2.1)

=
 β0 + β1xi1+, ..., βnxin

)
1− exp

(
β0 + β1xi1+, ..., βnxin

)
 (2.2)

where, β = [β0, β1, ..., βn]T are unknown parameters referred to as regression coefficients
associated with each independent variable in the model. β0 represents the intercept. As-
suming y1, ..., yN are independent, the joint distribution is shown in equation (2.3) as:

L =
N∏

i=1
pyi

i

(
1− pi

)1−yi

(2.3)

The log-likelihood function is given as:

ℓ(β) = logL = log
{

N∏
i=1

pyi
i (1− pi)1−yi

}

=
N∑

i=1

yi log(pi) + (1− yi) log(1− pi)
, (2.4)

The optimal β is found using Newton’s method iteratively until it converges to the Maxi-
mum Likelihood estimates (Alan, 1990).

2.3 Gaussian Mixture Model Density estimation

Logistic regression is used in imbalanced credit risk modelling in Chapter 4 of this thesis.
Similarly, this section describes the Gaussian Mixture Model (GMM) density estimation and
the EM Algorithm in detail, which are also used in the proposed Hybrid Dual-Resampling
Cost-sensitive (HDRCS) of Chapter 4 for credit risk prediction.

A Gaussian Mixture Model (GMM) represented in Figure 2.1 is a parametric probability
density function represented as a weighted sum of the densities of Gaussian components
(Biprodip and Mahit, 2017). Density estimation is the construction of an estimate using the
observed data of an underlying unobservable probability density function (Bishop, 2006).
The unobservable density function is thought of as the density according to which a large
population is distributed; the data are usually thought of as a random sample from that
population. It involves the modelling of the probability distribution p(x) of a random
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variable x given a finite set x1, x2, ..., xN of observations.

Figure 2.1: Gaussian mixture model representation

GMM is commonly used as a parametric model of the probability distribution of contin-
uous measurements. While the Gaussian distribution possesses some important analytical
properties, it suffers from some significant limitations when used on its own for the mod-
elling of real data sets. This is because it does not have the ability to accurately capture
the structure of the data set. Hence, a linear combination of two more distributions, such
as the Gaussian distribution, is necessary to overcome this shortfall in order to provide a
better characterisation of the data set. A linear combination of two or more Gaussians
results in very complex densities called the Gaussian mixture model (GMM)(Kwon et al.,
2018).

Let:
x represent an n-dimensional data vector; ϕj is the mixture weights.
j = 1, ..., k′ represents the number of components of the Gaussian mixture.
z is a k′-Dimensional binary random variable, with element Z ∈ {0, 1}
µj is a n-dimensional mean vector , Σj represents a n× n covariance matrix and
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|Σj| denotes the determinant of Σj. (Bishop, 2006)

The weighted sum of j component Gaussian densities that form the Gaussian mixture model
is specified by equations (2.5)

k′∑
j=1

ϕj = 1 (2.5)

The following procedure can be used to estimate ϕ, µ,Σ. Given a set of data, {x(i)}N
i=1, the

maximum likelihood estimation can be applied using equation (2.6)

ℓ(ϕ, µ,Σ) =
N∑

i=1
log(p(x(i);ϕ, µ,Σ)) =

N∑
i=1

log
k′∑

z(i)

p(x(i)|z(i);µ,Σ) p(z(i);ϕ) (2.6)

Simplifying the log-likelihood function results in (2.7)

ℓ(ϕ, µ,Σ) =
N∑

i=1
log p(x(i)|z(i);µ,Σ) + log p(z(i);ϕ) (2.7)

The likelihood function can be maximised through the partial derivative over ϕ, µ,Σ, shown
below:

ϕj = 1
N

N∑
i=1

1{z(i) = j}

µj =
∑N

i=1 1{z(i) = j}x(i)∑N
i=1 1{z(i) = j}

Σj =
∑N

i=1 1{z(i) = j}(x(i) − µj)(x(i) − µj)T∑N
i=1 1{z(i) = j}

Maximum likelihood estimation can be used to estimate the parameters if z is known. How-
ever, it becomes more complicated if z is unknown. However Maximum likelihood becomes
non-beneficial to use if there are latent variables, z. These are variables that interact with
those in the data set but are hidden or unobservable. There are many methods used to
estimate the parameters of a GMM, but the Expected Maximisation (EM) is the most fre-
quently used method (Kwon et al., 2018). This is because EM is a powerful method to find
maximum likelihood solutions for models with latent variables, which involves iteratively
finding the maximum likelihood estimates of the parameters of statistical models (Bishop,
2006). The Expectation-Maximisation algorithm is used to estimate z and other parame-
ters. The EM chooses some random values for the missing data points and then estimates
a new set of data. These new values are then used recursively for estimation.
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Expected Maximisation(EM) algorithm in GMM

The two steps involved in the EM algorithm are the Estimation Step (E-step) and the
Maximisation Step (M-step). Firstly, the model parameters and the latent variables, z(i)

can be randomly initialized. In the E-step, the algorithm tries to guess the value of latent
variables, z(i) based on the parameters, while in the M-step, the algorithm updates the
value of the model parameters based on the guess of z(i) of the E-step. These two steps are
repeated until convergence is reached.

• The Estimation Step (Expectation of the unobserved data): In the expecta-
tion step, the values of the current parameters are used to find the posterior distri-
bution of the hidden variables given by Equation (2.8)

For each i, j set:

w
(i)
j := p(z(i) = j|x(i);ϕ, µ,Σ) (2.8)

• The Maximisation Step: The parameters of the unobserved data are updated by
maximising the likelihood function generated in the E-step above. The revised pa-
rameter estimate is determined by maximising the functions. Update the parameters
as:

ϕj = 1
N

N∑
i=1

1{z(i) = j}

µj =
∑N

i=1 1{z(i) = j}x(i)∑N
i=1 1{z(i) = j}

Σj =
∑N

i=1 1{z(i) = j}(x(i) − µj)(x(i) − µj)T∑N
i=1 1{z(i) = j}

where z is the unobserved latent variables and x is the observed variables.

Using the Bayes rule, the E-step leads to equation (2.9):

p(z(i) = j|x(i);ϕ, µ,Σ) = p(x(i)|z(i) = j;µ,Σ)p(z(i) = j;ϕ∑k′
l=1 p(x(i)|z(i) = l;µ,Σ)p(z(i) = l;ϕ)

(2.9)

Using the GMM setting results in this equation (2.10), where each component density of
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the GMM is an n-variate Gaussian function.

p(x(i)|z(i) = j;ϕ, µ,Σ) = 1
(2π)

n
2
√
|Σj|

exp
{
−1

2(x(i) − µj)T Σ−1
k (x(i) − µj)

}
(2.10)

p(z(i) = j;ϕ) = ϕj

This allows the possibility of a switch between the E-step and the M-step for any randomly
initialised parameters.

2.4 Deep Learning for Time-series Forecasting

In recent years, there has been a renewed interest in utilising deep learning models to predict
financial time series data. Notably, models like the Gated Recurrent Unit (GRU), Long
Short-Term Memory (LSTM), and Deep Belief Networks (DBN) have gained prominence
in time-series predictions.

Long Short Term Memory

Long short-term memory (LSTM) was proposed by Hochreiter and Schmidhuber (1997)
and has been used to improve the volatility prediction of S & P 500 index and Apple stocks
(Liu, 2019). Xiong et al. (2016) also utilised 27 features to predict the S&P 500 volatility in
their report which had 25 domestic trends combined with past volatility and return used as
inputs of LSTM. LSTMs are a specialised type of Recurrent Neural Network (RNN) with
a direct cycle connected between units where temporal patterns are learnt using sequential
data. This architecture enables them to store important information from previous inputs,
which are then used to update the current output. Through this mechanism, the system
obtains memory and, therefore, acts as an intelligent system. Long-Short-Term Memory
(LSTM) is a variant of the RNN architecture that is used to train over long sequences
and retain memory, allowing long-term dependencies and therefore provides a solution to
the problem of vanishing gradient that arises during training by introducing a few more
gated units to control access to the cell state (Gers et al., 2000). The main characteristic
of hidden layers consisting of memory cells and gates is to store information or forget it if
necessary (Fischer and Krauss, 2018). Mathematically, the LSTM can be written as shown
in Equation (2.11)
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ft = σ(Wfhht−1 + Wfx xt + bf )
it = σ(Wihht−1 + Wix xt + bi)

ĉt = σ(Wĉhht−1 + Wĉx xt + bĉ)
ct = ft · ct−1 + it · ĉt

ot = σ(Wohht−1 + Wox xt + bo)
ht = ot · tanh(ct) (2.11)

where xt is the input vector, ht is the output unit State, ct is the cell state vector, W is the
parameter matrices, whilst ft, it and ot represents the forget gate, input gate and output
gate vectors respectively. σ is a sigmoid function that bounds the output between 0 and
1 and tanh is a logistic sigmoid function that bounds the output value between -1 and 1.
The forget gate ft decides which information in the cell state should be kept or rejected.
The closer the value of ft is to 1, the higher the probability that the information associated
with it will be allowed to pass through it, while values closer to zero are rejected and are
not allowed to pass through the gate.

Generative Adversarial Neural Network (GANs)

Generative Adversarial Neural Networks (GANs) (Goodfellow et al., 2014) have attracted
a great deal of attention from the research community since their introduction in 2014
and much of their activities are focused on image generation (Reed et al., 2016). They
are classes of unsupervised deep learning frameworks with the ability to learn an unknown
probability distribution of a given data set and can map the learnt distribution to generate
synthetic data sets that follow the same distribution (Takahashi et al., 2019). GANs involve
the pitching of two deep neural networks against each other. The first network known as
the Generator is trained to generate new samples, while the second network known as
the discriminator is fed with either the training data sample or the synthetic data sample
produced by the Generator and aims to distinguish the true samples from the generated
samples (Goodfellow et al., 2014). The two networks are adversarially trained in a zero-sum
game where the Generator is trained to trick the discriminator whilst the discriminator is
trained to maximise the classification accuracy. This adversarial training continues until
Nash equilibrium is achieved; where the discriminator cannot distinguish the generated
samples from the true samples. At this point, the Generator is able to capture the data
distributions (Takahashi et al., 2019). Figure 2.2 demonstrates the basic architecture of
the GAN and the minimax game that the two networks play.
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Figure 2.2: Generative Adversarial Network

Denote the training dataset D = (xn)N
n=1, the generative adversarial nets (GAN) aim to

learn the Generator’s distribution over the data x. During the training of the GAN network,
the Generator, G learns to map and transform a known probability distribution pz into the
distribution of the Generator pg to resemble the distribution of the data, pdata. Using
this adversarial network, both the generator and discriminator models can be trained using
back-propagation and dropout algorithms (Hinton et al., 2012; Srivastava et al., 2014). The
minimax game played by the GAN network is represented in equation (2.12):

min
g

max
θ

Λ(D,G) = Ex∼pdata(x)[ logDθ(x)] + Ez∼pz(z)[ log(1−Dθ(Gg(z)))] (2.12)

With GANs, the data are directly trained with a neural network, without making any
assumptions about the distribution of the data when building the model. The learning is
performed through the discriminator and Generator learning steps described as follows:

Discriminator Learning

This involves learning θ given a Generator G. The aim is to estimate the parameters,
θ that maximise the classification of real and fake data. Gradient descent algorithms,
such as Adam optimiser, are usually used to perform the discriminator learning and yield
discriminator error function, ▽disc on parameters θ :
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▽disc(Xr, Xg) = ˜data(Xr) + Z̃(Xg),
with :
˜data(Xr) = 1

b

∑
x∈Xr

log(Dθ(x));

Z̃(Xg) = 1
b

∑
x∈Xg

log(1−Dθ(x)),

where Xr represents a batch of real data randomly drawn from the training data set and Xg

represents a batch of generated data from G. Unlike the discriminator learning step above,
the Generator step performs only one per iteration. Through the iteration of the Generator
and discriminator steps together for a significant number of times, the GAN ends up with
a Generator parameter g that resembles that of the real data.

Generator learning

This involves adapting g to the new parameters θ. This process is carried out by a gradient
descent of the error function ▽gen in the Generator parameters g :

▽gen(Zg) = B̃({Gg(z)|z ∈ Zg})
= 1
b

∑
x∈{Gg(z)|z∈Zg}

log(1−Dθ(x))

= 1
b

∑
z∈Zg

log(1−Dθ(Gg(z)))

where Zg represents a sample of batch b of random noise data generated from pz(z)

Time series GAN

Time Series GAN (TimeGAN) is a generative time-series model introduced by Yoon et al.
(2019). It offers a unique approach to adversarially train and jointly learn an embedding
space using both supervised and unsupervised losses. TimeGAN brings together concepts
from auto-regressive models, GANs, and time-series representation learning (Yoon et al.,
2019). TimeGAN consists of four network components which are; an embedding function,
recovery function, Generator, and discriminator functions.

The embedding and recovery functions: Provide a mapping between the feature
and latent space, which allows the Generator and discriminator functions to learn the

20



2.4. DEEP LEARNING FOR TIME-SERIES FORECASTING Page 21

underlying temporal dynamics of the data through low-dimensional representations. The
latent dynamics of both real and synthetic data are synchronised through supervised loss.

Denote the training data set, D = (Sn,Xn,1:Tn)N
n=1, Sn ∈ S, with S being a vector space of

static features, Xn ∈ X , with X being a vector space of temporary features. Let HS, HX

denote the latent vector spaces corresponding to the feature spaces S,X. The embedding
function, e implemented as a recurrent network, takes static and temporal features to their
latent codes hS,h1:T = e(S,X1:T ) as shown in Equation (2.13):

hS = eS (S) , ht = eX (hS ,ht−1,Xt) (2.13)

where eS represents an embedding network for static features and eX is a recurrent em-
bedding network for temporal features. The opposite direction has a recovery function,
r, implemented through a feed-forward network at each time step that takes static and
temporal codes back to their feature representations S̃, X̃1:T = r(hs,h1:T ) as demonstrated
in equation (2.14):

S̃ = rS(hs), X̃t = rX (ht) (2.14)

where rS and rX are recovery networks for static and temporal embeddings respectively.
The reconstruction loss LR involved in this procedure is calculated and mathematically
represented as the equation (2.15):

LR = ES,X1:T ∼p

[
∥ S− S̃ ∥2 +

∑
t

∥ Xt − X̃t ∥2

]
(2.15)

The Sequence Generator and discriminator functions: Rather than producing syn-
thetic output directly in the feature space, the Generator first outputs into the embedding
space. Denoting the vector spaces over which known distributions are defined as zs, zx, and
from which random vectors are drawn, the Generator function, G takes a tuple of static
and temporal random vectors to synthetic latent codes ĥS, ĥ1:T = G(zs, z1:T )

Mathematically, the Generator is implemented as shown in equation (2.16):

ĥS = GS (zS) , ĥt = GX
(
ĥS , ĥt−1, zt

)
(2.16)

where GS : ZS → HS is a Generator network for static features and GX : HS ×HX ×ZX →
HX represents a recurrent Generator for temporal features. The random vector zS , can be
sampled from any distribution of choice, while the zt, which follows a stochastic process,
can use the Gaussian distribution and the Wiener process.
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The discriminator function, D : HS1 ×
∏

t1HX 1 → [0, 1]1 ×
∏

t1 [0, 1]1 which also oper-
ates from the embedding space, receives the static and temporal codes and returns the
classifications, ỹS , ỹ1:T = D(h̃S, h̃1:T ) as:

ỹS1 = DS
(
h̃S
)
, ỹt = DX

(←−u t,
−→u t

)
(2.17)

where −→u t = −→c X (h̃S , h̃t,
−→u t−1) and ←−u t = ←−c X (h̃S , h̃t,

←−u t+1) respectively represents the
sequences of forward and backwards hidden states using the recurrent functions and DS , DX

denotes the output layer classification functions.

Gradients are calculated on the unsupervised loss LU to allow maximisation of the likelihood
of providing a correct classification for the discriminator or minimisation of the likelihood of
providing a correct classification for the Generator. The unsupervised loss LU , is calculated
as :

LU = ES,X1:T ∼p

[
log ys +

∑
t

log yt

]
+ ES,X1:T ∼p̂

[
log (1− ŷs) +

∑
t

log (1− ŷt)
]

(2.18)

The Optimisation process: Let θe, θr, θg, θd denote the parameters of the Encoder,
Decoder, Generator, and discriminator networks, respectively. The θe and θr are jointly
used to train on the reconstruction loss and the supervised loss as shown in:

min
θe,θr

(λLS + LR)

The Generator and the discriminator networks uses equation (2.19) to adversarially train
each other

min
θg

(
γ LS + max

θd

(LU)
)

(2.19)

where λ, γ ≥ 0 are regularisation parameters that balance these losses.

In conclusion, TimeGAN’s unique approach leverages the power of LSTM-based generative
modelling and GANs to capture and replicate the underlying temporal dynamics of time-
series data, making it a promising tool for time-series forecasting.

2.5 Continuous Wavelet Transform (CWT)

Wavelet transforms are mathematical techniques used to analyse data with features that
vary across different scales. They can be used to de-noise data since it has the ability to
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handle non-stationary financial time series data (Ramsey, 1999). The main feature of the
wavelet transform is its ability to analyse the frequency and time components of financial
time series simultaneously, unlike the Fourier transform which lacks that ability (Lee et al.,
2019). Fourier analysis involves breaking down a signal into sine waves of particular fre-
quencies, whereas wavelet analysis involves the division of signals into shifted and scaled
versions of a wavelet. A wavelet is a wavelike oscillation that quickly fades away, unlike a
sine wave from the Fourier transform (Misiti, 2000). Compared to the Fourier transform,
wavelet analysis is a relatively new technique in signal processing (Cohen et al., 1993), and
is made up of mathematical functions that decompose data into different frequency com-
ponents, after which each component is studied with a resolution that corresponds to its
scale, where a scale denotes a time steps (Ramsey and Zhang, 1997). One main advantage
of wavelets is their ability to analyse a localised area of a larger signal (Misiti, 2000). The
different types of mother wavelets for both discrete and continuous wavelets are represented
in Figure 2.3. In the first row are the mother wavelets for discrete wavelets, and in the sec-
ond row are several mother wavelets for continuous wavelets, including the Morlet wavelet
shown in red.

Figure 2.3: Various families of mother Wavelets available. In the first row are the mother
wavelets for discrete wavelets and in the second row are several mother wavelets for contin-
uous wavelets including the Morlet wavelet shown in red

The continuous wavelet transform (CWT) (Luo et al., 2018), which is a form of the wavelet
transform, is a time-frequency transformation that is suitable for analysing non-stationary
signals. The CWT is comparable to the short-time Fourier transform (STFT), but the
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STFT uses a fixed window to generate a local frequency analysis, while the CWT uses
variable windows to cover the time-frequency plane (Gencay et al., 2001). The continuous
wavelet transform is the sum over all time of the signal multiplied by scaled and shifted
versions of the wavelet (Misiti, 2000). This results in wavelet coefficients, C, which are
a function of scale and position. The wavelet function of a continuous wavelet transform
(CWT) can be mathematically defined as shown in Equation (2.20) :

C(ϕ, t) = ϕ− 1
2

∫ ∞

−∞
v(x)ψ

(
x− t
ϕ

)
dx (2.20)

with, ψ(t) = exp(− t2
2 ) cos(5t)

where ϕ represents the scaling factor, C represents the wavelet coefficients, t is the transla-
tion factor, v(x) represents the recent Volatility input values and ψ represents the Morlet
mother wavelet.

The wavelets undergo two operations, which are shifting and scaling. Shifting refers to the
delay of the onset of the wavelet, while scaling refers to the stretching or compression of
the wavelet(Misiti, 2000). Smaller scales show a more compressed wavelet (Subbey et al.,
2007). Thus, wavelet transforms convert the original time series data into frequencies, which
are linked to the specific times when these frequencies occur, using wavelet operations.
The wavelet transform decomposes a time series signal into different scales, helping to
distinguish seasonality, reveal structural breaks and volatility clusters, and identify local
and global dynamic properties of a time series signal at specific time scales (Gencay et al.,
2001). Consequently, the wavelet is classified as a useful tool for handling highly irregular
financial time series (Popoola and Ahmad, 2006).

The relation between the scale factor and the frequencies is shown as:

fϕ = fc

ϕ

where fϕ is the frequency, fc is the central frequency of the Mother wavelet. A higher scale
factor (longer wavelet) corresponds to a smaller frequency, so by scaling the wavelet in the
time domain, smaller frequencies can be analysed (resulting in a higher resolution) in the
frequency domain. By using a smaller scale, there is more detail in the time domain.
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Reconstruction loss on the continuous Wavelet transform

The inverse wavelet transform can be used to recover the original volatility signal, v using
equation (2.21) . The reconstructed volatility time series was the sum of the real part of
the wavelet transform over all the scales and is given in equation (2.21):

v(t) =
∫ ∞

−∞

∫ ∞

0
C(v)(ϕ, x)ϕ−5

2 ψ

(
t− x
ϕ

)
dxdϕ (2.21)

(Luo et al., 2018)

2.6 Problem Formulation of cwt-TriGAN

For a given volatility data, let C be the vector space of the coefficients obtained after
applying CWT on volatility data, with C ∈ C representing random vectors that can be
initiated with specific c values. Let p represent the distribution of CT . During data training,
individual samples can be indexed by n ∈ {1, ..., N}. Re-shape the CWT features into 2D
features of Ts×M size, where M is the total number of scales and Ts is the number of time
steps. Therefore, the training data can be denoted by V = {cn,Tn}N

n=1. Since the use of the
standard GAN framework results in optimisation difficulties, cwt-TriGAN can be used to
learn the density distribution, p̂(CT ) of training data V that best approximates p(CT ). This
can then be used together with an auto-regressive decomposition of p(CT ) = p(Ct|Ct−1) to
specifically focus on the conditional objectives of learning a distribution density p̂(Ct|Ct−1)
that best approximates p(Ct|Ct−1) at any time t.

cwt-TriGAN Objective functions

The objective function refers to measuring the difference between the coefficients of the
volatility data distribution and the generated coefficients of the volatility distribution. The
two training objectives are global and local objectives. These separate the sequence-level
objective into a series of step-wise objectives. The first objective representing the global
objective is represented by Equation (2.22):

min
p̂

Λ (p(CT ) ∥ p̂(CT )) (2.22)
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The second objective representing the local objective is represented by equation (2.23):

min
p̂

Λ( p(Ct|Ct−1) ∥ p̂((Ct|Ct−1)) (2.23)

where Λ is the measure of distance between the distributions.

Under an ideal cwt-TriGAN, equation (2.22) uses Jensen-Shannon divergence (Menendez
et al., 1997) to minimise the loss function, while equation (2.23) which is the local objec-
tive uses Kullback-Leibler divergence (Van Erven and Harremos, 2014) through maximum
likelihood (ML) to minimise the loss function. Here, the original coefficients of the volatil-
ity data serve as the supervisor in the maximum likelihood training. Therefore, the main
objective is the combination of the GAN objective in equation (2.22) and the ML objective
in equation (2.23). This procedure leads to a training process that involves the addition of
a supervised loss to guide adversarial learning of the cwt-TriGAN.

The next section covers the fundamentals of reinforcement learning.

2.7 Fundamentals of Reinforcement Learning

This section covers the fundamentals of reinforcement learning. Reinforcement learning
is a machine learning paradigm that models a sequence of decisions over state space. As
stated by Dixon et al. (2020), the agent in reinforcement learning learns more about the
environment in order to perform better on the tasks assigned to it. These tasks can be
mapped as the problem of conducting an optimal action space. A reinforcement learning
programme can be modelled as a Markov Decision Process (MDP), which is an optimal
control problem and involves choosing action space over some period of time with the aim
of maximising some objective function, which invariably depends on both the future states
and actions taken.

Policy Gradients which are a special class of reinforcement learning are used to estimate the
gradient of the function approximator. All reinforcement learning agents possess explicit
goals; have a high awareness of their environment, and have the ability to select actions
that influence their environments. Among all the available machine learning paradigms,
reinforcement learning is the closest to the type of learning that humans and other animals
do, and the fundamental algorithms used in reinforcement learning were originally inspired
by biological learning systems.

Figure 2.4 shows a typical framework for RL operations. It is made up of an agent, which
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is the learner and the decision-maker, and the environment with which it interacts. The
interaction of the agent with the environment is a continuous process, where the agent
selects actions and the environment responds to these actions and presents a new state to
the agent. As highlighted above, the environment also produces rewards that the agent
tries to maximise over time through its observations and choice of actions. In Figure 2.4,
it can be seen that the interaction between the agent and the environment occurs at each
sequence of time steps, t = 0, 1, 2, 3...T . At each time step, the Environment state St ∈ S
sends some of its representation to the agent, where the agent selects an action, At ∈ A(s).
At time step t + 1, the Agent obtains a reward , Rt+1 ∈ R ⊂ R as a result of its chosen
action and transitions to a new state St+1. The Markov Decision Process and the agent give
rise to a sequence such as S0, A0, R1, S1, A1, R2, S2, A2, R3, ..., ST , AT , RT +1 (Silver, 2015)

Figure 2.4: Basic design of Reinforcement learning showing the Agent-Environment inter-
action (Sutton and Barto, 2018)

In addition to an agent and the environment, an RL agent may include one or more of these
components:

• Policy function: A policy π defines the behaviour of an agent and it is defined as the
distribution over actions given states (Silver, 2015). This contains an agent’s learning
behaviour function at a given time t. It serves as a mapping from perceived states of
the environment to actions taken when in those states. The policy can be a simple
function or look-up table in some cases, while in others too, it can involve complex
computations. Generally, policies may be stochastic or deterministic and serve as the
core of reinforcement learning agents, as only they can determine behaviour (Sutton
and Barto, 2018). It depends on the current state and not the historical states,
since they are time-independent and stationary. Mathematically, it is represented in
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equation 2.24:
π(a|s) = P = [At = a]|St = s] (2.24)

• Reward: The goal of a reinforcement learning problem is defined by the reward. At
each time step, the environment sends a scalar in the form of a number called reward
is sent to the reinforcement learning agent by the environment. The main objective
of the agent is to maximise the total reward received in the long term. Therefore, the
reward signal defines the positive and negative events of the agent. In a biological
system, this can be loosely equated with experiences of pleasure or pain. The reward
signal serves as the primary basis on which the policy is altered. If an action selected
by the policy results in a low reward, then there could be changes in the policy to
select other actions for the same situation in the future (Sutton and Barto, 2018).

• Value function : This demonstrates how good each state and action are in the
long term compared to a reward signal that indicates what is good in the short or
immediate term. The value of a state can be said to be analogous to the total amount
of reward an agent can expect to have in the future. There could be no values
without rewards, and the only reason behind the estimation of values is to achieve
more rewards. For value-based RL agents, values are the most important element for
evaluation and decision-making. The choice of actions taken at each time step is based
on value judgements, since actions that result in states of the highest value are sought
rather than the highest reward. Unfortunately, it is easier to determine rewards as
compared to values because rewards can be directly obtained from the environment,
but values must be estimated and re-estimated from the series of observations made
by an agent over its whole lifetime.

• Model: This only occurs in model-based methods to solve reinforcement learning.
This shows the agent’s representation of the environment and mimics the behaviour
of the environment. As an example, given a state and action, a model could predict
the next state and the next level. Models are used for planning, whereby possible
future situations are considered before they actually occur. There is a model-free
method that explicitly uses try-and-error learners without planning, unlike model-
based methods (Sutton and Barto, 2018).

Markov decision process(MDPs)

Markov decision process describes the environment used for reinforcement learning(Sutton
and Barto, 2018). There could be a fully-observable environment or a partially-observable
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environment. Most RL problems can be formalised as MDPs. Bandits are a special case of
MDPs with only one state. The central idea behind an MDP is the Markov property, which
states that the future is independent of the past given the present (Silver, 2015). All the
relevant information about history is captured by the state, and once the state is known,
the history might be thrown away. A state St is said to have the Markov property only if
equation (2.25) is observed:

P [St+1|St] = P [St+1|S1, ..., St] (2.25)

Bellman Equation for Markov Reward Process

The value function, v(s) = E[Gt|St = s], shows the Expected returns (E[Gt), given that it
starts at state s. It can be divided into two parts, which are:

• Immediate reward, Rt+1

• Discounted value of the next state γv (St+1)

This is mathematically represented in equation 2.26:

v(s) = E[Gt|St = s]
= E[Rt+1 + γRt+2 + γ2Rt+3 + γ3Rt+4 + ...|St = s]
= E[Rt+1 + γ(Rt+2 + γRt+3 + ...)|St = s]
= E[Rt+1 + γGt+1 + ...|St = s]
= E[Rt+1 + γv(St+1)|St = s] (2.26)

A Markov decision process has been described as a Markov reward process with decisions
and is a tuple of (S,A,P ,R, γ ), where:

• S represents a finite set of states

• A represents the final set of actions undertaken by the Agent

• P represents a state transition probability matrix, Pa
ss′ = P [St+1 = s′|St = s, At = a

• R represents the reward function, Ra
s = E[Rt+1|St = s, At = a γ represents the

discount factor where γ ∈ [0, 1]
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Value functions

The expected return that starts from state s which follows policy, π is known as the state-
value function vπ(s) (Silver, 2015). it is mathematically expressed as shown in equation
2.27:

vπ(s) = Eπ[Gt|St = s] (2.27)

The action-value function qπ(s, a) is defined as the expected return that starts from the
state s, takes action a and follows a policy π. It can be mathematically defined as equation
2.28:

qπ(s, a) = Eπ[Gt|St = s, At = a] (2.28)

Optimal Value Function

The optimal value function sets out the best possible performance in a Markov decision
process, and an MDP is deemed to be solved when the optimal value function is known
(Silver, 2015). The maximum value function overall policies are defined as the optimal
state-value function v∗(s) and it is mathematically expressed as equation 2.29:

v∗(s) = max
π
vπ(S) (2.29)

The optimal action-value function q∗(s, a) on the other hand is defined as the maximum
action-value function over all policies. It can be mathematically defined in equation 2.30
as:

q∗(s, a) = max
π
qπ(S, a) (2.30)

Optimal Policy

As proposed by Silver (2015), defining a partial order over policies is shown in equation
(2.31) as:

π ≥ π′ → vπ(S),∀S (2.31)

There exists an optimal policy π∗ which is better than or equal to all other policies, for any
Markov Decision process, π∗ ≥ π, π∀. Also, all optimal policies achieve the optimal value
function, vπ∗(S) = v∗(S). Finally, all optimal policies achieve the optimal action-value
function qπ∗(S, a) = q∗(S, a).
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2.8 summary

In summary, this chapter has covered some machine learning concepts and fundamentals as
preliminaries to the proposed solutions for the problems of credit risk modelling, volatility
forecasting, and portfolio optimisation to be detailed in this thesis. It initially introduced
the relevant concepts of logistic regression and density estimation using the Gaussian Mix-
ture Model (GMM) to be used in credit risk modelling. Deep Learning for Time-series
forecasting and reinforcement learning has been introduced as technical background for the
problems of volatility forecasting and portfolio optimization. A limitation of TimeGAN
that has been identified is its sensitivity to the quality of input data, which makes its
performance to be affected by noisy and poor data quality.

In the chapter that follows, the basic financial background knowledge underpinning credit
risk modelling, volatility forecasting and portfolio optimisation is presented.
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Chapter 3

Background of Financial Risk
Management

3.1 Introduction

This chapter serves as a comprehensive review of the foundational concepts of financial risk
management, with a specific focus on key aspects of finance that are later explored through
machine learning algorithms in the subsequent chapters of this thesis. The central theme
of this chapter revolves around credit risk modelling, volatility forecasting, and portfolio
optimisation, forming the core pillars on which this thesis is built. The remainder of this
chapter is organised as follows. Section 3.3 introduces the fundamental principles of credit
risk modelling, offering insights into its practical applications. Section 3.4 introduces the
fundamentals of Market Risk and Volatility forecasting. Finally, Section 3.5 delves into
essential financial concepts used in portfolio optimisation.

3.2 Financial risk management

Financial risk management involves the identification, assessment and mitigation of poten-
tial risks that may impact an organisation’s financial performance (Crouhy et al., 2014b).
These risks include credit risk, market risk, liquidity risk, operational risk, and many others
(Apostolik et al., 2009). During a severe crisis, such as the 2008-2009 financial crisis, these
risks can flow from credit risk to liquidity risk and to market risk. Various risks are faced
by financial institutions (Ghenimi et al., 2017). Effective management of these risks is the
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key to bank performance and survival. Financial institutions actively utilise financial risk
management techniques to detect, manage and measure these risks (Apostolik et al., 2009).

Credit risk is defined as the risk that a borrower defaults on a loan or other related
financial obligation and is the largest risk faced by financial institutions (Siddiqi, 2017;
Borsuk, 2023). However, market risk can be defined as the risk of losses due to move-
ments in market prices such as stock prices, interest rates, exchange rates, and commodity
prices(Jorion, 2007). It includes interest rate risk, equity risk, foreign exchange risk, and
commodity risk. Therefore, the movement in prices known as volatility is an important
concept for research.

3.3 Credit Risk Modelling

This section briefly introduces the fundamentals of credit risk modelling and how it is
applied in practice. The probability that a customer will default can be estimated using
application scoring at the time of the application for the credit facility. A scorecard is made
of a group of characteristics statistically determined to be predictive of the separation of
good loans from bad ones (Siddiqi, 2017). Alternatively, behavioural scoring is done by
observing recent payment and purchase behaviour of customers who have been granted
credit facilities to predict the probability of default in 12 months or other fixed time window
(Kennedy et al., 2013). This is used to make lending decisions on current customers, such
as increasing or decreasing credit limits, offering new financial products, or new interest
rates according to the customer’s behaviour. Credit risk has also been known to affect the
portfolio of banks, posing a liquidity risk to their operations (Ghenimi et al., 2017). It
is argued that this can eventually have a negative effect on both financial industries and
economies (Yu et al., 2018). Credit risk models can be grouped into corporate models and
consumer models (Zamore et al., 2018). Although both models share the same fundamental
assumptions, the majority of available literature tends to focus on corporate models.

For corporate and institutional credit risk modelling, two major models that are frequently
used are structural firm value models and reduced-form intensity models (Yu et al., 2018).
Structural models based on capital structure theory (Modigliani and Miller, 1958), can
be traced back to the works of Black and Scholes (1973) and Merton (1974). The main
idea involves modelling the default of a company by using its asset value and adopting a
geometric Brownian motion to describe the value of the asset (Yu et al., 2018). It assumes
the occurrence of default when the asset value of a firm falls below its total debt value.
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The reduced-form intensity-based model was pioneered by Jarrow and Turnbull (1995);
Madan and Unal (1998). Unlike structural models, reduced-form models have the ability
to determine the probability of default without making any assumptions about the source
of the credit risk premium (Benzschawel, 2012). They are based on the risk-neutral pricing
theory, which states that the market value of a risky asset equals the discounted present
value of future cash flows using the risk-free rate.

For retail and consumer credit decision, various models have been implemented to estimate
the Probability of Default of customers.

Credit Risks

Failure to manage credit risks adequately could exceed direct accounting losses (Yu et al.,
2018). This is because it entails transaction costs, opportunity costs, and expenses associ-
ated with non-performing assets over and above the accounting loss. The main objective
of credit scoring (Thomas, 2009) is the development of a credit system that can rank
customers in terms of their relative default risks in such a way that customers above some
cutoff score are classified as less risky than those below. These models can be classified
into application scoring and behavioural scoring, with the main objective of classifying
whether a customer will default or not (Thomas, 2009; Siddiqi, 2017). In today’s banking
and financial services activities, credit risk management plays a pivotal and significant role,
since it involves the practice of reducing losses through the understanding of the financial
institution’s bank reserve and loan loss reserves.

The reduction of losses suffered by financial institutions plays a crucial role in ensuring their
business continuity. The profitability of a loan is determined by several factors, such as the
creditworthiness of a borrower, the quality of the collateral, and the regulatory regime in
which the financial institution finds itself in (Engelmann and Pham, 2020). Regulators and
accounting boards around the world have undertaken several initiatives aimed at stabilising
the financial system (Engelmann and Pham, 2020). In 1998, the Basel Committee on
Banking Supervision (BCBS) introduced the Basel I Accord to implement the minimum
regulatory capital requirements for financial institutions (BCBS, 1988). The main purpose
of this was to ensure that banks were solvent without any threat of bankruptcy. This
regulation allowed banks to swap low-risk assets with high-risk assets, as loans of different
risk levels were deemed to have the same value (BCBS, 1988). However, this arrangement
under the Basel I Accord led to the occurrence of regulatory arbitrage (Zhu, 2008). To
overcome this loophole, Basel II was introduced in 2006. This allowed banks to calculate
capital requirements to manage credit risks using a standardised approach, the Foundation
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Internal Ratings-Based Approach (FIRB) and the Internal Ratings-Based Approach (IRB)
(Yu et al., 2018).

In response to the global financial crisis in 2008, and after a series of consultations, BCBS
proposed Basel III in December 2009 (BCBS, 2020). Basel III, which is an extension of the
Basel II framework, introduced new capital and liquidity standards required to strengthen
banking and financial sector regulation and supervision. This led to an improvement in the
quality of banks’ capital and provided banking regulators with more flexibility in setting
capital levels for individual financial institutions (BCBS, 2020). The Basel III framework
is based on three pillars which are:

• Pillar 1: This represents the minimum regulatory capital requirements that financial
institutions should have. This requirement results in the reduction of the risk appetite
of financial institutions since the holding of riskier assets would increase the Pillar 1
capital requirement for that institution.

• Pillar 2: This is the supervisory review and evaluation process that allows banking
regulators to evaluate a bank’s risk profile through the analysis of the institution’s
business model, governance structure, risks to capital, and liquidity. From this per-
spective, this pillar allows regulators to focus on the assessment of risks not covered or
not fully covered by Pillar 1. The additional capital requirements will be translated
into additional Pillar 2 capital, which the institution is expected to hold in addition to
its Pillar 1 capital. If the institution’s provision coverage is considered inadequate by
the supervisors, an additional capital addition could be placed to ensure the coverage
is within the supervisory risk tolerance limits.

• Pillar 3: This represents the requirement of market discipline and allows financial
institutions to ensure transparent reporting that enables capital markets to serve as
a complementary force to regulate bank behaviour.

As an additional measure in response to the 2008 financial crisis, the accounting boards;
International Accounting Standards Board (IASB) and Financial Accounting Standards
Board (FASB), respectively, introduced new standards on loan loss provisions for impaired
loans, which are now known as International Financial Reporting Standard, IFRS 9 (IASB,
2015) and Current Expected Credit Losses, CECL (FASB, 2016). This was to improve
the accounting and reporting of financial assets and liabilities after the financial crisis with
the expectation that the earlier recognition of loan losses would enhance financial stability.
The profitability and volume of loans that a bank can originate were directly impacted by
these reforms. Credit risk management is understood to be a process that starts from the
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regulatory level to the strategic level of the bank, then continues to the operational level
(Win, 2018). The above statement shows that each level involves several decision-making
processes, such as risk-return trade-off evaluation and optimisation of stakeholders’ targets.

Regulatory Level

The regulatory level consists of the decision-making process of the financial regulatory
bodies that set a regulatory framework and guidelines that each financial institution must
follow. The main objectives of managing credit risk at this level by the Financial Regula-
tors are: (i) to protect depositors who lend to banks in the form of deposits; (ii) to reduce
systematic risks that could cause financial institutions’ failures; and (iii) to protect banking
confidentiality. As part of the activities at the regulatory level, financial institutions are
obliged to reserve a certain level of capital to absorb credit losses. For financial institutions
to use the internal-based approach to calculate their risk parameters, approval from regu-
latory authorities is required. Banking is one of the most regulated industries in the world
(Zhu, 2008). Hence, at this level, the regulation of a bank’s capital is crucial due to the
important role it plays in banks’ soundness and risk-taking behaviour and its influence on
the competitiveness of banks. Financial institutions must comply with these regulations,
as they are legally required to provide an estimate of the components of their credit losses
by quantifying these risk parameters. The credit risk of all financial assets is influenced by
these three parameters, which are Probability of Default Pd, Loss Given Default Lgd and
Exposure at default Ead (Caouette et al., 2008).

The Loss Given Default(Lgd) is represented mathematically by equation (3.1):

Lgd = 1−Rr. (3.1)

It is represented as a percentage of total exposure when the account falls into arrears. The
Rr is the Recovery Rate which is conditional on the default occurrence and refers to how
much is expected to be recovered by the lender from the debtor through reconstruction,
renegotiation, or forced sales of assets. The Exposure At Default, Ead, is a critical compo-
nent in credit risk assessment and used for the calculation of the potential loss a financial
institution might incur from a loan or other line of credit. The Expected Loss, El, is the
expectation of the loss variable represented mathematically in Equation (3.2)

El = Pd × Ead × Lgd = Pd × Ead × (1−Rr) (3.2)

The expected losses must be covered by the profits from the financial institution and are

36



3.3. CREDIT RISK MODELLING Page 37

taken into account when allocating the interest rate to each customer.A simple measure of
unexpected losses is the standard deviation of the loss variable shown in equation (3.3).

U = ε− El (3.3)

Where U is the unexpected losses and ε is the Extreme Possible Losses. The unexpected
losses that might arise are what is of interest to banking regulators; however, this does
not seem to be the best approach for measuring unexpected losses, especially in times
of economic crisis. Therefore, financial institutions tend to use economic capital as an
unexpected loss measure, since it covers the entire distribution of portfolio loss. It is the
amount of capital that a business requires to ensure that its balance sheet remains solvent
over a specified period. It is used in the estimation of the riskiness of a venture and in the
comparison of the opportunity cost of loan opportunities.

Strategic Level

Credit risk management at the strategic level involves monitoring and controlling the fi-
nancial institution’s overall strategic decision making such as; which type of new credit
product needs to be introduced in the market, the total amount to be made available for
lending, and other pre-defined loan-qualifying criteria. These decisions are made in such a
way that they are in accordance with the regulatory-level framework and guidelines. These
decisions will impact the total amount of risk faced by the financial institution. Basel II
brought about the division of risks faced by financial institutions into credit risks, market
risks, and operational risks (Thomas, 2009).

Operational Level

Credit Risk management at the operational level involves controlling the day-to-day credit
decisions and operations of the financial institution. Operations at this level have little or
no influence on the main decisions that affect the risk appetite of the financial institution.
However, at this level, various risks, including credit risks, are identified and reported back
to the strategic level for decisions to be made. Numerous empirical models have also been
developed to assess credit risks posed by consumers. These consumer risk models typically
involve a type of regression analysis or some form of probability model to evaluate the risk
factors that contribute to default (Hassan et al., 2018).
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Developments in Banking Supervision and Financial Reporting
standards

The IFRS9 and CECL primarily introduced Loan Loss Provisioning(LLP), while the Basel
Accords introduced minimum capital requirements with each of them being used as a tool
to ensure improved loan performance.

Loan Loss Provisioning under IFRS9 and CECL

The IFRS9 recommends a three-stage process for loan provisioning. These are:

• Stage 1: represents Normal performing loans, where banks have to reserve one year
of expected loss.

• Stage 2: represents loans with deteriorated credit quality; where banks have to reserve
lifetime expected loss.

• Stage 3: Consists of Defaulted loans, where banks have to build a specific loan pro-
visioning.

For stage 1, the financial institution should hold an equivalent of one year of expected credit
losses, while for stages 2 and 3 the institution should hold the equivalent of lifetime ex-
pected credit losses. Therefore, the expected credit losses under IFRS9 are mathematically
defined as shown in equation (3.4) as compared to that of the Basel Accord represented
mathematically earlier in equation (3.2).

El =
m∑

i=1
mPd × Ead × Lgd = Pd × Ead × (1−Rr)× d (3.4)

Where m represents the time horizon for the expected loss calculation under IFRS9 and is
given as 12 Months for stage 1 and a Lifetime for stage 2. At stage 3, the Pd will always
be set to 100% since the exposures are already in default at this stage. d represents the
discount factor required to discount the losses from the point of default in period i back
to the reporting date. Detailed information and experiments on credit risk undertaken in
this thesis have been provided in Chapter 4. The next section covers the fundamentals of
Market Risk and Volatility forecasting.
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3.4 Market Risk and Volatility

This section serves as background information for Chapter 5 which covers our proposed Con-
tinuous Wavelet Transform Triple Discriminator GAN (cwt-TriGAN) for Volatility Fore-
casting. Market risk and volatility are closely related concepts in financial risk management,
with volatility often used as a proxy for market risk (Trenca et al., 2015). Market risk refers
to the risk that an investment will lose value due to factors affecting the overall performance
of the market. This type of risk is also known as systematic risk because it cannot be elim-
inated through diversification. Examples of market risks include changes in interest rates,
inflation, geopolitical events, and economic downturns.

Volatility, on the other hand, is a measure of how much the price of an asset or security
changes over time and shows the level of risk associated with the price changes of an asset
(Magner et al., 2021). Volatility is an indicator of uncertainty and plays an important role
in financial markets (Chen, 2022). High volatility is associated with market turbulence
and high price fluctuation, while low volatility signifies calm markets (Anderson et al.,
2009). In general, higher volatility indicates higher market risk. This is because assets that
are more volatile are generally considered to be riskier, as they are subject to larger price
swings and may be more likely to experience sudden and significant losses. Conversely,
assets with lower volatility are generally considered to be less risky, as they exhibit less
price volatility and are less likely to experience sudden and significant losses. Changes in
market conditions can also lead to changes in volatility and market risk. For example, if
there is a sudden increase in uncertainty or risk in the market, this may cause investors
to become more risk-averse and sell off their investments, leading to increased volatility
and market risk. Conversely, if market conditions are stable and there is low uncertainty,
volatility and market risk may be lower. Investors and traders must take both market risk
and volatility into account when making investment decisions. They must carefully analyse
market conditions and assess the potential impact of different factors on the market as a
whole and on individual securities. They must also use risk management strategies such as
diversification and hedging to protect their portfolios from the effects of market risk and
volatility. The modern portfolio theory is used by financial institutions for asset allocation.
Therefore, volatility can be seen as a useful parameter used in finance applications such as
investment decisions, financial risk management, regulatory policies, and capital budgeting.

The study of volatility is therefore of significant value in financial markets since it is pri-
marily used to estimate market risk and also serves as a key parameter in the pricing of
financial derivatives such as options. Volatility has been used in option pricing formulas
derived from asset pricing models, such as the Black-Scholes model and other extensions
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derived from it. Reliable volatility estimates and forecasting play a crucial role in portfolio
management and hedging against risk because it has been shown to be associated with risk
and uncertainty (Poon and Granger, 2005). A simple risk measure has been used to estimate
volatility in many asset pricing models (Xiao and Aydemir, 2007). Volatility fluctuations
affect the price of almost every derivative security in the financial markets (Brownlees et al.,
2011). Furthermore, the accuracy of volatility forecasts and estimates is vital in areas such
as risk management for the calculation of metrics such as Value at Risk (VaR). This is
because underestimating expected risk can expose investors to excessive market volatility
(Brownlees et al., 2011).

The majority classes of volatility forecasting models that are widely used in modern practice
to account for stylised facts of volatility are the following:

• Classical models including moving averages, auto-regressive models, conditional het-
eroskedastic models (Engle, 1982), and the implied volatility concept (Schlag et al.,
2021).

• Machine learning models such as Support Vector Machines (SVMs) (Yang et al., 2020),
Artificial Neural Networks (ANNs) (Ge et al., 2022), Recurrent Neural Networks
(RNNs), Long Short-term Memories (LSTMs) and Generative Adversarial Networks
(GANs). These have an important feature with the ability to capture non-linear
behaviour.

Economic indicators have been used to forecast volatility (Bansal and Yaron, 2004; Cor-
radi et al., 2013; Engle et al., 2013); however, the use of purely macroeconomic variables
as opposed to financial variables does not act as accurate predictors of volatility (CHRIS-
TIANSEN et al., 2012). Traditional econometric models, such as regression and ARIMA,
generally assume that the variance in financial asset returns remains constant (Lin, 2018).
The economic models were combined to achieve a marginal but significant predictability
of stock volatility (Paye, 2012). Min et al. (2015) argued that econometric models re-
quire strict assumptions about the distributions of time series data and may not capture
the complex and non-linear underlying patterns of financial data. The use of econometric
models to predict the volatility of an asset is inconsistent and unreliable (Liu and Morley,
2009). This is because these models are unable to capture the asymmetries, cyclicality,
time irreversibility, sudden bursts at irregular time intervals, and periods of low and high
volatility that are observed properties of typical time series data such as volatility (Xiao
and Aydemir, 2007).
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Market Risk Estimation

Market risk defines the risk that an asset such as equity, fixed income, or a commodity
will decline in value as a result of changes in market factors. Value-at-risk (VaR) is a key
characteristic of market risk, and its use forms part of the regulatory requirements for a
financial institution’s capital under market risk. Regulators typically use a daily VaR with
a higher confidence level.

Value-at-Risk (VaR) is the most widely used statistical method for quantifying market risk
associated with bank portfolios. It is a probabilistic indicator that expresses the potential
maximum loss of the market value of the portfolio, which may appear in a certain period of
time, for a given confidence level (Trenca et al., 2015). The three different methods used in
the calculation of VaR are the historical method, the parametric method, and the Monte
Carlo method. The historical method quantifies the hypothetical value of the change of
the current portfolio according to the historical fluctuations of the risk factors, using the
empirical distribution of the past data and without any assumption related to the returns
distributions. The parametric method implies that the daily returns follow a normal dis-
tribution. The main disadvantage of this method is the fact that it cannot estimate the
important losses because many times the distributions have fat tails are characterised by
a large number of unexpected events and do not follow a normal distribution. The Monte
Carlo method implies generating scenarios for future prices based on the volatility and the
correlations of the assets from the portfolio. After that, for each individual scenario, the
portfolio value will be calculated and the final results of the simulation will be reported,
whether as a portfolio distribution or as a particular risk measure. The Basel Committee
recommends the VaR estimation using a confidence level of 99% and the use of an instanta-
neous shock of the price is equivalent to a 10-day fluctuation in the prices. VaR is calculated
using the daily volatility of an asset under the model building approach (Hull, 2002)

Concept of Volatility Usage

Various stylised facts about the volatility of financial assets’ returns have been documented
in literature (Masset, 2011), making the study of volatility advantageous since it indicates
the possibility of modelling its dynamics. Using modelling for quantitative forecasts can
provide a valuable estimate of a future market value, even though some practitioners are of
the view that financial instruments are unpredictable due to their stochastic nature (Kolte
et al., 2023). Mathematical modelling can be used to detect the dependencies between
the current values of financial indicators and their expected future values. The tendency
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of volatility to cluster and exhibit auto-correlation is an example of how volatility can
be predicted as part of their documented stylised facts (Masset, 2011). These features
provided the justification and foundation for formalising the concepts of volatility and the
use of mathematical models for volatility forecasting.

Stylised facts about volatility

Various stylised facts about the volatility of financial asset returns have been documented
in previous research papers (Masset, 2011). This makes the study of volatility advantageous
since it confirms the possibility of modelling its dynamics. The stylised facts about volatility
are captured as:

• Volatility clustering: Volatility is not constant and tends to cluster over time.
This means that large movements (returns) are followed by further large movements,
while small movements (returns) are followed by the corresponding small movements
(Masset, 2011). This is an indication of volatility that shows persistence.

• Fat tails: Financial time series possess a fatter tail distribution than those of a
normal distribution; this signifies their exhibition of excess kurtosis. Many financial
time series have a standardised fourth movement above 3 compared to that of a normal
distribution, which is 3 (Fama, 1965; Mandelbrot, 1963).

• Leverage effects: Price movements are negatively correlated with volatility (Black,
1976). For stock returns, the measured effect of stock price changes on volatility is
too large to be explained solely by leverage effects. This means that the volatility of
assets tends to increase when there is a drop in their price. Empirical evidence exists
on leverage effects (Tauchen et al., 1996; Nelson, 1991; Sanusi, 2017)

• Co-movements in Volatility: The volatility of financial time series across different
markets tends to move in a pattern; for example, exchange rate returns for two
different currencies can be observed to have large movements in one currency matched
with large movements in another (Masset, 2011). This emphasises the importance of
multivariate models used in cross-correlations in different markets.

Volatility calculations

Volatility refers to the degree of spread of all the outcomes of a stochastic variable, such
as the returns of a financial asset. It is associated with the sample standard deviation of
returns, σ over a period of time, t calculated using the formula in equation (3.5).
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σ =

√√√√ 1
t− 1

t∑
i=1

(rt − µ)2 (3.5)

The annualised volatility is obtained by multiplying the daily volatility by the square root
of the number of trading days in a year of 252. Hence the Annualised volatility can be
written as:

σA = σ ×
√

252

Where µ is the mean rt is the daily returns of the asset price at a period of time t given in
equation (3.6):

rt = ln(Pt)
ln(Pt−1) (3.6)

where:
ln= natural log, Pt = The closing price of an asset at time t, Pt−1 = The previous trading
day closing price of an asset at time t− 1

Forecasting volatility

In recent years, the field of volatility forecasting has received significant attention due to
its pivotal role within financial markets (Xiao and Aydemir, 2007). This is because many
asset-pricing models use volatility estimates as a simple risk measure. Volatility is also used
in option pricing formulas derived from models such as the Black–Scholes model and its
extensions. Reliable volatility estimates and forecasts are crucial to hedging against risk
and for portfolio management (Xiao and Aydemir, 2007). Some researchers have recently
observed some significant differences in terms of information content among volatility es-
timates calculated at various frequencies. There are the Autoregressive Moving Average
(ARMA) models, Autoregressive Conditional Heteroskedasticity (ARCH) models, Stochas-
tic Volatility (SV) models, regime-switching models, and threshold models (Xiao and Ay-
demir, 2007). The Auto-regressive Conditional Heteroscedastic model (ARCH) is used to
model the variance of financial asset returns (Engle, 1982). The ARCH model has been
found to undermine the universally accepted hypothesis of a linear relationship between
risk and returns (Liu, 2019) and it also has the ability to capture volatility clustering (Xiao
and Aydemir, 2007). A conditional variance was added to the lag phase of the ARCH
model to form the Generalised Autoregressive Conditional Heteroskedasticity (GARCH)
model (Bollerslev, 1986) and there have since been a number of variations to this, which
are: Integrated GARCH (iGARCH), Exponential GARCH (EGARCH), GARCH-M and
VGARCH (Lin, 2018).
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Forecasting time steps

Changes in low-frequency volatility have been reported to have a greater impact on subse-
quent high-frequency volatility than the opposite. This is due to the heterogeneous nature
of market participants, some of whom have short, medium, or long-term investment steps,
but are all influenced by long-term moves on the markets (Dacorogna et al., 2001). There
has been evidence that the intensity of the relationship between long and short time steps
depends on the level of volatility at long steps (Gencay et al., 2010). When volatility at
a long-term horizon is low, it usually leads to low volatility at short steps. However, the
reverse is not always true and is referred to as an asymmetric vertical dependence property
(Gencay et al., 2010). Volatility can be forecasted over different time steps, which could
be 1-day volatility, 10-day volatility, 1-month volatility or even a bigger time horizon. In
practice, daily volatility is usually used in the calculation of risk metrics; whilst 10-day
volatility is frequently used for financial risk management purposes. As an example, un-
der Basel II regulatory requirements, a Financial Institution should track its 10-day VaR.
Finally, a 21-day and above time frame could be used for option pricing and portfolio man-
agement. The volatility of a certain time frame can be estimated using data from a shorter
time frame to calculate the standard deviation. As an illustration, the standard deviation
of an asset’s daily returns can be calculated to estimate the monthly volatility.

3.5 Fundamentals of Portfolio Optimisation

This section covers some of the key fundamental concepts of Portfolio Optimisation used
in this thesis.

Portfolio optimisation refers to strategies used in financial risk management that seek
to maximise the returns of an investment portfolio while minimising its risks (Soleymani
and Paquet, 2020). It involves the diversification of investments across different asset classes
to minimise risk and generate returns that are consistent with the investor’s risk tolerance
(Soleymani and Paquet, 2020). The portfolio optimisation process can also involve the
consideration of factors such as expected returns, volatility, and correlation between assets
(Zhang et al., 2020). Before the 2008-2009 financial crisis, most of the existing models at the
time assumed market risk to be the only risk assets financial assets were exposed to, with
only a few papers discussing portfolio optimisation problems with credit risk. Since then,
there has been increased prominence in financial risk management with an increased focus
on how risks are detected, measured, reported, and managed (Apostolik et al., 2009). An
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increasing number of studies have focused on developments in financial risk management
and the emerging challenges associated with it (Van Liebergen et al., 2017)

Financial Asset

A financial asset represents anything from which a current or future economic value can
be expected to be derived. Some examples of these are stocks, bonds, gold, treasury bills,
cash and cash equivalents like closed-end funds and exchange-traded funds (ETFs). In this
thesis, financial assets are assumed to be liquid in nature. This means that financial assets
can be bought and sold without loss in value during the transaction.

Portfolio

A portfolio is a collection of multiple financial assets such as stocks, bonds, commodities,
cash, and cash equivalents. A portfolio may also contain a different number of assets,
including real estate, art, and private investments. The combination of assets held in a
portfolio at any time period, t is defined as a vector in equation (3.7):

wt = [w1,t, w2,t, ..., wK−1,t, wK,t]T ∈ RK (3.7)

Where K is the number of assets in the portfolio and wt is the portfolio vector weight at
period t and the ratio of the total amount invested in each asset is represented as k. The
total sum of the elements of wt is 1 as represented in Equation (3.8).

K∑
k=1

wk,t = 1 (3.8)

Diversified portfolios reduce exposure to risks.

The closing prices of all the assets in a portfolio with K number of assets are made up of
Price Vector, vt for the period t. The kth element of vt given as vk,t serves as the closing
price of the kth asset in the tth period. For continuous markets, the elements of Vo

t represent
the opening price of the asset for the period t, the elements of vt act as opening prices for
the trading period t + 1 and closing prices for the trading period t. Similarly, vhi

t and vlo
t

represent the highest and lowest prices of the period, respectively.

yt, which is the Price relative vector of the tth trading period is defined as the
element-wise division of the price vector at time t, vt and price vector at time t − 1, vt−1
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and represented in equation (3.9):

yt := vt ⊘ vt−1 =
(
1, v1,t

v1,t−1
, v2,t

v2,t−1
, ...,

vk,t

vk,t−1

)T
(3.9)

The elements of yt are the quotients of the Close prices and Open prices for the various
assets in the trading period. The change in total portfolio value can be calculated by using
the Price relative vector, yt. If the Portfolio Value at the beginning of the trading period, t
is Pt−1 and ignoring transaction cost, then the total portfolio value at the end of the trading
period, t is given by equation (3.10):

Pt = Pt−1yt ·wt−1 (3.10)

where: wt−1 represents the portfolio weight vector at the start of the period t with kth

element, wt−1,k is the proportion of the asset k in the portfolio after the reallocation of the
capital.

The initial portfolio weight vector w0 for a typical portfolio allocation problem is given as:

w0 = [1, 0, 0, ..., 0]T

This demonstrates that all the trading capital is held in cash before trading begins. As-
suming there is no transaction cost, the final portfolio value Pf is represented in equation
(3.11) as:

Pf = P0 · exp
tf+1∑

t=1
rl

t


Pf = P0

tf+1∏
t=1

yt ·wt−1 (3.11)

where: P0 is the initial amount invested, while Pf represents the final portfolio value. The
overall objective of the portfolio manager is to maximise the final portfolio value Pf for a
given period of time.

Returns

The prices of financial assets are generally not directly useful in investors’ decision-making
to buy or sell an asset. The returns of these assets are usually the most useful for making
such decisions. The returns represent the changes in the prices of assets over time. The
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rate of return for the period t is defined as the net gain or loss of an investment within a
specific time frame and is represented as a percentage of the initial cost. Mathematically,
it is denoted as in equation (3.12):

rr
t = Pt

Pt−1
− 1 = yt ·wt−1 − 1 (3.12)

The equivalent logarithmic rate of return, is represented mathematically by equation
3.13:

rl
t = ln Pt

Pt−1
= ln yt ·wt−1 (3.13)

Portfolio Value with transaction cost

As indicated by Jiang et al. (2017), there is always a cost associated with either the buying
or selling of an asset in the financial markets. Based on this, a recursive formula proposed
by Ormos and Urban (2013) and extended by Jiang et al. (2017) can be used to recalculate
the final portfolio value presented in equation 3.11. Figure 3.1 illustrates the process of
reallocating the weights and also shows the effect of the transaction remainder factor, µt

on the portfolio at each time period.

From Figure 3.1, the market price movement during Period t, represented by Price relative
vector yt, moves the portfolio value and portfolio weights from Pt−1 and wt−1 to P ′

t and w′
t

respectively. The actions of buying and selling of assets at time t result in the redistribution
of the fund into wt. As a result of these transactions, the portfolio value is shrunk by a
factor of µt.

The portfolio weight vector at the beginning of the trading period t is wt−1 and as a result
of the movement in the prices of assets in the market, at the end of the same trading period,
the weights changes to:

w′
t = yt ⊙wt−1

yt ·wt−1

Where ⊙ is an element-wise multiplication operation. To fulfil the aim of the portfolio
manager, portfolio vector weight reallocation from w′

t to wt is carried out through the
selling and buying of financial assets at the end of the trading period t. The reallocation
process reduces the portfolio value by a factor µt, referred to by Jiang et al. (2017) as the
transaction remainder factor, where µt ∈ [0, 1].
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Figure 3.1: illustration of the weight re-allocation process and effect of transaction remain-
der, µt on the portfolio value

Given that Pt−1 represents the portfolio value at the beginning of the trading period and
P

′
t represents the portfolio value at the end of the trading period.

Pt−1 = µtP
′

t

The rate of return and logarithmic rate of return given in equations 3.12 and 3.13 respec-
tively now becomes equation 3.14 and 3.15:

rr
t = Pt

Pt−1
− 1 = µtP

′
t

Pt−1
− 1 = µtyt ·wt−1 − 1 (3.14)

rl
t = ln Pt

Pt−1
= ln (µtyt ·wt−1) (3.15)

When transaction cost is introduced, the final portfolio value shown in equation 3.11 be-
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comes equation shown in 3.16.

Pf = P0 · exp
tf+1∑

t=1
rl

t


= P0

tf+1∏
t=1

µtyt ·wt−1 (3.16)

Portfolio Optimisation

As indicated previously, portfolio optimisation is generally the process of allocating the
assets in a portfolio such that it maximises the expected return on investment while at the
same time minimising financial risk. In the financial market, one of the most important
problems for well-endowed and resourceful investors is how to determine the optimal trading
strategy over a specified time frame. Portfolio optimisation can help investors to balance
their portfolio’s risk-return profile, aligning the portfolio’s risk level with the investor’s risk
tolerance. It can also help investors identify and mitigate potential risks, such as market
risk, credit risk, or liquidity risk, by adjusting their portfolio’s asset allocation and risk
management strategies.

The earliest portfolio optimisation theory, popularly known as modern portfolio theory
(MPT), proposed by Markowitz (1952) is a portfolio optimisation problem that highlights
how a risk-averse investor can construct a portfolio to minimise the risk of the portfolio given
an expected return or, conversely, to maximise the expected return while constraining the
risk. Prior to the work of Markowitz (1952), assets were individually analysed to construct
a portfolio. Markowitz (1952) proposed that portfolios should be selected based on the
overall risk-return assessment. The main assumption behind the MPT is that investors
are risk averse and given two portfolios that provide the same expected return, they would
always choose the less risky assets. Therefore, there is a trade-off between risk and return
when investing, and investors will take an increased risk only if they are compensated with
higher expected returns. This assumption led to the formulation of the portfolio problem,
which involves finding the weights of assets that minimise the overall risk given an expected
return. The variance of the returns of an asset is used to measure the risk of each trading
asset.

To represent the basic idea behind the Markowitz mean-variance portfolio model, some
notions are introduced.

Let:
K Be the number of available assets
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rk Be the expected (average, mean) return (per period) of the asset k
ρkj The correlation between the returns of the assets k and j (−1 ≤ ρkj ≤ +1 )
σk Be the standard deviation in return for the asset k
σkj Be the covariance between the returns for assets k and j (σkj = ρkjσkσj)
R Be the desired expected return from the chosen portfolio.

The decision variables are: wk The proportion of the total investment associated with
the asset k ( 0 ≤ wk ≤ 1). Using the Markowitz mean-variance method, the portfolio
optimisation problem can be mathematically expressed as equation (3.17).

minimise
K∑

k=1

K∑
j=1

wkwjσkj (3.17)

Subject to:

K∑
k=1

wkrk = R, (3.18)

K∑
k=1

wk = 1, (3.19)

In equation (3.17), the total variance (risk) associated with the portfolio is minimised,
subject to equation (3.18) which ensures that the expected return of the portfolio is R.
Finally, Equation (3.19) ensures that the weighting of the assets adds up to one, which
ensures that all the available cash is invested in the assets. This formulation is a nonlinear
programming problem. The standard deviation of an asset is synonymous with risk. The
above optimisation problem results in the construction of a smooth non-decreasing curve
known as an efficient frontier that demonstrates the best possible trade-off between risk
and returns, as shown in Figure 3.2. The efficient frontier is a graphical representation of a
set of optimal portfolios that offer the maximum expected return for a predetermined level
of risk or the lowest risk for a given level of expected return. Portfolios that lie below the
efficient frontier are sub-optimal because they do not provide enough return for the level
of risk. Portfolios located on the right of the efficient frontier are sub-optimal because they
have a higher level of risk for the defined rate of return. Figure 3.2 shows the running of
a smooth continuous curve from the minimum variance portfolio made of 20 assets to the
maximum return-to-maximum risk portfolio made up of 1 asset. Here, we can choose to
hold any of the portfolios on this efficient frontier.

Based on Markowitz’s mean-variance model, the Capital Asset Pricing Model (CAPM)
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Figure 3.2: Demonstration of Efficient frontier

(Fama and French, 2004) was independently proposed by Sharpe (1964) and Lintner (1965).
It describes the relationship between the risk of an asset and the market as a whole. The
CAPM states that the expected return of an asset or portfolio equals the return on a risk-
free asset plus a risk premium. If an asset is to be added to an already diversified portfolio,
CAPM determines a theoretically appropriate rate of return that compensates the investor
for taking the risk premium associated with that asset. CAPM assumes that each asset in a
portfolio contains a specific risk, but, through diversification, investors can reduce their net
exposure to the systematic risk of the market portfolio. The general idea behind CAPM
is that investors need to be compensated in two ways: time value of money and risk. The
time value of money is represented by the risk-free rate, which means how much return an
investor would expect from a risk-free investment over a given period. A rational investor
who decides to make a risky investment expects at least to exceed the risk-free rate. The
other input to CAPM is the amount of compensation an investor needs to take additional
risk. This is calculated by taking the asset’s sensitivity to non-diversifiable (specific) risk,
often represented by the quantity β in the financial industry, and comparing the returns
of the assets with the market premium (return over a risk-free investment). Different
approaches measure risk differently; Examples of different risk measures are the variance of
returns, Conditional Value at Risk (CVaR) (Rockafellar and Uryasev, 2000), and Sortino
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ratio (Sortino and van der Meer, 1991). Refer to Chapter 6 for detailed information and
experiments carried out on the fundamentals covered in this section.

3.6 Summary

In summary, this chapter has reviewed the background information on financial risk man-
agement and covered the key concepts of credit risk modelling, market risk, volatility fore-
casting, and portfolio optimisation. Additionally, this chapter has provided the literature
and background on market risk and volatility. It has also provided the solid groundwork for
subsequent chapters that explore machine learning techniques applied to these domains.

In the chapter that follows, the proposed Hybrid Dual Resampling with Cost-sensitive
Technique (HDRCS) for credit risk modelling on imbalanced data sets is presented.
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Chapter 4

Hybrid Dual Resampling with
Cost-sensitive Technique (HDRCS)
for Credit Risk Modelling on
Imbalanced Data

4.1 Introduction

Credit risk refers to the perspective that a borrower or counter-party will fail to meet
its obligations in accordance with agreed terms and conditions. This chapter describes
in greater detail the use of the Hybrid Dual Resampling with Cost-sensitive Technique
(HDRCS) for the modelling of credit risk on Imbalanced Data sets. Failure to adequately
manage credit risks could result in direct accounting losses as it involves transaction costs,
opportunity costs, and expenses associated with non-performing assets above the accounting
loss (Yu et al., 2018).

Logistic Regression is one of the most widely used statistical models for classification prob-
lems which makes use of probability distribution function for estimation and makes it con-
venient for consumer credit risk modelling (Ershadi and Omidzadeh, 2018). The popularity
of using logistic regression is due to its sigmoid shape (Ershadi and Omidzadeh, 2018). It
is also due to its ability to be mathematically bound between a range of 0, 1.

There is the assumption that data are evenly distributed between classes without any bias
present in Machine Learning algorithms (D’Arco et al., 2023). Consequently, classifiers
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such as logistic regression, decision trees, and neural networks perform well when the class
distribution of the categorical target or response variable in the data set is balanced (Sun
et al., 2007). However, for binary imbalanced class data, the event of interest known as the
positive or minority class, for example, probability of default, is under-represented, and the
number of cases for the negative or majority class is much higher than the minority class
cases (Yap et al., 2014). These are relevant in many real-world problems which involve a
binary response variable where the datasets are often imbalanced in nature (Wong et al.,
2018) such as document classification (Laza et al., 2011), loan default prediction (Brown and
Mues, 2012), fraud detection (Wei et al., 2013) or medical diagnostic classification (Rahman
and Davis, 2013). In some cases, the minority class is viewed as the scenario of rare events,
for example, the percentage of the minority class is less than 5% (Au et al., 2010). The
recent interest in imbalanced datasets has been captured (Yap et al., 2014; Batista et al.,
2004). The specific numbers for the imbalance ratio in credit risk datasets vary widely
across different datasets and institutions. The class imbalance problem is known to be a
major obstacle to the use of a good classifier in machine learning algorithms (Chawla et al.,
2004; Sun et al., 2007). Different datasets can show significant variations in their imbalance
ratios, depending on their source and nature of the credit data.

The detection of a minority class, especially through the use of logistic regression in im-
balanced data sets is challenging and not trivial (Chen et al., 2018), since the performance
of classifiers such as Logistic Regression can be poor if it is applied to imbalanced data
sets (Wong et al., 2018). Taking credit risk modelling as an example, a dataset with 99%
of data from the class of good payers (majority class) and only 1% from the class of bad
payers or defaulters (minority class) can still have an accuracy of about 99% if a classifier
ignores the data from the bad payers or defaulters class and labels the entire dataset as
belonging to the class of the good payers, but it will be unsuitable for credit risk prediction.

Three main approaches can be used to mitigate the problem of imbalanced datasets; these
are (i) the data-level approaches, (ii) the algorithm-level approaches, and the hybrid ap-
proaches (Chawla et al., 2004; Sun et al., 2007; Johnson and Khoshgoftaar, 2019).

The data-level techniques involve the re-sampling of the imbalanced training dataset
before the model is trained (Guo and Viktor, 2004; Batista et al., 2004; Johnson and Khosh-
goftaar, 2019). Balanced data can be achieved by resampling the original imbalanced data
set to modify the training distributions in order to decrease the level of imbalance or re-
duce noise through (i) the oversampling of the minority class (Chawla et al., 2002; Liu
et al., 2020); (ii) under-sampling the majority class (Japkowicz, 2000); or iii) combining
under-sampling and oversampling together as in i) and ii) above (Han et al., 2019). Ex-
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amples of the oversampling approach are the synthetic minority oversampling technique
(SMOTE)(Chawla et al., 2002). There are also other improved SMOTE alternatives such
as adaptive synthetic oversampling approaches (ADASYN) (Haibo He et al., 2008) and
the Ranked Minority Oversampling in Boosting (RAMOBoost) which uses a probabilistic
directed approach (Chen et al., 2010). Other researchers have used under-sampling tech-
niques such as the Minority Cloning Technique (MCT) (Jiang et al., 2015) and the Edited
Nearest Neighbour Method (ENN), in which the majority class is treated as unreliable and
is subsequently ignored if there are no more minority class labels among its nearest three
neighbours (Davies, 1988).

The algorithm-level approaches, on the other hand, do not alter the distribution of
the training data (Johnson and Khoshgoftaar, 2019). They improve the existing machine
learning methods by adjusting the probabilistic estimate, modifying the cost per class
(Provost and Fawcett, 2001; Chawla et al., 2004; Sun et al., 2007), learning from one
class (Li et al., 2008), or adding some penalty constants (Lin et al., 2002). Unlike data-
level techniques that involve the creation of balanced class distributions through sampling
techniques, cost-sensitive learning uses cost matrices that outline the costs associated with
the misclassification of the various classes to solve the problem of imbalanced data (Mienye
and Sun, 2021). In cost-sensitive learning, penalties are assigned to each class using a cost
matrix. The increase in the cost of the minority class is synonymous with an increase in its
importance. This decreases the likelihood that the learner will incorrectly classify instances
from this minority class (Krawczyk, 2016; Johnson and Khoshgoftaar, 2019).

The Hybrid methods utilise a combination of the data-level and algorithm-level meth-
ods in various ways to class imbalance problems (Krawczyk, 2016; Johnson and Khosh-
goftaar, 2019). Oversampling techniques have been shown to increase the likelihood of
over-fitting in the model construction process (B laszczyński and Stefanowski, 2015). The
use of under-sampling strategies has also been shown to result in the likely elimination of
important and useful data present in the majority class (Sun et al., 2015). As a result of
these limitations, many researchers have studied the combination of these two techniques.
Tomek’s modification of a reduced nearest neighbour(Tomek, 1976) has been used in com-
bination with SMOTE as a sampling strategy for imbalanced datasets by researchers. A
combination of Gaussian mixture under-sampling and SMOTE has been employed on im-
balanced credit data (Han et al., 2019). Examples of this approach involve the combination
of oversampling and under-sampling techniques with classifier ensembles through boosting
(Schapire, 1990). Some examples of these are SMOTEBoost (Chawla et al., 2003) and
RUSBoost (Seiffert et al., 2010).
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Financial institutions rely on balanced data sets to help them make informed credit deci-
sions. The main aim of this chapter is to investigate the concept of class imbalance prevalent
in financial data sets and to propose a robust solution. This chapter proposes a Hybrid
Dual-Resampling Cost-Sensitive (HDRCS) algorithm which simultaneously applies Gaus-
sian mixture modelling (GMM) on the minority class to generate a synthetic minority class,
as well as applies k-means clustering to create a new majority class data set. This results
in a recommended heuristic imbalance ratio to strike an appropriate balance between the
number of the majority class under-sampled and the number of minority class oversampled.
The Extra Tree Ensemble technique (Arya et al., 2022) is then applied and a cost-sensitive
weighting technique, which further addresses the remaining minor imbalance, is applied to
a logistic regression classifier to the final data set based on the most important features.

The rest of the chapter is organised as follows; Section 4.2 discusses the related work on Re-
sampling Techniques for imbalanced datasets. This includes class imbalance in general, Syn-
thetic Minority Over-Sampling Technique (SMOTE), Cluster-based Under-sampling Tech-
nique (CBUT), cost-sensitive learning, and our proposed Hybrid Dual Resampling with
Cost-sensitive Technique (HDRCS) to balance the datasets. Section 4.3 covers the Gaus-
sian Mixture Model Oversampling Technique (GMMOT) proposed by us as part of our
main proposed HDRCS. Section 4.4 introduces the proposed HDRCS algorithm. Section
4.5 presents comparative experiments that demonstrate the effectiveness of the proposed
HDRCS algorithm using several real-world credit risk data sets. The conclusions are pre-
sented in Section 4.6

4.2 Related work on Re-sampling Techniques for im-
balanced datasets

This section’s main purpose is to explore the different re-sampling techniques used to resolve
the problem of class imbalance in datasets.

Class Imbalance

In a classification task, the problem of class imbalance is an important area that has at-
tracted numerous research studies (Krawczyk, 2016; Zhu and Wang, 2017). In most appli-
cations where logistic regression is used to estimate the maximum likelihood of an event,
the empirical data often exhibit class imbalance, where one class is represented by many
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events, whilst the other is much less represented (Oommen et al., 2010). Data sets have also
been known to exhibit sampling bias when there is a difference between the class distribu-
tion in the sample compared to the actual class distribution in the population. The use of
an appropriate density estimation technique to balance datasets is crucial in the maximum
likelihood parameter estimation (Oommen et al., 2010). Problems that are intrinsically
based on imbalanced data frequently cause imbalances in datasets. Imbalanced datasets
provide a disproportionate degree of predictive accuracy, with the majority class having a
better percentage of accuracy, while the minority class has poor accuracy measurements
(He and Garcia, 2009). Three main approaches can be used to solve the problem of class
imbalance (Wang and Yang, 2019); the first approach involves the manipulation of the
data sets in order to be balanced (Akbani et al., 2004) and the other is based on the use of
improving existing algorithms with the main aim of shifting the decision hyper-plane from
the minority class such as the cost-sensitive learning method (Yan et al., 2017). The third
approach is the combination of the first and second approaches (Johnson and Khoshgoftaar,
2019). The third approach highlighted above is the relevant technique used in this chapter
to solve the problem of imbalanced data.

Synthetic Minority Oversampling Technique (SMOTE)

The SMOTE technique can be used to generate synthetic data using the k-nearest neighbour
algorithm (KNN) and Uniform Probability Distribution (Chawla et al., 2002). It does
this by introducing synthetic samples along the line segments that join any of the K ′

minority class nearest neighbours (Ramentol et al., 2011). The principles and operations
underpinning these are as follows: At the initialisation stage, the algorithm separates the
data into the majority and minority classes. After that, the data for each minority class
will have the kth number of its neighbours produced by the k-nearest neighbours (KNN)
algorithm. In the process of creating synthetic samples, each minority sample has its own
randomly selected nearest neighbour among the k-nearest neighbours. The remainder of
the minority sample and its selected nearest neighbour is given in equation (4.1) as:

x+
R = |x+ − x+

k | (4.1)

where x+ is the minority class data and x+
k is one of kth neighbours of the minority class

data obtained through the use of the uniform probability distribution for random selection.
The difference obtained is then multiplied by a random value from the uniform probability
distribution to add randomness. The synthetic sample is then obtained by equation (4.2)
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below:
x+

os = {x+ + (|x+ − x+
k |)} × Φr (4.2)

where: Φr represents the random value generated from the application of the uniform prob-
ability distribution. This procedure iterates and repeats itself until the stopping criterion
is met, including the target number of samples generated.

Cluster-Based Under-sampling Technique (CBUT)

Cluster centres and the k nearest neighbours of the majority class were used as an under-
sampling technique to balance the imbalanced data in which a superior performance was
achieved Lin et al. (2017). The clustering-based under-sampling approach was also used to
balance imbalanced datasets where improved predictive results were obtained Onan (2019).
The processes involved in this technique are as follows. Given a binary imbalanced data set
X; made up of the majority class with X− data sets and the minority class with data sets
X+, the first step involves the division of the imbalanced data set into training sets 85% and
testing sets 15% or any appropriate percentage division of choice. The second step involves
the division of the training set into subsets of a majority class and a minority class. The
number of clusters, K ′ to be used in the k-means clustering is chosen based on the number
of data samples in the minority class; thus K ′ = N+. Then, the K ′ cluster centres, also
known as centroids, are produced by fitting the k-means algorithm to the N− data points
to produce the N+ number of clusters. Where N− and N+ represent the number of the
majority data class and the number of minority data class, respectively. These centroids
replace the entire majority-class dataset, resulting in a reduced number of data samples in
the majority class. The reduced majority class is then combined with the minority class to
form a balanced training dataset. The classifier is then trained on the balanced training
data set and then tested on the test data sets.

Cost-Sensitive Logistic Regression (CSLR)

The Logistic Regression introduced in section 2.2 of Chapter 2 in its standard form assumes
an even class distribution of the data and does not take into account their imbalanced
nature. To take into account the imbalanced nature of the data, Cost-Sensitive Logistic
Regression (CSLR) is used. Cost-sensitive learning is a special type of learning in which the
cost of misclassification is taken into account during the training process with the overall
goal of minimising the total cost (D’Arco et al., 2023). It involves the modification of the
objective function of the classifier to ensure that it focuses more on accurately predicting
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the minority class (Mienye and Sun, 2021). Hence, instead of optimising the accuracy,
the algorithm tries to minimise the total misclassification cost. The given classifier is
modified to incorporate varying penalties for each of the classes considered (Krawczyk,
2016). Through the assignment of a higher penalty to the less represented class (minority
class), its importance is boosted during the training process. In Cost-Sensitive Logistic
Regression (CSLR), the algorithm is modified to take into account the skewed distribution
of the data sets (Mienye and Sun, 2021).

4.3 Applied Gaussian Mixture Model Oversampling
Technique (GMMOT)

Gaussian Mixture Model Oversampling Technique (GMMOT) involves the use of GMM to
over-sample the minority class instances in an imbalanced data set. It uses the fitted normal
distributions to generate new samples. The Expectation Maximisation (EM) algorithm can
be used to estimate the parameters of the GMM, such as the means and covariances of each
component.

The fitted EM algorithm is used to generate the extra data under the proposed GMMOT
and the full procedure involved in the technique can be seen in Algorithm 2. For a given
imbalanced data set, X = {xi} with binary class yi ∈ {0, 1}, x is m-dimensional feature
vector. X can be divided as positive/minority class X+ and negative / minority class X−.
Under GMMOT, the desired imbalance ratio λ = 1 is calculated as λ = N−

N+ , where, N−

is the number of data points for the majority class and N+ is the number of data points
for the minority class, N = N− + N+. The number of components used in the GMMOT
was based on the silhouette analysis score (Rousseeuw, 1987), where the Silhouette score
was used to determine the separation distance between the number of components, K. The
optimal number of components corresponded with the highest point on the Silhouette plot,
which displays a measure of how close each of the points in one component is to points in
the neighbouring components (Pedregosa et al., 2011).

It is proposed to fit the GMM model using X+, then more minority class samples are
generated by sampling from the estimated distribution. To achieve the desired imbalance
ratio, λ∗ = 1, N+

new samples are drawn, as

N+
new = N− −N+

which is added to the minority class, to increase its number as N+ ← N+ +N+
new, resulting
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in balanced data.

A detailed summary of the Expectation Maximisation (EM) algorithm used to fit the data
points from the data sets is provided in the algorithm 1.

Algorithm 1 The pseudo-code for the Expectation Maximisation used for GMM
1: Input: N training samples such that x1, x2...xN ∈ X
2: Initialize the means µj , co-variances Σj and mixture weights ϕj and evaluate the initial

log-likelihood.
3: E STEP: Determine the conditional probability for each mixture component i to be

responsible for observation xN using current parameter values:

ϕ(Zni) = πiNxN |µi,Σi

Σj
j=1πjN (xN |µj,Σj)

4: M STEP: Re-estimate the parameters using the current conditional probabilities

ϕj = 1
N

N∑
i=1

1{z(i) = j}

µj =
∑N

i=1 1{z(i) = j}x(i)∑N
i=1 1{z(i) = j}

Σj =
∑N

i=1 1{z(i) = j}(x(i) − µj)(x(i) − µj)T∑N
i=1 1{z(i) = j}

5: The old parameters are replaced by the new ones, and the log-likelihood is calculated
as follows:

ℓ(ϕ, µ,Σ) =
N∑

i=1
log p(x(i)|z(i);µ,Σ) + log p(z(i);ϕ)

6: Check that the stopping criteria such as a maximal number of iterations are reached or
the relative change of the last two log-likelihoods. If the stopping criterion is not met
return to step 3 to repeat.

7: Output: ϕ = {ϕ1, ..., ϕj}, µ = {µ1, ..., µj}, Σ = {Σ1, ...,Σj}

Algorithm 2 shows the full GMMOT procedure used to estimate the distribution of the
minority class using Gaussian Mixture Models (GMM).
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Algorithm 2 GMMOT Algorithm
1: Require: For a given dataset, X with binary class yi ∈ {0, 1}, desired top F features.
2: Ensure: Logistic model is optimized.
3: Split the training dataset (Xtr) into majority class (X−) and minority class (X+).
4: Set the number of components used in GMM using Silhouette analysis (Rousseeuw,

1987)
5: Fit the GMM model using the EM algorithm (Bishop, 2006) from X+, using randomly

drawn N+
new = N− −N+ data samples from the resultant GMM model.

6: Merge N+
new data samples into the minority class, so that N+ ← N+ + N+

new, the
preprocessed minority data set is still referred to as X+.

7: Apply Extra Tree Classifier algorithm (Arya et al., 2022) to select the best F features
based on the modified two-class datasets {X−, X+}

8: Return Predicted Classes for the test data set.

4.4 Proposed Hybrid Dual Resampling and Cost-Sensitive
Technique (HDRCS)

Cost-Sensitive logistic classifier

For a given imbalanced data set, X = {xi} with binary class yi ∈ {0, 1}, x is m-dimensional
feature vector. X can be divided as positive/minority class X+ and negative / majority
class X−. The imbalance ratio λ ≫ 1 is calculated as λ = N−

N+ , where, N− is the number
of data points for the majority class and N+ is the number of data points for the minority
class, N = N− + N+. Cost-sensitive logistic regression (CSLR) involves modifying the
objective function of a logistic classifier to ensure that it is focused more on accurately
predicting the minority class (Mienye and Sun, 2021). The coefficients β are updated by
maximising the log-likelihood function of logistic regression, given by Equation (4.3).

β∗ = maxβ

N∑
i=1

w− ∗
(
yi log(pi)

)
+ w+ ∗

(
(1− yi) log(1− pi)

) (4.3)

with pi = 1
1+exp(−[1 xT

i ]β) is the probability of y(xi) = 1, w− is the weight for the majority
class (yi = 1) and w+ is the weight for the minority class, yi = 0. β = [β0, ...., βm]T . The
class weights are set such that the total number of effective samples is equal to the total
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number of samples (N) as (D’Arco et al., 2023):

w− ×N− + w+ ×N+ = N, subject to w− ×N− = w+ ×N+

which yields w− = N
2×N− and w+ = N

2×N+ .

By introducing penalties for each of the classes being considered, the algorithm
aims to minimise the total misclassification cost. Through the assignment of a higher
penalty to the least represented class (minority class), its importance is boosted during the
training process. However, in the case of a highly imbalanced data set, it is desirable to use
a combination of data-level and algorithm-level approaches (Johnson and Khoshgoftaar,
2019) to further improve the performance and robustness of the classifier.

Hybrid Dual-Resampling and Cost-Sensitive (HDRCS)

In this work, the Hybrid Dual-Resampling and Cost-Sensitive (HDRCS) is introduced which
aims to resample the data sets to a desired imbalanced ratio level, followed by the use of
CSLR. A summary of the proposed procedure is shown in Algorithm 3.

The Algorithm Algorithm 3 is used for training purposes. The k-means clustering is
applied to the majority class X−, the number of centroids is used to be the majority data
set, with the number of centres K ′ set by using the heuristics below:

K ′ = N− −N+ × r (4.4)

Where the resampling coefficient r can take values {0, 0.1, 0.2, 0.3} depending on the desired
imbalance ratio the user prefers. For any given data, the r value can be calculated using
equation (4.5)

r =
N−

N

−
N−

N
− i

 ≥ 0, given i = {0, 0.1, 0.2, 0.3} (4.5)

It is assumed that N−

N
> 0.6 for any imbalanced data considered, hence 0 ≤ r < 0.4,

providing a range of reduction option when using equation(4.4) for the down-sampling
dependent on the level of imbalance in the data set. The heuristics to determine how
much data samples are reduced by down-sampling is to increase according to either the
number of minority data samples (N+) or the degree of imbalance in the data set. From
equations (4.4), it can be seen that at the down-sampling stage using k-means clustering,
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Algorithm 3 Proposed Hybrid Dual-Resampling and Cost-Sensitive Learning (HDRCS)
logistic classifier.

1: Require: For a given dataset, X with binary class yi ∈ {0, 1}, desired final imbalance
ratio λ∗, desired top F features.

2: Ensure: Logistic model is optimized.
3: Split the training dataset (Xtr) into majority class (X−) and minority class (X+).
4: for The Majority Class, X− : do
5: Determine the optimal number of centroids to be used to produce the number of

clusters, K ′ using the heuristics below:

K ′ = N− −N+ × r

where r =
((

N−

N

)
−
(

N−

N
− i

))
≥ 0, given i = {0, 0.1, 0.2, 0.3}

6: Use k-means clustering algorithm to form K ′ clusters.
7: end for
8: Synthetic majority data set is composed with K ′ centres, still referred to as X−, with
N− = K ′.

9: Set the number of components used in GMM using Silhouette analysis (Rousseeuw,
1987)

10: Fit the GMM model using the EM algorithm (Bishop, 2006) from X+,
11: Randomly draw N+

new = K′

λ∗ −N+ data samples from the resultant GMM model.
12: Merge N+

new data samples into the minority class, so that N+ ← N+ + N+
new, the

preprocessed minority data set is still referred to as X+.
13: Apply Extra Tree Classifier algorithm (Arya et al., 2022) to select the best F features

based on the modified two-class datasets {X−, X+} which has an imbalance ratio λ∗

14: Apply the CSLR algorithm to the modified two-class datasets, {X−, X+} which has an
imbalance ratio λ∗.

15: Return Predicted Classes for the test data set.

the imbalanced ratio is reduced by r. Since the higher r is, the more imbalanced the data
set is, the heuristic for the down-sampling stage is designed so that the higher the imbalance
ratio in a data set, the more it is reduced.

A Gaussian Mixture Model (GMM) is a parametric probability density function represented
as a weighted sum of the densities of Gaussian components, (Biprodip and Mahit, 2017)
with its parameters estimated using Expectation Maximisation (EM) (Bishop, 2006). It is
proposed to fit the GMM model using X+, then more minority class samples are generated
by sampling from the estimated distribution. For a desired imbalanced ratio, λ∗, N+

new

samples are drawn, as
N+

new = K ′

λ∗ −N
+,

which is added to the minority class, which increases its number as N+ ← N+ + N+
new. A

series of experiments using trial and error determined that λ∗ = 1.67 can produce the best
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result.

The motivation of the proposed approach is to introduce a heuristic approach that can
realise the dual resampling (down-sample majority class and over-sample minority class)
automatically. From (4.5) it can be seen that the more imbalanced the data, there is, the
greater the reduction in the down samples using the k-means cluster algorithm. This helps
to reduce the demand for generating too many synthetic minority-class samples. Further-
more, the CSLR algorithm addresses the remaining imbalances by setting higher costs for
minority data. In doing so, each data-level or algorithm-level component contributes with
the aim of obtaining the best performance.

4.5 Experiments

The proposed HDRCS algorithm is compared with several resampling algorithms, including
SMOTE (Chawla et al., 2004), CBUT (Lin et al., 2017), GMMOT (Liu et al., 2020) on
four real data sets, as shown in Table 4.1 which lists a summary of dimensions and sizes,
with more details in Section 4.5. The data sets were subjected to the appropriate data
preprocessing techniques, where they were divided into training and test data sets. The
split had 85% as a training data set and 15% as a test data set. For fair comparison and
completeness, all three imbalanced data resampling techniques SMOTE (Chawla et al.,
2004), CBUT (Lin et al., 2017) and GMMOT (Liu et al., 2020) were applied to bring the
imbalanced ratio to 1:1, then the same Extra Tree Classifier algorithm was applied to select
a set of features (Arya et al., 2022), followed by a logistic classifier. The same algorithm
for feature selection, then logistical classifier, was also applied to the original imbalanced
data sets, referred to as the baseline model. A series of experiments were conducted using
the desired imbalance ratios, λ∗ of 1, 1.22, 1.5, 1.67 and 1.86 for each r used to determine
the one with the best performance.

Data Description

Data Description Before Resampling

For transparency and reproducible purposes, the description and overview of the datasets
used in this study are presented. Three out of the four datasets used are in the public
domain and provided by reputable financial institutions. The sources of the dataset, their
quality, and their characteristics are described in this section. Table 4.1 shows a summary
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of the size and imbalance ratio of the four datasets before any resampling technique has
been applied to them.

Data set m, no. N+ N− N %(N+

N
) Imbalance r

of features Ratio λ
LCU 24 38 173 211 18% 4.55:1 0.2
UCI German 21 300 700 1000 30% 2.33:1 0.1
GiveMe Some
Credit 11 67 933 1000 6.7% 13.98:1 0.3
Lending Club 94 122 1078 1200 10% 8.84:1 0.3

Table 4.1: Size and dimension of original data sets, showing their degrees of imbalance with
their respective r values calculated using r = N−

N
− 0.6 in the heuristic dual-resampling.

Local Credit Union (LCU) data set

The first data set used is a non-public data set from a local credit union, called LCU data
(Osei-Brefo, 2015) in this work. It has 211 observations, of which 173 belonged to the non-
defaulters and classified as the good payers. The remaining 38 are bad-payers who defaulted
on loan payments. This translates to 82% non-defaulters and 18% defaulters, respectively.
This gives an imbalance ratio of 4.55:1, as can be seen in Table 4.1. 63.2% of the bad payers
were females, while 36. 8% were males. It has a total of 20 independent features and a target
variable. There are 10 categorical features and 11 numerical features in the datasets. The
features in the data are membership length, Gender, Dependents, Permanent UK Residence,
Age, Employment status, Time with employer, Current Balance, Regular Saver, Previous
Loans, past performance, Town, residential status, Time at Address, Loan Applied, Period,
Loan Purpose, Top Up, Adverse credit History, Docs, Loan Given, Decision evaluator
and Status. The features with some missing values which were treated are Dependents,
Time with employer, past performance, residential status, Time at Address, Period, Loan
Purpose, adverse credit History, Docs and Decision evaluator variables.

For this data set, the rate of default varies significantly between year groups, demonstrating
that 60% of customers aged 20-25 years defaulted on their loans; while about 5% of those
aged 65-70 years defaulted on their loans. For the purpose of these experiments, the LCU
datasets were subdivided into LCU (a) and LCU (b). The LCU (a) had an extra feature
known as GR Decision Eval. It is the pre-screening results offered by a credit risk expert
at the financial institution that scored applicants according to their risk profile. The LCU
(b) did not have the GR Decision Eval feature. This means that there was no credit risk
expert who scored the applicants according to their risk profile.
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German Data data

The second set of data used was from the UCI depository called German data (Hofmann,
1994). It has 1000 observations with 20 independent features and a target variable. The
majority class had 700 observations, whilst the minority class had 300 observations. This
represents a class imbalance ratio of 2.33:1, where 70% belonged to the majority class and
30% belonged to the minority class, as can be seen in Table 4.1.

Give me Some Credit data

The third set of data used was offered by a US-based company called Give Me Some
Credit (Credit, 2020). It has an original data size of 150,000 customers and 10 independent
features together with 1 target or dependent variable, making it a total of 11 features.
Stratified sampling was used to extract a small sample size of 1000 datasets, which was
very representative of the original datasets based on the inherent class imbalances. 933 of
this belonged to the majority class and 67 belonged to the minority class that defaulted;
representing 93. 3% and 6. 7% of the datasets, respectively. These are considered to be
of an imbalanced nature with an imbalance ratio of 13.93:1, as can be seen in Table 4.1.
These data had 16. 4% of customers aged 30-35 years who defaulted on their loans; while
3% of those aged 60 to 65 years who defaulted on their loans.

Lending Club Data data

This publicly available data used in this work were provided by the Lending Club (Club)
Due to its size, only 1200 observations were used for this study using a stratified sampling
approach. The majority class had 1078 observations, which represents 89.83% of the data,
whilst the minority class had 122 observations, which represented 10.17% of the observa-
tions. This gives a class imbalance ratio of 8.84:1, as can be seen in Table 4.1. These data
had 94 features, with their full description provided in the link to the source.

Data Description After Resampling

Tables 4.2, 4.3, 4.4 and 4.5 respectively show a summary of the data statistics after the
application of our proposed resampling technique on the LCU data, UCI German data,
GiveMe Credit Data and Lending Club Data. It respectively shows the number of data
points resampled for each r value with their respective desired imbalance ratios λ∗ used
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for the LCU data, UCI German data, GiveMe Credit Data and Lending Club Data. They
also show the ratio of the split between the % Majority class and the % minority class that
corresponds to each desired imbalance ratio.

The tables 4.2, 4.3, 4.4 and 4.5 show that, as the imbalance ratio (λ∗) increases, the pro-
portion of the minority class ( N+) decreases relative to the majority class ( N−). For each
of the datasets used, this trend is observed across different datasets with varying values of
r. As λ∗ rises, the percentage of the majority class in the dataset increases, moving from
a balanced 50%/50% distribution with an imbalance ratio of 1 to a more imbalanced state
of 65%/35% with an imbalance ratio of 1.86. This pattern demonstrates the impact of the
HDRCS technique in adjusting the class distribution and reflects on how the minority class
is under-sampled or the majority class is oversampled to achieve the desired imbalance.
This resampling technique is critical in the evaluation of the performance of the HDRCS
under different degree of class imbalance.

Tables 4.2, 4.3, 4.4 and 4.5 respectively show the number of oversampled minority data
points, under-sampled majority data points, the total number of data points obtained for
each of the possible desired imbalance ratio used for each r values and the top 5 selected. It
can be seen that the total number of data points gradually reduces as r increases from 0.0
to 0.3. Likewise, given any r-value, the total data points obtained decrease as the desired
imbalance ratio increases.
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Data r Imbalance F , no. N+ N− N % Maj / Min
set Ratio λ∗ selected features (N−

N
)/(N+

N
)

1 5 173 173 346 50%/50%
1.22 5 141 173 314 55%/45%
1.5 5 110 173 278 60%/40%

LCU 0.0 1.67 5 103 173 276 63%/37%
1.86 5 93 173 266 65%/35%
2.33 5 74 173 247 70%/30%

1 5 169 169 338 50%/50%
1.22 5 138 169 307 55%/45%
1.5 5 109 169 278 60%/40%

LCU 0.1 1.67 5 101 169 270 63%/37%
1.86 5 90 169 259 65%/35%
2.33 5 72 169 241 70%/30%

1 5 165 165 330 50%/50%
1.22 5 135 165 300 55%/45%
1.5 5 110 165 275 60%/40%

LCU 0.2 1.67 5 98 165 263 63%/37%
1.86 5 88 165 253 65%/35%
2.33 5 70 165 231 70%/30%

1 5 161 161 322 50%/50%
1.22 5 131 161 292 55%/45%
1.5 5 107 161 268 60%/40%

LCU 0.3 1.67 5 96 161 257 63%/37%
1.86 5 86 161 247 65%/35%
2.33 5 69 161 230 70%/30%

Table 4.2: Sizes and dimensions of the datasets produced, showing the desired imbalance
ratio λ∗ and the number of data samples oversampled for each r value and imbalance ratio
for the LCU dataset after the heuristic dual-resampling approach and feature selection were
applied.
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Data r Imbalance F , no. N+ N− N % Maj / Min
set Ratio λ∗ selected features (N−

N
)/(N+

N
)

1 5 700 700 1400 50%/50%
1.22 5 573 700 1273 55%/45%

UCI 1.5 5 466 700 1166 60%/40%
German 0.0 1.67 5 419 700 1119 63%/37%

1.86 5 376 700 1076 65%/35%
1 5 670 670 1340 50%/50%

1.22 5 541 670 1211 55%/45%
UCI 1.5 5 446 670 1116 60%/40%
German 0.1 1.67 5 401 670 1071 63%/37%

1.86 5 360 670 1030 65%/35%
1 5 640 640 1280 50%/50%

1.22 5 524 640 1164 55%/45%
UCI 1.5 5 426 640 1066 60%/40%
German 0.2 1.67 5 383 640 1023 63%/37%

1.86 5 344 640 984 65%/35%
1 5 610 610 1220 50%/50%

1.22 5 500 610 1110 55%/45%
UCI 1.5 5 406 610 1016 60%/40%
German 0.3 1.67 5 365 610 975 63%/37%

1.86 5 327 610 937 65%/35%

Table 4.3: Sizes and dimensions of the data points generated, showing the desired imbalance
ratio λ∗ and the number of data samples oversampled for each r value and imbalance
ratio for the UCI German dataset after the heuristic dual-resampling approach and feature
selection were applied.
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Data r Imbalance F , no. N+ N− N % Maj / Min
set Ratio λ∗ selected features (N−

N
)/(N+

N
)

1 5 933 933 1866 50%/50%
Give 1.22 5 764 933 1697 55%/45%
Me 1.5 5 622 933 1555 60%/40%
Credit 0.0 1.67 5 558 933 1491 63%/37%

1.86 5 501 933 1434 65%/35%
1 5 926 926 1852 50%/50%

Give 1.22 5 759 926 1685 55%/45%
Me 1.5 5 617 926 1543 60%/40%
Credit 0.1 1.67 5 554 926 1480 63%/37%

1.86 5 497 926 1423 65%/35%
1 5 640 640 1280 50%/50%

Give 1.22 5 524 640 1164 55%/45%
Me 1.5 5 426 640 1066 60%/40%
Credit 0.2 1.67 5 383 640 1023 63%/37%

1.86 5 344 640 984 65%/35%
1 5 610 610 1220 50%/50%

Give 1.22 5 500 610 1110 55%/45%
Me 1.5 5 406 610 1016 60%/40%
Credit 0.3 1.67 5 365 610 975 63%/37%

1.86 5 327 610 937 65%/35%

Table 4.4: Sizes and dimensions of the datasets produced, showing the desired imbalance
ratio λ∗ and the number of data samples oversampled for each r value and imbalance
ratio for the Give credit dataset after the heuristic dual-resampling approach and feature
selection were applied.

70



4.5. EXPERIMENTS Page 71

Data r Imbalance F , no. N+ N− N % Maj / Min
set Ratio λ∗ selected features (N−

N
)/(N+

N
)

1 5 1078 1078 2156 50%/50%
1.22 5 883 1078 1961 55%/45%

Lending 1.5 5 718 1078 1796 60%/40%
Club 0.0 1.67 5 645 1078 1723 63%/37%

1.86 5 579 1078 1657 65%/35%
1 5 1065 1065 2130 50%/50%

1.22 5 872 1065 1937 55%/45%
Lending 1.5 5 710 1065 1775 60%/40%
Club 0.1 1.67 5 637 1065 1702 63%/37%

1.86 5 572 1065 1637 65%/35%
1 5 1053 1053 2106 50%/50%

1.22 5 863 1053 1916 55%/45%
Lending 1.5 5 702 1053 1755 60%/40%
Club 0.2 1.67 5 630 1053 1683 63%/37%

1.86 5 566 1053 1619 65%/35%
1 5 1041 1041 2082 50%/50%

1.22 5 853 1041 1894 55%/45%
Lending 1.5 5 694 1041 1735 60%/40%
Club 0.3 1.67 5 623 1041 1664 63%/37%

1.86 5 559 1041 1600 65%/35%

Table 4.5: Sizes and dimensions of the datasets produced, showing the desired imbalance
ratio λ∗ and the number of data samples oversampled for each r value and imbalance ratio
for the Lending Club dataset after the heuristic dual-resampling approach and feature
selection were applied.
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Results and Discussion

Tables 4.6, 4.7, 4.8, 4.9 and 4.10 respectively show the results of the proposed HDRCS
algorithm with desired imbalance ratio of 1.67 compared to its variant with a desired im-
balanced ratio of 1 using logistic regression model and the other balanced algorithms such
as SMOTE(Chawla et al., 2004), CBUT (Lin et al., 2017) and GMMOT (Liu et al., 2020)
when applied to LCU (a) data, LCU (b) data, UCI German Data, GiveMe Some Credit
data, and Lending Club data, respectively. These tables of results capture the respective
evaluation metrics used in this study, which are Precision, Recall, Accuracy, f1-score and
Area Under Curve (AUC). The rest are True Negatives (TN), False Positives (FP), False
Negatives (FN) and True Positives (TP).

Data Set Metric Models
HDRCS(r=0.3)

Baseline SMOTE CBUT GMMOT λ∗ = 1.67 λ∗ = 1
TN 23 23 21 24 23 23
FP 3 3 5 2 3 3
FN 1 3 2 2 0 2
TP 5 3 4 4 6 4

Local Precision 0.63 0.50 0.44 0.67 0.67 0.57
Credit Recall 0.83 0.5 0.67 0.67 1 0.67

Union (a) Accuracy 0.88 0.81 0.78 0.88 0.91 0.84
f1-score 0.71 0.50 0.53 0.67 0.80 0.62

AUC 0.86 0.69 0.74 0.79 0.94 0.78

Table 4.6: Modeling performance for LCU (a) datasets

A plot of the loss function and accuracy obtained for the LCU(a) during the training process
against the number of epochs is shown in figure 4.1
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(a) Plots of the Loss func-
tion and accuracy against the
number of epochs for the
baseline model

(b) Plots of the Loss func-
tion and accuracy against the
number of epochs for the
SMOTE model

(c) Plots of the Loss func-
tion and accuracy against the
number of epochs for the
CBUT model

(d) Plots of the Loss func-
tion and accuracy against the
number of epochs for the
GMMOT model

(e) Plots of the Loss func-
tion and accuracy against the
number of epochs for the pro-
posed HDRCS model with
desired imbalance ratio of
1.67

(f) Plots of the Loss func-
tion and accuracy against the
number of epochs for the pro-
posed HDRCS model with lo-
gistic regression on balanced
data with a desired imbalance
ratio of 1

Figure 4.1: Log loss and accuracy plots of all the models used for the LCU (a) data on the
LCU(a) data obtained during the training process. The top row models are the baseline
model, SMOTE model and CBUT model and the bottom rows are the GMMOT model,
HDRCS model with a desired imbalance ratio of 1.67 and HDRCS model with logistic
regression on balanced data with an imbalance ratio of 1

Data Set Metric Models
HDRCS(r=0.3)

Baseline SMOTE CBUT GMMOT λ∗ = 1.67 λ∗ = 1
TN 26 24 20 21 21 21
FP 0 2 6 5 4 5
FN 6 5 2 2 2 2
TP 0 1 4 4 4 4

Local Precision 0 0.33 0.40 0.44 0.50 0.4
Credit Recall 0 0.17 0.67 0.67 0.67 0.67

Union (b) Accuracy 0.81 0.78 0.75 0.78 0.81 0.78
f1-score 0 0.22 0.50 0.53 0.57 0.53

AUC 0.5 0.54 0.72 0.74 0.76 0.74

Table 4.7: Modelling performance for LCU(b) dataset.

A plot of the loss function and accuracy obtained for the LCU(b) during the training process
against the number of epochs is shown in figure 4.2
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(a) Plots of the Loss func-
tion and accuracy against the
number of epochs for the
baseline model

(b) Plots of the Loss func-
tion and accuracy against the
number of epochs for the
SMOTE model

(c) Plots of the Loss func-
tion and accuracy against the
number of epochs for the
CBUT model

(d) Plots of the Loss func-
tion and accuracy against the
number of epochs for the
GMMOT model

(e) Plots of the Loss func-
tion and accuracy against the
number of epochs for the pro-
posed HDRCS model with
desired imbalance ratio of
1.67

(f) Plots of the Loss func-
tion and accuracy against the
number of epochs for the pro-
posed HDRCS model with lo-
gistic regression on balanced
data with a desired imbalance
ratio of 1

Figure 4.2: Log loss and accuracy plots of all the models used for the LCU(b) Data obtained
during the training process. The top row models are the baseline model, SMOTE model
and CBUT model and the bottom rows are the GMMOT model, HDRCS model with a
desired imbalance ratio of 1.67 and HDRCS model with logistic regression on balanced data
with an imbalance ratio of 1

Data Set Metric Models
HDRCS(r=0.1)

Baseline SMOTE CBUT GMMOT λ∗ = 1.67 λ∗ = 1
TN 91 99 67 71 69 65
FP 20 35 38 34 36 40
FN 20 6 13 10 10 10
TP 19 10 32 35 35 35

UCI Precision 0.49 0.22 0.46 0.51 0.49 0.47
German Recall 0.49 0.63 0.71 0.78 0.78 0.78

Accuracy 0.73 0.73 0.66 0.71 0.69 0.67
f1-score 0.49 0.33 0.56 0.61 0.60 0.58

AUC 0.65 0.68 0.67 0.73 0.72 0.70

Table 4.8: Modelling performance for UCI German dataset.

A plot of the loss function and accuracy obtained for the UCI German Data during the
training process against the number of epochs is shown in figure 4.3
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(a) Plots of the Loss func-
tion and accuracy against the
number of epochs for the
baseline model

(b) Plots of the Loss func-
tion and accuracy against the
number of epochs for the
SMOTE model

(c) Plots of the Loss func-
tion and accuracy against the
number of epochs for the
CBUT model

(d) Plots of the Loss func-
tion and accuracy against the
number of epochs for the
GMMOT model

(e) Plots of the Loss func-
tion and accuracy against the
number of epochs for the pro-
posed HDRCS model with
desired imbalance ratio of
1.67

(f) Plots of the Loss func-
tion and accuracy against the
number of epochs for the pro-
posed HDRCS model with lo-
gistic regression on balanced
data with a desired imbalance
ratio of 1

Figure 4.3: Log loss and accuracy plots of all the models used for the UCI German Data
obtained during the training process. The top row models are the baseline model, SMOTE
model and CBUT model and the bottom rows are the GMMOT model, HDRCS model with
a desired imbalance ratio of 1.67 and HDRCS model with logistic regression on balanced
data with an imbalance ratio of 1

Data Set Metric Models
HDRCS(r=0.3)

Baseline SMOTE CBUT GMMOT λ∗ = 1.67 λ∗ = 1
TN 134 99 97 137 138 138
FP 0 35 43 3 2 2
FN 16 6 2 6 5 6
TP 0 10 8 5 6 5

GiveMe Precision 0 0.22 0.17 0.63 0.75 0.71
Some Recall 0.0 0.63 0.82 0.45 0.55 0.45

Credits Accuracy 0.89 0.73 0.70 0.94 0.95 0.95
f1-score 0 0.33 0.29 0.53 0.63 0.56

AUC 0.5 0.68 0.76 0.73 0.77 0.72

Table 4.9: Modelling performance for Give Me Some Credit dataset.

A plot of the loss function and accuracy obtained for the Give Me Credit Data during the
training process against the number of epochs is shown in figure 4.4
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(a) Plots of the Loss func-
tion and accuracy against the
number of epochs for the
baseline model

(b) Plots of the Loss func-
tion and accuracy against the
number of epochs for the
SMOTE model

(c) Plots of the Loss func-
tion and accuracy against the
number of epochs for the
CBUT model

(d) Plots of the Loss func-
tion and accuracy against the
number of epochs for the
GMMOT model

(e) Plots of the Loss func-
tion and accuracy against the
number of epochs for the pro-
posed HDRCS model with
desired imbalance ratio of
1.67

(f) Plots of the Loss func-
tion and accuracy against the
number of epochs of logistic
regression model on balanced
data with a desired imbalance
ratio of 1

Figure 4.4: Log loss and accuracy plots of all the models used for the Give Me Credit Data
obtained during the training process. The top row models are the baseline model, SMOTE
model and CBUT model and the bottom rows are the GMMOT model, HDRCS model
with a desired imbalance ratio of 1.67 and logistic regression on data with an imbalance
ratio of 1

Data Set Metric Models
HDRCS(r=0.3)

Baseline SMOTE CBUT GMMOT λ∗ = 1.67 λ∗ = 1
TN 160 137 96 157 162 154
FP 0 23 66 5 0 8
FN 9 2 1 6 8 4
TP 11 18 18 13 11 15

Lending Precision 1 0.44 0.21 0.72 1 0.65
Club Recall 0.55 0.90 0.95 0.68 0.58 0.79

Accuracy 0.95 0.86 0.63 0.94 0.96 0.93
f1-score 0.71 0.59 0.35 0.70 0.73 0.71

AUC 0.78 0.88 0.77 0.83 0.79 0.87

Table 4.10: Modelling performance for Lending Club dataset.

A plot of the loss function and accuracy obtained for the Lending Club Data during the
training process against the number of epochs is shown in figure 4.5
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(a) Plots of the Loss func-
tion and accuracy against the
number of epochs for the
baseline model

(b) Plots of the Loss func-
tion and accuracy against the
number of epochs for the
SMOTE model

(c) Plots of the Loss func-
tion and accuracy against the
number of epochs for the
CBUT model

(d) Plots of the Loss func-
tion and accuracy against the
number of epochs for the
GMMOT model

(e) Plots of the Loss func-
tion and accuracy against the
number of epochs for the pro-
posed HDRCS model with
desired imbalance ratio of
1.67

(f) Plots of the Loss func-
tion and accuracy against the
number of epochs with logis-
tic regression model a data
with a desired imbalance ra-
tio of 1

Figure 4.5: Log loss and accuracy plots of all the models used for the Lending Club Data
obtained during the training process. The top row models are the baseline model, SMOTE
model and CBUT model and the bottom rows are the GMMOT model, HDRCS model
with a desired imbalance ratio of 1.67 and logistic regression model with an imbalance ratio
of 1

Analysis of the results of the models on the imbalanced LCU (a) datasets from Table 4.6
shows that having a credit risk expert in the assessment and risk profiling of loan applicants
leads to an increase in performance metrics compared to the LCU (b) datasets which did
not have a credit risk expert evaluation of loan applicants, as shown in Table 4.7.

It can therefore be seen in Table 4.6 that the application of the baseline model on the LCU
(a) data set resulted in Precision of 0.63, Recall of 0.83, Accuracy of 0.88, f1-score of 0.71
and AUC of 0.86 as compared to the application of the same model on the LCU(b) dataset
in Table 4.7 which had relatively lower precision of 0, recall of 0, Accuracy of 0.81, f1-Score
of 0 and AUC of 0.5. This was equally true when the SMOTE technique was applied to
both LCU (a) and LCU (b), where the f1 score improved to 0.50 in LCU (a) from 0.22 in
LCU (b) resulting in a 127.27% increase in the f1-score with the introduction of a credit risk
expert. This trend was consistent for all the other eight metrics used in this model. This
observation was also true when the CBUT technique was applied to the LCU(a) and LCU(b)
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data where the f1-score increased from 0.50 to 0.53, representing an increase of 6.00% as a
result of the introduction of a credit risk expert into the process. The GMMOT had similar
trends, in which the introduction of a credit risk expert into the decision-making process
resulted in an increase of f1-score from 0.53 to 0.67 representing an increase of 26.42%.
Overall it can be seen that the proposed HDRCS model with a desired imbalance ratio of
1.67 achieved the highest Precision, highest Recall, highest Accuracy, highest f1-score and
highest AUC values when there was the involvement of a credit risk expert for the LCU(A)
with figures of 0.67, 1, 0.91, 0.80 and 0.94 respectively. This superior performance of our
proposed HDRCS model with a desired imbalance ratio of 1.67 was equally true when it
was applied to the LCU(b), where there was not any involvement of a credit risk expert
in the scoring process, with the proposed HDRCS model achieving the highest Precision,
highest Recall, highest Accuracy, highest f1-score and highest AUC values 0.50, 0.67.0.81,
0.57 and 0.76 respectively. For both LCU(a) and LCU(b) the HDRCS model with a desired
imbalance ratio of 1.67 outperformed the HDRCS model with a desired imbalance ratio of
1.

From Table 4.8, it can be observed that the GMMOT model achieved the highest perfor-
mance metric in 5 of the total available metrics when applied to the UCI German dataset.
It had the highest precision of 0.51, the highest recall of 0.78, the highest f1 score of 0.61,
and the highest AUC of 0.73. The baseline model was able to achieve the highest accuracy
figure of 0.73 when applied to the UCI German data set. The proposed HDRCS could only
tie in with the GMMOT in terms of the highest recall achieved. Nonetheless, it compared
well with the highest-performing GMMOT model, with a very small difference between
their performance measures. One hypothesis that could be attributed to why the model
failed to dominate as the highest performing model on this dataset could be because this
dataset happened to be the least imbalanced dataset out of all the four datasets used, with
an imbalance ratio of 2.33:1. However, the model was designed for datasets with relatively
high imbalanced ratios.

For the Give Me Credit data set shown in Table 4.9, the proposed HDRCS model with
a desired imbalance ratio of 1.67 achieved superior performance in terms of Precision,
Accuracy, f1-score and AUC metrics with values of 0.75, 0.95, 0.63, and 0.77 respectively.
The f1-score and AUC of our proposed model are 100% and 54% above the f1-score and
AUC figures obtained by the baseline model, which had an f1-score and AUC figures of 0
and 0.5, respectively. The baseline model performed poorly on this data set in terms of
f1-score and AUC due to the highly imbalanced nature of this dataset; with the highest
imbalance ratio of 13.98:1, which is the highest among the four data sets used.

Finally, from figure 4.10, it can be observed that the proposed model achieved the highest
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performance in the precision metric with an impressive value of 1, the highest accuracy
value of 0.96, and the highest f1-score of 0.73. The CBUT model had the lowest f1-score of
0.35 but achieved the highest recall value of 0.95, while the SMOTE achieved the highest
AUC value of 0.88.

From Tables 4.6, 4.7, 4.8, 4.9 and 4.10 it can be observed that of the 5 metrics used in all
data sets used, the HDRCS achieved superior performance in 18 of the total 25 available
performance metrics. This represented 72% of the total, which is 48% higher than the
metric achieved by the next best performing model, GMMOT in all data sets and models
used with the superior performance of the total of 8 performance metrics. Again, the
proposed HDRCS obtained the highest proportion of the 5 f1-scores available across the
5 datasets used. It achieved a superior f1-score in 4 of the 5 data sets used in this work,
representing 80% of the total available.

The equation r = N−

N
− 0.6 obtained from equation (4.5) was used to estimate the optimal

r value of each dataset used. This is because while λ∗ = 1 may help to create a perfectly
balanced data set, it equally means that more synthetic data samples than true data samples
are needed from the GMM model, which may introduce inaccuracies since there is a lack
of original minority data samples. For example, the choice λ∗ = 1.67 that was used in
the experiments would still have a more balanced data set than the original data set, but
with higher fidelity to the original minority data set. As was observed from tables 4.2,
4.3, 4.4 and 4.5, an increase in r correlates with a shift in the imbalance ratios. This shift
impacts the representation of majority and minority classes. This trend underscores the
important role played by the resampling coefficient, r in the dual-resampling process of the
HDRCS technique, and hints at its potential to achieve an optimal class distribution for
model training in credit risk assessment. This is important in credit risk prediction, where
the balance between accurate detection of defaulters (minority class) and non-defaulters
(majority class) is key to effective and fair risk assessment. The relationship between r and
class distribution offers a promising avenue for refining predictive models, ensuring they are
not only accurate but also fair in their predictions.
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Choosing the number of components

(a) Plots of the Silhoette score for LCU data
(b) Plots of the Silhoette score for German
data

(c) Plots of the Silhoette score for GiveMe-
Credit data

(d) Plots of the Silhoette score for the Lend-
ing Club datasets

Figure 4.6: Comparision of the plots of the Silhoette score for all the data sets used

The results from the above indicate that the use of GMM oversampling and K-means under-
sampling together with the cost-sensitive logistic regression achieved the desired outcome.
It can be seen in figure 4.6 that for the LCU Data, when the highest silhouette score of
about 0.26 was obtained when the number of components in the minority class was 5. Hence
the number of components used for the LCU for the GMMOT was 5. Likewise, the UCI
German data had the highest silhouette score of 0.625 when 4 components were used. For
the Give Me credit data, the use of 13 components resulted in the highest Silhoette score of
0.45 and finally the Lending Club data obtained the highest silhouette score of 0.2 when the
number of components were 2. There was not any significant number of outliers detected,
during the data preprocessing stage which could have skewed the mean and variance of the
Gaussian distributions and subsequently affect the performance of the model. To mitigate
the potential effects of these outliers, cross-validation testing was used during the training
phase of the model.
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Sensitivity Analysis of HDRCS

In this section, a comprehensive sensitivity analysis of the HDRCS (Hybrid Dual Resam-
pling Cost-Sensitive) model on all 4 imbalanced datasets used is conducted. The aim is to
investigate the impact of varying the r coefficient and the corresponding desired imbalance
ratios (λ∗) on various performance metrics used, to provide greater insight into the model’s
behaviour under different conditions. This analysis offers insights that are invaluable in
addressing class imbalance effectively.

Our analysis begins by considering different datasets, each characterised by a distinct r-value
parameter. Concurrently, variations of the imbalance ratios (λ∗) are explored to examine
their influence on the HDRCS model performance. The sensitivity to these parameters
highlights the inherent complexity of the model’s response to dataset characteristics. Our
investigation reveals compelling variations in the HDRCS model’s performance metrics,
which encompass Precision, Recall, Accuracy, F1-score, and AUC. As the r-value and λ∗

change, these metrics reflect the model’s adaptability and response to the evolving dataset
conditions. Such sensitivity underscores the importance of parameter selection. It can be
observed that the choice of desired imbalance ratio, λ∗ plays an important role in deter-
mining the model’s performance. It can also be observed from the table 4.11 that higher
imbalance ratios, with λ∗ = 1.67 and λ∗ = 1.86, are associated with an increase in False
Positives (FP), adversely the model’s impacting Precision and F1-score. This observation
underscores the need to carefully consider the trade-offs between different performance
metrics.

The analysis also identifies parameter combinations that result in superior model perfor-
mance for specific scenarios. For instance, when λ∗ = 1.22 and r-values of 0.1 are used, the
HDRCS model consistently demonstrates high Precision, Recall, Accuracy, F1-score, and
AUC. This finding suggests that the careful selection of r-value and λ∗ can lead to improved
performance of the model.

The HDRCS model’s performance on the LCU (a) dataset at different r-values and im-
balance ratios reveals notable trends. Specifically, at r-value of 0.0, the model maintains
high Accuracy and AUC across most λ∗ values, indicating robustness to class imbalances.
However, the model’s performance varies at higher r-values; for example, at r=0.1 and
λ∗ = 1, there’s a notable improvement in both Accuracy and AUC with figures of 0.91 and
0.94 respectively. Interestingly, the f1-score is highest at 0.8 for r=0.1 and λ∗ = 1. This
pattern suggests the HDRCS model’s response to imbalances varies with r, impacting its
predictive reliability and the trade-off between Precision and Recall for this data set. These
observations imply that the model’s ability to correctly classify cases improves with a slight

81



4.5. EXPERIMENTS Page 82

Data Set r-value Metric HDRCS Model
λ∗ = 1 λ∗ = 1.22 λ∗ = 1.5 λ∗ = 1.67 λ∗ = 1.86

TN 24 24 24 22 24
FP 2 2 2 4 2
FN 2 2 2 2 2
TP 4 4 4 4 4

Local r=0.0 Precision 0.67 0.67 0.67 0.5 0.67
Credit Recall 0.67 0.67 0.67 0.67 0.67

Union (a) Accuracy 0.88 0.88 0.88 0.81 0.88
f1-score 0.67 0.67 0.67 0.57 0.67

AUC 0.79 0.79 0.79 0.76 0.79
TN 23 24 22 24 24
FP 3 2 4 2 2
FN 0 2 2 2 2
TP 6 4 4 4 4

Local r=0.1 Precision 0.67 0.67 0.50 0.67 0.67
Credit Recall 1 0.67 0.67 0.67 0.67

Union (a) Accuracy 0.91 0.88 0.81 0.88 0.88
f1-score 0.8 0.67 0.57 0.67 0.67

AUC 0.94 0.79 0.76 0.79 0.79
TN 24 24 23 24 23
FP 2 2 3 2 3
FN 2 2 2 2
TP 4 4 4 4 4

Local r=0.2 Precision 0.67 0.67 0.57 0.67 0.57
Credit Recall 0.67 0.67 0.67 0.67 0.67

Union (a) Accuracy 0.88 0.88 0.84 0.88 0.84
f1-score 0.67 0.67 0.62 0.67 0.62

AUC 0.79 0.79 0.78 0.79 0.78
TN 23 24 23 23 23
FP 3 2 3 3 3
FN 2 2 2 0 2
TP 4 4 4 6 4

Local r=0.3 Precision 0.57 0.67 0.57 0.67 0.57
Credit Recall 0.67 0.67 0.67 1 0.67

Union (a) Accuracy 0.84 0.88 0.84 0.91 0.84
f1-score 0.62 0.67 0.62 0.80 0.62

AUC 0.78 0.79 0.78 0.94 0.78

Table 4.11: sensitivity analysis for HDRCS for LCU (a) datasets

increase in the r-value, but this improvement is not consistent across all imbalance ratios
for this dataset. This trend highlights the importance of tuning the r-value to optimise the
model’s performance, especially in scenarios with varying degrees of class imbalance.
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Data Set r-value Metric HDRCS Model
λ∗ = 1 λ∗ = 1.22 λ∗ = 1.5 λ∗ = 1.67 λ∗ = 1.86

TN 21 21 22 19 23
FP 5 5 4 7 3
FN 2 2 3 2 3
TP 4 4 3 4 3

LCU(b) r=0.0 Precision 0.44 0.44 0.43 0.36 0.50
Data Recall 0.67 0.67 0.50 0.67 0.50

Accuracy 0.78 0.78 0.78 0.72 0.81
f1-score 0.53 0.53 0.46 0.47 0.50

AUC 0.74 0.74 0.67 0.70 0.69
TN 21 19 20 21 21
FP 5 7 6 5 5
FN 2 2 3 2 3
TP 4 4 3 4 3

LCU(b) r=0.1 Precision 0.44 0.36 0.33 0.44 0.38
Data Recall 0.67 0.67 0.5 0.67 0.5

Accuracy 0.78 0.72 0.72 0.78 0.75
f1-score 0.53 0.47 0.40 0.53 0.43

AUC 0.74 0.70 0.63 0.74 0.65
TN 23 21 23 18 19
FP 3 5 3 8 7
FN 3 3 3 3 2
TP 3 3 3 3 4

LCU(b) r=0.2 Precision 0.50 0.38 0.50 0.27 0 .36
Recall 0.50 0.50 0.50 0.50 0.67

Data Accuracy 0.81 0.75 0.81 0.66 0.72
f1-score 0.50 0.43 0.50 0.35 0.47

AUC 0.69 0.65 0.69 0 .60 0 .70
TN 21 21 22 21 23
FP 5 5 5 4 5
FN 2 3 3 2 3
TP 4 3 3 4 3

LCU(b) r=0.3 Precision 0.44 0.38 0.38 0.50 0.38
Data Recall 0.67 0.50 0.50 0.67 0.50

Accuracy 0.78 0.75 0.75 0.81 0.75
f1-score 0.53 0.43 0.43 0.57 0.43

AUC 0.74 0.65 0.65 0.76 0.65

Table 4.12: sensitivity analysis for HDRCS for LCU (b) datasets

As can be observed in Table 4.12, the sensitivity analysis of the HDRCS model on the LCU
(b) datasets shows various trends. There exists fluctuation in metrics such Precision, Recall,
Accuracy, f1-score, and AUC as the r-value increases. Specifically, Accuracy generally
remains above 0.75 for all r-values, indicating a stable model performance across different
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imbalance scenarios. However, the Precision and Recall values show more variability, which
impacts the stability of the f1-score. As an example, at r=0.0 and λ∗ = 1, Precision
is 0.44, which increases to 0.50 at λ=1.86. This indicates the model’s varying ability to
correctly identify positive cases as the class imbalance changes. Such insights are essential
for understanding the model’s behaviour under different conditions, guiding adjustments for
optimal performance in credit risk prediction. As can be seen in Table 4.13, the sensitivity
analysis of the HDRCS model on the UCI German dataset indicates that the f1-score
exhibits a fluctuating pattern across different r-values and imbalance ratios. Notably, the
f1-score remains relatively consistent around 0.60 to 0.63 at r=0.0, but as r-value increases
to 0.1 and beyond, there is a slight decrease in the f1-score, particularly noticeable at higher
imbalance ratios. This trend suggests that while the model’s ability to balance Precision
and Recall is relatively stable at lower r-values, it becomes slightly difficult under conditions
of increased class imbalance as the r-value rises. This could be seen as a limitation of the
HDRCS model. As can be seen in the Table 4.14 for the sensitivity analysis of the HDRCS
model on the Give Me Credit dataset, there exists a noticeable trend in the f1-score across
different r-values and imbalance ratios. The model generally maintains a high Accuracy
of about 0.95 across all r-values. However, the f1-score shows a varied outcome. For
instance, at r=0.0 with λ∗ = 1, the f1-score is 0.56, which increases to 0.63 at λ∗ = 1.86.
This pattern indicates that the HDCRS model’s ability to balance Precision and Recall
improves slightly with an increase in class imbalance, particularly at higher r-values. This
insight is critical for understanding the model’s effectiveness in handling class imbalance in
credit risk prediction.

As can be seen in Table 4.15, The sensitivity analysis of the HDRCS model on the Lending
Club dataset shows an interesting trend in the performance metrics across different r-values
and imbalance ratios. A notable observation is the model’s Precision, which reaches 1.0 at
higher imbalance ratios for r-values of 0.2 and 0.3, suggesting an increased ability to predict
positive classes correctly under these conditions. However, this high Precision coincides with
a decrease in Recall, particularly at r=0.3 and λ∗ = 1.86. The f1-score tends to be higher
at r=0.3 across different imbalance ratios, indicating an overall effective balance between
the sensitivity and specificity of the model under these settings.

4.6 Summary

This paper has highlighted the potential problems caused by the use of insufficient and im-
balanced data sets in classification tasks. The Hybrid Dual-Resampling and Cost Sensitive
Algorithm (HDRCS) has been proposed as a solution to address the class imbalance prob-
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Data Set r-value Metric HDRCS Model
λ∗ = 1 λ∗ = 1.22 λ∗ = 1.5 λ∗ = 1.67 λ∗ = 1.86

TN 74 71 70 70 74
FP 31 34 35 35 31
FN 10 10 11 10 13
TP 35 35 34 35 32

UCI r=0.0 Precision 0.53 0.51 0.49 0.5 0.5
German Recall 0.78 0.78 0.75 0.78 0.71

Data Accuracy 0.73 0.71 0.69 0.7 0.71
f1-score 0.63 0.61 0.60 0.61 0.59

AUC 0.74 0.73 0.71 0.72 0.71
TN 65 67 73 69 70
FP 40 38 32 36 35
FN 10 12 12 10 12
TP 25 33 33 35 33

UCI r=0.1 Precision 0.47 0.46 0.51 0.49 0.49
German Recall 0.78 0.73 0.73 0.78 0.73

data Accuracy 0.67 0.67 0.71 0.69 0.69
f1-score 0.58 0.57 0.60 0.60 0.58

AUC 0.70 0.69 0.71 0.72 0.70
TN 63 73 73 69 70
FP 42 32 32 36 35
FN 7 11 13 11
TP 38 34 32 34 34

UCI r=0.2 Precision 0.48 0.52 0.50 0.49 0.49
German Recall 0.84 0.76 0.71 0.76 0.76

data Accuracy 0.67 0.71 0.70 0.69 0.69
f1-score 0.61 0.61 0.59 0.59 0.60

AUC 0.72 0.73 0.70 0.71 0.71
TN 64 71 74 70 70
FP 41 34 31 35 35
FN 8 13 13 11 12
TP 37 32 32 34 33

UCI r=0.3 Precision 0.47 0.48 0.51 0.49 0.49
German Recall 0.82 0.71 0.71 0.76 0.73

Data Accuracy 0.67 0.69 0.71 0.69 0.69
f1-score 0.60 0.58 0.59 0.59 0.58

AUC 0.70 0.69 0.71 0.71 0.70

Table 4.13: sensitivity analysis for HDRCS for UCI German datasets

lem in credit risk prediction. The HDRCS algorithm combines Gaussian mixture modelling
(GMM) for generating synthetic minority classes and k-means clustering for creating a new
data set for the majority class, resulting in a dataset with a desired imbalance ratio suitable
for cost-sensitive logistic regression prediction operations. The HDRCS algorithm offers a
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Data Set r-value Metric HDRCS Model
λ∗ = 1 λ∗ = 1.22 λ∗ = 1.5 λ∗ = 1.67 λ∗ = 1.86

TN 138 138 135 136 138
FP 2 2 5 4 2
FN 6 6 5 6 5
TP 5 5 6 5 6

GiveMe r=0.0 Precision 0.71 0.71 0.55 0.56 0.75
Credit Recall 0.45 0.45 0.55 0.45 0.55
Data Accuracy 0.95 0.95 0.93 0.93 0.95

f1-score 0.56 0.56 0.55 0.50 0.63
AUC 0.72 0.72 0.75 0.71 0.77
TN 137 138 138 138 138
FP 3 2 2 2
FN 6 6 5 6 5
TP 5 5 5 6 5

GiveMe r=0.1 Precision 0..63 0.71 0.75 0.75 0.75
Credit Recall 0.45 0.45 0.55 0.45 0.55
Data Accuracy 0.94 0.95 0.95 0.95 0.95

f1-score 0.53 0.56 0.63 0.56 0.63
AUC 0.72 0.72 0.77 0.72 0.77
TN 137 135 125 138 138
FP 3 5 15 2 2
FN 6 6 1 5 6
TP 5 5 10 6 6

GiveMe r=0.2 Precision 0.63 0.50 0.40 0.75 0.55
Credit Recall 0.45 0.45 0.91 0.55 0.55
data Accuracy 0.94 0.93 0.89 0.95 0.95

f1-score 0.53 0.48 0.56 0.63 0.63
AUC 0.72 0.71 0.90 0.77 0.77
TN 138 138 138 138 138
FP 2 2 2 2 2
FN 6 6 5 5 5
TP 5 5 6 6 6

GiveMe r=0.3 Precision 0.71 0.71 0.75 0.75 0.75
Credit Recall 0.45 0.45 0.55 0.55 0.55
Data Accuracy 0.95 0.95 0.95 0.95 0.95

f1-score 0.56 0.56 0.63 0.63 0.63
AUC 0.72 0.72 0.77 0.77 0.77

Table 4.14: sensitivity analysis for HDRCS for Give Me Credit datasets

comprehensive hybrid approach that leverages both data-level and algorithm-level tech-
niques to address the class imbalance problem in the credit risk domain. Its effectiveness in
achieving balanced datasets and accurate predictions makes it a valuable tool for financial
risk management. The performance of the HDRCS algorithm on four real-world credit risk
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Data Set r-value Metric HDRCS Model
λ∗ = 1 λ∗ = 1.22 λ∗ = 1.5 λ∗ = 1.67 λ∗ = 1.86

TN 155 162 144 162 141
FP 7 0 18 0 21
FN 6 8 4 6 4
TP 13 11 15 13 15

Lending r=0.0 Precision 0.65 1 0.45 1 0.42
Club Recall 0.68 0.58 0.79 0.68 0.79
Data Accuracy 0.93 0.96 0.88 0.97 0.86

f1-score 0.67 0.73 0.58 0.81 0.55
AUC 0.82 0.79 0.84 0.84 0.83
TN 157 158 155 155 155
FP 5 4 7 7 7
FN 6 8 5 4 4
TP 13 11 14 15 15

Lending r=0.1 Precision 0.72 0.73 0.67 0.68 0.68
Club Recall 0.68 0.58 0.74 0.79 0.79
Data Accuracy 0.94 0.93 0.93 0.94 0.96

f1-score 0.70 0.65 0.70 0.73 0.73
AUC 0.83 0.78 0.85 0.87 0.87
TN 143 160 162 162 162
FP 19 2 0 0 0
FN 4 6 7 7 8
TP 15 13 12 12 11

Lending r=0.2 Precision 0.44 0.87 1 1 1
Club Recall 0.79 0.68 0.63 0.63 0.58
data Accuracy 0.87 0.96 0.96 0.96 0.96

f1-score 0.57 0.76 0.77 0.73 0.73
AUC 0.84 0.84 0.82 0.82 0.79
TN 154 162 144 162 141
FP 8 0 18 0 21
FN 4 7 4 8 4
TP 15 12 15 11 15

Lending r=0.3 Precision 0.65 1 0.45 1 0.42
Club Recall 0.79 0.63 0.79 0.58 0.79
Data Accuracy 0.93 0.96 0.88 0.96 0.88

f1-score 0.71 0.77 0.58 0.73 0.55
AUC 0.87 0.82 0.84 0.79 0.83

Table 4.15: sensitivity analysis for HDRCS for Lending Club datasets

datasets which are; LCU (a), LCU (b), UCI German, Give Me Some Credit, and Lending
Club, has been evaluated. The experimental results have demonstrated that the proposed
HDRCS algorithm outperformed other algorithms in most of the metrics used. The exper-
imental results have demonstrated the effectiveness of the HDRCS algorithm compared to
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other resampling approaches, including SMOTE, CBUT, and GMMOT. The recommended
heuristic Imbalance Ratio provides a practical means to achieve better balancing. It is
worth noting that while our proposed method achieved some superior results, it has its own
limitations which are:

• Data Dependency: The HDRCS algorithm’s performance depends on the quality and
the ability of the GMM to accurately capture the distributions of the minority class
data used.

• Complexity in Implementation: The hybrid nature of the model, combining resam-
pling and cost-sensitive approaches, can lead to increased complexity in implementa-
tion and parameter tuning.

• Class Imbalance Sensitivity: While designed to address class imbalance, the technique
might still be sensitive to extreme imbalances.

• Computational Cost: Given its hybrid approach, the HDRCS model might incur
higher computational costs compared to simpler models.

While addressing data imbalances improved the accuracy of credit risk predictions, a com-
prehensive risk management strategy also requires precise volatility forecasting. Therefore,
in the following chapter, we will focus on the use of Continuous Wavelet Transform Triple
Discriminator GAN (cwt-TriGAN) to enhance the forecasting accuracy of Volatility.
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Chapter 5

Continuous wavelet Transform Triple
Discriminator GAN (cwt-TriGAN)
for Volatility Forecasting

5.1 Introduction

Building on the enhanced predictive models for credit risk developed in the previous chapter,
this chapter explores how the forecasting of volatility, which is an essential component in the
understanding of market risks can be improved. In recent years, volatility forecasting has
attracted renewed attention after several major financial market crises. Accurate volatility
forecasting plays an important role in the stock market and is required by both market
participants and policymakers (Liu and Pan, 2020). Modern portfolio theory (Markowitz,
1952) has a positive trade-off between risk and return as its cornerstone, which therefore
motivates the need for accurate forecasting and estimation of risk. The accurate description
of how stock prices and stock indices fluctuate and the determination of the future rate of
return of the stock market have attracted attention from both the research and investment
communities (Lin, 2018).

Machine learning techniques such as Artificial Neural Networks (ANN), fuzzy logic, Support
Vector Machines (SVM), and particle swarm optimisation have been used for modelling and
forecasting of financial data (Liu, 2019). These machine learning models have the ability
to fit financial time series data better than the classical models due to their ability to learn
patterns of complex data without any prior assumptions about their distribution (Lotfi
et al., 2016; Kim et al., 2009). Several research studies have used ANN to forecast the
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volatility of financial data; the most notable is the use of ANN to forecast the directional
movement of the implied volatility of the derivatives market (Ahn et al., 2012). Over the
past few years, there has been renewed interest in the use of deep learning models for the
prediction of financial time series data (Bao et al., 2017). Models such as Gated Recurrent
Unit (GRU), Long Short Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997), Deep
Belief Networks (DBN) (Hinton et al., 2006), and other similar architectures have been used
for time series predictions.

Generative adversarial networks (GAN) (Goodfellow et al., 2014), are a type of machine
learning algorithm used in unsupervised learning. It is composed of two parts: a Gener-
ator network and a Discriminator network. The Generator produces samples, while the
Discriminator attempts to determine whether a given sample is real or fake. GANs (Good-
fellow et al., 2014) as an emerging research field in finance have been applied to financial
datasets. They have also been used for stock price prediction through the optimisation of
the prediction model to minimise the loss of the Discriminator to help predict the price
movement (Zhou et al., 2018). Additionally, GANs have also been used to develop system-
atic trading strategies and discover combinations of trading strategies (Koshiyama et al.,
2019) and have been used for fraud detection (Fiore et al., 2017). TimeGAN (Yoon et al.,
2019) was proposed to generate realistic time series data by adding an auto-regressive model
to unsupervised models in their GAN network.

The use of machine learning models for financial risk management is limited by noisy data
and a lack of data availability, as observed by Caiafa et al. (2021). Market noise, statisti-
cal noise and information noise are types of noise found in financial data. Therefore, it is
essential that these limitations are adequately investigated and a solution proposed. There-
fore, the wavelet transform has been widely used to filter and extract single-dimensional
signals due to its ability to fix the noisy features of financial time series (Hsieh et al., 2011).
Therefore, it is an effective method to map the dynamic nature of non-stationary financial
data (Ramsey, 1999). The success of a deep learning algorithm is dependent on the loss
function used (Zabihzadeh, 2021). There are different loss functions, each with its own
strengths and weaknesses since no single loss function is perfect. The strength of each of
them covers only those with some sort of optimal similarity embedding when training. En-
semble loss functions (Fort et al., 2019; Hajiabadi et al., 2020) involve the combination of
losses to achieve superior results. Through this, the coefficients of loss functions and weight
parameters of an artificial neural network are jointly learned through back-propagation.

Due to the crucial role volatility plays in portfolio management and risk hedging, it is
imperative to have reliable methods for its estimation and forecasting. Therefore, it is
essential to have a robust preprocessing mechanism to remove the noise associated with it
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and also transform its 1-dimensional (1-D) feature space into a high-dimensional feature
space. This makes it suitable as an input for the GAN forecasting model. This is because
volatility, which is one-dimensional (1-D) time series data and noisy in nature, is not suitable
to use as an input for GAN; therefore, this chapter proposes a method that combines GANs
with Continuous Wavelet Transform (CWT) (Torrence and Compo, 1998) to achieve this.
It uses CWT to decompose noisy and non-stationary data into de-noised wavelets as input
for the GAN model. Our proposed architecture employs supervised loss, reconstruction
loss, and discriminators ensemble loss derived from the use of a triplicate Discriminator to
overcome the problems associated with the use of GAN as a forecasting tool, such as mode
collapse and model in-convergence, which makes it difficult to train. Existing methods
often struggle to capture the complex and dynamic nature of financial time series data.
In response, a novel technique that provides a comprehensive solution is presented. Our
proposed approaches, which serve as our main contributions, are as follows:

• Continuous Wavelet Transform Triple Generative Adversarial Network (cwt-TriGAN):
This uses a Triple Discriminator network as part of a GAN model to overcome the
problem of mode collapse normally encountered when using GANs for prediction. It
uses a supervised loss, a reconstruction loss, and discriminator losses to train a GAN
model for volatility forecasting. Discriminator Losses leverage a novel ensemble loss
function made up of hinge loss, least square loss function, and cross-entropy loss to
train the model.

• Investigation into the use of continuous wavelet transform on nine financial datasets
to improve the forecasting and data-generation ability of volatility time-series using
cwt-TriGAN architecture. A detailed volatility analysis using a scaleogram has also
been contributed.

The rest of the chapter is organised as follows: The related work is provided in Section
5.2. Our proposed cwt-TriGAN and its architecture are introduced in Section 5.3. Our
experimental setup and results are presented in Section 5.4. The summary, containing the
limitations of this work is captured in Section 5.5.

5.2 Related Works

Most of the successful deep learning applications used in different time series domains
have been reviewed (Hassan et al., 2019). Recurrent Neural Network (RNN) has been
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highlighted as a type of deep neural network that can be used for sequential and time-
series modelling (Xing et al., 2019). Variational RNN, which is a hybrid, has been used
to jointly model sequential data using its’ mean and variance (Chung et al., 2015). LSTM
has also been used in high-frequency data from four future markets, namely petroleum, oil,
flammable gas, and fuel, to demonstrate its effective use in predicting volatility (Prokopczuk
and Simen, 2014). GANs were used for the generation of time series data in which the
data generated from the previous time step and the noise vector were used as input to
generate new data recurrently (Mogren, 2016). (Esteban et al., 2017). However, many
research studies have directly applied the GAN framework in a temporal setting. The
first continuous recurrent neural network GAN (C-RNN-GAN) (Mogren, 2016) applied
the GAN architecture to sequential data using LSTM networks as both a Generator and
a Discriminator. It involved the use of data generated from the previous time step and
a noise vector as input to generate new data recurrently (Mogren, 2016). It was then
followed by the work of Esteban et al. (2017), where small architectural differences such as
eliminating the dependence on the previous output were introduced while conditioning on
additional input to generate real-valued multidimensional time series medical records data
obtained from the intensive care unit. Since then, many studies have used these frameworks
to generate synthetic sequences in various domains such as finance (Zhang et al., 2019),
text (Zhang et al., 2016) and bio-signals (Haradal et al., 2018). GANs have also been used
for anomaly detection, such as MAD-GAN (Li et al., 2019), where multivariate anomaly
detection was used to detect anomalies in time series data. They have also been used for
stock price prediction (Zhang et al., 2019) such as ForGAN (Koochali et al., 2019), which
is a one-step-ahead probabilistic forecasting with generative adversarial networks that uses
a conditional generative adversarial network (CGAN) (Mirza and Osindero, 2014) and Fin-
GAN (Vuletić et al., 2023). A Conditional Generative Adversarial Network (CGAN)(Mirza
and Osindero, 2014) can learn and simulate categorical and continuous financial time series
variables (Fu et al., 2020) because CGAN has the ability to learn normal and heavy tail
distributions and, as such, can be used to generate conditional predictive distributions
consistent with training data distributions. A deep generative adversarial network (D-
GAN)(Saxena and Cao, 2019) was proposed for accurate prediction of spatio-temporal
events (ST) and involved the combination of GAN and VAE to jointly learn the generation
and variational inference of data in an unsupervised manner.

TimeGAN(Yoon et al., 2019) was proposed to generate realistic time series data by com-
bining deep auto-regressive models with unsupervised models for supervised loss and the
GAN network. An Adversarial Attack on Probabilistic Autoregressive Forecasting Models
(Ad-Attack) (Dang-Nhu et al., 2020) has also been proposed. This used a GAN framework
to generate attacks with small input perturbations in stock market trading and prediction
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of electricity prices. Further research in the field involved the proposal of SimGAN (Golany
et al., 2020). This used a system of ordinary differential equations representing heart dy-
namics and incorporated them into the optimisation process of a generative adversarial
network to synthesise biologically plausible heart signal electrocardiogram (ECG ) training
data samples. DeepTrader (Wang et al., 2021) has also been proposed, where GAN was
used to predict the volatility of stock prices using the daily closing price of the S & P 500
index. A combination of wavelet transform and convolutional Neural Networks (CNN) has
been used for time series prediction (Mittelman, 2015). Wavelet transforms (WT) were
also combined with stacked Auto-encoders (SAEs) and long-short-term memory (LSTM)
to eliminate noise and were used for stock price forecasting (Bao et al., 2017).

Our proposed cwt-TriGAN is described in the next section.

5.3 Proposed Triple Discriminator GAN with Contin-
uous wavelet Transform (cwt-TriGAN) for Volatil-
ity Forecasting

In this section, the method used to implement our Triple Discriminator GAN with cwt is
presented. An overview of the cwt-TriGAN, which includes coverage of the Auto-encoder
and GAN components, is first introduced. It is then followed by the description of the
architecture of the cwt-TriGAN. The final part covers all three loss functions and training
schemes used.

Overview of cwt-TriGAN

To generate a de-noised signal for a one-step-ahead volatility prediction, a deep learning
framework for financial time series that utilises a deep learning-based forecasting scheme
with integrated stacked auto-encoders and LSTM-based GAN were used. Figure 5.1 repre-
sents the network architecture and network flow of the proposed cwt-TriGAN.
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Figure 5.1: cwt-TriGAN Architecture showing an Auto-encoder component made of En-
coder and Decoder networks, an adversarial component containing a Generator network,
G responsible for the generation of the synthetic data and 3 Discriminator networks,
D1, D2, D3 responsible for discriminating and evaluating the output from the single Gener-
ator network.

The four separate components under our proposed cwt-TriGAN are:

1. Data preprocessing component that entailed the application of the continuous wavelet
transform to the volatility signal as a de-noising and decomposition tool. This opera-
tion decomposed the volatility data into coefficients and resulted in an increase in the
dimensionality of the 1-D volatility time-series data to a 2-D image, with an increase
in the dimensions and hidden dimensions of the data based on the scale factor used
in the continuous wavelet transform process.

2. Stacked Auto-encoders component: This has a deep architecture trained in an unsu-
pervised manner and made up of Encoder and Decoder Networks. This worked as
a function to provide a mapping between the features and latent representations to
reduce the high dimensionality of the adversarial learning space.
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3. LSTM-based GAN network component: This was made up of a single sequence Gen-
erator and Triple Discriminator network in a 1-versus-3 minimax game, where the
Generator has the ability to generate a one-step-ahead output whilst the combined
power of the triplicate discriminators is able to effectively distinguish the real data
from generated data through a robust adversarial training process.

4. Reconstruction process that transforms the preprocessed data cwt back to the original
volatility. This allowed the original signal to be recovered from its wavelet transform
by integrating over all scales and locations. The original wavelet function was used,
instead of its conjugate which is employed in the forward transformation of the equa-
tion. The CWT used in this study is non-orthogonal, making it highly redundant
at large scales, and the wavelet spectrum at adjacent times is highly correlated. As
suggested by Torrence and Compo (1998), this non-orthogonal transform is important
for time series analysis, where smooth, continuous variations in wavelet amplitude are
expected and the redundancy nature led to reconstruction loss, which was calculated
using the mean squared error between the original volatility and the reconstructed
signal.

Architecture of Proposed cwt-TriGAN

The cwt-TriGAN consists of eight functions which are: a wavelet transform function, an
inverse wavelet transform function, an Encoder network, a Decoder network, a sequence
Generator, and three sequence discriminators. The wavelet transform component is made
up of the cwt and the inverse cwt functions. These two, respectively, act as a de-noising
tool for the data at the preprocessing stage and map it back to the original volatility data as
the last stage through a reconstruction procedure after the GAN operation. It also contains
an auto-encoder component; made up of the encoding and decoding networks which are
jointly trained with the Generator and the Triple Discriminator networks referred to as the
adversarial components, in such a way that cwt-TriGAN simultaneously learns to denoise
the data, encode the temporal features, generate samples, and iterate across time.

Data preprocessing stage using Continuous Wavelet Transform (CWT)

The CWT remains an excellent tool for mapping the changing properties of non-stationary
signals. As a result of this, it can be used to preprocess the volatility dataset using a
desired scale factor. The first step in the CWT is to find a choice of mother wavelet to use.
The Morlet wavelet(Lee et al., 2019) was used in this procedure. The Morlet wavelet was
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used because of its excellent balance between frequency and time localisation, its’ analytic
nature and its’ shape that is similar to financial signals, which can lead to effective feature
extraction. Other reasons include its’ smoothness, parameter flexibility, and robustness to
non-stationarities. The wavelet is then taken and compared with a section at the start of
the original volatility data. The next step involves the calculation of wavelet coefficients,
which represent how correlated the wavelet is with the selected section of the original signal.
The correlation between sections of the volatility data and scaled versions of the wavelet
can then be quantified. The wavelet is shifted to the right and can be repeated until
the entire length of the volatility signal is covered. The procedure is then repeated with
several scaled versions of the wavelet as the next step. This results in the production of
coefficients produced at different scales by different sections of the volatility signal. The
coefficients represent the results of a regression of the original volatility signal performed on
the Morlet wavelets. Through this operation, the data set is decomposed into coefficients
and frequencies.

Figure 5.2: scaleogram of Google dataset

Each wavelet coefficient has elements of frequency (through scaling) and time (through shift-
ing). Deriving scale- and time-dependent patterns from the time series requires a graphical
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and intuitive representation of the wavelet coefficients. This is achieved by plotting the
information using three-dimensional time-scale-coefficient axes. Such a plot is referred to
as a scaleogram as shown in Figure 5.2. The coefficients obtained can be used as input data
for the deep learning model. Figure 5.2 shows the scaleogram image produced as a result
of the CWT operations on the Google data sets used.

A summary of the Continuous wave Transform Algorithm in the form of a pseudo code is
shown in algorithm 4

Algorithm 4 Continuous wave Transform Algorithm
Require: For a given data set processed to 1-D Volatility, v
Ensure: The choice of mother wavelet is Morlet.

1: Split the Volatility data , v into training set , V and test set, Vts

2: Take the Morlet wavelet and compare it with a section at the start of the training set,
V
3: Calculate the correlation coefficient between the Morlet wavelet and training set, V
4: Shift the Morlet wavelet to the right and repeat Steps 1 and 2 until the whole training
set , V is covered.
5: Scale the Morlet wavelet and repeat steps 2 through 4
6: Repeat steps 2 through 5 for all scales
7: Return Coefficients

Auto-Encoder component

The Auto-encoder component of the cwt-TriGAN is composed of an Encoder network and a
Decoder network, which collectively form a mapping between the wavelet coefficients and a
latent space. This latent space enables the GAN to learn the underlying temporal dynamics
of the coefficients through a reduced-dimensional representation. This section provides a
comprehensive overview of the auto-encoder component, including its architectural details
and mathematical representations. A diagrammatic representation of the auto-encoder
component of the cwt-TriGAN is provided in Figure 5.3.
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Auto-encoder Architecture

Figure 5.3: Diagramatic representation of the Auto-encoder component of cwt-TriGAN

The Encoder network consists of LSTM cells that encode the temporal features of the coef-
ficients while the Decoder network consists of a simple feed-forward network that decodes
the latent representation as reconstructed input data. Both the encoding and decoding net-
works are auto-regressive in nature to maintain the temporal dynamics of the coefficients
of volatility time series data. The Encoder function used the recurrent encoding network
for the coefficients feature in the data.

Conversely, the Decoder network performs the inverse operation, converting the temporal
codes of the coefficients back into their original feature representation. The Encoder and
Decoder networks establish a reversible mapping between the feature and latent spaces to
enable accurate reconstructions of the original coefficients data from their latent represen-
tations. The Reconstruction loss, LR that serves as the first objective function involved
in this procedure.This loss function quantifies the difference between the actual coefficients
and their reconstructions to show the accuracy of the learned latent representation in cap-
turing the underlying data patterns.
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Adversarial components of cwt-TriGAN

The Adversarial components of cwt-TriGAN encompass a Generator network and Triple
Discriminators. The Generator network uses an LSTM architecture to produce synthetic
latent codes in the embedding space. The Generator network accepts the coefficients of
temporal random noise and uses the LSTM Generator network, G to map these random
vectors into synthetic latent codes, ĥT = G(zT ).

The Generator also receives two types of data input during the training phase. The first
one is the synthetic embeddings coming from its own previous outputs, which can be used
to generate the next synthetic vector in an auto-regressive manner, and the second is the
sequence of the encoded coefficients from CWT operations received by the Generator to
produce the latent vector.

Supervised Loss

A supervised loss function (LS) is introduced to aid in the learning of the distribution
since the use of only the adversarial losses of the Triple Discriminators is not adequate for
the Generator network to capture the step-wise conditional temporal distribution of the
coefficients. The mathematical representation of the supervised loss (LS) obtained through
the application of the maximum likelihood is demonstrated in equation (5.1):

LS = ECT ∼p

[∑
t

∥ ht −GC (ht−1,Zt) ∥2

]
(5.1)

Generator Losses

The Generator loss (LG) is calculated as:

LG = w1 · LG1 + w2 · LG2 + w3 · LG3

with hyper-parameters w1, w2, w3 controlling the relative contribution of each component.
Where: LG1 is the cross entropy loss component of the Generator loss LG2 is the least square
loss component of the Generator loss LG3 is the hinge loss component of the Generator
loss. These are represented mathematically and shown in equations (5.2), (5.3) and (5.4)
respectfully.
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LG1 = −E
∑

t

log(ŷt)
 (5.2)

LG2 = E

∑
t

(ŷt − 1)2

 (5.3)

LG3 = −E
∑

t

(ŷt)
 (5.4)

Hence the total Generator loss, LGT
is calculated as shown in equation (5.5):

LGT
= γLS + LG (5.5)

Where γ is a hyper-parameter for combining the two losses.

Triple Discriminators

The Adversarial component involves a set of three discriminators, each operating from the
embedding space. The purpose of these three discriminators is to maximise their ability to
distinguish between real and fake data instances. This loss term encourages the Generator
to produce data that are indistinguishable from real data, as shown in Figure 5.4
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Figure 5.4: Adversarial component of the cwt-TriGAN showing Ensemble loss made up
of weighting of w1 for cross-entropy loss, w2 for least square loss and w3 for Hinge loss
functions respectively for discriminators D1, D2 and D3.

The discrimination functions denoted as D1, D2, andD3 for discriminators 1, 2 and 3 re-
spectively are shown mathematically as follows:

D1 :
∏

t

HC1 → [0, 1]1 ×
∏
t1

[0, 1]1 ;

D2 :
∏

t

HC2 → [0, 1]2 ×
∏

t

[0, 1]2 ;

D3 : ×
∏

t

HC3 → [0, 1]3 ×
∏

t

[0, 1]3

These three Discriminator networks receive the coefficient codes and classify them as real or
fake for both the embeddings and data. Each of the components of the Triple Discriminator
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utilises a bidirectional LSTM in conjunction with a feed-forward network for classification
and can be implemented mathematically as shown in equations (5.6)

ỹt =
3∑

i=1
(DC)i

(←−q t,
−→q t

)
for i = 1, 2, 3 (5.6)

With:

−→q t =
3∑

i=1

−→
f Ci

(
h̃t,
−→q (t+1)

)
for i = 1, 2, 3

←−q t =
3∑

i=1

←−
f Ci

(
h̃t,
←−q (t+1)

)
for i = 1, 2, 3

where:
DCi

are the respective classification layers for the output layers for DiscriminatorsD1, D2, D3
−→q t represents the sequence of forward states for Discriminators D1, D2, D3 .
←−q t represents the sequence of backward states for Discriminators D1, D2, D3 operations.
−→
f Ci

represents the LSTM of the forward states for discriminators D1, D2, D3 operations.
←−
f Ci

represents the LSTM of the backward states for Discriminators D1, D2, D3 operations.
Let θr θe be the parameters of the Encoder network θr be the parameters of the Decoder
network. θg be the parameters of the Generator network. θd1 ,θd2 , and θd3 be the parameters
for the Triple Discriminator networks D1, D2, andD3 respectively.

Gradients θg,θd1 ,θd2 , and θd3 are computed on the Discriminator Losses, allowing the Triple
discriminators to maximise their probability of providing the correct classifications for both
the training data and the synthetic data from the Generator. The average of the parameters
of the 3 discriminators, θd is computed as shown in Equation 5.7.

θd = (θd1 + θd2 + θd3

3 ) (5.7)

Discriminator Losses

The Discriminator losses (LUi
) for each Discriminator D1, D2 and D3 can be calculated

as follows: The Cross entropy loss used for Discriminator D1 was calculated as shown in
equation 5.8:

LU1 = E

∑
t

log yt

+ E

∑
t

log(1− ŷt)
 (5.8)
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The LU2 used for Discriminators D2 computed by the least Squares loss was calculated
using equation 5.9:

LU2 =E

∑
t

(yt − 12)
+ E

∑
t

(ŷt)2

 (5.9)

The hinge loss used for Discriminators D3 is given as shown in equation 5.10:

LU3 = E

∑
t

min(0,−1 + yt)
+ E

∑
t

min(0,−1− ŷt)
 (5.10)

The discriminator loss LU for Discriminators 1, 2 and 3 can be computed by finding the
average of individual Discriminator losses (LUi

) as shown in Equation (5.11).

LU =
3∑

i=1
wi · LUi

for i=1,2,3 (5.11)

Where wi is the proportional weights used for the LU1 LU2andLU3 for DiscriminatorsD1, D2, D3.

Optimisation process for CWT-TriGAN Training

The cwt-TriGAN is trained in a closed-loop fashion, with the Generator receiving sequences
of embeddings of actual volatility data. The Generator then generates the subsequent hid-
den vector, and gradients are computed based on the difference between the distributions.
The training scheme ensures that the Generator learns to create realistic-looking volatility
data through adversarial training while preserving accurate step-wise conditional temporal
distribution patterns.

The Discriminator ensemble loss function (LU) forces the Generator to create realistic-
looking coefficients of volatility data through adversary training, and the supervised loss, LS

also further ensures that it produces similar step-wise transitions evaluated by ground-truth
targets. The optimisation and training scheme of the proposed method is diagrammatically
represented in Figure 5.5.
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Figure 5.5: The training scheme of the CWT-TriGAN where the solid lines represent for-
ward propagation and dotted red lines represent backward propagation

Let θe,θr,θg,θd1 ,θd2 ,θd3 denote the parameters of the Encoder, Decoder, Generator and
Triple Discriminator networks respectively.

The θe and θr jointly train on the reconstruction loss and the supervised loss as shown as:

min
θe,θr

(λLS + LR)

where λ ≥ 0 is a hyper-parameter used to balance LS and LR. Using the average of the
parameters of the 3 discriminators, θd resulted in the adversarial training of the Generator
and the Triple Discriminator networks as shown in Equation (5.12).

min
θg

(
γLS + max

θd

LU

)
(5.12)

where γ ≥ 0 is a hyper-parameter that balances the LSandLU
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The parameters θe,θr,θg,θd1 ,θd2 ,θd3θd are also updated as follows:

θe = θe − γ ▽θe −[λLS + LR]
θr = θr − Γ▽θr −[λLS + LR]
θg = θg − γ ▽θg −[λLS + LU ]

θd = θd − γ ▽θd
−λLU

Algorithm 5 Pseudo-code of cwt-TriGAN optimisation Process
1: Input: For a given dataset processed to 1-D Volatility , V with γ, batch size bs, learning

rate λ
2: Initialize Parameters: θe, θr, θg, θd1, θd2, θd3 , wi

3: for n = 1, ..., bs, t = 1, ..., Tn do
4: ỹt = ∑3

i=1 DCi

(←−q ti
,−→q ti

)
for i = 1, 2, 3

5: Calculate Reconstruction (LR), Discriminator Losses (LU), Supervised
Loss (LS):
LR = 1

bs

∑bs
n=1

[∑
t ∥ Cn,t − C̃n,t ∥2

]
LU = 1

bs

∑bs
n=1

∑3
i=1 wi · LUi

WhereLUi
represent losses for Discriminators 1, 2 and 3

LS = 1
bs

∑bs
n=1 [∑t ∥ ht −GC (ht−1, zt) ∥2]

6: while Not converged do
7: Update the parameters Auto-encoder Component, θe,θr:

θe = θe − γ ▽θe −[λLS + LR]
θr = θr − γ ▽θr −[λLS + LR]

8: Update parameters for Adversarial component, θg,θd1 , θd2 ,θd3:
θg = θg − γ ▽θg −[λLS + LU ]
θd = θd − γ ▽θd

−λLU where: θd = (θd1 +θd2 +θd3
3 )

9: end while
10: end for
11: Return: Average optimal parameter, θd.

Overall, the cwt-TriGAN algorithm effectively combines the Auto-encoder and adversarial
components to learn the temporal dynamics and generate synthetic volatility data that
preserves important statistical properties and temporal dependencies. A high-level repre-
sentation of the proposed cwt-TriGAN Algorithm is represented as a pseudo-code in Algo-
rithm 6 with a focus on achieving optimal performance in generating realistic and accurate
volatility time series data.
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Algorithm 6 Pseudo-code of cwt-TriGAN
1: Input: For a given data set processed to 1D Volatility , V with Γ, η = 10, batch size
bs, learning rate λ, coefficients, C of volatility.

2: Initialize Parameters: θe,θr,θg,θd1 ,θd2 ,θd3

3: Call algorithm 4 to apply the continuous wavelet transform on V to obtain the coeffi-
cients, C.

4: Call Algorithm 5 To:

a. Map between Latent Space and the Feature Space and sample a batch of real
coefficients samples from the training data set with parameters θe,θr

b. Generate a batch of fake coefficients samples using the current Generator (G)
with parameters θg

c. Classify the coefficients samples as real or fake using the Triple discriminator with
parameters θd1 ,θd2 ,θd3 .

5: Reconstruct coefficients of the volatility, C to original volatility using using inverse
CWT

v(t) =
∫ ∞

−∞

∫ ∞

0
C(v)(ϕ, x)ϕ−5

2 ψ

(
t− x
ϕ

)
dxdϕ

6: Return: (V(t))N
n=1

In summary, the cwt-TriGAN algorithm involves the following key steps:

1. Auto-encoder component: Utilise the Encoder and Decoder networks to map be-
tween the wavelet coefficients and a latent space, highlighting accurate reconstruction.

2. Adversarial Components: Employ the Generator network to produce synthetic
latent codes and use the Triple discriminators to classify coefficient codes as real or
fake, guiding the Generator to produce indistinguishable data.

3. Optimisation: Balance the reconstruction and discriminator losses to train the
Auto-encoder and the Generator, respectively by updating the corresponding net-
work parameters.

The next section introduces the experiments carried out in our work and includes the results
obtained.
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5.4 Experiments

The setup of our experiments is described in this section. It covers a description of the
features of the data sets used, a description of the performance metrics used to evaluate
the individual models, the results obtained, and the discussions of the results.

Data Description

To ensure that the volatility of a wide range of financial data sets was captured and tested
with the proposed cwt-TriGAN model; Apple, Google, Unilever and Amazon stock prices
were used. Other data sources used were from financial market indices like the S& P 500
and FTSE ALL index. Data from foreign exchange (FX) rates for British Pounds (GBP)
/ US dollar (USD) and Ghanaian Cedis / US dollar (USD) Foreign Exchange (FX) rates
were also used for the FX Index, while the spot rate for crude oil constituted data from the
commodity markets. Each of the datasets used covered a period of 15 years ranging from
1st June 2005 to 1st June 2020 and consisted of an average trading days of about 3750
depending on the time step and the dataset used.

Figure 5.6 represents the closing prices of all the datasets used and shows the variation in
asset prices during this period. Figure 5.7 also shows the distribution of the closing prices
for each data set in the form of a box plot and shows their median values, interquartile
range values, minimum values, maximum values and outlier values. Each box represents
the interquartile range (IQR) of closing prices for each asset used, from the first quartile to
the third quartile. The horizontal line in each box represents the median closing prices of
each of the assets used, while the whiskers that extend from the boxes show the range of
the closing prices. The closing prices that appear as individual dots or beyond the whiskers
are the outliers for each asset class used. The presence of outliers for some of the assets
used indicates that there were some days with closing prices significantly different from the
typical range.
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Figure 5.6: historical closing prices of all the 9 datasets, where AAPL, AMZN, CL=F,
FTAS, GBPUSD=X, GHS=X, GOOG, SPX, ULVR.L represents Apple, Amazon, Crude
oil, FTSE all, British Pounds (GBP) / US dollar (USD) FX, Ghanaian Cedis/US dollar
(USD) FX, Google, S& P 500 index and Unilever datasets respectively.

The box plots in Figure 5.7 show that Amazon and Crude oil had the most stable closing
prices during the observed period, while Unilever had the greatest variability. While British
Pounds (GBP) / US dollar (USD) experienced several unusually low closing prices, as
indicated by the outliers.

Figure 5.8 also captures the volatility distribution of the nine datasets in the form of a box
plot, showing their median values, interquartile range values, minimum values, maximum
values and outlier values. It can be seen that Unilever and FTSE all assets had the largest
outliers and also had the greatest volatility variability, suggesting frequent and significant
deviations from their median volatility levels. The box plot of Apple, crude oil, pound/dollar
FX rate and Ghanaian Cedis/US dollar (USD) FX rate were the smallest, which shows that
there was less variability in their volatility distribution with fewer and less extreme outliers,
as shown in Figure 5.8.
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Figure 5.7: Boxplot of the closing prices of all the 9 datasets, where AAPL, AMZN, CL=F,
FTAS, GBPUSD=X, GHS=X, GOOG, SPX, ULVR.L represents Apple, Amazon, Crude
oil, FTSE all, British Pounds (GBP) / US dollar (USD) FX, Ghanaian Cedis/US dollar
(USD) FX, Google, S& P 500 index and Unilever datasets respectively.

The scaleogram is the wavelet analogue of the spectrogram used to demonstrate the strength
of the coefficient of the wavelet transform at a point in time (Wallisch et al., 2014) as shown
in Figures 5.9, 5.10, 5.11, 5.12, 5.13, 5.14, 5.15 and 5.16 for the Google, Apple, Amazon,
Unilever, Ghana Cedis /US dollar FX rate, Pounds/US dollar FX rate, FTSE all index and
crude oil datasets, respectively. The horizontal axis represents the trading period, and the
vertical axis represents the scales that could be converted to their frequency equivalent in
Hertz (Hz) using equation 5.13. The scales used in the experiments ranged from 1 to 64.

f = 1
S

(5.13)

where f is the frequency and S is the scales or period. The intensity or colour of each point
in the scaleogram represents the amplitude of the corresponding frequency component at
a particular time. Darker colours indicate higher amplitudes and lighter colours indicate
lower amplitudes.
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Figure 5.8: Boxplot of the Volatility of all the 9 datasets, where AAPL, AMZN, CL=F,
FTAS, GBPUSD=X, GHS=X, GOOG, SPX, ULVR.L represents Apple, Amazon, Crude
oil, FTSE all, British Pounds (GBP) / US dollar (USD) FX, Ghanaian Cedis/US dollar
(USD) FX, Google, S& P 500 index and Unilever datasets respectively.

(a) Volatility plot of Google dataset (b) scaleogram of Google dataset

Figure 5.9: Comparison of Volatility plots and scaleogram of Google dataset using the total
trading days of 3754
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As can be seen from Figure 5.9(a), the volatility of the Google data increased around the
trading days of 750 to 1000 that corresponded to the 2008 to 2009 financial crisis. The
higher volatility in 2020 corresponding to around 3,700 trading days caused by the Covid-
19 pandemic can also be seen captured by the same figure. The scaleogram shown in Figure
5.10(b)) also captures the same trend, where it can be observed that the increase in the
intensity of volatility for the Google data set is concentrated between the 48-64 trading
period, which corresponds to a frequency equivalent of 0.016Hz - 0.02Hz. The trading
periods shown in deep red represent the periods of high volatility. It can also be observed
that there were many fluctuations, between the 500 and 1000 trading days (corresponding
to 2007-2009), while there were not so many fluctuations in volatility between the 1600 -
2000 trading days (corresponding to the year 2011 to 2013). It can also be observed that
there was a shift from shorter to longer periods as time progressed.

(a) Volatility of Apple data (b) scaleogram of Apple dataset

Figure 5.10: Comparison of Volatility plots and scaleogram of Apple dataset using the total
trading days of 3754

As can be seen from Figure 5.10(a), the volatility of the Apple data also increased
during the 2008 to 2009 financial crisis( 750 to 1000 trading days). The higher volatility from
2019 to 2020 caused by the Covid-19 pandemic can also be seen captured. The scaleogram
shown in Figure 5.10(b) captures the same trend. The trading periods shown in deep
red colour represent the period of intense volatility, while the light red colour represents
periods of low volatility, and the blue colour represents periods of absolute calmness with no
volatility experienced at all. It can be observed that the increase in the intensity of volatility
for the Apple data set was concentrated between the 32 to 64 trading period, with an
equivalent frequency value of 0.016 - 0.03Hz. While there were high fluctuations in volatility
between 500 and 1000 trading days (2007-2009), there were not so many fluctuations in
volatility between 1300 and 3500 trading days (from 2010 to 2019).
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(a) Volatility of Unilever data (b) scaleogram of Unilever dataset

Figure 5.11: Comparison of Volatility plots and scaleogram of Unilever dataset using the
total trading days of 3773

As can be seen from Figure 5.11(a) the volatility of the Unilever data also increased around
the 2008 to 2009 financial crisis period (750 to 1000 trading days). The higher volatility from
2019 to 2020 caused by the Covid-19 pandemic can also be seen captured in the same figure.
The scaleogram shown in Figure 5.11(b) captures the same trend, where it can be seen that
the highest intensity of volatility for the Unilever dataset was concentrated between the
32-64 trading period, which corresponds to an amplitude of 0.016 - 0.03Hz when measured
in frequency. From the same scaleogram, it can be observed that whereas there were not
many fluctuations in the volatility prior to 2007, there were, however, significant increases
in volatility, between 500 to 1000 trading days (2007-2008) and the 1000 - 3000 trading
days (2009 to 2017). Also, volatility remained steady with relatively low figures between
the 3000-3600 trading periods, while becoming intense from early 2020 (3700 trading days)
again due to the covid-19 pandemic.

Like-wise, as can be observed from Figure 5.12(a), the volatility of the Amazon data in-
creased around the year 2008 to 2009 financial crisis ( 750 to 1000 trading days). The higher
volatility from 2019 to 2020 caused by the Covid-19 pandemic was also captured. The sca-
leogram shown in Figure 5.12(b) captures the same trend, where it can be observed that
the increase in the highest intensity of volatility for the Amazon data set was concentrated
between the 24-64 trading period, which corresponds to frequency values of 0.016 - 0.04Hz.
Also, it can be seen that from 2005 to 2010 (0 to 1260 trading days) there was many high
volatility, between 500 and 1000 trading days (2007-2008). The trading periods shown in
deep red represent the period of high volatility.
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(a) Volatility of Amazon data (b) scaleogram of Amazon dataset

Figure 5.12: Comparison of Volatility plots and scaleogram of Amazon dataset using the
total trading days of 3754

(a) Volatility plots of US Dollar/Ghana
cedis rate dataset

(b) scaleogram of US dollar/Ghana cedis
rate dataset

Figure 5.13: Comparison of Volatility plots and scaleogram of US Dollar/Ghana cedis rate
dataset using the total trading days of 3322

As can be seen from Figure 5.13(a), the volatility of the US dollar/Ghana cedis FX rate
data also increased during the 2008 to 2009 global financial crisis ( 750 to 1000 trading
days). The higher volatility from 2019 to 2020 caused by the Covid-19 pandemic can also
be seen captured. The scaleogram shown in Figure 5.13(b) captures the same trend, where
it can be observed that the increase in the intensity of volatility for the US dollar/Ghana
cedis FX rate dataset is concentrated between the 8-64 trading period, which corresponds
to an amplitude of 0.016-0.125Hz when converted to frequency equivalence. It can also
be observed that up to the year 2007, there was not much increase in volatility, as it was
relatively calm for this period, but there were hikes in its value for 2011, 2014, 2016 and
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2020 years, with the 2011 and 2020 extreme hikes occurring within scales of 8 days or
equivalent amplitude value of 0.125hz during the 1000th trading days (2007-2008), while
there were not so much between for the trading days in between these sudden hikes.

(a) Volatility of Pounds/US Dollar rate data
(b) scaleogram of Pounds/US Dollar rate
dataset

Figure 5.14: Comparison of Volatility plots and scaleogram of Pounds/US Dollar rate
dataset using the total trading days of 3876

As can be seen from Figure 5.14(a) the volatility of the Pounds/US Dollar rate data shot
up around 2008 to 2009 during the financial crisis ( 750 to 1000 trading days). The higher
volatility from 2019 to 2020 caused by the Covid-19 pandemic can also be seen captured.
The scaleogram shown in Figure 5.14 (b) however did not capture any high volatility within
the scales or frequency used in the experiments from 2005 to 2020, except around 2016 (2800
trading days) where there was some slight increase in volatility.

(a) Volatility of FTSE ALL index data (b) scaleogram of FTSE ALL index dataset

Figure 5.15: Comparison of Volatility plots and scaleogram of FTSE All index dataset using
the total trading days of 2814
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As can be seen from Figure 5.15(a) the volatility of the FTSE ALL index data went up
during the 2008 to 2009 financial crisis. The higher volatility from 2019 to 2020 caused
by the Covid-19 pandemic can also be seen captured in the same figure. The scaleogram
shown in Figure 5.15(b) however failed to capture any high volatility within the scales or
frequency used in the experiments except around 2008-2009 and 2020.

(a) Volatility of Crude oil data (b) scaleogram of Crude oil dataset

Figure 5.16: Comparison of Volatility plots and scaleogram of FTSE All index dataset using
the total trading days of 3729

It can also be seen from Figure 5.16(a) that the volatility of Crude oil was high throughout
the period of study from 2005 to 2020 except for some brief periods in between where it
was relatively stable. The scaleogram shown in Figure 5.16(b) also shows high volatility
within the scales or frequency used in the experiments shown in deep red colour between
the 32-64 trading days with an equivalent amplitude of 0.016-0.03Hz.

Performance Evaluation Metrics

To evaluate the effectiveness of the proposed cwt-TriGAN model, the Root Mean Square
Error (RMSE) and Mean Absolute Error (MAE) were used to compare the results of sev-
eral state-of-the-art models such as timeGAN, RCGAN, ARIMA, Garch and LSTM. The
adversarial component of our proposed cwt-TriGAN, which was composed of discriminators
ensemble loss from three discriminators, was then used to replace the adversarial compo-
nent of the timeGAN in order to assess the effectiveness of the ensemble loss proposed in
the cwt-TriGAN. A cwt-GAN with only one Discriminator was also evaluated.
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Root Mean Squared Error (RMSE)

It represents the square root of the mean square of all errors. It is considered an excellent
metric for evaluating the performance of a prediction model. It shows how far predictions
deviate from their true measured values using the Euclidean distance. It is computed
by first calculating the difference between predicted values and true values for each data
point and then normalising the residual for each data point. The final stage involves the
calculation of the mean of the residuals and the square root of the mean. Mathematically,
it is represented as equation (5.14)

RMSE =
√∑N

i=1 ∥ y(i) − ŷ(i) ∥2

N
(5.14)

Where N represents the number of data points, y(i) is the true data point and ŷ(i) is the
predicted data point.

Mean Absolute Error (MAE)

It refers to the magnitude of the difference between the predicted values and the true values.
Each error is weighted equally, with the MAE values increasing linearly with increasing er-
rors. The MAE value is measured as the mean of the absolute error values. Mathematically,
it is represented as equation (5.15)

MAE =
∑N

i=1 ∥ y(i) − ŷ(i) ∥2

N
(5.15)

Where N represents the number of data points, y(i) is the true data point and y(i) − ŷ(i) is
the predicted data point.

Hyper-Parameters for cwt-TriGAN

The configuration of hyper-parameters for the cwt-TriGAN is documented in Table 5.1.
These parameters govern critical aspects of the cwt-TriGAN network, such as batch size,
learning rate, optimisation type and number of iterations (epochs).
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Hyper-parameters Description size
batch size size of mini-batch used 128

Learning Rate Used for Adam Optimisation 1× 10−4
Optimiser used Type of optimiser used Adam

Hidden dimension Number of Hidden dimensions used 40
Number of layers Number of layers used 3

latent dim dimensionality of the latent space in GAN 10
Number of iterations Number of epochs used 15,000

Table 5.1: Hyper-parameters used for the cwt-TriGAN Network

Results and Discussion

In this section, a comprehensive analysis of model performance is provided using the Root
Mean Square Error (RMSE) and Mean Absolute Error (MAE) metrics across nine data
sets. Furthermore, the mean absolute error (MAE) values obtained for each model applied
to the Google, Apple, Unilever, Amazon, S&P 500, FTSE All, Ghana / Dollar FX, Pounds
/ US Dollar FX and Crude oil datasets are investigated, showcasing the performance of
these models across various forecast time steps.

RMSE Analysis

The results of the Root mean square error (RMSE) shown in the figure 5.17, highlight the
different levels of performance of different models when applied to different data sets. It
can be observed that the Garch model had the worst performance among all other mod-
els with an RMSE of 4.3715 when applied to the Ghana/US Dollar FX rate. The LSTM
model followed closely with an RMSE of 3.4867 for the same dataset, while the ARIMA
model exhibited a performance of 2.6724. These results underscore the challenges faced by
traditional models in capturing the complex dynamics of financial markets. Our proposed
cwt-TriGAN model stands out prominently in this analysis. Demonstrating the lowest
RMSE values across all datasets, it underscores the effectiveness of the Continuous Wavelet
Transform (CWT) and Triple Discriminator architecture in enhancing the predictive accu-
racy of models.

MAE Evaluation

Moving on to the Mean Absolute Error (MAE) evaluation, the outcomes of applying eight
models to Google, Apple, Unilever, Amazon, S&P 500, FTSE All, Ghana/Dollar FX,
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Figure 5.17: Results of RMSE of models for Google, Apple, Unilever, Amazon, S&P 500,
FTSE All, Ghana/Dollar FX, pound/dollar FX and Crude oil

Pounds/US dollar FX and Crude oil datasets is presented as shown in Tables 5.2, 5.3,
5.4, 5.5, 5.6, 5.7, 5.8, 5.9 and 5.10 respectively.

Model
MAE OF GOOGLE
Ts= 5 Ts=21

ARIMA 0.0386 ±0.0013 0.1575±0.0021
GARCH 0.3393±0.0002 0.3393 ±0.0011
LSTM 0.0391±0.0022 0.04583±0.0012

RCGAN 0.1315±0.0015 0.1272±0.0031
timeGAN 0.1807±0.0012 0.115±0.0003

timeGAN with 3 Discs 0.1151 ±0.0011 0.1185±0.0004
cwt-GAN 0.0579±0.0022 0.0065±0.0021

cwt-TriGAN 0.0229±0.0002 0.0345±0.0012

Table 5.2: model performance evaluation comparison for Google datasets. **Where Ts is
the forecast time steps

Table 5.2 provides a detailed comparison of MAE values for the Google dataset across two
forecasting time steps. It can be seen that for the ARIMA model, the 5-day forecasting
time steps outperformed the 21-day forecast time steps with an MAE of 0.0386 and 0.1575
respectively. For the Garch model, there was no difference between the two forecasting time
steps, where each of them achieved an MAE of 0.3393. Also, for the LSTM model, the 5-
day forecast time steps model achieved superior results than the 21-day forecast time steps,
with the 5-day forecast time steps achieving an MAE of 0.0391 compared to the 21-day
forecasting steps, which obtained an MAE of 0.04583. However, for the RCGAN model,
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the 21-day forecast time steps outperformed the 5-day forecast time steps, which had MAE
of 0.1272 and 0.1315 respectively. The 21-day forecast time steps for the timeGAN model
achieved an MAE of 0.115 which was superior to the 5-day forecast time steps of the same
model with an MAE of 0.1807. Furthermore, the timeGAN with 3 Discriminator model
with 5-day forecast time steps achieved an MAE of 0.1151 which was better than the MAE
of the same model using a forecast time steps of 21 days, which had an MAE of 0.1185.
For the cwt-GAN, the 5-day forecast time steps achieved an MAE of 0.0579 while that of
the 21-day forecast time steps was 0.0065. Finally, the MAE of our proposed cwt-TriGAN
was 0.0229 for the forecast time steps of 5 days compared to that of the forecast time steps
of 21 days, which had an MAE of 0.0345.

Looking at the same table 5.2 and comparing the performance of each model with the other
for each forecast time step, it can be observed that the MAE of 0.0229 obtained by our
proposed cwt-TriGAN, which was 1381.7 % less than the MAE of 0.3393 obtained from the
model with the worst performance known as the GARCH model using the forecast time steps
of 5 trading days. The MAE of 0.0579 obtained by the cwt-GAN model compared to the
MAE of 0.0229 achieved by cwt-TriGAN indicates that the use of the Triple Discriminator
was effective in improving the model’s performance. Similarly, comparing the timeGAN
and timeGAN with 3 discriminators models shows that the timeGAN with 3 Discriminators
achievement of an MAE of 0.1151 as compared to the MAE of 0.1807 for the timeGAN
shows the effectiveness of the triple discriminators. Therefore, this means that the use of
the triple Discriminator was effective in improving the model’s performance. Comparing
the MAE of the timeGAN model with that of cwt-GAN and the MAE of timeGAN and
that of the cwt-TriGAN model indicates how effective the application of the continuous
wavelet transform was. All the two models with CWT outperformed their corresponding
models without CWT, respectively. The results obtained for the use of the 21-day forecast
time steps can also be seen in the same table, where it can be observed that cwt-GAN
obtained the best performance among all the other models.

Table 5.3 presents a similar assessment for the Apple dataset. It can be seen that for the
ARIMA model, the 5-day forecasting time steps outperformed the 21-day forecast time
steps with an MAE of 0.0425 and 0.1846 respectively. For the Garch model, there were no
differences between the two forecasting time steps, where each of them achieved an MAE of
0.3498. Also, for the LSTM model, the 5-day forecast time steps model achieved superior
results than the 21-day forecast time steps, with the 5-day forecast time steps achieving
an MAE of 0.0929 compared to the 21-day forecasting steps, which obtained an MAE of
0.0935. However, for the RCGAN model, the 21-day forecast time steps outperformed the
5-day forecast time steps, which had MAE of 0.092 and 0.1401 respectively.
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Model
MAE OF APPLE

Ts= 5 Ts=21
ARIMA 0.0425 ±0.012 0.1846 ±0.011
GARCH 0.3498±0.0150 0.3498 ±0.012
LSTM 0.0929±0.0014 0.0935±0.0019

RCGAN 0.1401±0.001 0.092±0.00
timeGAN 0.0963±0.0013 0.1399±0.002

timeGAN with 3 Discs 0.0907±0.002 0.0961±0.001
cwtGAN 0.002±0.01 0.047±0.005

cwtGAN with 3 Discs 0.0173±0.001 0.0214±0.010

Table 5.3: model performance evaluation comparison for APPLE datasets, **Where Ts

represents the forecasting time steps**

The 21-day forecast time steps for the timeGAN model achieved an MAE of 0.1399, which
was a lower performance compared to the 5-day forecast time steps of the same model with
an MAE of 0.0963. Furthermore, the timeGAN with 3 Discriminator model with a 5-day
forecast time steps achieved an MAE of 0.0907 which was better than the MAE of the
same model using a forecast time steps of 21 days, which had an MAE of 0.1399. For the
cwt-GAN, the 5-day forecast time steps achieved an MAE of 0.002 while that of the 21-day
forecast time steps was 0.047. Finally, the MAE of our proposed cwt-TriGAN was 0.0173
for the forecast time steps of 5 days compared to that of the forecast time steps of 21 days,
which had an MAE of 0.0214.

Looking at the same table 5.3 and comparing the performance of each model with the other
for each forecast time step, it can be observed that the MAE of 0.0173 obtained by our
proposed cwt-TriGAN, which was 1921.96 % less than the MAE of 0.3498 obtained from the
model that performed the worst known as the GARCH model using the forecast time steps
of 5 trading days. The MAE of 0.000 obtained by the cwt-GAN model compared to the
MAE of 0.0173 achieved by the cwt-TriGAN shows that the use of the Triple Discriminator
was not effective in improving the model’s performance. Similarly, comparing the timeGAN
and timeGAN with 3 discriminators models shows that the timeGAN with 3 Discriminators
achievement of an MAE of 0.0907 as compared to the MAE of 0.0963 for the timeGAN
shows the effectiveness of the Triple Discriminator. Therefore, this means that the use of
the Triple Discriminator was effective in improving the model performance. Comparing
the MAE of the timeGAN model with that of cwt-GAN and the MAE of timeGAN and
that of the cwt-TriGAN model indicates how effective the application of the continuous
wavelet transform was. The two models with CWT outperformed their corresponding
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models without CWT, respectively. The results obtained for the use of a 21-day forecast
time steps can also be seen in the same table, where it can be observed that cwt-TriGAN
obtained the best performance among all other models used with an MAE of 0.0214.

Model
MAE of Unilever

Ts= 5 Ts=21
ARIMA 0.0268 ±0.0025 0.0940 ±0.0013
GARCH 0.2352±0.0009 0.2352 ±0.0009
LSTM 0.0467±0.0021 0.0444±0.0023

RCGAN 0.2447±0.0014 0.1849±0.0025
timeGAN 0.0106±0.0013 0.0101±0.0023

timeGAN with 3 Discs 0.095 ±0.0017 0.089±0.0021
cwt-GAN 0.0022±0.0015 0.0197±0.0003

cwt-TriGAN 0.027 ±0.0019 0.0022±0.0023

Table 5.4: Model performance evaluation comparison for Unilever datasets, **Where Ts

represents the forecasting time steps**

Table 5.4 compares the MAE of the Unilever dataset when applied with the 8 models using
forecasting time steps of 5 and 21 trading days. It can be seen that for the ARIMA model,
the 5-day forecasting time steps outperformed the 21-day forecast time steps with an MAE
of 0.0268 and 0.0940 respectively. For the Garch model, there were no differences between
the two forecasting time steps, where each of them achieved an MAE of 0.2352. Also, for
the LSTM model, the 21-day forecast time steps model achieved superior results than the
5-day forecast time steps, with the 21-day forecast time steps achieving an MAE of 0.0444
compared to the 5-day forecasting steps, which obtained an MAE of 0.0467. However, for
the RCGAN model, the 21-day forecast time steps outperformed the 5-day forecast time
steps, which had MAE of 0.1849 and 0.2447 respectively. The 21-day forecast time steps for
the timeGAN model achieved an MAE of 0.0101, which was a higher performance compared
to the 5-day forecast time steps of the same model with an MAE of 0.0106. Furthermore,
the timeGAN with 3 Discriminator model with a 21-day forecast time steps achieved an
MAE of 0.089 which was better than the MAE of the same model using a forecast time
steps of 5 days, which had an MAE of 0.095. For the cwt-GAN, the 5-day forecast time
steps achieved an MAE of 0.0022 while that of the 21-day forecast time steps was 0.0197.
Finally, the MAE of our proposed cwt-TriGAN was 0.027 for the forecast time steps of 5
days compared to that of the forecast time steps of 21 days, which had an MAE of 0.0022.

Looking at the same table 5.4 and comparing the performance of each model with the
other for each forecast time step, it can be observed that the MAE of 0.027 obtained by
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our proposed cwt-TriGAN, which was 771.1 % less than the MAE of 0.2352 obtained from
the worst performing model known as the GARCH model using the forecast time steps of 5
trading days. The MAE of 0.0022 obtained by the cwt-GAN model compared to the MAE
of 0.027 achieved by the cwt-TriGAN shows that the use of the triple Discriminator was not
effective in improving the model’s performance. Similarly, comparing the timeGAN and
timeGAN with 3 discriminators models shows that the timeGAN with 3 Discriminators
achievement of an MAE of 0.095 as compared to the MAE of 0.0106 for the timeGAN
shows the effectiveness of the triple discriminators. Therefore, this signifies that the use of
the Triple Discriminator was effective in improving the model’s performance. Comparing
the MAE of the timeGAN model with that of cwt-GAN and the MAE of timeGAN and
that of the cwt-TriGAN model indicates how effective the application of the continuous
wavelet transform was. The two models with CWT outperformed their corresponding
models without CWT, respectively. The results obtained for the use of a 21-day forecast
time steps can also be seen in the same table, where it can be observed that cwt-TriGAN
obtained the best performance among all other models with an MAE of 0.0022.

Model
MAE of Amazon

Ts= 5 Ts=21
ARIMA 0.0376 ±0.0002 0.1262 ±0.0007
GARCH 0.3150±0.0015 0.3150 ±0.0021
LSTM 0.1057±0.0012 0.1107±0.0003

RCGAN 0.1491±0.0022 0.1312±0.0004
timeGAN 0.1184±0.00 0.1272±0.00

timeGAN with 3 Discs 0.1186 ±0.00 0.122±0.00
cwtGAN 0.0497±0.0013 0.0358±0.0021

cwt-TriGAN 0.0372±0.0011 0.00574±0.0020

Table 5.5: model performance evaluation comparison for Amazon datasets, **Where Ts

represents the forecast time steps**

Table 5.5 compares the MAE of the Amazon dataset when applied with the 8 models using
forecasting time steps of 5 and 21 trading days. It can be seen that for the ARIMA model,
the 5-day forecasting time steps outperformed the 21-day forecast time steps with an MAE
of 0.0376 and 0.1262 respectively. For the Garch model, there were no differences between
the two forecasting time steps, where each of them achieved an MAE of 0.3150. For the
LSTM model, the 5-day forecast time steps model achieved superior results than the 21-
day forecast time steps, with the 5-day forecast time steps achieving an MAE of 0.1057
compared to the 21-day forecasting steps, which obtained an MAE of 0.1107. However, for
the RCGAN model, the 21-day forecast time steps outperformed the 5-day forecast time
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steps, which had MAE of 0.1312 and 0.1491 respectively. The 5-day forecast time steps for
the timeGAN model achieved an MAE of 0.1184, which was a higher performance compared
to the 21-day forecast time steps of the same model with an MAE of 0.1272. Furthermore,
the timeGAN with 3 Discriminator model with a 5-day forecast time steps achieved an
MAE of 0.1186 which was better than the MAE of the same model using a forecast time
steps of 21 days, which achieved an MAE of 0.122. Similarly, for the cwt-GAN, the 5-day
forecast time steps achieved an MAE of 0.0497 while that of the 21-day forecast time steps
was 0.0358. Finally, the MAE of our proposed cwt-TriGAN was 0.0372 for the forecast
time steps of 5 days compared to that of the forecast time steps of 21 days, which had an
MAE of 0.00574.

Looking at the same table 5.5 and comparing the performance of each model with the
other, it can be observed that for each forecast time step, the MAE of 0.0372 obtained by
our proposed cwt-TriGAN was 746.8% smaller than the MAE of 0.3150 obtained from the
worst performing model, called the GARCH model, using the forecast time steps of 5 trading
days. The MAE of 0.0497 obtained by the cwt-GAN model compared to the MAE of 0.0372
achieved by the cwt-TriGAN shows that the use of the Triple Discriminator was effective in
improving the model performance. However, comparing the timeGAN and timeGAN with
3 Discriminator models shows that the timeGAN with 3 Discriminators attainment of an
MAE of 0.1186 as compared to the MAE of 0.1184 for the timeGAN, which meant that the
use of the Triple discriminators was not effective in improving the model’s performance.
Comparison of the MAE of the timeGAN model with that of cwt-GAN and the MAE of
timeGAN with that of the cwt-TriGAN model indicates how effective the application of the
continuous wavelet transform was. The two models with the CWT component outperformed
their corresponding models without CWT, respectively. The results obtained for the use of
the 21-day forecast time steps can also be seen in the same table, where it can be observed
that cwt-TriGAN obtained the best performance among all other models with an MAE of
0.00574.

Table 5.6 compares the MAE of the S&P 500 datasets when applied to the 8 models using
forecast time steps of 5 and 21 trading days. It can be seen that for the ARIMA model,
the 5-day forecasting time steps outperformed the 21-day forecast time steps with an MAE
of 0.0268 and 0.1391 respectively. For the Garch model, there were no differences between
the two forecasting time steps, where each of them achieved an MAE of 0.2159. For the
LSTM model, the 5-day forecast time steps model achieved superior results than the 21-
day forecast time steps, with the 5-day forecast time steps achieving an MAE of 0.0331
compared to the 21-day forecasting steps, which obtained an MAE of 0.0343.
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Model
MAE of S & P 500
Ts= 5 Ts=21

ARIMA 0.0268 ±0.0001 0.1391 ±0.0014
GARCH 0.2159±0.0011 0.2159 ±0.0021
LSTM 0.0331±0.0008 0.0343±0.0032

RCGAN 0.1741±0.0032 0.1475±0.0010
timeGAN 0.0792±0.0032 0.0768±0.0043

timeGAN with 3 Discs 0.0779 ±0.0056 0.111±0.0012
cwtGAN 0.0454±0.0014 0.018±0.0020

cwt-TriGAN 0.0453±0.0004 0.0272±0.0002

Table 5.6: model performance evaluation comparison for S&P 500 datasets, **Where Ts

represents the forecast time steps**

However, for the RCGAN model, the 21-day forecast time steps outperformed the 5-day
forecast time steps, which had MAE of 0.1741 and 0.1475 respectively. The 5-day forecast
time steps for the timeGAN model achieved an MAE of 0.0792, which was a lower per-
formance compared to the 21-day forecast time steps of the same model with an MAE of
0.0768. Furthermore, the timeGAN with 3 Discriminator model using the 5-day forecast
time steps achieved an MAE of 0.0779 which was better than the MAE of the same model
using a forecast time steps of 21 days, which achieved an MAE of 0.111. Similarly, for the
cwt-GAN, the 21-day forecast time steps achieved an MAE of 0.018 while that of the 5-day
forecast time steps was 0.0454. Finally, the MAE of our proposed cwt-TriGAN was 0.0453
for the forecast time steps of 5 days compared to that of the forecast time steps of 21 days,
which had an MAE of 0.0272.

Looking at the same table 5.6 and comparing the performance of each model with the
other, it can be observed that for each forecast time step, the MAE of 0.0453 obtained by
our proposed cwt-TriGAN was 376.6% smaller than the MAE of 0.2159 obtained from the
model that performed the worst, called the GARCH model using the forecast time steps
of 5 trading days. The MAE of 0.0454 obtained by the cwt-GAN model compared to the
MAE of 0.0453 achieved by the cwt-TriGAN shows that the use of the Triple Discriminator
was effective in improving the model performance. However, comparing the timeGAN and
timeGAN with 3 Discriminator models shows that the timeGAN with 3 discriminators
achieves an MAE of 0.0779 as compared to the MAE of 0.0792 for the timeGAN means
that the use of the Triple discriminators was effective in improving the model’s performance.
Comparing the MAE of the timeGAN model with that of cwt-GAN and the MAE of
timeGAN with that of the cwt-TriGAN model indicates how effective the application of the

124



5.4. EXPERIMENTS Page 125

continuous wavelet transform was. All two models with the CWT component outperformed
their corresponding models without CWT, respectively. The results obtained for the use of
the 21-day forecast time steps can also be seen in the same table, where it can be observed
that cwt-GAN obtained the best performance among all other models with an MAE of
0.018.

Model
MAE of FTSE All

Ts= 5 Ts=21
ARIMA 0.0239 ±0.0024 0.1167 ±0.0003
GARCH 0.2039±0.0023 0.2039 ±0.0014
LSTM 0.02571±0.0021 0.0270±0.0023

RCGAN 0.11861±0.0045 0.0913±0.0002
timeGAN 0.103±0.0023 0.1385±0.0012

timeGAN with 3 Discs 0.089 ±0.0001 0.0894±0.0003
cwtGAN 0.027±0.0003 0.0243±0.0025

cwt-TriGAN 0.0176±0.0014 0.0164±0.0021

Table 5.7: Model performance evaluation comparison for FTSE All datasets, **Where Ts

represents the forecast time steps**

Table 5.7 compares the MAE of the FTSE All datasets when applied with the 8 models
using forecast time steps of 5 and 21 trading days. It can be seen that for the ARIMA
model, the 5-day forecasting time steps outperformed the 21-day forecast time steps with
an MAE of 0.0239 and 0.1167 respectively. For the Garch model, there were no differences
between the two forecasting time steps, where each of them achieved an MAE of 0.2039. For
the LSTM model, the 5-day forecast time steps model achieved superior results than the
21-day forecast time steps, with the 5-day forecast time steps achieving an MAE of 0.02571
compared to the 21-day forecast time steps, which obtained an MAE of 0.0270. However,
for the RCGAN model, the 21-day forecast time steps outperformed the 5-day forecast time
steps, which had MAE of 0.0913 and 0.11861 respectively. The 5-day forecast time steps for
the timeGAN model achieved an MAE of 0.103, which was a higher performance compared
to the 21-day forecast time steps of the same model with an MAE of 0.1385. Furthermore,
the timeGAN with 3 Discriminator model using the 5-day forecast time steps achieved an
MAE of 0.0890 which was better than the MAE of the same model using a forecast time
steps of 21 days, which achieved an MAE of 0.0894. Similarly, for the cwt-GAN, the 21-day
forecast time steps achieved an MAE of 0.0243 while that of the 5-day forecast time steps
was 0.027. Finally, the MAE of our proposed cwt-TriGAN was 0.0176 for the forecast time
steps of 5 days compared to that of the forecast time steps of 21 days, which had an MAE
of 0.0164.
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Looking at the same table 5.7 and comparing the performance of each model with the
other, it can be observed that for each forecast time step, the MAE of 0.0176 obtained
by our proposed cwt-TriGAN was 1058.5% smaller in value than the MAE of 0.2039 ob-
tained from the model with the worst performance, known as the GARCH model using
the forecast time steps of 5 trading days. The MAE of 0.027 obtained by the cwt-GAN
model compared to the MAE of 0.0176 achieved by the cwt-TriGAN shows that the use
of the Triple Discriminator was effective in improving the model performance. However,
comparing the timeGAN and timeGAN with Triple Discriminator models shows that the
timeGAN with Triple discriminators achieves an MAE of 0.089 as compared to the MAE
of 0.103 for the timeGAN means that the use of the Triple discriminators was effective
in improving the model’s performance. Comparison of the MAE of the timeGAN model
with that of cwt-GAN and the MAE of timeGAN with that of the cwt-TriGAN model
indicates how effective the application of the continuous wavelet transform was. All the
two models with the CWT component outperformed their corresponding models without
CWT, respectively. The results obtained for the use of the 21-day forecast time steps can
also be seen in the same table, where it can be observed that cwt-TriGAN obtained the
best performance among all other models with an MAE of 0.0164.

Model
MAE of GHS/USD FX
Ts= 5 Ts=21

ARIMA 0.3680 ±0.0012 1.3645 ±0.0023
GARCH 1.968±0.0043 1.968 ±0.0017
LSTM 0.7946±0.0028 0.8601±0.0102

RCGAN 0.2699±0.0004 0.0172±0.0029
timeGAN 0.0206±0.0072 0.0216±0.0061

timeGAN with 3 Discs 0.0224 ±0.0017 0.0203±0.0024
cwtGAN 0.0047±0.0062 0.0046±0.0009

cwt-TriGAN 0.0046±0.0045 0.0039±0.0021

Table 5.8: model performance evaluation comparison for Ghana Cedis/US Dollar FX rate
datasets, **Where Ts represents the forecasting time steps**

Table 5.8 compares the MAE of the Ghana Cedis/US Dollar FX datasets when applied
with the 8 models using forecast time steps of 5 and 21 trading days. It can be seen that
for the ARIMA model, the 5-day forecasting time steps outperformed the 21-day forecast
time steps with an MAE of 0.3680 and 1.3645 respectively. For the Garch model, there
were no differences between the two forecasting time steps, where each of them achieved an
MAE of 1.968. For the LSTM model, the 5-day forecast time steps model achieved superior
results than the 21-day forecast time steps, with the 5-day forecast time steps achieving
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an MAE of 0.7946 compared to the 21-day forecasting steps, which obtained an MAE of
0.8601. However, for the RCGAN model, the 21-day forecast time steps outperformed the
5-day forecast time steps, which had MAE of 0.0172 and 0.2699 respectively. The 5-day
forecast time steps for the timeGAN model achieved an MAE of 0.0206, which was a higher
performance compared to the 21-day forecast time steps of the same model with an MAE of
0.0216. Furthermore, the timeGAN with 3 Discriminator model using the 21-day forecast
time steps achieved an MAE of 0.0203 which was better than the MAE of the same model
using a forecast time steps of 5 days, which achieved an MAE of 0.0224. Likewise, for
the cwt-GAN, the 21-day forecast time steps achieved an MAE of 0.0046 while that of the
5-day forecast time steps was 0.0047. Finally, the MAE of our proposed cwt-TriGAN was
0.0046 for the forecast time steps of 5 days compared to that of the forecast time steps of
21 days, which had an MAE of 0.0039.

Looking at the same table 5.8 and comparing the performance of each model with the
other, it can be observed that for each forecast time step, the MAE of 0.0046 obtained by
our proposed cwt-TriGAN was 42682.6% smaller in value than the MAE of 1.968 obtained
from the model with the worst performance, known as the GARCH model using the forecast
time steps of 5 trading days. The MAE of 0.0047 obtained by the cwt-GAN model com-
pared to the MAE of 0.0046 achieved by the cwt-TriGAN shows that the use of the Triple
Discriminator was effective in improving the model performance. However, comparing the
timeGAN and timeGAN with three Discriminator models shows that the timeGAN with
three discriminators achieved an MAE of 0.0224 as compared to the MAE of 0.0206 for the
timeGAN means that the use of the Triple discriminators failed to show its effectiveness
in improving the model’s performance. Comparison of the MAE of the timeGAN model
with that of cwt-GAN and the MAE of timeGAN with that of the cwt-TriGAN model
indicates how effective the application of the continuous wavelet transform was. All the
two models with the CWT component outperformed their corresponding models without
CWT, respectively. The results obtained for the use of the 21-day forecast time steps can
also be seen in the same table, where it can be observed that cwt-TriGAN obtained the
best performance among all other models with an MAE of 0.0039.

Table 5.9 compares the MAE of the Pounds/ US dollar FX rate datasets when applied with
the 8 models using forecast time steps of 5 and 21 trading days. It can be seen that for
the ARIMA model, the 5-day forecasting time steps outperformed the 21-day forecast time
steps with an MAE of 0.0131 and 0.0432 respectively. For the Garch model, there were no
differences between the two forecasting time steps, where each of them achieved an MAE
of 0.1147.
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Model
MAE of GBP/USD
Ts= 5 Ts=21

ARIMA 0.0131 ±0.0027 0.0432 ±0.0035
GARCH 0.1147±0.0029 0.1147 ±0.0062
LSTM 0.114±0.0011 0.1141±0.0024

RCGAN 0.1261±0.0003 0.0748±0.0021
timeGAN 0.0784±0.0040 0.0972±0.0037

timeGAN with 3 Discs 0.0771 ±0.0016 0.0757±0.0009
cwtGAN 0.0704±0.0014 0.0253±0.0032

cwt-TriGAN 0.0703±0.0032 0.0612±0.0045

Table 5.9: Model performance evaluation comparison for Pounds/ US dollar FX rate
datasets, **Where Ts represents the forecasting time steps**

For the LSTM model, the 5-day forecast time steps model and the 21-day forecast time
steps both achieved an MAE of 0.114. However, for the RCGAN model, the 21-day forecast
time steps outperformed the 5-day forecast time steps, which had MAE of 0.0748 and 0.1261
respectively. The 5-day forecast time steps for the timeGAN model achieved an MAE of
0.0784, which was a higher performance compared to the 21-day forecast time steps of the
same model with an MAE of 0.0972. Furthermore, the timeGAN with 3 Discriminator
model using the 21-day forecast time steps achieved an MAE of 0.0757 which was better
than the MAE of the same model using a forecast time steps of 5 days, which achieved
an MAE of 0.0771. Similarly, for the cwt-GAN, the 5-day forecast time steps achieved an
MAE of 0.00704 while that of the 21-day forecast time steps was 0.0253. Finally, the MAE
of our proposed cwt-TriGAN was 0.0703 for the forecast time steps of 5 days compared to
that of the forecast time steps of 21 days, which had an MAE of 0.0612.

Looking at the same table 5.9 and comparing the performance of each model with the other,
it can be observed that for each forecast time step, the MAE of 0.0703 obtained by our
proposed cwt-TriGAN was 63.16% smaller in value than the MAE of 0.1147 obtained from
the model with the worst performance, known as the GARCH model using the forecast
time steps of 5 trading days. The MAE of 0.00704 obtained by the cwt-GAN model com-
pared to the MAE of 0.0703 achieved by the cwt-TriGAN shows that the use of the Triple
Discriminator was slightly effective in improving the model performance. Likewise, com-
paring the timeGAN and timeGAN with 3 Discriminator models shows that the timeGAN
with 3 discriminators achieved an MAE of 0.0771 as compared to the MAE of 0.0784 for
the timeGAN means that the use of the Triple discriminators was effective in improving
the model’s performance. Comparison of the MAE of the timeGAN model with that of
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cwt-GAN and the MAE of timeGAN with that of the cwt-TriGAN model indicates how
effective the application of the continuous wavelet transform was. All the two models with
the CWT component outperformed their corresponding models without CWT, respectively.
The results obtained for the use of the 21-day forecast time steps can also be seen in the
same table, where it can be observed that cwt-GAN obtained the best performance among
all other models with an MAE of 0.0253.

Model
MAE of Crude Oil
Ts= 5 Ts=21

ARIMA 0.0626 ±0.0017 0.1843 ±0.0034
GARCH 0.459±0.0008 0.459 ±0.0042
LSTM 0.2301±0.0075 0.2345±0.0061

RCGAN 0.1414±0.0015 0.0562±0.0022
timeGAN 0.0991±0.0017 0.0762±0.0038

timeGAN with 3 Discs 0.0628 ±0.0014 0.0666±0.0053
cwtGAN 0.0252±0.0021 0.0238±0.0017

cwt-TriGAN 0.0467±0.0010 0.0402±0.0021

Table 5.10: Model performance evaluation comparison for Crude Oil datasets, **Where Ts

represents the forecasting time steps**

Table 5.10 compares the MAE of the crude oil data sets when applied to the 8 models
using forecast time steps of 5 and 21 trading days. It can be seen that for the ARIMA
model, the 5-day forecasting time steps outperformed the 21-day forecast time steps with
an MAE of 0.0626 and 0.1843 respectively. For the Garch model, there were no differences
between the two forecasting time steps, where each of them achieved an MAE of 0.459. For
the LSTM model, the 5-day forecast time steps model achieved superior results than the
21-day forecast time steps, with the 5-day forecast time steps achieving an MAE of 0.2301
compared to the 21-day forecasting steps, which obtained an MAE of 0.2345. However, for
the RCGAN model, the 21-day forecast time steps outperformed the 5-day forecast time
steps, which had MAE of 0.0562 and 0.1414 respectively. The 21-day forecast time steps for
the timeGAN model achieved an MAE of 0.0762, which was a higher performance compared
to the 5-day forecast time steps of the same model with an MAE of 0.0991. Furthermore,
the timeGAN with 3 Discriminator model using the 5-day forecast time steps achieved an
MAE of 0.0628 which was better than the MAE of the same model using a forecast time
steps of 21 days, which achieved an MAE of 0.0666. Similarly, for the cwt-GAN, the 21-day
forecast time steps achieved an MAE of 0.0238 while that of the 5-day forecast time steps
was 0.0252. Finally, the MAE of our proposed cwt-TriGAN was 0.0467 for the forecast
time steps of 5 days compared to that of the forecast time steps of 21 days, which had an
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MAE of 0.0402.

Looking at the same table 5.10 and comparing the performance of each model with the
other, it can be observed that for each forecast time step, the MAE of 0.0467 obtained by
our proposed cwt-TriGAN was 882.87% smaller in value than the MAE of 0.459 obtained
from the model with the worst performance, called the GARCH model using the forecast
time steps of 5 trading days. The MAE of 0.0252 obtained by the cwt-GAN model com-
pared to the MAE of 0.0467 achieved by the cwt-TriGAN shows that the use of the Triple
Discriminator was not effective in improving the model performance. However, comparing
the timeGAN and timeGAN with three Discriminator models shows that the timeGAN
with three discriminators achieves an MAE of 0.0628 as compared to the MAE of 0.0991
for the timeGAN demonstrates that the use of the Triple discriminators was effective in
improving the model’s performance. Comparison of the MAE of the timeGAN model with
that of cwt-GAN and the MAE of timeGAN with that of the cwt-TriGAN model indicates
how effective the application of the continuous wavelet transform was. All the two models
with the CWT component outperformed their corresponding models without CWT, respec-
tively. The results obtained for the use of the 21-day forecast time steps can also be seen
in the same table, where it can be observed that cwt-GAN obtained the best performance
among all other models with an MAE of 0.0238.

Significance Test of models’ MAE

The tables 5.11 and 5.12 contain the output of the pairwise analysis of all the forecasting
models using the t-test results for the data with time-steps of 5 days and 21 days respec-
tively. It compares the mean absolute error (MAE) for different time-series forecast models
using a 5-day and 21-days time steps respectfully. The two tables include the comparison
of one model with the other, t-statistics, p-values, and a column to indicate whether the
null hypothesis of equal means is rejected or not using the significance level of 0.05.

5.11, it can be observed that there was no significant difference in Mean Absolute Error
(MAE) between cwt-TriGAN and cwtGAN models where the t-statistics was 0.0452 and
p-value was 0.9645. This suggests that the complexity of cwt-TriGAN, where three discrim-
inators were used did not result in a statistically significant improvement in the forecast
accuracy of volatility compared to that of the cwtGAN. On the other hand, timeGAN
with 3 discriminators was found to be significantly different from the cwt-TriGAN, where
it had a t-statistic of -4.5323 and p-value of 0.0005. This suggests that the addition of cwt
component in the cwt-TriGAN enabled it to statistically perform better.
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Comparison t-Statistic p-Value Reject Null
cwtTriGAN vs cwtGAN 0.0452 0.9645 False
cwtTriGAN vs timeGAN with 3 Discs -4.5323 0.0005 True
cwtTriGAN vs timeGAN -3.0396 0.0119 True
cwtTriGAN vs RCGAN -6.9474 0.0000 True
cwtTriGAN vs LSTM -1.6205 0.1433 False
cwtTriGAN vs GARCH -2.2788 0.0521 False
cwtTriGAN vs ARIMA -1.0266 0.3329 False
cwtGAN vs timeGAN with 3 Discs -4.1614 0.0008 True
cwtGAN vs timeGAN -2.9411 0.0125 True
cwtGAN vs RCGAN -6.7179 0.0000 True
cwtGAN vs LSTM -1.6230 0.1424 False
cwtGAN vs GARCH -2.2804 0.0519 False
cwtGAN vs ARIMA -1.0293 0.3307 False
timeGAN with 3 Discs vs timeGAN -0.1002 0.9217 False
timeGAN with 3 Discs vs RCGAN -3.9278 0.0019 True
timeGAN with 3 Discs vs LSTM -0.9652 0.3620 False
timeGAN with 3 Discs vs GARCH -1.9979 0.0806 False
timeGAN with 3 Discs vs ARIMA 0.3703 0.7196 False
timeGAN vs RCGAN -3.1776 0.0059 True
timeGAN vs LSTM -0.9282 0.3784 False
timeGAN vs GARCH -1.9824 0.0822 False
timeGAN vs ARIMA 0.3962 0.6994 False
RCGAN vs LSTM 0.0181 0.9860 False
RCGAN vs GARCH -1.5698 0.1544 False
RCGAN vs ARIMA 2.2873 0.0419 True
LSTM vs GARCH -1.4571 0.1735 False
LSTM vs ARIMA 1.0430 0.3189 False
GARCH vs ARIMA 2.0367 0.0735 False

Table 5.11: Comparison of the MAE Pairwise t-test results for the data rising a time-step
of 5 days
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The cwt-TriGAN architecture was able to provide a considerable advantage over that of
RCGAN in the forcasting of the volatility time series with t-statistics of -6.9474 and p-
value of 0.0000. Likewise, The cwtGAN model was found to be statistically more accurate
in its prediction When compared to models such as timeGAN with 3 discs that produced
a t-statistics of -4.1614 and p-value of 0.0008 and that of the RCGAN with t-statistics of
-6.7179 and p-value of 0.0000. Also the addition of triple discriminators to the timeGAN
model did not necessarily improve forecasting accuracy, as there was no significant difference
in the MAE when the comparison was made between timeGAN with 3 discs and timeGAN
where the t-statistics obtained was -0.1002 with p-value of 0.9217. Finally, the performance
of the RCGAN model was found to have significantly outperform the ARIMA model when
the forecasting horizon of 5 -days was used since a p-value of 0.0419 was obtained for this
pairwise comparison.

As can be observed in table 5.12, a pairwise comparison of different forecasting models
to determine their accuracy in predicting volatility has been carried out using the t-test.
Given the p-value of 0.307, the results indicate that there is no statistically significance
difference in the forecasting accuracy of cwtTriGAN and cwtGAN models for a data with
21-day forecasting time horizon. However, comparison of the cwt-TriGAN model, timeGAN
with 3 Discriminators, timeGAN and RCGAN models, showed that the cwt-TriGAN model
had a statistically significant higher Mean Absolute Error (MAE) than all the others. This
suggests that the cwtTriGAN’s performance exceeds that of the timeGAN with 3 discs,
timeGAN and the RCGAN models.

Similarly, the cwtGAN model also showed statistically significant MAE performance over
models such as timeGAN with 3 Discs, timeGAN, and RCGAN. This reinforces the con-
clusion that our proposed cwt-based models are more capable of capturing the volatility’s
complex distribution over a 21-day time-step when used for forcasting. However, within
the same model family, the timeGAN with 3 Discs did not show a statistically significant
improvement over the timeGAN model, meaning the inclusion of the triple discrimina-
tors with the TimeGAN did not translate into statistically significant improvement in the
performance when the data with forecasting time horizon of 21 days was used.

Finally, the traditional statistical models such GARCH and ARIMA did not show significant
differences in MAE when compared with LSTM and RCGAN models. However, the t-test
between GARCH and ARIMA indicates no statistically significant difference between the
two models. This suggests similar performance levels for these traditional models.
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Comparison t-Statistic p-Value Reject Null
cwtTriGAN vs cwtGAN -0.6410 0.5307 False
cwtTriGAN vs timeGAN with 3 Discs -5.1960 0.0002 True
cwtTriGAN vs timeGAN -3.8039 0.0031 True
cwtTriGAN vs RCGAN -4.3442 0.0014 True
cwtTriGAN vs LSTM -1.6941 0.1283 False
cwtTriGAN vs GARCH -2.3232 0.0486 True
cwtTriGAN vs ARIMA -1.7687 0.1147 False
cwtGAN vs timeGAN with 3 Discs -4.8531 0.0003 True
cwtGAN vs timeGAN -3.5189 0.0054 True
cwtGAN vs RCGAN -4.0776 0.0023 True
cwtGAN vs LSTM -1.6312 0.1412 False
cwtGAN vs GARCH -2.2939 0.0509 False
cwtGAN vs ARIMA -1.7282 0.1221 False
timeGAN with 3 Discs vs timeGAN -0.0810 0.9366 False
timeGAN with 3 Discs vs RCGAN -0.7461 0.4686 False
timeGAN with 3 Discs vs LSTM -0.9682 0.3605 False
timeGAN with 3 Discs vs GARCH -1.9859 0.0821 False
timeGAN with 3 Discs vs ARIMA -1.3029 0.2285 False
timeGAN vs RCGAN -0.5720 0.5753 False
timeGAN vs LSTM -0.9423 0.3720 False
timeGAN vs GARCH -1.9739 0.0833 False
timeGAN vs ARIMA -1.2868 0.2332 False
RCGAN vs LSTM -0.7925 0.4494 False
RCGAN vs GARCH -1.9035 0.0929 False
RCGAN vs ARIMA -1.1899 0.2672 False
LSTM vs GARCH -1.3941 0.1901 False
LSTM vs ARIMA -0.5737 0.5755 False
GARCH vs ARIMA 0.8457 0.4114 False

Table 5.12: comparison of the MAE Pairwise t-test results for the data with time-step of
21 days
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5.5 Summary

This chapter has explored the use of the continuous wavelet transform to improve the fore-
casting and generation ability of a volatility time series, which is noisy and non-stationary
in nature. A comprehensive set of experiments has been conducted to evaluate the perfor-
mance of our proposed cwt-TriGAN model for financial time series forecasting.

It has been established that the continuous wavelet transform can be beneficial when used
as a data preprocessing technique when applied on a cwt-TriGAN. The proposed technique
compared to other techniques such as ARIMA, GARCH, LSTM, RCGAN and timeGAN
had superior performances in the nine different financial data sets used in the experiment
when evaluated with the root mean square error (RMSE) and mean absolute error (MAE)
metrics. The ability of our proposed cwt-TriGAN model to effectively capture volatility
patterns and generate accurate predictions positions it as a valuable tool for researchers,
financial analysts, traders, and decision-makers looking for reliable information on market
trends. While the cwt-TriGAN is innovative with the ability to achieve superior results for
volatility forecasting, it has some limitations just like any complex machine learning model.
Here are some of the main limitations of our proposed model:

• The architecture of cwt-TriGAN is quite complex, which can result in difficulty in
implementation with the requirement of significant computational resources which
can limit its usage.

• Risk of overfitting: Because of the complex nature of the model, it might be prone to
overfitting, especially when dealing with limited or noisy financial datasets.

• Since the proposed model contains multiple components with their own individual
parameters, the fine-tuning of these parameters for optimal performance can be chal-
lenging and time-consuming.

• Lack of Interpretability: Like many deep learning models, our proposed cwt-TriGAN
may suffer from a lack of interpretability or transparency in its decision-making pro-
cess. This ”black box” nature of it can be a significant drawback, especially in the
area of finance where understanding the reasoning behind predictions is crucial for
trust and regulatory compliance.

Having established techniques for accurate volatility forecasting, After successfully develop-
ing methods for forecasting volatility with accuracy, we will now explore how these insights
can be leveraged for optimising investment portfolios in the next chapter using CapsNet-
based reinforcement learning.
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Chapter 6

CapsNet-based Reinforcement
Learning for Portfolio Optimisation

6.1 Introduction

The previous chapters provided a foundation in predicting credit risks and market volatil-
ity. This chapter integrates these elements into a comprehensive framework for portfolio
optimisation using reinforcement learning. Portfolio optimisation is generally the process
of allocating assets in a portfolio to maximise the expected return on investment while
at the same time minimising financial risk (Soleymani and Paquet, 2020). It involves the
continuous reallocation of assets in a portfolio through the attribution of weights to each
asset class, such as bonds, stocks, or derivatives, to optimise a preferred performance met-
ric. The Sharpe ratio is an indicator used to measure the risk-adjusted performance of an
investment over time and helps investors measure the returns on their investments relative
to the risks (Sharpe, 1964, 1994). It is the average return earned by a portfolio in excess of
the risk-free rate for every unit of volatility or total risk taken. Volatility and correlation
associated with the various assets must be considered when managing a portfolio (Soley-
mani and Paquet, 2020). This work involves the application of a simple deterministic policy
gradient as a reinforcement learning algorithm to asset allocation problems to observe and
independently learn from the market history without any prior knowledge of the financial
markets. It does not directly predict the price of any single asset but rather predicts the
optimal combination of weights of assets that yield the highest profit.

Researchers have investigated deep learning techniques that have proven to be successful
in computer vision, Natural Language Processing (NLP), and board games in the dynamic
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financial markets domain (Yashaswi, 2021). Reinforcement learning (RL) is a branch of
artificial intelligence that focuses on how agents take action in a dynamic environment to
maximise a cumulative reward (Silver et al., 2014). The modelling capabilities of rein-
forcement learning (RL) can be utilised in domains such as finance (Dixon et al., 2020),
where it has been used for portfolio optimisation but not as extensively as algorithmic
trading; which refers to the use of a computerised system to automate one or more stages
of the trading process, such as data analysis, the generation of trading signals (buy or sell
recommendations) and the execution of trades (Nuti et al., 2011).

In recent years, advances have been made in the use of deep reinforcement learning to
optimise portfolios with excellent results (Almahdi and Yang, 2017; Jiang et al., 2017; Liang
et al., 2018; Yashaswi, 2021). Most of the current work on the use of deep reinforcement
learning for portfolio optimisation has been inspired by the work of researchers such as
(Almahdi and Yang, 2017; Jiang et al., 2017; Liang et al., 2018; Wang and Yang, 2019;
Soleymani and Paquet, 2020), who leveraged the use of deep learning (LeCun et al., 2015)
for continuous action space and utilised a model-free RL approach to model the dynamics
of the market through an exploration strategy (Yashaswi, 2021).

Convolutional Neural Networks (CNN) (LeCun et al., 2015) consist of convolution layers,
pooling layers, and various fully connected layers. CNN perform convolutional operations
on input data and features using a set of kernels that result in various feature maps in
the convolutional layer. In general, the pooling layer follows a convolutional layer, which
is utilised to reduce the dimensions of feature maps and network parameters. Capsules
Networks (CapsNet) (Hinton et al., 2011; Sabour et al., 2017) on the other hand, involve
the grouping of neurons together to form capsules, where each neuron’s output represents
a different property of the same feature space. Training and inferencing are done on the
group (capsules) as a single unit. The output of convolutional neural networks serves as
the input of a capsule in CapsNet.

The selection of a reward function in reinforcement learning can significantly affect the
performance of an RL algorithm, but the determination of a reward signal has been shown
to be the most challenging part of the design of a reinforcement learning problem. While
Jiang et al. (2017) and other researchers utilised the log-returns as the reward function
to be maximized, their approach did not take into account the risk-related parameters in
the formulation of the reward function. This approach can cause an RL algorithm to take
riskier positions which could lead to a loss in portfolio value and eventually create downside
opportunities. The maximisation of the expected cumulative reward over time, referred to
as the reward hypothesis, is the main driving force that determines the success of an RL
algorithm. Risk-adjusted reward functions such as the Sharpe Ratio (Sharpe, 1964, 1994)
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have been shown to be unsuitable candidates to be used as objective functions that are
required to be maximized for adaptive episodic learning (Ziemba, 2005). This is because
it is not additive in nature and cannot be used in Q-learning and vanilla policy gradient
methods.

Experience Replay (Lin, 1992) has been shown to play a significant role in deep reinforce-
ment learning since it enables the RL algorithm to memorise and re-use past experiences.
Experience replay offers great stability to the training process of an RL algorithm and leads
to improved sample efficiency by breaking the temporal correlations between the samples
(Zha et al., 2019). Most of the experience replay techniques in use have been applied to
off-policy RL algorithms which usually use a uniform sampling strategy to replay past ex-
periences, including Jiang et al. (2017) who utilized it on a Deterministic Policy Gradient
(DPG) algorithm for portfolio optimization. Existing approaches used a full exploiting
technique as a reward function and utilised the explicit average of periodic logarithmic re-
turns to calculate the set of portfolio weights. This leads to extreme weights, which often
alternate between 0 and 1 in a short space of time. This implies network instability and
results in the over-concentration of resources in only a small number of assets since it does
not factor in the volatility or riskiness of the portfolio; hence, they are not penalised for
taking on high risk. Although the approaches used by Jiang et al. (2017); Almahdi and
Yang (2017); Liang et al. (2018); Soleymani and Paquet (2020) factored in transaction cost
together with the application of the model-free RL algorithm made of single buffer memory,
their approach did not consider the instability and risk associated with the non-stationary
and noisy financial market environment.

Against this background, this chapter proposes a model-free simple Deterministic Policy
Gradient Algorithm together with a Capsule Network (CapsNet) used as a deep learning
architecture to learn and enforce investment policies that incorporate novel strategies that
lead to better and more stable portfolio optimisation outcomes. The network is trained
using gradient ascent through a dual online batch learning scheme where an exponential
distribution sampling strategy is employed for scenarios with Agents’ rewards greater than
or equal to rewards from a baseline model, while a geometric distribution sampling strategy
is used for instances where the agents’ rewards are greater than or equal to rewards from a
baseline model. It specifically involves an investigation of the use of reinforcement learning
to optimise the portfolio of assets through the maximisation of its discounted cumulative
Differential Sharpe Ratio and the exploration of their use in the learning of market patterns
to make a profit.

The Mean Reward-to-CVaR Ratio (Tong and Wu, 2014) which is a risk-adjusted reward
performance evaluation measure that uses the ratio of mean portfolio returns and the condi-
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tional Value at Risk (CVaR) to evaluate the performance of the proposed RL strategy, has
been used as part of the performance evaluation strategy. Additionally, the final reward-
to-VaR ratio (Alexander and Baptista, 2003a), which is also a risk-adjusted reward perfor-
mance metric and uses the ratio of the final portfolio returns and the Value at Risk (VaR)
to assess how well a model performs, was also used.

Our proposed techniques which serve as our main contributions for this chapter are:

• Multi-Memory Weight Reservoir (MMWR) training scheme using Capsules Neural
Network: This facilitates and improves the optimisation process of the portfolio
weights. It, therefore, helps in the sequential re-balancing of the portfolio throughout
the trading period using a continuous action space.

• The discounted cumulative reward function, referred to as a Markov Differential
Sharpe Ratio, provides stability and optimises the training process since it is based
on the discounted cumulative Differential Sharpe Ratio reward function.

To the best of the author’s knowledge, this is the first research work that leverages a
multi-memory approach and the maximisation of the Markov Differential Sharpe Ratio
derived from actual volatility and dynamic risk-free assets. It further integrates with a deep
CapsNet RL Algorithm framework in the portfolio optimisation domain, from which Mean
Portfolio value, Final Portfolio value, Sharpe Ratio, CVaR, VaR, Final Portfolio returns-
to-VaR ratio, and average portfolio returns-to-VaR ratio are used as portfolio evaluation
metrics to measure its effectiveness.

The rest of this chapter is organised as follows: The related work is provided in Section 6.2.
Section 6.3 covers the background information on Capsules Network and Reinforcement
Learning, including deep reinforcement learning and how it can be applied as a Markov
Decision Process. The underlying mathematical modelling associated with Portfolio man-
agement is provided in Section 6.4 as the Problem formulation section. Our proposed Deep
Reinforcement learning techniques using the Multi-Memory Weight Reservoir (MMWR)
and discounted cumulative reward function using the Markov Differential Sharpe Ratio
together and their architecture are introduced in Section 6.5. This is followed by our ex-
perimental setup and the results in section 6.6. The conclusion of this chapter is captured
in Section 6.7.
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6.2 Related Works

The application of deep Reinforcement learning models in Portfolio Optimisation has in-
creased exponentially over the past years because of their increased complexity. Prior to
this, most portfolio optimisation models were based on different versions of Modern Port-
folio Theory(MPT) (Markowitz, 1952). These approaches were not fit for purpose as they
were static in nature and dependent on linear computational methods. The dynamic ap-
proaches to overcome these issues, such as convex optimisation, concave optimisation, and
dynamic programming were inefficient and lacked the ability to capture market informa-
tion. This is because they required discrete action space-based models (Cai et al., 2013). A
variety of Deep Neural network structures combined with deep deterministic policy gradi-
ents to optimise cryptocurrency portfolios have been introduced (Jiang et al., 2017). This
work was extended by Ye et al. (2020) who incorporated different data sources, such as
news, to improve robustness against market uncertainty. There has been the existence of
deep machine learning-based techniques for financial trading, but most of these attempts
have been used to predict the movement of prices or trends (Heaton et al., 2016). There
exist some lapses in this approach because their performance depends on the degree of ac-
curacy of the prediction, and it is now evident that the prediction of future market prices is
difficult. Price predictions are not known to be market actions (Jiang et al., 2017), so the
ability to convert them into market actions requires an extra logical layer. RL algorithms
have been used to produce discrete trading signals in single assets and were not suitable for
multiple asset trading operations such as portfolio management (Moody and Saffell, 2001;
Dempster and Leemans, 2006; Deng et al., 2017). On the other hand, model-free and fully
machine learning techniques have been utilised as an algorithmic trading technique suitable
for portfolio management (Benhamou et al., 2021; Jiang et al., 2017).

A cumulative reward function that only maximises the average logarithmic accumulated
return R factoring the risk involved in a portfolio creation has been used (Jiang et al.,
2017). Moody et al. (1998) on the other hand, used the Differential Sharpe Ratio (Dt) as
the main objective function, but was used as an immediate reward that lacked the ability to
achieve optimality. A deep long–short-term-memory network has been trained using double
Q-learning to achieve positive gains in a bearish cryptocurrency market (Bu and Cho, 2018).
On the other hand, Q-learning and other value-based RL algorithms for stock trading have
been evaluated (Pendharkar and Cusatis, 2018). An adversarial training technique that
leads to an improvement in the performance of deep reinforcement learning methods has
also been proposed (Liang et al., 2018). It utilised a deep residual network in its designs that
led to positive returns after being tested the Chinese stock market. Adaptive stock trading
strategies that utilised deep reinforcement learning methods such as Gated Deep Q-learning
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and Gated Deterministic Policy Gradient trading strategies have also been proposed (Wu
et al., 2020). Betancourt and Chen (2021) proposed the use of deep reinforcement learning
for cryptocurrency trading using a dynamic number of assets (DNA) that has the ability to
consider all assets in the market, which automatically adapts when new cryptocurrencies are
introduced to the market. In the work of Betancourt and Chen (2021), DNA-S was used to
represent portfolio agents trained with the Differential Sharpe Ratio (Moody et al., 1998).
The approach adopted in this work to compute the reward function used the average of the
difference between the instantaneous reward of the RL algorithm and the instantaneous
reward of the secured portfolio compared to the approaches used by Moody and Saffell
(1998); Betancourt and Chen (2021) that used exponential moving estimates of the returns
and standard deviation of the return Rt in their calculations.

The next section covers the preliminaries of the Capsule Network (CapsNets).

6.3 Preliminaries of Capsules Network (CapsNets)

A capsule is a group of neurons whose activity vector represents the instantiation parameters
of a specific type of entity, such as an object or an object parts (Hinton et al., 2011; Sabour
et al., 2017). CapsNets use dynamic routing shown in Algorithm 7 as a strategy to assign
weights to neurons’ connections, as opposed to pooling operations used in CNNs. This leads
to a vector output in the CapsNet model. The features of a financial portfolio, such as high,
low, open and close prices, used as input, Xt are divided into many capsules, which in turn
contain neurons. A capsule is therefore a wrapper around a dedicated group of neurons
(Dombetzki, 2018).

The operations and inner workings of a typical capsule are demonstrated in Figure 6.1.

The features of financial data are processed on the basis of the type of capsule employed.
The output of a capsule is composed of the probability that the features of the financial
data encoded by the capsule are present given a set of vector values commonly called
instantiation parameters. The high-level structure can be considered as a parse tree, where
each active capsule chooses a capsule in the layer above it as its parent capsule.

The total input of a capsule (oj) is a weighted sum of all the prediction vectors, ûj|i as
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Figure 6.1: Schematic presentation of the operations and inner workings of Capsule

shown in equation 6.2

ûj|i = Φij ui

cij = exp (bij)∑
k exp (bik) (6.1)

oj =
∑

i

cijûj|i (6.2)

where Φij is the weight coefficient, cij is the coupling coefficient shown mathematically in
equation 6.1 and ensures that the prediction of capsule i in layer l is in agreement with that
of capsule j in the layer above, l+1. The sum of the attention coefficient, cij is always equal
to 1 through the use of a softmax function, whose input, bij is produced by the dynamic
routing algorithm. The agreement is a scalar product given as bij = wj · ûj|i and added to
the initial logit bij to compute new coupling coefficients to link the capsule i to higher-level
capsules using bij ← wj · ûj|i. A squash function represented in equation 6.3 is a non-linear
activation function used on vectors to ensure that short vectors are squashed to almost
zero, while long vectors are reduced to a length slightly below 1 (Sabour et al., 2017).

wj = ∥ oj ∥2

1+ ∥ oj ∥2
oj

∥ oj ∥
(6.3)

where wj represents the vector output of the capsule j and oj represents its total input.

The dynamic routing algorithm used in CapsNet is represented in algorithm 7.
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Algorithm 7 Dynamic routing algorithm
For all capsule i in layer l and capsule j in layer (l + 1) : bij ← o

for r iterations do
for all capsule i in layer l: ci ← softmax (bi) with softmax computing equation 6.1
for all capsule j in layer (l + 1): oj ←

∑
i cijûj|i

for all capsule j in layer (l + 1): wj ← squash (oj) where squash computes equation
6.3
for all capsule i in layer l and capsule j in layer (l + 1) : bij ← bij + wj · ûj|i

return wj

end for

The structure of the Capsules Network consists of a standard convolution layer (Conv
layer), a primary capsule layer (Primary-Caps layer), a secondary capsule layer (Outer
layer) and a fully connected capsule layer (Sabour et al., 2017). The Conv layer in CapsNet
is identical to the convolutional layer in CNN (Sabour et al., 2017), while Primary-Caps uses
a convolution operation on the input and then reallocates the output to several capsules
using a dynamic routing algorithm. The output shape of the Conv layer is made up of batch
size, height, width, and number of channels, while the output shape of the Primary-Caps
layer consists of batch size, height, width, number of capsules, and output vector length of
the capsules. The outer layer then follows the Primary caps layer. The Decoder is made
up of three fully connected networks, where the last layer uses sigmoid activation, and the
other two layers use a ReLU activation function. The Decoder takes the vectors from the
correct outer layer and then learns and maps them back to the original features to form X̂T ,
serving as a regulariser in the process. The decoder forces the capsules to learn features
that are important for the reconstruction of the original input data.

The problem formulation comprising the market assumptions and the mathematical model
used is presented in the next section.

6.4 Problem Definition

As has been defined earlier, Portfolio management is the act of constantly reallocating
capital resources to various financial assets with the aim of maximising profit. This section
provides a mathematical background for a portfolio management problem using transaction
costs in an approach similar to the one used by Jiang et al. (2017) which was initially
introduced by Ormos and Urban (2013).
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Trading days

It is known that stock exchanges and markets have one calendar day as the trading period
with time divided into periods of equal lengths. In this work, the CapsNet-based RL
algorithm performs a reallocation of the funds across the assets at the beginning of each
trading period. It is known that the prices of financial trading assets do fluctuate during
the trading day and are characterised by four main metrics which are Open, Low, High,
and Close prices which respectively represent the price at the opening of the market, the
lowest price reached during the day, the highest prices obtained during the day’s trading
and the price at the closing of the markets for the day.

Market assumptions

In this work, backtest trading is considered with the assumption that the RL algorithm
does not know the future market information. As in any market environment, some as-
sumptions are considered close to reality if the assets’ trading volume is high. The two
major assumptions underlying our work are:

• Zero Slippage: Due to high market liquidity, each trade can be executed and com-
pleted immediately at the last price when an order is placed.

• Zero Market Impact: The amount invested by our RL algorithm is insignificant to
have an effect on the outcome of the market.

Problem statement

Our proposed deep-reinforcement learning process for portfolio optimisation is detailed in
Section 6.5, and outlined below.

Let:

Vt = [vt−l+1 ⊘ vt, vt−l+2 ⊘ vt, ..., vt−1 ⊘ vt, vt ⊘ vt] (6.4)
Vhi

t =
[
vhi

t−l+1 ⊘ vt, v
hi
t−l+2 ⊘ vt, ..., v

hi
t−1 ⊘ vt, v

hi
t ⊘ vt

]
(6.5)

Vlo
t =

[
vlo

t−l+1 ⊘ vt, v
lo
t−l+2 ⊘ vt, ..., v

lo
t−1 ⊘ vt, v

lo
t ⊘ vt

]
(6.6)

where: ⊘ is the element-wise division operator. Define the price tensor as a matrix Xt

which is a stack of three normalised price matrices, Vt, Vhi
t and Vlo

t given in equations
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(6.4), (6.5) and (6.6) respectively.

To generate an initial non-optimised portfolio weight output, wtinit
at the start of the

trading activities at any period and shown mathematically in Equation (6.7).

wtinit
= πθinit

(Xt,w0) (6.7)

where θinit represents the initial random set of parameters used by the Deep CapsNet
to start the gradient update process and πθinit

is the initial policy used at the start of
the training process. Figure 6.2 shows how the reconstruction loss and the marginal loss
operate together to update the policy network.

Figure 6.2: Capsules Network structure showing the Marginal Loss and Reconstruction loss

The policy π can be parameterised with a set of parameters of the CapsNet, θ which can
be updated to improve the parameterised policy (πθ). At each training step t, θt updates
the policy πθt which is in turn used to calculate wt using equation (6.8).

wt = πθt(Xt,wt−1) (6.8)
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The objectives of this chapter are two-fold; (i) to introduce a novel policy π using the
parameters of Deep CapsNet, θ, which is optimised using a Markov Differential Sharpe
Ratio reward function; (ii) to introduce a novel workflow of the MMWR that facilitates the
online training of θ per time step to achieve an optimised wt.

Figure 6.3: General workflow of Multi-Memory weight Reservoir-based RL for portfolio
optimisation: The deep CapsNet network predicts the initial portfolio weight vector, wt

using Equation (6.7). Then uses the initial portfolio weight vector, wt obtained in Equation
(6.8), to interact with the environment to obtain an initial instantaneous reward and the
next state. This reward is then used to calculate the discounted cumulative reward. The
discounted return and portfolio vector weights are then used to compute the gradients used
to train the deep CapsNet policy Network

The general workflow of the MMWR and the RL algorithm is demonstrated in Figure
6.3 and shows the computation of the gradients of the deep CapsNet network and its
optimisation by the Markov Differential Sharpe Ratio reward through the use of the MMWR
framework to achieve optimised portfolio vector weights, w∗

t at the end of the training

145



6.5. PROPOSED DEEP REINFORCEMENT LEARNING PROCESS FOR
PORTFOLIO OPTIMISATION USING DEEP CAPSULES NETWORK Page 146

session. Kindly refer to section 6.5 for the full details of the optimisations and training
process involved.

The next section introduces our proposed Deep Reinforcement Learning Process for Port-
folio Optimisation using the Deep Capsules Network.

6.5 Proposed Deep Reinforcement Learning Process
for Portfolio Optimisation using Deep Capsules
Network

Deep Capsules Network Architecture

Figure 6.4: Structure of Deep CapsNet-based RL policy network: Made up of a deep
convolutional layer, PrimaryCaps, Outer Layer, 3 fully connected layers and RL component.
The structure of the CapsNet is of a shape of (f, t′, k), where f is the number of features,
K is the number of non-cash assets and t′ is the number of input periods before t

In our framework, we introduce a Deep Capsules Neural Network for enforcing the policy, as
depicted in figure 6.4. Refer to Section 6.5 for detailed information on the network setup and
component implementation. The policy is initially learnt offline from historical data using
Monte-Carlo policy gradient deterministically in a dual online mini-batch training process.
The policy, π is then continuously updated as new information becomes available using
the parameters of the Deep CapsNet, θt, optimised using our proposed reward function.
The Deep CapsNet was used to observe each non-cash asset in the portfolio at a time to
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recommend and enforce the investment policy and used the softmax function to ensure
non-negative output weights that sum up to one.

The next section introduces our proposed Markov Differential Sharpe Ratio, which is used
as the main reward function in the work.

Proposed Markov Differential Sharpe Ratio as Reward function

The instantaneous reward function used was represented by a scalar value that indicated the
performance of the CapsNet Policy agent in any given time period, t. The Sharpe ratio, ϖ
was used as an instantaneous reward to maximise the final portfolio value, which served as
an objective function. The Sharpe ratio represented mathematically in equation (6.9) was
used as an instantaneous reward because of its effectiveness in measuring the performance
of an investment portfolio since it utilises both risks and returns in its calculations.

ϖ = E(rr
t )

σ(rr
t ) (6.9)

where E(rr
t ) = (1/T )∑T

i=1 r
r
t and σ are the rate of returns and the standard deviation,

respectively.

Our proposed Markov Differential Sharpe Ratio (R(d)) is a modification and an extension of
the work of Moody et al. (1998) on the Differential Sharpe Ratio, Dt which is represented
using equation (6.10). Our reward function used a special value-based reward function that
utilised the Markov Reward Process on the Differential Sharpe Ratio to form the Markov
Differential Sharpe Ratio, as presented in equation (6.10). The Markov Reward process can
be used under the Bellman optimality condition with a discount factor of 0.5 used in the
Differential Sharpe Ratio, Dt to estimate the Discounted cumulative reward, the Markov
Differential Sharpe Ratio R(d), which is a using a time period of 10. This can then be
maximised by the CaspNet-based policy network during the mini-batch training scheme
shown in equation (6.11).
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∆At = ϖ −ϖs

∆Bt = (ϖ)2 −ϖs

D(t) =
B(t−1)∆A(t) − 1

2A(t−1)∆B(t)

(B(t−1) − A2
(t−1))3/2 (6.10)

A(t) = ηϖ(t) + (1− η)A(t−1) = A(t−1) + η(ϖ(t) − A(t−1))
B(t) = ηϖ2

(t) + (1− η)B(t) = B(t−1) + η(ϖ2
(t) −B(t−1))

R(d) = E[Gt|St = s]
R(d) = E[D(t+1) + γv(D(t+1))|St = s] (6.11)

where:
ϖ represents the instantaneous reward from the CapsNet-based agent at time t.
ϖs represents instantaneous reward from the secured portfolio at time t.
At and Bt represent the average estimates of the first and second moments of the instant
Reward ϖ respectively, and η represents the decay rate.

The next section introduces the framework of our proposed Multi-Memory Weight Reservoir
(MMWR) and covers the basic its basic structure.

Proposed Multi-Memory Weight Reservoir (MMWR) framework

Any intelligent system with continuous interaction with the environment encounters the
problem of continual learning, where new experiences are constantly being obtained while
old experiences may still be relevant. The strategy of using experience replay memory (Mnih
et al., 2016) to achieve continual reinforcement learning in this work was the inspiration
behind its use.

The proposed memory framework is divided into three parts; these are the Main Reservoir
A (MA), the Main Reservoir B (MB) and the Cache Reservoir (MC ) as demonstrated in
Figure 6.5. The Main Reservoir A (MA) is designed to store and stack only the portfolio
weight vectors obtained from the Deep CapsNet-based RL algorithm with an instantaneous
reward, ϖ at time step t greater than or equal to the reward from the baseline model,
ϖeq during the training episode. On the other hand, Main Reservoir B (MB) only stores
the portfolio weight vectors from the Deep CapsNet-based RL algorithm with an instant
reward, ϖ at time t less than the reward from the baseline model, ϖeq. The Main Reservoir
A (MA) serves as the feeder for the Cache reservoir (MC).
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Figure 6.5: Architecture of Multi-Memory weight Reservoir (MMWR): The Main Reservoir
A (MA) stores and stacks the wt obtained from the Deep CapsNet-based RL algorithm with
a reward, ϖ at time step t greater than or equal to the reward from the baseline model,
ϖeq during the training episode. On the other hand, Main Reservoir B (MB) stores only
wt from the Deep CapsNet-based RL algorithm with ϖ at time t less than ϖeq. The Main
Reservoir A (MA) serves as the feeder for the Cache reservoir (MC).

The content of the Cache Reservoir ( MC ) acts as a secondary storage for the randomly
sampled portfolio weight vectors, wt from which the contents are sampled to the RL algo-
rithm for online mini-batch training to update the individual weights of the assets in each
portfolio. The portfolio weight vectors in the Main Reservoir A (MA) and Main Reservoir B
(MB) have holding capacities of TA and TB, respectively. Hence, the total portfolio weights
of the Main reservoirs MA and MB can be expressed using equations (6.12) and (6.13)
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respectively:

MA = wA
t (i),where i = 1, 2, ..., TA (6.12)

MB = wB
t (i),where i = 1, 2, ..., TB (6.13)

Where:
-TA and TB are the maximum history held by MA and MB respectively.
-wA

t wB
t and represent the portfolio weight vectors stored in MA and MB respectively.

Likewise, the sampled portfolio weight vector in the Cache Reservoir has a holding capacity
of H and the total portfolio weights vectors of the Cache reservoir can be represented using
equation (6.14)

Mc = wC
t (i),where i = 1, 2, ...H (6.14)

where:
-H is the holding capacity of the Cache Reservoir.
-wC

t and represent the portfolio weight vectors stored in MC .

Refer to Section 6.5 for details of how the proposed MMWR is used for the mini-batch
training scheme and the pseudo-code it uses.

The next section introduces our proposed policy optimisation using the MMWR framework.

Policy Optimisation Using our proposed Deep CapsNet-based MMWR
framework

A policy is deemed optimal if it leads to the maximisation of our proposed Markov Differ-
ential Sharpe Ratio R(d) used as a reward function. A policy gradient was deterministically
used to train the CapsNet-based policy network. The policy πθt , from the CapsNet-based
policy network, used a mapping from state space to action space πθt : s→ A. To achieve an
optimal policy that maximises the returns, the parameters θt and at = πθt(st) are specified.

Our proposed CapsNet-based policy determines the best action taken by the RL algorithm
learnt through the deep CapsNet framework in order to achieve a maximised Final Portfolio
value. It uses the normalised historical data for Low, High, Open and Close prices to feed
into the Deep CapsNet. The CapsNet has the ability to capture the spatial relationship
between asset prices, portfolio weights, and rewards. The CapsNet receives the portfolio’s
state representations given by the Low, High, Open and Close prices of each asset and pre-
vious weight vector (wt−1) and returns the appropriate actions given by wt and can predict

150



6.5. PROPOSED DEEP REINFORCEMENT LEARNING PROCESS FOR
PORTFOLIO OPTIMISATION USING DEEP CAPSULES NETWORK Page 151

the portfolio allocation. It consists of multiple layers of capsules, each capsule representing
a set of features. The output of the CapsNet is a set of weights that represent the allocation
of portfolio assets. The portfolio weights are calculated based on the output vectors of the
capsules, which encode the pose of different portfolio allocations. The portfolio weights can
be calculated using a softmax function, which normalises the output vectors of the capsules
to produce a probability distribution over the possible portfolio allocations. Each element
in the probability distribution represents the probability of assigning a certain weight to a
certain asset or factor in the portfolio.

The dynamic routing agreement between the capsules shown in Algorithm 7 is utilised to
distinguish the vectors according to the level of agreements between them. In a nutshell,
the training process for the capsules can be defined as the extraction and refinement of
the active routes from a preceding Primary-Caps to the successive output layer. It is used
to optimise portfolio allocation based on the CapsNet output. It helps the capsules to
learn the hierarchical structure of the input data Xt, such as correlations between different
asset classes, the interactions between different market factors, and the patterns of market
volatility over time.

A loss function LM can be used to measure the difference between the predicted portfolio
allocation and the actual portfolio allocation and penalises CapsNet for generating alloca-
tions that deviate too much from the current portfolio allocations. The loss function, LM

is mathematically shown in Equation (6.15)

LM =
∑
|wt −wopt

t−1| (6.15)

where wopt
t−1 is the optimised portfolio weights for the previous period. The Reconstruction

loss Lr measures how well the CapsNet can reconstruct the input data from the output
vectors, and it serves as the regulariser of the network to ensure it does not overfit the
training data. The Reconstruction loss, Lr associated with this is calculated using the
Mean Square Error (MSE) as shown in equation (6.16).

Lr = 1
N

N∑
i=1

(Xt − X̂t)2 (6.16)

where X̂t is the reconstructed input data.

The Total Loss, LT used for the training of the CapsNet policy is shown in Equation (6.17).

LT = LM + ϱLr (6.17)

151



6.5. PROPOSED DEEP REINFORCEMENT LEARNING PROCESS FOR
PORTFOLIO OPTIMISATION USING DEEP CAPSULES NETWORK Page 152

Where ϱ is the weighting parameter for the reconstruction loss and is always greater than
0. The total loss LT can be subtracted from the reward function to guide the learning
process of the reinforcement learning algorithm. They measure the difference between the
predicted portfolio weights and the actual portfolio weights.

In the initial learning stage, the parameters of Capsnet, πθinit are initialised randomly.
With the use of feedback from the markets through asset price changes, CapsNet uses
the difference between the expected reward and the actual reward received to adjust its
gradients accordingly to improve the reward profile. The gradient used to update the policy
network training can be computed through the use of Total loss, LT given in Equation (6.17).
The performance metric of the policy parameterised by θt, πθ for the time interval [tbsa , tbsb

]
is defined as the corresponding Markov Differential Sharpe Ratio R(d) of the interval shown
in equation (6.18).

Let us formally denote J[tbsa ,tbsb
](πθ) as the quantity of Markov Differential Sharpe Ratio

cumulative reward (R(d)) shown in equation 6.11 that needs to be directly maximised by
the policy gradient using the mini-batch of size bs. The use of the CapsNet Policy network
with parameter, πθ generates trajectory,
φ = [S0, A1, Rd1 , S1, ..., Sf , Af ] for the trading environment to obtain a sequence of rewards.

J[tbsa ,tbsb
](πθ) = Eπθ∼φ

 1
bs

bs∑
b=1

Tf∑
t=0

(R(d) − αLT )
 (6.18)

where α is a loss weighting parameter to determine the trade between the reward and
the loss, b is the batch number. After random initialisation, the policy parameter θ can
be updated by gradient ascent using the learning rate λ to maximise J[tbsa ,tbsb

](πθ). The
gradients of the reward with respect to the network parameters are computed as follows:

∇θJ[tbsa ,tbsb
](πθ) = Eπθ∼φ

 1
bs

bs∑
b=1

Tf∑
t=0

(R(d) − αLT )∇θ log πθ

 (6.19)

The mini-batch training regime can be used to update the parameters.
Let bs represent the total batch size sampled from the Cache reservoir (MC) and Main
reservoir B (MB) in any training episode.
Let bs1 represent the mini-batch sample to be drawn for training from the Cache reservoir
(MC) at any time period as shown in Equation 6.20.

bs1 = κ ∗ bs (6.20)
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Let bs2 represent the mini-batch sample to be drawn for training from the Main Reservoir
B (MB) at the time period as demonstrated in equation 6.21.

bs2 = (1− κ) ∗ bs (6.21)

where κ is the weighting parameter used for adjusting sample size from the Cache reservoir
(MC). Our proposed approach recommends using a minimum κ of 0.7 to be used for (MC).
The parameter updates of each of these respective mini-batches during training are given
in equations (6.22) and (6.23) respectively. The time range of a mini-batch for MC is
[tbs1a

, tbs1b
]

θt+1
bs1 ← θt

bs1 + λ∇θJ[tbs1a
,tbs1b

](θ) (6.22)

The time range of a mini-batch for MB is [tbs2a
, tbs2b

]

θt+1
bs2 ← θt

bs2 + λ∇θJ[tbs2a
,tbs2b

](θ) (6.23)
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Algorithm 8 Implementation of MMWR-based deterministic policy gradient
Input: Market Price Vectors: Open prices, Vo

t , Close Prices, Vt, High Prices, Vhi
t ,

Low Prices, Vlo
t

Require: wt- Selected portfolio vector weights at t, wC
t - Selected portfolio vector weights

from MC , wB
t - Selected portfolio vector weights from MB

iteration = 0
initial ϵ ≤ 0.8
while iteration ≤ n do

if random number < ϵ then
wt ← random portfolio weights

else
wt ← πθ(Xt,wt−1)

end if
for b = 1, ..., bs do

Maximise the objective function of a mini-batch, bs with batch number, b :

J[0,tf ](πθ) = Eπθ∼φ

 1
bs

bs∑
b=1

Tf∑
t=0

(R(d) − αLT )
 (6.24)

The gradients of the reward of the mini-batch with respect to the CapsNet policy
network parameters is computed as:

∇θJ[tbsa ,tbsb
](πθ) = Eπθ∼φ

 1
bs

bs∑
b=1

Tf∑
t=0

(R(d) − αLT )∇θ log πθ

 (6.25)

Update the Policy Network with Mini-batch from MC:
θt + 1bs1 ← θt

bs1 + λ∇θJ[tbs1a
,tbs1b

](θ)
Update the Policy Network with Mini-batch from MB:

θt+1
bs2 ← θt

bs2 + λ∇θJ[tbs2a
,tbs2b

](θ)
end for
wt ← wB

t + wC
t

end while
return wt

The pseudo-code for the implementation of the MMWR-based deterministic policy gradient
training procedure is demonstrated in algorithms 8.

The next section covers the details of the training process involved in our proposed MMWR-
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based mini-batch training scheme.

Proposed dual Stochastic mini-batch Batch training scheme using
MMWR

At each time period of each episode, samples of MA, estimated by the number of assets
in the portfolio K are selected and chronologically stored in the Cache Reservoir (MC ).
At the time, t the selection process from MA to MC involved the application of a decay
function t × (1 − τ) to obtain the time step from which the stored weights in MA can be
selected and added to MC .

For the training episode where the agent’s instantaneous reward, ϖ is greater than or
equal to the instantaneous reward of the equi-weighted baseline model, ϖeq, the following
mini-batch training procedure occurs:

• The batch of Portfolio weights vectors, wC
t is selected to be transferred from the cache

reservoir MC for training at period t.

• At the end of the tth training period, the price movement for that period is added to
the training set.

• In the next time period, t+1, the CapsNet-based policy network is used to train some
randomly chosen bs1 number of mini-batches from the Cache memory MC .

• A mini-batch, bs1 starting with time period ts ≤ t − nbs1 is selected using an expo-
nentially distributed probability, pΩ(ts), shown in equation 6.26

pΩ(ts) = Ωe−Ωts−nbs1 (6.26)

where Ω ∈ (0, 1) represents the probability-decaying rate used to determine the shape
of the probability distribution and nbs1 represents the number of periods in each
mini-batch from MC .

Whilst for the training episode where the CapsNet-based policy agent Instantaneous reward,
ϖ is less than the Instantaneous reward of the equi-weighted baseline model, ϖeq, the
following mini-batch training procedure occurs:

• The batch of Portfolio weights vectors, wB
t is selected to be transferred from the Main

reservoir B, (MB).
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• At the end of the tth training period, the price movement for that period is added to
the training set.

• In the next time period, t+1, the CapsNet-based policy network trains some randomly
chosen bs2 number of mini-batches from the Main reservoir B (MB).

• A batch starting with time period ts ≤ t − nbs2 is selected using a geometrically
distributed probability, pβ(ts), shown in equation 6.27

pβ(ts) = β(1− β)t−ts−nbs2 (6.27)

where β ∈ (0, 1) represents the probability-decaying rate used to determine the shape
of the probability distribution and nbs2 represents the number of periods in each
mini-batch.

The training regime of our proposed MMWR is such that a mixture of Cache memory MC

and Main memory MB is fed back into the policy network in a proportion to a minimum
κ of 0.7 for MC using equations 6.20 and 6.21. At the end of the trading period t, and
after going through the reinforcement learning procedure, the optimised portfolio vector
weight, wt for the trading period can be calculated using information from the price tensor
matrix, Xt and the previous optimal weight vector,wt−1 at the preceding time step using the
specified policy, π to do the computation. This is represented mathematically in equation
6.28.

wt = π(Xt,wt−1) (6.28)
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The pseudo-code for our Proposed Multi-memory weight Reservoir (MMWR) framework is
shown in Algorithm 9.

Algorithm 9 The pseudo-code for Proposed Multi-memory weight Reservoir (MMWR)
Require: ϖ- Instant reward for a RL algorithm, ϖeq - Instant reward for an equi-
weighted (baseline) portfolio, wt- Selected portfolio vector weights at t, wC

t - Selected
portfolio vector weights from MC at t, wB

t - Selected portfolio vector weights from MB at
t

Initialize MMWR: Main Reservoir A (MA), Main Reservoir B (MB) and Cache Reser-
voir (MC )
iteration = 0
while iteration ≤ n do

Call Algorithm 6 which is the MMWR-based policy gradient computation.
if ϖ ≥ ϖeq then

Store wA
t in MA

Sample K ′ number of samples from MA and store in MC using exponential decay
operation.
Sample mini-batch of bs1 number of wC

t from Mc using exponential distribution,
pΩ(ts) = Ωe−Ωts−nbs1 .

else if ϖ < ϖeq then
Store wB

t in MB

Sample mini-batch of bs2 number of wB
t from MB using geometric distribution,

pβ(ts) = β(1− β)t−ts−nbs2 .
end if
Use training mixture formula κ ∗ bs + (1 − κ) ∗ bs to obtain the mini-batch numbers
of wC

t and wB
t respectively for training in any training episode

end while
return wC

t and wB
t ∈ wt

The pseudo code showing the high-level implementation of the Deep CapsNet policy network
is shown in Algorithm 10.
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Algorithm 10 Algorithm showing the High-level implementation of the Deep CapsNet
Policy Network

Require:f, t′, K, c : Number of Features f , Number of input periods t′, Number of pre-
selected non-cash assets K, Cash basis c, nbs represents the number of periods in each
mini-batch.
Input: Market Price Vectors: Open prices, Vo

t , Close Prices, Vt, High Prices, Vhi
t ,

Low Prices, Vlo
t .

Initialization: Input: Xt = [Vt,Vhi
t ,Vlo

t ]T

while i ≤ nbs do
1: Deep Convolution layer:
first Convolution:
Second Convolution:
Third Convolution:
2: Primary Capsules:
3: Dynamic Routing:
Call Algorithm 7
4: Portfolio allocation:
5: Masking
6: Reconstruction of features using fully connected layers
7: Adding Cash: Concatenate Cash Bias
8: Apply Soft-max :
return Distributed Portfolio Weights ← w = [wt,k]T where k = 1, ..., K
9: Train the network using the MMWR-based policy gradient;
Call Algorithm 9

end while
Output: wB

t + wC
t ∈ wopt

t

return wopt
t

Summary of the Set Up Process

For each asset class, historical prices made of High, Low and Close prices were used as
the initial input for the constructed Deep Capsnet, at trading period t that generated the
portfolio weight vector as the output. The output of the neural network was the vector of
the actions that the agent took. The created environment was such that it could compute
the new vector of weights, the new value of the portfolio, and an instant reward. The Deep
CapsNet-based RL portfolio agent was set up as follows:
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1. The policy Network was designed with a deep Capsule Network(deep CapsNet) which
had an input tensor shape K×t′×f , where K is the number of assets, t′ is the previous
trading time period and f is the number of features. The four matrix channels were
made of the closing, low, open, and high prices of all assets, and time steps based on
the number of trading days used and the number of assets.

2. A first convolution through to a fifth convolution was applied to obtain a smaller
tensor. A kernel size of 1 × 3 and a stride of 1 were used without padding to shrink
the data size after each convolutional.

3. The output was reshaped to obtain a 4D vector that represented the output of the
primary capsules. The output of the second convolutional layer (conv2) was an array
containing 32×8=128 feature maps for each instance, where each feature map was
4×7. Hence the shape of this output became (batch size, 4, 7, 128). However, since
this first capsule layer was fully connected to the next capsule layer, the primary
capsules were reshaped to (batch size, 4×7×40).

4. The output vectors were then squashed using the squash() function, based on equation
(6.1) to obtain the output ui of each primary capsule i.

5. To compute the output of the PortfolioWeightsCaps, the predicted output (one for
each primary capsule or PortfolioWeightsCaps pair) was first computed. The routing
by agreement algorithm was then applied. For each capsule, i in the first layer, the
output of each capsule j in the second layer was predicted.

6. The softmax function was applied to compute the routing weights ci = softmax(bi).
This was then used to compute the weighted sum of all the predicted output vectors
for each second-layer capsule, sj = ∑

i ci,jûj|i

7. The decoder network was then added to reconstruct the network. Then a fully con-
nected 3-layer neural network was used to learn the reconstruction of the input data
based on the output of the capsule network.

8. Instead of sending all the outputs of the capsule network to the decoder network
during the training phase, masking was undertaken on the output vectors to obtain
shape (batch size, 4, 40, 40).

9. Since the aim is to maximise the final portfolio value, the Sharpe ratio, ϖ, which
served as an instantaneous reward at each time step, was calculated using equation
6.9. This was then used to calculate our proposed Discounted cumulative reward
(R(d)) as shown in equation (6.11).
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10. training the policy network using Adams optimizer to maximise the R(d)

11. The routing algorithm in the CapsNet was used to compute a set of attention coeffi-
cients to determine which prediction vectors can combine to form the output of the
network.

12. The attention coefficients were computed using the agreement between the prediction
vectors and the output of the previous layer using the equation (6.2).

13. Softmax was used in the last hidden layers to obtain the weighted voted scores for
the non-cash assets used in the portfolio construction process. .

The next section covers the experiments carried out in this work and includes a description
of the data used, the performance metrics, the results obtained, and the discussions.

6.6 Experiments

The setup of our experiments is described in this section. It also includes: a description of
the features of the datasets used, metrics used to evaluate individual models, the results
obtained and the discussions.

Data Description

To construct a reasonably diversified portfolio and maximise portfolio risk-adjusted returns,
7 different assets from different asset classes such as equities, fixed income, currencies, and
commodities were obtained through the Yahoo Finance API interface and used as data sets
for this project. These were Google, Unilever, Amazon, Gold, crude oil, US dollar/GBP
exchange rate, and HICOX, also known as Colorado Bond shares; a tax-exempt fund. The
total trading period used in the experiment started from 30th June 2005 to 28 August 2019.
The sequential data set was then divided into a 60% training set, a 20% validation set, and
a 20% test set. The Test ID for each of the periods used for the training data set, the
back-test data sets, and the validation sets are shown in Tables 6.1 and 6.2, respectively.
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Test ID Training Set(60%)
Test Set(20%)

All 100 Trading days
Test 1 30-06-2005 to 14-09-2006 10-02-2007 to 09-07-2007 10-02-2007 to 09-07-2007
Test 2 30-06-2005 to 29-11-2007 23-09-2008 to 14-07-2009 23-09-2008 to 17-02-2009
Test 3 30-06-2005 to 17-02-2009 06-05-2010 to 22-07-2011 06-05-2010 to 28-09-2010
Test 4 30-06-2005 to 05-05-2010 15-12-2011 to 02-08-2013 15-12-2011 to 14-05-2012
Test 5 30-06-2005 to 22-07-2011 03-08-2013 to 10-08-2015 03-08-2013 to 27-12-2013
Test 6 30-06-2005 to 09-10-2012 17-03-2015 to 15-08-2017 17-03-2015 to 10-08-2015
Test 7 30-06-2005 to 27-012-2013 25-10-2016 to 22-08-2019 25-10-2016 to 21-03-2017

Table 6.1: Training and Test sets Trading periods

Test ID Validation Set(20%)
Test 1 15-09-2006 to 09-02-2007
Test 2 30-11-2007 to 22-09-2008
Test 3 18-02-2009 to 05-05-2010
Test 4 06-05-2010 to 14-12-2011
Test 5 23-07-2011 to 02-08-2013
Test 6 10-10-2012 to 16-03-2015
Test 7 28-012-2013 to 24-10-2016

Table 6.2: Validation sets trading periods

The box-plot representation of the closing prices of the 7 assets used in the portfolio con-
struction is represented in figure 6.6:
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Figure 6.6: Box-plot of the closing prices of the 7 assets used

Hyper-Parameters

The configuration of hyper-parameters for the Reinforcement Learning (RL) Agent is doc-
umented in Table 6.3. These parameters govern critical aspects of portfolio construction
and optimisation, such as portfolio size, kernel size, batch size, regularisation, learning rate,
optimisation type, trading cost, interest rate, initial cash bias, window length, sample bias,
and number of episodes. The optimal number of episodes, which is 3 was chosen after
a series of experiments were carried out to the evaluate and monitor the final portfolio
value for each of the chosen number of episodes. These hyper-parameters collectively shape
the behaviour of the RL algorithm, influencing its learning dynamics and decision-making
processes during the portfolio optimisation process.
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Hyper-parameters Description size
portfolio size, K Number of assets in portfolio 7

kernel size size of kernel used (1,3)
batch size size of mini-batch used 60

ϖ weight selection of mini-batch from MC 0.8
Regularisation L2 regularisation applied 1× 10−8
Learning Rate Used for Adam Optimisation 1× 10−8
Trading cost total cost to trade 0.1%
Interest Rate The interest rate used 0.02/250

Initial Cash Bias initial cash 0.5
Window Length Number of trading periods 10

Sample Bias Beta used for geometric distribution 5× 10−5
Number of episodes Number of interactions between

an agent and the environment 3
from initial state to final state

Table 6.3: Hyper-parameters used for the CapsNet RL Network

Performance Evaluation Metrics

The metrics used in this study to evaluate the performance of the models were categorised
into three broad groups that are: Reward-only metrics, risk-only metrics, and risk-adjusted
reward metrics. The reward-only metrics used are Mean Portfolio value(MPV), Final Port-
folio Value (Pf ), % Change in Mean Portfolio value (%∆M) and % Change in Final Portfolio
value (%∆F). These are described below:

• Mean Portfolio value(MPV): This measures the average value of the portfolio
over the investment time period. During the training of the RL algorithm, the value
of the portfolio takes on new values at each trading time step, where it can increase
or decrease in value. The average portfolio value is measured using MPV.

• Final Portfolio Value (Pf): This is the Accumulated final value of the portfolio at
the end of the training period, t.

• % Change in Mean Portfolio value (%∆M): This is the percentage change in
the Mean portfolio value. It is equal to the average returns produced by the portfolio
at the end of the trading period. It is calculated as follows:

%∆M = MPVt − P0

P0

Where: MPVt is the Mean portfolio value at time t and P0, is the initial portfolio
value, which in this work represents the initial amount invested.
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• % Change in Final Portfolio value (%∆F): This is the percentage change in the
final portfolio value. It is equal to the returns yielded by the portfolio at the end of
the trading period. It is calculated as follows:

%∆F = Pf − P0

P0

Where: Pf is the final portfolio value at time t and P0, is the initial portfolio value,
which in this work represents the initial amount invested.

The Risk-only metrics used are Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR).
For both VaR and CVaR, the smaller the value, the better it is as a performance evaluation
metric. Figure 6.7 shows the diagrammatic demonstration of VaR and CVaR.

Figure 6.7: representation of VaR and CVaR

• Value-at-Risk (VaR): It is a percentile measure of risk in portfolios held by financial
institutions that are continuously exposed to credit, market, and operational risk.
Although the deployment of hedging strategies can mitigate this risk, the first stage
in managing any risk is by measuring it. As opined by Banihashemi and Navidi
(2017), VaR is an important risk measure that concentrates on adverse events and
their probability of occurrence. It is a statistical technique defined as the maximum
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amount of investment that may be lost in a specified time frame. It is used in
financial regulations such as Basel I and Basel II to measure the width of the daily
loss distribution of a portfolio (Sarykalin et al., 2008). Given a random variable loss
value of X with a cumulative distribution function.

FX(z) = p{X ≤ z}

The VaR of X with a confidence interval α ∈ [0, 1] is shown in Equation 6.29

V aRα(X) = min{z |FX(z) ≥ α} (6.29)

For normally distributed loss variables, VaR is proportional to the standard deviation.

• Conditional Value-at-Risk (VaR): Conditional Value-at-Risk (CVaR), introduced by
Rockafellar and Uryasev (2000) is the expected shortfall or mean expected loss if
the VaR is exceeded and is comparatively an effective financial risk management tool
used for the percentile measure of risk. As stated by (Sarykalin et al., 2008), CVaR
represents the mean of the percentage of worst-case loss scenarios and is similar to
the value-at-risk (VaR) risk measure, which is a percentile of a loss distribution. It
is obtained by finding the weighted average of the extreme losses in the tail of the
returns’ distribution past the VaR cut-off point as shown in Figure 6.7.

For random variables with continuous distribution functions, CV aRα(X) is equal
to conditional expectation X subject to X ≥ V aRα(X). The CVaR of X with a
confidence interval α ∈ [0, 1] is represented in equation 6.30

CV aRα(X) =
∫ ∞

−∞
z dFα

X(z) (6.30)

Where:

Fα
X(z) =



0, when z < V aRα(X),

FX(Z)−α
1−α

, when z ≥ V aRα(X)

The risk-adjusted Reward metrics used are Sharpe Ratio (SR), Final Reward-to-VAR Ratio
using % Change in Final Portfolio value%∆F and Mean Reward-to-CVAR Ratio using %
Change in Mean Portfolio value%∆M.

• Sharpe Ratio (SR): It is a metric used to measure the risk-adjusted return on
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a portfolio and was proposed by Sharpe (1964, 1994). The Sharpe ratio is used to
evaluate the overall performance of an investment portfolio or the performance of an
individual asset. It shows how well an equity investment performs compared to the
rate of return on a risk-free investment, such as government treasury bonds or bills.
It is the risk-adjusted average return, defined as the average of the risk-free return
divided by its standard deviation, and is mathematically represented in Equation 6.9.
From 2005 to 2019, the average risk-free rate was derived from the Bank of England
Sterling Overnight Inter-bank Average Rate (SONIA). It is the effective overnight
interest rate paid by banks for unsecured transactions in the British sterling market.
It is used for overnight funding for trades that occur in off-hours and represents the
depth of overnight business in the marketplace.

• Final Reward-to-VAR Ratio using % Change in Final Portfolio value %∆F:
This is related to the reward-to-Var ratio proposed by Alexander and Baptista (2003b).
It measures the ratio of the % change in the final portfolio value to the VAR. If risk-
free assets were available for portfolio construction, then it can also be defined as an
additional % change in the final portfolio value that would have been earned if an ad-
ditional percentage point of VAR had been taken by reinvesting the amount invested
in risk-free assets in the selected risky portfolio. Under the normality assumption,
the ranking of portfolio performance gives the same ranking as the ranking under the
Sharpe ratio. If this ranking becomes different, then the issue of non-normality must
be further investigated (Alexander and Baptista, 2003b).

• Mean Reward-to-CVAR Ratio using % Change in the Mean Portfolio
value%∆M: The use of this is motivated by the mean-CVaR approach used by
Banihashemi and Navidi (2017) in their work. It involves finding the ratio of the
% Change in Mean Portfolio value to the CVaR.

The experimental setup and detailed evaluation metrics enable us to analyse the perfor-
mance of each of the models effectively. In the following sections, the experimental results
and insights derived from the evaluation of our proposed models using the aforementioned
metrics are presented.
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Results and Discussion

Evolution of Portfolio weights

Figure 6.8: weight evolution at beginning of episode 1

The portfolio weights undergo dynamic changes during the training process, influencing
the asset allocation strategy. Figure 6.8 represents the weight at the beginning of training
episode 1 using the test ID: Test 1, while 6.9 and 6.10 respectively, represent the evolution,
the weights go through at the beginning of training episode 2 and the end of training episode
3 using the Test ID: Test 1 set.
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Figure 6.9: weight evolution at beginning of episode 2
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Figure 6.10: final weight evolution at the end of episode 3 training

The results of the experiments: This has been categorised into reward-only metrics,
risk-only metrics, and risk-adjusted reward metrics. Tables 6.4, 6.5, 6.6, 6.7, 6.8, 6.9 and
6.10 respectively represent the results for the reward-only metrics for Test IDs; Test 1, Test
2, Test 3, Test 4, Test 5, Test 6 and Test 7.

Tables 6.11, 6.12, 6.13, 6.14, 6.15, 6.16, and 6.17 respectively, show the risk-adjusted reward
metrics for the following Test IDs: Test 1, Test 2, Test 3, Test 4, Test 5, Test 6, and Test
7.

Finally, the results for the risk-only metrics for Test IDs: Test 1, Test 2, Test 3, Test 4,
Test 5, Test 6, and Test 7 are represented in Tables 6.22, 6.23, 6.24, 6.25, 6.26, 6.27, and
6.28.

It can be seen from the results that our proposed approaches achieved superior performance
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when the average risk-adjusted reward metrics were used. This was expected since our
approach sought to maximise the risk-adjusted returns used as its objective function.

Rewards-only Metrics

Figure 6.11 graphically represents the final portfolio value for each test ID used. It can be
observed that our proposed approach achieved a superior Final Portfolio Value across the
majority of the Test IDs used.
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3CNNRL+ PVM
5CNNRL+ PVM

5CNNRL+ PVM +mDSR
5CNNRL+MMWR

5CNNRL+MMWR +mDSR
CapsNetRL+ PVM

CapsNetRL+ PVM +mDSR
CapsNetRL+MMWR

CapsNetRL+MMWR +mDSR

Figure 6.11: Comparison of the model performance on the Final portfolio value (Pf ) for
each Test ID used

It can be observed from Table 6.4 that for the test 1 set, the application of CapsNet with
the Portfolio vector single memory and our Markov cumulative Differential Sharpe Ratio
(CapsNetRL + PVM +mDSR) achieved the best overall results in all the rewards-only
metrics used. It achieved a Mean Portfolio value of £23,126 which represented a gain of
15.63% relative to the initial amount of £20,000 initial investment made. The final portfolio
value gained for the same model was £23,049 with a percentage increase of 15.24% on the
initial invested amount of £20,000. The secured portfolio had the least performance in all
the reward-only metrics used, with an MPV of £20077, an FPV of £20154, a percentage
increase in the mean portfolio value (%∆M) of 0.39% and a percentage increase in the
final portfolio value (%∆F) of 0.77%. The metrics of the baseline model were; an MPV of
£21008, Pf of £21609, a percentage increase in changes in the mean portfolio value (%∆M)
of 5% and a percentage increase in changes in the final portfolio value (%∆F) of 8%.

Also, for Test ID 2 shown in table 6.5, which corresponded with the global recession of
the 2008-2009 subprime market, had a decline in all the metrics for all models used except
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Test ID Model Metric
MPV Pf %∆M %∆F

Test 1

Secured port 20077 20154 0.00385 0.0077
Baseline Portfolio 21008 21609 0.050 0.0805
3CNNRL + PVM 21030 21664 0.052 0.0832
5CNNRL + PVM 21027 21660 0.051 0.083
5CNNRL + PVM + mDSR 20795 22564 0.040 0.1282
5CNNRL + MMWR 21138 21848 0.057 0.0924
5CNNRL + MMWR+ mDSR 21138 21848 0.057 0.0924
CapsNetRL + PVM 20743 22396 0.037 0.1198
CapsNetRL + PVM + mDSR 23126 23049 0.156 0.1525
CapsNetRL + MMWR 20973 21573 0.049 0.0787
CapsNetRL + MMWR+ mDSR 21138 21848 0.057 0.0924

Table 6.4: Performance evaluation of all models using Test ID of test 1 data for portfolio
Reward-only metrics

the secured portfolio model because the amount invested was not exposed to the harsh
market conditions at the time. For all the remaining 10 models that were exposed to
the market, our proposed Markov Differential Sharpe Ratio on the CapsNetRL model and
the Multi-Memory Weight Reservoir (5CNNRL + DMWR + mDSR) achieved the best
overall results in all metrics used. The application of CapsNet with the Multi-Memory
Weight Reservoir and our Markov Differential Sharpe Ratio (CapsNetRL + MMWR +
mDSR) achieved the best MPV and %∆M of £20,909 and 0.045 respectively. Apart from
the secured portfolio model, the final portfolio value gained for the CapsNetRL + MMWR
+ mDSR model was £19,882, which was the highest gained for all other models and was
75.15% in excess of the comparative 5CNNRL + MMWR+ mDSR model. It was also 8.83%
larger than the FPV of the baseline model. Likewise, It can be observed from the test 3
set shown in table 6.6 that; the application of either the CapsNet or 5CNNRL with the
Multi-Memory Weight Reservoir and our Markov Differential Sharpe Ratio (CapsNetRL
+ MMWR +mDSR or 5CNNRL + MMWR +mDSR) both achieved the highest MPV,
Pf , %∆M and %∆F with values £33,004, £42,601, 65% and 113.01% respectively. This
corresponded to an increase of 31 % and 52.70% above the MPV and Pf for the baseline
model, respectively. It can be observed from the test 4 set shown in table 6.7 that; the
application of our proposed CapsNetRL + MMWR + mDSR achieved an MPV, Pf , %∆M
and %∆F values of £26,631, £28,037, 33.2% and 40.19% respectively as compared to
£22587, £24,201, 12.9% and 21.01% respectively for the Baseline model.

It can be observed from the test 5 set shown in table 6.8 that the Secured Portfolio’s MPV
of £20,402 and Pf of £20,810 indicate relatively stable performance. This model achieved
%∆ M and %∆ F values of 2. 01% and 4. 05%, respectively. It can also be seen that the
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Test ID Model Metric
MPV Pf %∆M %∆F

Test 2

Secured port 20158 20316 0.0079 0.0158
Baseline Portfolio 19534 18268 -0.023 -0.0866
3CNNRL + PVM 19436 18044 -0.028 -0.0978
5CNNRL + PVM 19401 17939 -0.030 -0.1031
5CNNRL + PVM +mDSR 16925 14434 -0.154 -0.2783
5CNNRL + MMWR 19431 18028 -0.028 -0.0986
5CNNRL + MMWR+ mDSR 15037 11351 -0.248 -0.4325
CapsNetRL + PVM 19493 18156 -0.025 -0.0922
CapsNetRL + PVM + mDSR 15037 11351 -0.248 -0.4325
CapsNetRL + MMWR 19412 17994 -0.029 -0.1003
CapsNetRL + MMWR+ mDSR 20909 19882 0.045 -0.0059

Table 6.5: Performance evaluation of all models using test 2 Test ID data using Portfolio
Reward-only metrics

Test ID Model Metric
MPV Pf %∆M %∆F

Test 3

Secured port 20239 20479 0.0119 0.02395
Baseline Portfolio 25191 27899 0.260 0.3950
3CNNRL + PVM 25410 28252 0.271 0.4126
5CNNRL + PVM 25333 28134 0.267 0.4067
5CNNRL + PVM + mDSR 25708 28683 0.285 0.4342
5CNNRL + MMWR 33004 42601 0.650 1.1301
5CNNRL + MMWR+ mDSR 33004 42601 0.650 1.1301
CapsNetRL + PVM 24762 27312 0.238 0.3656
CapsNetRL + PVM + mDSR 25172 27729 0.259 0.3865
CapsNetRL + MMWR 21827 20899 0.091 0.0445
CapsNetRL + MMWR+ mDSR 33004 42601 0.650 1.1301

Table 6.6: Performance evaluation of all models using Test 3 Test ID data using portfolio
reward-only metrics

Baseline Portfolio model was also able to achieve an MPV of £21,560 and Pf of £23,468,
with %∆ M and %∆ F values of 7. 80% and 17. 34% respectively. The 3CNNRL + PVM
model also obtained an MPV of £21,930 and Pf of £24,717, with %∆M and %∆F values
of 9.70% and 23.59% respectively. The 5CNNRL + PVM with an MPV of £21,672 and Pf

of £23,795, this model shows %∆M and %∆F values of 8.40% and 18.98%. The 5CNNRL
+ PVM + mDSR achieved an MPV of £21,930 and Pf of £24,717, the values of this model
%∆ M and %∆ F are 9. 70% and 23. 59%. The 5CNNRL + MMWR model produced an
MPV of £21,603 and a final portfolio value, Pf of £23,625, with %∆M and %∆F values
of 8.00% and 18.13%. The 5CNNRL + MMWR+ mDSR model This model has an MPV
of £18,773 and Pf of £15,270, resulting in %∆M and %∆F values of -6.10% and -23.65%.
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Test ID Model Metric
MPV Pf %∆M %∆F

Test 4

Secured port 20320 20644 0.016 0.0322
Baseline Portfolio 22587 24201 0.129 0.2101
3CNNRL + PVM 22882 24684 0.144 0.2342
5CNNRL + PVM 22836 24611 0.142 0.2306
5CNNRL + PVM +mDSR 22188 25255 0.109 0.2628
5CNNRL + MMWR 22579 24207 0.129 0.2104
5CNNRL + MMWR+ mDSR 28055 27843 0.403 0.3922
CapsNetRL + PVM 22501 24135 0.125 0.2068
CapsNetRL + PVM + mDSR 24815 26908 0.241 0.3454
CapsNetRL + MMWR 22645 24310 0.132 0.2155
CapsNetRL + MMWR+ mDSR 26631 28037 0.332 0.4019

Table 6.7: Performance evaluation of all models using Test 4 Test ID data using portfolio
reward-only metrics

Likewise, the CapsNetRL + PVM model obtained an MPV of £21,342 and Pf of £22,843,
with %∆M and %∆F values of 6.70% and 14.22% respectively. The CapsNetRL + PVM
+ mDSR: With an MPV of £21,594 and Pf of £23,602, this model’s %∆M and %∆F
values are 8.00% and 18.01%. The CapsNetRL + MMWR model was the best performer
with an MPV of £23,138 and Pf of £28,499, with corresponding %∆M and %∆F values of
15.70% and 42.50% respectively. Our proposed CapsNetRL + MMWR+ mDSR model was
also able to achieve an MPV of £22,316 and Pf of £25,989, resulting in %∆M and %∆F
values of 11.60% and 29.95% respectively. Comparing the models based on their MPV
and Pf values, we can see that the CapsNetRL + MMWR model consistently outperforms
other models in terms of generating profits. It achieved the highest MPV and Pf values,
indicating better portfolio performance and growth. Furthermore, comparing the %∆M
and %∆F values, the ”CapsNetRL + MMWR” model also stands out. It achieves the
highest positive percentage changes in both metrics, indicating substantial average returns
and cumulative profits over the investment period. It is noteworthy that the 5CNNRL +
MMWR+ mDSR model demonstrates negative %∆M and %∆F values, implying that it
may have experienced losses during the trading period.

It can be observed from the results of test 6 set shown in table 6.9 that; the application
of CapsNet with the Multi-Memory Weight Reservoir and our Markov Differential Sharpe
Ratio (CapsNetRL + MMWR + mDSR) achieved the best MPV and %∆M of £20,909 and
0.045 respectively. Apart from the secured portfolio model, the final portfolio value gained
for the CapsNetRL + MMWR + mDSR model was £19,882, which was the highest gain
for all other models and was 75.15% in excess of the comparative 5CNNRL + MMWR+
mDSR model. It was also 8.83% larger than the FPV of the baseline model.
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Test ID Model Metric
MPV Pf %∆M %∆F

Test 5

Secured port 20402 20810 0.0201 0.0405
Baseline Portfolio 21560 23468 0.078 0.1734
3CNNRL + PVM 21930 24717 0.097 0.2359
5CNNRL + PVM 21672 23795 0.084 0.1898
5CNNRL + PVM +mDSR 21930 24717 0.097 0.2359
5CNNRL + MMWR 21603 23625 0.080 0.1813
5CNNRL + MMWR+ mDSR 18773 15270 -0.061 -0.2365
CapsNetRL + PVM 21342 22843 0.067 0.1422
CapsNetRL + PVM + mDSR 21594 23602 0.080 0.1801
CapsNetRL + MMWR 23138 28499 0.157 0.4250
CapsNetRL + MMWR+ mDSR 22316 25989 0.116 0.2995

Table 6.8: Performance evaluation of all models using Test 5 Test ID data using portfolio
reward-only metrics

Test ID Model Metric
MPV Pf %∆M %∆F

Test 6

Secured Port 20484 20977 0.0242 0.04885
Baseline Portfolio 21725 20945 0.086 0.0473
3CNNRL + PVM 21772 20898 0.089 0.449
5CNNRL + PVM 21748 20903 0.087 0.0444
5CNNRL + PVM +mDSR 22777 10998 0.139 0.1389
5CNNRL + MMWR 21973 20898 0.099 0.0447
5CNNRL + MMWR+ mDSR 22326 22726 0.116 0.1363
CapsNetRL + PVM 21726 20903 0.086 0.0452
CapsNetRL + PVM + mDSR 21738 20902 0.087 0.451
CapsNetRL + MMWR 26458 29182 0.323 0.4591
CapsNetRL + MMWR+ mDSR 23146 23928 0.157 0.1964

Table 6.9: Performance evaluation of all models using Test 6 Test ID data using portfolio
Reward-only metrics

From the results of the test set 7 shown in table 6.10, the Secured Portfolio, achieved an
MPV of £20,567 and a Final Portfolio Value (Pf ) of £21,145. The Baseline Portfolio also
achieved an MPV of £20,194 and a Final Portfolio Value (Pf ) of £22,653. Also, the MPV
of £20,1283 obtained by the CNNRL + PVM model and the final portfolio value (Pf ) of
£22,696 were lower than the respective value of the baseline model. The percentage change
metrics indicate marginal improvements in both MPV and Pf . It can also be seen that the
%∆M and %∆F for this model were 0.006 and 0.1348 respectively.

On the other hand, the 5CNNRL + PVM model achieved an MPV of £20,124 and a Final
Portfolio Value (Pf ) of £22,710. It can also be seen that the %∆M and %∆F for this model
were 0.006 and 0.1355 respectively. The 5CNNRL + PVM + mDSR model achieved an
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MPV of £22,134 and a Final Portfolio Value (Pf ) of £27,968. The corresponding %∆M
and %∆F associated with this model were 0.107 and 0.3984, respectively. The 5CNNRL +
MMWR model outperformed other variants, achieving the highest MPV of £22,349 and the
highest Final Portfolio Value (Pf ) of £27,849. Similar to the previous model, the 5CNNRL
+ MMWR+ mDSR model achieved the same highest MPV of £22,349 and the highest final
portfolio value (Pf ) of £27,849. Meanwhile, the corresponding CapsNetRL + PVM model
achieved an MPV of £20,116 and a Final Portfolio Value (Pf ) of £22,731. Finally, the
CapsNetRL + PVM + mDSR, the CapsNetRL + MMWR and CapsNetRL + MMWR +
mDSR models achieved the same highest MPV of £22,349 and the highest Final Portfolio
Value (Pf ) of £27,849 as the 5CNNRL + MMWR variants. This suggests that the CapsNet
architecture, when combined with mDSR, can achieve competitive returns.

Test ID Model Metric
MPV Pf %∆M %∆F

Test 7

Secured Portfolio 20567 21145 0.02835 0.05725
Baseline Portfolio 20194 22653 0.010 0.1327
3CNNRL + PVM 20128 22696 0.006 0.1348
5CNNRL + PVM 20124 22710 0.006 0.1355
5CNNRL + PVM +mDSR 22134 27968 0.107 0.3984
5CNNRL + MMWR 22349 27849 0.117 0.3925
5CNNRL + MMWR+ mDSR 22349 27849 0.117 0.3925
CapsNetRL + PVM 20116 22731 0.006 0.1366
CapsNetRL + PVM + mDSR 22349 27849 0.117 0.3925
CapsNetRL + MMWR 22349 27849 0.117 0.3925
CapsNetRL + MMWR+ mDSR 22349 27849 0.117 0.3925

Table 6.10: Performance evaluation of all models using Test 7 Test ID data using portfolio
reward-only metrics

The results of the test ID: Test set 7 discussed above is pictorially represented in Figure
6.12 to highlight and compare the performance of the models with the highest MPV and
the highest Pf together with that of the Secured and Baseline portfolio models. These
models are CapsNetRL + MMWR + mDSR and CapsNetRL + MMWR versus 5CNNRL
+ MMWR + mDSR and 5CNNRL + MMWR. The results of the performance on CapsNet
+ PVM +m mDSR versus 5CNNRL + PVM + mDSR were also added to the plots. It can
be seen that the application of the Markov Differential Sharpe Ratio and the multi-memory
weight reservoir contributed to the increase in the performance of both the CNN-based and
CapsNet-based models. These enhancements contribute to higher returns and improved
reward-only performance.
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(a) comparison of the
performance of Cap-
sNet+MMWR+mDSR
with secured and Baseline
Portfolios

(b) comparison of perfor-
mance of CapsNet+MMWR
model with secured and Base-
line portfolios

(c) comparison of
performance of Cap-
sNet+PVM+mDSR model
with secured and Baseline
portfolios

(d) comparison of the
performance of 5CN-
NRL+MMWR+mDSR with
secured and Baseline portfo-
lios

(e) Comparison of perfor-
mance of 5CNNRL+MMWR
model with secured and Base-
line portfolios

(f) Comparison of
performance of 5CN-
NRL+PVM+mDSR model
with secured and Baseline
portfolios

Figure 6.12: Comparison of the performance of our proposed model using Reward only the
Test ID: Test Set 7. The top row models are the CapsNet-based RL model and the bottom
roles are the CNN-based models

Analysis of the effectiveness of Models on MPV: For the Test 1 set in Table 6.4, the
mDSR used in the 5CNNRL + PVM + mDSR model did not outperform the baseline reward
function used in the 5CNNRL + PVM model, since the total MPV obtained was £20,795
compared to the baseline line reward, which was able to obtain an MPV of £21,027 while
there was no difference in the MPV value when the 5CNNRL + MMWR and 5CNNRL
+ MMWR+ mDSR models were compared with each other. Both achieved an MPV of
£21,138. However, there was a significant increase in MPV when the mDSR used in the
CapsNetRL + PVM + mDSR model was compared with the baseline reward model used in
the CapsNetRL + PVM model. The CapsNetRL + PVM + mDSR model obtained an MPV
of £23,126, which is 11. 49% higher than that of the CapsNetRL + PVM model, which
had an MPV of £20,743. Again, MPV increased when the mDSR used in the CapsNetRL
+ MMWR + mDSR model was compared with the baseline reward model used in the
CapsNetRL + MMWR model. The CapsNetRL + MMWR + mDSR model obtained an
MPV of £21,138, which is 0. 78% higher than that of the CapsNetRL + MMWR model,
which had an MPV of £20,973.
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For the Test 2 set in Table 6.5, the mDSR used in the models 5CNNRL + PVM + mDSR,
5CNNRL + MMWR+ mDSR and 5CNNRL + PVM+ mDSR unperformed all the baseline
reward functions used in model 5CNNRL + PVM, 5CNNRL + MMWR, CapsNetRL +
PVM, respectively, except the model, CapsNetRL + MMWR + mDSR that obtained an
MPV of £20,909 which was 7.7 % bigger than that of the corresponding model, CapsNetRL
+ MMWR 19,412.

For Test 3 set in Table 6.6, the mDSR used in model 5CNNRL + PVM + mDSR outper-
formed the baseline reward function used in model 5CNNRL + PVM, obtaining a total
MPV of £25,708 compared to the baseline reward which had an MPV of £25,333. There
was also no difference in the MPV value when the models 5CNNRL + MMWR and 5CN-
NRL + MMWR+ mDSR were compared. Both achieved an MPV of £33,004. There was,
however, an increase in MPV when the mDSR used in the CapsNetRL + PVM + mDSR
model was compared with the baseline reward model used in the CapsNetRL + PVM
model. The CapsNetRL + PVM + mDSR model obtained an MPV of £25,172 which is
1.66% higher than that of the CapsNetRL + PVM model, which had an MPV of £24,762.
Again, the MPV increased when the mDSR used in the CapsNetRL + MMWR + mDSR
model was compared with the baseline reward model used in the CapsNetRL + MMWR
model. The CapsNetRL + MMWR + mDSR model obtained an MPV of £33,004 which
is 51. 21% higher than that of the CapsNetRL + MMWR model, which had an MPV of
£21,827.

For Test 4 set in Table 6.7, the mDSR used in model 5CNNRL + PVM + mDSR failed
to outperform the baseline reward function used in model 5CNNRL + PVM since the
total MPV obtained was £22,188 compared to the baseline line reward which was able
to obtain an MPV of £22,836. There was an increase in the value of MPV when models
5CNNRL + MMWR and 5CNNRL + MMWR+ mDSR were compared; with the model
5CNNRL + MMWR+ mDSR achieving an MPV of £28,055 while that of 5CNNRL +
MMWR achieved an MPV of £22,579. There was also an increase in MPV when the
mDSR used in the CapsNetRL + PVM + mDSR model was compared with the baseline
reward model, CapsNetRL + PVM. The CapsNetRL + PVM + mDSR model obtained an
MPV of £24,815, which is 10. 28% in excess of that of the CapsNetRL + PVM model,
which had an MPV of £22,501. Finally, MPV improved when the mDSR used in the
CapsNetRL + MMWR + mDSR model was compared with the baseline reward model
used in the CapsNetRL + MMWR model. The CapsNetRL + MMWR + mDSR model
obtained an MPV of £26,631, which is 17. 60% greater than that of the CapsNetRL +
MMWR model, which had an MPV of £22,645.

For the Test 5 set in Table 6.8, the mDSR used in model 5CNNRL + PVM + mDSR
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outperformed the baseline reward function used in model 5CNNRL + PVM, obtaining a
total MPV of £21,930 compared to the baseline reward which had an MPV of £21,672.
The mDSR in the 5CNNRL + MMWR + mDSR under-performed the 5CNNRL + MMWR
by 15.07% with a decrease in MPV of £18,773. There was, however, a slight increase in
the MPV when the mDSR used in the CapsNetRL + PVM + mDSR model was compared
with the baseline reward model used in the CapsNetRL + PVM model. The CapsNetRL
+ PVM + mDSR model obtained an MPV of £21,594, which is 1. 18% higher than that
of the CapsNetRL + PVM model, which had an MPV of £21,342. Finally, the MPV for
the CapsNetRL + MMWR + mDSR model underperformed by 3. 6 % compared to the
baseline reward model used in the CapsNetRL + MMWR model, which had an MPV of
£23,138.

For Test 6 set in Table 6.9, the mDSR used in model 5CNNRL + PVM +mDSR outper-
formed the baseline reward function used in model 5CNNRL + PVM, obtaining a total
MPV of £22,777 compared to the baseline reward, which had an MPV of £21,748. The
mDSR in the 5CNNRL + MMWR+ mDSR again outperformed the 5CNNRL + MMWR
by 1.61% with an MPV of £22,326. There was also a slight increase in MPV when the
mDSR used in the CapsNetRL + PVM + mDSR model was compared with the baseline
reward model used in the CapsNetRL + PVM model. The CapsNetRL + PVM + mDSR
model obtained an MPV of £21,738, which is 0. 055% higher than that of the CapsNetRL
+ PVM model, which had an MPV of £21,726. Finally, the MPV for the CapsNetRL +
MMWR + mDSR model underperformed by 14. 31 % compared to the baseline reward
model used in model CapsNetRL+MMWR, which had an MPV of £26,458.

Finally, for Test 7 set in Table 6.10, the mDSR used in model 5CNNRL + PVM +mDSR
outperformed the baseline reward function used in model 5CNNRL + PVM obtaining a
total MPV of £22,134 compared to the baseline reward which had an MPV of £20,124.
There was also no difference in the value of MPV when models 5CNNRL + MMWR and
5CNNRL + MMWR+ mDSR were compared. Both achieved an MPV of £22,349. There
was, however, an increase in MPV when the mDSR used in the CapsNetRL + PVM +
mDSR model was compared with the baseline reward model used in the CapsNetRL +
PVM model. The CapsNetRL + PVM + mDSR model obtained an MPV of £22,349
which is 11.10% in excess of that of the CapsNetRL + PVM model, which had an MPV
of £20,116. There was no difference in the MPV used with the CapsNetRL + MMWR +
mDSR model and the baseline reward model CapsNetRL + MMWR, both of them achieved
an MPV of £22,349.
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Risk-adjusted rewards Metrics

As can be seen in Table 6.11 for the Test 1 set, the CapsNetRL + PVM + mDSR model
had the highest Sharpe ratio of 2.41, which is a remarkable improvement compared to that
of the baseline portfolio of 1.806 and is 38. 510% in excess of the Sharpe ratio obtained
from the 3CNNRL + PVM model used by Jiang et al. (2017). The CapsNetRL + MMWR
model also had the largest Mean Reward-to-CVAR Ratio (∆M-CVaR) of 8.5 which is 232%
and 106. 31% higher than the corresponding metric from the 5CNNRL + MMWR and
3CNNRL + PVM models, respectively.

Test ID Model Sharpe Ratio Ratios (0.95)
∆F-VaR ∆M-CVaR

Test 1

Baseline Portfolio 1.806 8.74 4.20
3CNNRL + PVM 1.740 8.490 4.12
5CNNRL + PVM 1.742 8.47 4.11
5CNNRL + PVM + mDSR 0.932 6.46 1.59
5CNNRL + MMWR 1.67 5.25 2.56
5CNNRL + MMWR+ mDSR 1.67 5.25 2.56
CapsNetRL + PVM 0.92 6.34 1.55
CapsNetRL + PVM + mDSR 2.41 5.33 4.32
CapsNetRL + MMWR 1.74 4.14 8.50
CapsNetRL + MMWR + mDSR 1.67 2.56 5.25

Table 6.11: Performance evaluation using risk-adjusted rewards Metrics Test ID; Test 1

For Test ID 2 in Table 6.12, the proposed CapsNetRL + MMWR + mDSR achieved the
highest Sharpe ratio of 0.650, ∆F-VaR ratio of -0.22 and highest ∆M-CVaR ratio of 1.34,
outperforming other models. The corresponding 5CNNRL + MMWR +mDSR had a
Sharpe ratio of -2.73, ∆F-VaR ratio of -10.95 and ∆M-CVaR ratio of -5. Test ID: Test
3 shown in Table 6.13 had the 5CNNRL + PVM + mDSR model with the highest Sharpe
ratio of 2.00. This model excelled in risk-adjusted returns, showcasing its adaptability to dy-
namic market conditions. The application of the Markov Differential Sharpe Ratio (mDSR)
significantly improved the performance when applied to the 5CNNRL + PVM model, as
seen in the higher Sharpe ratio and the higher ∆ M-CVaR ratio of 15.68. No other model
was able to surpass the ∆ F-VaR ratio of 30.38 achieved by the baseline model. As can be
seen in Table 6.14 for Test ID 4, the CapsNetRL + MMWR model achieved the highest
Sharpe ratio of 1.630, indicating that MMWR integration enhances risk-adjusted returns.
The CapsNetRL + MMWR+ mDSR model also exhibited the highest ∆M-CVaR ratio of
10.51, highlighting its effectiveness in providing higher returns relative to CVaR. For Test
ID 5 in Table 6.15, the CapsNet + MMWR model achieved the highest ∆F-VaR ratio of
21.25 and highest ∆M-CVaR ratio of 6.21, signifying its strong risk-adjusted performance.
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Test ID Model Sharpe Ratio Ratios (0.95)
∆F-VaR ∆M-CVaR

Test 2

Baseline Portfolio -0.72 -5.97 -1.28
3CNNRL + PVM -0.79 -6.27 -1.43
5CNNRL + PVM -0.81 -6.28 -1.45
5CNNRL + PVM + mDSR -2.10 -5.29 -7.73
5CNNRL + MMWR -0.79 -6.24 -1.46
5CNNRL + MMWR+ mDSR -2.73 -10.95 -5.00
CapsNetRL + PVM -0.730 -5.99 -1.31
CapsNetRL + PVM + mDSR -2.374 -10.95 -5.39
CapsNetRL + MMWR -0.809 -6.27 -1.46
CapsNetRL + MMWR + mDSR 0.650 -0.22 1.34

Table 6.12: Performance evaluation using risk-adjusted rewards Metrics Test ID; Test 2

Test ID Model Sharpe Ratio Ratios (0.95)
∆F-VaR ∆M-CVaR

Test 3

Baseline Portfolio 1.91 30.38 15.54
3CNNRL + PVM 1.891 29.68 15.46
5CNNRL + PVM 1.893 29.69 15.48
5CNNRL + PVM + mDSR 2.00 30.15 15.68
5CNNRL + MMWR 1.610 23.79 10.85
5CNNRL + MMWR+ mDSR 1.610 23.79 10.85
CapsNetRL + PVM 1.88 29.48 15.24
CapsNetRL + PVM + mDSR 1.9 28.63 15.18
CapsNetRL + MMWR 1.80 2.99 4.87
CapsNetRL + MMWR + mDSR 1.61 23.79 10.85

Table 6.13: Performance evaluation using Risk-adjusted Rewards Metrics Test ID; Test 3

Test ID Model Sharpe Ratio Ratios (0.95)
∆F-VaR ∆M-CVaR

Test 4

Baseline Portfolio 1.629 16.80 8.19
3CNNRL + PVM 1.601 16.26 7.92
5CNNRL + PVM 1.602 17.21 8.39
5CNNRL + PVM + mDSR 1.025 6.49 4.79
5CNNRL + MMWR 1.606 7.96 2.62
5CNNRL + MMWR+ mDSR 1.520 16.47 8.01
CapsNetRL + PVM 1.578 16.41 7.87
CapsNetRL + PVM + mDSR 1.500 15.92 8.82
CapsNetRL + MMWR 1.630 16.58 8.02
CapsNetRL + MMWR + mDSR 1.560 16.07 10.51

Table 6.14: Performance evaluation using risk-adjusted rewards Metrics Test ID; Test 4
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The proposed CapsNet + MMWR+ mDSR followed closely as the second best-performing
model with ∆F-VaR ratio of 17.01 and the highest ∆M-CVaR ratio of 5.23. The 5CN-
NRL + PVM + mDSR model achieved the highest Sharpe Ratio of 1.171, indicating the
effectiveness of the proposed Markov Differential Sharpe Ratio. Similarly, for Test ID 6

Test ID Model Sharpe Ratio Ratios (0.95)
∆F-VaR ∆M-CVaR

Test 5

Baseline Portfolio 1.700 14.57 5.20
3CNNRL + PVM 1.171 6.11 1.99
5CNNRL + PVM 1.340 14.06 4.92

5CNNRL + PVM + mDSR 1.171 6.11 1.99
5CNNRL + MMWR 1.350 14.22 4.99

5CNNRL + MMWR+ mDSR -0.750 -11.26 -2.34
CapsNet + PVM 1.380 12.52 4.69

CapsNet + PVM + mDSR 1.353 14.24 5.01
CapsNet + MMWR 1.030 21.25 6.21

CapsNet + MMWR + mDSR 1.105 17.01 5.23

Table 6.15: Performance evaluation using risk-adjusted rewards Metrics Test ID; Test 5

in Table 6.16, the CapsNet + MMWR model achieved the highest Sharpe ratio of 2.200,
with the corresponding highest ∆F-VaR ratio of 20.87 and the highest ∆M-CVaR ratio of
11.78. This suggests that our proposed MMWR integration enhances risk-adjusted returns.
The proposed CapsNet + MMWR + mDSR closely followed as the second best performing
model with a Sharpe ratio of 1.881, ∆F-VaR ratio of 11.16, and the highest ∆ M-CVaR
ratio of 7.05. Finally, for Test ID 7 in Table 6.17, the CapsNetRL + PVM + mDSR model

Test ID Model Sharpe Ratio Ratios (0.95)
∆F-VaR ∆M-CVaR

Test 6

Baseline Portfolio 1.878 4.14 5.95
3CNNRL + PVM 1.815 3.62 5.68
5CNNRL + PVM 1.795 3.39 5.30
5CNNRL + PVM + mDSR 1.770 6.20 4.92
5CNNRL + MMWR 1.810 3.55 0.62
5CNNRL + MMWR+ mDSR 1.770 6.08 4.12
CapsNet + PVM 1.830 3.78 5.72
CapsNet + PVM + mDSR 1.83 3.74 5.72
CapsNet + MMWR 2.200 20.87 11.78
CapsNet + MMWR + mDSR 1.881 11.16 7.05

Table 6.16: Performance evaluation using Risk-adjusted rewards Metrics Test ID; Test 6

achieved the highest Sharpe ratio of 0.970, with the corresponding highest ∆F-VaR ratio of
18.79 and the highest ∆M-CVaR ratio of 3.91, indicating strong risk-adjusted returns. The
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introduction of the Markov Differential Sharpe Ratio (mDSR) 5CNNRL + PVM model
significantly improved model performance.

Test ID Model Sharpe Ratio Ratios (0.95)
∆F-VaR ∆M-CVaR

Test 7

Baseline Portfolio 0.157 11.95 0.49
3CNNRL + PVM 0.096 11.56 0.44
5CNNRL + PVM 0.092 11.48 0.42

5CNNRL + PVM + mDSR 0.970 18.79 3.91
5CNNRL + MMWR 0.720 13.30 3.13

5CNNRL + MMWR + mDSR 0.720 13.26 3.16
CapsNet + PVM 0.085 11.43 0.38

CapsNet + PVM + mDSR 0.720 13.26 3.16
CapsNet + MMWR 0.720 13.26 3.16

CapsNet + MMWR + mDSR 0.720 13.26 3.16

Table 6.17: Performance evaluation using risk-adjusted rewards Metrics Test ID; Test 7

To determine the overall performance of each model on all the test sets used and rank
them appropriately, the average of each risk-adjusted metric used, which are Sharpe ratio,
Mean Reward-to-CVaR Ratio and Final Reward-to-VaR Ratio for Test IDs; Test 1, Test
2, Test 3, Test 4, Test 5, Test 6 and Test 7 were plotted as shown in Figure 6.13. The
figure plots three different risk-adjusted return metrics on the same graph, allowing for a
direct comparison of how each model performs across these metrics. From the figure, it
can be observed that the CapsNet + MMWR + mDSR exhibited superior performance
over all the other models with an average Sharpe ratio of 1.314, Mean Reward-to-CVaR
Ratio of 5.81 and Final Reward-to-VaR Ratio of 12.33 across all the 7 test IDs. At the
other end of the spectrum is the 5CNNRL + MMWR + mDSR model, which achieved the
poorest average performance across all 7 test IDs with an average Sharpe ratio of 0.544,
Mean Reward-to-CVaR Ratio of 2.950 and Final Reward-to-VaR Ratio of 5.130.
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Figure 6.13: comparison of the average performance of the models for the Risk-adjusted
returns metrics for CapsNet-based and CNN-based models using the Average across all the
7 Test IDs for Sharpe ratio, Mean Reward-to-CVaR Ratio and Final Reward-to-VaR Ratio

Significance Test on Sharpe Ratio metric for the models

As part of the analysis of the performance of various models used, a pairwise comparisons
were conducted to determine if there are statistically significant differences between their
Sharpe ratios shown in tables 6.18, 6.19, 6.20 and 6.21 respectively. The t-test, a statistical
hypothesis test, was used for this purpose where it compared the models that used our
proposed techniques with the models that did not use our proposed techniques.

The results from the t-test statistics shown in Tables 6.18, 6.19, 6.20 and 6.21 respectively
provide important insights into the effectiveness of all the models including our proposed
CapsNetRL + MMWR+ mDSR against each other. None of the pairwise comparisons
between the models resulted in a p-value of less than 0.05, making the results from the
Sharpe ratio statistically insignificant. As a result, a null hypothesis that states that there
is no statistical difference between the mean Shape Ratio from each of the models could
not be rejected for any of the paired models including those containing our proposed Multi-
memory Weight Reservoir and mDSR.
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Models Comparison t-stats p-value Reject
null

Baseline Portfolio vs
3CNNRL + PVM 0.217705 0.831318 No

Baseline Portfolio vs
5CNNRL + PVM 0.181525 0.858986 No

Baseline Portfolio vs
5CNNRL + PVM +mDSR 0.573946 0.577289 No

Baseline Portfolio vs
5CNNRL + MMWR 0.105591 0.917677 No
Baseline Portfolio vs

5CNNRL + MMWR+ mDSR 0.865804 0.406973 No
Baseline Portfolio vs
CapsNetRL + PVM 0.375416 0.713927 No
Baseline Portfolio vs

CapsNetRL + PVM +mDSR 0.636079 0.538596 No
Baseline Portfolio vs

CapsNetRL + MMWR 0.524983 0.609183 No
Baseline Portfolio vs

CapsNetRL + MMWR+ mDSR -0.259967 0.801085 No
3CNNRL + PVM vs

5CNNRL + PVM -0.035606 0.972182 No
3CNNRL + PVM vs

5CNNRL + PVM +mDSR 0.388534 0.704899 No
3CNNRL + PVM vs
5CNNRL + MMWR -0.124458 0.903039 No

Table 6.18: Part 1 of the results of the pairwise comparison of the models’ performance
using the Sharpe Ratio metric using t-test statistics
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Models Comparison t-stats p-value Reject
null

3CNNRL + PVM vs
5CNNRL + MMWR+ mDSR 0.707425 0.495618 No

3CNNRL + PVM vs
CapsNetRL + PVM 0.153122 0.880853 No
3CNNRL + PVM vs

CapsNetRL + PVM +mDSR 0.470415 0.647913 No
3CNNRL + PVM vs

CapsNetRL + MMWR 0.315499 0.757823 No
3CNNRL + PVM vs

CapsNetRL + MMWR+ mDSR -0.54203 0.601663 No
5CNNRL + PVM vs

5CNNRL + PVM +mDSR 0.418086 0.683757 No
5CNNRL + PVM vs
5CNNRL + MMWR -0.086459 0.932547 No
5CNNRL + PVM vs

5CNNRL + MMWR+ mDSR 0.732292 0.480898 No
5CNNRL + PVM vs
CapsNetRL + PVM 0.189054 0.853221 No
5CNNRL + PVM vs

CapsNetRL + PVM +mDSR 0.493491 0.634156 No
5CNNRL + PVM +mDSR vs

5CNNRL + MMWR -0.508776 0.621348 No

Table 6.19: Part 2 of the results of the pairwise comparison of the models performance
using the Sharpe Ratio metric using t-test statistics
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Models Comparison t-stats p-value Reject
null

5CNNRL + PVM +mDSR vs
5CNNRL + MMWR+ mDSR 0.342527 0.738168 No
5CNNRL + PVM +mDSR vs

CapsNetRL + PVM -0.265231 0.795764 No
5CNNRL + PVM +mDSR vs
CapsNetRL + PVM +mDSR 0.112005 0.912722 No
5CNNRL + PVM +mDSR vs

CapsNetRL + MMWR -0.106842 0.916755 No
5CNNRL + PVM +mDSR vs

CapsNetRL + MMWR+ mDSR -0.889381 0.401364 No
5CNNRL + MMWR vs

5CNNRL + MMWR+ mDSR 0.816493 0.434719 No
5CNNRL + MMWR vs

CapsNetRL + PVM 0.289795 0.776938 No
5CNNRL + MMWR vs

CapsNetRL + PVM +mDSR 0.578027 0.576572 No
5CNNRL + MMWR vs
CapsNetRL + MMWR 0.451591 0.659851 No
5CNNRL + MMWR vs

CapsNetRL + MMWR+ mDSR -0.427558 0.678928 No

Table 6.20: Part 3 of the results of the pairwise comparison of the models performance
using the Sharpe Ratio metric using t-test statistics
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Models Comparison t-stats p-value Reject
null

5CNNRL + MMWR+ mDSR vs
CapsNetRL + PVM -0.605611 0.558812 No

5CNNRL + MMWR+ mDSR vs
CapsNetRL + PVM +mDSR -0.217993 0.83111 No

5CNNRL + MMWR+ mDSR vs
CapsNetRL + MMWR -0.460099 0.655033 No

5CNNRL + MMWR+ mDSR vs
CapsNetRL + MMWR+ mDSR -1.145958 0.289603 No

CapsNetRL + PVM vs
CapsNetRL + PVM +mDSR 0.361163 0.725533 No

CapsNetRL + PVM vs
CapsNetRL + MMWR 0.174782 0.864201 No
CapsNetRL + PVM vs

CapsNetRL + MMWR+ mDSR -0.763914 0.464966 No
CapsNetRL + PVM +mDSR vs

CapsNetRL + MMWR -0.21689 0.832406 No
CapsNetRL + PVM +mDSR vs
CapsNetRL + MMWR+ mDSR -0.904631 0.39535 No

CapsNetRL + MMWR vs
CapsNetRL + MMWR+ mDSR -0.911005 0.388102 No

Table 6.21: Part 4 of the results of the pairwise comparison of the models performance
using the Sharpe Ratio metric using t-test statistics

Risk-only Metric

This section provides an evaluation of different models used for each of the test IDs based
on VaR and CVaR at a confidence level of 95%. The Tables 6.22 to 6.28 below provide
valuable information on the risk profiles of different models in various trading time frames.
For Test ID 1 in Table 6.22, the Baseline Portfolio achieved the lowest VaR of 0.0092
and CVaR of 0.012, indicating a relatively low risk. Among the other models used, the
CapsNetRL + MMWR model was the best rated with the lowest VaR of 0.0092 and CVaR
of 0.01176, suggesting superior risk management. The 5CNNRL + PVM + mDSR model
has the highest VaR (0.01983) and CVaR (0.02506), indicating higher risk levels compared
to other models. For Test ID 2 in Table 6.23, the Baseline Portfolio obtained the lowest
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Test ID Model Risk (0.95)
VaR CVaR

Test 1

Baseline Portfolio 0.0092 0.012
3CNNRL + PVM 0.0098 0.01249
5CNNRL + PVM 0.0098 0.0125
5CNNRL + PVM + mDSR 0.01983 0.02506
5CNNRL + MMWR 0.01761 0.0222
5CNNRL + MMWR+ mDSR 0.0176 0.0222
CapsNetRL + PVM 0.0189 0.0239
CapsNetRL + PVM + mDSR 0.0286 0.03617
CapsNetRL + MMWR 0.0092 0.01176
CapsNetRL + MMWR + mDSR 0.0176 0.0222

Table 6.22: Performance evaluation using Risk-only metric for Test ID; Test 1

Test ID Model Risk (0.95)
VaR CVaR

Test 2

Baseline Portfolio 0.0145 0.01822
3CNNRL + PVM 0.0156 0.0197
5CNNRL + PVM 0.0164 0.0206
5CNNRL + PVM + mDSR 0.0526 0.0199
5CNNRL + MMWR 0.0158 0.01944
5CNNRL + MMWR+ mDSR 0.0395 0.0496
CapsNetRL + PVM 0.0154 0.0194
CapsNetRL + PVM + mDSR 0.0395 0.046
CapsNetRL + MMWR 0.016 0.02012
CapsNetRL + MMWR + mDSR 0.027 0.034

Table 6.23: Performance evaluation using Risk-only metric for Test ID; Test 2

VaR of 0.0145 and CVaR of 0.01822 among all the models used, indicating their ability
to minimise losses in the portfolios. For Test ID 3 in Table 6.24, the CapsNetRL + PVM
performed exceptionally well with the lowest VaR of 0.0124 and CVaR of 0.01562 achieved.
The 5CNNRL + MMWR and 5CNNRL + MMWR + mDSR models achieved the highest
VaR and CVaR values of 0.0475 and 0.05994 respectively. For Test ID 4 in Table 6.25, the
Baseline Portfolio achieved the best results in terms of the VaR and CVaR where the lowest
values of (0.0125 and 0.0158 were obtained.

In Test ID 5 shown in 6.26, CapsNetRL + PVM exhibited the lowest VaR of 0.01135 and
CVaR of 0.0143, indicating a lower risk compared to the models. Furthermore, the baseline
model was the second-best performing model with a VaR of 0.0119 and CVaR of 0.015.
For this test ID, the 3CNNRL + PVM model exhibited high VaR and CVaR of 0.0386 and
0.0484 respectively, suggesting a higher potential for portfolios to incur losses when used.
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Test ID Model Risk (0.95)
VaR CVaR

Test 3

Baseline Portfolio 0.013 0.0167
3CNNRL + PVM 0.0139 0.0175
5CNNRL + PVM 0.0137 0.01723
5CNNRL + PVM + mDSR 0.0144 0.0182
5CNNRL + MMWR 0.0475 0.05994
5CNNRL + MMWR+ mDSR 0.0475 0.05994
CapsNetRL + PVM 0.0124 0.01562
CapsNetRL + PVM + mDSR 0.0135 0.01703
CapsNetRL + MMWR 0.01487 0.01875
CapsNetRL + MMWR + mDSR 0.0475 0.05994

Table 6.24: Performance evaluation using Risk-only metric for Test ID; Test 3

Test ID Model Risk (0.95)
VaR CVaR

Test 4

Baseline Portfolio 0.0125 0.0158
3CNNRL + PVM 0.0144 0.0182
5CNNRL + PVM 0.0134 0.0169
5CNNRL + PVM + mDSR 0.033 0.0417
5CNNRL + MMWR 0.01277 0.0161
5CNNRL + MMWR+ mDSR 0.0448 0.05642
CapsNetRL + PVM 0.0126 0.01588
CapsNetRL + PVM + mDSR 0.0217 0.0273
CapsNetRL + MMWR 0.013 0.0165
CapsNetRL + MMWR + mDSR 0.025 0.03155

Table 6.25: Performance evaluation using Risk-only metric for Test ID; Test 4

Test ID Model Risk (0.95)
VaR CVaR

Test 5

Baseline Portfolio 0.0119 0.015
3CNNRL + PVM 0.0386 0.0484
5CNNRL + PVM 0.0135 0.017
5CNNRL + PVM + mDSR 0.0386 0.0484
5CNNRL + MMWR 0.01275 0.01605
5CNNRL + MMWR+ mDSR 0.021 0.0262
CapsNetRL + PVM 0.01135 0.0143
CapsNetRL + PVM + mDSR 0.01265 0.0159
CapsNetRL + MMWR 0.02 0.02525
CapsNetRL + MMWR + mDSR 0.0176 0.02216

Table 6.26: Performance evaluation using Risk-only metric for Test ID; Test 5

In Test ID 6 shown in 6.27, the Baseline Portfolio achieved the lowest VaR of 0.0114
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Test ID Model Risk (0.95)
VaR CVaR

Test 6

Baseline Portfolio 0.0114 0.0145
3CNNRL + PVM 0.0124 0.0156
5CNNRL + PVM 0.01309 0.01649
5CNNRL + PVM + mDSR 0.0224 0.0282
5CNNRL + MMWR 0.01258 0.01585
5CNNRL + MMWR + mDSR 0.0224 0.0282
CapsNetRL + PVM 0.01195 0.0151
CapsNetRL + PVM + mDSR 0.01206 0.01519
CapsNetRL + MMWR 0.022 0.0274
CapsNetRL + MMWR+ mDSR 0.0176 0.0223

Table 6.27: Performance evaluation using Risk-only metric for Test ID; Test 6

and CVaR of 0.0145. The 5CNNRL + PVM + mDSR and 5CNNRL + MMWR + mDSR
models exhibited relatively high-risk levels with a VaR and CVaR of 0.0224 and 0.0282
respectively.

Test ID Model Risk (0.95)
VaR CVaR

Test 1

Baseline Portfolio 0.0111 0.014
3CNNRL + PVM 0.01166 0.0147
5CNNRL + PVM 0.0118 0.0148
5CNNRL + PVM + mDSR 0.0212 0.0273
5CNNRL + MMWR 0.0295 0.0372
5CNNRL + MMWR+ mDSR 0.0296 0.0372
CapsNetRL + PVM 0.01195 0.0151
CapsNetRL + PVM + mDSR 0.0296 0.0372
CapsNetRL + MMWR 0.0296 0.0372
CapsNetRL + MMWR+ mDSR 0.0296 0.0372

Table 6.28: Performance evaluation using Risk-only metric for Test ID; Test 7

Finally, for Test ID 7 shown in 6.28, the Baseline Portfolio model obtained the
lowest VaR of 0.0111 and CVaR of 0.014. The CapsNetRL + PVM achieved the second
lowest VaR of 0.0111 and CVaR of 0.014.

Figure 6.14 serves as a visual representation of the comparative evaluation of the VaR and
CVaR metrics used as the risk-only metrics in this thesis. It shows a detailed plot of the
VaR and CVaR values for both the CapsNet-based and CNN-based reinforcement learn-
ing (RL) models. The top row is dedicated to CapsNet-based models and their variants:
CapsNetRL +MMWR+ mDSR, CapsNetRL+PVM+mDSR and CapsNetRL + MMWR
models, while the bottom row represents CNN-based RL models and their respective varia-
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tions: 5CNNRL + MMWR + mDSR, 5CNNRL + PVM + mDSR and 5CNNRL + MMWR
models. Comparing the performance of the VaR and CVaR models within each row can
be used to assess how effective our proposed MMWR and mDSR are, in comparison to the
models with PVM and standard rewards respectively.

(a) demonstration of VaR
and CVaR Values obtained
from CapsNetRL + MMWR
+ mDSR model

(b) demonstration of VaR
and CVaR Values obtained
from CapsNetRL + PVM +
mDSR model

(c) demonstration of VaR
and CVaR Values obtained
from CapsNetRL + MMWR
model

(d) demonstration of VaR
and CVaR Values obtained
from 5CNNRL + MMWR +
mDSR model

(e) demonstration of VaR
and CVaR Values obtained
from 5CNNRL + PVM +
mDSR model

(f) demonstration of VaR and
CVaR Values obtained from
5CNNRL + MMWR model

Figure 6.14: Comparison of the Risk-only metrics showing VAR and CVAR values obtained
from our proposed CapsNet-based models in the upper rows and CNN-based RL models in
the lower row using Test ID 7.

6.7 Summary

This chapter has proposed effective techniques to improve the practice of financial risk
management using the reinforcement learning technique for portfolio optimisation and as-
set allocation. CapsNet was used to enforce and implement the investment policy using
an effective Dual Memory Weight Reservoir system and a specialised value-based defer-
ential Sharpe ratio-based reward function to achieve superior performance over existing
approaches. The introduction of the Differential Sharpe Ratio has been shown to be suit-
able for use as a reward function. The use of the Markov Differential Sharpe Ratio as a
reward function has resulted in better strategies because of its ability to lead to multi-step
maximisation of the Sharpe ratio that balances risk and returns. It is advantageous for
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online learning because of its ability to converge with speed and also its ability to adapt
to changing market conditions during live trading. Our proposed RL algorithm can consis-
tently produce better portfolio performance when risk has been taken into account. Even
though our proposed CapsNetRL is innovative and achieved superior performance, it has
some limitations which are:

• The integration of Deep Capsules Networks with RL adds significant complexity,
which can make the implementation of the model to be difficult and understand and
requires specialised knowledge in both deep learning and financial market dynamics.

• Due to the complex nature of the model, there is the requirement of substantial
computational resources for training and inference.

• The model’s performance may depend on the availability of high-quality data
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Chapter 7

Conclusion and Future Works

7.1 Recap of Research Objectives

In this final chapter, the main objectives of this thesis are revisited with a reflection on how
each chapter contributed to achieving these objectives. The overarching aim of this thesis
was to explore and investigate the problems inherent in the application of machine learning
techniques to financial risk management tasks. In this thesis, a comprehensive exploration
of the application of machine learning techniques to the complex area of financial risk
management has been carried out. By delving into the challenges posed by imbalanced data
sets in credit risk assessment, the challenges of volatility forecasting, and venturing into the
domain of portfolio optimisation through reinforcement learning, significant contributions
have been made to the field. This final chapter encapsulates the essence of our research
journey and outlines potential avenues for future research.

7.2 Summary of Thesis Achievements

The work has proposed the effective techniques necessary to overcome the problems of
data unavailability, imbalanced datasets, and noisy datasets inherent in the adaptation of
machine learning algorithms to financial risk management.

In Chapters 2 through 6, a comprehensive exploration of various machine learning
techniques and models aimed at improving portfolio optimisation and financial risk man-
agement has been conducted. Let us summarise the key findings from each chapter:
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In Chapter 2, a strong foundation was established by reviewing the existing literature
in the machine learning landscape. This included the background information on Logis-
tic Regression, background information on density estimation using the Gaussian Mixture
Model (GMM), background information on the use of deep learning models such as the
use of Long Short Term Memory (LSTM) and Generative Adversarial Networks (GAN) for
time-series forecasting, the background information on Continuous Wavelet Transform and
the basic concepts of reinforcement learning.

Chapter 3 also introduced the background of the financial risk management techniques
used in this thesis. It provided the relevant financial background on credit risk modelling,
market risk, volatility forecasting, and portfolio optimisation concepts used. In a nutshell,
chapters 2 and 3 highlighted the gaps in current approaches and set the stage for our
proposed novel methodologies.

In Chapter 4, a Hybrid Dual Resampling with Cost-Sensitive Technique (HDRCS) that
can be used to overcome the problem of insufficient and imbalanced credit datasets was
proposed. It captured and evaluated the novel Hybrid Dual Resampling with Cost-sensitive
Technique to model the credit risk of imbalanced data sets. The technique involved the
simultaneous use of cluster-based under-sampling on the majority class, the use of the
Gaussian Mixture Model to over-sample the minority class and a Cost-sensitive learning
algorithm.

In Chapter 5, detailed information on the novel triple-discriminator used within the pro-
posed Continuous Wavelet Transform Triple Discriminator Generative Adversarial Network
(cwt-TriGAN) for volatility estimation was covered. A detailed architecture of the proposed
cwt-TriGAN that includes the in-depth operation of the eight component functions that
make up our proposed cwt-TriGAN was captured.

In Chapter 6, the use of CapsNet-based reinforcement learning for portfolio optimisation
was covered. It covered our proposed Multi-Memory Weight Reservoir (MMWR) training
scheme using Capsules Neural Network and also captured the proposed Markov differential
Sharpe ratio for portfolio optimisation.
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7.3 Summary of Contributions to the Field

This research has made several significant contributions that enhance our understanding
of machine learning’s applicability and effectiveness in financial risk management. The
contributions are as follows:

Improved credit Risk Assessment through HDRCS

One of the primary objectives of this research was to improve the credit risk assessment
on imbalanced datasets. The proposed Hybrid Dual Resampling with Cost-Sensitive Tech-
nique (HDRCS) has offered a comprehensive solution to address the problem of data imbal-
ance through a combination of oversampling, under-sampling techniques, and cost-sensitive
learning. The empirical formula for optimal cluster numbers further refines this approach,
resulting in a powerful tool for financial institutions to make more accurate credit decisions,
thus minimising the risk of misjudgments and incorrect valuations. This technique show-
cases promising results in mitigating the challenges posed by imbalanced financial datasets.

Advantages:

• Precise Credit Decisions: HDRCS enhances the precision of credit risk assessment,
reducing the likelihood of misclassifying credit applicants.

• Risk Mitigation: The technique helps financial institutions mitigate the risks asso-
ciated with incorrect valuations and credit judgments, potentially reducing financial
losses.

Limitations:

• Data Dependency: The HDRCS algorithm’s performance depends on the quality and
the ability of the GMM to accurately capture the distributions of the minority class
data used.

• Complexity in Implementation: The hybrid nature of the model, combining resam-
pling and cost-sensitive approaches, can lead to increased complexity in implementa-
tion and parameter tuning.

• Class Imbalance Sensitivity: While designed to address class imbalance, the technique
might still be sensitive to extreme imbalances.
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• Computational Cost: Due to the hybrid approach and the multiple steps and algo-
rithms involved, the HDRCS model might incur higher computational costs compared
to simpler models.

Enhanced Volatility Forecasting using cwt-TriGAN

Leveraging the power of the proposed continuous wavelet transform triple discriminator
GAN network (cwt-TriGAN) results in a significant improvement in resolving the problem
of modal collapse. Through the utilisation of an innovative ensemble loss function, this
technique provides robust volatility forecasts and a powerful tool for understanding and
anticipating market fluctuations. The empirical investigation into the effect of time steps
further underlines the potential to refine volatility forecasting.

Advantages:

• Accurate Volatility Predictions: The cwt-TriGAN method provides accurate and re-
liable volatility forecasts, aiding investors in making well-informed decisions.

• Robust Insights: The ensemble loss function enhances the robustness of the model,
ensuring reliable market insights

Limitations:

• The architecture of cwt-TriGAN is quite complex, which can result in difficulty in
implementation with the requirement of significant computational resources, with the
potential of limiting its accessibility and scalability.

• Risk of overfitting: Because of the complex nature of the model, it might be prone to
overfitting, especially when dealing with limited or noisy financial datasets.

• Since the proposed model contains multiple components with their own individual
parameters, the fine-tuning of these parameters for optimal performance can be chal-
lenging and time-consuming.

• Lack of Interpretability: Like many deep learning models, our proposed cwt-TriGAN
may suffer from a lack of interpretability or transparency in its decision-making pro-
cess. This ”black box” nature of it can be a significant drawback, especially in finance
where understanding the reasoning behind predictions is crucial for trust and regula-
tory compliance.
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CapsNet-based Reinforcement Learning for Portfolio Optimisation

The Capsules Neural Network-based Multi-Memory Weight Reservoir (MMWR) training
scheme introduces a novel approach to portfolio optimization. By addressing challenges such
as sample efficiency and exploration-exploitation trade-offs, this scheme empowers investors
to navigate complex and dynamic market conditions more effectively. Additionally, the
proposed Markov differential Sharpe ratio for the design of reward functions significantly
contributes to improving the stability and optimisation of asset allocation in a portfolio.

Advantages:

• Adaptive Investment Strategies: The CapsNet-based approach equips investors with
tools to build adaptive investment strategies that navigate complex market conditions
effectively.

• Enhanced Stability: The Markov differential Sharpe ratio improves the stability and
optimisation of asset allocation within portfolios.

Limitations:

• The integration of Deep Capsules Networks with RL adds significant complexity,
which can make the implementation of the model difficult to understand and requires
specialised knowledge in both deep learning and financial market dynamics.

• Due to the complex nature of the model, there is the requirement of substantial
computational resources for training and inference.

• The model’s performance may depend on the availability of high-quality data

7.4 Practical Implications and Relevance of Integrated
Financial Risk Management

In the domain of credit risk, our proposed novel techniques lead to improved credit risk
assessments, which directly influence the stability and performance of financial portfolios.
Through the integration of these assessments into the broader context of financial risk
management, an improved prediction and mitigation of potential losses due to bad credit
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events can be achieved. Volatility forecasting through the use of machine learning, offers
a clearer understanding of market dynamics. This understanding is crucial for portfolio
optimisation since it leads to the strategic allocation of assets to balance risk and return
effectively.

The practical implications of our research offer numerous advantages for various stakehold-
ers within the financial landscape. These are:

Financial Institutions: By adopting the HDRCS technique, financial institutions can
significantly enhance their credit risk assessment processes. The reduction in misjudgments
and incorrect valuations directly translates into reduced financial losses and improved port-
folio quality.

Investors: Enhanced volatility forecasting provided by the cwt-TriGAN empowers in-
vestors with more precise insights into market fluctuations. This, in turn, enables them to
make better-informed investment decisions, reduce uncertainty, and potentially maximize
returns.

Portfolio Managers: The CapsNet-based reinforcement learning model offers a novel
approach to portfolio optimisation. Portfolio managers can harness its’ capabilities to build
more robust and adaptive investment strategies that navigate complex market conditions
effectively.

7.5 Future Works

Although this thesis has successfully achieved its primary objectives, there are still op-
portunities for further research and exploration. Conducting comprehensive investigations
into the future works planned below will contribute to the advancement of knowledge and
development of the effectiveness and enhancement of the models proposed in this thesis.

HDRCS

Future work will extend the HDRCS technique to address multi-class imbalanced credit
dataset Zhu et al. (2022). This is because multi-class credit data often exhibit more com-
plex imbalance patterns, and designing effective solutions for them will be a significant
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achievement. The multi-class credit data that will be used is known as the Kaggle Credit
Risk dataset and categorises customers into three categories, which are high-risk, medium
risk and low-risk customers. Our approach will be used to balance this imbalanced multi-
class data with the aim of improving the prediction accuracy.

The HDRCS method will also be applied to deep learning models such as Convolutional
Neural Networks, Long Short-Term Memory Networks and Auto-encoders, where it will be
extended to use large datasets compared to the size of the data used in this work. Scaling up
the dataset size will allow the HDRCS’s performance to be assessed in real-world large-scale
credit risk prediction scenarios.

cwt-TriGAN

Future work under this will involve exploring advanced GAN architectures and incorpo-
rating additional data preprocessing techniques to build on the cwt-TriGAN to further
improve the accuracy of volatility forecast. Other tasks planned for the future involve
the incorporation of external data such as economic indicators and market news into the
cwt-TriGAN framework to explore how external information can improve the accuracy of
volatility forecasts and decision-making. The development of online learning techniques for
the cwt-TriGAN to adapt to changing market conditions in real-time will also be investi-
gated. This will involve an investigation into how the model can continuously update its
parameters and adapt its forecasting strategy based on new incoming data.

CapsNet-based reinforcement learning model

Future work under this proposed approach will involve the expansion of the CapsNet-
based reinforcement learning models to encompass more complex portfolio optimisation
scenarios and incorporate additional market factors that have the potential to produce
more sophisticated and adaptable investment strategies. The use of actor-critic techniques
will also be investigated to further improve the results. It will also involve the investigation
into the use of transformer models to enforce investment policies.
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7.6 Summary and Final Remarks

In conclusion, this thesis has significantly contributed to the field of financial risk manage-
ment through the development and application of novel and advanced machine learning
techniques. The insights obtained from addressing data imbalances, accurate forecast-
ing of market volatility, and advanced portfolio optimisation techniques provide a robust
framework for financial risk management. Specifically, the Hybrid Dual Resampling Cost-
sensitive technique used for credit risk prediction on imbalanced datasets, cwt-TriGAN used
for improved volatility forecasting and Capsules Neural Network-based used for improved
portfolio optimisation represent innovative approaches to address the complex challenges
in the field. These contributions have the potential to reshape risk assessment, decision-
making and investment strategies in the financial sector. This thesis has therefore made
significant contributions to the field of financial risk management through the develop-
ment and application of novel and advanced machine learning techniques. These innovative
approaches address the complex challenges in the field of finance and machine learning
and have the potential to improve credit risk assessment, decision-making, and investment
strategies in the financial sector. As we move forward, the continued exploration of these
techniques will further enrich the understanding and management of financial risks to con-
tribute to better financial risk assessment and decision-making.
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