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Abstract
Despite the scientific progress in drought detection and forecasting, it remains challenging to
accurately predict the corresponding impact of a drought event. This is due to the complex
relationships between (multiple) drought indicators and adverse impacts across different
places/hydroclimatic conditions, sectors, and spatiotemporal scales. In this study, we explored
these relationships by analyzing the impacts of the severe 2018–2019 central European drought
event in Germany. We first computed the standardized precipitation index (SPI), the standardized
precipitation evaporation index (SPEI), the standardized soil moisture index (SSMI) and the
standardized streamflow index (SSFI) over various accumulation periods, and then related these
indicators to sectorial losses from the European drought impact report inventory (EDII) and media
sources. To cope with the uncertainty associated with both drought indicators and impact data, we
developed a fuzzy method to categorize them. Lastly, we applied the method at the region level (EU
NUTS1) by correlating monthly time series. Our findings revealed strong and significant
relationships between drought indicators and impacts over different accumulation periods, albeit
in some cases region-specific and time-variant. Furthermore, our analysis established the
interconnectedness between various sectors, which displayed systematically co-occurring impacts.
As such, our work provides a new framework to explore drought indicators-impacts dependencies
across space, time, sectors, and scales. In addition, it emphasizes the need to leverage available
impact data to better forecast drought impacts.

1. Introduction

Central Europe experienced a severe drought during
2018–2019, whose two-year severity is likely unpre-
cedented over the past two centuries (Hari et al
2020, Blauhut et al 2021). This event was exceptional
because of both rainfall deficit and high temperatures
increasing evaporation in many central European
countries (Rosner et al 2019), leading to signific-
ant impacts on agriculture, farming and forestry in

northern, central and eastern Europe (Bakke et al
2020, Beillouin et al 2020, de Brito et al 2020, Schuldt
et al 2020, Bastos et al 2021, Blauhut et al 2021,
Hofmann et al 2022). This led to some countries
declaring a state of emergency (Rosner et al 2019).
The extent of ecosystem damage and crop yield losses
made the central European 2018–2019 drought a new
reference event for drought risk management in cent-
ral Europe (Toreti et al 2019, de Brito et al 2020,
Mastrotheodoros et al 2020).

© 2023 The Author(s). Published by IOP Publishing Ltd
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Drought is a complex hazard, which remains
poorly understood (Quandt 2021). Its general
characteristics, slow onset, prolonged duration, large
spatiotemporal extent, and transboundary effects
have made it difficult for researchers to define the
hazard, monitor, and ensure the reduction of impacts
(Sen 2015, Van Loon et al 2016, Hall and Leng 2019,
Funk and Shukla 2020, Kreibich et al 2020, Tijdeman
et al 2021). The impacts of drought are challenging
to quantify because of the slow onset, lagged effects,
and non-structural nature of drought events (Hall
and Leng 2019, Funk and Shukla 2020, Kreibich et al
2020, Tijdeman et al 2021). Given these characterist-
ics, drought impacts must be examined comprehens-
ively by geographic region, temporal dimension and
affected sector. Consequently, there is a lack of spe-
cific impact data solely attributed to droughts, with
commonly utilized sources including agricultural
statistics, insurance data, impacts bulletins (Lam et al
2022) and media reports (Blauhut et al 2015, Stagge
et al 2015, Stahl et al 2016, Sutanto et al 2019, de
Brito et al 2020, Torelló-Sentelles and Franzke 2021,
O’Connor et al 2022). This research leverages media-
based sources for impact data due to their capacity
to encompass a wide range of drought impacts across
various sectors and to provide a measure of impact
severity without a near-exclusive focus on monetary
metrics, as is common in economic or other con-
ventional measures of drought impact. However, it
is important to recognize that media reporting may
introduce biases in terms of frequency and coverage
of drought impacts in different regions. To mitig-
ate this bias, this study normalizes the number of
media resources per region and employs a fuzzy
approach to ensure accurate representation of the
impact magnitude.

Besides the data gap related to drought impacts,
the indicators that serve to detect, monitor and fore-
cast drought events, exhibit a number of limitations,
including the choice of a reference period and prob-
ability distribution function to calculate the indicat-
ors. Furthermore, the link between drought hazards
and impacts is still insufficiently understood (Sutanto
et al 2020, Kchouk et al 2021). As a result, drought
early warning systems (DEWSs) are currently based
on physical or statistical drought indicators with no
explicit link to impacts (Wanders et al 2017). This gap
of understanding hinders preparedness and timely
distribution of relief and mitigation resources to the
potentially-affected sectors and areas (Merz et al 2020,
WMO, 2021).

This study aims to fill in this gap by advancing our
understanding of the relationships between drought
indicators and impacts for various sectors and across
different regions, focusing specifically on the case of
the 2018–2019 drought event in Germany.

To this end, we first developed a fuzzy method to
address the uncertainty unavoidably associated with
calculation of both drought indicators and adverse

impacts. Secondly, we conducted cross-correlation
analysis to identify: (1) the highest and most signific-
ant/lowest and not-significant correlations between
different indicators and impacts over various accu-
mulation periods, and (2) region-specific and time-
variant differences in indicator-impact relationships
across multiple affected sectors. Lastly, we analysed
the interconnections among sectors and identified
which impacts tend to occur simultaneously in dif-
ferent sectors. Given the simultaneous impact of
droughts on multiple sectors and their interdepend-
encies within our complex system, it is crucial to
unravel these connections to enable effective and tar-
geted drought management (Vogt et al 2018, de Brito
et al 2020).

These findings are expected to contribute to the
field of impact-based forecasting (IbF), which aims
to predict the impact of hazards on weather-sensitive
sectors (Sutanto et al 2019, Boult et al 2022, Shyrokaya
et al 2023). While the hazard itself can only rarely
be entirely avoided, drought monitoring and early
warning systems based on IbF can reduce potential
losses by providing more lead time for responding to
drought, anticipating and avoiding potential damage
(AghaKouchak et al 2022).

2. Data andmethods

2.1. Study area
Our research work focuses on Germany’s geograph-
ical borders during the 2018–2019 central European
drought event for several reasons. Firstly, the country
provides consistent information about the impacts of
drought for several regions across different hydro-
climatic conditions. Secondly, the country has a
diverse range of developed drought-sensitive sec-
tors that allow tracking various impacts. Thirdly,
Germany was the most affected country in central
Europe by the 2018–2019 drought event (Toreti et al
2019, Mastrotheodoros et al 2020), with impacts over
90% of its territory across multiple sectors (de Brito
2021). Lastly, a significant part of our analysis relies
on media-based information on drought impact
provided by the European drought impact report
inventory (EDII) database (Stahl et al 2016), which
offers comprehensive information on the impacts of
the drought event, particularly for Germany. This is
partly due to the country’s diverse and independent
media sources, allowing for an accurate and detailed
collection of impact information.

2.2. Drought indicators
Germany has a wide network of global and national
tools that allow for detecting, monitoring, and fore-
casting droughts across various temporal and spatial
scales. Among them, the observational dataset E-OBS
and the European flood awareness system (EFAS)
jointly offer precipitation, temperature, soil moisture
and discharge data to monitor drought conditions
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in Germany. The European drought observatory
(EDO) run by the EC’s Joint Research Centre cov-
ers Germany and provides various already computed
drought indicators to assess the ongoing conditions
of different types of droughts. On the national level,
the German weather service (DWD) and the UFZ
drought monitor service (Zink et al 2016) provide
daily drought information for multiple soil layers
throughout Germany.

In this study, we employed common drought
indicators standardized precipitation index (SPI)
(McKee et al 1993) and standardized precipita-
tion evaporation index (SPEI) (Vicente-Serrano
et al 2010), which are recognized as standard
(WMO 2016) and are further widely used in DEWS
(Bachmair et al 2016). The main difference in the cal-
culation of the two indicators is that SPI is based on
precipitation data, whereas SPEI accounts for poten-
tial evapotranspiration by including temperature data
(Vicente-Serrano et al 2010). The indicators were
derived from the E-OBS gridded dataset with obser-
vational precipitation and temperature data (v27.0,
0.25◦ spatial resolution∼27 km) for the period 1980–
2022. For the purpose of our analysis, we first aver-
aged precipitation and evapotranspiration data over
NUTS1 (nomenclature of territorial units for stat-
istics) administrative regions across Germany. We
then estimated SPI and SPEI per each NUTS1 and
considered accumulation periods of 1, 3, 6, 12 and
24 months for 2018 and 2019, obtained by applying a
correspondingmoving average tomonthly timeseries.
Different accumulation periods serve to assess differ-
ent potential impacts: short periods reflect immedi-
ate impacts like soil moisture reduction, while longer
ones unveil delayed impacts, including groundwater
recharge rate, further influenced by local factors and
human activity (EDO 2020). For detailed inform-
ation on the calculation of the indices (e.g. fitting
distributions, reference period etc), please refer to
SM1 in the supplementary material.

We obtained volumetric soilmoisture for both the
top and middle soil layers, as well as discharge data
from the EFAS service, to calculate drought indicat-
ors standardized soil moisture index (SSMI1), SSMI2
and standardized streamflow index SSFI (SSFI_sim),
respectively. This is historical gridded simulated data
provided at a 5 × 5 km resolution, spanning from
1991 to 2022 based on the LISFLOOD hydrological
model setup (Mazzetti et al 2020). We then applied
the same methodology as for SPI and SPEI to obtain
the modeled-based SSMI and SSFI_sim indices for
different regions and over the same accumulation
periods ranging from 1 to 24 months.

Moreover, we utilized monthly streamflow values
from 46 hydrological stations (figure 1(a)) obtained
from the global runoff data center (GRDC) to addi-
tionally calculate drought indicator SSFI (SSFI_obs)
for the same period (1991–2022) and with the same
accumulation periods. To attribute each station to a

specific region, we acquired a shapefile of the basin for
each station from the respective GRDC website and
weighted each station by the area of its basin intersect-
ing different regions (figure 1(b)). Finally, we associ-
ated each region with all relevant stations according
to the above weighting procedure.

2.3. Drought impact data
To conduct a comprehensive analysis, we compiled
data on the impacts of drought during the entire dur-
ation of the drought events that occurred in 2018 and
2019. We gathered this data from both the text-based
EDII dataset and additional data collection efforts,
with detailed information provided in supplement-
ary material SM2. Table 1 lists all the 12 categories
of considered drought-affected sectors together with
an example of an impact report per each category. To
facilitate further analysis, we treated the number of
impact reports per month per region per sector as a
proxy for the magnitude of drought impacts and the
severity of the drought event. This study accounted
for the media biases and applied a method that helps
to overcome the uncertainties related to the spatial
and temporal distribution of impact reports based on
media sources (see section 2.4). For detailed inform-
ation on text-based impact monitoring and its chal-
lenges, please refer to SM2.

2.4. Fuzzy approach for categorization of drought
indicators and impacts
Many aspects related to droughts are fuzzy with
no clear boundaries, particularly when it comes to
its definition, detection, categorization, and impact
assessment. First introduced by Zadeh (1978), the
concept of fuzzy theory has proven valuable in
addressing these uncertainties by assigning fuzzy val-
ues when no objective metric can adequately gauge
their relative magnitude. Over time, this approach
has found extensive application within the context of
drought (Pongracz et al 1999, Acosta-Michlik et al
2008, Eierdanz et al 2008, Huang et al 2015).

To cope with the uncertainty associated with both
drought indicators and impact data (i.e. due to bias
in impact reporting and inaccuracy in calculating
drought indicators), we developed fuzzy categories
for the drought impacts based on the percentile of
the number of impact reports for a particular region
(table 2). This must be done to preserve the mag-
nitude of the impacts while normalizing for the sev-
eral different inherent biases in media reports in each
region. The terciles (33rd and 66th percentile) were
used as thresholds to define the impact categories
similarly to how the tercile-based below/near/above
normal conditions are defined considering past cli-
matological information (Goddard et al 2003, Shukla
et al 2019). This resulted in the creation of four
categories, ranging from ‘No impact’ for 0 reports
and ending with ‘Extreme impact’ for the number of
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Figure 1. (a) (left) Location of hydrological stations in Germany from the GRDC; (b) (right) Basin area of the Berlin
Muehlendamm station (in red) covering 3 NUTS-1 regions (Berlin, Brandenburg, Saxony).

reports falling into the top 33% of the reports dis-
tribution for the particular region. We further parti-
tioned the analysis by sectors; a region was excluded
from further analysis if the number of reports was less
than 5% of the total number of reports per sector for
the whole country.

Next, we grouped the drought indicators (SPI,
SPEI, SSMI, SSFI) into four categoriesmatching those
adopted for the impacts, as shown in table 2. This
categorization corresponds to other drought sever-
ity classifications as provided by WMO (2016), EDO
(2020), and DWD.

Generally, these fuzzy categories were used to keep
the magnitude of the impacts and capture their spa-
tial, sectoral, and temporal variability, while alleviat-
ing potential biases in reporting them.

2.5. Correlation analysis
To assess the non-linear, but monotonic relation-
ship between drought impacts and indicators, we
applied the Spearman rank correlation and ana-
lysed the impacts spatially, temporally and by sec-
tors. After transforming the data into the fuzzy
categories, Spearman rank correlation coefficients

and significance levels were calculated for the time
series of SPI, SPEI, SSMI, and SSFI with various
accumulation periods versus the number of impact
reports for each region.

3. Results

3.1. Spatiotemporal distribution of drought
impacts
To assess how the drought impacts propagated in
space and time, we analysed the distribution of
drought impacts. First, we identified themost affected
regions with the highest number of drought impact
reports and the most affected sector in each region as
shown in figure 2.

The number of impact reports over the 2 year
period varied across the regions, with North Rhine–
Westphalia and Baden–Württemberg being the most
affected, primarily due their higher population
density (figure 2(a)). In terms of sectoral analysis
(figure 2(b)), the agricultural losses were primar-
ily concentrated in the northern part of the coun-
try, whereas forestry was most affected in the south
and the water-related sectors (e.g. transportation,
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Table 1. List of drought-affected sectors and an example of the impact on each affected sector, categorized according to the EDII
database.

Impacted sectors by categories Example of impact report per category

Agriculture and livestock farming The second weak harvest (crop failure of 70% in grains and fodder) in a row
is emerging in eastern Germany due to drought and the fodder reserves are
now extremely scarce in many farms; some farmers had to sell cows because
they could not harvest enough forage;

Energy and industry Due to the low water levels of the Rench, the hydropower station ‘Rosensäge’
near Ramsach had a failure rate of about 40% over the year 2018; from june to
the end of September, the station had been in operation for only a few hours
and generated as much electricity as it would normally do in two days;

Forestry Many newly planted trees did not even survive the winter, they have dried up;
in regions with large spruce forests, an extreme bark beetle plague is expected
as the bark beetle benefits from this severe drought, which weakens the trees’
natural defences;

Freshwater aquaculture and fisheries The fish farm in Petersheim had to begin fishing in august 2018 already,
which was two months earlier than usual, to prevent the fish from dying from
prolonged waiting and lack of water; due to the heat and the premature
fishing, the pond keeper expects losses of about 40%;

Freshwater ecosystem Birds at the Timmerhorn ponds are threatened by drought;
Human health and public safety Park Sanssouci has been closed in the area of the Ruinenberg since wednesday

due to falling branches affected by drought;
Public water supply Water withdrawal from rivers prohibited in Spree and Schwarze Elster, in

certain streets there is no water between 7 p.m. and 10 p.m.;
Terrestrial ecosystem In Sandhausen, many hedgehogs starved to death because there were hardly

any snails or earthworms due to the drought;
Tourism and recreation Visitors to forests, moors and heaths are forbidden to leave the roads,

motorable paths and marked hiking and horseback riding trails;
Water quality Threat of botulism: the toxic bacteria spreads as the water lacks oxygen due to

drought in Nordrhein–Westfalen;
Waterborne transportation Ships in the Upper Rhine have to reduce their load by 50% due to the low

water level caused by the drought; tankers can no longer transport their full
cargo, diesel and petrol are becoming scarce at petrol stations;

Wildfire 3 000 firemen fought a fire caused by the drought for days in the south of
Berlin;

Table 2. Transforming drought impact data and drought
indicators to fuzzy categories.

Drought impacts

Percentile Fuzzy category Interpretation

=0 0 No impact
0÷ 33.33% 1 Moderate impact
33.34%÷ 66.66% 2 Severe impact
66.67%÷ 100% 3 Extreme impact

Drought indicators (SPI/SPEI/SSMI/SSFI)

Range Fuzzy category Interpretation

⩾0 0 No drought
0÷−1 1 Moderate drought
−1÷−2 2 Severe drought
<−2 3 Extreme drought

ecosystems) were primarily affected in the north and
west of the country. The latter can be explained by the
presence of the Elbe river in the north-west and the
Rhine river in the west, which are important industry
andwater transportation hubs that have been severely
affected by the drought (Rosner et al 2019). The severe
agricultural impacts in the north of the country are in

agreement with de Brito et al (2020), who explained
this by the higher area of crop cultivation compared
to other parts of Germany.

We next analysed the temporal distribution
of drought impacts affecting 12 different sectors
(figure 3).

As the drought event was more intense in 2018
as compared to 2019, agriculture (yellow line in
figure 3(A)), as the sector with faster response, was
mainly affected in the first year of the drought. de
Brito et al (2020) also observed that agricultural
drought in 2019 primarily affected the lower soil
levels. Additionally, state relief efforts alleviated the
impacts in the second year. To counteract the det-
rimental impact of drought and heat conditions on
the agricultural sector in Germany in 2018, federal
aid payments of 340 million Euros were provided to
farmers experiencing a minimum of 30% yield loss
(Reinermann et al 2019).

Further, wildfires (red line in figure 3(A)) were
limited to the summer season in 2018. However, in
2019, they started earlier during the spring season and
continued into the summer months. This extended
occurrence of wildfires in 2019 can be attributed to
the persistently dry conditions from the preceding
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Figure 2. Spatial distribution of drought impact reports during the 2018–2019 drought in Germany: (a) (left) total number of
reports; (b) (right) the most affected sector in each region.

Figure 3. Temporal distribution of drought impacts by sectors over 2 years during the 2018–2019 drought in Germany.
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year, which created a favorable environment for fire
outbreaks. The green line for forestry (figure 3(A))
indicates that the drought had a delayed impact, as
heat conditions and drought persisted and impacts
weremostly reported in the second year. Additionally,
the adverse effects on forestry were exacerbated by
the drought conditions in the second year, particu-
larly affecting the lower layers of soil where the tree
root system is located (de Brito et al 2020, Bastos et al
2021).

On the middle timeline, the freshwater ecosys-
tems (blue line in figure 3(B)) show that they were
impacted in the summer of both years, but the
impacts on water quality (pink line) were mostly
seen only in the second year due to a lagged effect
of hydrological drought. Finally, tourism and recre-
ation (purple line in figure 3(C)) were affected in the
second year due to swimming bans connected to the
proliferation of algae blooms that generally takemore
than one drought season to develop.

3.2. Correlating impacts and indicators
To determine the relationship between drought indic-
ators and drought impacts across regions, sectors,
and spatiotemporal scales, a comprehensive cross-
correlation analysis was performed. This analysis util-
ized the transformed data represented in fuzzy cat-
egories, and involved calculating Spearman rank cor-
relation coefficients and determining their signific-
ance levels. The correlation analysis was conducted
between the time series of SPI, SPEI, SSMI and SSFI
drought indicators, and the number of impact reports
for each region (figures 5 and 6) and drought-affected
sector (figures 7 and 8), providing insights into their
interrelationships within different contexts.

3.2.1. Regional correlation
We first examined the correlation between the fuzzy
time series of the drought indicators and the impact
reports across NUTS1 regions in Germany. Figure 4
presents two examples: the highest and most signific-
ant correlation between drought impact reports and
an indicator for one region and the lowest and insig-
nificant correlation of drought impact reports and the
same indicator for another region. More specifically,
we found that SPEI3 has the highest and most sig-
nificant correlation with drought impact reports for
Saxony, as both variables follow the same pattern and
have a monotonic relationship. For the same SPEI3,
the lowest correlation was observed in Mecklenburg–
West Pomerania, where SPEI3 was unable to follow
the reported impact frequency.

We further assessed the correlation between the
analysed drought indicators and drought impacts
across various NUTS1 regions in Germany (figure 5).
Different accumulation periods of the various indic-
ators (SPI, SPEI, SSMI 1st and 2nd layer) are shown
on the x-axis of the same graph. As a result, the
gridded cells show correlation coefficients (ρ) and

significance levels between time series of drought
impact reports and drought indicators (SPI, SPEI,
SSMI1, SSMI2) with various accumulation periods
and regions in Germany.

Overall, the highest and most significant correl-
ation across all indicators was for the accumulation
periods of 1, 3 and, in case of SPI, of 24 months.
This can be explained by the ability of 1 and 3 month
accumulation periods to capture the sub-seasonal to
seasonal impacts of ongoing dry conditions. At the
same time, the accumulation period of 24 months is
able to pick up the long-term signal of dry conditions
from 2 warm seasons, which gradually exacerbates
the drought situation, leading to long-term impacts.
It needs to be acknowledged that this observation
can be case-specific as we are analyzing a 2 year
drought. In contrast, the accumulation periods of 9
and 12 months do not allow capturing the dynamics
of two seasons and, thus, do not show as clear a link
with impacts.

Next, the SPEI exhibits the highest correlation
overall across all regions. Specifically, a coefficient of
0.8 was observed for SPEI3 in Saxony, Lower Saxony
and Hesse. This is likely due to its ability to account
for both precipitation and evapotranspiration. It has
been widely acknowledged that atmospheric evapor-
ative demand plays a key role in drought development
(González-Hidalgo et al 2018, Torelló-Sentelles and
Franzke 2021). However, we found that SPEI cannot
capture impacts across regions over long accumula-
tion periods possibly due to the fact that these values
depend on winter temperature, which is not expected
to influence the impact of the summer drought.

SSMI1 and SSMI2 effectively capture impact sig-
nals in various regions, with SSMI2 demonstrat-
ing a particularly strong association with impacts
in Brandenburg across accumulation periods of 1,
3, 6, and 12 months. In contrast, neither SPI nor
SPEI managed to establish this link. This observa-
tion can be partially explained by the sectors reporting
impacts in this region, primarily agriculture, forestry,
and recreation, all of which are closely linked to soil
moisture conditions. The local conditions, includ-
ing the prevalence of low-quality sandy soil (Wolff
et al 2021), which is susceptible to rapid drying in
drought periods due to its high permeability (Ladányi
et al 2021), contribute to the considerable challenges
faced by all sectors reliant on soil moisture condi-
tions (Gutzler et al 2015). The negative correlation
of SSMI1 and SSMI2 in Saxony can be explained by
the fact that the freshwater aquaculture and fisher-
ies sector was ranked second as most affected in this
region, and later itself showed a negative correlation
with SSMI1 and SSMI2 for the same accumulation
periods (figure 7).

Further, SSFI_obs (figure 6) was able to establish
a connection to impacts for 1 and 3 month accumu-
lations in central regions (North Rhine–Westphalia,
Hesse, Thuringia, Lower Saxony) that are dependent
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Figure 4. Correlation between time series of SPEI3 and drought impacts in Saxony (the highest correlation coefficient) and in
Mecklenburg–West Pomerania (the lowest correlation coefficient).

Figure 5. Correlation coefficients (ρ) and significance levels (p-value< 0.05 indicated with stars) between time series of drought
indicators (SPI, SPEI, SSMI 1st and 2nd layer) with various accumulation periods and drought impacts for various NUTS1
regions in Germany.

on the Rhine basin area. Indeed, during the 2018–
2019 drought event numerous sources reported vari-
ous impacts associated with the extremely low flow
of the Rhine (Erfurt 2019). The negative correlation
values of SSFI are difficult to interpret, as they can

be due to a combination of factors. In high-altitude
regions (Bavaria and Saxony) with forested areas and
steep topography, the annual rainfall and snowmelt
seasonmay lose its typical periodicity when impacted
by drought (Wang et al 2018). Moreover, there are
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Figure 6. Correlation coefficients (ρ) and significance levels (p-value< 0.05 indicated with stars) between time series of drought
indicators (SSFI_obs and SSFI_sim) with various accumulation periods and drought impacts for various NUTS1 regions in
Germany. The dashed lines for SSFI_obs indicate the regions where no hydrological stations are available from the GRDC.

significant uncertainty in low flow data (Westerberg
et al 2014) and the difficulties in averaging SSFI.
These challenges include the need to average data over
regions, especially when dealing with the presence
of transboundary river basins and rivers of varying
Strahler stream orders.

3.2.2. Sectoral correlation
Next, we explored the correlation across various sec-
tors. Similar to figures 5, figure 7 shows different
accumulation periods of the various indicators along
x-axis. Further, the y-axis shows different sectors
affected by the 2018–2019 drought event in Germany,
listed in alphabetic order. The resulting gridded cells
show the correlation coefficients (ρ) and significance
levels between drought indicators with various accu-
mulation periods and drought impacts for different
drought-affected sectors in Germany.

Consistent with earlier findings, the accumula-
tion periods of 1 and 3 months demonstrate the
strongest correlation across all indicators. However,
there is a noteworthy additional observation; in the
case of SPI and SPEI, the 6month and 24month peri-
ods also display a strong association. Furthermore, as
seen in figure 7, the correlation coefficients for SPEI
were the highest, with a value of 0.5, for terrestrial
ecosystems, wildfire, and tourism and recreation. The
latter mainly comprises reports on swimming bans.

A key observation when examining the
correlations across different sectors is that longer
accumulation periods show the most significant

correlation for the forestry sector. This reflects the
delayed effect of drought when dieback occurs due
to prolonged dry conditions that decrease pest and
disease resistance. This further implies that the first
year of a drought event can impair the physiological
recovery of trees, leading to prolonged tree mortality
that may persist for several years with implications
for biodiversity, the carbon cycle and wood produc-
tion (Messori et al 2019, Bastos et al 2020, Brun et al
2020, Mcdowell et al 2020, Schuldt et al 2020, Senf
et al 2021, Wu et al 2022). Among all the indicators,
notably SSMI2 (middle soil layer) with 12 months
accumulation shows the highest correlation value of
0.47 for the forestry sector, since the middle soil layer,
extending up to 30 cm, encompasses part of the root
zone of trees and thus effectively captures the impact
signal.

Wildfires instead appear to only have significant
correlations with both indices for shorter accumula-
tion periods of 1–6 months, since persistent dry con-
ditions can lead to rapid fire potential even in the
short term. In a study conducted by Gudmundsson
et al (2014), similar conclusions were drawn regard-
ing the use of SPI to detect significant impacts of
wildfires in southern Europe. The study utilized the
extensive European fire database and found that SPI
with shorter lead times (nomore than 2months) cor-
related with the occurrence of major wildfire events.

Furthermore, the impacts on the agricultural sec-
tor are not adequately captured by SPI with a 1month
accumulation period, but rather by a 3 month
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Figure 7. Correlation coefficients (ρ) and significance levels (p-value<0.05 indicated with stars) between time series of drought
indices (SPI, SPEI, SSMI 1st and 2nd layer) with various accumulation periods and drought impacts for various drought-affected
sectors in Germany.

Figure 8. Correlation coefficients (ρ) and significance levels (p-value< 0.05 indicated with stars) between time series of drought
indices (SSFI_obs and SSFI_sim) with various accumulation periods and drought impacts for various drought-affected sectors in
Germany.

accumulation period. In contrast, SPEI is already cap-
able of capturing agricultural impacts from a 1month
accumulation period, as evapotranspiration plays a
crucial role in soil conditions. According to some
studies (Stagge et al 2015), agricultural impacts are
explained by anomalies aggregated over shorter peri-
ods, whereas anomalies greater than 9 months are
likely related to agricultural management practices
and various hydrological regimes.

The negative correlation of SSMI1 and SSMI2
for longer accumulation periods with the freshwa-
ter aquaculture and fisheries sector has no intu-
itive explanation and, therefore, requires further
investigation.

SSFI (figure 8) appears to have, similarly to
SSMI2, notable correlation of 0.4 for the forestry

for 12 months accumulation period, highlighting the
connection between streamflow and forestry within
the water cycle. The negative values of drought indic-
ators, particularly for the 9 month accumulation
period, which does not span the full annual cycle,
can be explained by multiple factors. These include
the higher altitude and the source of water supply for
some regions or the role of snow accumulation/melt-
ing for other regions.

3.3. Co-occurrences of impacts across sectors
Drought impacts have historically affected almost
all parts of the society, the economy, and the
environment, all of which are deeply intertwined
(Di Baldassarre et al 2017, Poljansek et al 2017). As
shown in figure 3, droughts tend to cause multiple
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Figure 9. Co-occurring impacts during the 2018–2019 drought event in Germany across 14 affected sectors with the proportion
of co-occurrences above: (a) (top left) 60%; (b) (top right) 70%; (c) (bottom left) 80% with specific notable connection among
sectors with the proportion of co-occurrences above 80% (bottom right).

impacts across different sectors simultaneously. It is
common for a single impact to trigger a chain reac-
tion, affecting other sectors through hydrological and
socio-economic systems (AghaKouchak et al 2021,
de Brito 2021). Failure to understand which impacts
occur together can lead to underestimating the risk
and failing to provide appropriate drought relief to
the affected sectors.

We, therefore, utilized the impact dataset
described in section 2.3 to determine which sectors
were reported to be affected simultaneously in the
same region and the same month over the considered
two-year drought period. SM3 in supplementary
material gives an overview of the proportions of
impacts occurring during the same months and
within the same regions, categorized by sectors. To

visualize results, figure 9 presents the co-occurrences
among all 14 explored sectors that experience impacts
simultaneously in a particular region with the pro-
portion of co-occurrence above 60% (figure 9(a)),
70% (figure 9(b)), and 80% (figure 9(c)), with the
latter showing specific notable connections between
the sectors with the proportion of co-occurrence
exceeding 80% (refer to SM3 for the calculation
details).

Examining figure 9, it becomes evident that cer-
tain sectors, such as fisheries, water quality, water-
borne transportation and soil system, tend to have
impacts co-occurring with impacts reported in agri-
culture, freshwater ecosystem, wildfire, and forestry
sectors, which are also among the most frequently
reported sectors.
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Moreover, the recreation, water quality and water
ecosystem sectors together as well as soil system, agri-
culture andwildfire together exhibit a noticeable rela-
tionship and tend to experience impacts concurrently
in more than 80% of cases of their occurrence.
Notably, impacts in the water quality are often (91%
of co-occurrences; refer to table SM3.1) attributed
to changes in water ecosystem conditions caused
by rising temperatures. Additionally, water quality
exhibits a strong link (87% of co-occurrences; refer
to table SM3.1) with the recreation sector, likely due
to reports of algal blooms leading to swimming bans.

The soil system sector and agriculture exhibit
strong connection (86% of co-occurrences; refer to
table SM3.1) as both sectors rely on suitable soil con-
ditions and moisture levels. These factors are crit-
ical for microbial activity and plant growth, ulti-
mately sustaining ecosystems and crop cultivation.
Additionally, the soil system sector frequently exper-
iences concurrent impacts with wildfire (86% of co-
occurrences; refer to table SM3.1) due to the higher
risk of ignition of vegetation in moisture-deficient
soil conditions.

4. Discussion—limitations and practical
implications

This study has a number of caveats. First, the categor-
ization of indicators and impacts involved subjective
decisions, as fuzzy categories were defined. While this
approach was justified to mitigate potential media
biases, it is important to note that certain impacts
may have been alleviated through drought relief
measures, resulting in underreporting by the media.
Secondly, the research scope and data availability
were restricted to a two-year period of drought. This
timeframe facilitated detailed analysis of the stud-
ied drought event due to the abundance of avail-
able data. However, drawingmore robust conclusions
(including a rigorous attribution of the correlations)
would require longer time-series data. Lastly, a longer
time-series would enable the utilization of statistical
methods to assess the predictive power of different
indicators in relation to the impacts. This informa-
tion could directly contribute to the establishment of
IbF models for droughts and adaptation to support
decision-making.

Further, a more practical extension of this ana-
lysis might involve an assessment of the economic
costs of drought impacts. As estimated byCammalleri
et al (2020) drought-related losses in the European
Union account for about 9 billion Euros annuallywith
75% of these losses seen in agriculture, energy and
public water supply sectors. Given this, such quant-
itative information on the losses due to droughts by
sectors can support policy-makers in prioritization
and enacting drought mitigation efforts in a timely
manner.

It is also important to note that establishing the
connection between drought indicators and impacts
at both regional and sectoral levels is crucial to
support IbF of droughts. While some research has
explored regional connections and the combined
impacts on multiple sectors (Sutanto et al 2019),
there is a need to investigate these relationships
individually for each sector. The emerging field of
IbF of droughts holds the potential to estimate the
impacts of droughts across different sectors, enabling
the development of accurate impact-based DEWS
and facilitating timely and effective distribution of
relief aid for drought-stricken areas (Göber et al 2022,
Shyrokaya et al 2023).

5. Conclusions

Efficient and integrated drought management often
requires knowledge on the time that different drought
types take to propagate through different water
resource systems and the extent to which they impact
various sectors. This study investigates the rela-
tionships between drought indicators and impacts,
identifying patterns across regions and sectors,
focusing on the 2018–2019 drought in Germany.
This study has implications for developing sector-
and region-specific drought management policies
by applying different drought indicators with vary-
ing accumulation periods. The main findings of this
study are:

• A fuzzy approach to address uncertainties asso-
ciated with drought indicators and impacts. The
developed and applied fuzzy categories can effect-
ively reduce these uncertainties and contribute to
the advancement of drought-related studies.

• Strong correlation between drought indicators
and impacts with very short or very long accu-
mulation periods depending on regions and sec-
tors. The strongest associations between drought
indicators and impact reports were observed for
very short (1 or 3months) or very long (24months)
accumulation periods. In particular, the forestry
sectorwas found to be closely linked to longer accu-
mulation periods, while wildfires and fishery sec-
tors with shorter accumulation periods.

• SPEI is overall the indicator most strongly cor-
related to impacts across regions and sectors. For
sectors notably, the highest correlation was found
with agriculture, fisheries, recreation, terrestrial
ecosystems, and wildfires. SPEI considers both pre-
cipitation and evapotranspiration, and the atmo-
spheric evaporative demand plays a large role in
drought development.

• Forestry strongly correlates with long accumula-
tion periods for the drought indicators due to its
slow response. By gaining insights into the long-
term connections between droughts and forestry
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sector, proactive measures can be taken well in
advance to anticipate and adapt forests to the
increasingly hot and dry conditions, which are
expected to result in more frequent disturbances.

• Co-occurring impacts across drought-affected
sectors. Several patterns of co-occurrences among
sectors were identified. Specifically, water quality,
water ecosystem, and recreation were found to
experience impacts simultaneously, as did agricul-
ture, soil systems, and wildfire. This understand-
ing is valuable for accurately estimating the occur-
rence of multiple impacts across different sectors
that occur simultaneously, with each impact trig-
gering another.
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