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Abstract
Sound-soft fractal screens can scatter acoustic waves even when they have zero sur-
face measure. To solve such scattering problems we make what appears to be the first
application of the boundary element method (BEM) where each BEM basis function
is supported in a fractal set, and the integration involved in the formation of the BEM
matrix is with respect to a non-integer order Hausdorff measure rather than the usual
(Lebesgue) surface measure. Using recent results on function spaces on fractals, we
prove convergence of the Galerkin formulation of this “Hausdorff BEM” for acoustic
scattering in R

n+1 (n = 1, 2) when the scatterer, assumed to be a compact subset of
R
n × {0}, is a d-set for some d ∈ (n − 1, n], so that, in particular, the scatterer has

Hausdorff dimension d. For a class of fractals that are attractors of iterated function
systems, we prove convergence rates for the Hausdorff BEM and superconvergence
for smooth antilinear functionals, under certain natural regularity assumptions on the
solution of the underlying boundary integral equation. We also propose numerical
quadrature routines for the implementation of our Hausdorff BEM, along with a fully
discrete convergence analysis, via numerical (Hausdorff measure) integration esti-
mates and inverse estimates on fractals, estimating the discrete condition numbers.
Finally, we show numerical experiments that support the sharpness of our theoretical
results, and our solution regularity assumptions, including results for scattering in R2

by Cantor sets, and in R
3 by Cantor dusts.
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1 Introduction

A classical problem in the study of acoustic, electromagnetic and elastic wave prop-
agation is the scattering of a time-harmonic incident wave by an infinitesimally thin
screen (or “crack”). In the simplest configuration the incident wave propagates inRn+1

(typically n = 1, 2) and the screen � is assumed to be a bounded subset of the hyper-
plane �∞ = R

n × {0}. In standard analyses the set � is assumed (either explicitly or
implicitly) to be a relatively open subset of�∞ with smooth relative boundary ∂�. But
in a recent series of papers [3, 15, 17, 19] it has been shown how well-posed bound-
ary value problems (BVPs) and associated boundary integral equations (BIEs) for the
acoustic version of this screen problem (with either Dirichlet, Neumann or impedance
boundary conditions) can be formulated, analysed and discretized for arbitrary screens
with no regularity assumption on �. In particular, this encompasses situations where
either ∂� or � itself has a fractal nature. The study of wave scattering by such fractal
structures is not only interesting from a mathematical point of view, but is also rele-
vant for numerous applications including the scattering of electromagnetic waves by
complex ice crystal aggregates in weather and climate science [46] and the modelling
of fractal antennas in electrical engineering [52]. In applications the physical object
generally only exhibits a certain number of levels of fractal structure; nonetheless,
fractals provide an idealised mathematical model for objects that have self-similar
structure at multiple lengthscales.

Our focus in this paper is on the Dirichlet (sound soft) acoustic scattering problem
in the case where � itself is fractal.1 We shall assume throughout that, for some
n − 1 < d ≤ n, � is a compact d-set (i.e., � is compact as a subset of �∞ and
is a d-set as defined in Sect. 2.1) which in particular implies that � has Hausdorff
dimension equal to d. More specifically, our attention will be on the special case
where � is the self-similar attractor of an iterated function system of contracting
similarities, in particular on the case where � satisfies a certain disjointness condition
(described in Sect. 2.3), in which case � has (as a subset of Rn) empty interior and
zero Lebesgue measure. An example in the case n = 1 is the middle-third Cantor set,
which is a d-set for d = log 2/ log 3; an example in the case n = 2 is the middle-third
Cantor dust shown in Fig. 1, which is a d-set for d = log 4/ log 3. For such �, well-
posed BVP and BIE formulations for the Dirichlet scattering problem were analysed
in [15], where it was shown that the exact solution of the BIE lies in the function
space H−1/2

� = {u ∈ H−1/2(�∞) : supp u ⊂ �} [15, §3.3]. The assumption that
d > n− 1 implies that this space is non-trivial, and that for non-zero incident data the
BIE solution is non-zero, so the screen produces a non-zero scattered field. Our aim
in this paper is to develop and analyse a boundary element method (BEM) that can
efficiently compute this BIE solution.

One obvious approach, adopted in [19] (and see also [3, 35, 40]), is to apply a con-
ventional BEMon a sequence of smoother (e.g. Lipschitz) “prefractal” approximations
to the underlying fractal screen, such as those illustrated in Fig. 1 for the middle-third

1 We note that our methods and results apply, with obvious modifications, to the analogous (yet simpler)
problem in potential theory, in which the Helmholtz equation is replaced by the Laplace equation.
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Fig. 1 The first five standard prefractal approximations, �0, . . . , �4, to the middle-third Cantor dust �,
defined by �0 := [0, 1]2, �n := s(�n−1), n ∈ N, where s is defined by (3) and (125) with M = 4 and
ρ = 1/3

Cantor dust.2 (In this example each prefractal is a union of squares.)When� has empty
interior (as in the current paper) this is necessarily a “non-conforming” approach, in
the sense that the resulting discrete approximations do not lie in H−1/2

� , the space
in which the continuous variational problem is posed. This is because conventional
BEM basis functions are elements of L2(�∞), the intersection of which with H−1/2

� is
trivial. This complicates the analysis of Galerkin implementations, since Céa’s lemma
(e.g., [47, Theorem 8.1]), or its standard modifications, cannot be invoked. In [19] we
showed how this can be overcome using the framework of Mosco convergence, prov-
ing that, in the case of piecewise-constant basis functions, the BEM approximations
on the prefractals converge to the exact BIE solution on � as the prefractal level tends
to infinity, provided that the prefractals satisfy a certain geometric constraint and the
corresponding mesh widths tend to zero at an appropriate rate [19, Thm. 5.3]. How-
ever, while [19] provides, to the best of our knowledge, the first proof of convergence
for a numerical method for scattering by fractals, we were unable in [19] to prove any
rates of convergence.

In the current paper we present an alternative approach, in which the fractal nature
of the scatterer is explicitly built into the numerical discretization. Specifically, we
propose and analyse a “Hausdorff BEM”, which is a Galerkin implementation of
an H−1/2

� -conforming discretization in which the basis functions are the product of
piecewise-constant functions and Hd |� , the Hausdorff d-measure restricted to �. A
key advantage of the conforming nature of our approximations is that convergence of
ourHausdorffBEMcanbe provedusingCéa’s lemma. Furthermore, extensions thatwe
make in Sect. 3 of the wavelet decompositions from [36] to negative exponent spaces
allowus to obtain error bounds quantifying the convergence rate of our approximations,
under appropriate and natural smoothness assumptions on the exact BIE solution.
While these smoothness assumptions have not been proved for the full range that we
envisage (see Proposition 4.9), the convergence rates observed in our numerical results
in Sect. 6 support a conjecture (Conjecture 4.8) that they hold.

Implementation of our Hausdorff BEM requires the calculation of the entries of the
Galerkin linear system, which involve both single and double integrals with respect
to the Hausdorff measure Hd . To evaluate such integrals we apply the quadrature
rules proposed and analysed in [30], in which the self-similarity of � is exploited to
reduce the requisite singular integrals to regular integrals, which can be treated using
a simple midpoint-type rule. By combining the quadrature error analysis provided in

2 For recent overviews of the conventional BEM literature for Lipschitz or smoother screens see [19] or
[2, 21, 34].
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[30] with novel inverse inequalities on fractal sets (proved in Sect. 5.3) we are able to
present a fully discrete analysis of our Hausdorff BEM, subject to the aforementioned
smoothness assumptions.

An outline of the paper is as follows. In Sect. 2 we collect some basic results that
will be used throughout the paper on Hausdorff measure and dimension, singular
integrals on d-sets, iterated function systems, and function spaces; in particular, in
Sect. 2.4 we introduce the function spaces Ht (�) that are trace spaces on d-sets that
will play a major role in our analysis, and recall connections to the classical Sobolev
spaces Hs

� established recently in [9]. In Sect. 3 we recall from [36] the construction,
for n − 1 < d ≤ n, of wavelets on d-sets that are the attractors of iterated function
systems satisfying the standard open set condition, and, for n − 1 < d < n, the
characterisations of Besov spaces on these d-sets (which we show in “Appendix A”
coincide with our trace spaces Ht (�) for positive t) in terms of wavelet expansion
coefficients.We also extend, inCorollary 3.3, these characterisations,which are crucial
to our later best-approximation error estimates, to Ht (�) for a range of negative t via
duality arguments.

In Sect. 4 we state the BVP and BIE for the Dirichlet screen scattering problem,
showing, in the case when� is a d-set, that the BIE can be formulated in terms of a ver-
sionS of the single-layer potential operatorwhichwe show, in Propositions 4.7 and 4.9,
maps Ht−td (�) to H

t+td (�), for |t | < td and a particular d-dependent td ∈ (0, 1/2],
indeed is invertible between these spaces for |t | < ε and some 0 < ε ≤ td . (The
spaces Htd (�) ⊂ L2(�) ⊂ H

−td (�) form a Gelfand triple, with L2(�) the space of
square-integrable functions on � with respect to d-dimensional Hausdorff measure as
the pivot space, analogous to the usual Gelfand triple H1/2(�) ⊂ L2(�) ⊂ ˜H−1/2(�)

in scattering by a classical screen � that is a bounded relatively open subset of �∞.)
Moreover, as Theorem 4.6, we show the key result that, when acting onL∞(�) (which
contains our BEM approximation spaces), S has the usual representation as an integral
operator with the Helmholtz fundamental solution as kernel, but now integrating with
respect to d-dimensional Hausdorff measure.

In Sect. 5 we describe the design and implementation of our Hausdorff BEM,
and state and prove our convergence results, showing that, at least in the case that
� is the disjoint attractor of an iterated function system with n − 1 < dimH (�) <

n, all the results that are achievable for classical Galerkin BEM (convergence and
superconvergence results in scales of Sobolev spaces, inverse and condition number
estimates, fully discrete error estimates3) can be carried over to this Hausdorff measure
setting (we defer to “AppendixB” the details of our strongest inverse estimates, derived
via a novel extension of bubble-function type arguments to cases where the elements
have no interior).

In Sect. 6 we present numerical results, for cases where � is a Cantor set or Cantor
dust, illustrating the sharpness of our theoretical predictions. We show that our error
estimates appear to apply also in cases, such as the Sierpinski triangle, where � is
not disjoint so that the conditions of our theory are not fully satisfied. We also make
comparisons, in terms of accuracy as a function of numbers of degrees of freedom,with

3 Our fully discrete error estimates require, additionally, that � is hull-disjoint in the sense introduced
below (99).
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numerical results obtained by applying conventional BEM on a sequence of prefractal
approximations to�, for whichwe have, as discussed above, only amuchmore limited
theory [19].

In Sect. 7 we offer some conclusions and suggestions for future work. In
“Appendix C” we provide a table of definitions for easy reference.

2 Preliminaries

In this section we collect a number of preliminary results that will underpin our anal-
ysis.

2.1 Hausdorff measure and dimension

For E ⊂ R
n and α ≥ 0 we recall (e.g., from [28]) the definition of the Hausdorff

α-measure of E ,

Hα(E) := lim
δ→0

(

inf
∞
∑

i=1

(diam(Ui ))
α

)

∈ [0,∞) ∪ {∞},

where, for a given δ > 0, the infimum is over all countable covers of E by a collection
{Ui }i∈N of subsets of Rn with diam(Ui ) ≤ δ for each i . Where R

+ := [0,∞), the
Hausdorff dimension of E is then defined to be

dimH(E) := sup{α ∈ R
+ : Hα(E) = ∞} = inf{α ∈ R

+ : Hα(E) = 0} ∈ [0, n].

In particular, if E ⊂ R
n is Lebesgue measurable then Hn(E) = cn|E |, for some

constant cn > 0 dependent only on n, where |E | denotes the (n-dimensional) Lebesgue
measure of E . Thus dimH(E) = n if E ⊂ R

n has positive Lebesgue measure.
As in [37, §1.1] and [50, §3], given 0 < d ≤ n, a closed set � ⊂ R

n is said to be a
d-set if there exist c2 > c1 > 0 such that

c1r
d ≤ Hd(� ∩ Br (x)

) ≤ c2r
d , x ∈ �, 0 < r ≤ 1, (1)

where Br (x) ⊂ R
n denotes the closed ball of radius r centred on x . Condition (1)

implies that� is uniformly locally d-dimensional in the sense that dimH(�∩Br (x)) =
d for every x ∈ � and r > 0. In particular (see the discussion in [28, §2.4]) (1) implies
that 0 < Hd(� ∩ BR(0)) < ∞ for all sufficiently large R > 0, so that dimH(�) = d.

2.2 Singular integrals on compact d-sets

Our Hausdorff BEM involves the discretization of a weakly singular integral equation
inwhich integration is carried out with respect to Hausdorff measure. In order to derive
the basic integrability results we require, we appeal to the following lemma, which is
[12, Lemma 2.13] with the dependence of the equivalence constants made explicit.
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Lemma 2.1 Let 0 < d ≤ n and let � ⊂ R
n be a compact d-set, satisfying (1) for some

constants 0 < c1 < c2. Let x ∈ � and let f : (0,∞) → [0,∞) be non-increasing
and continuous. Then, for some constants C2 > C1 > 0 depending only on c1, c2, n,
and the diameter of �,

C1d
∫ diam(�)

0
rd−1 f (r) dr ≤

∫

�

f (|x − y|) dHd(y) ≤ C2d
∫ diam(�)

0
rd−1 f (r) dr .

(2)

Remark 2.2 If � ⊂ R
n is compact and the right-hand inequality in (1) holds, i.e.,

Hd(� ∩ Br (x)) ≤ c2rd , for x ∈ �, 0 < r ≤ 1, then, following the proof of [12,
Lemma 2.13], we see that the right-hand bound in (2) holds, with C2 depending only
on c2, n, and the diameter of �.

From the above lemma we obtain the following important corollary.

Corollary 2.3 Let 0 < d ≤ n and let � be a compact d-set. Let x ∈ � and α ∈ R.
Then

(i)
∫

�
|x − y|−α dHd(y) < ∞ and

∫

�

∫

�
|x − y|−α dHd(y)dHd(x) < ∞ if and only

if α < d;
(ii)

∫

�
| log |x − y|| dHd(y) < ∞ and

∫

�

∫

�
| log |x − y|| dHd(y)dHd(x) < ∞.

Remark 2.4 Corollary 2.3(i) is related to the more general correspondence between
Hausdorff dimension and so-called “capacitary dimension”—see, e.g., [50, §17.11].

2.3 Iterated function systems

The particular example of a d-set we focus on in this paper is the attractor of an iterated
function system (IFS) of contracting similarities, by which we mean a collection
{s1, s2, . . . , sM }, for some M ≥ 2, where, for each m = 1, . . . ,M , sm : Rn → R

n ,
with |sm(x)− sm(y)| = ρm |x − y|, x, y ∈ R

n , for some ρm ∈ (0, 1). The attractor of
the IFS is the unique non-empty compact set � satisfying

� = s(�), where s(E) :=
M
⋃

m=1

sm(E), E ⊂ R
n . (3)

We shall assume throughout that � satisfies the open set condition (OSC) [28, (9.11)],
meaning that there exists a non-empty bounded open set O ⊂ R

n such that

s(O) ⊂ O and sm(O) ∩ sm′(O) = ∅, m �= m′. (4)

Then [50, Thm. 4.7] � is a d-set, where d ∈ (0, n] is the unique solution of

M
∑

m=1

(ρm)
d = 1. (5)
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For a homogeneous IFS, where ρm = ρ ∈ (0, 1) for m = 1, . . . ,M , the solution of
(5) is

d = log(M)/ log(1/ρ). (6)

Returning to the general, not necessarily homogeneous, case, the OSC (4) also implies
(again, see [50, Thm. 4.7]) that � is self-similar in the sense that the sets

�m := sm(�), m = 1, . . . ,M, (7)

which are similar copies of �, satisfy

Hd(�m ∩ �m′) = 0, m �= m′. (8)

That is, � can be decomposed into M similar copies of itself, whose pairwise intersec-
tions have Hausdorff measure zero. For many of our results we make the additional
assumption that the sets �1, . . . , �M are disjoint, in which case we say that the IFS
attractor � is disjoint. We recall that if � is disjoint then it is totally disconnected [28,
Thm. 9.7]. Examples of IFS attractors that are disjoint are the Cantor set (Sect. 6.1)
and Cantor dust (Fig. 1 and Sect. 6.2), while examples that satisfy the OSC but are not
disjoint include the Sierpinski triangle (Sect. 6.5(ii)) and the unit interval [0, 1]. The
latter is the attractor of the IFS (124) with ρ = 1/2, showing that IFS attractors, while
self-similar, need not be fractal. A compendium of well-known fractal IFS attractors
can be found at [41].

The next result relates disjointness to the OSC.

Lemma 2.5 Let � satisfy (3). Then � is disjoint if and only if (4) is satisfied for some
open set O satisfying � ⊂ O.

Proof If O satisfies the OSC and � ⊂ O then for m′ �= m we have �m ∩ �m′ =
sm(�) ∩ sm′(�) ⊂ sm(O) ∩ sm′(O) = ∅, so �1, . . . , �M are disjoint. Conversely,
if �1, . . . , �M are disjoint then O := {x : dist(x, �) < ε} ⊃ � satisfies the OSC,
provided ε < minm �=m′(dist(�m, �m′))/(2maxm ρm), since then s(O) = ∪msm(O) ⊂
∪m{x : dist(x, �m) < ρmε} ⊂ {x : dist(x, �) < ε} = O , and there cannot exist
x ∈ sm(O) ∩ sm′(O) for m �= m′ since otherwise dist(�m, �m′) ≤ dist(x, �m) +
dist(x, �m′) < (ρm + ρm′)ε ≤ 2εmaxm ρm , which would contradict the definition of
ε. ��

The following lemma, which shows that � is disjoint only if d < n, motivates the
restriction of our results in large parts of Sect. 3 to the case d < n.

Lemma 2.6 Suppose that� satisfies (3) and the OSC (4) holds for some bounded open
O ⊂ R

n. Then � ⊂ O, with equality if and only if d = dimH(�) = n. If � is disjoint
then 0 < d < n.

Proof Arguing as on [19, p. 809], � ⊂ O , and, if d < n, then the Lebesgue measure
of s(O), |s(O)| ≤ ∑M

m=1 ρ
n
m |O| < ∑M

m=1 ρ
d
m |O| = |O|, so that s(O) �= O , so that

(since � = s(�)), � �= O .
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Suppose now that d = n. Arguing as above and on [19, p. 809], |s(O)| =
∑M

m=1 |sm(O)| = ∑M
m=1 ρ

n
m |O| = |O|, so that |s(O)| = |O|. As claimed in [19,

p. 809], this implies that s(O) = O . To see this, note that s(O) ⊂ O , so that
s(O) = s(O) ⊂ O . Thus, if s(O) �= O , there exists x ∈ O\s(O) so that, for
some y ∈ O near x and some ε > 0, Bε(y) ⊂ O\s(O) ⊂ O\s(O), which contra-
dicts |O| = |s(O)|. Further, since � is the unique fixed point of s, s(O) = O implies
� = O , and that � is not disjoint then follows from Lemma 2.5. ��

2.4 Function spaces on subsets ofRn

Here we collect some results on function spaces from [9, 17, 36]. Our function spaces
will be complex-valued, andwe shall repeatedly use the following terminology relating
to dual spaces.4 If X and Y are Hilbert spaces, X∗ is the dual space of X , and I : Y →
X∗ is a unitary isomorphism, we say that (Y , I ) is a unitary realisation of X∗ and
define the duality pairing 〈·, ·〉Y×X by 〈y, x〉Y×X := I y(x), for y ∈ Y , x ∈ X . Having
selected a unitary realisation (Y , I ) of X∗, we adopt (X , I ∗) as our unitary realisation
ofY ∗, where I ∗x(y) := 〈y, x〉Y×X , so that 〈x, y〉X×Y = 〈y, x〉Y×X , for y ∈ Y , x ∈ X .

For s ∈ R let Hs(Rn) denote the Sobolev space of tempered distributions ϕ for
which the norm ‖ϕ‖Hs (Rn) =

(∫

Rn (1+ |ξ |2)s |ϕ̂(ξ)|2 dξ)1/2 is finite5. We recall that
(Hs(Rn))∗ can be unitarily realised as (H−s(Rn), I−s), where I−s : H−s(Rn) →
(Hs(Rn))∗ is given by I−sφ(ψ) := ∫

Rn φ̂(ξ)ψ̂(ξ) dξ for φ ∈ H−s(Rn) and ψ ∈
Hs(Rn), so that the resulting duality pairing 〈·, ·〉H−s (Rn)×Hs (Rn) extends both the
L2(R

n) inner product and the action of tempered distributions on Schwartz functions
(see, e.g., [17, §3.1.3]). For an open set 
 ⊂ R

n we denote by ˜Hs(
) the closure
of C∞

0 (
) in Hs(Rn), and for a closed set E ⊂ R
n we denote by Hs

E the set of all
elements of Hs(Rn) whose distributional support is contained in E . These two types
of spaces are related by duality. Where Ec := R

n \ E denotes the complement of E
and ⊥ denotes orthogonal complement in Hs(Rn), (H−s

E , I) is a unitary realisation of
(˜Hs(Ec)⊥)∗ [17, §3.2], where Iφ(ψ) := I−sφ(ψ) for φ ∈ H−s

E and ψ ∈ ˜Hs(Ec)⊥,
so that the associated duality pairing is just the restriction to H−s

E × ˜Hs(Ec)⊥ of
〈·, ·〉H−s (Rn)×Hs (Rn). Note also that, if E ⊂ 
 ⊂ R

n and E is compact,
 is open, then,
as a consequence of [38, Lemma 3.24], Hs

E is a closed subspace of ˜Hs(
). In addition
to the spaces just introducedweuse, at somepoints, the standardSobolev space Hs(
),
for
 ⊂ R

n open and s ∈ R, defined as the space of restrictions to
 of the distributions
ϕ ∈ Hs(Rn), equipped with the quotient norm ‖u‖Hs (
) := infϕ∈Hs (Rn)

ϕ|
=u
‖ϕ‖Hs (Rn)

(see [38], [17, §3.1.4]).
Fix 0 < d ≤ n and let � ⊂ R

n be Hd -measurable. We denote by L2(�) the space
of (equivalence classes of) complex-valued functions on R

n that are measurable and

4 For notational convenience we follow the convention of [17, 19] and work throughout with dual spaces
of antilinear functionals rather than linear functionals.
5 Here ϕ̂ is the Fourier transform ofϕ, normalised so that ϕ̂(ξ) = (2π)−n/2 ∫

Rn e−iξ ·xϕ(x) dx , for ξ ∈ R
n ,

when ϕ ∈ L1(R
n).
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square integrable with respect to Hd |� , normed by

‖ f ‖L2(�) :=
(∫

�

| f (x)|2 dHd(x)

)1/2

.

Similarly,L∞(�) denotes the space of functions onRn that are measurable and essen-
tially bounded with respect to Hd |� , normed by ‖ f ‖L∞ := ess supx∈Rn | f (x)|. In
practice we shall view L2(�) and L∞(�) as spaces of functions on �, by identifying
elements of L2(�) and L∞(�) with their restrictions to �. The dual space (L2(�))

∗
can be realised in the standard way as (L2(�), I), where I : L2(�) → L2(�)

∗
is the Riesz map (a unitary isomorphism) defined by I f ( f̃ ) = ( f , f̃ )L2(�) =
∫

�
f (x) f̃ (x) dHd(x).
Now assume that � is a d-set and that 0 < d ≤ n. Then function spaces on Rn and

� are related via the trace operator tr� of [50, §18.5]. Defining tr�(ϕ) = ϕ|� ∈ L2(�)

for ϕ ∈ C∞
0 (Rn), one can show [50, Thm 18.6] that if

s >
n − d

2
,

which we assume through the rest of this section, and 0 < d < n, then tr� extends to
a continuous linear operator

tr� : Hs(Rn) → L2(�)

with dense range. This trivially holds also for d = n, since the embedding of Hs(Rn)

into L2(R
n), for s > 0, and the trace tr� : L2(R

n) → L2(�) are both continuous with
dense range. Setting

t := s − n − d

2
> 0, (9)

we define the trace space Ht (�) := tr�(Hs(Rn)) ⊂ L2(�), which we equip with the
quotient norm

‖ f ‖Ht (�) := inf
ϕ∈Hs (Rn)
tr�ϕ= f

‖ϕ‖Hs (Rn).

This makes H
t (�) a Hilbert space unitarily isomorphic to the quotient space

Hs(Rn)/ ker(tr�). Clearly,

H
t ′(�) ⊂ H

t (�) ⊂ L2(�), (10)

for t ′ > t > 0, and the embeddings are continuous with dense range. As explained in
[9, Rem. 6.4] (Ht (�) is denoted H

t
2,0(�) in [9, §6]), for the case 0 < d < n, under

the further assumption that t < 1, Ht (�) coincides (with equivalent norms) with the
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Besov space Bt
2,2(�) of [37]. Arguing in the same way, using [37, Theorem VI.1] and

that Hs(Rn) coincides with the Besov space Bs
2,2(R

n) (e.g., [37, p. 8]),6 this holds
also for d = n.

For t > 0 we denote by H
−t (�) the dual space (Ht (�))∗. Since (10) holds, and

the embeddings are continuous with dense range, also H
−t (�) ⊂ H

−t ′(�), for t ′ >
t > 0, and this embedding is continuous with dense range. Further, via the Riesz map
I : L2(�) → L2(�)

∗ introduced above, L2(�) is continuously and densely embedded
in H−t (�), for t > 0. Setting H0(�) = L2(�), and combining these embeddings, we
then have that Ht ′(�) is embedded in H

t (�) with dense image for any t, t ′ ∈ R with
t ′ > t , and that if g ∈ H

t (�) for some t ≥ 0 and f ∈ L2(�) then

〈 f , g〉H−t (�)×Ht (�) = ( f , g)L2(�). (11)

Suppose that (9) holds. By the definition of Ht (�), tr� : Hs(Rn) → H
t (�) is a

continuous linear surjectionwith unit norm. Its Banach space adjoint˜tr�
∗ : H−t (�) →

(Hs(Rn))∗, defined by ˜tr�
∗y(x) = y(tr�x), for y ∈ (Ht (�))∗, x ∈ Hs(Rn), is then

a continuous linear injection with unit norm, and composing ˜tr�
∗ with the unitary

isomorphism (I−s)−1 produces a continuous linear injection

tr∗� := (I−s)−1 ◦˜tr�∗ : H−t (�) → H−s(Rn)

with unit norm, which satisfies7

〈ϕ, tr∗� f 〉Hs (Rn)×H−s (Rn) = 〈tr�ϕ, f 〉Ht (�)×H−t (�), f ∈ H
−t (�), ϕ ∈ Hs(Rn).

(12)

In particular, when f ∈ L2(�) we have that

〈ϕ, tr∗� f 〉Hs (Rn)×H−s (Rn) = (tr�ϕ, f )L2(�). (13)

Since ˜Hs(�c) ⊂ ker(tr�) the range of tr∗� is contained in H−s
� , which is the

annihilator of ˜Hs(�c)with respect to 〈·, ·〉H−s (Rn)×Hs (Rn) [17, Lemma 3.2]. Key to our
analysis will be the following stronger result. This is proved, for the case 0 < d < n,
in [9, Prop. 6.7, Thm 6.13], and the arguments given there (we need only the simplest
special casem = 0) extend to the case d = n, with the twist that, to justify the existence
of a bounded right inverse E�,0 in Step 2 of the proof of [9, Prop. 6.7], we need to use
(as above) that Hs(Rn) = Bs

2,2(R
n) and [37, Thm. VI.3 on p. 155]. Figure2 shows

the main relations between these function spaces.

6 Our standard notation for Besov spaces on Rn is that of, e.g., [51].
7 We omit in our notation for tr� : Hs (Rn) → H

t (�) any dependence on s. This is justified since, for
every s > n−d

2 , tr�ϕ = ϕ|� for ϕ ∈ C∞
0 (Rn), and C∞

0 (Rn) is dense in Hs (Rn). Likewise, we omit any
dependence on t in our notation for tr∗� : H−t (�) → H−s (Rn). To see that this is justified, in particular that
the values of the tr∗� operators coincide where their domains intersect, denote tr∗� : H−t (�) → H−s (Rn)

temporarily by tr∗�,t tomake explicit the domain. Then, for t ′ > t > 0, tr∗
�,t ′ f = tr∗�,t f , for f ∈ H

−t (�) ⊂
H

−t ′ (�), as a consequence of (12).
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Fig. 2 The main function spaces introduced in §2.4 and their relations. Here � ⊂ R
n is a d-set with

0 < d ≤ n, t = s − n−d
2 ∈ (0, 1), both arrows represent unitary isomorphisms. Where we write A ⊂ B,

the function space A is densely and continuously embedded in B. Where ∩ separates A and B vertically,
the space A is a closed subspace of B

Theorem 2.7 Let � ⊂ R
n be a d-set for some 0 < d ≤ n. Let n−d

2 < s < n−d
2 + 1, so

that t = s− n−d
2 ∈ (0, 1). Then ker(tr�) = ˜Hs(�c), so that tr�|˜Hs (�c)⊥ : ˜Hs(�c)⊥ →

H
t (�) is a unitary isomorphism. Accordingly, the range of tr∗� is equal to H−s

� , and

tr∗� : H−t (�) → H−s
� is a unitary isomorphism, where t = s − n − d

2
∈ (0, 1).

(14)

Furthermore, tr∗�(L2(�)) is dense in H−s
� .

2.5 Function spaces on planar screens

For the screen scattering problem, we define function spaces on the hyperplane�∞ :=
R
n ×{0} and subsets of it (for example, on the compact subset � ⊂ �∞ that forms the

screen) by associating �∞ with Rn and � with the set �̃ ⊂ R
n such that � = �̃× {0}

and applying the definitions above, so that Hs(�∞) := Hs(Rn), Hs(�) := Hs(�̃)

etc., and, when � ⊂ �∞ is a d-set, Ht (�) := H
t (�̃). In the latter case, the operator

tr� : Hs(Rn) → H
t (�̃) naturally gives rise to an operator tr� : Hs(�∞) → H

t (�).
For open sets
 ⊂ R

n+1 (e.g. the exterior domain D := R
n+1\�) weworkwith the

classical Sobolev spaces8 W 1(
) andW 1(
,�), normed by ‖u‖2
W 1(
)

= ‖u‖2L2(
)+
‖∇u‖2L2(
) and ‖u‖2

W 1(
,�)
= ‖u‖2L2(
)+‖∇u‖2L2(
)+‖�u‖2L2(
) respectively, and

their “local” versions W 1,loc(
) and W 1,loc(
,�), defined as the sets of measurable
functions on 
 whose restrictions to any bounded open 
′ ⊂ 
 are in W 1(
′)
or W 1(
′,�) respectively. We denote by γ± : W 1(U±) → H1/2(�∞) and ∂±n :
W 1(U±,�) → H−1/2(�∞) the standardDirichlet andNeumann trace operators from
the upper and lower half spaces U± := {x ∈ R

n+1,±xn+1 > 0} onto the hyperplane
�∞, where the normal vector is assumed to point intoU+ in the case of the Neumann
trace. Explicitly, the traces are the extension by density of γ±(u)(x) := lim x ′→x

x ′∈U±
u(x ′)

8 Our notation follows [38]. Given an open set 
 ⊂ R
n+1, W 1(
) is the Sobolev space whose norm is

defined “intrinsically”, via integrals over
, while H1(
) is defined (see Sect. 2.4) “extrinsically” as the set
of restrictions to 
 of functions in H1(Rn+1). These spaces coincide if 
 is Lipschitz (e.g., [38, Theorem
3.16]), in particular if 
 = R

n+1, but not in general, in particular not, in general, for 
 = D.
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Fig. 3 Illustration of the sets Em , m ∈ I�, � = 0, 1, 2, with E = [0, 1], for the IFS s1(x) = 0.4x ,
s2(x) = 0.15x + 0.5, s3(x) = 0.25x + 0.75, associated with a Cantor-type set with M = 3

and ∂±n u(x) := lim x ′→x
x ′∈U±

∂u
∂xn+1

(x ′) for u ∈ C∞
0 (Rn+1)|U± and x ∈ �∞. We note that

if u ∈ W 1(Rn+1) then γ+(u|U+) = γ−(u|U−) [15, §2.1]. Finally, let C∞
0,� denote the

set of functions in C∞
0 (Rn+1) that equal one in a neighbourhood of �.

3 Wavelet decompositions

The spacesHt (�)were defined in Sect. 2.4 for� ⊂ R
n a general d-setwith 0 < d ≤ n.

In the case where � is a disjoint IFS attractor (in the sense of Sect. 2.3, in which case,
by Lemma 2.6, d < n), it was shown in [36] that, when n − 1 < d = dimH(�) < n,
the spacesHt (�) can be characterised in terms of wavelet decompositions for t > 0.9

This, more precisely an extension of this characterisation to negative t , will be central
to our BEMconvergence analysis later. In the current sectionwe recap the notation and
main results from [36] that we will need, initially assuming only that n − 1 < d ≤ n
and that the OSC is satisfied.

Let � be the attractor of an IFS {s1, . . . , sM } as in (3), and assume that the OSC (4)
holds. Following [36], for � ∈ Nwedefine the set ofmulti-indices I� := {1, . . . ,M}�=
{m = (m1,m2, . . . ,m�), 1 ≤ ml ≤ M, l = 1, 2, . . . , �}, and for E ⊂ R

n andm ∈ I�
we define Em = sm1◦sm2 ◦. . .◦sm�

(E).We also set I0 := {0} and adopt the convention
that E0 := E . (We will use these notations especially in the case E = �.) For S = N

and S = N0 := N ∪ {0} we use the notation

IS :=
⋃

�∈S
I� (15)

and, for m = (m1, . . . ,m�), set m− := (m1, ...,m�−1) if � ∈ N with � ≥ 2, and
set m− := 0 if � = 1. An example of use of the notation Em is shown in Fig. 3.
Note that this notation extends that of (7) where the sets �1, . . . , �M were introduced,
corresponding to the case E = � and � = 1 here.

9 More precisely, [36] showed that the Besov spaces B p,q
α (�), as defined in [36, §6] (and see Definition A.1

below), can be characterised in this way for α > 0 and 1 ≤ p, q ≤ ∞, provided � preserves Markov’s
inequality, which holds in particular (see Remark A.6) if d > n − 1. We show in “Appendix A” (see
Corollary A.4 and Remark A.6) that, for t > 0,Ht (�) = B2,2

t (�)with equivalence of norms if � is a d-set
with d > n − 1, so that this characterisation carries over to our trace spaces Ht (�).
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Let W0 be the space of constant functions on �, a one-dimensional subspace of
L2(�) spanned by

χ0 := 1�/Hd(�)1/2.

More generally, for � ∈ N let

W� := { f ∈ L2(�) : ∀m ∈ I�, ∃cm ∈ C such that

f (x) = cm forHd -a.e. x ∈ �m} ⊂ L2(�).

Since Hd(�m ∩ �m′) = 0 for m �= m′ (a consequence of (8) (self-similarity)),W� is
a M�-dimensional subspace of L2(�) with orthonormal basis

{χm}m∈I� ,

where

χm(x) :=
{

1
Hd (�m)1/2

, x ∈ �m,

0, otherwise.
(16)

Clearly W0 ⊂ W1 ⊂ W2 ⊂ · · · ⊂ L2(�). But the bases we introduced above
are not hierarchical, in the sense that the basis for W�+1 does not contain that for
W�. Following [36] we introduce hierarchical wavelet bases on the W� spaces by
decomposing

W� = W0 ⊕
(

�−1
⊕

�′=0

(W�′+1 �W�′)

)

, (17)

whereW�′+1 �W�′ denotes the orthogonal complement ofW�′ inW�′+1. As already
noted, W0 is one-dimensional, with orthonormal basis {ψ0}, where ψ0 = χ0. The
spaceW1 �W0 is (M − 1)-dimensional, and an orthonormal basis {ψm}m=1,...,M−1
of W1 � W0 can be obtained by applying the Gram-Schmidt orthonormalization
procedure to the (non-orthonormal) basis {˜ψm}m=1,...,M−1 defined by

˜ψm(x) :=

⎧

⎪

⎨

⎪

⎩

(Hd(�m))
−1, forHd -a.e. x ∈ �m,

−(Hd(�m+1))
−1, forHd -a.e. x ∈ �m+1,

0, otherwise,

m = 1, . . . ,M − 1.

(18)

For � ∈ N the space W�+1 �W� is ((M − 1)M�)-dimensional, and an orthonormal
basis of W�+1 �W� (see Fig. 4) is given by {ψm

m }m∈I�,m=1,...,M−1, where

ψm
m := (Hd(�m))

−1/2ψm ◦ s−1
m�

◦ s−1
m�−1

◦ · · · ◦ s−1
m1

, m = 1, 2, . . . ,M − 1, m ∈ I�.
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Fig. 4 Graphs of the orthonormal basis functionsψ1, ψ2 ofW1�W0 (left) andψm
m ,m ∈ I1, ofW2�W1

(right) for the IFS of Fig. 3. The black lines are the components of the attractor �. Where the values of ψ1,
ψ2, and ψn

m on � are not shown explicitly, the values are zero, i.e. the graphs coincide with the black lines

Hence, recalling (17) and setting ψm
0 = ψm for m = 1, 2, . . . ,M − 1, we obtain the

following orthonormal basis of W�:

{ψ0} ∪ {ψm
m }m∈I�′ , �′∈{0,...,�−1},m∈{1,...,M−1}.

These bases are hierarchical, in the sense that the basis for W�+1 contains that for
W�. Furthermore, as noted in [36, p. 334] (and demonstrated in the proof of Theo-
rem 5.1 below), elements of L2(�) can be approximated arbitrarily well by elements
of W� as � → ∞, which implies that

{ψ0} ∪ {ψm
m }m∈I�, �∈N0,m∈{1,...,M−1}

is a complete orthonormal set in L2(�). Hence every f ∈ L2(�) has a unique repre-
sentation

f = β0ψ0 +
M−1
∑

m=1

∞
∑

�=0

∑

m∈I�
βm
mψm

m , (19)

with

β0 = β0( f ) := ( f , ψ0)L2(�) and βm
m = βm

m( f )

:= ( f , ψm
m )L2(�), m ∈ I�, � ∈ N0, m ∈ {1, . . . ,M − 1}, (20)

and

‖ f ‖L2(�) =
(

|β0|2 +
M−1
∑

m=1

∞
∑

�=0

∑

m∈I�
|βm

m |2
)1/2

.

The next result, which combines Theorems 1 and 2 in [36], provides a characteriza-
tion of the spaceHt (�) ⊂ L2(�) (introduced after (9)) for n−1 < d = dimH(�) < n
and 0 < t < 1 in terms of the wavelet basis introduced above, under the assumption

123



A Hausdorff-measure boundary element method...

that � is a disjoint IFS attractor. This assumption ensures that the piecewise-constant
spacesW� are contained inHt (�) for all t > 0 (see [36, Thm. 2]). In the statement of
Theorem 3.1 the set Jν is defined for ν ∈ Z by

Jν := {m ∈ IN0 : 2−ν ≤ diam(�m) < 2−ν+1}, (21)

and ν0 is defined to be the unique integer such that 0 ∈ Jν0 , i.e. such that 2−ν0 ≤
diam(�) < 2−ν0+1. Note that10

∞
⋃

ν=ν0

Jν =
∞
⋃

�=0

I�,

with disjoint unions on both sides, so
∑∞

ν=ν0

∑

m∈Jν F(m) = ∑∞
�=0
∑

m∈I� F(m)

whenever the convergence is unconditional, as is the case, for instance, for (19). For
convenience we introduce in this theorem a norm ‖ · ‖t that is different, but trivially
equivalent to that used in [36],whichwas |β0|+∑M−1

m=1

(∑∞
ν=ν0

22νt
∑

m∈Jν |βm
m |2)1/2.

Theorem 3.1 ([36, Thms 1 & 2]) Let � be a disjoint IFS attractor with n − 1 < d =
dimH(�) < n, and let 0 < t < 1. Then

H
t (�) = { f ∈ L2(�) : ‖ f ‖t < ∞},

with

‖ f ‖t :=
(

|β0|2 +
M−1
∑

m=1

∞
∑

ν=ν0

22νt
∑

m∈Jν
|βm

m |2
)1/2

,

where β0 and {βm
m} are the coefficients from (19). Furthermore, ‖ · ‖t and ‖ · ‖Ht (�)

are equivalent. If f ∈ H
t (�) then (19) converges unconditionally in Ht (�).

Remark 3.2 (Fractional norms in the homogeneous case) In the homogeneous case
where ρm = ρ for each m = 1, . . . ,M , we have

‖ f ‖t =
(

|β0|2 +
M−1
∑

m=1

∞
∑

�=0

22ν(�)t
∑

m∈I�
|βm

m |2
)1/2

,

where ν(�) = �(� log(1/ρ)− log(diam(�)))/ log 2�, which is equivalent to the norm
(

|β0|2 +
M−1
∑

m=1

∞
∑

�=0

ρ−2�t
∑

m∈I�
|βm

m |2
)1/2

.

10 As an example of these definitions, suppose that � is the (disjoint) attractor of the IFS illustrated in
Fig. 3, in which case diam(�m) = diam(Em), where Em is as defined in Fig. 3, in particular diam(�0) =
diam(�) = 1. Then ν0 = 0, J0 = {0}, J1 = ∅, J2 = {1, 3}, and J3 = {(1, 1), 2}, so that, since I0 = {0}
and I1 = {1, 2, 3}, I0 = J0 and J0 ∪ J1 ∪ J2 ⊂ I0 ∪ I1 ⊂ J0 ∪ J1 ∪ J2 ∪ J3.
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If ρ ∈ (0, 1/2] then the function ν(�) is injective and I� = Jν(�), � ∈ N0.

Theorem 3.1 has the following important corollary, which is obtained by duality. In
this corollary and subsequently (see, e.g., [16, Remark 3.8]), given an interval I ⊂ R

we will say that a collection of Hilbert spaces {Hs : s ∈ I}, indexed by I, is an
interpolation scale if, for all s, t ∈ I and 0 < η < 1, (Hs, Ht ) is a compatible
couple (in the standard sense, e.g. [4, §2.3]) and if the interpolation space (Hs, Ht )η

11

coincides with Hθ , for θ = (1 − η)s + ηt , with equivalent norms. We will say that
{Hs : s ∈ I} is an exact interpolation scale if, moreover, the norms of (Hs, Ht )η and
Hθ coincide, for all s, t ∈ I and 0 < η < 1.

Corollary 3.3 Let � and t satisfy the assumptions of Theorem 3.1.

(i) If {β0} ∪ {βm
m}m∈I�, �∈N0,m∈{1,...,M−1} ⊂ C satisfy

(

|β0|2 +
M−1
∑

m=1

∞
∑

ν=ν0

2−2νt
∑

m∈Jν
|βm

m |2
)1/2

< ∞ (22)

then

f := β0ψ0 +
M−1
∑

m=1

∞
∑

�=0

∑

m∈I�
βm
mψm

m , (23)

converges in H−t (�).
(ii) Each f ∈ H

−t (�) can be written in the form (23) (with convergence in H
−t (�)),

where

β0 := 〈 f , ψ0〉H−t (�)×Ht (�) and

βm
m := 〈 f , ψm

m 〉H−t (�)×Ht (�), m ∈ I�, � ∈ N0, m ∈ {1, . . . ,M − 1} (24)

satisfy (22). (By (11) these definitions coincide with (20) when f ∈ L2(�).)
(iii) The norms ‖ · ‖H−t (�) and

‖ f ‖−t :=
(

|β0|2 +
M−1
∑

m=1

∞
∑

ν=ν0

2−2νt
∑

m∈Jν
|βm

m |2
)1/2

, f ∈ H
−t (�),

are equivalent on H
−t (�).

(iv) The duality pairing 〈·, ·〉H−t (�)×Ht (�) can be evaluated using the wavelet basis as

〈 f , g〉H−t (�)×Ht (�) = β0β
′
0 +

M−1
∑

m=1

∞
∑

ν=ν0

∑

m∈Jν
βm
mβm

m
′,

11 Here, and subsequently, (Hs , Ht )η denotes the standard complex interpolation space, (Hs , Ht )[η] in the
notation of [4]; equivalently, the K - or J -method real interpolation spaces denoted (Hs , Ht )η,2 in [4, 16],
which are the sameHilbert spaces (Hs , Ht )[η], with equal norms, if the K - and J -methods are appropriately
normalised (see [16, Remark 3.6] and [18]).
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for g = β ′
0ψ0+∑M−1

m=1
∑∞

ν=ν0

∑

m∈Jν β
m
m

′ψm
m ∈ H

t (�).With this pairing,H−t (�)

provides a unitary realisation of (Ht (�))∗ with respect to the norms ‖·‖t and ‖·‖−t .
(v) Equipped with the norm ‖ · ‖τ , {Hτ (�)}−1<τ<1 is an exact interpolation scale.

Proof For t ∈ R we can define the weighted �2 sequence space

ht := {β = {β0} ∪ {βm
m}m∈I�, �∈N0,m∈{1,...,M−1} : ‖β‖ht < ∞},

where

‖β‖ht :=
(

|β0|2 +
M−1
∑

m=1

∞
∑

ν=ν0

22νt
∑

m∈Jν
|βm

m |2
)1/2

, β ∈ ht ,

which is a Hilbert space with the obvious inner product. The dual space of ht can be
unitarily realised as h−t , with duality pairing

〈β,β ′〉h−t×ht := β0β
′
0 +

M−1
∑

m=1

∞
∑

ν=ν0

∑

m∈Jν
βm
mβm

m
′, β ∈ h−t ,β ′ ∈ ht .

Furthermore, Theorem 3.1 implies that the space Ht (�) is linearly and topologically
isomorphic to ht for 0 < t < 1 (unitarily if we equip H

t (�) with ‖ · ‖t ). Hence
by duality H

−t (�) is also linearly and topologically isomorphic to h−t for the same
range of t (unitarily if we equip H

−t (�) with ‖ · ‖−t ). From these observations parts
(i)–(iv) of the result follow, noting, in the case of (iv), that f is a continuous antilinear
functional on H

t (�).
For (v) we note that by [16, Thm. 3.1] {hτ }τ∈R is an exact interpolation scale.

The corresponding statement about {Hτ (�)}−1<τ<1, equipped with the norm ‖ · ‖τ ,
follows from Theorem 3.1 and parts (i)–(iii), combined with12 [16, Cor. 3.2] and the
fact that H0(�) = L2(�) is unitarily isomorphic to h0. Explicitly, in [16, Cor. 3.2],
given −1 < τ0 < τ1 < 1 we take Hj = H

τ j (�), j = 0, 1, X = {0} ∪ {(ν,m,m) :
m ∈ I�, � ∈ N0, m ∈ {1, . . . ,M − 1}}, μ to be the counting measure on X , A to be
the map taking f ∈ H

τ j (�) to the sequence β defined by (20) or (24) (as appropriate),
and w j (0) = 1, w j ((ν,m,m)) = 22ντ j . ��

A basic interpolation result is that if X0 ⊃ X1 and Y0 ⊃ Y1 are Hilbert
spaces, with X1 and Y1 continuously embedded in X0 and Y0, respectively, and
A : X j → Y j is a linear and topological isomorphism, for j = 0, 1, then, for
0 < θ < 1, A((X0, X1)θ ) = (Y0,Y1)θ and A : (X0, X1)θ → (Y0,Y1)θ is a lin-
ear and topological isomorphism. This is immediate since ((X0, X1)θ , (Y0,Y1)θ ) and
((Y0,Y1)θ , (X0, X1)θ ) are, in the terminology of [16, §2], pairs of interpolation spaces
relative to (X ,Y ) and (Y , X), respectively, where X = (X0, X1), Y = (Y0,Y1) (e.g.,
[4, Theorem 4.1.2]).

12 There is an inaccuracy in the statement of [16, Cor. 3.2]; the mapA : �(H) → Y in that corollary needs
to be injective as well as linear for the corollary to hold (see [18]). This injectivity follows automatically
from the other conditions on A when (as in the application we make here) H1 ⊂ H0, with continuous
embedding, since then �(H) = H0.
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Remark 3.4 Theorem 3.1 and Corollary 3.3, together with the above interpolation
result applied with A taken as the identity operator, imply that, if � satisfies the
assumptions of Theorem 3.1, then {Ht (�)}−1<t<1 is an interpolation scale also when
H

t (�) is equipped with the original norm ‖ · ‖Ht (�) (or indeed any other equivalent
norm).

We include the following corollary, although we will not use it subsequently,
because it may be of independent interest. Note that the range of s does not extend
to s = −(n − d)/2 since, by [32, Thm 2.17], Hs

� �= {0} for s < −(n − d)/2, but

H−(n−d)/2
� = {0} so that (e.g., [16, Theorem 2.2(iv)])

(

Hs
�, H

−(n−d)/2
�

)

θ
= {0} for

all s ∈ R and 0 < θ < 1.

Corollary 3.5 Suppose that � satisfies the assumptions of Theorem 3.1. Then
{Hs

�}−(n−d)/2−1<s<−(n−d)/2 is an interpolation scale.

Proof Apply the basic interpolation result above with A = tr∗� and X0 = H
−t (�),

X1 = H
−t ′(�), Y0 = H−s

� , Y1 = H−s′
� , for some 0 < t ′ < t < 1, where s and t are

related by (14) and similarly t ′ = s′−(n−d)/2; note thatA : X j → Y j is a linear and
topological isomorphism, for j = 0, 1, by Theorem 2.7. This gives, for 0 < η < 1,
where Xη := (X0, X1)η and Yη := (Y0,Y1)η, that A(Xη) = Yη and A : Xη → Yη
is a linear and topological isomorphism. But, by Remark 3.4, Xη = H

−t∗(�), with
equivalent norms, where t∗ := (1−η)t+ηt ′, so thatA(Xη) = tr∗�(H−t∗(�)) = H−s∗

� ,

by Theorem 2.7, where s∗ := t∗ + (n − d)/2 = (1 − η)s + ηs′. Thus Yη = H−s∗
� ;

moreover, the norms on Yη and H−s∗
� are equivalent since the norms on Xη and

H
−t∗(�) are equivalent and the mappings tr∗� : Xη → Yη and tr∗� : H−t∗(�) → H−s∗

�

(Theorem 2.7) are both linear and topological isomorphisms. ��

4 BVPs and BIEs

In this section we state the BVP and BIE that we wish to solve. We consider time-
harmonic acoustic scattering of an incident wave ui propagating in R

n+1 (n = 1, 2)
by a planar screen �, a subset of the hyperplane �∞ = R

n ×{0}. We initially consider
the case where � is assumed simply to be non-empty and compact, for which a well-
posed BVP/BIE formulation was presented in [19, §3.2]. We later specialise to the
case where � is a d-set for some n − 1 < d ≤ n, and then further to the case where
� is a disjoint IFS attractor.

Our BVP, stated as Problem 4.1 below, is for the scattered field u, which is assumed
to satisfy the Helmholtz equation

�u + k2u = 0, (25)

in D := R
n+1\�, for some wavenumber k > 0, and the Sommerfeld radiation condi-

tion

∂u(x)

∂r
− iku(x) = o(r−n/2), r := |x | → ∞, uniformly in x̂ := x/|x |. (26)
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We assume that the incident wave ui is an element of W 1,loc(Rn+1) satisfying (25) in
some neighbourhood of � (and henceC∞ in that neighbourhood by elliptic regularity,
see, e.g., [26, Thm6.3.1.3]); for instance, ui might be the planewave ui (x) = eikϑ ·x for
some ϑ ∈ R

n+1, |ϑ | = 1. To impose a Dirichlet (sound-soft) boundary condition on
� we stipulate that13 σ(u+ui ) ∈ W 1

0 (D), the closure of C∞
0 (D) inW 1(D), for every

σ ∈ C∞
0,� . For the traces on �∞ this implies that γ±(σ (u + ui )|U±) ∈ ˜H1/2(�c).

(Here, and in what follows, �c will denote �∞ \ �, the complement of � in �∞,
rather than its complement in R

n+1, which we have denoted by D.) This motivates
the following problem statement, in which P denotes the orthogonal projection

P : H1/2(�∞) → ˜H1/2(�c)⊥. (27)

Note that if σ1, σ2 ∈ C∞
0,� then σ1 = σ2 on some open set G ⊃ �, so that, for

u ∈ W 1,loc(D), γ±((σ1 − σ2)u|U±) ∈ H1/2
Gc∩�∞ ⊂ H̃1/2(�c) so that Pγ±((σ1 −

σ2)u|U±) = 0.

Problem 4.1 Let � ⊂ �∞ be non-empty and compact. Given k > 0 and g ∈
˜H1/2(�c)⊥, find u ∈ C2 (D)∩W 1,loc(D) satisfying (25) in D, (26), and the boundary
condition

Pγ±(σu|U±) = g, (28)

for some (and hence every) σ ∈ C∞
0,� . In the case of scattering of an incident wave

ui , g is given specifically as

g = −Pγ±(σui |U±). (29)

The next result reformulates the BVP as a BIE. In this theorem S : H−1/2
� →

C2(D)∩W 1,loc(Rn+1) denotes the (acoustic) single-layer potential operator, defined
by (e.g., [15, §2.2])

Sψ(x) := 〈γ±(σ�(x, ·)|U±), ψ〉H1/2(�∞)×H−1/2(�∞), x ∈ D, (30)

where ψ denotes the complex conjugate of ψ ,14 �(x, y) := eik|x−y|/(4π |x − y|)
(n = 2), �(x, y) := (i/4)H (1)

0 (k|x − y|) (n = 1), H (1)
0 is the Hankel function of the

first kind of order zero (e.g., [1, Equation (9.1.3)]), and σ is any element of C∞
0,� with

x /∈ supp σ . The± in (30) indicates that either trace can be taken, with the same result.

13 The condition σ(u + ui ) ∈ W 1
0 (D), for every σ ∈ C∞

0,� , is equivalent to the (perhaps more familiar)

requirement that u + ui ∈ W 1,loc
0 (D). Here W 1,loc

0 (D) is the closure of C∞
0 (D) in W 1,loc(D) equipped

with its usual topology, so that W 1,loc
0 (D) = {v ∈ W 1,loc(D) : χv ∈ W 1

0 (D), for all χ ∈ C∞
0 (Rn+1)}.

One point of multiplying by the cut-off function σ is that, for u ∈ W 1,loc(D), σu ∈ W 1(D), so that, taking
traces, γ±(σu) ∈ H1/2(�∞), which is in the domain of the orthogonal projection operator P defined in
(29) which plays a key role subsequently.
14 If ψ ∈ L2(�∞) ⊂ H−1/2(�∞), ψ̄ is the usual complex conjugate, and this definition of the complex
conjugate is extended to H−1/2(�∞) by density.
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In the case when � is the closure of a Lipschitz open subset of �∞ andψ ∈ L2(�) the
potential can be expressed as an integral with respect to (Lebesgue) surface measure,
namely

Sψ(x) =
∫

�

�(x, y)ψ(y) ds(y), x ∈ D. (31)

The operator S : H−1/2
� → ˜H1/2(�c)⊥ denotes the single-layer boundary integral

operator

Sψ := Pγ±(σSψ |U±), ψ ∈ H−1/2
� , (32)

where σ ∈ C∞
0,� is arbitrary, which is continuous and coercive (see Lemma 4.3 below).

Theorem 4.2 ([15, Thm. 3.29 andThm. 6.4]) Let� ⊂ �∞ be non-empty and compact.
Then Problem 4.1 has a unique solution satisfying the representation formula

u(x) = −Sφ(x), x ∈ D, (33)

where φ = ∂+n (σu|U+) − ∂−n (σu|U−) ∈ H−1/2
� (with σ ∈ C∞

0,� arbitrary) is the
unique solution of the BIE

Sφ = −g, (34)

with g given by (29) in the case of scattering of an incident wave ui .

Define the sesquilinear form a(·, ·) on H−1/2
� × H−1/2

� by

a(φ,ψ) := 〈Sφ,ψ〉
˜H1/2(�c)⊥×H−1/2

�

= 〈Sφ,ψ〉H1/2(�∞)×H−1/2(�∞), φ, ψ ∈ H−1/2
� . (35)

Then the BIE (34) can be written equivalently in variational form as: given g ∈
(˜H1/2(�c))⊥, find φ ∈ H−1/2

� such that

a(φ,ψ) = −〈g, ψ〉H1/2(�∞)×H−1/2(�∞), for all ψ ∈ H−1/2
� . (36)

This equation will be the starting point for our Galerkin discretisation in Sect. 5.
The definition, domain and codomain of S may seem exotic. But, as noted in [19,

§3.3], given any bounded Lipschitz open set 
 ⊂ �∞ containing �, the sesquilinear
form a(·, ·) is nothing but the restriction to H−1/2

� × H−1/2
� of the sesquilinear form

a
(·, ·) defined on ˜H−1/2(
)× ˜H−1/2(
) by

a
(φ,ψ) := 〈S
φ,ψ〉H1/2(
)×˜H−1/2(
), φ, ψ ∈ ˜H−1/2(
), (37)
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with S
 : ˜H−1/2(
) → H1/2(
) the single-layer boundary integral operator on the
Lipschitz screen 
, defined in the standard way (e.g., [14, §2.3]), so that

S
φ(x) =
∫




�(x, y)φ(y) ds(y), x ∈ 
, (38)

for φ ∈ L2(
). The continuity and coercivity of a
(·, ·) (e.g., [14]) therefore implies
the continuity and coercivity of a(·, ·), as the following lemma ( [14], [15, §2.2]) states.

Lemma 4.3 The sesquilinear form a(·, ·) is continuous and coercive on H−1/2
� ×

H−1/2
� , specifically, for some constants Ca, α > 0 (the continuity and coercivity

constants) depending only on k and diam(�),

|a(φ,ψ)| ≤ Ca‖φ‖H−1/2
�

‖ψ‖
H−1/2
�

, |a(φ, φ)| ≥ α‖φ‖2
H−1/2
�

, φ, ψ ∈ H−1/2
� .(39)

Having computed φ by solving a Galerkin discretisation of (36), we will also
evaluate u(x) at points x ∈ D using (33) and (30). Further, recall that (e.g., [13,
Eqn. (2.23)], [38, p. 294])

u(x) = eik|x |

|x |n/2
(

u∞(x̂)+ O(|x |−1)
)

, as |x | → ∞,

uniformly in x̂ := x/|x |, where u∞ ∈ C∞(Sn) is the so-called far-field pattern of u
and Sn is the unit sphere in R

n+1. We will also compute this far-field pattern, given
explicitly ( [13, Eqn. (2.23)], [38, p. 294]) as

u∞(x̂) = −〈γ±(σ�∞(x̂, ·)), φ〉H1/2(�∞)×H−1/2(�∞), x̂ ∈ Sn, (40)

where σ is any element of C∞
0,� and

�∞(x̂, y) := ik(n−2)/2

2(2π i)n/2
exp(−ikx̂ · y), x̂ ∈ Sn, y ∈ R

n+1. (41)

Note that �∞(·, y) is the far-field pattern of �(·, y), for y ∈ R
n+1.

The following lemma provides conditions under which a compact screen � ⊂ �∞
produces a non-zero scatteredfield.Wenote that a sufficient condition for H−1/2

� �= {0}
is that dimH(�) > n − 1 [32, Thm 2.12], and that when � is a d-set this is also a
necessary condition [32, Thm 2.17].

Lemma 4.4 ([15, Thm 4.6]) Suppose that ui , which is C∞ in a neighbourhood of �,
is non-zero on �. Then the solution of Problem 4.1 with g given by (29) is zero if and
only if H−1/2

� = {0}.
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4.1 The BIE on d-sets in trace spaces

Suppose now that � is a compact d-set with n − 1 < d ≤ n. The assumption that
d > n − 1 ensures that � produces a non-zero scattered field under the conditions of
Lemma 4.4. Furthermore, the condition d > n − 1 is equivalent to (9) with s = 1/2,
so that the results in Sect. 2.4 apply with s = 1/2 and

t = td := 1

2
− n − d

2
∈
(

0,
1

2

]

. (42)

It then follows from (30) and (13) that for� ∈ L2(�) the potential S has the following
integral representation with respect to Hausdorff measure:

Str∗��(x) =
∫

�

�(x, y)�(y) dHd(y), x ∈ D. (43)

Proposition 4.5 For every� ∈ L∞(�) it holds that Str∗�� ∈ C(Rn+1). Precisely, the
function

F(x) :=
∫

�

�(x, y)�(y) dHd(y),

is well-defined for all x ∈ R
n+1 and is continuous, and Str∗��(x) = F(x) for x ∈ D.

Proof It is clear that F(x) is well-defined for x ∈ D since the integrand is then in
L∞(�), as �(x, y) is continuous for x �= y, and Hd(�) < ∞ as � is a bounded
d-set. For some constant C > 0, |�(x, y)| ≤ C f (|x − y|), for x, y ∈ R

n+1, x �= y,
where f : (0,∞) → (0,∞) is decreasing and continuous, given explicitly by (see
[1, Equations (9.1.3), (9.1.12), (9.1.13), (9.2.3)])

f (r) :=
{

1+ | log(r)|, 0 < r < 1,
r−1/2, r > 1,

when n = 1, by f (r) := r−1, r > 0, when n = 2. Thus F(x) is also well-defined for
x ∈ � by Corollary 2.3 and since � ∈ L∞(�). To see that F is continuous, for ε > 0
let

�ε(x, y) :=
{

�(x, y), |x − y| > ε,

�(0, εê), |x − y| ≤ ε,

where ê ∈ R
n+1 is any unit vector, and let Fε(x) := ∫

�
�ε(x, y)�(y) dHd(y), for

x ∈ R
n+1. Then, for every ε > 0, �ε ∈ C(Rn+1 × R

n+1), so that Fε ∈ C(Rn+1).
Further, for x ∈ R

n+1, noting Remark 2.2, we have that
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Fig. 5 Schema of relevant function spaces and operators for s = 1/2, t = td := 1/2− n−d
2

|F(x)− Fε(x)| ≤ 2C‖�‖L∞(�)

∫

�∩Bε(x)
f (|x − y|) dHd(y)

≤ 2CC2‖�‖L∞(�)

∫ 2ε

0
rd−1 f (r)dr → 0 (44)

as ε → 0, uniformly in x ∈ R
n+1, so that also F ∈ C(Rn+1). Thus also Str∗�� ∈

W 1
loc(R

n+1) is continuous, in the (usual) sense that it is equal almost everywhere with
respect to n+1-dimensional Lebesgue measure to a continuous function (the function
F), by (43). ��

Noting that tr� : ˜H1/2(�c)⊥ → H
td (�) and tr∗� : H−td (�) → H−1/2

� are unitary
isomorphisms (see Theorem 2.7), if we define S : H−td (�) → H

td (�) by

S := tr� S tr∗� (45)

then S is continuous and coercive, with the same associated constants as S (the con-
stants in Lemma 4.3). Furthermore, it follows from (35) and (12) that

a(tr∗��, tr∗�˜�) = 〈S�,˜�〉Htd (�)×H
−td (�), �,˜� ∈ H

−td (�), (46)

and the variational problem (36) can be equivalently stated as: given g ∈ ˜H1/2(�c)⊥,
find � ∈ H

−td (�) such that

〈S�,˜�〉Htd (�)×H
−td (�) = −〈tr�g,˜�〉Htd (�)×H

−td (�), for all ˜� ∈ H
−td (�),

(47)

and the solutions of (47) and (36) are related through φ = tr∗��. A schematic showing
the relationships between the relevant function spaces and operators is given in Fig. 5.

Since, as an operator on H1/2(�∞), ker(tr�) = ˜H1/2(�c) (Theorem 2.7), so that
tr�Pφ = tr�φ, φ ∈ H1/2(�∞), and recalling (14), (27) and (32), we see that (with
the ± again indicating that either trace can be taken, with the same result)
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S� = tr�γ
±((σStr∗��)|U±), � ∈ H

−td (�), (48)

with σ ∈ C∞
0,� arbitrary.

The following integral representation for S will be crucial for our Hausdorff BEM
in Sect. 5.

Theorem 4.6 Let � be a compact d-set with n − 1 < d ≤ n. For � in L∞(�),

S�(x) =
∫

�

�(x, y)�(y)dHd(y), for Hd-a.e. x ∈ �. (49)

Proof Let � ∈ L∞(�) ⊂ L2(�) ⊂ H
−td (�), so that S� ∈ H

td (�) ⊂ L2(�). For
arbitrary σ ∈ C∞

0,� , we have that

S� = tr�
(

γ± ((σ f )|U±)
)

, (50)

by (48), where f := Str∗�� ∈ C2(D) ∩ W 1,loc(Rn+1). Now, where F is defined as
in Proposition 4.5, f (x) = F(x) for almost all x ∈ R

n+1 (for x ∈ D by (43)), and
F ∈ C(Rn+1) by Proposition 4.5. Further, if G ∈ W 1(Rn+1) ∩ C(Rn+1) it is easy to
see that tr�γ±(G|U±) = G|� . Thus S� = F |� in L2(�), and the result follows. ��

The definition and mapping properties of tr� and tr∗� , noted in Sect. 2.4, combined
with the representation (48), enable us to extend the domain of S to H

−t (�), for
td < t < 2td , or restrict it to H

−t (�), for 0 < t < td , as stated in the following key
result.

Proposition 4.7 Let � be a compact d-set with n − 1 < d ≤ n. For |t | < td , S :
H

t−td (�) → H
t+td (�) and is continuous.

Proof Let 
 ⊂ �∞ be any bounded open set containing �, so that (see Sect. 2.4) Hs
�

is a closed subspace of ˜Hs(
) for every s ∈ R. The claimed mapping property of S
follows from(48) since tr� : Hs(Rn) → H

t (�) and tr∗� : H−t (�) → H−s
� ⊂ ˜H−s(
)

are continuous for s > (n − d)/2 (i.e. t > 0), with s and t related by (9), and since
the mapping φ �→ γ±((σSφ)|U±) : ˜Hs(
) → Hs+1(�∞) is continuous for s ∈ R

(e.g., [14, Thm 1.6]). ��
We now make a conjecture concerning the mapping properties of S−1. To the best

of our knowledge there are no results in this direction in the case d < n, but the
conjecture can be seen as an extension of known results in the case d = n, since the
conjecture is known to be true in the case that � = 
 for some bounded Lipschitz
domain 
 ⊂ �∞, in which case d = n (so td = 1/2). For in this case the single
layer BIO S
, defined below (37), is invertible as an operator from ˜Ht−1/2(
) to
Ht+1/2(
) for |t | < 1/2—see [49, Thm 1.8] for the case n = 1 and [43, Theorem
4.1]15 for the case n = 2—which implies that S : Ht−td (�) → H

t+td (�) is invertible,
by the fact that Hs(�) = Hs(�) for s > 0 (see [11]), Theorem 2.7, and the fact that

15 Temporarily denoting S
 by Sk to indicate the dependence on k, [43, Theorem 4.1] gives that Sk :
˜Ht−1/2(
) → Ht+1/2(
) is Fredholm of index zero for |t | < 1/2 when the wavenumber is purely
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˜Hs(
) = Hs


(see, e.g., [38, Thm 3.29]). A further motivation for our conjecture is

that its truth implies convergence rates for our BEM (defined and analysed in Sect. 5)
that are evidenced by numerical experiments in Sect. 6 for cases with n− 1 < d < n.

Conjecture 4.8 If � is a compact d-set with n − 1 < d ≤ n and |t | < td , then
S : Ht−td (�) → H

t+td (�) is invertible, andhence (byProposition4.7and the bounded
inverse theorem) a linear and topological isomorphism.

While we are not able to prove Conjecture 4.8 in its full generality, in the case
where � is a disjoint IFS attractor, in which case, by Lemma 2.6, d < n, we can prove
that S is invertible for a range of t , using Corollary 3.3 and results from function space
interpolation theory.

Proposition 4.9 Let � be a disjoint IFS attractor with n − 1 < d = dimH(�) < n.
Then there exists 0 < ε ≤ td such that S : Ht−td (�) → H

t+td (�) is invertible for
|t | < ε.

Proof We recall the following result from [39, Prop. 4.7], which quotes [45]. Suppose
E j and Fj are Banach spaces, E1 ⊂ E0 and F1 ⊂ F0 with continuous embeddings,
and T : E j → Fj is a bounded linear operator for j = 0, 1. Let Eθ = (E0, E1)θ be
defined by complex interpolation, and similarly Fθ , so T : Eθ → Fθ and is bounded,
for 0 < θ < 1. Assume that T : Eθ0 → Fθ0 is invertible for some θ0 ∈ (0, 1). Then
T : Eθ → Fθ is invertible for θ in a neighbourhood of θ0.

The claimed invertibility of S : Ht−td (�) → H
t+td (�) in a neighbourhood of t = 0

then follows by taking 0 < τ < td and applying the above result with

E0 = H
−τ−td (�), E1 = H

τ−td (�), F0 = H
−τ+td (�), F1 = H

τ+td (�),

and θ0 = 1/2, so that Eθ0 = H
−td (�) and Fθ0 = H

td (�),

recalling that (i) S : Ht−td (�) → H
t+td (�) is bounded for |t | < td (Proposition 4.7);

(ii) S : H−td (�) → H
td (�) is invertible (Lemma 4.3); (iii) {Ht (�)}|t |<1 is an interpo-

lation scale (Corollary 3.3); and (iv) td ∈ (0, 1/2), so t − td ∈ (−2td , 0) ⊂ (−1, 0)
and t + td ∈ (0, 2td) ⊂ (0, 1), for |t | < td . ��
Remark 4.10 (Solution regularity in the Hs

� scale) The mapping properties of tr∗� in

Theorem 2.7 and the relationship (45) between S and S imply that, if φ ∈ H−1/2
� is the

solution of the BIE (34), then S� = −tr�g, where � := (tr∗�)−1φ ∈ H
−td (�). Thus

if, for some 0 < t < td , S : Ht−td (�) → H
t+td (�) is invertible and tr�g ∈ H

t+td (�),

Footnote 15 continued
imaginary, say k = i. (We are defining Si here by (38) with k = i; equivalently, arguing, e.g., as in [14, §3],
Si is the pseudodifferential operator on 
 with symbol σ(x, ξ) = 1/(2

√

1+ |ξ |2), in the notation of [43,
Theorem 4.1].) Since Si − Sk is compact as an operator from ˜H0(�) = L2(�) → H1(�) and by duality
also from ˜H−1(�) → L2(�) = H0(�) (see, e.g., the argument on [13, p. 122]) and so, by interpolation
(see, e.g., [23, Thm. 10] and [16, Cor. 4.7, 4.10]) from ˜Ht−1/2(�) → Ht+1/2(�) for |t | ≤ 1/2, it follows
that Sk = Si + (Sk − Si) is Fredholm of index zero as a mapping from ˜Ht−1/2(�) → Ht+1/2(�) for
|t | < 1/2. Since Sk : ˜Ht−1/2(
) → Ht+1/2(
) is coercive and so invertible by Lax-Milgram for t = 0,
Sk is injective and so invertible for 0 < t < 1/2; indeed, invertible also for −1/2 < t < 0, since S∗k , the
adjoint of Sk , is invertible for this range and S∗k = J Sk J , where J maps φ to its complex conjugate.
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then, again using the mapping properties of tr∗� from Theorem 2.7, the solution φ =
tr∗�� of the BIE (34) satisfies

φ ∈ H−1/2+t
� , with ‖φ‖

H−1/2+t
�

≤ C‖tr�g‖Ht+td (�) (51)

for some constant C > 0 independent of φ and g. In the case of scattering of an
incident wave ui , in which g is given by (29), we have that tr�g= −tr�γ±((σui )|U±)
∈ H

t+td (�) for all 0 < t < td , since ui is C∞ in a neighbourhood of �. Hence, in this
case, if � is a disjoint IFS attractor with n − 1 < d = dimH(�) < n, then (51) holds
for 0 < t < ε, where ε is as in Proposition 4.9, and, if Conjecture 4.8 holds, then (51)
holds for 0 < t < td whenever � is a compact d-set with n − 1 < d ≤ n.

5 The Hausdorff BEM

We now define and analyse our Hausdorff BEM. To begin with, we assume simply
that � is a compact d-set for some n − 1 < d ≤ n.

Given N ∈ N let {Tj }Nj=1 be a “mesh” of �, by which we mean a collection

of Hd -measurable subsets of � (the “elements”) such that Hd(Tj ) > 0 for each
j = 1, . . . , N , Hd(Tj ∩ Tj ′) = 0 for j �= j ′, and

� =
N
⋃

j=1

Tj .

Define the N -dimensional space of piecewise constants

VN := { f ∈ L2(�) : f |Tj = c j for some c j ∈ C, j = 1, . . . , N } ⊂ L2(�) (52)

and set

VN := tr∗�(VN ) ⊂ H−1/2
� . (53)

Our proposed BEM for solving the BIE (34), written in variational form as (36),
uses VN as the approximation space in a Galerkin method. Given g ∈ (˜H1/2(�c))⊥
we seek φN ∈ VN such that (with a defined by (35))

a(φN , ψN ) = −〈g, ψN 〉H1/2(�∞)×H−1/2(�∞), for all ψN ∈ VN . (54)

Let { f i }Ni=1 be a basis for VN , and let {ei = tr∗� f i }Ni=1 be the corresponding

basis for VN . Then, writing φN =∑N
j=1 c j e

j , (54) implies that the coefficient vector

 c = (c1, . . . , cN )T ∈ C
N satisfies the system

A c =  b, (55)
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where, by (46), (11), and (49), the matrix A ∈ C
N×N has (i, j)-entry given by

Ai j = a(e j , ei ) = a
(

tr∗� f j , tr∗� f i
)

= 〈S f j , f i 〉Htd (�)×H
−td (�)

= (S f j , f i )L2(�),

=
∫

�

∫

�

�(x, y) f j (y) f i (x) dHd(y)dHd(x),

(56)

and, by (13), the vector  b ∈ C
N has i th entry given by

bi = −〈g, ei 〉H1/2(�∞)×H−1/2(�∞) = −(tr�g, f
i )L2(�) = −

∫

�

tr�g(x) f i (x) dHd(x).

(57)

For the canonical L2(�)-orthonormal basis forVN , where f j |Tj := (Hd(Tj ))
−1/2

and f j |�\Tj := 0, j = 1, . . . , N ,

Ai j = (Hd(Ti ))
−1/2(Hd(Tj ))

−1/2
∫

Ti

∫

Tj

�(x, y) dHd(y)dHd(x), (58)

bi = −(Hd(Ti ))
−1/2

∫

Ti
tr�g(x) dHd(x). (59)

Once we have computed φN by solving (55) we will compute approximations to
u(x) and u∞(x), given by (33)/(30) and (40), respectively. Each expression takes the
form16

J (φ) = 〈ϕ, φ〉H1/2(�∞)×H−1/2(�∞), (60)

for some ϕ ∈ (˜H1/2(�c))⊥. Explicitly, where σ is any element of C∞
0,� (with x not in

the support of σ in the case u(x)),

ϕ = −Pγ±
(

σv|U±
)

, (61)

with v = �(x, ·) in the case that J (φ) = u(x), v = �∞(x̂, ·) in the case that
J (φ) = u∞(x̂); note that each v is C∞ in a neighbourhood of �. In each case we
approximate J (φ) by J (φN ) which, recalling (13), is given explicitly by

16 Note that if ψ ∈ H−1/2
� and ϕ† ∈ H1/2(�∞) then 〈ϕ†, ψ〉H1/2(�∞)×H−1/2(�∞) =

〈ϕ,ψ〉H1/2(�∞)×H−1/2(�∞), where ϕ := Pϕ† ∈ (˜H1/2(�c))⊥, since 〈φ,ψ〉H1/2(�∞)×H−1/2(�∞) = 0

for ψ ∈ H−1/2
� and φ ∈ ˜H1/2(�c).
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J (φN ) = 〈ϕ, φN 〉H1/2(�∞)×H−1/2(�∞) =
N
∑

j=1

c j 〈ϕ, e j 〉H1/2(�∞)×H−1/2(�∞)

=
N
∑

j=1

c j (tr�ϕ, f j )L2(�) =
N
∑

j=1

c j

∫

�

tr�ϕ f j dHd . (62)

For the canonical L2(�)-orthonormal basis for VN ,

J (φN ) =
N
∑

j=1

c j
(Hd(Tj ))1/2

∫

Tj

tr�ϕ dHd . (63)

The following is a basic convergence result.

Theorem 5.1 Let � be a compact d-set for some n − 1 < d ≤ n. Then for each
N ∈ N the variational problem (54) has a unique solution φN ∈ VN and ‖φ −
φN‖H−1/2(�∞) → 0 as N → ∞, where φ ∈ H−1/2

� denotes the solution of (34),
provided that hN := max j=1,...,N diam(Tj ) → 0 as N → ∞. Further, where J (·) is
given by (60) for some ϕ ∈ (˜H1/2(�c))⊥, J (φN ) → J (φ) as N → ∞.

Proof The well-posedness of (54) follows from the Lax–Milgram lemma and the
continuity and coercivity of S : H−1/2

� → (˜H1/2(�c))⊥. Furthermore, by Céa’s
lemma (e.g., [47, Theorem 8.1]) we have the following quasi-optimality estimate,
where Ca, α > 0 are as in (39):

‖φ − φN‖H−1/2(�∞) ≤
Ca

α
inf

ψN∈VN
‖φ − ψN‖H−1/2(�∞). (64)

Hence to prove convergence of φN to φ it suffices to show that infψN∈VN ‖φ −
ψN‖H−1/2(�∞) → 0 as N → ∞, which, by the definition of VN and the fact that

tr∗� : H
−td (�) → H−1/2

� is a unitary isomorphism, is equivalent to showing that
inf�N∈VN ‖(tr∗�)−1φ − �N‖H−td (�) → 0 as N → ∞. Furthermore, since L2(�)

is continuously embedded in H
−td (�) with dense image it suffices to show that

inf�N∈VN ‖� −�N‖L2(�) → 0 as N → ∞ for every fixed � ∈ L2(�). To show the
latter we note that the space C(�) of continuous functions on � (equipped with the
supremum norm) is continuously embedded in L2(�) with dense image (continuity
is obvious and density follows by the density of C∞

0 (Rn) in H1/2(Rn) and that (see
Sect. 2.4) tr� : H1/2(Rn) → L2(�) is continuous and has dense range). Then, given
ε > 0 and� ∈ L2(�), there exists ˜� ∈ C(�) such that ‖� −˜�‖L2(�) < ε/2, and by
the uniform continuity of ˜� and the fact that hN → 0 as N → ∞ there exists N ∈ N

and �N ∈ VN such that |˜�(x)−�N (x)| < ε/(2
√

Hd(�)) forHd -a.e. x ∈ �, which
implies that ‖˜� −�N‖L2(�) < ε/2, from which it follows that ‖� −�N‖L2(�) < ε

by the triangle inequality. That also J (φN ) → J (φ) is clear since J (·) is a bounded
linear functional. ��
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Fig. 6 To illustrate the definition Kν , we show, as in Fig. 3, the sets Em ,m ∈ I�, � = 0, 1, 2,with E = [0, 1],
for the IFS s1(x) = 0.4x , s2(x) = 0.15x + 0.5, s3(x) = 0.25x + 0.75. Let � be the attractor of this IFS.
Then �m = Em ∩ � so that diam(�m) = diam(Em) for each m. The sets Em highlighted with thick
lines are those with indices m ∈ K2; for example, diam(�3) = diam(E3) = 1/4, so that (3,m) ∈ K2,
m = 1, 2, 3, and diam(�2) = diam(E2) < 1/4, so that also 2 ∈ K2

5.1 Best approximation error estimates

We now assume that � is the attractor of an IFS of contracting similarities satisfying
the OSC, as in Sect. 2.3. In this case, one possible choice of BEM approximation
space could be VN = W�, for some � ∈ N0 (recall the definitions in Sect. 3), so
that {Tj }Nj=1 = {�m}m∈I� and N = M�. However, since the spaces W� are defined
by refinement to a certain prefractal level, if the contraction factors ρ1, . . . , ρM are
not all equal the resulting mesh elements may differ significantly in size when � is
large. This motivates the use of spaces defined by refinement to a certain element size.
Recalling the notations of Sect. 3 (in particular, Jν is defined in (21) and ν0 below
(21)), for ν ≥ ν0 let

Xν := span
({ψ0} ∪ {ψm

m }m∈Jν′ , ν′∈{ν0,...,ν},m∈{1,...,M−1}
) = span

({χm}m∈Kν

)

, (65)

where

Kν := {m ∈ IN : diam(�m) < 2−ν and diam(�m−) ≥ 2−ν
}

. (66)

Note that both of these spanning sets for Xν are orthonormal bases, and that Xν ⊂
Xν′ , for ν0 ≤ ν ≤ ν′, giving that

Xν = span
({χ0} ∪ {χm : m ∈ IN, diam(�m−) ≥ 2−ν}) (67)

(but with this spanning set not linearly independent). Note also that, for ν ≥ ν0,
{�m : m ∈ Kν} is a mesh in the sense introduced at the beginning of this section.
Figure6 illustrates the definitions of Xν and Kν , showing the meaning of K2 for a
particular IFS for which diam(�) = 1 so that ν0 = 0; for this same IFS we have that
K0 = K1 = {1, 2, 3}.
Proposition 5.2 Let � be a disjoint IFS attractor with n − 1 < d = dimH(�) < n.
Then for −1 < t < 1 and ν ≥ ν0 the orthogonal projection operator Pν : L2(�) →
Xν ⊂ L2(�) defined by

Pν f = β0ψ0 +
M−1
∑

m=1

ν
∑

ν′=ν0

∑

m∈Jν′
βm
mψm

m , (68)
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with the coefficients given by (20), extends/restricts to a bounded linear operator
Pν : Ht (�) → Xν ⊂ H

t (�), and there exists C > 0, independent of ν and f , such
that

‖Pν f ‖Ht (�) ≤ C‖ f ‖Ht (�), ν ≥ ν0, f ∈ H
t (�). (69)

Furthermore, for −1 < t1 < t2 < 1 there exists c > 0, independent of ν and f , such
that

‖ f − Pν f ‖Ht1 (�) ≤ c 2−ν(t2−t1)‖ f ‖Ht2 (�), ν ≥ ν0, f ∈ H
t2(�). (70)

Proof The boundedness result follows from Theorem 3.1 and Corollary 3.3, noting
that

‖Pν f ‖t =
(

|β0|2 +
M−1
∑

m=1

ν
∑

ν′=ν0

22ν
′t ∑

m∈Jν′
|βm

m |2
)1/2

≤ ‖ f ‖t ,

which gives (69) with C = sup�∈Ht (�)\{0}
‖�‖

Ht (�)
‖�‖t × sup�∈Ht (�)\{0}

‖�‖t
‖�‖

Ht (�)
.

For the approximation result, we note, where c > 0 denotes a constant independent
of ν and f , not necessarily the same at each occurrence, that

‖ f − Pν f ‖Ht1 (�) =
∥

∥

∥

∥

M−1
∑

m=1

∞
∑

ν′=ν+1

∑

m∈Jν′
βm
mψm

m

∥

∥

∥

∥

Ht1 (�)

≤ c

( M−1
∑

m=1

∞
∑

ν′=ν+1

22ν
′t1
∑

m∈Jν′
|βm

m |2
)1/2

= c

( M−1
∑

m=1

∞
∑

ν′=ν+1

2−2ν′(t2−t1)22ν
′t2
∑

m∈Jν′
|βm

m |2
)1/2

≤ c2−ν(t2−t1)
( M−1
∑

m=1

∞
∑

ν′=ν+1

22ν
′t2
∑

m∈Jν′
|βm

m |2
)1/2

≤ c2−ν(t2−t1)‖ f ‖Ht2 (�).

��
Let Xν := tr∗�(Xν). (Recall that the choice of s > (n−d)/2 in the definition of tr∗�

makes no difference to the definition of Xν .) Since Xν ⊂ L2(�) we have Xν ⊂ Hs
�

for all s < −(n−d)/2. Then the following best approximation error estimate follows
immediately, on application of tr∗� , from Theorem 2.7 and Proposition 5.2 applied
with −1 < t1 < t2 < 0.
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Corollary 5.3 Let � be a disjoint IFS attractor with n − 1 < d = dimH(�) < n, and
suppose that −(n − d)/2 − 1 < s1 < s2 < −(n − d)/2. Then there exists c > 0,
independent of ν and ψ , such that

inf
ψν∈Xν

‖ψ − ψν‖Hs1
�

≤ c2−ν(s2−s1)‖ψ‖Hs2
�
, ν ≥ ν0, ψ ∈ Hs2

� . (71)

Remark 5.4 The above corollary holds also for larger values of s2, but is then a trivial
result since, as noted above Corollary 3.5, Hs2

� = {0} for s2 ≥ −(n − d)/2.

Corollary 5.3 can be rephrased with 2−ν replaced by a more general element size
h, and Xν replaced by

Yh := tr∗�(Yh), (72)

where

Yh := span
({χm}m∈Lh

)

, (73)

and Lh := {0} for h = diam(�), while, for h < diam(�),

Lh := {m ∈ IN : diam(�m) ≤ h and diam(�m−) > h
}

. (74)

This framework is a natural one for numerics—we specify h > 0 and consider all
those components which have diameter less than or equal to h but whose “parent” (in
the IFS structure) has diameter greater than h. The change from< to≤ and≥ to> in
moving from Kν to Lh is intentional, so that the definition of Lh allows components
that are equal to h in diameter; h is an upper bound for, and may be equal to, the
maximum element diameter hN = maxm∈Lh diam(�m). Note that the set {χm}m∈Lh

is an orthonormal basis for Yh and, if χm ∈ Yh , then χm− ∈ Yh , so that

Yh = span
({χ0} ∪ {χm : m ∈ IN, diam(�m−) > h}) (75)

(this spanning set not linearly independent). We assume in the following corollary and
subsequently that h, an upper bound for hN ≤ diam(�), satisfies

0 < h ≤ diam(�). (76)

Except where indicated explicitly otherwise, results through the rest of the paper
hold for all h in this range. The following corollary, a best approximation result for the
spaces Yh , follows from the inclusionXν ⊂ Yh , for some suitable ν, and Corollary 5.3.

Corollary 5.5 Under the assumptions of Corollary 5.3 we have that

inf
ψh∈Yh

‖ψ − ψh‖Hs1
�

≤ chs2−s1‖ψ‖Hs2
�
, ψ ∈ Hs2

� , (77)

for some constant c > 0 independent of h and ψ .
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Proof It is enough to show (77) for 0 < h ≤ diam(�)/2, since the result trivially holds
for larger h (just take ψh = 0 on the left hand side). Thus, given 0 < h ≤ diam(�)/2,
let ν = �log(1/h)/ log(2)� − 1, so that 2−ν−1 ≤ h < 2−ν and ν ≥ ν0. Then, if
m ∈ Kν , which implies that diam(�m−) ≥ 2−ν , it follows that diam(�m−) > h,
so that χm ∈ Yh . Thus Xν ⊂ Yh , which implies that Xν ⊂ Yh , so that, where
c > 0 denotes a constant independent of h and ψ , not necessarily the same at each
occurrence,

inf
ψh∈Yh

‖ψ − ψh‖Hs1
�

≤ inf
ψν∈Xv

‖ψ − ψν‖Hs1
�

≤ c2−ν(s2−s1)‖ψ‖Hs2
�

≤ chs2−s1‖ψ‖Hs2
�
.

��

5.2 Galerkin error estimates

We now use the best approximation error results proved above to give an error bound
for the Galerkin approximation to the BIE (34) when the solution φ is sufficiently
smooth. Note that, combining the results of this theorem with inverse estimates that
we prove as Theorem 5.10 below, we extend (78) to a bound on ‖φ − φN‖Hs1

�
for a

range of s1 in Corollary 5.12 below.

Theorem 5.6 Let � be a disjoint IFS attractor with n− 1 < d = dimH(�) < n. Let φ
be the unique solution of (34) and let φN be the unique solution of (54) with VN = Yh,
with Yh defined as in (72). Suppose that φ ∈ Hs

� for some −1/2 < s < −(n − d)/2.
Then, for some constant c > 0 independent of h and φ,

‖φ − φN‖H−1/2
�

≤ chs+1/2‖φ‖Hs
�
. (78)

Furthermore, let ϕ ∈ (˜H1/2(�c))⊥ be such that the solution ζ ∈ H−1/2
� of (36), with

−g replaced byϕ ∈ (˜H1/2(�c))⊥, also lies in the space Hs
� . Then the linear functional

J (·) on H−1/2
� , defined by J (ψ) := 〈ϕ,ψ〉H1/2(�∞)×H−1/2(�∞), ψ ∈ H−1/2

� , satisfies

|J (φ)− J (φN )| ≤ ch2s+1‖φ‖Hs
�
‖ζ‖Hs

�
, (79)

for some constant c > 0 independent of h, φ, and ζ .

Proof We first note that, in the general notation introduced at the start of this section,
to get VN = Yh we can take {Tj }Nj=1 = {�m}m∈Lh . Then to obtain (78) we simply
combine the best approximation error bound (77) (for s1 = −1/2 and s2 = s) with
the quasioptimality estimate (64).

The bound (79) follows by a standard superconvergence argument, as used in e.g.
[33, 44]. Since the kernel �(x, y) of the integral operator S
, densely defined on
H−1/2(
) by (38), satisfies �(x, y) = �(y, x) for x �= y, it follows from (37) and
since a(·, ·) is the restriction of a
(·, ·) to H−1/2

� × H−1/2
� , that

a(υ, ψ) = a(ψ̄, ῡ), υ, ψ ∈ H−1/2
� , (80)
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(recall that the overline denotes complex conjugation). Now ζ ∈ H−1/2
� is the solution

of (36) with −g replaced by ϕ, i.e.

a(ζ, ψ) = 〈ϕ,ψ〉H1/2(�∞)×H−1/2(�∞), ψ ∈ H−1/2
� .

Then, by (80), Galerkin orthogonality (that a(φ − φN , ψN ) = 0, for all ψN ∈ VN by
(36) and (54)), and Lemma 4.3, for any ζN ∈ VN we have, where c > 0 denotes some
constant independent of h, φ, and ζ , not necessarily the same at each occurrence,

|J (φ)− J (φN )| = |〈ϕ, φ − φN 〉H1/2(�∞)×H−1/2(�∞)|
= |a(ζ, φ − φN )| = |a(φ − φN , ζ )|
= |a(φ − φN , ζ − ζN )|
≤ c‖φ − φN‖H−1/2

�

‖ζ − ζN‖H−1/2
�

. (81)

Choosing ζN to be the solution of (54) with−g replaced by ϕ, it follows by (78) that

|J (φ)− J (φN )| ≤ chs+1/2‖φ‖Hs
�
hs+1/2‖ζ‖Hs

�
= ch2s+1‖φ‖Hs

�
‖ζ‖Hs

�
,

proving (79). ��
Importantly, as observed above (60), both u(x) and u∞(x̂) can be written as J (φ),

where J (·) is a bounded linear functional of the form treated in Theorem 5.6, explicitly
with ϕ given by (61), where v = �(x, ·) in the case that J (φ) = u(x) and v =
�∞(x̂, ·) in the case that J (φ) = u∞(x̂); in each case v is C∞ in a neighbourhood of
�.

Remark 5.7 (Range of exponent s in the convergence rates) By Proposition 4.9 and
Remark 4.10, there exists ε ∈ (0, td ] (with td = 1/2 − (n − d)/2) such that, if
0 < t < ε and tr�g ∈ H

t+td (�), then, where s = −1/2 + t , φ ∈ Hs
� and (78) holds

with the same value of s. If also tr�ϕ ∈ H
t+td (�), then ζ ∈ Hs

� and (79) holds with
s = −1/2+t . In the case of scatteringwhen g is given by (29), tr�g ∈ H

t+td (�) for all
0 < t < ε, and also tr�ϕ ∈ H

t+td (�) for all 0 < t < ε, if ϕ = Pγ±(σv|U±), where
σ ∈ C∞

0,� and v is C∞ in a neighbourhood of �. (As noted above, ϕ has this form for
the linear functionals needed to compute u(x), for x ∈ D, and the far-field u∞(x̂),
for x̂ ∈ Sn .) If Conjecture 4.8 holds then we may take ε = td . Thus, in the scattering
case, if Conjecture 4.8 holds, then (78) holds for all −1/2 < s < −(n − d)/2, and
the same is true for (79) if ϕ = Pγ±(σv|U±) and v is C∞ in a neighbourhood of �.

Remark 5.8 (Convergence rates when � is a disjoint homogeneous IFS) Suppose that,
in addition to the assumptions of Theorem 5.6, � is homogeneous, with ρm = ρ for
m = 1, . . . ,M , for some 0 < ρ < 1. Then, taking h = ρ� diam �, i.e. using the
approximation space VN = tr∗�(span

({χm}m∈I�
)

), Theorem 5.6 implies that

‖φ − φN‖H−1/2
�

≤ cρ�(s+1/2)‖φ‖Hs
�
, |J (φ)− J (φN )| ≤ cρ�(2s+1)‖φ‖Hs

�
‖ζ‖Hs

�
.
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(Here and below c > 0 denotes some constant independent of �, φ, and ζ , not
necessarily the same at each occurrence.) If φ ∈ Hs

� for all s < −(n − d)/2
we can take s = −(n − d)/2 − ε for arbitrarily small ε in the first of the above
estimates, and the same holds for the second of the above estimates if also ζ sat-
isfies ζ ∈ Hs

� for the same range of s. (If Conjecture 4.8 holds this smoothness
of φ and ζ is guaranteed for all scattering problems by Remark 5.7 if ϕ satisfies
the conditions in that remark.) Then, recalling that d = log(1/M)/ log ρ, we get
s + 1/2 = (d + 1 − n)/2 − ε = (1/2)(log(1/M)/ log ρ + 1 − n − 2ε), so that, for
each ε > 0,

‖φ − φN‖H−1/2
�

≤ c

⎛

⎝

√

ρ1−n−2ε

M

⎞

⎠

�

‖φ‖
H−(n−d)/2−ε
�

,

|J (φ)− J (φN )| ≤ c

(

ρ1−n−2ε

M

)�

‖φ‖
H−(n−d)/2−ε
�

‖ζ‖
H−(n−d)/2−ε
�

.

(82)

In the case n = 1 (e.g. � a Cantor set, see (124), for which M = 2), the fact that
ε > 0 can be taken arbitrarily small means that in numerical experiments we expect
to see errors in computing φN and J (φN ) that tend to zero roughly like M−�/2 and
M−� respectively, independent of the parameter ρ, if the above bounds are sharp.

In the case n = 2 (e.g. � a Cantor dust, see (125), for which M = 4), we expect
errors in computing φN and J (φN ) that tend to zero roughly like (Mρ)−�/2 and
(Mρ)−� respectively, if the above bounds are sharp. Note that in this case we need
ρ > 1/M to ensure d = log(1/M)/ log(ρ) > 1 = n − 1, and that these predicted
convergence rates, as a function of �, decrease as d approaches 1 with M fixed. For
the Cantor dust with ρ = 1/3 (the “middle-third” case) we predict convergence rates
of roughly (3/4)�/2 and (3/4)�, respectively.

Remark 5.9 (Connection to standard BEM convergence results) The results of The-
orem 5.6, because they require that d < n, do not apply when � is the closure of a
Lipschitz domain (so that d = dimH (�) = n), for which case standard regularity and
convergence results (e.g., [25, 48, 49] and see the discussion above Conjecture 4.8)
predict that φ ∈ Hs

� and that the bounds (78) and (79) hold for all s < 0. Note that
these convergence rates for standard BEM are those predicted by taking the formal
limit as d → n− in the results of Theorem 5.6. In Sect. 6 we will compare results
for the cases where � is a Cantor set or Cantor dust, the attractor of the IFS (124) or
(125), respectively, with results for standard BEM. If we take the parameter ρ = 0.5
in each of (124) and (125) then the attractor is just � = [0, 1]n , with n = 1 or 2.
As we note in Sects. 6.1 and 6.2, the relative errors ‖φ − φN‖H−1/2

�

/‖φ‖
H−1/2
�

for our

new Hausdorff-measure BEM for the Cantor set and Cantor dust with ρ = 0.49 are
almost the same as relative errors for the limiting case ρ = 0.5, when � = [0, 1]n , for
standard BEM with a uniform mesh and the same number of degrees of freedom.
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5.3 Inverse estimates and conditioning

The following inverse estimate follows almost immediately from the wavelet charac-
terisation of the spaces H−t (�) for −1 < t < 1 in Theorem 3.1 and Corollary 3.3.
In “Appendix B” we show, by an alternative, lengthier argument, closer to standard
arguments based on “bubble functions” (e.g. [24]), that the estimate (84) holds in fact
for all t > 0, and for the full range 0 < d < n; moreover, for any T > 0, the constant
ct in the estimate can be chosen independently of t for 0 < t ≤ T .

Theorem 5.10 Let � be a disjoint IFS attractor with n− 1 < d = dimH(�) < n, and
suppose that −1 < t1 < t2 < 1. Then, for some constant c > 0 independent of h and
�h,

‖�h‖Ht2 (�) ≤ cht1−t2‖�h‖Ht1 (�), �h ∈ Yh . (83)

In particular, if 0 < t < 1, then, for some constant ct > 0 independent of h and �h,

‖�h‖L2(�) ≤ cth
−t‖�h‖H−t (�), �h ∈ Yh . (84)

Proof Since Yh ⊂ Yh′ for 0 < h′ ≤ h ≤ diam(�), it is enough to show this result for
0 < h ≤ diam(�)/2. So suppose 0 < h ≤ diam(�)/2 and �h ∈ Yh . Then, arguing
as in the proof of Corollary 5.5, we have that Yh ⊂ Xν+1, with ν ≥ ν0 such that
2−ν−1 ≤ h < 2−ν . Then, since �h = Pν+1�h , and where the coefficients are given
by (20) with f replaced by �h ,

‖�h‖t1 =
(

|β0|2 +
M−1
∑

m=1

ν+1
∑

ν′=ν0

22ν
′t1
∑

m∈Jν′
|βm

m |2
)1/2

≥ min(1, 2−(ν+1)(t2−t1))

(

|β0|2 +
M−1
∑

m=1

ν+1
∑

ν′=ν0

22ν
′t2
∑

m∈Jν′
|βm

m |2
)1/2

= min(1, 2−(ν+1)(t2−t1))‖�h‖t2 .

Noting that, where s = t2 − t1 ∈ (0, 2),

min(1, 2−(ν+1)s) = 2−(ν+1)s min(1, 2(ν+1)s) ≥ 2−(ν+1)s min(1, 22(ν0+1))

> 2−shs min(1, 22(ν0+1)),

(83) follows by the equivalence of the norms ‖ · ‖s and ‖ · ‖Hs (�) for−1 < s < 1. The
bound (84) is the special case of (83) with t2 = 0 and t1 = −t . ��

One application of the above result is to extend the bound (78) on ‖φ − φN‖Hs
�

for s = −1/2 to a larger range −1/2 ≤ s < −(n − d)/2, by applying the following
proposition in the case that cψ = ‖ψ‖Hs2

�
.
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Proposition 5.11 Suppose that −(n − d)/2 − 1 < r < s1 ≤ s2 < −(n − d)/2,
ψ ∈ Hs2

� , ψh ∈ Yh, and cψ > 0, and that

‖ψ − ψh‖Hr
�
≤ c∗hs2−r cψ,

for some constant c∗ > 0 independent of h, ψ , and ψh. Then

‖ψ − ψh‖Hs1
�

≤ Chs2−s1
(

cψ+‖ψ‖Hs2
�

)

and ‖ψh‖Hs2
�

≤ C
(

cψ + ‖ψ‖Hs2
�

)

,

(85)

for some constant C > 0 independent of h, ψ , and ψh.

Proof As in the proof of Theorem5.10, sinceYh ⊂ Yh′ for 0 < h′ ≤ h ≤ diam(�), it is
enough to show this result for 0 < h ≤ diam(�)/2. So suppose 0 < h ≤ diam(�)/2
and ψh ∈ Yh . Recalling (14), let � := (tr∗�)−1ψ ∈ H

s2+(n−d)/2(�) and �h :=
(tr∗�)−1ψh ∈ Yh . Then, for every �h ∈ Yh , using (14) and the inverse inequality
(83),

‖ψ − ψh‖Hs1
�

= ‖� −�h‖Hs1+(n−d)/2(�) ≤ ‖� −�h‖Hs1+(n−d)/2(�) + ‖�h −�h‖Hs1+(n−d)/2(�)

≤ ‖� −�h‖Hs1+(n−d)/2(�) + chr−s1‖�h −�h‖Hr+(n−d)/2(�)

≤ ‖� −�h‖Hs1+(n−d)/2(�) + chr−s1
(‖� −�h‖Hr+(n−d)/2(�) + ‖ψ − ψh‖Hr

�

)

≤ ‖� −�h‖Hs1+(n−d)/2(�) + chr−s1‖� −�h‖Hr+(n−d)/2(�) + cc∗hs2−s1cψ. (86)

Let ν ≥ ν0 be such that 2−ν−1 ≤ h < 2−ν , so that, by (67) and (75), Xν ⊂ Yh ,
and, where Pν is as defined in Proposition 5.2, let �h := Pν� ∈ Xν . Then, for
r ≤ s ≤ s2, by Proposition 5.2 (specifically by (69) when s = s2, (70), applied with
t1 = s+ (n− d)/2 and t2 = s2+ (n− d)/2, when r ≤ s < s2), and again using (14),

‖� −�h‖Hs+(n−d)/2(�) ≤ Cs2
−ν(s2−s)‖�‖

Hs2+(n−d)/2(�) ≤ Cs2
s2−shs2−s‖ψ‖Hs2

�

≤ 2Csh
s2−s‖ψ‖Hs2

�
.

This bound, applied with s = r and s = s1, combined with (86), gives the first bound
in (85). The second bound follows on taking s1 = s2. ��

Thefirst claimof the following corollary follows immediately from the above result.
The second (cf. [25, Thm. 1.4], [22], [20, Thm. 3.2.4]) combines our earlier results
with standard Aubin-Nitsche lemma arguments.

Corollary 5.12 Suppose that � satisfies the conditions of Theorem 5.6 and that φ and
φN are as defined in Theorem 5.6. Suppose also that −1/2 ≤ s1 < s2 < −(n − d)/2
and that φ ∈ Hs2

� . Then, for some constant c > 0 independent of h and φ,

‖φ − φN‖Hs1
�

≤ chs2−s1‖φ‖Hs2
�

and ‖φN‖Hs2
�

≤ c‖φ‖Hs2
�
. (87)
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If Conjecture 4.8 holds, then (87) holds also for −1 + (n − d)/2 < s1 < −1/2 ≤
s2 < −(n − d)/2.

Proof The first claim follows from Theorem 5.6 and Proposition 5.11 applied with
r = −1/2 and cψ = ‖ψ‖Hs2

�
. Suppose now that Conjecture 4.8 holds and −1+ (n −

d)/2 < s1 < −1/2 ≤ s2 < −(n − d)/2. For ϕ ∈ ˜H−s1(�c)⊥ ⊂ H1/2(�∞), define
the bounded linear functional Jϕ(·) on H−1/2

� by

Jϕ(ψ) = 〈ϕ,ψ〉H1/2(�∞)×H−1/2(�∞) = 〈ϕ,ψ〉H−s1 (�∞)×Hs1 (�∞), ψ ∈ H−1/2(�).

Recalling from Sect. 2.4 that ˜H−s1(�c)⊥ is a unitary realisation of the dual space of
Hs1
� with respect to the duality pairing 〈·, ·〉H−s1 (�∞)×Hs1 (�∞), we have that

‖φ − φN‖Hs1
�

= sup
ϕ∈˜H−s1 (�c)⊥\{0}

|Jϕ(φ − φN )|
‖ϕ‖H−s1 (�∞)

.

Given ϕ ∈ ˜H−s1(�c)⊥, let ζ ∈ H−1/2
� denote the solution of (36) with−g replaced by

ϕ. Noting that, by Theorem 2.7, tr�ϕ ∈ H
−s1−(n−d)/2(�)with ‖tr�ϕ‖H−s1−(n−d)/2(�) =

‖ϕ‖H−s1 (�∞), it follows from Remark 4.10 that ζ ∈ H−s1−1
� , with ‖ζ‖H−s1−1(�∞) ≤

C‖ϕ‖H−s1 (�∞), for some constant C > 0 independent of ϕ. It follows from (78) and
(81) that, for some constant c′ > 0 independent of φ, h, and ζ ,

|Jϕ(φ − φN )| ≤ c′hs2−s1‖φ‖Hs2
�
‖ζ‖

H
−1−s1
�

≤ c′Chs2−s1‖φ‖Hs2
�
‖ϕ‖H−s1 (�∞),

so that ‖φ − φN‖Hs1
�

≤ c′Chs2−s1‖φ‖Hs2
�
. ��

Another application of Theorem 5.10, specifically (84), is to prove bounds on the
condition number of the matrix in our Galerkin BEM. Let N := #Lh and suppose that
{ f i }Ni=1 = {χm : m ∈ Lh}, i.e. f 1, f 2, ..., f N is a particular ordering of the L2(�)-
orthonormal basis {χm : m ∈ Lh} ofYh , and let {ei = tr∗� f i }Ni=1 be the corresponding
basis for Yh . Then the Galerkin method using the N -dimensional space VN = Yh leads
to the Galerkin matrix A ∈ C

N×N given by (58). The following theorem bounds the
2-norm, ‖·‖2, of thismatrix and its inverse. The bound for ‖A‖2 is in terms of ‖S‖2, the
norm of S as an operator on L2(�), and recall that td is defined in (42). The numerical
results reported at the end of Sect. 6.2 suggest that these bounds are sharp in their
dependence on h and d.

Theorem 5.13 Let � be an IFS attractor satisfying the OSC with n − 1 < d =
dimH(�) < n. Then, with VN = Yh as described above, the Galerkin matrix A ∈
C

N×N defined in (58) satisfies

‖A‖2 ≤ ‖S‖2.

If also � is disjoint then, for some c > 0,

| aH A a| ≥ ch2td‖ a‖22, for all  a = (a1, ..., aN )
T ∈ C

N , (88)
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so that also

‖A−1‖2 ≤ c−1h−2td . (89)

In particular, (88) and (89) hold with c = αc−2
td , where α is the coercivity constant

from (39) and ctd is the constant from (84) when t = td .

Proof For  a = (a1, ..., aN )T ∈ C
N and  b = (b1, ..., bN )T ∈ C

N it holds that

 bH A a = (S�h,˜�h)L2(�),

where �h =∑N
i=1 ai f

i , ˜�h =∑N
i=1 bi f

i , so that

‖A‖2 = sup
 a, b∈CN \{0}

| bH A a|
‖ a‖2 ‖ b‖2

= sup
 a, b∈CN \{0}

|(S�h,˜�h)L2(�)|
‖ a‖2 ‖ b‖2

≤ ‖S‖2,

as ‖�h‖L2(�) = ‖ a‖2 and ‖˜�h‖L2(�) = ‖ b‖2, since { f 1, ..., f N } is L2(�)-
orthonormal. Similarly, it follows from (11), (46), Lemma 4.3, and Theorem 2.7 that

| aH A a| = |(S�h, �h)L2(�)| = |a(tr∗��h, tr
∗
��h)|

≥ α ‖tr∗��h‖2
H−1/2
�

= α ‖�h‖2H−td (�)
. (90)

The bound (88), with c = αc−2
td , follows, if � is disjoint, by applying Theorem 5.10

with t = td . The bound (89) then follows from (88) in the standard way, using the fact
that | aH A a| ≤ ‖ a‖2 ‖A a‖2. ��

5.4 Numerical quadrature and fully discrete error estimates

To evaluate the Galerkin matrix (58) and right-hand side entries (59) we use the
quadrature routines from [30]. These are applicable when � is a disjoint IFS attractor
with n − 1 < d = dimH(�) < n, and we assume throughout this section that � is of
this form.

As in the previous two sections we focus on the case where VN = Yh (with Yh
defined as in (72)), for some h ∈ (0, diam(�)], and we use the canonical orthonormal
basis for VN (i.e., tr∗� applied to the functions χm from (73) and (16)) so that A and
 b are given by (58) and (59). It follows from (58) that the Galerkin matrix entries are
the double integrals

Ai j = μ
−1/2
m(i) μ

−1/2
m( j)

∫

�m(i)

∫

�m( j)

�(x, y) dHd(y)dHd(x), i, j ∈ 1, . . . , N , (91)

where m(1), . . . ,m(N ) is an ordering of the elements of Lh (corresponding to the
order of f 1, . . . , f N in Sect. 5.3), and for brevity we have written μm := Hd(�m)

for m ∈ IN0 . Recall from Sect. 3 that m ∈ IN0 means that either m = 0, in which case
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�m = �0 = � and μm = Hd(�), or m = (m1, . . . ,m�) for some � ∈ N, in which
case μm = ρd

m1
· · · ρd

m�
Hd(�).

For i �= j the integrand in (91) is continuous, because, by assumption, the compo-
nents of � are disjoint. In that case, to evaluate (91) we use the composite barycentre
rule of [30, Defn 3.5]. In our context, this means partitioning the BEM elements �m(i)

and �m( j), which have diameter approximately equal to h, into a union of self-similar
subsets of a possibly smaller approximate diameter 0 < hQ ≤ h, writing the integral
in (91) as a sum of integrals over the Cartesian products of these subsets, and approx-
imating these integrals by a one-point barycentre rule. Specifically, we approximate

Ai j ≈ AQ
i j := μ

−1/2
m(i) μ

−1/2
m( j)

∑

n∈Lm(i)
hQ

∑

n′∈Lm( j)
hQ

μnμn′�(xn, xn′), i, j ∈ 1, . . . , N , i �= j, (92)

where, for i ∈ 1, . . . , N ,

Lm(i)
hQ

:=
{

{m(i)}, hQ ≥ diam(�m(i)),
{

n ∈ LhQ : �n ⊂ �m(i)}, hQ < diam(�m(i)),

describes the partitioning of �m(i) and, for n ∈ IN0 ,

xn :=
∫

�n
x dHd(x)

∫

�n
dHd(x)

= μ−1
n

∫

�n

x dHd(x)

is the barycentre of �n with respect to the measureHd . (Note that xn is not necessarily
an element of �n.) The similarities can be written as sm(x) = ρm Amx + vm , for some
vm ∈ R

n and some orthogonal Am ∈ R
n×n (Am = ±1 in the case n = 1), and then,

writing n = (n1, . . . , n�), we find (see [30, Prop. 3.3]) that

xn = sn1 ◦ sn2 ◦ . . . ◦ sn�
([

I −
M
∑

m=1

ρd+1
m Am

]−1( M
∑

m=1

ρd
mvm

))

,

the formula that we use for calculation of xn in Sect. 6.
For i = j the integral (91) is singular. To evaluate it we adopt the singularity

subtraction approach of [30, §5], writing

Aii = μ−1
m(i)

∫

�m(i)

∫

�m(i)

(

�sing(x, y)+�reg(x, y)
)

dHd(y)dHd(x), (93)

where

�sing(x, y) :=
{

− 1
2π log |x − y|, n = 1,
1

4π |x−y| , n = 2,
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and �reg := � − �sing. The integral of �reg has a continuous integrand and can be
evaluated using the composite barycentre rule, viz.

∫

�m(i)

∫

�m(i)

�reg(x, y) dHd(y)dHd(x) ≈
∑

n∈Lm(i)
hQ

∑

n′∈Lm(i)
hQ

μnμn′�reg(xn, xn′). (94)

The integral of �sing over �m(i) × �m(i) is singular, but, using the self-similarity of
� and the symmetry and homogeneity properties of �sing, namely the fact that, for
m = 1, . . . ,M ,

�sing(sm(x), sm(y)) =
{

�sing(x, y)− 1
2π log ρm, n = 1,

ρ−1
m �sing(x, y), n = 2,

it can be written (see [30, Thm 4.6]) as

∫

�m(i)

∫

�m(i)

�sing(x, y) dHd (y)dHd (x)

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(

1−
M
∑

m=1

ρ2d
m

)−1 M
∑

m=1

(

− 1

2π
μ2
m(i)ρ

2d
m log(ρm)

+
M
∑

m′=1
m′ �=m

∫

�(m(i),m)

∫

�(m(i),m′)
�sing(x, y) dHd (y)dHd (x)

)

, n = 1,

(

1−
M
∑

m=1

ρ2d−1
m

)−1 M
∑

m=1

M
∑

m′=1
m′ �=m

∫

�(m(i),m)

∫

�(m(i),m′)
�sing(x, y) dHd (y)dHd (x), n = 2.

(95)

The integrals appearing in (95) all have continous integrands and can be evaluated
using the composite barycentre rule (as in [30, Eqn (47)]), viz.

∫

�(m(i),m)

∫

�(m(i),m′)
�sing(x, y) dHd(y)dHd(x)

≈
∑

n∈L(m(i),m)
hQ

∑

n′∈L(m(i),m′)
hQ

μnμn′�sing(xn, xn′). (96)

Let AQ
ii denote the resulting approximation of Aii , obtained by combining (93)–(96).

Assuming the data g is sufficiently smooth, the right-hand side entries (59) are reg-
ular single integrals and can be evaluated by a single integral version of the composite
barycentre rules described for double integrals above, as in [30, Defn 3.1]). Explicitly,
we use the approximation

bi = −μ
−1/2
m(i)

∫

�m(i)

tr�g(x) dHd(x) ≈ bQi := −μ
−1/2
m(i)

∑

n∈Lm(i)
hQ

μntr�g(xn). (97)

123



A Hausdorff-measure boundary element method...

Having computed AQ = [AQ
i j ]Ni, j=1 ≈ A and  bQ = (bQ1 , . . . , bQN )

T ≈  b, we solve,
instead of (55), the perturbed linear system AQ  c Q =  bQ . Provided this is uniquely
solvable (for which see Corollary 5.17 below), our fully discrete approximation to φ

is φQ
N :=∑N

j=1 c
Q
j e

j .

Provided ϕ ∈ (˜H1/2(�c))⊥ is sufficiently smooth, we approximate J (φ), given by
(60), by an approximation J Q(φ

Q
N ) defined in a similar way to (97). Using (63), we

have that

J (φ) ≈ J (φN ) =
N
∑

j=1

c jμ
−1/2
m( j)

∫

�m( j)

tr�ϕ dHd ≈ J Q(φ
Q
N )

=
N
∑

j=1

cQj μ
−1/2
m( j)

∑

n∈Lm( j)
hQ

μntr�ϕ(xn), (98)

where, for every ψN =∑N
j=1 d j e j ∈ VN ,

J Q(ψN ) :=
N
∑

j=1

d jμ
−1/2
m( j)

∑

n∈Lm( j)
hQ

μntr�ϕ(xn). (99)

The following quadrature error estimates follow from results in [30], specifically
[30, Prop. 5.2, Thms 3.6(iii), 5.7 & 5.11]. Following the terminology of [30], we say
an IFS attractor � is hull-disjoint if the convex hulls Hull(�1), . . . ,Hull(�M ) are
disjoint, which holds if and only if the OSC holds for some open set O ⊃ Hull(�)
(cf. Lemma 2.5, the proof of which works in the same way for hull-disjointness as
for disjointness). The assumption of hull-disjointness permits analysis of the singular
quadrature rules in [30] by Taylor expansion. (The point here is that while the barycen-
tre xm of a component �m may not lie in �m, it must lie in Hull(�m).) However,
numerical experiments suggest that hull-disjointness is not essential for the applica-
bility of the quadrature rules in [30] (see [30, §6]). We also suspect that the estimates
(103) and (102) may not be sharp in their h-dependence—see [30, Rem. 5.10] and
the discussion around [30, Fig. 7]. In Remark 5.19 we describe modifications to our
quadrature rule which may improve its efficiency.

Theorem 5.14 Let � be an IFS attractor satisfying the OSC with n − 1 < d =
dimH(�) < n. Suppose that 0 < hQ ≤ h, and let Ai j , A

Q
i j , bi and bQi be as in

(91)–(97), and J (·) and J Q(·) be as defined by (60) and (99), respectively, for some
ϕ ∈ (˜H1/2(�c))⊥.

(i) Suppose that tr�g = G|� , for some G that is twice boundedly differentiable in
some open neighbourhood of Hull(�). (For the scattering problem this holds with
G = −ui , if ui satisfies the Helmholtz equation in a neighbourhood of Hull(�).)
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Then, for i = 1, . . . , N,

|bi − bQi | ≤ h2Q |G|2,Hull(�)μ1/2
m(i)

and hence ‖ b −  bQ‖2 ≤ h2Q |G|2,Hull(�)Hd(�)1/2, (100)

where |G|2,Hull(�) := maxx∈Hull(�) maxα∈Nn
0|α|=2

|DαG(x)|.
(ii) Suppose that tr�ϕ = V |� , where V is twice boundedly differentiable in some open

neighbourhood ofHull(�). (For ϕ given by (61) this holds with V = −v if v is C∞
in a neighbourhood of Hull(�).) Then, for −1/2 ≤ s < −(n − d)/2, there exists
a constant C > 0, independent of h, hQ, and V , such that, for all ψN ∈ VN = Yh,

|J (ψN )− J Q(ψN )| ≤ Ch2Qh
s+(n−d)/2|V |2,Hull(�)‖ψN‖Hs

�
. (101)

(iii) Suppose that � is hull-disjoint. Then there exists a constant C > 0, independent
of h and hQ, such that, for i, j = 1, . . . , N,

|Ai j − AQ
i j | ≤ ChQh

−nμ
1/2
m(i)μ

1/2
m( j),

and hence ‖A − AQ‖2 ≤ ChQh
−nHd(�). (102)

If, further, � is homogeneous, then there exists a constant C > 0, independent of
h and hQ, such that

|Ai j − AQ
i j | ≤ Ch2Qh

−(n+1)μ
1/2
m(i)μ

1/2
m( j), and hence

‖A − AQ‖2 ≤ Ch2Qh
−(n+1)Hd(�). (103)

Proof In what follows, when applying results from [30] we are taking h, � and �′ in
[30] to be respectively hQ , �m(i), and �m( j) from the current paper. For (i), noting
that

|bi − bQi | = μ
−1/2
m(i)

∣

∣

∣

∣

∫

�m(i)

G(x) dHd(x)−
∑

n∈Lm(i)
hQ

μnG(xn)

∣

∣

∣

∣

,

the first estimate in (100) follows from [30, Thm 3.6(iii)], and the second then
follows from the fact that

∑N
i=1 μm(i) = Hd(�). For (ii), given ψN ∈ VN let

 ψ = ((  ψ)1, . . . , (  ψ)N )
T ∈ C

N denote the coefficient vector of its expansion with
respect to the basis (e1, . . . , eN ). By the orthonormality of the basis ( f 1, . . . , f N ) in
L2(�), the inverse estimate (84) and the isometry property (14), given 0 < t < 1 we
can bound

‖  ψ‖2 = ‖(tr∗�)−1ψN‖L2(�)

(84)≤ cth
−t‖(tr∗�)−1ψN‖H−t (�)

(14)= cth
−t‖ψN‖

H
−t− n−d

2
�

.

(104)
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Then, to prove (101), using (63), (99), [30, Thm 3.6(iii)], (104), and the Cauchy-
Schwarz inequality,

|J (ψN )− J Q(ψN )| =
∣

∣

∣

∣

N
∑

j=1

(  ψ) jμ
−1/2
m( j)

(∫

�m( j)

V (x) dHd(x)−
∑

n∈Lm( j)
hQ

μnV (xn)

)∣

∣

∣

∣

≤ h2Q |V |2,Hull(�)(Hd(�))1/2‖  ψ‖2
≤ ct h

2
Qh

−t |V |2,Hull(�)(Hd(�))1/2‖ψN‖
H

−t− n−d
2

�

.

For (iii), the first estimates in (102) and (103) follow from [30, Prop 5.2] for the
off-diagonal terms and [30, Thms 5.7 & 5.11] for the diagonal terms. The factors of
h−(n+1) and h−n come from the fact that, in the notation of [30, Thms 5.7 & 5.11],
R�,Hull equals diam(�) times a constant independent of diam(�). We note that, since
we are allowing C to be k-dependent, we can use the “k diam(�) ≤ cosc” estimates
in [30, Thms 5.7 & 5.11], since, given k > 0, the constant cosc can be chosen as large
as is required. To derive the second estimate in (102) (a similar argument gives the
second estimate in (103)), note that, with ‖ · ‖F denoting the Frobenius norm,

‖A − AQ‖2 ≤ ‖A − AQ‖F ≤ ChQh
−n
( N
∑

i=1

N
∑

j=1

μm(i)μm( j)

)1/2

= ChQh
−nHd(�).

��

Remark 5.15 (Value of Hd(�)) The proposed quadrature formulas require the val-
ues of μm = Hd(�m), which are easily computed in terms of Hd(�) as μm =
ρd
m1

· · · ρd
m�
Hd(�), for all m ∈ IN. For n = 1, the Hausdorff measure of a class of

Cantor sets is shown to beHd(�) = 1 in [27, Thm. 1.14–1.15]; see, e.g., [54] for more
recent related results. However, for n > 1 the exact value of the Hausdorff measure of
even the simplest IFS attractors is known only for d ≤ 1 (see, e.g., [53]), i.e. for the
cases that are not relevant for scattering problems (recall, as discussed above Lemma
4.4, that H−1/2

� = {0} and φ = 0 for d ≤ n− 1). A simple implementation technique
which avoids working with an unknown value for Hd(�) and produces the correct
solution φN is just to setHd(�) = 1 in all calculations. This is equivalent to introduc-
ing a “normalised Hausdorff measure” Hd

 (·) := Hd(·)/Hd(�), so that Hd
 (�) = 1,

and using it throughout in the BEM in place of Hd(·).

To study the influence of the quadrature error on the BEM solution we first adapt
the first Strang lemma to our setting.

Proposition 5.16 Let � be a disjoint IFS attractor with n − 1 < d = dimH(�) < n.
Assume that the unique solution φ of (34) belongs to Hs

� for some −1/2 < s <

−(n − d)/2, so that 0 < s + 1/2 < td . Let VN = Yh so that N = dim(VN ). Let α be
the coercivity constant of (39) and ctd the constant in the inverse inequality (84) when
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t = td . Assume that AQ ∈ C
N×N and  bQ ∈ C

N are approximations of the Galerkin
matrix A and the right-hand side vector  b in (58)–(59) satisfying

‖A − AQ‖2 ≤ h2td EA and ‖ b −  bQ‖2 ≤ htd+s+1/2Eb, (105)

for some 0 ≤ EA < α/c2td , and Eb ≥ 0. Then the perturbed linear system AQ  c Q =  bQ
is invertible and the corresponding solution φ

Q
N := ∑N

j=1 c
Q
j e

j ∈ VN satisfies the
error bound

‖φN − φ
Q
N ‖

H−1/2
�

≤ C

αQ

(

EA‖φ‖Hs
�
+ Eb

)

hs+1/2, (106)

where φN = ∑N
j=1 c j e

j ∈ VN is the Galerkin solution given by (54), αQ := α −
EAc2td , and C > 0 is a constant independent of h, φ, Ea, Eb, and N.

Proof As in the proof of Theorem 5.14, given ψN ∈ VN let  ψ ∈ C
N denote the

coefficient vector of its expansionwith respect to the basis (e1, . . . , eN ). Let B(ψN ) :=
−〈g, ψN 〉H1/2(�∞)×H−1/2(�∞) =  ψH  b and denote the perturbed sesquilinear form

and antilinear functional by aQ(ξN , ψN ) :=  ψH AQ ξ and BQ(ψN ) :=  ψH  bQ , for
ξN , ψN ∈ VN . The first bound in (105) gives

|a(ξN , ψN )− aQ(ξN , ψN )| = |  ψH (A − AQ) ξ |
≤ ‖A − AQ‖2‖ ξ‖2‖  ψ‖2
≤ htd EActd‖ ξ‖2‖ψN‖H−1/2

�

≤ EAc
2
td‖ξN‖H−1/2

�

‖ψN‖H−1/2
�

, ∀ξN , ψN ∈ VN . (107)

From this and the coercivity of a(·, ·) in (39) follows the coercivity of the perturbed
form, and hence the invertibility of AQ :

|aQ(ψN , ψN )| ≥ |a(ψN , ψN )| − |a(ψN , ψN )− aQ(ψN , ψN )|
≥ αQ‖ψN‖2

H−1/2
�

, ∀ψh ∈ VN .

The second bound in (105), combined with (104) for t = td , gives

|B(ψN )− BQ(ψN )| = |  ψH ( b −  bQ)|
≤ ‖ b −  bQ‖2‖  ψ‖2 ≤ Ebctd h

s+1/2‖ψN‖2
H−1/2
�

, ∀ψh ∈ VN . (108)

Now φ
Q
N ∈ VN is the solution of aQ(φ

Q
N , ψN ) = BQ(ψN ), ∀ψN ∈ VN . Strang’s first

lemma (e.g. [6, III.1.1]), applied in the special case that V = Sh (in the notation of [6,
III.1.1]), combined with (107) and (108), gives
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‖φN − φ
Q
N ‖

H−1/2
�

≤ 1

αQ

(

sup
ψN∈VN

|a(φN , ψN )− aQ(φN , ψN )|
‖ψN‖H−1/2

�

+ sup
ψN∈VN

|B(ψN )− BQ(ψN )|
‖ψN‖H−1/2

�

)

≤ ctd
αQ

(

EAh
td‖ c‖2 + Ebh

s+1/2
)

.

Applying (104) with t = −s − (n − d)/2, we obtain that

‖φN − φ
Q
N ‖

H−1/2
�

≤ ctd
αQ

(

c−s− n−d
2
EA‖φN‖Hs

�
+ Eb

)

hs+1/2,

and the bound (106) follows on applying Corollary 5.12 with s2 = s. ��
By combining Theorem 5.6, Proposition 5.16 and the quadrature error bounds

in Theorem 5.14, we can complete the convergence analysis of our fully discrete
Hausdorff BEM for a hull-disjoint IFS attractor.

Corollary 5.17 Let � be a hull-disjoint IFS attractor with n−1 < d = dimH(�) < n.
Assume that the unique solution φ of (34) belongs to Hs

� for some −1/2 < s <

−(n − d)/2. Let VN = Yh. Let the entries of the Galerkin matrix A (58) and right-
hand side  b (59) be approximated with the quadrature formulas outlined in (91)–(97).
Let g satisfy the assumptions of Theorem 5.14(i), and suppose that

hQ ≤ CQh
d+1, (109)

for some sufficiently small CQ > 0, independent of hQ and h. Then the approximated

linear system is invertible and the fully discrete solution φ
Q
N satisfies the error bound

‖φ − φ
Q
N ‖

H−1/2
�

≤ C
(‖φ‖Hs

�
+ |G|2,Hull(�)

)

hs+1/2, (110)

for some C > 0 independent of h, φ, and G.
If, further, � is homogeneous the above result holds with (109) replaced by the

weaker condition

hQ ≤ CQh
d/2+1. (111)

Proof The two conditions (109) and (111) can be written as

hQ ≤ CQh
d

1+p+1
, (112)

where p = 0 in the general case, and p = 1 when � is also homogeneous. By
Theorem 5.14(i) and (iii) our quadrature formulas achieve (105) with

EA = C∗h1+p
Q h−d−1−p, Eb = C∗h2Qh−s−1+ n−d

2 |G|2,Hull(�), (113)
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for some constant C∗ independent of both h and hQ . Hence (112) implies that EA is
bounded independently of h, and, furthermore, by choosing the constant CQ in (112)
to be sufficiently small, one can ensure that EA ≤ α/(2c2td ), so that the discrete system
is invertible by Proposition 5.16, with αQ := α − EAc2td ≥ α/2. The assumption of
(112) also ensures that Eb is bounded independently of h, with

Eb ≤ C∗C2
Qh

2d
1+p−s+ n−d

2 +1|G|2,Hull(�) ≤ C∗C2
Q(diam(�))

2d
1+p−s+ n−d

2 +1|G|2,Hull(�),

since h ≤ diam(�) and 2d
1+p − s + n−d

2 + 1 > 0 for both p = 0 and p = 1. Then, by
(106),

‖φN − φ
Q
N ‖

H−1/2
�

≤ C
(‖φ‖Hs

�
+ |G|2,Hull(�)

)

hs+1/2, (114)

for some C > 0 independent of h, φ, and G, and by combining this with (78) we
deduce (110). ��

Under a stronger condition on hQ we can also prove a superconvergence result for
the fully discrete approximation J Q(φ

Q
N ), given by (99), to the linear functional J (φ)

given by (60) (cf. [42, Thm. 4.2.18]). The significance of this result for the computation
of u(x) and u∞(x̂) is as spelled out in and above Remark 5.7.

Corollary 5.18 Suppose that �, φ, VN = Yh, and g are defined, and satisfy the same
assumptions, as in Corollary 5.17. Let J and J Q be defined by (60) and (99) and
suppose thatϕ satisfies the assumptions of Theorem5.14(ii). Suppose also that ζ ∈ Hs

� ,
where ζ is the solution of (54) with −g replaced by ϕ, and suppose that

hQ ≤ C ′
Qh

d+s+3/2, (115)

for some sufficiently small C ′
Q > 0, independent of h and hQ. Then the approximated

linear system is invertible and

|J (φ)− J Q(φ
Q
N )|

≤ C
(

‖φ‖Hs
�
(‖ζ‖Hs

�
+ ‖ϕ‖H1/2(�∞) + |V |2,Hull(�))

+ (‖ϕ‖H1/2(�∞) + |V |2,Hull(�))|G|2,Hull(�)
)

h2s+1, (116)

for some constant C > 0 independent of h, φ, ζ , ϕ, G, and V .
If, further, � is homogeneous the above result holds with (115) replaced by the

weaker condition

hQ ≤ C ′
Qh

d/2+s/2+5/4. (117)

Proof The two conditions (115) and (117) can be written as

hQ ≤ C ′
Qh

d+s+1/2
1+p +1

, (118)
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where p is as in the proof of Corollary 5.17. We first note that, for every CQ > 0,
since s > −1/2, (118) implies (112) provided C ′

Q is sufficiently small. Thus, if (118)
holds with C ′

Q sufficiently small, then the approximated linear system is invertible by
Corollary 5.17. Next we estimate

|J (φ)− J Q(φ
Q
N )|

≤ |J (φ)− J (φN )| + |J (φN )− J (φQ
N )| + |J (φQ

N )− J Q(φ
Q
N )|

≤ ch2s+1‖φ‖Hs
�
‖ζ‖Hs

�
+ ‖ϕ‖H1/2(�∞)‖φN − φ

Q
N ‖

H−1/2
�

+ Ch2Qh
s+(n−d)/2|V |2,Hull(�)‖φQ

N ‖Hs
�
,

by (79) and Theorem 5.14(ii). We note moreover that ‖φQ
N ‖Hs

�
≤ C1(‖φ‖Hs

�
+

|G|2,Hull(�)), for some constant C1 > 0 independent of φ, G, and h, as a conse-
quence of Corollary 5.17 and Proposition 5.11, so that (118) implies that the last term
in the above equation is

≤ CC1(C
′
Q)

2h
2

1+p (d+s+1/2)+2+s+(n−d)/2|V |2,Hull(�)(‖φ‖Hs
�
+ |G|2,Hull(�))

≤ CC1(C
′
Q)

2(diam(�))
s( 2

1+p−1)+1+ 2
1+p (d+1/2)+(n−d)/2|V |2,Hull(�)(‖φ‖Hs

�

+|G|2,Hull(�))h2s+1,

recalling that s > −1/2 so that s( 2
1+p − 1) + 1 + 2

1+p (d + 1/2) + (n − d)/2 > 0
for both p = 0 and p = 1. Further, arguing as in the proof of Corollary 5.17, the
conditions (105) are satisfied with EA and Eb given by (113), for some constant C∗
independent of h and hQ . If also (118) holds then

EA ≤ C∗(C ′
Q)

1+phs+1/2

and

Eb ≤ C∗(C ′
Q)

2h
2

1+p (d+s+1/2)+1−s+(n−d)/2|G|2,Hull(�)
≤ C∗(C ′

Q)
2(diam(�))

(2− 2
1+p )(−s)+ 2

1+p (d+1/2)+1/2+(n−d)/2|G|2,Hull(�)hs+1/2,

(119)

recalling that s < −(n− d)/2, so that (2− 2
1+p )(−s)+ 2

1+p (d + 1/2)+ 1/2+ (n−
d)/2 > 0 for p = 0, 1. Thus, ifC ′

Q is chosen sufficiently small so that EA ≤ α/(2c2td )
for 0 < h ≤ diam(�), it follows from Proposition 5.16 that

‖φN − φ
Q
N ‖

H−1/2
�

≤ C2(‖φ‖Hs
�
+ |G|2,Hull(�))h2s+1,

for some constant C2 > 0 independent of h, φ and G. The bound (116) follows by
combining the above inequalities. ��
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Remark 5.19 (Reduced quadrature) The quadrature rule defined by (92) uses the
same maximum mesh width hQ for all off-diagonal elements Ai j , i �= j . Since the
magnitude of the integrand�(x, y) and its derivatives blows up as one approaches the
diagonal x = y, and decays away from it, it is possible to save computational effort,
while maintaining the error bounds (102) and (103), and hence the error estimates
(110) and (116). To achieve this we increase the quadrature mesh width (and hence
potentially decrease the number of quadrature points) for the computation of Ai j when
the elements �m(i) and �m( j) are sufficiently well-separated spatially. In more detail,
from [30, Prop 5.2] we have that, for i �= j , the error in the quadrature approximation
(92), with hQ replaced by a local quadrature mesh width hQ,i, j , satisfies

|Ai j − AQ
i j | ≤ Cμm(i)μm( j)h

2
Q,i, jϒ(Ri j ),

for some constant C independent of i and j , where

ϒ(R) := 1+ (kR)n/2+1

Rn+1 and Ri j := dist(Hull(�m(i)),Hull(�m( j))).

Given hQ , one can therefore maintain the bounds (102) and (103) by replacing hQ in
(92) by

hQ,i, j = hQ

(

maxp �=q ϒ(Rpq)

ϒ(Ri j )

)1/2

≥ hQ .

If the quantities Ri j are not known exactly, but satisfy

R−
i j ≤ Ri j ≤ R+

i j , i �= j, (120)

for some known quantities R−
i j ≥ 0 and R+

i j < ∞, then one can maintain (102) and
(103) by replacing hQ in (92) by

hQ,i, j = hQ max

⎛

⎝

(

maxp �=q ϒ(R+
pq)

ϒ(R−
i j )

)1/2

, 1

⎞

⎠ ≥ hQ . (121)

Here we are using the fact thatϒ(R) is a monotonically decreasing function of R, and
the max(·, 1) is needed to ensure that hQ,i, j ≥ hQ (so that we are not increasing the
computational effort unnecessarily) because the quantity inside the square root may be
smaller than 1. (This holds in particular if R−

i j = 0, in which case we are interpreting

1/ϒ(R−
i j ) as 1/ϒ(0) = 1/∞ = 0.)

In our numerical results in Sect. 6wewill compute AQ
i j as described above, choosing

hQ,i, j according to (121) with

R−
i j := max(dist(xm(i), xm( j))− diam(�m(i))− diam(�m( j)), 0) (122)
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and

R+
i j := dist(xm(i), xm( j)), (123)

which satisfy (120).

6 Numerical results

In this section we present numerical results that illustrate our methods and assess the
sharpness of our theoretical predictions. The Hausdorff BEM (55) has been imple-
mented in the Julia language [5] and the code is available at https://github.com/
AndrewGibbs/IFSintegrals. In all examples described in this section, we consider
the scattering of plane waves, i.e. the datum g is as in (29) with ui (x) = eikϑ ·x and
|ϑ | = 1. We validate our implementation against a different method in Sect. 6.4,
but in the rest of our experiments we use as a reference solution a more accurate
Hausdorff-BEM solution with a large number of degrees of freedom Nref . Most of
our experiments are for homogeneous attractors, in which case Nref = M�ref for some
�ref ∈ N. For Cantor sets (M = 2) we choose �ref = 15, so that Nref = 32768.
For Cantor Dusts (M = 4) we choose �ref = 8, so that Nref = 65536. Since we do
not use any matrix compression, the memory required to store the Galerkin matrices
grows like N 2, with N = M� when the attractor is homogeneous. Thus, while many
of our experiments were run on a standard laptop, some (in particular, the calculation
of reference solutions) required the use of the Myriad High Performance Computing
Facility available at University College London, which has computing nodes available
with 1.5TB of RAM.

Our implementation uses the quadrature rules described in Sect. 5.4. Precisely,
we approximate the right-hand side in the linear system and linear functionals of
the solution (the scattered field and far field) using the quadrature rules (97) and
(98), respectively. We approximate the diagonal matrix elements Aii by (93)–(96). To
approximate Ai j with i �= j we use (92) with hQ replaced by hQ,i, j ≥ hQ given
(in terms of hQ) by (121)–(123). All these quadrature rules depend on the parameter
hQ . We choose hQ = CQh, where CQ > 0 is a constant independent of h. While the
requirement hQ = CQh is weaker (i.e. it requires fewer quadrature points) than the
conditions hQ ≤ CQh1+d/2 (see (111)) and hQ ≤ CQh1+d (see (109)) required by our
theory, our numerical experiments suggest that, in practice, hQ = CQh is sufficient
to achieve our theoretical convergence rates, even when using the reduced quadrature
of Remark 5.19. Except where indicated otherwise, in the simulations reported below
for homogeneous attractors we use CQ = ρ2 for cases with k < 20, CQ = ρ4 when
20 ≤ k ≤ 50.

We measure the accuracy of our BEM solutions in the H−1/2
� norm. These H−1/2

�

norms are computed by expressing them in terms of a single-layer BIOwithwavenum-
ber k = i, which we denote Si, as in [19, Table 1]. Practically, we achieve this by
assembling an approximation Ai,Q to the Galerkin matrix Ai for the operator Si,
analogous to (91), with k = i and Nref degrees of freedom, using quadrature approxi-
mations analogous to (93)–(96) and (92), choosing hQ the same as for the reference
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Fig. 7 Scattering in R2 by a middle-third Cantor set screen (a subset of the line segment [0, 1] × {0}) with
wavenumber k = 50 and incident plane wave direction ϑ = (1,−1)/

√
2, showing the total (left panel) and

scattered (right panel) fields computed using our Hausdorff BEM with � = 10 and quadrature parameters
as in Sect. 6.1

solution,with the reduced quadrature formulae (121)–(123) applied as if k = 1. (While
the quadrature convergence analysis in [30, §5] was presented only for k > 0, one can
check that the relevant results also extend, mutatis mutandis, to the case k = i.) Next,
we view φ

Q
N as an element of the larger space VNref and define  v as the coefficient

vector of φQ
N −φ

Q
Nref

in VNref . Then, arguing as in [19, Table 1] (and see Footnote 15),
it follows that

‖φQ
N − φ

Q
Nref

‖2
H−1/2
�

= 2
〈

Si(φQ
N − φ

Q
Nref

), φ
Q
N − φ

Q
Nref

〉

H1/2(�∞)×H−1/2(�∞)

= 2 vH Ai v ≈ 2 vH Ai,Q  v.

6.1 H−1/2
0 -norm convergence, Cantor set (n = 1)

We consider first the case where n = 1 (corresponding to scattering in R
2) and

� ⊂ �∞ ∼= R is a “middle-(1 − 2ρ) Cantor set” screen (e.g., [28, p. 71, eqn. (91)]),
for some 0 < ρ < 1/2. Precisely, � is the attractor of the disjoint homogeneous IFS
with M = 2,

s1(x) = ρx, s2(x) = 1− ρ + ρx, x ∈ R, (124)

a d-set with d = dimH(�) = log 2/ log (1/ρ). We denote by φ� the Hausdorff-BEM
solution “at level �”, for � ∈ N0, i.e. with h = ρ� and N = 2�.

In Fig. 7 we show an example of the total and scattered fields for the middle-third
case (ρ = 1/3). In Fig. 8 we present plots of the relative errors in the Hausdorff-
BEM solution for � = 0, 1, . . . , 14, measured in H−1/2

� norm, using φ15 as reference
solution, for various ρ and k values. In all cases the incident wave is the plane wave
ui (x) = eikϑ ·x with ϑ = (1,−1)/

√
2. The experiments in Figs. 7 and 8 are carried

out, as indicated in the second paragraph of this section, using the quadrature rules
described in Sect. 5.4, with the reduced quadrature of Remark 5.19, and with hQ =
ρ2 h for k = 0.1 and hQ = ρ4 h for k = 50. This means that the off-diagonal entries
of the BEMmatrix require up to 16 and 256 evaluations of the Helmholtz fundamental
solution for k = 0.1 and k = 50, respectively.

In Remark 5.8 we noted that our theoretical analysis suggests we should expect
convergence approximately like 2−�/2 for the BEM solution, which is what we observe
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Fig. 8 H−1/2
� relative errors for Hausdorff-BEM solutions on Cantor sets

in the numerical results (for each error convergence plot we also plot C2−�/2—the
black dashed lines—choosing the constant C so that the two curves coincide for the
largest value of �). Higher wavenumbers give different pre-asymptotic behaviour (in
particular, the approximation is not accurate for small values of �) but do not affect
the asymptotic rates for large �, see Fig. 8.

For ρ = 0.5 our Hausdorff BEM coincides with classical piecewise-constant BEM
on a uniform mesh applied to the Lipschitz screen that is the unit interval [0, 1];
our implementation uses the special choice (93)–(96) of quadrature rules to evaluate
the matrix entries (which is simply the composite midpoint rule for the off-diagonal
entries). Running our Hausdorff-BEM code with ρ = 0.5we observe error curves (not
reported here) that are almost identical to those for ρ = 0.49. Hence, at least in this
case, the piecewise-constant Hausdorff-BEM approximation of the integral equation
on a fractal (the Cantor set with ρ = 0.49) is no less accurate, for the same number
of degrees of freedom, than a classical piecewise-constant BEM approximation on an
adjacent, more regular set (the interval [0, 1]).

6.2 H−1/2
0 -norm convergence, Cantor dust (n = 2)

We consider next the case where n = 2 (corresponding to scattering in R
3) and

� ⊂ �∞ ∼= R
2 is a “middle-(1 − 2ρ) Cantor dust” for some 0 < ρ < 1/2, defined

by the disjoint homogeneous IFS with M = 4,

s1(x, y) = ρ(x, y), s2(x, y) = (1− ρ, 0)+ ρ(x, y),

s3(x, y) = (1− ρ, 1− ρ)+ ρ(x, y),

s4(x, y) = (0, 1− ρ)+ ρ(x, y), (x, y) ∈ R
2,

(125)

a d-set with d = dimH(�) = log 4/ log (1/ρ), see Fig. 1. Such a screen generates
a non-zero scattered field if and only if ρ > 1/4 (see [15, Example 8.2] and the
discussion before Lemma 4.4). In Fig. 9 we present results similar to those in Fig. 8,
albeit for a more restricted range of � and a lower value of k in the right-hand panel,
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Fig. 9 H−1/2
� relative errors for Hausdorff-BEM solutions on Cantor dusts

due to the increased computational cost associated with the change from M = 2
(Cantor set) to M = 4 (Cantor dust). The Hausdorff-BEM solution φ� corresponds to
a mesh of N = 4� elements of diameter h = √

2ρ�. The incident wave is the plane
wave ui (x) = eikϑ ·x with ϑ = (0, 1,−1)/

√
2. As indicated at the beginning of this

section, we use the quadrature rules described in Sect. 5.4, with the reduced quadrature
of Remark 5.19, and with hQ = ρ2h for both k = 0.1 and k = 5. As a result, the
off-diagonal entries of the BEM matrix require up to 256 evaluations of �.

In Remark 5.8 we noted that our theoretical analysis suggests we should expect
convergence approximately like (4ρ)−�/2, whereas the convergence we observe in
Fig. 9 appears to be faster than this, especially for lower values of ρ. In fact, these
numerical results are consistent with the theoretical bounds being sharp, as we now
explain. The issue is that the convergence rate (4ρ)−�/2 is slow, so the reference
solution (with � = 8) used in Fig. 9 is still quite far from the exact solution φ of the
integral equation, which affects the shape of the error plot. Let us assume that the
Galerkin error bound (82) holds with ε = 0 and in fact is exact, i.e.

‖φ − φ�‖H−1/2
�

= Ca�, � ∈ N, (126)

for a := (4ρ)−1/2 ∈ (1/
√
2, 1) and some C > 0. Then, by the triangle inequality,

Ca�(1− a�
′−�) ≤ ‖φ� − φ�′ ‖H−1/2

�

≤ Ca�(1+ a�
′−�), �, �′ ∈ N0 with � < �′,

(127)

and, for any given �′ ∈ N, (126) imposes no constraint on ‖φ� − φ�′ ‖H−1/2
�

, for

� = 0, . . . , �′ −1, beyond (127); in particular, it may be that either the lower bound or
the upper bound in (127) is attained. InFig. 10weplot‖φ�−φ8‖H−1/2

�

, for � = 1, . . . , 7,

together with the upper and lower bounds of (127) for a suitable C and �′ = 8. This
plot makes clear that the values we compute for ‖φ� − φ8‖H−1/2

�

are consistent with
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Fig. 10 Relative H−1/2
� errors for Hausdorff-BEM solutions on Cantor dusts using φ8 as the reference

solution, and the bounds from (127) with �′ = 8, for k = 0.1 and different contraction factors ρ

Fig. 11 H−1/2
� errors for Hausdorff-BEM solutions on Cantor dusts: the norm of the difference φ� −φ�+1

between consecutive levels decays like (4ρ)−�/2

(127) and so with (126). (This reasoning, i.e. the bounds (127), also explains the little
“dip” at the right endpoints of the error curves for the Cantor set experiments in Fig. 8.)

In Fig. 11 we plot, as a better test of the sharpness of our theory, the norm
‖φ� − φ�+1‖H−1/2

�

, for � = 0, . . . , 7, of the difference between Galerkin solutions

at consecutive levels �. We observe, for each choice of ρ and k, that, for large enough
� (how large depending on ρ and k), ‖φ� −φ�+1‖H−1/2

�

= ca� = c(4ρ)−�/2, for some

constant c > 0, also depending on ρ and k, in agreement with (127) with �′ = �+ 1.
Moreover, since ‖φ − φ�‖H−1/2

�

→ 0 as � → ∞ by Theorem 5.6, this observed

convergence implies that

‖φ − φ�‖H−1/2
�

≤
∞
∑

m=�

‖φm − φm+1‖H−1/2
�

= c

1− a
a�,

confirming, experimentally, the convergence rates for the Cantor dust case predicted
in Remark 5.8, and confirming the predicted dependence of these convergence rates
on ρ.

For ρ = 0.5 our Hausdorff BEM coincides with a piecewise-constant BEM on a
uniform mesh applied to the screen [0, 1]2; our implementation uses the quadrature
rules (93)–(96) (which reduce to a composite productmidpoint rule for the off-diagonal
entries). As similarly reported for the Cantor set in Sect. 6.1, running our Hausdorff-
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Fig. 12 The norm of the Hausdorff-BEM Galerkin matrix and its inverse. Here −2td ≈ −0.262

BEM code with ρ = 0.5 we observe error curves (not reported here) that are almost
identical to those for ρ = 0.49.

For this Cantor dust example we also compare numerical results with the theoretical
predictions of Theorem 5.13. In Fig. 12 we plot the norms of the Hausdorff-BEM
Galerkin matrix A and its inverse against � (the matrix dimension is N = 4�) for
ρ = 1/3 and different values of k.We observe that ‖A‖2 is approximately independent
of � and h = √

2ρ�, and that, for � ≥ 2, ‖A−1‖2 ≈ (ρM)� = (4ρ)� = ρ(1−d)� =
c∗h1−d = c∗h−2td , where c∗ = 2(d−1)/2 and td is defined by (42), in agreement with
Theorem 5.13. (We note that −2td = 1− d = 1− log 4/ log 3 ≈ −0.262.)

6.3 Convergence of the scattered field

We now study the convergence of the Hausdorff-BEM approximation of the field
scattered by �, for the same scatterers (Cantor sets and dusts), wavenumbers, incident
waves and quadrature parameters considered in Sects. 6.1 and 6.2. The near field
at x ∈ R

n+1 and far-field pattern at x̂ ∈ Sn are computed using (98), choosing
ϕ = �(x, ·) and ϕ = �∞(x̂, ·) respectively, using the same hQ values used to
construct the associated BEM system.

In Fig. 13 we show L∞ errors in the near- and far-field for scattering by Cantor sets
and Cantor dusts, obtained by computing the maximum error over a suitable set of
sample points. In more detail, define the parameter N (k) := 10max(k, 2), which is
always an even integer for the values of k in our experiments. For the near-field, when
n = 1 we sample at 4N points on the boundary of the square (−1, 2)× (−1.5, 1.5),
and when n = 2 we sample at N 2 points on a uniform grid on the square (−1, 2) ×
(−1, 2)×{−1} (recall that � ⊂ [0, 1]×[0, 1]×{0}). For the far-field, when n = 1 we
sample atN points on the circle S1, and when n = 2 we sample at N

2 ×N points on
the sphere S2, chosen such that the points form a uniform grid in spherical coordinate
space [0, π ] × [0, 2π ].

For Cantor sets, we observe that near- and far-field errors converge to zero with
rates 2−�, precisely as predicted by the theory in (82). For Cantor dusts, we observe
convergence that is apparently faster than the predicted theory, similar to the observa-
tion made in relation to Fig. 9, which was explained in Sect. 6.2. Applying the same
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Fig. 13 Convergence of the scattered near- and far-field for Cantor sets and dusts, measured as ‖u� −
u�ref ‖L∞/‖u�ref ‖L∞ and ‖u∞

�
− u∞

�ref
‖L∞/‖u∞

�ref
‖L∞ , respectively, with �ref = 15 for Cantor sets and

�ref = 8 for Cantor dusts
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Fig. 14 Incremental convergence of the scattered near- and far-field for Cantor dusts, measured as ‖u� −
u�+1‖L∞ and ‖u∞

�
− u∞

�+1‖L∞ , respectively

reasoning as in Sect. 6.2 to achieve a robust comparison with the theoretical error
bounds, in Fig. 14 we plot ‖u� − u�+1‖L∞ and ‖u∞� − u∞�+1‖L∞ against �. Both agree
with the predicted convergence rate of (ρM)−�.

6.4 Comparison against “prefractal BEM”

In this section we compare the approximations produced by our Hausdorff BEM with
those produced by the method of [19]. This provides a stronger validation of our Haus-
dorff BEM than the experiments so far presented, which compare our Hausdorff-BEM
approximations against higher-accuracy approximations produced using the same
Hausdorff-BEM code. We shall refer to the method of [19] as “prefractal BEM”, since
it involves applying a standard BEM approximation on a prefractal approximation of
�, which is the closure of a finite union of disjoint Lipschitz open sets. For brevity we
focus only on the case of scattering by Cantor sets. In this case, for the prefractal BEM
we take as prefractals the sequence of sets �(0) = [0, 1], �(�) := s(�(�−1)), � ∈ N,
where s is as in (3) for the IFS (124).

For each � ∈ N0 we denote by ũ∞� the prefractal-BEM approximation to the far-
field pattern u∞, computed on the prefractal �(�) using a standard piecewise-constant
Galerkin BEM with one degree of freedom for each connected component of �(�).
Quadrature was carried out using high-order Gauss and product Gauss rules, and
quadrature parameters were chosen so that increasing quadrature accuracy did not
noticeably change the results presented below. This leads to a total number of degrees
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Fig. 15 Absolute L∞ errors of Hausdorff-BEM (u∞
�
, blue curves) and prefractal-BEM (ũ∞

�
, red curves)

approximations of the far-field pattern u∞ for scattering by three Cantor sets with k = 0.1 (left panels) and
k = 50 (right panels) and ϑ = (1/2,−√

3/2). In all cases �ref = 13

of freedom N (�) = 2�, which is the same number of degrees of freedom used in our
Hausdorff BEM at level �. As before, we write u∞� to denote the approximation to the
far-field pattern for the Hausdorff BEM, which is computed as described in Sect. 6.3,
except that now we use smaller values of the quadrature parameter hQ (as detailed
below), to ensure that the results presented are not polluted by effects of insufficiently
accurate quadrature, so our focus is on the Galerkin error per se.

In Fig. 15 we show L∞ errors in the far-field pattern between the two methods for
ρ = 0.1, 1/3 and 0.49, with incident direction ϑ = (1/2,−√

3/2) and wavenumbers
k = 0.1 and k = 50 (with hQ = ρ6 h for k = 0.1 and hQ = ρ8 h for k = 50 for
the Hausdorff BEM), obtained by computing the maximum error over 300 equally-
spaced observation angles in S1. For each method we calculate the errors in two
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Fig. 16 Ratio of errors of Hausdorff-BEM (u∞10) and prefractal-BEM (ũ∞10) approximations of the far-
field pattern u∞ with � = 10 for scattering by Cantor sets with k = 0.1, k = 30 and k = 50 and
ϑ = (1/2,−√

3/2), for a range of values of ρ ∈ (0, 1/2), measured in the L∞ (left panel) and L2 (right
panel) norms on S1. A value below 1 indicates that the Hausdorff BEM is more accurate, while a value
above 1 indicates that the prefractal BEM is more accurate. In both cases �ref = 13

different ways, using, firstly, a Hausdorff-BEM reference solution, and, secondly, a
prefractal-BEM reference solution; in both cases the reference solution is computed
with �ref = 13. In all cases, it is clear that both methods are converging to the same
solution, validating both methods. Indeed, it appears that both methods converge at
the same 2−� rate. However, the results suggest that the relative accuracy of the two
methods is dependent on the value of ρ, with the two methods having essentially the
same accuracy for ρ = 0.49, the prefractal BEM being more accurate for ρ = 1/3,
and the Hausdorff BEM being more accurate for ρ = 0.1. To investigate this further
we carried out similar experiments for more values of ρ, plotting the ratio of the errors
obtained (measured in the L∞ and L2 norms) with � = 10 in Fig. 16. We observe that:

• for ρ between 0.4 and 0.5 the two methods are very similar in accuracy;
• for ρ between 0.3 and 0.4 the prefractal BEM appears to be more accurate, signif-
icantly so, by a factor> 100, for ρ ≈ 1/3 (this appears to be due entirely to some
unexpected enhanced accuracy of the prefractal BEM for ρ ≈ 1/3);

• for ρ between 0 and 0.3 the Hausdorff BEM appears to be more accurate, signifi-
cantly so, by a factor > 1000, for the lowest value of ρ;

• the ratio of the errors for the two methods appears to be essentially independent
of k for the range of k tested. To illustrate this we have also included in Fig. 16
results for k = 30 (computed with hQ = ρ8h), alongside the results for k = 0.1
and k = 50; we observe that the results for all three k values are almost identical.

These observations about the accuracy of the two methods (particularly the “spike” in
Fig. 16 near ρ = 1/3) merit further investigation, but we leave this to future work.

6.5 Non-homogeneous or non-disjoint IFS attractors

We now consider two IFS attractors that are not Cantor sets/dusts, both for n = 2:
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Fig. 17 The scattered field
induced by a plane wave, with
wavenumber k = 50 and
direction vector
ϑ = (0, 1,−1)/

√
2, incident on

the “non-homogenous dust" of
[30, Fig. 8b, eq. (70)], plotted on
three faces of a cube, computed
with mesh parameter
h = href = √

2/16384. The
scatterer, which is a subset of the
plane R2 × {0}, is shown in
black. Further details are given
in Sect. 6.5

Fig. 18 H−1/2
� norms of the errors for the two IFS attractors described in Sect. 6.5. Top left: ‖φh −

φhref ‖H−1/2
�

/‖φhref ‖H−1/2
�

, bottom left: ‖φ�−φ�ref ‖H−1/2
�

/‖φ�ref ‖H−1/2
�

, top right: ‖φh −φh/4‖H−1/2
�

(see Footnote 17), bottom right: ‖φ� − φ�+1‖H−1/2
�

(i) the “non-homogeneous dust”, shown inFig. 17, anddefined in [30, Fig. 8b, eq. (70)]
(with M = 4, ρ1 = ρ2 = ρ3 = 1

4 , ρ4 = 1
2 and Hausdorff dimension d ≈ 1.20);

(ii) the Sierpinski triangle [19, §6.3] (with M = 3, s1(x) = 1
2 x , s2(x) = 1

2 x + ( 12 , 0),

s3(x) = 1
2 x + ( 14 ,

√
3
4 ) and Hausdorff dimension d = log 3/ log 2 ≈ 1.58);
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Both satisfy the OSC (4) and are hence d-sets for the stated values of d. But only
(ii) is homogeneous, and only (i) is disjoint and satisfies the assumptions of the
Hausdorff-BEM convergence theory of Sect. 5.2. Figure18 shows the H−1/2

� norms of
the Hausdorff-BEM errors computed against a fixed reference solution (left column)
and the norms of the differences between Hausdorff-BEM solutions on consecutive
meshes as in Fig. 11 (right column), for a range of wavenumbers.17 For the Sierpinski
triangle (ii) we use meshes of N = 3� elements of diameter 2−� and we plot the errors
against the level � for � = 0, . . . , 9, using a reference solution with �ref = 10, i.e.
Nref = 310 = 59049. For (i), since the IFS is non-homogeneous the BEMmesh is not

parametrised by the level � but rather by the mesh size h =
√
2

4 j , j = 0, . . . , 5, giving
the number of degrees of freedom as N = 1, 7, 40, 217, 1159, 6160, respectively. The

reference solution has h = href =
√
2

46
=

√
2

4096 and Nref = 75316. For quadrature, for

(i) we use hQ = h
16 and for (ii) hQ = h

4 .
For (i), as we found for the homogeneous Cantor dust in Sect. 6.2, at first sight the

convergence in the top-left panel of Fig. 18 appears slightly faster than the theoretical
rate h(1−n+d)/2 predicted by Theorem 5.1. As before, this apparent mismatch is due
to the limited accuracy of the reference solution; when we plot incremental errors (in
the top right panel) we see much clearer agreement with the theory. Example (ii) is
not covered by our convergence theory, but if our theory were to extend to this case
our predicted convergence rate of h(1−n+d)/2 would evaluate to (2/3)�. Similarly to
what we observed for (i), the relative errors in the bottom left panel of Fig. 18 converge
slightly faster than (2/3)�, while the increments in the bottom right panel converge
approximately in agreement with (2/3)�. However, we leave theoretical justification
of this empirical observation for future work.

7 Conclusions and future work

In this paperwe presented and analysed a piecewise-constantGalerkinBEM for acous-
tic scattering in R

n+1, n = 1, 2, by a sound-soft planar screen � ⊂ �∞ = R
n × {0}.

OurBEM is definedwhenever the screen� is a compact d-set, for some n−1 < d ≤ n,
which includes cases where � is fractal. It is based on an integral equation formu-
lation in which integration is carried out with respect to Hausdorff measure Hd . For
any compact d-set we proved that the method converges as the mesh width h tends
to zero (see Theorem 5.1). Regarding the relationship between mesh width and wave-
length, in our numerical results presented in Sect. 6 we observe the same behaviour
one obtains for a conventional BEMon a smooth scatterer: as h decreases towards zero
there is a pre-asymptotic phase until h reaches the wavelength scale, beyond which

17 In Sect. 6.2 we motivated the study of the errors ‖φ� − φ�+1‖H−1/2
�

between consecutive levels with

the bound (127). In the case of non-homogeneous IFSs, denoting by φh the Hausdorff-BEM solution
corresponding to a mesh of size h, assuming that the theoretical error bound (78) is sharp, i.e. ‖φ −
φh‖H−1/2

�

= Cha for some C > 0 and a = (1 − n + d)/2, it follows that Cha
(

1 − (h′/h)a
) ≤

‖φh − φh′ ‖H−1/2
�

≤ Cha
(

1+ (h′/h)a
)

for 0 < h′ < h. In the example (i), two consecutive meshes have

h′/h = 1/4; thus we expect theoretically that ‖φh − φh′ ‖H−1/2
�

is approximately proportional to ha.
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one observes the predicted asymptotic behaviour. In the case where � is the disjoint
attractor of an IFS satisfying the OSC, the “elements” in the BEM are self-similar
subsets of �, and in Sect. 5.4 we showed how the Galerkin integrals can be evaluated
using quadrature rules from [30]. In this case we also proved fully-discrete conver-
gence rates, under certain regularity assumptions on the integral equation solution
(see Theorem 5.6, Corollaries 5.17 and 5.18). Specifically, we showed that the BEM
solution converges like O(hs+1/2) as h → 0, and the near- and far-field solutions like
O(h2s+1), assuming φ ∈ Hs

� for some s > −1/2. We proved the existence of such
an s in Remark 5.7, using Proposition 4.9, but our numerical results in Sect. 6 suggest
that, for sufficiently smooth data, it may hold that φ ∈ Hs

� for all s < −(n − d)/2,
i.e. for all s such that the space Hs

� is non-trivial. Guided by these observations, we
formulated Conjecture 4.8, which is a statement about the range of Sobolev spaces on
which the Hausdorff-measure integral operator S (defined in (15)) is invertible.

Proving or disproving Conjecture 4.8 is the main outstanding theoretical question
relating to the paper. Other avenues for future research include:

• The extension of our analysis to non-disjoint fractal screens, such as the Sierpinski
triangle screen considered in Sect. 6.5. Singular quadrature rules for such cases
(generalising those described in Sect. 5.4) have been presented recently in [29],
but extending our BEM convergence analysis will require a suitable generalisation
of the wavelet approximation theory of [36], which is yet to be worked out.

• The extension of our convergence rate analysis to the case d = n. This requires
somewhat different techniques to the case d < n, and will be presented in a
separate article [11].

• The generalisation of our Hausdorff BEM to scattering by non-planar fractal struc-
tures. Results in this direction were presented recently in [10].

• The extension to Neumann problems. Theoretical results relating to integral equa-
tion formulations ofNeumann screen problemswere presented in [15]. These show
that the Neumann boundary condition is “weaker” than the Dirichlet condition, in
the sense that Neumann screens do not scatter waves unless H1/2

� �= {0}, which
requires in particular that � ⊂ �∞ ∼= R

n has positive n-dimensional Lebesgue
measure. Hence, in the context of scattering by screens that are attractors of IFS
satisfying the OSC, only the case d = n is relevant. A specific example would
be scattering by a sound-hard Koch snowflake screen. However, the development
of a BEM for such Neumann problems using a mesh of fractal elements (as we
consider in the current paper for the Dirichlet case) is complicated by the fact
that non-trivial piecewise polynomials on such meshes cannot be continuous, and
hence cannot be H1/2

� -conforming. Thus a different approach is required, perhaps
involving a discontinuous Galerkin discretization. We remark that a rigorous con-
vergence analysis for a prefractal BEMapproach to the related impedance problem
was presented in [3].

• A more detailed investigation into the relative accuracy of our Hausdorff BEM
and the alternative prefractal BEM of [19], extending the preliminary analysis of
Sect. 6.4. Formany problems the Hausdorff BEM appears to bemore accurate than
the prefractal BEM. However, the comparison between the two is rather subtle: for
the examples we considered in Sect. 6.4, while both methods appear to converge
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at the same rate, for the same number of degrees of freedom the Hausdorff BEM
can be over 1000 times more accurate than the prefractal BEM, or 100 times less
accurate, depending on the fractal simulated. As yet we do not understand why.

• The combination of our Hausdorff BEMwith accelerated linear algebra via a tech-
nique such as H-matrix compression or the fast multipole method. This would
allow the simulation of larger problems with finer mesh widths, permitting the
calculation of higher accuracy solutions and/or the study of higher frequency prob-
lems.
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copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

A Besov spaces on d-sets

In this appendix we show that the spaces denoted by B p,q
α (�), and defined in terms

of atoms in [36, section 6], coincide with the spaces denoted by B
α
p,q,0(�) defined

in [9, Def. 6.3], under the assumptions α > 0, 1 ≤ p, q < ∞, and � being a d-set,
0 < d < n, preserving Markov’s inequality in the sense of [36, §4] (or see [37, p. 34],
and note Remark A.6 below). As a consequence (see Corollary A.4) we have that our
spaceHα(�), defined in Sect. 2.4, coincides with B2,2

α (�) under the same assumptions
on α and �.18

We start by rephrasing the above mentioned definition of B p,q
α (�) in terms closer

to the notation used in [8], which we want to use to make the announced connection.
In order to do that, we need first to recall the notion of atom as used in [36]. For each
ν ∈ N0, consider the family of cubes

Qνm :=
n
∏

i=1

[2−νmi , 2
−ν(mi + 1)], m ∈ Z

n .

18 We recall (see the discussion in Sect. 2.4 and [9, Rem. 6.4]) that, for 0 < α < 1, Hα(�) also coincides
with the Besov space Bα

2,2(�) of [37].
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Then, given α, p, d, and K as in Definition A.1 below, an (α, p)-atom aνm associated
with Qνm is any aνm ∈ CK (Rn) such that

supp aνm ⊂ 3Qνm,

|Dβaνm(x)| ≤ 2−ν(α−|β|−d/p), x ∈ R
n, |β| ≤ K ,

where for a cube Q ⊂ R
n and a scalar r > 0 the cube r Q is defined to have the same

centre xQ as Q and side length r times that of Q, i.e., r Q := {xQ+r(x−xQ) : x ∈ Q}.
The following definition of B p,q

α (�) is the second, equivalent, definition of [36,
§6].

Definition A.1 Let α > 0, 1 ≤ p, q < ∞, and � be a d-set, 0 < d < n, preserving
Markov’s inequality. Assume that N $ K > %α& Then f ∈ B p,q

α (�) iff

f =
∞
∑

ν=0

∑

m∈Zn

λνmaνm, convergence in Lp(�), (128)

for some family of (α, p)-atoms aνm and numbers λ = (λνm)ν∈N0,m∈Zn satisfying

‖λ‖bp,q :=
⎛

⎝

∞
∑

ν=0

(

∑

m∈Zn

|λνm |p
)q/p

⎞

⎠

1/q

< ∞, (129)

the norm of f in B p,q
α (�) being defined as the infimum of the left-hand side of (129)

taken over all possible representations (128) of f .

In [8], atoms are also considered, but the definition is different: for each ν ∈ N0,
consider the family of cubes

Qνm :=
n
∏

i=1

[2−ν(mi − 1), 2−ν(mi + 1)], m ∈ Z
n .

Then, given s ∈ R, 0 < p < ∞, K ∈ N0, and c ≥ 1, an (s, p)K ,0,c-atom aνm
associated with Qνm is any continuous function with (classical) partial derivatives up
to the order K such that

supp aνm ⊂ cQνm,

|Dβaνm(x)| ≤ 2−ν(s−|β|−n/p), x ∈ R
n, |β| ≤ K .

Remark A.2 It is easily seen that, for each ν ∈ N0 andm ∈ Z
n , Qνm ⊂ 3Qνm ⊂ 2Qνm .

And from this it is straightforward to show that:

1. Let α > 0, 1 ≤ p < ∞, 0 < d < n, and N $ K > %α&. Any (α, p)-atom
associated with Qνm is an (α + n−d

p , p)K ,0,2-atom aνm associated with Qνm .

123



A. M. Caetano et al.

2. Let 0 < d < n, s > n−d
p , 1 ≤ p < ∞, N $ K > %s − n−d

p &. Any (s, p)K+1,0,1-

atom associated with Qνm is an (s − n−d
p , p)-atom associated with Qνm .

Proposition A.3 Let α > 0, 1 ≤ p, q < ∞, and � be a d-set, 0 < d < n, preserving
Markov’s inequality. Then the space Bα

p,q,0(�) defined in [9, Def. 6.3] coincides with

the space B p,q
α (�) of Definition A.1 above, with equivalence of norms.

Proof Consider N $ K > α + n−d
p . We have, in particular, that K > %α&. Given

f ∈ B p,q
α (�), we have (128) with (129) for some family of (α, p)-atoms aνm and

numbers λνm such that

‖λ‖bp,q ≤ 2‖ f ‖B p,q
α (�).

On the other hand, since K > α + n−d
p and 0 > −α − n−d

p , it follows from [8,
Thm. 2.3, Rem. 2.4 and Thm. 2.5] and part 1 of the above Remark A.2 that

g :=
∞
∑

ν=0

∑

m∈Zn

λνmaνm ∈ B
α+ n−d

p
p,q (Rn)

with convergence in the sense of B
α+ n−d

p
p,q (Rn) and

‖g‖
B
α+ n−d

p
p,q (Rn)

≤ c‖λ‖bp,q , (130)

for some constant c > 0 independent of f . From elementary embeddings and the
linearity and continuity of the trace operator tr� from [9, Prop. 6.2],

tr�g =
∞
∑

ν=0

∑

m∈Zn

λνm tr�a
νm =

∞
∑

ν=0

∑

m∈Zn

λνmaνm |�, convergence in Lp(�),

the latter equality being justified by the arguments in [9, Rem. 6.4] and the fact that
each aνm is continuous. But then tr�g must be the same as f (recall the representation
(128) and the fact that aνm |� and aνm define the same class in Lp(�). So, we have
proved that f also belongs to Bα

p,q,0(�). Additionally, using (130),

‖ f ‖Bα
p,q,0(�)

≤ ‖g‖
B
α+ n−d

p
p,q (Rn)

≤ c‖λ‖bp,q ≤ 2c‖ f ‖B p,q
α (�).

To see the opposite inclusion, given f ∈ B
α
p,q,0(�), choose g ∈ B

α+ n−d
p

p,q (Rn) such
that f = tr�g and

‖g‖
B
α+ n−d

p
p,q (Rn)

≤ 2‖ f ‖Bα
p,q,0(�)

. (131)
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Since K+1 > α+ n−d
p and 0 > −α− n−d

p , it follows from [8, Thm. 2.3 and Thm. 2.5]
that

g =
∞
∑

ν=0

∑

m∈Zn

λνmaνm, convergence in B
α+ n−d

p
p,q (Rn),

for some family of (α + n−d
p , p)K+1,0,1-atoms aνm and numbers λνm which we can

choose to satisfy the estimate

⎛

⎝

∞
∑

ν=0

(

∑

m∈Zn

|λνm |p
)q/p

⎞

⎠

1/q

≤ c′‖g‖
B
α+ n−d

p
p,q (Rn)

, (132)

for some constant c′ > 0 independent of f . Again using elementary embeddings and
the linearity and continuity of the trace operator tr� from [9, Prop. 6.2],

f = tr�g =
∞
∑

ν=0

∑

m∈Zn

λνm tr�aνm =
∞
∑

ν=0

∑

m∈Zn

λνmaνm |�, convergence in Lp(�).

But then we see from part 2 of the above Remark A.2 that we have what is needed
to conclude that f also belongs to B p,q

α (�). Moreover, from (131) and (132) it also
follows that

‖ f ‖B p,q
α (�) ≤ c′‖g‖

B
α+ n−d

p
p,q (Rn)

≤ 2c′‖ f ‖Bα
p,q,0(�)

.

��
Corollary A.4 Let α > 0 and� be a d-set, 0 < d < n, preservingMarkov’s inequality.
Then H

α(�) = B2,2
α (�) with equivalence of norms.

Proof Our space H
α(�) coincides with the spaces Hα

2,0(�) = F
α
2,2,0(�) defined in

[9, Def. 6.3]. Moreover, since (for all s ∈ R) the Triebel-Lizorkin space Fs
2,2(R

n)

coincides with the Besov space Bs
2,2(R

n), with equivalent norms, it follows, inspecting
the definitions of Fα

2,2,0(�) and B
α
2,2,0(�) in [9, Def. 6.3], that F

α
2,2,0(�) = B

α
2,2,0(�),

also with equivalence of norms, and the result follows immediately from the previous
proposition. ��
Remark A.5 Characterizations of trace spaces in terms of atomic representations, like
the one given in Proposition A.3 above, are not new. With a somewhat different
approach and in the larger setting of the so-called h-sets, they can already be seen
in [7, Prop. 3.5.4].

Remark A.6 If � ⊂ R
n is a d-set and d > n − 1, then the hypothesis that � preserves

Markov’s inequality is automatically satisfied [37, Thm. 3 on p. 39].
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B Inverse estimates

In this appendix we prove that the inverse estimate (84), established for 0 < t < 1 in
Theorem5.10, holds in fact for the extended range 0 < t ≤ J , for any J ∈ N,moreover
with a constant in the inverse estimate that is independent of t . Our proof is modelled
on standard inverse estimate arguments for negative exponent Sobolev spaces, e.g. [24,
Theorem 4.6], with the important difference that it is, of course, impossible to support
the smooth “bubble functions” (in the terminology of [24, §4.3]), that are a key tool
in the arguments of [24] and in the proof of earlier inverse estimate results, inside an
element �m ⊂ �, as � has empty interior. In the case that � is a disjoint IFS attractor,
it turns out that, to carry through an analogous argument, it is enough to replace the
bubble function by a smooth function supported in a carefully chosen neighbourhood
of �m (the function σm ∈ C∞

0 (Rn) in the proof below). The assumption that � is a
disjoint IFS attractor implies that � is a d-set with 0 < d < n (see Lemma 2.6), but,
in contrast to Theorem 5.10, we make no additional constraint on d. We continue to
assume in this appendix that h lies in the range (76), i.e. that

0 < h ≤ h0 := diam(�),

and to use the notations of the main part of the paper, notably Lh , χm, and Yh defined
by (74), (16), and (73), respectively.

Theorem B.1 Suppose that � is the attractor of an IFS, satisfying (3), that �1,..., �M

are disjoint (i.e., � is disjoint), and that J ∈ N. Then there exists cI > 0 such that,
for every ψh ∈ Yh,

‖ψh‖L2(�) ≤ cI h
−t‖ψh‖H−t (�), 0 < t ≤ J . (133)

Proof Let

ρmin := min
j=1,...,M

ρ j and c0 := Hd(�).

Since �1,..., �M are disjoint, � satisfies the OSC for some open set O ⊃ � by Lemma
2.5. By a standard mollification we can construct a σ ∈ C∞

0 (Rn) supported in O
such that σ = 1 in a neighbourhood of �. For each m = (m1, ...,m�) ∈ Lh , let
ρm :=∏�

j=1 ρm j ,

hm := ρmh0 = diam(�m) ∈ (ρminh, h], (134)

and

σm := σ ◦ s−1
m�

◦ s−1
m�−1

◦ · · · ◦ s−1
m1

,

and note that, as a consequence of the OSC, the supports of σm and σm′ are disjoint,
for m �= m′.

123



A Hausdorff-measure boundary element method...

Now suppose that 0 < t ≤ J , and define s in terms of t by (9). For m ∈ Lh , noting
(13) and (16), we have that

〈σm, tr∗�χm〉Hs (Rn)×H−s (Rn) = (tr�σm, χm)L2(�) = (Hd(�m))
1/2 = c1/20 ρ

d/2
m .

(135)

Clearly (133) holds for ψh = 0. Now suppose that ψh ∈ Yh \ {0}, so that, for some
coefficients a = (am)m∈Lh , we have

ψh =
∑

m∈Lh

amχm,

and

‖ψh‖L2(�) = ‖a‖2 :=
⎛

⎝

∑

m∈Lh

|am|2
⎞

⎠

1/2

.

Define uh ∈ Yh ⊂ H−s(Rn) and vh ∈ Hs(Rn) by

uh := tr∗�ψh =
∑

m∈Lh

amtr
∗
�χm and vh :=

∑

m∈Lh

amσm.

Then, since the supports of the σm are disjoint and again noting (13), we have, using
(135) and (134), that

〈vh, uh〉Hs (Rn)×H−s (Rn) = c1/20

∑

m∈Lh

|am|2ρd/2
m ≥ c1/20 (ρminh/h0)

d/2 ‖a‖22.

(136)

For j ∈ N0 and m ∈ Lh , using standard properties of Fourier transforms (e.g., [31,
Prop. 2.2.11]),

‖σm‖2H j (Rn)
= ρ2n

m

∫

Rn

(

1+ |ξ |2
) j |̂σ(ρmξ)|2 dξ

= ρn
m

∫

Rn

(

1+ |ξ/ρm|2
) j |̂σ(ξ)|2 dξ

≤ ρ
n−2 j
m ‖σ‖2H j (Rn)

,

since ρm ≤ 1, so, using that ρm ∈ (ρminh/h0, h/h0] by (134), and again that the
supports of the σm are disjoint,

‖vh‖2H j (Rn)
=
∑

m∈Lh

|am|2‖σm‖2H j (Rn)
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≤
{ ‖σ‖2

H j (Rn)
(ρminh/h0)n−2 j ‖a‖22, if j ≥ n/2,

‖σ‖2
H j (Rn)

(h/h0)n−2 j ‖a‖22, if j < n/2.

In particular this applies for j = 0, L , where L := �max(J + (n − d)/2, n/2)�, so
that L ≥ max(s, n/2). Hence, and applying Hölder’s inequality to the definition of
the Hs(Rn) norm and noting that ‖σ‖H0(Rn) ≤ ‖σ‖HL (Rn),

‖vh‖Hs (Rn) ≤ ‖vh‖1−s/L
H0(Rn)

‖vh‖s/LHL (Rn)
≤ ‖σ‖HL (Rn) ρ

(n/(2L)−1)s
min (h/h0)

n/2−s ‖a‖2.
(137)

Now, recalling from Sect. 2.4 that tr∗� : H−t (�) → H−s(Rn) has unit norm,

‖ψh‖H−t (�) ≥ ‖uh‖H−s (Rn) = sup
v∈Hs (Rn)\{0}

|〈v, uh〉Hs (Rn)×H−s (Rn)|
‖v‖Hs (Rn)

≥ |〈vh, uh〉Hs (Rn)×H−s (Rn)|
‖vh‖Hs (Rn)

.

Combining this inequality with (136) and (137) and recalling (9) we obtain that

‖ψh‖H−t (�) ≥
c1/20

‖σ‖HL (Rn)

ρ
t+n/2
min (h/h0)

t ‖a‖2,

and the result follows on recalling that ‖a‖2 = ‖ψh‖L2(�). ��

C Table of definitions

Symbol/terminology Defined/introduced

�, �∞ Section 1
Hα , dimH, |E | (Lebesgue measure), d-set Section 2.1
IFS, OSC, homogeneous, self-similar, disjoint Section 2.3
Hs (�∞), Hs

E , H
s (
), ˜Hs (
) Sections 2.4 and 2.5

L2(�), L∞(�), Ht (�), tr� , tr
∗
� Sections 2.4 and 2.5

W 1(
), W 1,loc(
), γ±, ∂±n , C∞
0,� Section 2.5

I�, IN, IN0 , �m ,W�, χm , ψ0, ψm
m , Jν , ν0, ‖ · ‖t Section 2.3

ui , �c , P , S, S, φ, a(·, ·), a
(·, ·), S
, u∞, �∞, Sn Section 4
td , S Section 4.1
{Tj }Nj=1, VN , VN , φN , A,  c,  b, J Section 5
Xν , Kν , Pν , Xν , Yh , Yh , Lh , h Section 5.1
ct Section 5.3

AQ ,  bQ ,  cQ , φQ
N , J Q , Hull Section 5.4
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