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A B S T R A C T

The estimation of risk at extreme levels (such as 0.1%) can be crucial to capture the losses
during market downturns, such as the global financial crisis and the COVID-19 market crash.
For many existing models, it is challenging to estimate risk at extreme levels. In order to improve
such estimation, we develop a framework to estimate Value-at-Risk and Expected Shortfall at
an extreme level by extending the one-factor GAS model and the hybrid GAS/GARCH model
to estimate Value-at-Risk and Expected Shortfall for two levels simultaneously, namely for an
extreme level and for a more common level (such as 10%). Our simulation results indicate
that the proposed models outperform the GAS model benchmarks in terms of in-sample and
out-of-sample loss values, as well as backtest rejection rates. We apply the proposed models to
oil futures (WTI, Brent, gas oil and heating oil) and compare them with a range of parametric,
nonparametric, and semiparametric alternatives. The results show that our proposed models are
generally superior to the alternatives.

. Introduction

Many institutional decisions in financial risk management, such as those related to capital requirements, rely on good forecasts
f conditional distributions of asset returns, with an emphasis on the left tails of these distributions. What keeps risk managers
wake at night are not typical price fluctuations but unexpected downfalls of unusual magnitudes. The concern is that these may
rigger systemic spirals that can cause big losses. Financial regulators are concerned with protecting the financial system against
atastrophic events that could be a source of systemic risk. It is of interest to correctly measure risk at very small levels, but the small
umber of observations in the extreme tail of the returns’ distribution constitutes a problem that such extreme returns occur very
arely. For daily returns, by definition, events that breach the 1% quantile occur about twice a year. Returns in the more extreme
uantiles occur even more rarely, and our focus is the risk assessment of such events.

In this paper, we propose a framework to measure risk at extreme percentiles that extends two models of Patton et al. (2019)
y simultaneously estimating risk at two different levels (an extreme level and an auxiliary level), by assuming a joint process
hat drives both sets of risk measures. The optimal choice of auxiliary level is a more common level (in the range of 2.5%–20%)
hich can be selected via time series cross-validation. We illustrate via simulations and commodities data that by simultaneously

onsidering an auxiliary level, the risk estimates at the extreme levels outperform the alternatives in terms of loss values, and often
n terms of backtest performance as well.

Value-at-Risk (VaR) is one of the most popular tail risk measures that is employed to assess and manage financial risk. VaR is
n estimate of the quantile of the distribution of profit and losses and it can be measured at different levels. Due to its conceptual
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simplicity, VaR has become a popular risk measure of market risk. However, VaR ignores the shape and structure of the tail of the
returns’ distribution and is not a coherent risk measure (i.e. it is not ‘‘sub-additive’’) (Artzner et al., 1999). Expected Shortfall (ES)
is a risk measure that has recently increased in popularity due to its favorable properties. It measures the expected value of the
observations provided that they exceed VaR and is a coherent risk measure (Roccioletti, 2015). A transition from VaR at 1% level
to ES at 2.5% level has been proposed by the Basel Committee on Banking Supervision (2013). However, the measurement of ES
is inherently dependent on the value of the VaR estimate. As such, ES is not elicitable by itself, and only the (VaR, ES) tuple is
elicitable (Ziegel, 2016).

It is well known that the volatility displayed by commodity market returns has often been high (Hung et al., 2008), as
hown by the recent events related to COVID-19 and the ongoing international conflict between Russia and Ukraine. It has been
ocumented that commodity asset returns are generally characterized by higher volatility than stock returns (Del Brio et al., 2020).
hus, it is vital to have special risk management tools for the commodity market, which are needed by market participants and
olicymakers. Specifically, market participants need to measure market risk at extreme levels in order to manage their portfolios.
s for policymakers, they need to be aware of the risks faced by the economy, because extreme commodity price changes can have
big impact on the economy as a whole, as indicated by Sadorsky (1999) and others.

The literature on VaR and ES estimation is very rich. To measure risk at multiple levels, White et al. (2015) propose a vector
utoregressive (VAR) framework to quantile models which extend the CAViaR model of Engle and Manganelli (2004) to multiple
onfidence levels. Following the results of Fissler and Ziegel (2016) that ES and VaR are jointly elicitable, Patton et al. (2019) present
everal novel models. Specifically, they propose four dynamic semiparametric models for VaR and ES, based on the generalized
utoregressive score (GAS) framework (see Creal et al., 2013; Harvey, 2013). However, VaR and ES at the popular levels (e.g. 1%,
.5%, and 5%) provide insufficient information about rare but drastic events such as the COVID-19 crisis. Also, copula models can
e used to improve VaR predictions, such as in Li et al. (2022). Many papers ignore the possibility of multiple regimes in the risk
odels; one way to address this problem is by using Markov-switching models, as in Maciel (2021).

Researchers have devoted effort to estimate VaR and ES at extreme levels. There is no well-defined definition of extreme level
or risk, but in the literature it is typically defined as at levels below 1%. Chavez-Demoulin et al. (2014) propose a nonparametric
xtension of the Peaks-Over-Threshold method from Extreme Value Theory (EVT) to estimate VaR and ES at 1% level. Hoga (2017)
roposes tests to detect changes in extreme VaR at levels below 1% based on the Weissman estimator motivated by EVT. Danielsson
nd De Vries (1998) propose a semi-parametric method to assess the probability of extreme events for data with heavy tails and
pply it for VaR at extreme levels such as 0.5%, 0.1%, and 0.005%. In the study of Kourouma et al. (2010), VaR and ES are estimated
ased on the EVT model using the Peaks-Over-Threshold method, and it is shown that this type of EVT model performs better during
he 2008 financial crisis than the unconditional VaR models. Based on a GARCH-type volatility model with covariates, Hoga (2021)
erives asymptotically valid forecast intervals for VaR and ES, which are proved to be adequate for extreme risk levels. The above
apers all focus on VaR and ES estimations at extreme levels, but whilst they are based on EVT, our models forecast risk measures
ased on the GAS framework. There are several papers that improve on risk forecasts via forecast combinations, such as Taylor
2020) and Storti and Wang (2022), and the latter proposes forecast combinations of VaR models for various quantiles in order to
ompute ES. Our approach is, however, to use the information from a specific generic quantile to improve VaR and ES forecasts at
n extreme level.

This paper makes three main contributions. First, from a methodology perspective, we propose an extension of two models (the
ne-factor GAS model and the hybrid GAS/GARCH model) of Patton et al. (2019) to be used for risk estimation at extreme levels, by
imultaneously estimating VaR and ES at two different levels, namely at an extreme level and at an auxiliary level. Without relying
n such an auxiliary level, the extreme risk measure will depend on a small number of observations in the extreme tail of the
mpirical distribution of the returns. Therefore, incorporating information on a more generic tail can help to improve the forecast
f VaR and ES at extreme levels. We obtain parameter estimates that are more robust than the parameters of standard GAS models,
s highlighted by our simulations. Second, from a practical perspective, we demonstrate how to employ time series cross-validation
TSCV) to select the optimal auxiliary level from a set of candidates in order to improve the forecast performance of the proposed
odels. The TSCV is a data-driven method that helps with the selection of the auxiliary level without relying on arbitrary judgment.
hird, from an empirical perspective, we provide compelling evidence that our models outperform the alternatives in terms of the
valuation of VaR and ES forecasts in a forecasting exercise. Our empirical analysis is based on four oil futures and we find that the
ecent COVID-19 crisis period well illustrates the strengths of our models in terms of forecasting risk at extreme levels.

The rest of the paper is organized as follows. Section 2 discusses VaR and ES models including the four GAS models proposed
y Patton et al. (2019) and introduces the proposed GAS models that simultaneously estimate VaR and ES at two levels. The
imulation results regarding model performance are presented in Section 3. Section 4 presents the data used in our empirical study,
he in-sample estimation results, and out-of-sample (OOS) forecast results. Section 5 presents robustness results based on a rolling
indow estimation. Section 6 concludes. An online Supplemental Appendix provides additional results.

. The augmented GAS model

.1. Modeling VaR and ES

VaR provides banks and financial institutions with an estimate of the minimum loss level that occurs in the worst outcomes at a
2

iven level 𝛼 ∈ (0, 1). Let 𝐹𝑌 (⋅|𝛺𝑡−1) denote the cumulative distribution function of asset return 𝑌𝑡 over a time horizon (such as one
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day or one week) conditional on the information set 𝛺𝑡−1. Following Ziegel (2016), Nolde and Ziegel (2017), and Chen (2018), the

aR at level 𝛼 at time 𝑡 can be defined as:

𝑉 𝑎𝑅𝛼
𝑡 = inf{𝑌𝑡|𝐹𝑌 (𝑌𝑡|𝛺𝑡−1) ≥ 𝛼}, (1)

that is, 𝑉 𝑎𝑅𝛼
𝑡 denotes the 𝛼-quantile of the underlying return distribution at time 𝑡. As such, VaR at level 𝛼 can be written directly

in terms of the inverse cumulative distribution function (Duffie and Pan, 1997):

𝑉 𝑎𝑅𝛼
𝑡 = 𝐹−1

𝑌 (𝛼|𝛺𝑡−1). (2)

ES measures the expectation of returns conditional on their value being less than VaR. ES is a coherent risk measure (Roccioletti,
2015) due its superior properties, and it has become increasingly popular in the risk management of banks and financial institutions.
Recently, the Basel Committee on Banking Supervision (2013) proposed a transition from VaR at 1% level to ES at 2.5% level
motivated by the global financial crisis in 2008. ES at level 𝛼 at time 𝑡 can be formally defined as (see Acerbi and Tasche, 2002):

𝐸𝑆𝛼
𝑡 = E[𝑌𝑡|𝑌𝑡 ≤ 𝑉 𝑎𝑅𝛼

𝑡 , 𝛺𝑡−1]. (3)

2.2. Generalized Autoregressive Score (GAS) framework

The application of the GAS framework for VaR and ES forecasting has been introduced by Patton et al. (2019). They propose
the two-factor GAS model, the one-factor GAS model, the GARCH-FZ model, and the hybrid GAS/GARCH model to estimate VaR
and ES jointly by minimizing the expectation of the VaR and ES joint loss function.1 One of the most popular parameterizations of
this joint loss function is the FZ0 loss function proposed by Fissler and Ziegel (2016), which has been further popularized by Patton
et al. (2019). The FZ0 loss function is defined as:

𝐿𝐹𝑍0(𝑌 , 𝑣, 𝑒; 𝛼) = − 1
𝛼𝑒

𝟏{𝑌 ≤ 𝑣}(𝑣 − 𝑌 ) + 𝑣
𝑒
+ 𝑙𝑜𝑔(−𝑒) − 1, (4)

where 𝑌 is the return on the underlying asset, and 𝑣 and 𝑒 denote VaR and ES, respectively. 𝟏{𝑌 ≤ 𝑣} is an indicator function
which returns 1 when 𝑌 ≤ 𝑣 (i.e., the VaR is exceeded). Loss differences generated from the FZ0 loss function are homogeneous
of degree zero. When 𝑌 > 𝑣, the returns do not affect the value of the loss. However, the loss value heavily relies on the returns
when 𝑌 ≤ 𝑣, with the parameter estimates being influenced by these extreme returns through the score. The parameters of the GAS
models of Patton et al. (2019) are estimated by minimizing the loss function in Eq. (4). In the following, we briefly summarize their
four model specifications.

2.2.1. The two-factor GAS model for ES and VaR
In the two-factor GAS model, the forecasts of VaR and ES are determined by the current value of VaR and ES and the forcing

variable which is a function of the first order derivative and the Hessian of 𝐿𝐹𝑍0. The specification of the two-factor GAS model is
shown below:

[

𝑣𝑡+1
𝑒𝑡+1

]

= 𝐖 + 𝐁
[

𝑣𝑡
𝑒𝑡

]

+ 𝐀𝐇−1
𝑡 ∇𝑡, (5)

where 𝐖 is a (2 × 1) vector and 𝐁 and 𝐀 are (2 × 1) matrices. The scoring function is given by:

∇𝑡 ≡

[

𝜕𝐿𝐹𝑍0(𝑌𝑡, 𝑣𝑡, 𝑒𝑡; 𝛼)∕𝜕𝑣𝑡
𝜕𝐿𝐹𝑍0(𝑌𝑡, 𝑣𝑡, 𝑒𝑡; 𝛼)∕𝜕𝑒𝑡

]

, (6)

and the scaling matrix 𝐇𝑡 is the Hessian matrix:

𝐇𝑡 =

⎡

⎢

⎢

⎢

⎣

𝜕2E𝑡−1[𝐿𝐹𝑍0(𝑌𝑡 ,𝑡 ,𝑒𝑡 ;𝛼)]
𝜕𝑣2𝑡

𝜕2E𝑡−1[𝐿𝐹𝑍0(𝑌𝑡 ,𝑣𝑡 ,𝑒𝑡;𝛼)]
𝜕𝑣𝑡𝜕𝑒𝑡

⋅ 𝜕2E𝑡−1[𝐿𝐹𝑍0(𝑌𝑡 ,𝑣𝑡 ,𝑒𝑡;𝛼)]
𝜕𝑒2𝑡

⎤

⎥

⎥

⎥

⎦

. (7)

2.2.2. The one-factor GAS model for ES and VaR
The two-factor model allows ES and VaR to be updated as two separate, but correlated, processes. However, in the one-factor

GAS model, VaR and ES are based on a time-varying risk measure 𝜅𝑡 (similar to the conditional variance process in the GARCH
model). The one-factor GAS model is written as:

𝑣𝑡 = 𝑎 exp {𝜅𝑡},

𝑒𝑡 = 𝑏 exp {𝜅𝑡}, 𝑏 < 𝑎 < 0,

𝜅𝑡 = 𝜔 + 𝛽𝜅𝑡−1 + 𝛾𝐻−1
𝑡−1𝑠𝑡−1,

(8)

where the restriction 𝑏 < 𝑎 < 0 follows (Patton et al., 2019) and 𝑠𝑡 is given by:

𝑠𝑡 ≡
𝜕𝐿𝐹𝑍0(𝑌𝑡, 𝑎 exp {𝜅𝑡}, 𝑏 exp {𝜅𝑡}; 𝛼)

𝜕𝜅𝑡
= − 1

𝑒𝑡

( 1
𝛼
𝟏{𝑌𝑡 ≤ 𝑣𝑡−1}𝑌𝑡 − 𝑒𝑡

)

, (9)

1 Fissler and Ziegel (2016) show that VaR and ES are jointly elicitable, while ES is not elicitable by itself (Gneiting, 2011).
3
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and for simplicity, Patton et al. (2019) set the Hessian factor 𝐻𝑡 as one. Thus, the one-factor GAS model for ES and VaR can be
written as:

𝜅𝑡 = 𝜔 + 𝛽𝜅𝑡−1 + 𝛾 1
𝑏 exp {𝜅𝑡−1}

( 1
𝛼
𝟏{𝑌𝑡−1 ≤ 𝑎 exp {𝜅𝑡−1}}𝑌𝑡−1 − 𝑏 exp {𝜅𝑡−1}

)

. (10)

.2.3. The GARCH-FZ model for ES and VaR
Forecasting VaR and ES via a GARCH type model is one of the most prevailing ways to estimate risk measures, due to its

arsimony. The GARCH-FZ model employs the framework of a GARCH model to generate VaR and ES, but the parameters of this
odel are estimated by minimizing the expectation of the loss function FZ0, instead of using (Q)MLE. The model is:

𝑌𝑡 = 𝜇𝑡 + 𝜎𝑡 𝜂𝑡, 𝜂𝑡 ∼ 𝑖𝑖𝑑 𝐹𝜂(0, 1),

𝜎2𝑡 = 𝜔 + 𝛽𝜎2𝑡−1 + 𝛾𝑌 2
𝑡−1,

(11)

here 𝜎2𝑡 is the conditional variance which follows a GARCH(1, 1) process. In terms of VaR and ES, the dynamic structure is
nalogous to the one-factor GAS model shown above:

𝑣𝑡 = 𝑎 𝜎𝑡, where 𝑎 = 𝐹−1
𝜂 (𝛼),

𝑒𝑡 = 𝑏 𝜎𝑡, where 𝑏 = E [𝜂𝑡|𝜂𝑡 ≤ 𝑎],
(12)

here 𝜂𝑡 is the standardized residual.

.2.4. The hybrid GAS/GARCH model for ES and VaR
In the hybrid GAS/GARCH model, the process 𝜅𝑡 in the one-factor GAS model and the volatility 𝜎𝑡 in the GARCH model both

ontribute to the dynamics of VaR and ES. Thus, as a combination of both models, the hybrid GAS/GARCH model is specified as:

𝑌𝑡 = exp{𝜅𝑡}𝜂𝑡, 𝜂𝑡 ∼ 𝑖𝑖𝑑 𝐹𝜂(0, 1),

𝑣𝑡 = 𝑎 exp {𝜅𝑡},

𝑒𝑡 = 𝑏 exp {𝜅𝑡}, 𝑏 < 𝑎 < 0,

𝜅𝑡 = 𝜔 + 𝛽𝜅𝑡−1 + 𝛾 1
𝑒𝑡−1

( 1
𝛼
𝟏{𝑌𝑡−1 ≤, 𝑣𝑡−1}𝑌𝑡−1 − 𝑒𝑡−1

)

+ 𝛿 log |𝑌𝑡−1|,

(13)

here 𝜅𝑡 is the log-volatility which is affected by 𝑌𝑡−1 in terms of the logarithm of absolute return rather than the square of return.
We now turn our attention to modeling risk at extreme levels within a GAS framework. According to Eqs. (10) and (13), 𝜅𝑡

epends on 𝑠𝑡−1 (the first order derivative of the FZ0 loss function, driven mostly by the indicator function in Eq. (4)) and 𝜅𝑡−1.
Fig. 1 presents the 𝜅𝑡 and 𝑠𝑡 processes for the one-factor GAS and hybrid GAS/GARCH models for two different levels, estimated
rom WTI crude futures prices. In general, 𝜅𝑡 remains mostly unchanged at extreme level 𝛼 = 0.1%, and so the VaR and ES at time 𝑡

are largely unaffected by the small changes in 𝜅𝑡. For a less extreme level (𝛼 = 5%, for example), 𝜅𝑡 and 𝑠𝑡 are more dynamic, being
influenced by the returns in the tail of the distribution (see the last four figures in Fig. 1). VaR and ES at a higher level can use past
information more efficiently. Therefore, in order to improve on the estimation of GAS models of Patton et al. (2019) for extreme
levels, we propose the augmented GAS models, which are introduced in the following section.

2.3. The augmented GAS models for ES and VaR

In this section, we propose to enhance two dynamic semi-parametric models, which are the one-factor GAS model and the
hybrid GAS/GARCH model of Patton et al. (2019), to improve the forecasts of risk measures at an extreme level. We achieve this by
simultaneously modeling VaR and ES at two different levels, an extreme level 𝛼1 (such as 0.1%) and an auxiliary level 𝛼2 (a more
common level in the range of 2.5%–20%).2 In this setup, the same 𝜅𝑡 process drives the risk estimates VaR and ES for both levels.
As such, we introduce two augmented GAS models, namely the augmented GAS one-factor model (we label it as A-GAS-1F) and the
augmented hybrid model (we label it as A-Hybrid). These two models are jointly labeled as A-GAS models. We denote the VaR and
ES at the extreme level of interest 𝛼1 as 𝑣1,𝑡 and 𝑒1,𝑡, and at the auxiliary level 𝛼2 as 𝑣2,𝑡 and 𝑒2,𝑡. Also, we investigate the backtesting
performance of the 𝑣1,𝑡 and 𝑒1,𝑡 forecasts because these are at the level of interest. In the following, we elaborate on the details of
the proposed models.

2 An additional auxiliary level 𝛼3 could also be considered at higher computational cost. However, in our preliminary analysis, this does not provide
4

onsiderable improvements.
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Fig. 1. This figure presents the 𝜅𝑡 and 𝑠𝑡 processes of the GAS one-factor (left) and Hybrid (right) models for 𝛼 = 0.1% and 𝛼 = 5%, estimated for the WTI futures
rices from Jan 2014 to Jan 2021, with the model parameters re-estimated every 30 trading days using a rolling window of 1805 observations (7 years).

.3.1. The augmented GAS one-factor model for ES and VaR
Under the GAS framework, the VaR and ES processes linearly depend on 𝜅𝑡. Similarly, in the A-GAS-1F model, 𝑣1,𝑡, 𝑒1,𝑡, 𝑣2,𝑡 and

2,𝑡 are all driven by 𝜅𝑡, which on the other hand depends on its lagged values (𝜅𝑡−1) and the score at the auxiliary level 𝛼2. The
odel can be defined as:

𝑣1,𝑡 = 𝑎1 exp{𝜅𝑡}, 𝑒1,𝑡 = 𝑏1 exp{𝜅𝑡},

𝑣2,𝑡 = 𝑎2 exp{𝜅𝑡}, 𝑒2,𝑡 = 𝑏2 exp{𝜅𝑡},

𝜅𝑡 = 𝜔 + 𝛽𝜅𝑡−1 + 𝛾𝑠𝑡−1,𝛼2 ,

𝑠𝑡,𝛼2 ≡
𝜕𝐿𝐹𝑍0(𝑌𝑡, 𝑎2 exp {𝜅𝑡}, 𝑏2 exp {𝜅𝑡}; 𝛼2)

𝜕𝜅𝑡
= − 1

𝑒2,𝑡

(

1
𝛼2

𝟏{𝑌𝑡 ≤ 𝑣2,𝑡}𝑌𝑡 − 𝑒2,𝑡

)

,

(14)

where 𝑣1,𝑡 and 𝑒1,𝑡 are the VaR and ES at the extreme level 𝛼1 and 𝑣2,𝑡 and 𝑒2,𝑡 are the VaR and ES at the auxiliary level 𝛼2. The
score 𝑠𝑡,𝛼2 only depends on 𝛼2, being the first order derivative of the FZ0 loss function for the auxiliary level 𝛼2. It is possible to
also consider the 𝑠𝑡,𝛼1 process as a second forcing variable in the 𝜅𝑡 process. However, given that 𝛼1 is an extreme level, 𝑠𝑡,𝛼1 is a
predominantly flat process without much variation, which would make the corresponding parameter in the 𝜅𝑡 process difficult to
estimate.3

2.3.2. The augmented hybrid GAS/GARCH model for ES and VaR
Extending the hybrid GAS/GARCH model of Patton et al. (2019), we propose the augmented hybrid GAS/GARCH model (labeled

A-Hybrid) which uses an auxiliary level of risk 𝛼2, given by:

𝑌𝑡 = exp{𝜅𝑡}𝜂𝑡, 𝜂𝑡 ∼ 𝑖𝑖𝑑 𝐹𝜂(0, 1),

𝑣1,𝑡 = 𝑎1 exp{𝜅𝑡}, 𝑒1,𝑡 = 𝑏1 exp{𝜅𝑡},

𝑣2,𝑡 = 𝑎2 exp{𝜅𝑡}, 𝑒2,𝑡 = 𝑏2 exp{𝜅𝑡},

𝜅𝑡 = 𝜔 + 𝛽𝜅𝑡−1 + 𝛾
(

1
𝑒2,𝑡−1

(

1
𝛼2

𝟏{𝑌𝑡−1 ≤ 𝑣2,𝑡−1}𝑌𝑡−1 − 𝑒2,𝑡−1

))

+ 𝛿 log |𝑌𝑡−1|,

(15)

3 In our preliminary experiments, considering the 𝑠 process does not lead to improvements in the results.
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Fig. 2. This diagram presents the TSCV procedure for selecting the best auxiliary level 𝛼2 for the A-GAS model. Also, it illustrates the forecasting procedure
for VaR and ES at the extreme level 𝛼1 in the OOS period. The parameters estimated from the training set (𝑃1 days) are used to forecast the VaR and ES in
the first 𝑀1 days in the validation period (𝑃2 days). Then, the parameters are re-estimated using information from day 1 +𝑀1 to day 𝑃1 +𝑀1 to generate the
VaR and ES for the following 𝑀1 days. After ⌊𝑃2∕𝑀1⌋ repetitions, VaR and ES are forecasted for the validation period. The 𝛼2 value with the lowest average
FZ0 loss value over the validation period is selected as the optimal 𝛼2 that is used in the OOS period. To obtain VaR and ES forecasts over the OOS period (𝑃4
days), the parameters of the A-GAS model with the optimal 𝛼2 value are estimated using data from the last 𝑃3 days prior to the OOS period.

where the log-volatility 𝜅𝑡 is the same as in the hybrid GAS/GARCH model but is based on 𝛼2.4

2.3.3. Parameter estimation
In the augmented models, the forecasts of risk measures at the extreme level 𝛼1 consider the losses at the auxiliary risk level 𝛼2.

Thus, the VaR and ES at 𝛼1 are obtained by minimizing the joint loss function which is the sum of both FZ0 loss functions, at both
𝛼1 and 𝛼2 levels. Let L𝐹𝑍0 be the sum of the FZ0 loss functions, defined as:

L𝐹𝑍0(𝑌 , 𝑣1, 𝑣2, 𝑒1, 𝑒2; 𝛼1, 𝛼2) = 𝐿𝐹𝑍0(𝑌 , 𝑣1, 𝑒1; 𝛼1)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝐿𝐹𝑍0(𝛼1)

+𝐿𝐹𝑍0(𝑌 , 𝑣2, 𝑒2; 𝛼2)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝐿𝐹𝑍0(𝛼2)

, (16)

where the 𝐿𝐹𝑍0(𝑌 , 𝑣𝑖, 𝑒𝑖; 𝛼𝑖) is the FZ0 loss function for 𝛼𝑖 as given by Patton et al. (2019) in their Eq. (4). By minimizing the
expectation of L𝐹𝑍0(𝑌 , 𝑣1, 𝑣2, 𝑒1, 𝑒2; 𝛼1, 𝛼2), the model parameters are estimated via:

�̂�𝑇 = argmin
𝜃

1
𝑇

𝑇
∑

𝑡=1
L𝐹𝑍0(𝑌𝑡, 𝑣1,𝑡, 𝑣2,𝑡, 𝑒1,𝑡, 𝑒2,𝑡; 𝛼1, 𝛼2), (17)

where 𝑣𝑖,𝑡 and 𝑒𝑖,𝑡 are the VaR and ES forecasts at time 𝑡, obtained with the information set available at time 𝑡 − 1, at two risk
levels 𝛼𝑖, 𝑖 = 1 and 2. Before evaluating the performance of the augmented models, an essential consideration is the selection of the
hyper-parameter, the auxiliary level 𝛼2. To find an optimized 𝛼2, we propose to use time series cross-validation, which is discussed
in the following section.

2.3.4. Time series cross-validation
For the above augmented models, 𝛼2 is the hyper-parameter to be determined. Cross-validation has been introduced as a method

to help choose the best hyper-parameters for models in general (see, for example, Hart, 1994 for a description of this methodology).
However, for time series, this method cannot be used in its classic form. Thus, we apply a special version of cross-validation that is
suitable for time series applications, proposed by Hyndman and Athanasopoulos (2018). Within this procedure, a series of validation

4 For the same reason, we choose to let 𝜅 only depend on risk measures at the auxiliary level 𝛼 .
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Table 1
The average loss values of the Augmented GAS models.
𝛼2 A-GAS-1F A-Hybrid

Validation loss OOS Forecast loss Loss reduction Validation loss OOS Forecast loss Loss reduction

2.5% 1.813 1.805 24.4% 1.813 1.796 15.8%
5% 1.783 1.773 25.7% 1.781 1.778 16.7%
7.5% 1.772 1.765 26.1% 1.794 1.773 16.9%
10% 1.802 1.763 26.2% 1.793 1.773 16.9%
12.5% 1.778 1.767 26.0% 1.803 1.778 16.6%
15% 1.767 1.769 25.9% 1.813 1.784 16.4%
17.5% 1.812 1.766 26.1% 1.820 1.789 16.2%
20% 1.786 1.762 26.2% 1.805 1.792 16.0%
TSCV 1.618 1.702 28.7% 1.644 1.719 19.4%

GAS – 2.388 – – 2.134 –

GJR-G-Est – 1.691 – – 1.691 –
GJR-G-True – 1.675 – – 1.675 –

Note: This table presents the average loss values over the validation and OOS forecasting period obtained from 1000 replications of VaR and ES estimations
at the level 𝛼1 = 0.1%, assuming a GJR-GARCH-SKT as the DGP. The full sample size is 𝑇 = 9000, with 3000 as the training sample, 3000 as the validation
ample, and 3000 as the OOS sample. The first 8 rows correspond to the A-GAS models with different 𝛼2 values, whilst row 9 corresponds to the A-GAS models
ith TSCV. Row 10 corresponds to the GAS model of Patton et al. (2019). The last two rows are for the GJR-GARCH-SKT, where the GJR-G-Est corresponds

o the GJR-GARCH-SKT model with the parameters re-estimated in every simulation path, and GJR-G-True corresponds to the GJR-GARCH-SKT model with the
rue parameters of the DGP. The loss values of the one-factor models are located in the left panel and loss values for the hybrid models are in the right panel.
he columns ‘‘Validation loss’’ and ‘‘OOS forecast loss’’ present the average loss value of the augmented GAS models during the validation period and the OOS
orecasting period, based on the FZ0 loss function. The Column ‘‘Loss reduction’’ presents the relative reduction in the loss value of the risk measures obtained
y the augmented models compared to their corresponding GAS model.

ets are formed, each consisting of an equal-weighted segment of the time series observations. The corresponding training set consists
f observations that occurred before the validation set. Therefore, no future information is used when making forecasts for the
alidation sets. One small change that we make is to use the rolling-windows in our emprical study, rather than the expanding-
indows as proposed by Hyndman and Athanasopoulos (2018). This is due to the consideration of possible structural breaks, which

ould lead to large forecasting errors and result in the model being unreliable for forecasting. The TSCV procedure5 in our empirical
tudy is illustrated in Fig. 2.

. Simulation study

In this section, we investigate the performance of the A-GAS models and compare it with that of the GAS models of Patton et al.
2019) via Monte Carlo simulations. To measure model performance, we use loss values and a range of backtests. In the following,
e consider an extreme level as 𝛼1 = 0.1%. We choose the data generation process (DGP) as the GJR-GARCH (1,1) model with

kewed 𝑡 distribution (we label it as GJR-GARCH-SKT) which considers the leverage effect, and it is among the most suitable model
or volatility and VaR forecasting (Liu and Hung, 2010).6 Specifically, the DGP is:

𝑌𝑡 = 𝜎𝑡𝜂𝑡, 𝜂𝑡 ∼ 𝑖𝑖𝑑 𝐹𝜂(0, 1),

𝜎2𝑡 = 𝜔 + 𝛾𝑌 2
𝑡−1 + 𝛿𝟏{𝑌𝑡−1 < 0}𝑌 2

𝑡−1 + 𝛽𝜎2𝑡−1,
(18)

where the parameter values of the DGP are set to be (𝜔, 𝛾, 𝛿, 𝛽) = (0.0225, 0.0065, 0.1779, 0.8835), and the error term 𝜂𝑡 follows a
skewed 𝑡 distribution of Hansen (1994) with degrees of freedom 𝜈 = 7.5269 and skewness parameter 𝜆 = −0.1455.7

In the specification of the A-GAS model, we consider a variety of values for 𝛼2, specifically {2.5%, 5%, 7.5%, 10%, 12.5%, 15%, 17.5%,
20%} is the set of possible values for the auxiliary level.8 The simulation is based on 1000 replications. The whole sample size
𝑇 = 9000 is divided into three equal segments, specifically training period, validation period and the OOS period. The first 3000
days of the sample are the training period used to obtain the parameter estimates; the next 3000 days constitute the validation period
for the selection of 𝛼2; and the last 3000 days represent the OOS period for the purpose of final forecasting evaluation. To reduce
the computational cost of the simulation, VaR and ES forecasts in the validation period are generated in a fixed-window manner,
which is based on the fact that there is no structural break in the DGP and thus the rolling-windows are not needed. TSCV selects
the optimum 𝛼2 obtained via minimizing the average loss in the validation period in each replication, and this 𝛼2 will be used over
the entire OOS period. We also report the results of individual 𝛼2 for the purpose of comparison.

Table 1 presents the FZ0 loss values and loss reductions of the A-GAS models at the extreme level 𝛼1 = 0.1% for different 𝛼2
values. If 𝛼2 is chosen by TSCV, the two A-GAS models outperform the classical alternative models. The loss reduction is defined
as the relative reduction in the loss value of the risk measures obtained by the augmented models compared to their corresponding

5 We use a fixed window in the simulation setting because there is no structural break in the our simulation set-up, and this can largely reduce the
omputational cost. This can be regarded as a special case when 𝑀1 = 𝑃2 in Fig. 2.

6 We also performed a simulation analysis using a Markov-switching process as DGP. The results are reported in the Supplemental Appendix.
7 All parameter values are obtained via fitting the model to the de-meaned returns on the S&P 500 from 1 January 2000 to 8 January 2021.
8 Other values of 𝛼 can also be considered. Due to the computational cost, we restrict 𝛼 to these eight choices.
7
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Table 2
Backtest rejection rates.
𝛼2 A-GAS-1F A-Hybrid

UC CC BS UC CC BS

2.5% 35.8% 22.7% 29.9% 37.4% 25.6% 25.4%
5% 36.1% 23.6% 28.7% 38.0% 25.9% 28.5%
7.5% 35.8% 23.0% 29.6% 36.5% 26.1% 30.6%
10% 35.7% 23.6% 29.8% 37.8% 26.6% 29.2%
12.5% 35.0% 23.6% 28.9% 37.6% 28.1% 31.1%
15% 36.6% 24.6% 29.5% 37.2% 26.7% 32.6%
17.5% 36.1% 23.7% 28.2% 37.5% 27.4% 33.3%
20% 34.4% 22.0% 27.0% 37.1% 26.7% 32.5%
TSCV 27.9% 15.7% 22.9% 31.5% 21.9% 30.3%

GAS 47.8% 37.4% 40.0% 47.9% 38.3% 34.0%

GJR-G-Est 13.2% 7.7% 20.9% 13.2% 7.7% 20.9%
GJR-G-True 8.0% 5.7% 21.0% 8.0% 5.7% 21.0%

Note: This table presents the backtest rejection rates obtained from 1000 replications, indicating the frequency of backtest
rejections at 5% significance level. The DGP used in the simulation is the GJR-GARCH-SKT with full sample size 𝑇 = 9000, and
the risk level used to compute VaR and ES is 𝛼1 = 0.1%. The first 8 rows correspond to the A-GAS models with different 𝛼2 values,
whilst row 9 corresponds to the A-GAS models with TSCV. Row 10 corresponds to the GAS model of Patton et al. (2019). The
last two rows are for the GJR-GARCH-SKT, where the GJR-G-Est corresponds to the GJR-GARCH-SKT model with the parameters
re-estimated in every simulation path, and GJR-G-True corresponds to the GJR-GARCH-SKT model with the true parameters of
the DGP. Columns 2–4 and columns 5–7 present the rejection rates for the Unconditional Coverage (UC), Conditional Coverage
(CC) and Bootstrapping backtest (BS), respectively.

Table 3
The relative loss reduction of A-GAS models for various 𝛼1 levels.
𝛼2\𝛼1 A-GAS-1F A-Hybrid

0.1% 0.25% 0.5% 0.75% 1% 2.5% 0.1% 0.25% 0.5% 0.75% 1% 2.5%

2.5% 24.39% 16.60% 11.88% 8.89% 6.55% N/A 15.81% 13.54% 7.50% 4.39% 3.11% N/A
5% 25.73% 18.65% 14.00% 11.03% 9.12% 2.61% 16.68% 14.94% 8.73% 5.95% 4.66% 1.54%
7.5% 26.07% 19.35% 14.87% 11.84% 9.91% 3.70% 16.90% 15.29% 9.45% 6.66% 5.22% 2.12%
10% 26.15% 19.74% 15.17% 12.39% 10.34% 4.16% 16.91% 15.34% 9.81% 7.04% 5.71% 2.51%
12.5% 25.99% 20.20% 15.55% 12.65% 10.54% 4.39% 16.65% 15.70% 9.92% 7.12% 5.85% 2.72%
15% 25.90% 19.88% 15.53% 12.66% 10.60% 4.52% 16.38% 15.68% 9.99% 7.30% 5.97% 2.78%
17.5% 26.05% 20.15% 15.51% 12.68% 10.54% 4.49% 16.17% 15.61% 9.94% 7.22% 5.97% 2.78%
20% 26.22% 20.01% 15.56% 12.65% 10.52% 4.43% 16.03% 15.51% 10.05% 7.16% 5.88% 2.79%
TSCV 28.70% 20.58% 15.76% 12.73% 10.65% 4.43% 19.42% 16.67% 10.39% 7.44% 6.10% 2.75%

Note: This table presents the relative loss reduction of the A-GAS models as compared to their corresponding GAS models, based on 1000 replications of VaR
and ES estimations for a GJR-GARCH-SKT DGP with full sample size 𝑇 = 9000. Loss reduction values for the one-factor GAS models are on the left and for the
Hybrid GAS/GARCH model are on the right. The first column presents the 𝛼2 candidates from 2.5% up to 20% and the last row reports the values obtained by
applying TSCV in the selection of 𝛼2. The rest of the columns present the relative loss reduction for different target levels (𝛼1). In each column, the 𝛼2 with the
highest reduction is highlighted in bold. When 𝛼1 ≥ 𝛼2, the loss values are reported as N/A.

GAS model. The loss reduction of the augmented GAS one-factor model and the hybrid model are approximately 26% and 16%.
The A-GAS models with TSCV are found to be the best GAS-type models, with loss values of 1.702 and 1.719 for the A-GAS-1F and
the A-Hybrid model, equivalent to a 28.7% and 19.4% loss reduction, respectively. We further compare the loss obtained by the
augmented models with the loss value from the ‘‘true’’ VaR and ES calculated from the DGP (when no model risk is present, labeled
as GJR-G-True), as well as with the loss values obtained by estimating the DGP model (obtained when only parameter estimation
risk is present, labeled as GJR-G-Est). The results suggest that the augmented models estimated via TSCV lead to risk values that
have losses very close to the true loss values, complimenting the accuracy of the risk forecasts.

Next, we compare the augmented GAS models with the alternatives in terms of backtests of the risk forecasts. Three backtests
are considered. First, we implement the unconditional coverage (UC) test proposed by Kupiec (1995) which uses the proportion of
failures as its main tool to evaluate VaR. Second, the conditional coverage (CC) test proposed by Christoffersen (1998) is considered,
and this test addresses the clustering of failures. Third, to evaluate the ES forecasts, we employ the bootstrap (BS) test of McNeil
and Frey (2000), which focuses on the discrepancies between the observed returns and the ES forecasts for the periods in which
the return exceeds the VaR forecast. We calculate the rate that the null is rejected at 5% level, and we call this the Rejection Rate.
This is reported over the OOS period.9

Table 2 presents the backtest rejection rate at the extreme level 𝛼1 = 0.1% for VaR and ES of the two A-GAS models, the GAS
model, the true model with true parameter labeled as GJR-G-True, and the true model with estimated parameter labeled as GJR-G-
Est. In general, the A-GAS models outperform the GAS model. The A-GAS models with TSCV provide the lowest backtest rejection
rates except for the BS backtest results of the A-Hybrid model. On the other hand, the A-GAS-1F model with TSCV has the best

9 More backtest results are reported in the online Supplemental Appendix.
8
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Table 4
Summary statistics and parameter estimates.

WTI Brent GO HO

Panel A: Summary statistics

Mean (annualized) 6.301 3.765 3.445 3.959
Std. dev. (annualized) 42.077 36.969 34.178 36.895
Skewness 0.037 −0.590* −0.254* −0.653*
Kurtosis 20.406* 14.411* 8.017* 10.005*

VaR (𝛼 = 0.1%) −12.970 −11.066 −11.483 −15.758
VaR (𝛼 = 0.25%) −10.806 −9.688 −8.610 −9.225
VaR (𝛼 = 0.5%) −9.109 −7.562 −6.757 −8.173
VaR (𝛼 = 1%) −7.089 −6.392 −5.633 −6.217

ES (𝛼 = 0.1%) −22.800 −19.257 −14.882 −19.487
ES (𝛼 = 0.25%) −15.974 −13.685 −11.724 −14.663
ES (𝛼 = 0.5%) −12.952 −10.986 −9.741 −11.652
ES (𝛼 = 1%) −10.460 −8.982 −7.851 −9.360

Panel B: Parameter estimates

𝜔 0.064 0.036 0.014 0.029
(0.016) (0.012) (0.006) (0.010)

𝛽 0.914 0.926 0.951 0.936
(0.008) (0.008) (0.007) (0.010)

𝛾 0.076 0.069 0.047 0.060
(0.009) (0.008) (0.007) (0.009)

𝜈 7.583 6.985 8.098 7.029
(0.714) (0.658) (0.866) (0.659)

𝜆 −0.094 −0.075 −0.058 −0.030
(0.019) (0.017) (0.019) (0.022)

Note: Summary statistics and parameter estimates for the four futures return series, over the full sample period from January
2000 to January 2021. Panel A reports the annualized mean and standard deviation of the returns expressed in percentages, the
skewness, kurtosis, as well as the sample VaR and ES estimates for four different values of risk level 𝛼. Panel B presents the
estimated parameters of the GARCH (1,1) model with skewed 𝑡 distributed errors, with the standard errors in parentheses.
* Denotes values of skewness (kurtosis) significantly different from zero (3) at 5% level.

performance in the BS backtest. The GJR-GARCH-SKT model performs best in terms of backtest rejection rate, which is as expected,
because this is the DGP model used for the simulation. It is important to note that using the true DGP model is only possible in a
simulation setup, whilst in practice the true DGP is unknown.

Additionally, we explore model performance for different values of 𝛼1. Table 3 presents the relative loss reduction obtained
by the A-GAS models compared to the GAS models, for different extreme levels of 𝛼1. We consider augmented models for various
values of 𝛼1 and 𝛼2. Specifically, 𝛼1 ∈ {0.1%, 0.25%, 0.5%, 0.75%, 1%, 2.5%} and 𝛼2 ∈ {2.5%, 5%, 7.5%, 10%, 12.5%, 15%, 17.5%, 20%}. We
set the restriction that 𝛼1 must be lower than 𝛼2. As 𝛼1 decreases, the loss reduction obtained via the A-GAS model as compared
to the corresponding GAS model increases for all 𝛼2 candidates. Also, we find that the A-GAS models with TSCV have the greatest
improvement in terms of loss values. The greatest reduction is obtained for 𝛼1 = 0.1% and it is about 15% and 20% in relative terms
for the A-GAS-1F and A-Hybrid models, respectively.

Overall, based on the results of the above simulation studies, incorporating information from an auxiliary level improves the
performance of the GAS models when 𝛼1 is extremely small. Also, TSCV is shown to be highly effective to choose the hyper-parameter
𝛼2.

4. Empirical study

4.1. Data description

To evaluate the empirical forecast performance of the proposed models, we study daily returns from four oil futures, the WTI
crude oil, Brent crude oil, Gas oil (GO) and Heating oil (HO). These series are representative of the behavior of the returns in the
commodity futures markets.10 The sample period is between 1 January 2000 and 8 January 2021.11

10 Commodity markets are considered to be highly volatile (Del Brio et al., 2020). The proposed risk models can be applied in other markets, such as equity
arkets. However, due to the highly volatile nature of commodity returns, the issue of estimating risk at extreme levels is most imperative in these markets,
hich motivated our empirical investigation.
11 Our data source is Refinitiv Eikon and the Refinitiv Identification Code (RIC) for these four oil futures are: CLc1 (WTI crude oil), LCOc1 (Brent crude oil),
GOc1 (Gas oil), and HOc1 (Heating oil). To ensure continuity in the data, we remove the days with negative prices, market-specific non-trading days and zero
9

eturns from each return series.
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Table 5
Average losses during the validation period for different values of 𝛼2.
𝛼2 A-GAS-1F A-Hybrid

WTI Brent GO HO WTI Brent GO HO

2.5% 2.422 2.486 2.091 2.520 2.494 2.622 1.915 2.667
5% 2.379 2.632 2.196 2.531 2.523 2.425 1.925 2.641
7.5% 2.505 2.509 2.044 2.534 2.493 2.350 2.040 2.580
10% 2.293 2.578 2.101 2.288 2.502 2.467 1.969 2.466
12.5% 2.286 2.414 1.885 2.440 2.399 2.414 1.919 2.485
15% 2.266 2.463 1.973 2.342 2.465 2.420 1.895 2.427
17.5% 2.268 2.524 1.975 2.425 2.343 2.476 1.981 2.470
20% 2.285 2.436 1.991 2.452 2.437 2.527 2.037 2.424

Note: This table presents the average loss values of VaR and ES at the extreme level 𝛼1 = 0.1% in the validation period for eight 𝛼2 values, estimated for the
return series of four oil futures from January 2007 to December 2013. The left panel indicates the average FZ0 loss value for the A-GAS-1F model whilst the
values for the A-Hybrid model are presented in the right panel. The lowest value in each column is in bold, and the corresponding 𝛼2 is selected for the OOS
period.

Table 6
Parameter estimates of the GAS and A-GAS models.

Panel A: WTI Panel B: Brent

GAS-1F Hybrid A-GAS-1F A-Hybrid GAS-1F Hybrid A-GAS-1F A-Hybrid

𝛽 0.986 0.810 0.971 0.870 0.942 0.785 0.955 0.927
(0.004) (0.015) (0.028) (0.019) (0.03) (0.020) (0.005) (0.026)

𝛾 0.002 0.000 0.068 0.077 0.002 0.000 0.051 0.056
(0.015) (0.000) (0.168) (0.237) (0.007) (0.000) (0.096) (0.015)

𝛿 – 0.058 – 0.064 – 0.074 – 0.039
– (0.009) – (0.009) – (0.038) – (0.013)

𝑎1 −6.271 −8.950 −5.198 −7.443 −9.689 −8.246 −7.082 −9.393
(6.031) (0.621) (5.340) (1.910) (1.360) (1.299) (1.689) (0.159)

𝑏1 −6.727 −9.745 −5.711 −7.444 −9.935 −8.362 −8.911 −14.490
(4.485) (0.580) (5.354) (1.881) (1.372) (1.819) (1.671) (0.127)

𝑎2 – −1.191 −1.596 – – −1.952 −3.662
– – (14.142) (5.662) – – (6.905) (2.001)

𝑏2 – – −2.388 −2.991 – – −3.237 −7.8646
– – (14.268) (5.533) – – (6.866) (3.097)

Ave. loss 2.274 2.287 2.058 2.057 2.276 2.199 2.152 2.127

Panel C: GO Panel D: HO

GAS-1F Hybrid A-GAS-1F A-Hybrid GAS-1F Hybrid A-GAS-1F A-Hybrid

𝛽 0.963 0.903 0.983 0.830 0.989 0.999 0.981 0.957
(0.003) (0.002) (0.001) (0.030) (0.002) (0.000) (0.042) (0.105)

𝛾 0.005 0.001 0.013 0.014 0.000 0.000 0.034 0.079
(0.004) (0.000) (0.004) (0.066) (0.003) (0.000) (0.008) (0.103)

𝛿 – 0.068 – 0.100 – 0.004 – 0.038
– (0.000) – (0.002) – (0.000) – (0.019)

𝑎1 −7.004 −5.878 −6.711 −5.943 −8.739 −7.823 −7.165 −7.823
(0.731) (0.743) (0.221) (0.326) (2.156) (2.126) (0.243) (2.550)

𝑏1 −8.660 −6.555 −6.737 −7.409 −8.966 −7.823 −10.360 −7.916
(0.849) (0.68) (0.217) (0.353) (2.314) (2.149) (0.138) (3.154)

𝑎2 – – −2.171 −1.773 – – −2.891 −1.403
– – (0.644) (1.305) – – (0.410) (8.840)

𝑏2 – – −2.966 −3.261 – – −4.231 −2.798
– – (0.684) (1.299) – – (0.777) (10.033)

Ave. loss 1.907 1.676 1.828 1.732 2.192 2.015 2.072 2.034

Note: This table presents parameter estimates and standard errors (in parentheses) for two GAS models and two A-GAS models used to forecast VaR and ES at the
extreme level 𝛼1 = 0.1% for four oil futures series over the in-sample period from January 2007 to December 2013. For each return series, the first two columns
in each panel present the parameter estimates for the one-factor GAS model and the Hybrid GAS/GARCH model, and the following two columns indicate the
parameter values for the one-factor A-GAS model and the A-Hybrid GAS/GARCH model, respectively. The last row of each panel presents the average in-sample
FZ0 loss for the four return series.

Table 4 presents the summary statistics of these four series over the full sample period. All return series exhibit substantial
10
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Table 7
Out-of-sample backtest performance.

Panel A: Jan 2014 to Jan 2021

UC test (VaR) 𝑝-values CC test (VaR) 𝑝-values BS test (ES) 𝑝-values

WTI Brent GO HO WTI Brent GO HO WTI Brent GO HO

RW-500 0.012 0.001 0.010 0.003 0.002 0.000 0.002 0.001 0.032 0.000 0.008 0.030
RW-1000 0.012 0.051 0.040 0.013 0.002 0.004 0.004 0.002 0.108 0.138 0.014 0.048
RW-1500 0.148 0.014 0.000 0.150 0.007 0.002 0.000 0.352 0.110 0.374 0.104 0.102

CF-500 0.396 0.160 0.366 0.399 0.694 0.369 0.007 0.697 0.284 0.570 0.288 0.410
CF-1000 0.859 0.512 0.132 0.399 0.982 0.806 0.319 0.697 0.490 0.000 0.794 0.292
CF-1500 0.532 0.512 0.366 0.529 0.822 0.806 0.661 0.820 0.000 0.000 0.338 0.000

GARCH-N 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.028 0.008
GARCH-SKT 0.000 0.001 0.132 0.003 0.000 0.000 0.006 0.012 0.236 0.516 0.140 0.054
GARCH-EDF 0.000 0.000 0.010 0.000 0.000 0.000 0.002 0.000 0.498 0.694 0.196 0.740
GJR-GARCH-SKT 0.003 0.003 0.366 0.001 0.001 0.001 0.007 0.003 0.488 0.606 0.492 0.098

GARCH-FZ 0.000 0.000 0.010 0.003 0.000 0.000 0.037 0.012 0.294 0.674 0.146 0.012
GAS-1F 0.396 0.887 0.366 0.047 0.007 0.988 0.661 0.137 0.472 0.474 0.784 0.146
Hybrid 0.046 0.051 0.132 0.001 0.136 0.004 0.319 0.000 0.140 0.146 0.078 0.006
GAS-2F 0.148 0.417 0.132 0.047 0.007 0.007 0.319 0.137 0.368 0.594 0.706 0.084

A-GAS-1F 0.000 0.051 0.040 0.013 0.000 0.004 0.004 0.044 0.062 0.028 0.044 0.550
A-Hybrid 0.001 0.051 0.000 0.013 0.003 0.147 0.000 0.044 0.810 0.046 0.952 0.028

Panel B: Jan 2020 to Jan 2021

UC test (VaR) 𝑝-values CC test (VaR) 𝑝-values BS test (ES) 𝑝-values

WTI Brent GO HO WTI Brent GO HO WTI Brent GO HO

RW-500 0.029 0.003 0.002 0.002 0.002 0.001 0.001 0.001 0.526 0.078 0.074 0.094
RW-1000 0.000 0.003 0.002 0.002 0.000 0.001 0.001 0.001 0.094 0.072 0.596 0.080
RW-1500 0.000 0.000 0.000 0.030 0.000 0.000 0.000 0.093 0.118 0.420 0.108 0.482

CF-500 0.262 0.275 0.028 0.268 0.531 0.548 0.002 0.539 0.000 0.000 0.538 0.000
CF-1000 0.262 0.275 0.028 0.268 0.531 0.548 0.089 0.539 0.000 0.000 0.478 0.000
CF-1500 0.262 0.275 0.028 0.472 0.531 0.548 0.089 0.000 0.000 0.000 0.508 0.000

GARCH-N 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.001 0.076 0.052 0.138 0.074
GARCH-SKT 0.002 0.000 0.002 0.030 0.001 0.000 0.001 0.093 0.506 0.528 0.276 0.498
GARCH-EDF 0.000 0.000 0.002 0.002 0.000 0.000 0.001 0.001 0.530 0.592 0.088 0.484
GJR-GARCH-SKT 0.029 0.003 0.028 0.030 0.002 0.001 0.002 0.093 0.456 0.544 0.552 0.556

GARCH-FZ 0.000 0.000 0.028 0.002 0.000 0.000 0.089 0.009 0.184 0.556 0.494 0.402
GAS-1F 0.029 0.031 0.260 0.030 0.002 0.097 0.528 0.093 0.508 0.520 0.000 0.480
Hybrid 0.002 0.003 0.028 0.002 0.009 0.001 0.089 0.001 0.070 0.082 0.498 0.092
GAS-2F 0.002 0.003 0.028 0.030 0.001 0.001 0.089 0.093 0.322 0.570 0.504 0.492

A-GAS-1F 0.002 0.003 0.002 0.030 0.009 0.001 0.001 0.093 0.516 0.604 0.156 0.488
A-Hybrid 0.029 0.275 0.002 0.472 0.090 0.548 0.001 0.000 0.510 0.000 0.362 0.000

Note: This table presents the 𝑝-values of two VaR backtests and an ES backtest for four oil futures, over the whole OOS period (Panel A) and the COVID-19
eriod (Panel B) for 16 risk forecasting models at level 𝛼1 = 0.1%. Columns 2–5 and 6–9 present the results for the Unconditional Coverage (UC) and the

Conditional Coverage (CC) backtest for the evaluation of VaR. The last 4 Columns present the results of the Bootstrapping (BS) backtest for the evaluation of
ES. Values greater than 0.05 (indicating no evidence against optimality at 5% significance level) are in bold.

B presents the estimated parameters of the GARCH (1,1) model with a skewed 𝑡 distribution, fitted to the de-meaned returns, with
the model defined as:

𝑌𝑡 = 𝜎𝑡𝜂𝑡, 𝜂𝑡 ∼ 𝑖𝑖𝑑 Skew 𝑡(0, 1, 𝜈, 𝜆),

𝜎2𝑡 = 𝜔 + 𝛽𝜎2𝑡−1 + 𝛾𝑌 2
𝑡−1.

(19)

The full sample is divided into a training period (January 2000 to December 2006), a validation period (January 2007 to
December 2013), and an OOS forecasting period (January 2014 to January 2021). In the validation period, we employ the TSCV
introduced in Section 2.3.4 with eight candidates of 𝛼2 ∈ {2.5%, 5%, 7.5%, 10%, 12.5%, 15%, 17.5%, 20%}, and the 𝛼2 value which
provides the lowest loss value is selected as the optimal 𝛼2 for forecasting OOS. Then we produce risk forecasts for 𝛼1 = 0.1%
for the OOS period, and the forecasting performance is evaluated in the OOS period.

4.2. Estimation results

Table 5 presents the loss values for VaR and ES at the extreme level 𝛼1 = 0.1% for different values of 𝛼2 for the four series
considered.12 The optimal value of 𝛼2 is found in the range from 10% to 15% for the A-GAS-1F model, while for the A-Hybrid

12 We use 𝑀 = 30 days to reduce computational time.
11
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Table 8
Out-of-sample losses and loss rankings.

Panel A: Jan 2014 to Jan 2021

Average loss Loss ranking

WTI Brent GO HO WTI Brent GO HO Average

RW-500 4.315 4.056 3.869 5.031 15 14 16 15 15
RW-1000 3.908 3.803 3.197 4.569 11 13 13 12 12.25
RW-1500 3.911 4.116 3.314 3.514 12 15 14 5 11.5

CF-500 3.599 2.994 2.998 3.474 9 6 11 3 7.25
CF-1000 3.272 3.035 2.781 3.870 6 7 9 11 8.25
CF-1500 3.310 3.175 2.730 3.575 7 9 8 7 7.75

GARCH-N 4.912 4.770 3.526 5.131 16 16 15 16 15.75
GARCH-SKT 3.335 2.990 2.631 3.703 8 5 6 8 6.75
GARCH-EDF 3.688 3.425 2.836 3.804 10 10 10 10 10
GJR-GARCH-SKT 2.886 2.736 2.333 3.558 2 3 1 6 3

GARCH-FZ 4.127 3.498 2.428 4.697 14 11 3 13 10.25
GAS-1F 2.665 2.890 2.472 3.509 1 4 4 4 3.25
Hybrid 3.986 3.147 2.568 4.970 13 8 5 14 10
GAS-2F 3.055 3.572 2.648 3.448 5 12 7 2 6.5

A-GAS-1F 2.997 2.271 2.404 2.966 4 1 2 1 2
A-Hybrid 2.911 2.523 3.061 3.717 3 2 12 9 6.5

Panel B: Jan 2020 to Jan 2021

Average loss Loss ranking

WTI Brent GO HO WTI Brent GO HO Average

RW-500 10.824 11.153 9.277 9.962 11 12 16 14 13.25
RW-1000 12.517 12.562 7.458 11.196 14 14 13 16 14.25
RW-1500 13.743 14.715 8.654 5.689 16 16 15 6 13.25

CF-500 6.232 5.715 4.693 5.188 5 3 7 4 4.75
CF-1000 7.930 7.155 4.315 6.547 10 7 4 7 7
CF-1500 7.678 7.593 4.437 3.339 9 8 6 3 6.5

GARCH-N 11.561 12.780 8.324 9.890 12 15 14 13 13.5
GARCH-SKT 6.624 7.105 4.765 6.802 6 6 8 8 7
GARCH-EDF 7.639 8.416 5.939 7.011 8 9 12 9 9.5
GJR-GARCH-SKT 4.871 5.868 3.372 5.657 4 4 2 5 3.75

GARCH-FZ 12.183 9.066 2.613 10.237 13 11 1 15 10
GAS-1F 4.449 6.730 4.364 8.340 3 5 5 12 6.25
Hybrid 13.683 8.995 5.391 8.048 15 10 9 10 11
GAS-2F 7.115 11.617 5.898 8.265 7 13 11 11 10.5

A-GAS-1F 3.699 3.065 4.248 2.887 2 2 3 2 2.25
A-Hybrid 2.713 2.925 5.544 2.330 1 1 10 1 3.25

Note: This table presents the average losses and loss rankings (with the best performing model ranked 1 and the worst ranked 16) based on average FZ0 losses,
for VaR and ES forecasts at level 𝛼1 = 0.1% of four oil futures, over the OOS period (Panel A) and the COVID-19 period (Panel B). Columns 2–5 present the
average FZ0 losses, with the lowest (second lowest) in each column shown in bold (italics). Columns 6–9 present the loss rankings. The last column presents
the average rank across the four series, with the best (second best) model shown in bold (italics).

model we find that 𝛼2 is above 15%, except for 𝛼2 = 7.5% for Brent. Table 6 presents the estimated parameters together with their
standard errors for the GAS and A-GAS models with 𝛼2 chosen by TSCV over the validation period. Both A-GAS models estimated
on all four energy commodity futures demonstrate a higher value of 𝛾 compared to the original GAS models. This implies that the
estimated VaR and ES of the A-GAS models at the extreme level 𝛼1 are influenced by the value of VaR and ES at the auxiliary
level 𝛼2. A higher value of 𝛾 in the A-GAS models indicates that the 𝜅𝑡 process (and the VaR and ES processes) is more reactive
to the forcing variable 𝑠𝑡−1. The parameters 𝑎2 and 𝑏2 in the A-GAS models are also reasonable, ensuring that the VaR and ES at
the auxiliary level are lower than at the extreme level. Notably, the loss values of the A-GAS-1F model are lower than those of the
GAS-1F across all series considered. Furthermore, the A-Hybrid model reports lower losses than the Hybrid model for both WTI and
Brent.

4.3. Out-of-sample results

We now turn to the OOS forecast performance of the A-GAS models at the extreme level 𝛼1 = 0.1%, as compared to a total of
fourteen alternative models. Six non-parametric models are considered as benchmarks, including the traditional rolling window
methods with window lengths of 500, 1000 and 1500 trading days and rolling window methods based on the Cornish–Fisher
expansion (Cornish and Fisher, 1938), with the same window lengths as the first three models. Four prevailing GARCH models are
also considered as benchmarks, namely, the GARCH model with normal distribution (GARCH-N), GARCH with skewed 𝑡 distribution
12
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Fig. 3. Diebold–Mariano (DM) test results comparing the FZ0 losses over the OOS period from January 2014 to January 2021, for 16 models across four oil
futures, comparing risk forecasts at level 𝛼1 = 0.1%. Dark green (red) blocks mean that the row model has significantly lower (greater) average loss than the
column model at 10% significance level; light green (yellow) blocks mean that the row model has lower (greater) average loss than the column model, but the
difference is not significant.

(GARCH-SKT), GARCH with empirical distribution function (GARCH-EDF) in which case VaR and ES are estimated from the sample
VaR and ES of the estimated standardized residuals obtained from the GARCH model, and the GJR-GARCH with skewed 𝑡 distribution
(GJR-GARCH-SKT). We next consider four models introduced by Patton et al. (2019): the two-factor GAS model (GAS-2F), the
one-factor GAS model (GAS-1F), the GARCH model using FZ loss minimization (GARCH-FZ), and the hybrid GAS/GARCH model
(Hybrid). Finally, we consider the two proposed augmented GAS models, the A-GAS-1F model and the A-hybrid model. We estimate
the parametric and semiparametric models using the first 7 years starting with 2007 as the in-sample period, and retain the parameter
estimates to build forecasts for the OOS period.

Table 7 presents the 𝑝-values of the VaR and ES backtests in the OOS period (from January 2014 to January 2021) and over the
COVID-19 period (from January 2020 to January 2021) for 16 models and for four oil futures. As before, we forecast risk at the
level of 𝛼1 = 0.1%. We find that, over the whole OOS period, the augmented models can pass the VaR backtests (UC and CC) for the
Brent series. Considering the ES backtest (BS), our models provide reasonable backtest results for the time series of WTI, GO, and
HO. However, when we consider only the COVID-19 period, the models proposed by Patton et al. (2019) cannot pass the UC test
anymore, and our models experience a significant improvement during this period; this is especially true for the A-Hybrid model
and the VaR backtests.

To provide a more robust evaluation, we also employ a comparison based on the FZ0 loss function to assess the performance of
the models considered. Table 8 presents the average losses and the ranks of the models based on loss values at the level 𝛼1 = 0.1%
over the OOS period and the COVID-19 period. Over the whole OOS period, the A-GAS-1F model provides the lowest average loss
for Brent and HO. Even though the A-GAS-1F model is not the best-performing model for all four futures, its average ranking is
the best among all the models. During the COVID-19 period, which contains a high concentration of extreme losses, the A-Hybrid
model has the lowest average loss for all futures except for GO series. The A-GAS-1F model provides stable performance during the
COVID-19 period, with the best average ranking overall.
13
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While average losses are a useful tool to consider forecast performance out-the-sample, they do not provide information on the
ignificance of the loss differences between models. Fig. 3 presents the results of the Diebold–Mariano (DM) test that performs
airwise model comparisons based on loss differences over the OOS period, with the null hypothesis that the row model and the
olumn model have equal loss values. The A-GAS-1F model has superior performance for all series, especially for Brent and HO,
utperforming all alternative models considered.

. Robustness check

In practice, time series are often characterized by the presence of structural breaks in the fitted models. In Section 4, the forecasts
f VaR and ES in the OOS are based on the model parameters estimated in the in-sample period, without updating. In this section,
e perform a robustness check by updating the parameter estimates using rolling-windows for the forecasts of VaR and ES in the
OS. Specifically, each model is re-estimated every 30 trading days using a window length of 1805 observations (7 years), with the

irst window starting from January 2007. The same OOS period is used to evaluate VaR and ES estimates.13 We find that the results
re similar to the ones reported in earlier sections of this paper. Over the OOS period, the loss ranks of the A-GAS models slightly
ecrease, but the A-GAS-1F model has the best performance overall for most of the oil futures series considered. When considering
he COVID-19 period in isolation, the A-GAS models, based on rolling window estimation, show the same superior performance as
efore.

. Conclusion

This paper introduces augmented versions of the GAS models that jointly estimate risk at an extreme level and an auxiliary level,
ith the purpose to improve on the forecasts of VaR and ES at an extreme level. By using TSCV to select the optimal auxiliary level,
e document an improvement in the risk forecasts both in-sample and during the OOS periods considered. Our simulation study also
ighlights this improvement in terms of the forecast loss and the backtest rejection rates. We employ the proposed A-GAS models
o forecast the VaR and ES of four oil futures over the period from January 2000 to January 2021. We compare these with forecasts
ade by fourteen alternative models, and we implement several backtests to compare their performance. The main finding is that
aR and ES forecasts obtained from the A-GAS models outperform the risk forecasts based on popular GARCH models or historical
imulations, and they also lead to improved loss values compared with the original GAS models for three out of four future series
onsidered. The A-GAS models perform even better during the COVID-19 period which is characterized by extreme losses. As such,
he proposed augmented versions of popular GAS risk models can provide improved risk forecasts at extreme levels by utilizing the
nformation from prevailing risk levels without considering exogenous information. Applications of these models to study the risk
f other asset classes would be of future interest. Additionally, the proposed framework of estimating risk at extreme levels can be
xtended to more than two risk level or by considering alternative risk models.
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