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Abstract 

Biodiversity is declining across the globe, threatening ecosystem functioning, and the 

services that humans rely upon. Biodiversity monitoring schemes have provided a wealth of 

information on population changes across space and time and are used to advise and 

influence environmental legislation and policy. Despite the utilisation of monitoring data, 

there are still gaps in the application of this data in policy making and addressing unanswered 

questions. This thesis focuses on using long-term monitoring data and trait datasets to 

develop novel methodological techniques, and further understand the key drivers of 

population dynamics, and our ability to detect changes in community dynamics. 

First, long-term population monitoring data are used to develop a novel technique to measure 

functional connectivity of butterflies and birds across the UK. Current methodologies to 

measure functional connectivity are constrained by time and data-availability. However, 

using a method based on correlations between species population dynamics offers a ‘species-

eyed view’ of functional connectivity which can be easily updated. Second, the two key 

drivers of synchronised population dynamics, dispersal, and climate, are further investigated. 

After accounting for climate effects on population synchrony, temporal changes in population 

synchrony are associated with mobility-attributes of UK butterflies and birds. This represents 

an important contribution to the understanding of what drives spatiotemporal changes in 

population dynamics. For the next two chapters, the community dynamics of British birds is 

investigated, to determine how different functional trait approaches can affect our ability to 

detect community changes of functionally important birds.  Extensive functional trait data 

alongside long-term monitoring data are used to show how different types of traits in metrics 

of functional diversity affect our ability to detect changes in community dynamics and 

ecosystem functioning. Furthermore, using traits that provide highly refined information 

alongside abundance data in measures of functional diversity increases our ability to predict 

community dynamics of functionally important birds.     

This work highlights the use of long-term monitoring data and functional trait approaches to 

further understand changes in population dynamics, in particular to develop a new method to 

measure functional connectivity and linking changes in functional diversity to changes in 

community dynamics related to ecosystem functioning. In the final chapter, the limitations of 

the work are discussed along with the wide range of future applications. 
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Chapter 1. Introduction 

1.1 Biodiversity and ecosystem functioning  

There is overwhelming evidence that biodiversity is declining globally at unprecedented 

rates, with around 1 million animal and plant species now threatened with extinction, many 

within decades (IPBES, 2019). The picture is similar in the UK, where the abundance of UK 

species has, on average, declined by 13% since 1970 (State of Nature report, 2019). Changes 

in biodiversity can be attributed to anthropogenic drivers, including habitat loss and change, 

climate change, the introduction of invasive species, overexploitation, and pollution 

(Millennium Ecosystem Assessment, 2005). Increasing human impacts on the environment is 

not only driving declines in biodiversity, but also altering the structure and composition of 

biological communities by increasing rates of species invasions and species extinctions, at 

global and local scales (Hooper et al. 2005). Biodiversity is now known to be a major 

determinant of ecosystem dynamics and functioning (Tilman et al. 2014), as biodiversity 

enhances the ability for communities to capture resources, produce biomass, and recycle 

essential nutrients, and also contributes to ecosystem stability through time (Loreau & de 

Mazancourt 2013). Therefore, biodiversity loss could threaten the delivery of key ecosystem 

functions and services.   

Ecosystem functions provided by biodiversity underpin the ecosystem services that humans 

rely upon. This includes provisioning services such as the supply of food and materials, 

supporting services including nutrient cycling and pollination, regulating services such as air 

and water quality regulation, and cultural services such as the recreational benefits gained 

from nature (S̜ekercioğlu et al. 2016). Birds are an important taxonomic group for providing 

all four types of ecosystem services. They are an important component of human diets (Moss 

& Bowers 2007) and are often hunted for consumption and recreation in developed countries 

(Bennett & Whitten 2003; Green & Elmberg 2014). Some species of birds contribute to 

regulating services as scavengers by consuming carcasses which helps regulate human 

disease (S̜ekercioğlu et al. 2016). Birds have also played an important part in our culture, 

through art, religion, and birdwatching. Finally, many birds contribute supporting services, as 

their foraging, seed dispersal, and pollination activities help to maintain ecosystems that 

humans rely upon (Sekercioglu 2006; Wenny et al. 2011). Butterflies also perform a range of 

ecosystem functions including the provision of food to higher trophic levels, as lepidopteran 
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larvae are a key source of food for many bird species throughout chick development (Visser 

et al. 2006), and by providing pollination services through dispersing wildflower pollen 

(Courtney et al. 1982). Similar to birds, butterflies are also important culturally, whereby 

human well-being increases when time is spent in biodiverse and species-rich areas (Dallimer 

et al. 2012; Clark et al. 2014).  

In order to safeguard biodiversity and the associated ecosystem services, the Convention on 

Biological Diversity (CBD) implemented the Strategic Plan for Biodiversity from 2011 – 

2020 which consisted of 20 targets, named the Aichi Biodiversity Targets. Despite decades of 

conservation action, we did not meet any of the Aichi Targets in full (Buchanan et al. 2020). 

The post-2020 global biodiversity framework has the potential to address the loss and 

degradation of nature and attempt to “bend the curve” of biodiversity. As a result, there is 

great interest in monitoring the current state of biodiversity, how it has changed over time, 

and how this might impact the ecosystem functions that biodiversity provides. 

1.2 Biodiversity monitoring  

To help reduce biodiversity loss and the associated ecosystem services, we need well-

informed, evidence-based decisions to help create and implement environmental policy. This 

relies upon there being available data on biodiversity across spatial and temporal scales. The 

UK has some of the longest running structured biodiversity monitoring schemes in the world. 

One of the first was the Common Birds Census (CBC), run by the British Trust for 

Ornithology (BTO) which ran from 1962 to 2000 to monitor population trends among 

widespread breeding birds, predominately in farmland and woodland habitats (Marchant 

1990). This scheme has been superseded by the Breeding Bird Survey (BBS) which was 

launched in 1994 to overcome the spatial limitations of the CBC, which covers a wider 

geographical spread of UK bird populations and utilises a less intensive survey method 

(Harris et al. 2019). Another long-term monitoring scheme of a different taxonomic group is 

the UK Butterfly Monitoring Scheme (UKBMS) which has been ongoing since 1976 (Pollard 

& Yates 1993). The success of these schemes can be partly attributed to the use of members 

of the public volunteering their time to record species, and while there is a trade off in the 

accuracy of recordings in some instances due to observer error, this is outweighed by the 

geographical extent of these data, the level of spatial coverage, and the efficiency with which 

this data can be collected. These long-term monitoring schemes allow reliable estimates of 

trends in species abundances to be calculated (Newson et al. 2008; Pellet et al. 2012).  
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Trends in abundance across space and time can be used to assess progress towards national 

and international biodiversity targets set by the Convention on Biological Diversity (CBD). 

Despite decades of conservation action, the CBD Aichi Target 12 to halt species extinctions 

or reverse declines has not been achieved (Buchanan et al. 2020). The post-2020 global 

biodiversity framework aims to create targets that are measurable, and be more realistic, 

unambiguous, and scalable (Green et al. 2019). Global and national biodiversity indicators, 

produced using readily accessible data from long-term monitoring schemes, can allow 

assessment of the success and failure of interventions towards biodiversity targets (Mace et 

al. 2018). For example, the BBS data are used alongside other monitoring schemes for birds, 

to produce an indicator on the changes in abundance of breeding birds in farmland. This 

indicator can be used to understand the effectiveness of changes in farming management 

practices and interventions, such as agri-environment schemes, to increase farmland bird 

abundance, and therefore progress towards national biodiversity targets (Vickery et al. 2004; 

Walker et al. 2018). 

It is clear that long-term monitoring schemes are crucial to aiding the recovery of 

biodiversity. Monitoring data can also be applied to answer ecological questions which can 

contribute to the conservation of populations and communities as a whole.  

1.3 Population dynamics 

Interactions between organisms and their environment result in changes in population 

dynamics, and these changes can be observed using long-term monitoring data. 

Understanding the causes of changes in species’ population abundance is essential for 

effective policy development and conservation management and provides an understanding 

of how ecosystems may change with future climate change. There has been increasing 

recognition of the role that spatial context plays in population dynamics, shifting our 

perception from the dynamics of isolated populations to examining the dynamics of 

interconnected population dynamics.     

1.3.1 Population synchrony 

Spatial population dynamics can result in populations that vary together in population size. 

This phenomenon, termed population synchrony, was first described by Elton (1924) who 

demonstrated how the fluctuations in population sizes of snowshoe hares were spatially 

autocorrelated across North America due to the associations with its main predator, the 
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Canada lynx. The advance of long-term monitoring data which provides large quantities of 

spatially referenced time series data has allowed further analyses of spatial population 

dynamics. Population synchrony can be measured as the correlation in abundance between 

spatially separated populations over time and is known to be important for the long-term 

viability of metapopulations. Populations which are highly synchronised are more at risk of 

extinction (Heino et al. 1997), as all subpopulations will decline in abundance simultaneously 

reducing the ability for populations with high abundance to rescue those that go extinct. 

Understanding what mechanisms drive synchronous population dynamics therefore has 

practical implications for management and conservation.  

There are three mechanisms which cause population synchrony. Firstly, synchronised 

population dynamics may be caused by shared environmental conditions between spatially 

separated sites, i.e. the ‘Moran effect’ (Moran 1953). Substantial theoretical (Ranta et al. 

1995; Heino et al. 1997; Lande et al. 1999; Kendall et al. 2000; Ripa 2000) and empirical 

(Hanski & Woiwod 1993; Paradis et al. 1999; Ims & Andreassen 2000; Koenig 2002) work 

has supported environmentally driven spatial population synchrony, which declines with 

increasing distance between populations, partly due to spatial autocorrelation in climate 

(Hanski & Woiwod 1993; Roland & Matter 2007; Powney et al. 2011). Secondly, dispersal 

between spatially separated populations can bring them into synchrony through density-

dependent emigration of individuals (Bjørnstad et al. 1999; Koenig 1999; Lande et al. 1999; 

Liebhold et al. 2004), with studies showing that species with high estimated dispersal 

capacities have greater levels of population synchrony (Sutcliffe et al. 1996; Paradis et al. 

1999; Bellamy et al. 2003; Tittler et al. 2009). Finally, trophic interactions can give rise to 

spatial synchrony in prey or host populations due to the interactions between the predator or 

host (Bjørnstad et al. 1999; Ims & Andreassen 2000).  

The two main drivers of population synchrony, climate and dispersal, are intertwined 

(Kendall et al. 2000). Future global warming is likely to cause direct changes to spatial 

population dynamics due to changes to the mean, variability, and spatial autocorrelation of 

the weather and environment (Koenig, 2002). Climate change could also impact population 

synchrony indirectly, through changes to dispersal and species interactions (Hansen et al. 

2020). Therefore, patterns of synchrony from all three mechanisms are very similar and all 

may be acting simultaneously or in various combinations. Identifying which is the dominant 

force for a particular metapopulation in synchrony is one of the challenges in population 

dynamics. If we can disentangle the role of dispersal from environmental Moran effects, we 
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may be able to obtain a signal of species’ movement from temporal trends in population 

synchrony, which would be valuable for informing landscape-level conservation initiatives. 

Fully understanding the effects of dispersal is crucial to applied ecology as human activities 

have led to increased habitat loss and fragmentation which can affect how species move 

through space and their ability for range expansion under climate change. Measuring the 

ability of individuals and populations to move between resource patches, i.e., functional 

connectivity, is crucial to understand the impact of anthropogenic land-use change on the 

viability of metapopulations (Hanski 1998; Tischendorf & Fahrig 2000).   

1.3.2 Stability 

The effect of biodiversity on the stability of natural systems is a central topic in ecology, as 

ecosystem stability suggests sustainability of species, communities, and ecosystem 

functioning. Early research demonstrated that more diverse communities enhanced ecosystem 

stability after observing that simplified communities are characterised by violent fluctuations 

in population density, thus decreasing stability (Odum 1953; MacArthur 1955; Elton 1958). 

This finding was further supported by experimental work in plant communities (Tilman & 

Downing 1994), and now there is substantial evidence that diversity increases stability at the 

community level (McCann 2000; Ives & Carpenter 2007; Pennekamp et al. 2018; Kéfi et al. 

2019).  

The commonly found positive correlation between diversity and stability is thought to be 

caused by three processes: overyielding, statistical averaging and compensatory dynamics. 

Overyielding occurs when there is higher ecosystem productivity (i.e. higher average total 

biomass) at higher diversity compared to monocultures (Tilman 1997; Hector et al. 1999; 

Loreau & Hector 2001; Cardinale et al. 2007). As traditional measures of stability are 

measured using the coefficient of variation (Schlapfer & Schmid 1999), a higher mean will 

decrease variability (Tilman 1999). Statistical averaging, also known as the portfolio effect, 

occurs because the relative fluctuations of a diverse community may be smaller than the 

relative fluctuation in the biomass of the constituent species (Doak et al. 1998). This leads to 

a lower coefficient of variance in a diverse community, compared to the average coefficient 

of variance of the individual species (Tilman et al. 1998). Finally, compensatory dynamics 

occurs where increase in abundance of one species is off set by the decline in abundance of 

another species, resulting in lower variability at the community level (Tilman 1999; Gonzalez 

& Loreau 2009; Loreau & de Mazancourt 2013). This asynchrony in population dynamics 
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can be driven by competition for resources, predator-prey interactions, or asynchronous 

responses to environmental changes (Ives et al. 1999; Downing et al. 2008; Gonzalez & 

Loreau 2009). This latter process has been called the insurance hypothesis, where 

biodiversity insures ecosystems against declines in functioning due to a greater diversity of 

responses to environmental conditions in a community (Yachi & Loreau 1999).   

As such, population dynamics and community stability are intricately linked to ecosystem 

functioning and the services they provide. Correlations between species’ population 

dynamics can be utilised to determine whether functionally important species respond 

similarly to environmental conditions, and therefore inform upon the resilience of ecosystem 

functioning (Greenwell et al. 2019). Furthermore, the total number of individuals within a 

community (i.e., total community abundance) has been linked to the productivity of an 

ecosystem. This is predicted by the ‘mass ratio hypothesis’ (Grime 1998), where the most 

common or dominant species within a community use a larger proportion of resources and 

contribute more to ecosystem functioning (Smith & Knapp 2003; Kleijn et al. 2015; Winfree 

et al. 2015). In addition, dominant species can provide short-term resistance to reductions in 

ecosystems functions (Dangles & Malmqvist 2004).  

1.4 Functional Diversity 

There is now unequivocal evidence that biodiversity enhances the stability and magnitude of 

ecosystem functioning across variety of taxa (Hooper et al. 2005; Cardinale et al. 2011; 

Gaston et al. 2018; Delgado-Baquerizo et al. 2020). Understanding the effect of biodiversity 

loss on ecosystem functioning has resulted in a variety of methods to quantify biodiversity to 

improve our ability to capture changes in ecosystem functions (Hooper et al. 2005). Initial 

research into the biodiversity and ecosystem functioning (BEF) relationship experimentally 

manipulated species richness in grassland ecosystems and found that changes in species 

richness were strongly related to ecosystem processes such as nutrient availability (Naeem et 

al. 1994; Tilman & Downing 1994; Hector et al. 1999). However, there still remained a large 

proportion of variance in ecosystem functioning to be explained, which could not be captured 

by looking at species richness alone as it assumes that all species are equally distinct (Petchey 

& Gaston 2002). Instead of focussing on taxonomic diversity, measuring functional diversity, 

i.e., the number, type and distribution of functions performed by organisms within an 

ecosystem (Díaz & Cabido 2001), is widely recommended and its use has grown significantly 
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for studies across a wide range of taxa (Zak et al. 1994; Stevens et al. 2003; Hooper et al. 

2005; Cadotte et al. 2011; Cardinale et al. 2012).  

1.4.1 Functional traits 

In order to capture functional differences among species, ecologists use functional traits 

which are morphological, physiological or phenological characteristics measurable at the 

individual level and have an influence upon ecosystem functioning (Violle et al. 2007b). 

Early efforts to link species traits to ecosystem functioning have measured functional 

diversity by classifying species into functional groups based on the similarity of their traits, 

often according to expert opinion (Wedin & Tilman 1990; Hooper & Vitousek 1997; Tilman 

1997; Hector et al. 1999). However, this approach has been criticised, as a single functional 

group is unlikely to capture to full extent of variation in functional traits within a community 

(Wright et al. 2006) and only a discrete metric of functional diversity is obtained (Petchey & 

Gaston 2006). More recently, quantitative methods have been developed which utilise 

information gained from multiple functional traits to produce a single continuous trait 

diversity index. The establishment of such indices has led to a more specific definition of 

functional diversity, which captures the value and range of those species and organismal traits 

that influence ecosystem functioning (Tilman 2001). The first of such indices defined 

functional diversity as the total branch length of a functional dendrogram, capturing the trait 

complementarity among species (Petchey & Gaston 2002). Various functional diversity 

metrics have since emerged by measuring the spread of species in multidimensional trait 

space (Walker et al. 1999; Mason et al. 2003; Petchey & Gaston 2006), however none of 

these indices were designed to use multiple traits and be weighted by species’ relative 

abundance. Single-trait approaches are limited in the information they provide on functional 

diversity as multiple traits are required to characterise species resource niches (Mason et al. 

2005). Furthermore, as more common species contribute more to ecosystem functioning 

(Grime 1998), functional diversity metrics can be weighted by abundance to reflect this. 

Villéger et al. (2008) produced a set of three complementary functional diversity indices, 

each capturing a different facet of functional diversity: functional richness (the volume of 

functional space occupied by a community), functional evenness (the regularity of the 

distribution of abundance within the volume), and functional divergence (the divergence in 

distribution of abundance in this volume). Finally, functional dispersion, which measures the 

mean distance in trait space of individual species to the centroid of all species, was developed 
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to account for missing trait values and is unaffected by species richness (Laliberté & 

Legendre 2010). These trait-based indices have shown to be better predictors of ecosystem 

functioning compared to using species richness (Gagic et al. 2015) and therefore have been 

widely used in the literature to look at BEF relationships.  

1.4.2 Methodological choices 

A consistent message throughout the development of functional diversity indices is the 

importance of selecting the appropriate traits to predict ecosystem processes, and arguably 

this is more important than the choice of functional diversity measure (Petchey & Gaston 

2006; Petchey et al. 2009). The success of trait-based methods relies on the selection of a 

sufficient number of informative functional traits (Hortal et al. 2015), as different traits are 

important for different ecosystem functions (Petchey & Gaston 2002). Possible methods to 

approach this issue include calculating functional diversity metrics with every combination of 

traits to test their explanatory power in predicting the ecosystem function of interest (Petchey 

et al. 2004) or calculating all possible functional spaces (Maire et al. 2015). These complete 

search methods outperform other trait selection methods which select a subset of traits to 

represent the variation of all traits highlighting the impact of trait choice in mechanistically 

linking functional traits to ecosystem functioning (Zhu et al. 2017).  

The number of traits selected can also influence the values of functional diversity derived 

from multivariate indices (Maire et al. 2015; Legras et al. 2019) as this impacts the 

dimensionality of the trait space (Petchey & Gaston 2002). Recent studies have suggested 

that increasing the multidimensional trait space can more accurately predict trophic niches 

(Pigot et al. 2020) and capture phenotypic differences between species (Carscadden et al. 

2017). Although higher dimensionality of trait space can reduce functional redundancy 

(Petchey & Gaston 2002), if such traits are highly correlated with each other, this reduces the 

ability to accurately identify species within trait space (Petchey et al. 2007; Calba et al. 2014; 

Laughlin 2014). Furthermore, the use of continuous traits over categorical or binary traits can 

also provide more in-depth information on species resource use, which affects the ability to 

detect true functional redundancy in a community (Kohli & Jarzyna 2021). 

Finally, different types of traits provide information on different aspects of biodiversity 

related to ecosystem function (Tobias et al. 2020). Functional traits can be split into two 

categories: effect traits which determine the effect a species has on ecosystem functioning, 

and response traits which reflect species’ responses to environmental conditions (Lavorel & 
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Garnier 2002; Luck et al. 2012). This has allowed studies to specifically predict species’ 

responses to environmental change using response traits (Azeria et al. 2011; Langlands et al. 

2011). Grouping traits into these types has also resulted in a response-and-effect framework 

to be developed which incorporates both changes to communities as a result of their response 

to environmental change, and the effect of such changes on ecosystem function (Lavorel & 

Garnier 2002; Suding & Goldstein 2008). Some traits can be classified as both an effect and 

response trait (e.g. body size), and this can further increase the ability to predict the impact of 

environmental change on the delivery of ecosystem services (Lavorel & Garnier 2002; 

Suding et al. 2008).  

1.4.3 Linking functional diversity to ecosystem functioning 

Decades of research has made it evident that species functional traits are key to understanding 

the impact of environmental change on ecosystem functions and services (Cardinale et al. 

2012). However, collecting many high-resolution traits is difficult due to practical limitations 

including cost and time and has resulted in taxonomic and spatial biases in trait datasets 

(Petchey & Gaston 2006; Pakeman 2014; Etard et al. 2020; Kohli & Jarzyna 2021). Despite 

such biases, trait-based methods have been widely used to provide an insight into the BEF 

relationship in both experimental and natural ecosystems across a wide range of taxonomic 

groups and spatiotemporal scales (Manning et al. 2019). Therefore, BEF research has the 

potential to influence policy and conservation management of ‘real-world’ ecosystems (Defra 

2020c). Such trait-based methods can be used to understand the mechanisms underpinning 

stability of ecosystems to help make evidence-based conservation decisions (Oliver et al. 

2015a). Many biodiversity conservation efforts have focussed on species only (Mace et al. 

2003), however, the functional diversity of ecosystems is also at risk of declining due to 

anthropogenic pressures (Cadotte et al. 2011). Integrating functional ecology into 

conservation decision making can help reduce biodiversity loss and support the supply of 

multiple ecosystem services (Devictor et al. 2010; Manning et al. 2018, 2019). 

1.5 Thesis overview 

Long-term biological monitoring schemes of a wide variety of taxonomic groups have been 

vital in understanding how biodiversity has changed over time and been used to produce 

indicators of biodiversity change which have been pivotal in driving changes in policy and 

legislation. Furthermore, with the creation of large trait databases of well-studied taxonomic 
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groups, we can utilise this breadth of information to further understand how biodiversity is 

changing, and what effect this could have on the provision of ecosystem functions.  

The thesis aims to explore how population and community dynamics of functionally 

important species have changed across space and time under environmental change and how 

functional trait differences can help to understand these patterns. A common theme is the use 

of long-term monitoring data collected by volunteers as part of national recording schemes.  

First, in Chapter 2, I develop an indicator of functional connectivity, utilising a new method 

based on population synchrony using long-term monitoring data from the UK Butterfly 

Monitoring Scheme (UKBMS), the Common Bird Census (CBC), and the Breeding Bird 

Survey (BBS). Previous indicators of functional connectivity are often very data intensive, 

restricted to small spatial scales, and require validation from independently collected data. 

However, this proposed indicator offers a ‘species-eyed-view’ of functional connectivity 

using a data-derived method based on widely available, annually updated species monitoring 

data. This work is currently an ‘experimental indicator’ being used by JNCC and Defra as 

part of the England Biodiversity Indicators (Defra 2020a).   

In Chapter 3, I use the temporal trends in population synchrony calculated for butterflies and 

birds in Chapter 2 to determine whether we can untangle the two key drivers of population 

synchrony: climate and mobility. This chapter uses mobility-related traits to determine 

whether changes in synchrony over time are driven by more mobile species, after accounting 

for spatial autocorrelation in climate. This chapter adds to the growing body of literature that 

dispersal can synchronise populations not only across space, but also time. Furthermore, this 

provides evidence to support our use of population synchrony to measure functional 

connectivity in the UK.  

I then ask whether our ability to detect changes in community dynamics over time depends 

on the type of traits used in metrics of functional diversity. In Chapter 4, I split bird species 

into their contribution to two ecosystem functions – seed dispersal and insect predation. I 

measure the stability and mean abundance of these functional guilds and investigate whether 

using effect or response traits affect our ability to observe these patterns. More specifically, I 

test the following hypotheses: 

1.  Higher functional diversity measured using response traits will provide a more stable 

community abundance.  



12 
 

2. Higher functional diversity measured using effect traits will have a higher mean total 

community abundance. 

After finding that the choice of traits influences our ability to detect changes in community 

dynamics, I then seek to understand whether the resolution of data used also play a role. In 

Chapter 5, I test whether the resolution of trait and abundance data used to measure 

functional diversity affects our ability to predict community dynamics of functionally 

important birds.  I hypothesise that more resolved data (i.e., a higher number of continuous 

functional traits and abundance data) used to measure functional diversity will explain more 

variation in community abundance.  

Finally, in Chapter 6, I discuss the conclusions that can be drawn from this body of work, 

identify its strengths and weaknesses, and suggestions for future research.
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Chapter 2. Developing a national indicator of functional connectivity   

2.1 Abstract 

Habitat loss is a significant driver of biodiversity loss, causing fragmentation into small, 

isolated patches of suitable land cover. This reduces the permeability of landscapes to the 

movement of individuals and reduces the likelihood of metapopulation persistence. 

Quantifying functional connectivity, the ability of a focal species to move between resource 

patches, is therefore essential for conservation management. There is substantial evidence 

supporting a technique based on ‘population synchrony’- the degree of correlation in time-

series of annual population growth rates between different long-term monitoring sites, to 

provide a measure of functional connectivity. However, synchronised population dynamics 

are not only driven by the movement of individuals between sites, but also shared 

environmental conditions which must be accounted for. Here, we use species survey data 

from over four decades to investigate average levels and temporal trends in population 

synchrony for 58 British bird and butterfly species. We first show that population synchrony 

is significantly associated with synchrony in some seasonal climatic variables. Once we 

accounted for spatiotemporal climatic patterns, we found that synchrony in butterflies 

declined over time by 71% between 1985 and 2000 but increased by 64% in recent years. 

Synchrony in birds showed some decline between 1999 and 2005, after which there appears 

to being recovery, however most species (74%) show no significant overall change in 

synchrony. Our proposed indicator provides a ‘species-eye-view’ of functional connectivity 

using widely available abundance data. Developing such indicators of functional 

connectivity, which can be updated annually, is crucial to improve the effectiveness of land 

management strategies for conservation under increasing environmental change. 

2.2 Introduction 

Habitat loss and fragmentation is a key concern of conservation policy both in the UK and 

globally, as it is implicated as the main driver of biodiversity loss in numerous taxa across a 

variety of regions (Fahrig 2003; Butchart et al. 2010; Pimm et al. 2014). Despite decades of 

conservation action, the Convention on Biological Diversity (CBD) Aichi Target 12 has not 

achieved its target to halt species extinctions or reverse declines (Buchanan et al. 2020). 

Habitat fragmentation, driven by anthropogenic land-use change, decreases the amount of 



14 
 

available habitat and increases ecological isolation between patches. This can result in an 

increased extinction risk and a reduction in the exchange of individuals among fragmented 

populations (Hanski 1998). Therefore, functional connectivity, i.e. the ability of individuals 

and populations to move between resource patches in response to landscape elements, is 

crucial for managing and conserving viable metapopulations (Hanski 1998; Tischendorf & 

Fahrig 2000). Dispersal across landscapes is also essential for range expansion under climate 

change and the maintenance of genetic diversity (Hanski & Gilpin 1991; Hanski 1998). 

Measuring levels of functional connectivity is vital for monitoring and predicting the effects 

of climate change and increasing habitat fragmentation on population persistence. Traditional 

approaches to calculate functional connectivity have focussed on measuring dispersal. 

Empirical movement data has been collected using mark-release-recapture (MRR) methods 

(Sutcliffe et al. 1997, 2003; Roland et al. 2000), by radio-tracking individuals (Sutcliffe & 

Thomas 1996; Rubenstein & Hobson 2004), or more recently, by using landscape genetics to 

measure the genetic similarity of populations (Schwartz et al. 2002; Clegg et al. 2003; 

Fenderson et al. 2020). However, these techniques are expensive, time consuming and labour 

intensive, and can therefore only be carried out over small spatial scales and/or short time 

periods (e.g. Finch et al., 2020).  Other models of functional connectivity are mechanistic and 

built from sound theoretical understanding of dispersal capabilities (e.g. Watts & Handley 

2010; Bocedi et al. 2014; Merrick & Koprowski 2017), but are rarely validated using 

empirical data (Laliberté & St-Laurent 2020). For example, a previous indicator of functional 

connectivity for the UK used metrics based on land cover combined with expert opinion of 

species’ habitat associations and movement capacity (Watts & Handley 2010). This approach 

has limitations in that land cover data are not updated frequently and there is substantial 

uncertainty in estimating species’ movement capacities across different land cover types 

(Watts et al. 2008). It is therefore ideal for indicators of functional connectivity to be data-

driven and assessed from a species’ point of view to robustly inform conservation policy. 

An alternative method to estimate functional connectivity has been proposed based on a 

measure of population synchrony — the correlations in time series of annual population 

growth rates between different locations — using long-term species monitoring data (Powney 

et al. 2011, 2012; Oliver et al. 2017). This is because the movement of individuals between 

sites is known to lead to increased synchrony in population dynamics (Hanski 1998; e.g. 

Ranta et al. 2008). Density-dependent emigration of individuals can link populations, leading 

to increased levels of population synchrony (Fig. 2.1). Empirical evidence has shown that 



15 
 

population dynamics in different locations are more synchronised for species with high 

estimated dispersal ability (as measured using mark-release-recapture, Paradis et al. 1999; 

Bellamy et al. 2003; expert opinion, Sutcliffe et al. 1996; or using dispersal-related traits as a 

proxy for dispersal ability, Tittler et al. 2009). Additional research has found correlations 

between population synchrony and landscape suitability (Powney et al. 2011, 2012), 

demonstrating the sensitivity of population synchrony to the movement of individuals.  

However, population synchrony can also be driven by shared environmental conditions, i.e. 

the ‘Moran effect’ (Moran 1953; Koenig 2002), which declines with increasing distance 

between populations, partly due to spatial autocorrelation in climatic conditions (Hanski & 

Woiwod 1993; Roland & Matter 2007; Powney et al. 2011). Additional research has shown 

that populations are more synchronised if they occupy similar habitat types (Powney et al. 

2010, 2011) or are situated at geographic range margins (Powney et al. 2010; Mills et al. 

2017), potentially driven by increased climatic constraints on marginal populations reducing 

the availability of suitable microhabitats (Powney et al. 2010; Oliver et al. 2014). To explain 

changes in population synchrony over time, several studies have concluded that climate is a 

major driver of temporal trends (Sheppard et al. 2016; Shestakova et al. 2016; Black et al. 

2018; Dallas et al. 2020; but see Cayuela et al. 2020). For example, climate change could be 

driving an increased frequency of extreme weather events, leading to greater synchronised 

population dynamics (Black et al. 2018b). In addition, there may be temporal trends in the 

degree of spatial autocorrelation in climate (Post & Forchhammer 2004).  

To obtain a better signal of dispersal, one would need to account for the Moran effect in 

estimates of population synchrony. After accounting for some climate-related factors 

(including distance between sites, habitat similarity, shared climate, and position in 

geographic range), recent evidence has shown that residual synchrony reflects actual 

movements of individuals measured using mark-release-recapture (Oliver et al. 2017). Thus, 

evidence is accumulating to suggest that, if climate can be sufficiently taken into account, the 

movement of individuals has a key role in promoting population synchrony in population 

dynamics across space (Oliver et al. 2017).  

To further develop and operationalise the use of population synchrony as an indicator of 

functional connectivity, we calculate temporal trends in population synchrony for 58 British 

birds and butterflies using long-term monitoring datasets from 1980-2016 for a total of 3,306 

sites across Great Britain. We use data from three monitoring schemes: the UK Butterfly 
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Monitoring Scheme (hereafter UKBMS), the Common Birds Census (hereafter CBC), and 

the Breeding Bird Survey (hereafter BBS). We develop new approaches to account for 

spatiotemporal climatic patterns that drive correlated population dynamics, i.e. a dynamic 

Moran effect. After accounting for these effects of climate, we produce a residual temporal 

trend in population synchrony that reveals changes in functional connectivity over time.  

 

 

Figure 2.1. Schematic of factors which influence population synchrony. Sites A and B share 

the same climate and have a highly permeable landscape matrix between them (green shaded 

areas), allowing greater movement of individuals. These sites therefore have high synchrony. 

Sites B and C also have movement of individuals, but do not share the same climate, and 

have intermediate levels of synchrony. Finally, sites A and C have different climatic 

conditions and the hostile matrix of habitat prevents movement of individuals. Therefore, 

these sites have low levels of synchrony. Pearson’s r values were chosen to reflect synchrony 

values for high, low, and intermediate synchrony. 
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2.3 Methods 

2.3.1 Data collation 

Butterfly data were derived from the United Kingdom Butterfly Monitoring Scheme 

(UKBMS) (Pollard & Yates 1993). UKBMS transects are walked by trained volunteers who 

survey 5m-wide strip transects for 26 weeks between April and September recording all 

butterflies observed. Further details can be found in Pollard and Yates (1993) and in Rothery 

and Roy (2001). An index of abundance for each butterfly species for each transect, each year 

from 1980-2016, was extracted from the UKBMS database. To ensure adequate data for 

analysis, resident butterfly species which had at least 75% of years with 50 sites or more 

sampled per year were included in the analysis.  

Woodland bird abundance data were derived from two datasets, the Common Birds Census 

(CBC) and the Breeding Bird Survey (BBS). The CBC monitoring scheme monitored 

population trends for British breeding birds from 1962 until 2000 (Marchant 1990). 

Volunteer observers undertook repeated surveys between 8 and 10 times a year between late 

March and early July, recording all species seen or heard at each site. The BBS has monitored 

birds since 1994, where two 1km transects are visited twice a year, once between April and 

mid-May (early visit), and once between mid-May and the end of June (late visit) and all 

birds seen or heard are recorded (Harris et al. 2018). The total number of adult birds of each 

species for each site and each visit are calculated for each year. We obtained the maximum 

number of adult birds across all visits at each site for the years 1980-2000 from the CBC and 

1994-2016 from the BBS. Species which had at least 75% of years with 50 sites or more 

sampled per year were included in the analysis.  

In addition to interannual fluctuations in population size, raw abundance values also reflect 

long-term temporal trends arising from drivers such as land use and climate change, therefore 

we used between-year rates of change to focus on interannual population synchrony 

(Bjørnstad et al. 1999). We converted annual abundance values into rate of change as 

follows: logNt – logNt-1, where Nt is the abundance index estimate in time t (Powney et al. 

2010). We added one to all population counts prior to the growth rate calculation to avoid 

taking the log of zero.  

 

  



18 
 

2.3.2 Population synchrony 

For each species, population synchrony between pairs of monitoring sites was estimated as 

the Pearson’s correlation coefficient of yearly population growth rates. To assess temporal 

trends in population synchrony, we repeatedly calculated population synchrony using a 10-

year moving window (Bjørnstad et al. 1999). A 10-year moving window was selected to 

balance the need for a reasonable-length time series to estimate population synchrony versus 

the number of separate windows where we could calculate population synchrony. The 

following pair-wise site combinations were excluded from the analysis: i) for either site, less 

than 7 years of growth rates in common to ensure data quality, ii) for either site with a chain 

of zero growth rates followed by positive growth rates, as this can inflate synchrony values 

and increase Type I errors, and iii) site combinations that were more than 100km apart. 

Although evidence has shown synchrony remains positively associated with landscape 

suitability for sites up to 200km apart (Powney et al. 2011), we selected an upper distance 

limit of 100km for computational feasibility. Additionally, due to computational limitations, 

synchrony was only calculated on BBS sites with at least 10 years of data, and a maximum of 

10,000 random pairs of sites. This represents a subset of sites for species with large amounts 

of data (ranging from 3% to 98% of total available site comparisons with a median of 14%). 

We repeated this process five times to confirm that each subset adequately represented the 

whole dataset (Figure A1). The resulting dataset had population synchrony values for 32 

butterflies from 701 sites between 1980-2016, 26 birds from 106 sites between 1980-2000, 

and 24 birds from 2,499 sites between 1994-2016 (Table A1-A3).  

2.3.3 Climate synchrony 

To determine whether temporal trends in population synchrony are driven by patterns in 

climatic synchrony over time, we measured synchrony of mean temperature and total 

precipitation for each season (i.e. eight variables) using 5km gridded climate data from Met 

Office et al. (2017). We converted coordinates from the sites where we measured species 

population synchrony from 1km to 5km grid squares and matched these to climate data for 

each of the three datasets. Climate synchrony was calculated using the same method as 

population synchrony, i.e. calculating a Pearson’s correlation metric for each climate variable 

between each pair of monitoring sites for grid squares using a 10-year moving window. The 

resulting dataset had climate synchrony values for 4 seasons from 686 UKBMS sites from 

1980-2016, 106 CBC sites from 1980-2000 and 2490 BBS sites from 1994-2016 (Figure A2). 
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Samples sizes are very slightly lower due to a small number of species monitoring sites 

falling within the same 5km grid square. 

2.3.4 Additional control variables 

To control for other known drivers of population synchrony, three attributes were calculated 

for each pair of sites, in each dataset. First, distance was calculated as the Euclidean distance 

(km) between each pair of sites. Second, northerliness was calculated as the mean Northing 

(km from Ordnance Survey National Grid) between each pair of sites. Finally, we used a 

Renkonen’s percentage similarity index to calculate habitat similarity of a 500m buffer 

surrounding each focal pair of sites (Renkonen 1938; Jost et al. 2011). The index was bound 

between 0 and 1, with a value of 1 for two sites surrounded by the same habitat composition, 

and 0 being completely distinct compositions. Habitat data were extracted from the CEH 

Land Cover Map 2007 (Morton et al. 2011) and aggregated to the broad habitat level (10 

habitat biotopes in total). This landcover map represents a roughly intermediate point in our 

indicator time series, and UK biotopes have not changed commonly or substantially enough 

for there to be frequent substantial differences in habitat composition between maps (plus, 

there are issues with comparability between maps due to changes in remote sensing and 

processing methodology) (Carey et al. 2008). Sites for CBC were primarily woodland sites 

with woodland type recorded by trained volunteers as a categorical variable (four types), 

therefore habitat similarity was calculated as a binary variable, with 1 representing a pair of 

sites with the same woodland type and 0 representing a pair of sites with different woodland 

types.  

2.3.5 Trends in abundance 

Changes in synchrony over time could be reflected in changes in abundance due to 

‘propagule pressure’ (emigration of individuals) of highly abundant species facilitating the 

spread of populations, and therefore increasing population synchrony. To calculate the 

change in abundance for butterflies, we used the UKBMS Collated Index data which is a 

national annual index for each species for each year derived using a statistical model (Moss 

and Pollard 1993, Rothery and Roy 2001). We compared mean abundance using a t-test 

between two independent 10-year windows: 1980-1989 and 1995-2004, representing the 

change in abundance for the first two decades, and between 1995-2004 and 2007-2016 for the 

latter two decades for each species. For birds, we used the joint CBC/BBS population trend 

data to compare mean abundance using a t-test between 1980-1989 and 1991-2000, 
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representing the time period of change for CBC data, and between 1994-2003 and 2007-

2016, representing the time period of change for BBS data. Each species was classified as 

either increasing, decreasing, or showing no change in abundance over time.  

2.3.6 Statistical analysis 

All statistical analysis was carried out using R 3.5.0 (R Core Team 2018).  

Accounting for climatic synchrony 

We first sought to account for variation in population synchrony that could be attributed to 

climate synchrony, not to infer which climate variables were important. We found no 

evidence for collinearity between each climate synchrony variable for each dataset. We fitted 

a mixed effects model using the lme4 package (Bates et al. 2015) to each of the three 

monitoring datasets separately (‘all species models’). Each model contained population 

synchrony values for every pair-wise site comparison for each species as the response 

variable, the mid-year of each moving window as a categorical fixed effect, and each of the 

eight climate synchrony variables as continuous fixed effects. Species and pair ID of the sites 

were included as random intercepts to account for repeated measures and the number and 

identity of monitoring sites varying through time. Any climate variable with a significant 

relationship with population synchrony (p<0.05) was included as a covariate in future 

analyses to account for climatic effects. We note that this approach could be conservative as 

we may be less likely to detect other patterns in population synchrony than if we had 

attempted to avoid any possible overfitting.  

Secondly, we investigated for evidence of increasing variance in climate over time over the 

study period. We used an F-test to determine whether the variation in seasonal mean 

temperature and total precipitation for each season differed between 1985-2000 and 2000-

2012.  

Temporal trends in population synchrony 

To estimate a temporal trend in population synchrony for all birds or all butterflies, while 

accounting for known drivers of synchrony, we ran modified versions of the ‘all species 

models’ for each dataset by including distance, habitat similarity, mean northerliness, and the 

significant climate synchrony variable (unique for each dataset) as continuous fixed effects. 

All fixed effects were standardised to zero mean and one standard deviation. The coefficients 

for each mid-year and their associated standard errors were extracted from the model and are 
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used as our index of population synchrony and associated uncertainty for each 10-year 

moving window. Population synchrony values for the first year were standardised at 100. 

To assess how individual species were changing in population synchrony over time, we 

refitted the mixed effects model for each species within each dataset separately (‘single-

species models’). We used only two mid-year values as fixed categorical effects which were 

chosen to ensure there was no overlap in the 10-year moving window (i.e. they represent 

independent input data) and to match the time periods for species change in abundance. For 

butterflies, we examined change between two 10-year periods with mid-years of 1985 and 

2000, and subsequently between two 10-year periods with mid-years of 2000 and 2012. For 

CBC birds we examined change between two 10-year periods with mid-years of 1985 and 

1996 and for BBS birds between two 10-year time periods with mid-years of 1999 and 2012. 

For each species, the coefficients and associated p-values for each mid-year were extracted to 

determine whether each species had experienced an increase or decrease in population 

synchrony between the two comparison periods. Some species had insufficient data for the 

mixed effects model to run and could not be analysed individually (Table A1-A3). Since 

synchrony measures of pair-wise sites are not independent, to obtain p-values we ran 1,000 

permutation tests (e.g. see Powney et al. 2012) on each species to determine the significance 

of change in synchrony between the two comparison years. At each permutation, the 

predictor variable (year) was randomised, and a linear mixed effects model fitted, and the F-

values extracted. We plotted the frequency distribution of the F-values and calculated the p-

values for each predictor variable based on the position of the observed vs. simulated values 

(e.g. a value in the top 5% of the F-value frequency distribution would have a significant p-

value of <0.05).  

All models are described using mathematical notation in Supplementary Material A1. 

Trends in abundance and population synchrony 

To determine whether changes in population synchrony over time are explained by trends in 

abundance, we used chi-squared tests to test for a significant association between the change 

in synchrony and change in abundance categories over time.
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2.4 Results 

2.4.1 Climate accounts for variation in population synchrony 

We selected which climate synchrony variables explained a significant amount of variation in 

population synchrony for each dataset. For UKBMS, we selected all eight climate synchrony 

variables (R2 = 0.00035) (Table A4). For CBC birds, only summer temperature was included 

(R2 = 0.00024) and for BBS birds, spring, autumn, and winter rainfall were selected (R2 = 

0.000014) (Table A4). These variables were included in all future models as fixed effects to 

account for the relationship between climate and population synchrony. We found no 

significant results to suggest that variation in seasonal mean temperature and rainfall has 

differed between 1985-2000 and 2000-2012 (Table A5). 

2.4.2 Overall trends in population synchrony for birds and butterflies 

The temporal trend in population synchrony for butterflies declined until 2004, thereafter it 

rapidly increased (Fig. 2.2a). This trend was reflected across the 32 butterfly species studied, 

with 71% of species declining in synchrony between 1985 and 2000, and 64% increasing in 

synchrony between 2000 and 2012 (Fig. 2.2d). Synchrony in birds was stable between 1985 

and 1996 (Fig. 2.2b) with most species (74%) showing no trend in synchrony. Although 

synchrony values look identical between 1985 and 1996, there is variation in synchrony from 

99.6 – 100.4. From 1999 onwards, birds declined in synchrony until 2005 where they 

appeared to be showing some signs of recovery (Fig. 2.2c). However, 74% of species showed 

no change in synchrony between 1999 and 2012 (Fig. 2.2e).  
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Figure 2.2. The temporal trend in population synchrony fitted using a LOESS regression 

function with standard error bars for (a) butterflies between 1985 and 2012, (b) CBC birds 

between 1985 and 1996, and (c) BBS birds between 1999 and 2012. Population synchrony 

scores were standardised, so the first mid-year was set to 100. Bar charts show the percentage 

of species which have either statistically significantly increased, decreased or remain 

unchanged in population synchrony between (d) 1985-2000 and 2000-2012 for butterflies 

(n=24 and n=31 species respectively) and (e) 1985-1996 for CBC (n=23 species) and 1999-

2012 for BBS (n=23 species). 

 

2.4.3 Control variables affecting population synchrony  

For all three control variables in our mixed effects model, our hypotheses were supported 

when tested for butterflies. We found that more northerly pairs of sites, those closer together 

and those with similar habitat types had higher levels of population synchrony (Fig. 2.3). For 

birds, we found only BBS sites which have similar habitat type to have higher average 

synchrony (Fig. 2.3). These results remained significant after running 1,000 permutation tests 

(Table A6).  
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Figure 2.3. Standardised regression coefficients from mixed effects models with average 

synchrony as the response variable and control variables as fixed effects. Symbols mark the 

regression coefficients for each fixed effect and error bars mark the 95% confidence intervals. 

A positive coefficient indicates that a higher level of a given control variable (e.g. greater 

habitat similarity) is associated with greater synchrony in population dynamics between sites 

for that species. 

 

2.4.4 Trends in abundance and population synchrony 

We found no significant association between the categories of abundance change and 

population synchrony change for butterflies between 1985-2000 χ2  = 2.92, P = 0.47) and 

between 2000-2012 (χ2  = 5.90 P = 0.19), and for CBC birds (χ2  = 2.51 P = 0.81), and BBS 

birds (χ2  = 1.7 P = 0.80). 

2.5 Discussion 

The proposed indicator presented based on a population synchrony offers a ‘species-eyed-

view’ of functional connectivity using a data-derived method based on widely available, 

annually updated species monitoring data. We found patterns in population synchrony clearly 

associated with synchrony in temperature and rainfall. Once these variables were accounted 

for, we demonstrate the temporal trends in residual population synchrony for UK birds and 

butterflies, suggesting that functional connectivity is changing over time.  
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Successful biodiversity indicators summarise complex ecological datasets into robust 

measures that can be used to assess trends over time and are used to assess progress towards 

meeting national and international goals and targets and help inform governmental policy 

(Butchart et al. 2010; Costelloe et al. 2016; McQuatters-Gollop et al. 2019). Developing an 

indicator of functional connectivity involves a trade-off between the data requirements and 

level of information produced (Calabrese & Fagan 2004). Basic measures of structural 

connectivity, for example average nearest neighbour distances of biotope types deemed 

suitable habitat, do not require extensive data, but they only produce a simple estimate of 

connectivity that, for example, ignores the differing resistance of intermediate landcover 

types (Watts and Handley, 2010). Complex mechanistic models can produce very detailed 

estimates of connectivity (e.g. Watts & Handley 2010; Bocedi et al. 2014; Merrick & 

Koprowski 2017), but are very data intensive and require validation from independently 

collected data (Laliberté & St-Laurent 2020). Similarly, direct observations of species’ 

movement, for example from mark-release-recapture, provide more realistic estimates of 

connectivity but are very data-intensive and often limited to small spatial scales (Calabrese & 

Fagan 2004).  

Our proposed indicator utilises widely available abundance data to calculate a temporal trend 

in population synchrony, which may provide an estimate of connectivity. Empirical evidence 

has shown correlations between population synchrony and the distance by which populations 

were separated by hostile land cover types (Roland & Matter 2007) and the coverage of 

quality habitat types in the intervening landscapes (Powney et al. 2011). Furthermore, the 

distance along woodland edges has shown to better predictor of movement than Euclidean 

distance, which was consistent to data collected using mark-release-recapture (Powney et al. 

2012). Additionally, higher population synchrony has been found between patches with 

higher frequency of movements between them, obtained from mark-release-recapture of a 

butterfly species (Oliver et al. 2017). This empirical evidence demonstrates that population 

synchrony does reflect movement frequencies rather than being solely driven by shared 

climatic conditions or connectivity of interacting species. 

However, if we seek to track connectivity using population synchrony, we need to account 

for climate as a confounding variable. Previous research has shown parallel increases in 

population synchrony and environmental synchrony, suggesting a potential role of the Moran 

effect in driving shared population dynamics over time (Koenig & Liebhold 2016; Sheppard 

et al. 2016; Shestakova et al. 2016; Kahilainen et al. 2018). Here, we show that population 
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synchrony is significantly associated with synchrony in some seasonal climatic variables. For 

butterflies, each of the eight climate variables tested were individually associated with 

population synchrony, whereas for the BBS dataset, only three rainfall variables were 

significant and for CBC birds only summer temperature (Table A4). This provides 

convincing evidence that synchrony in temperature and rainfall play a role in driving shared 

population dynamics (Koenig 2002; Post & Forchhammer 2004; Koenig & Liebhold 2016; 

Sheppard et al. 2016). Our results also confirm that sites which are closer together, share 

similar habitat, and are situated closer to species’ range margin have higher mean synchrony 

values (Sutcliffe et al. 1996; Roland & Matter 2007; Powney et al. 2010). Increased variation 

in climate can cause extreme population crashes (Palmer et al. 2017) and drive more 

synchronised populations (Pomara & Zuckerberg 2017; Black et al. 2018b). However, we 

found no evidence for significant changes in climate variability over time in our UK dataset 

(Table A5), suggesting that it is unlikely to be driving trends in shared population dynamics 

in our current dataset.  

Changes in density-dependent emigration due to propagule pressure can facilitate the spread 

of individuals (Hanski 1998). This has been shown to drive more synchronous population 

dynamics in birds (Paradis et al. 1999, 2000; Bellamy et al. 2003) and could explain the 

changes in temporal synchrony we find here. However, we found no overall association 

between the trend in abundance and trend in population synchrony in our three datasets. 

Despite this, 15 butterfly species (out of 24 species) in our study show a ‘u-shaped’ pattern in 

synchrony over time, with a decline between 1985-2000 and increase between 2000-2012. 

This suggests that functional connectivity for butterflies may be changing over time in the 

UK, which could be driven by structural factors in the landscape, for example, geographical 

barriers and habitat restoration. Many of these species which show a u-shaped pattern in 

temporal synchrony are wider countryside species and/or associated with garden and 

hedgerow habitats (Asher et al. 2001) and could be impacted by wider landscape changes. A 

major push for the uptake of English agri-environment schemes through the Entry and Higher 

Level Stewardship schemes began in 2005, which is where we also see the inflection point in 

butterfly functional connectivity trends. The schemes were designed to reduce the negative 

impacts of agricultural intensification by providing support to farmers for environmentally 

friendly management (Food and Environment Research Agency 2013). They led to increased 

height and width of hedgerows (Food and Environment Research Agency 2013) and therefore 

have allowed these habitats to support higher butterfly population densities (Food and 
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Environment Research Agency 2014). Furthermore, farms which adopted additional wildlife-

friendly management supported 50% higher butterfly species richness compared to farms 

meeting the minimum requirements (Hardman et al. 2016). Therefore, it is possible that the 

introduction of agri-environment schemes explains the upturn in butterfly population 

synchrony/connectivity in the mid-2000s. In contrast, woodland bird population synchrony 

remained stable over time, with most species showing no change in synchrony. Woodland 

cover across the UK has increased from 9% in 1980 to 13.1% in 2018 (in England, this has 

increased from 7.3% in 1980 to 10% in 2018) (Forestry Commission 2018). Hence, woodland 

cover change has not been marked, yet may possibly have contributed to the increase in 

connectivity for four bird species between 1985 and 1996 and two species between 1999 and 

2012. Although woodland creation has been shown to help recovery of generalist woodland 

birds, there is often a time-lag of several years while trees mature before species respond to 

changes in the habitat (Watts et al. 2020). This could explain a more recent recovery in 

woodland bird connectivity from 2005 onwards. The UK is planning to increase forestry 

substantially by at least 30,000ha per year cover under the net-zero 2050 target to reduce 

carbon emissions (Committee on Climate Change 2020; Defra 2020b). Increasing the size 

and quality of habitat patches can increase the abundance of source populations (Hodgson et 

al. 2011), which plays an important role in promoting connectivity across the landscape 

(Robertson et al. 2018) and could lead to further recovery of woodland bird populations.  

In addition to changes in landscape structure affecting source population size and improving 

landscape permeability, functional connectivity might also be explained by changes in 

individual movement capacity. However, although there is evidence of evolution in 

movement capacity related to physiological changes (e.g. wing-thorax ratio, see Simmons 

and Thomas 2004; and Hughes et al. 2007), there is no reported evidence of increased 

movement capacity over time. In fact, some evidence suggests that at high-latitudes insects 

may be getting smaller over time (Bowden et al. 2015). Therefore, we anticipate our UK 

results most likely due to changing structural connectivity related to changes in the landscape 

character, which could be mediated through habitat management (Hanski 1998). 

Increasing synchrony has been suggested to be a ‘double-edged sword’, where it is associated 

with increased extinction risk (Heino et al. 1997). But in practice, absolute levels of 

symphony are low enough that synchronous extinction seems unlikely (e.g. in our data 

absolute Pearson correlations have low median values of 0.3, 0.1, and 0.03 for UKBMS, 

CBC, and BBS datasets respectively).  Also, studies considering the association between 
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synchrony and extinction often fail to consider that synchrony is not the driving factor: where 

populations are highly synchronised (e.g. at range edges; Mills et al. 2017) then weather is 

the driving factor causing population declines and synchrony is simply the shared response to 

this driver.  Hence, increasing population synchrony arising from enhanced landscape 

connectivity is unlikely to increase extinction risk, but, instead, can actually make meta-

populations more robust, as confirmed by substantial theoretical and empirical work (Hanski 

1998). 

Our approach of measuring functional connectivity has some limitations. Firstly, measuring 

cross-correlations between pairs of sites requires a large amount long-term site-based 

monitoring data to capture the picture of population synchrony across a large spatial scale. To 

maximise our site data, we include sites which are newly added to the monitoring schemes. 

However, we included a random effect for site pair ID to account for the identity of 

monitoring sites varying through time, and therefore allowing utilisation of data from newly 

added sites. Secondly, although we find evidence that spatial autocorrelation in climate is 

driving temporal trends in population synchrony, as per previous research (Sheppard et al. 

2016; Shestakova et al. 2016; Black et al. 2018; Dallas et al. 2020), it is possible that there 

are other climate variables influencing population synchrony which we have not accounted 

for. For example, previous research has shown that the number of frost nights can cause 

declines in the population abundance of wrens (Bellamy et al. 2003). However, researchers 

found the same relationship using mean winter temperature as an explanatory variable, as this 

measure is highly correlated with the number of frost days. Future analysis could use a 

species-specific approach tailoring specific climate variables (both type of variable and the 

time window of measurement) to each species, but we expect it would produce broadly 

similar results as we have here as it is likely that our seasonal temperature and rainfall 

variables are correlated with species-specific climate variables.  

In conclusion, our proposed indicator based on population synchrony offers a data-driven 

approach to measuring functional connectivity using widely available abundance data which 

can be updated annually. Although population synchrony is driven by shared environmental 

conditions, once accounted for, residual population synchrony has been shown to reflect the 

movement of individuals. This suggests that the temporal trend in population synchrony can 

be a useful conservation metric for tracking functional connectivity which can be updated 

annually. Further research linking species’ movement capacity with temporal trends in 
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population synchrony would add further evidence to the use of this indicator in facilitating 

more targeted landscape conservation management.  
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Chapter 3. Disentangling how climate and dispersal drive temporal trends in population 

synchrony 

3.1 Abstract 

Synchronised population dynamics are driven by a combination of shared environmental 

conditions and the movements of individuals between sites. Untangling the drivers of 

population synchrony requires investigation of how populations are correlated across space 

and time in relation to climate and mobility-related attributes. Here, we use species survey 

data and from over four decades to investigate average levels and temporal trends in 

population synchrony for 58 British bird and butterfly species. We first show that population 

synchrony is significantly associated with synchrony in some seasonal climatic variables. 

Once we accounted for spatiotemporal climatic patterns, we could determine whether 

temporal trends in population synchrony were related to mobility-related attributes. We tested 

this through an interspecies comparison using three mobility-related attributes: biotope 

specialism, estimated species mobility, and local abundance change, which is known to affect 

emigration rate. We show that temporal trends in population synchrony were most marked for 

butterfly species that had changed in their mean abundance, and for bird species with high 

estimated mobility. Population synchrony was also often strongly related to distance between 

sites reflecting both the effects of shared climate and movement frequency. Our results reveal 

a consistent effect of mobility attributes and abundance patterns on population synchrony 

over time, after accounting for climate as a confounding effect, therefore adding to the 

growing body of literature that dispersal can synchronise populations across space and time.

3.2 Introduction 

Population synchrony, measured as the correlation in abundance between spatially separated 

populations over time, is exhibited in many taxonomic groups including insects (Sutcliffe et 

al. 1996), fish (Cheal et al. 2007), birds (Paradis et al. 2000; Bellamy et al. 2003; Kerlin et 

al. 2007), plants (Kiviniemi & Löfgren 2009), and mammals (Swanson & Johnson 1999). 

Synchronous population dynamics can be driven by a variety of factors, including dispersal 

(Ripa 2000), environmental factors (Moran 1953; Ranta et al. 1997), and trophic interactions 

(Ims & Andreassen 2000). Spatial synchrony is thought to be important for the long-term 

viability of metapopulations as synchronised population dynamics prevent poorly performing 
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populations being rescued by populations increasing in abundance, and increasing the risk of 

extinction (Heino et al. 1997). Therefore, it is crucial to measure how spatial population 

synchrony is changing across time, as well as whether such changes can be attributed to the 

two key drivers, dispersal, and climate.  

Previous research has shown theoretical and empirical support that shared environmental 

conditions as the driver of population synchrony, i.e. the ‘Moran effect’ (Moran 1953; 

Koenig 2002), which declines with increasing distance between populations, partly due to 

spatial autocorrelation in climatic conditions (Hanski & Woiwod 1993; Roland & Matter 

2007; Powney et al. 2011). Additional research has shown that populations are more 

synchronised if they occupy similar habitat types (Powney et al. 2010, 2011) or are situated 

at geographic range margins (Powney et al. 2010; Mills et al. 2017), which can lead to 

increased climatic constraints on marginal populations, reducing the availability of suitable 

microhabitats (Powney et al. 2010; Oliver et al. 2014). To explain changes in population 

synchrony over time, several studies have concluded that climate is a major driver of 

temporal trends (Sheppard et al. 2016; Shestakova et al. 2016; Black et al. 2018b; Hansen et 

al. 2020). For example, climate change could be driving an increased frequency of extreme 

weather events, leading to greater synchronised population dynamics (Black et al. 2018b). In 

addition, there may be temporal trends in the degree of spatial autocorrelation in climate 

(Post & Forchhammer 2004).  

There is also significant evidence that the movement of individuals between populations also 

leads to increased synchrony in population dynamics (Hanski 1998, e.g. Ranta et al. 2008). 

Density-dependent emigration of individuals can link populations, leading to fluctuations in 

population synchrony (Ranta et al. 1995). Empirical evidence has shown that population 

dynamics in different locations are more synchronised for species with high estimated 

dispersal ability (as measured using mark-release-recapture, Paradis et al. 1999; Bellamy et 

al. 2003; expert opinion, Sutcliffe et al. 1996; or using dispersal-related traits as a proxy for 

dispersal ability, Tittler et al. 2009). More abundant species also often have higher levels of 

population synchrony (Paradis et al. 1999, 2000; Bellamy et al. 2003), due to higher 

‘propagule pressure’ (emigration of individuals) facilitating the spread of populations (Hanski 

1998). We would therefore expect biotype generalist species who use a broad range of habitat 

types to have high levels of average population synchrony. Additional research has found 

correlations between population synchrony and landscape suitability (Powney et al. 2011, 
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2012), demonstrating the sensitivity of population synchrony to the movement of individuals. 

Recent evidence has also shown that residual synchrony reflects actual movements of 

individuals measured using mark-release-recapture (Oliver et al. 2017). 

Few studies have attempted to disentangle the role of dispersal from environmental effects. 

Kendall et al. (2000) found strong interactions between dispersal and the correlated 

environment which cause greater synchrony between populations. Climate can have direct 

impacts on population synchrony as described above, but can also influence synchrony 

indirectly through climate induced changes in dispersal (Hansen et al. 2020). However, there 

has been no attempt to disentangle dispersal and climate and determine whether dispersal is 

driving temporal trends in population synchrony after accounting for the direct impact of the 

Moran effect.    

To investigate this, we calculated both average levels, and temporal trends, in population 

synchrony for 58 British birds and butterflies using long-term monitoring datasets from 1980-

2016 for a total of 3,306 sites across Great Britain. We use data from three monitoring 

schemes: the UK Butterfly Monitoring Scheme (hereafter UKBMS), the Common Birds 

Census (hereafter CBC), and the Breeding Bird Survey (hereafter BBS). We develop 

approaches to account for spatiotemporal climatic patterns that drive correlated population 

dynamics, i.e., the Moran effect. After accounting for these effects of climate, we produce a 

residual temporal trend in population synchrony that we hypothesise is related to changes in 

inter-site movement frequency. This is then tested through an interspecies comparison where 

we predict that certain types of species differ in average and temporal levels of population 

synchrony. Namely, using three movement-related species attributes: specialism, mobility, 

and population abundance, we predict that generalist species, with higher mobility and higher 

mean abundance will have higher average levels of population synchrony and show greater 

changes in synchrony over time (Table 3.1).  
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Table 3.1 Table of hypotheses for species attributes and control variables in relation to both 

average levels and temporal trends in synchrony. Ticks and dashes represent whether the 

hypothesis was supported or rejected respectively, and crosses indicate that the opposite 

result was found. Brackets indicate an accepted hypothesis for one time period. 

Explanatory 

variable 

Response 

variable 
Hypothesis 

Shown by  

previous authors 
Butterflies 

Birds 

CBC BBS 

Biotype 

specialism 

Average 

synchrony 

Generalists have 

higher  

levels of average 

synchrony 

 – – – 

Change in 

synchrony 

  
✓ ✓ ✓ 

Mobility 

Average 

synchrony 

More mobile 

species have  

higher average 

levels of 

synchrony 

Bellamy et al., 2003 

Paradis et al., 1999 

Sutcliffe et al., 1996 

✓ – – 

Change in 

synchrony 

  (✓) – ✓ 

Abundance 

Average 

synchrony 

More common 

species  

have higher 

average levels of 

synchrony 

Bellamy et al., 2003 

Paradis et al., 1999 

Paradis et al., 2000 
– ✓ – 

Change in 

synchrony 

Species increasing 

in abundance also 

increase in 

synchrony over 

time 

 (✓) – – 
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3.3 Methods 

3.3.1 Data collation 

Butterfly data were derived from the United Kingdom Butterfly Monitoring Scheme 

(UKBMS) (Pollard & Yates 1993). UKBMS transects are walked by trained volunteers who 

survey 5m-wide strip transects for 26 weeks between April and September recording all 

butterflies observed. Further details can be found in Pollard and Yates (1993) and in Rothery 

and Roy (2001). An index of abundance for each butterfly species for each transect, each year 

from 1980-2016, was extracted from the UKBMS database. To ensure adequate data for 

analysis, resident butterfly species which had at least 75% of years with 50 sites or more 

sampled per year were included in the analysis.  

Woodland bird abundance data were derived from two datasets, the Common Birds Census 

(CBC) and the Breeding Bird Survey (BBS). The CBC monitoring scheme monitored 

population trends for British breeding birds from 1962 until 2000 (Marchant 1990). 

Volunteer observers undertook repeated surveys between 8 and 10 times a year between late 

March and early July, recording all species seen or heard at each site. The BBS has monitored 

birds since 1994, where two 1km transects are visited twice a year, once between April and 

mid-May (early visit), and once between mid-May and the end of June (late visit) and all 

birds seen or heard are recorded (Harris et al. 2018). The total number of adult birds of each 

species for each site and each visit are calculated for each year. We obtained the maximum 

number of adult birds across all visits at each site for the years 1980-2000 from the CBC and 

1994-2016 from the BBS. Species which had at least 75% of years with 50 sites or more 

sampled per year were included in the analysis.  

In addition to interannual fluctuations in population size, raw abundance values also reflect 

long-term temporal trends arising from drivers such as land use and climate change, therefore 

we used rates of change to focus on interannual population synchrony (Bjørnstad et al. 1999). 

We converted annual abundance values into rate of change as follows: logNt – logNt-1, where 

Nt is the abundance index estimate in time t (Powney et al. 2010). We added one to all 

population counts prior to the growth rate calculation to avoid taking the log of zero.   
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3.3.2 Population synchrony 

For each species, population synchrony between pairs of monitoring sites was estimated as 

the Pearson’s correlation coefficient of yearly population growth rates. To assess temporal 

trends in population synchrony, we repeatedly calculated population synchrony using a 10-

year moving window (Bjørnstad et al. 1999). A 10-year moving window was selected to 

balance the need for a reasonable-length time series to estimate population synchrony versus 

the number of separate windows where we could calculate population synchrony. The 

following pair-wise site combinations were excluded from the analysis: i) for either site, less 

than 7 years of growth rates in common to ensure data quality, ii) for either site with a chain 

of zero growth rates followed by positive growth rates, as this can inflate synchrony values 

and increase Type I errors, and iii) site combinations that were more than 100km apart. 

Although evidence has shown synchrony remains positively associated with landscape 

suitability for sites up to 200km apart (Powney et al. 2011), we selected an upper distance 

limit of 100km for computational feasibility. Additionally, due to computational limitations, 

synchrony was only calculated on BBS sites with at least 10 years of data, and a maximum of 

10,000 random pairs of sites. This represents a subset of sites for species with large amounts 

of data (ranging from 3% to 98% of total available site comparisons with a median of 14%). 

We repeated this process five times to confirm that each subset adequately represented the 

whole dataset (Figure B1). The resulting dataset had population synchrony values for 32 

butterflies from 701 sites between 1980-2016, 26 birds from 106 sites between 1980-2000, 

and 24 birds from 2,499 sites between 1994-2016 (Table B1-B3).  

3.3.3 Climate synchrony 

To determine whether temporal trends in population synchrony are driven by patterns in 

climatic synchrony over time, we measured synchrony of mean temperature and mean 

precipitation for each season (i.e. eight variables) using 5km gridded climate data from (Met 

Office et al. 2017). We converted population synchrony sites from 1km to 5km grid squares 

and matched these to climate data for each of the three datasets. Synchrony was calculated 

using the same method as population synchrony, i.e., calculating a Pearson’s correlation 

metric for each climate variable between each pair of monitoring sites for grid squares using 

a 10-year moving window. The resulting dataset had climate synchrony values for 4 seasons 

from 686 UKBMS sites from 1980-2016, 106 CBC sites from 1980-2000 and 2490 BBS sites 

from 1994-2016 (Figure B2).  
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3.3.4 Control variables 

To control for known drivers of population synchrony, three attributes were calculated for 

each pair of sites, in each dataset. First, distance was calculated as the Euclidean distance 

(km) between each pair of sites. Second, northerliness was calculated as the mean Northing 

(km from Ordnance Survey National Grid) between each pair of sites. Finally, we used a 

Renkonen’s percentage similarity index to calculate habitat similarity of a 500m buffer 

surrounding each focal pair of sites (Renkonen 1938; Jost et al. 2011). The index was bound 

between 0 and 1, with a value of 1 for two sites surrounded by the same habitat composition, 

and 0 being completely distinct compositions. Habitat data were extracted from the CEH 

Land Cover Map 2007 (Morton et al. 2011) and aggregated to the broad habitat level (10 

habitat biotopes in total). Sites for CBC were primarily woodland sites with woodland type 

recorded as a categorical variable (four types), therefore habitat similarity was calculated as a 

binary variable, with 1 representing a pair of sites with the same woodland type and 0 

representing a pair of sites with different woodland types.  

3.3.5 Species attributes 

We selected three species attributes: biotype specialisation, mobility, and abundance, to relate 

to levels of population synchrony. For biotype specialisation, butterflies were split into either 

wider countryside or habitat specialist species (Asher et al. 2001) and birds were classified 

into either woodland generalists or specialists (Defra 2017). Mobility ranks for butterflies 

were obtained from (Wilson et al. 2004) and breeding dispersal distances for birds were taken 

from (Paradis et al. 1998). We obtained two measures of abundance: average abundance and 

change in abundance over time. Our measure of average abundance for butterflies uses the 

Wider Countryside Butterfly Survey (WCBS) (Brereton et al. 2011) which has run since 

2009 where volunteers visit sites 2-4 times a year counting along two parallel 1km transects. 

For our measure of average butterfly abundance, we calculated the mean abundance for each 

species between 2009-2016. For birds, we used national population estimates from 

(Musgrove et al. 2013). The change in abundance for butterflies uses the UKBMS Collated 

Index data which is a national annual index for each species for each year derived using a 

statistical model (Moss & Pollard 1993; Rothery & Roy 2001). We calculated the mean 

difference in abundance between two independent 10-year windows: 1980-1989 and 1995-

2004 to represent the change in abundance for the first two decades, and between 1995-2004 

and 2007-2016 for the latter two decades for each species. For the CBC, we calculated mean 
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difference in abundance between 1980-1989 and 1991-2000 for each species. For the BBS, 

we calculated mean difference in abundance between 1994-2003 and 2007-2016 for each 

species. All species were firstly classified as either increasing or decreasing in abundance 

over time regardless of significance. Secondly, we used a t-test to determine whether species 

had significantly increased or decreased in abundance and removed species from the analysis 

which showed no significant change in abundance over time. The analysis was run on both 

non-significant abundance changes and significant abundance changes. Attribute data was 

missing for some species, see Supplementary Material tables B1, B2 and B3 for a list of all 

species and associated attributes. 

3.3.6 Statistical analysis 

All statistical analysis was carried out using R 3.5.0 (R Core Team 2018).  

Accounting for climatic synchrony 

Initially, we sought to account for variation in population synchrony that could be attributed 

to climate synchrony, not to infer which climate variables were important. We found no 

evidence for collinearity between each climate synchrony variable for each dataset. We fitted 

a mixed effects model using the lme4 package (Bates et al. 2015) to each of the three 

monitoring datasets separately (‘all species models’). Each model contained population 

synchrony values for every pair-wise site comparison for each species as the response 

variable, the mid-year of each moving window as a categorical fixed effect, and each of the 

eight climate synchrony variables as continuous fixed effects. Species and pair ID of the sites 

were included as random intercepts to account for repeated measures and the number and 

identity of monitoring sites varying through time. Any climate variable with a significant 

relationship with population synchrony (p<0.05) was included as a covariate in future 

analyses to account for climatic effects. We note that this approach could be conservative as 

we may be less likely to detect other patterns in population synchrony than if we had 

attempted to avoid any possible overfitting.  

Secondly, we investigated for evidence of increasing variance in climate over time over the 

study period. We used an F-test to determine whether the variation in seasonal mean 

temperature and total precipitation for each season differed between 1985-2000 and 2000-

2012.  



 

 

38 

 

Population synchrony and species attributes 

To understand whether each species attributes could explain differences in population 

synchrony between species, we fitted a variant of the all species model for each dataset, by 

including distance, habitat similarity, mean northerliness, and the significant climate 

synchrony variable (unique for each dataset) as continuous fixed effects to account for known 

drivers of population synchrony. Each attribute was included as an additional fixed effect and 

placed into three separate models, one for each attribute (biotope specialism as a fixed 

categorical effect and mobility and average abundance as fixed continuous effects). All 

continuous fixed effects were standardised to zero mean and one standard deviation. To 

ensure that population synchrony was not being driven by phylogenetic relatedness, we tested 

for an additional effect of family and genus in the all-species models for each dataset. We did 

not find a significant result for butterflies or BBS birds, but family was significant for CBC 

birds. Hence this variable was added as a random effect unless we obtained singular fit errors 

where we removed the family random effect and found no qualitative difference in results 

between the two models. We also included an interaction between the mid-year of the 

moving window and each species attribute in separate models for each attribute. This 

determined whether certain types of species were increasing or decreasing in population 

synchrony between two non-overlapping 10-year periods. This was repeated using abundance 

change categories obtained from both the non-significant abundance changes and significant 

abundance changes over time. Since synchrony measures of pair-wise sites are not 

independent, to obtain p-values we ran 1,000 permutation tests (e.g. see Powney et al. 2012) 

on each species to determine the significance of change in synchrony between the two 

comparison years. At each permutation, the predictor variable (species attribute) was 

randomised, and a linear mixed effects model fitted, and the F-values extracted. We plotted 

the frequency distribution of the F-values and calculated the p-values for each predictor 

variable based on the position of the observed vs. simulated values (e.g. a value in the top 5% 

of the F-value frequency distribution would have a significant p-value of <0.05). 

All models are described using mathematical notation in Supplementary Material B1. 
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3.4 Results 

3.4.1 Climate accounts for variation in population synchrony 

We selected which climate synchrony variables explained a significant amount of variation in 

population synchrony for each dataset. For UKBMS, we selected all eight climate synchrony 

variables (R2 = 0.00035) (Table B4). For CBC birds, only summer temperature was included 

(R2 = 0.00024) and for BBS birds, spring, autumn, and winter rainfall were selected (R2 = 

0.000014) (Table B4). These variables were included in all future models as fixed effects to 

account for the relationship between climate and population synchrony. We found no 

significant results to suggest that variation in seasonal mean temperature and rainfall has 

differed between 1985-2000 and 2000-2012 (Table B5). 

3.4.2 Associations with species attributes 

With regards to biotope specialism, we did not find any significant relationship with average 

levels of synchrony for butterflies or birds (Figure 3.1). For butterflies we found a significant 

result of specialism on the temporal trend in synchrony, with generalists showing a greater 

decline in synchrony between 1985 and 2000 compared to specialists (Fig. 3.2a) and showing 

the greatest recovery in synchrony between 2000 and 2012 (Table B6). For BBS birds, we 

found that generalist birds show a slightly steeper decline in synchrony compared to 

specialists under the BBS dataset (Table B8), however this result was non-significant when 

permutation tests were run (Table B9). In comparison, CBC specialist species increase in 

synchrony between 1985 and 1996, whereas generalists show no change (Table B7).  
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Figure 3.1. Standardised regression coefficients from mixed effects models with average 

synchrony as the response variable and species attributes as fixed effects. Symbols mark the 

regression coefficients for each fixed effect and error bars mark the 95% confidence intervals. 

A positive coefficient indicates that a higher level of a given species attribute (e.g., higher 

mean species abundance) is associated with greater synchrony in population dynamics 

between sites for that species. 
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Figure 3.2. The change in population synchrony over time for butterflies in relation to (a) 

biotype specialism and (b) change in abundance. Grey points represent each species raw data 

with standard error bars, and black points represent the slope (i.e. change in synchrony over 

time) from the mixed effects models with their associated standard errors. Grey points were 

scattered randomly with a small deviation to increase clarity. 
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With regards to estimated mobility of species, our analysis also showed that butterfly species 

which are more mobile have higher average levels of synchrony (Fig. 3.1). Average 

synchrony for birds was not related to dispersal ability (Fig. 3.1), however birds which have a 

high dispersal distance show marked increases in synchrony over time (in the BBS dataset), 

whereas those with low dispersal ability have declined (Fig. 3.3). The recovery in synchrony 

between 2000 and 2012 was best for butterflies with high mobility (Table B6).  

Figure 3.3. Change in population synchrony over time for BBS birds in relation to dispersal 

distance (standardised with a mean of zero and standard deviation of one). Grey points 

represent each species raw data with standard error bars, and solid line represent the slope 

(i.e. change in synchrony over time) for each dispersal distance from the mixed effects 

models with their associated standard error. Points on the x-axis were scattered randomly 

with a small deviation to increase clarity.
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In relation to mean abundance of species, we found that more common CBC birds had higher 

average levels of population synchrony, but we did not find any significant effects for BBS 

birds or butterflies (Fig. 3.1). However, between 2000 and 2012, butterflies which increased 

in abundance also increased in population synchrony more rapidly than those which declined 

in abundance (Fig. 3.2b). We did not find any significant results for birds (Table B7 & B8). 

When only using species with significant changes in abundance over time, we found that   

butterflies that had significantly increased in abundance over time had increased in synchrony 

over time between 1985 and 2000 but declined in synchrony between 2000 and 2012 (Figure 

B3), opposite to the result when non-significant abundance changes are included. For CBC 

birds, species with significant increases in abundance over time also increased in population 

synchrony faster than those showing significant decreased in abundance (Figure B4), 

however this result was marginally significant (Table B7). We found no significant result for 

BBS using significant changes in abundance over time (Table B8). However, our sample size 

for significant changes in abundance was smaller (n=9 for butterflies between 1985 and 2000, 

n=10 for butterflies between 2000 and 2012, n=20 for CBC birds, and n=17 for BBS birds).     

3.5 Discussion 

We present the first evidence to disentangle the relative role of dispersal in population 

synchrony trends while accounting for climatic effects, for multiple species over time. We 

found patterns in population synchrony clearly associated with synchrony in temperature and 

rainfall. However, once these variables were accounted for, we found several clear 

relationships between population synchrony and mobility-related attributes.  

Previous research has shown parallel increases in population synchrony and environmental 

synchrony, suggesting a potential role of the Moran effect in driving shared population 

dynamics over time (Koenig & Liebhold 2016; Sheppard et al. 2016; Shestakova et al. 2016; 

Kahilainen et al. 2018). Here, we show that population synchrony is significantly associated 

with synchrony in some seasonal climatic variables. For butterflies, each of the eight climate 

variables tested were individually associated with population synchrony, whereas for the BBS 

dataset, only three rainfall variables were significant and for CBC birds only summer 

temperature (Table B4). This provides convincing evidence that synchrony in temperature 

and rainfall play a role in driving shared population dynamics (Koenig 2002; Post & 

Forchhammer 2004; Koenig & Liebhold 2016; Sheppard et al. 2016). Previous studies have 
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shown that monitoring sites which are closer together, share similar habitat, and are situated 

closer to species’ range margin have higher mean synchrony values (Sutcliffe et al. 1996, 

Roland and Matter 2007, Powney et al. 2010; Hordley et al., in prep.). Increased variation in 

climate can cause extreme population crashes (Palmer et al. 2017) and drive more 

synchronised populations (Pomara & Zuckerberg 2017; Black et al. 2018b). However, we 

found no evidence for in changes in climate variability over time (Table B5), suggesting that 

climate extremes are unlikely to be driving trends in shared population dynamics in our 

current dataset.  

Once synchrony in temperature and rainfall was accounted for, generalist butterflies showed 

the greatest changes in population synchrony over time, demonstrating the greatest decline in 

synchrony in the first two decades of our data, followed by the most rapid recovery in the 

latter two decades (Table B6). Generalist butterflies have increased their geographic 

distribution in recent years (Warren et al. 2001) and may be responsive to changes in the 

wider landscape because their host plants occur more widely. For example, landscape context 

up to 10km around sites has been shown to be important in influencing the population 

dynamics of generalist butterflies, whilst specialist species respond to more localised aspects 

of landscape structure (Oliver et al. 2010). As such, generalist butterflies tend to be more 

mobile, suggesting that changes in population synchrony for generalist butterflies is due to 

their greater ability to move across the landscape. In contrast, we found that specialist birds 

showed a different pattern, with increases in synchrony across the latter two decades of our 

study (Table B7). Most specialist bird species in our study are also migrants, which spend 

winter months in Europe and Africa (e.g. blackcap and chiffchaff) (Hewson & Noble 2009). 

Migrant species have also been shown to disperse further than resident species (Paradis et al. 

1998), hence could show greater increases in population synchrony over time as population 

synchrony is being driven by movement through migration, as opposed to local movements.  

Regarding the mobility of species, we find that more mobile butterflies have higher average 

levels of population synchrony, providing further evidence that dispersal is a key driver of 

shared population dynamics (Sutcliffe et al. 1996; Paradis et al. 1999, 2000; Bellamy et al. 

2003; Chevalier et al. 2014). We also found that birds with higher dispersal distance have 

increased in synchrony across the latter two decades, whereas species with a lower dispersal 

distance have declined in synchrony (Fig. 3.3). This could be a context-dependent response to 

environmental factors, where the landscape structure and/or climate conditions benefit more 
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mobile species but hinder less mobile species. In addition, recovery of synchrony in 

butterflies was most marked in more mobile butterflies during the latter decade of our study, 

a similar result to those found for generalist butterflies (Table B6). 

Regarding the abundance of species, we found that more common birds show higher levels of 

average synchrony (Paradis et al. 1999, 2000; Bellamy et al. 2003). Additionally, we found 

that butterflies which have increased in abundance over time have shown strong increases in 

population synchrony during the latter decade of our study (Fig. 3.2b). This is consistent with 

the explanation that changes in density-dependent emigration can facilitate the spread of 

individuals (Hanski 1998; Roland et al. 2000). This potentially offers an avenue for in-situ 

conservation to enable connectivity between habitat patches (Hodgson et al. 2011).   

After accounting for synchrony in temperature and rainfall, our results are consistent with the 

view that changes in population synchrony are influenced by mobility-related attributes 

(Table 3.1). But the strength of density regulation between populations can affect how well 

dispersal contributes to population synchrony (Lande et al. 1999; Hansen et al. 2020). If 

populations are weakly regulated by density, dispersal can increase the scale of population 

synchrony even if individual dispersal is low (Lande et al. 1999). Hence understanding the 

strength of density dependence can help further examine the role of dispersal in 

synchronising population dynamics. Furthermore, although we account for the direct impact 

of climate on population synchrony, climate could be indirectly driving synchronised 

population dynamics by altering dispersal rates, or by influencing habitat fragmentation 

which can disrupt dispersal patterns (Hansen et al. 2020). It should also be considered that a 

number of expected patterns showed non-significant results, which could be due to low 

statistical power where a large number of interacting factors affect population dynamics 

causing lower effect sizes. 

We found a greater number of significant results overall for butterflies compared to birds. 

This could be explained by CBC having many fewer sites in total and only 8-10 visits per 

year, and BBS having only two site visits per year with over three times the number of sites 

compared to UKBMS sites. Fewer site visits per year leads to higher uncertainty around 

annual indices of population size, making patterns of local abundance and synchrony much 

harder to detect. Although we find several significant results, our effect sizes are low (Table 

B6-B8). This could be due to some climate variables being unaccounted for that are be 

driving species population synchrony patterns. However, seasonal temperature and rainfall 
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have been shown to capture other climate variables, for example, the decline of wren 

populations with the number of frost nights can also be captured using mean winter 

temperature (Bellamy et al. 2003). Therefore, we are likely to have similar results as we have 

here using seasonal temperature and rainfall variables if we used species-specific climate 

variables.  

In conclusion, our exploratory analyses reveal a consistent effect of mobility-related 

attributes and abundance patterns on population synchrony over time, after accounting for 

seasonal temperature and rainfall as a confounding effect. This contributes to our 

understanding of the mechanisms driving population synchrony, adding to the growing body 

of literature that dispersal can synchronise populations, although accounting for additional 

drivers such as shared environmental conditions is key. 
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Chapter 4. Diversity of response and effect traits provides complementary information 

about avian community dynamics linked to ecological function 

4.1 Abstract 

Functional diversity metrics based on species traits are widely used to investigate ecosystem 

functioning. In theory, such metrics have different implications depending on whether they 

are calculated from traits mediating responses to environmental change (response traits) or 

those regulating function (effect traits), yet trait choice in diversity metrics is rarely 

scrutinized. Here, we compile effect and response traits for British bird species supplying two 

key ecological services – seed dispersal and insect predation – to assess the relationship 

between functional diversity and both mean and stability of community abundance over time. 

As predicted, functional diversity correlates with stability in community abundance of seed 

dispersers when calculated using response traits. However, we found a negative relationship 

between functional diversity and mean community abundance of seed dispersers when 

calculated using effect traits. Subsequently, when combining all traits together, we found 

inconsistent results with functional diversity correlating with reduced stability in insectivores, 

but greater stability in seed dispersers. Our findings suggest that trait choice should be 

considered more carefully when applying such metrics in ecosystem management. 

4.2 Introduction 

Ecosystem services, and the functions underpinning them, are crucial for human survival 

(Millennium Ecosystem Assessment, 2005). There is now unequivocal evidence that 

biodiversity enhances the provision of ecosystem functions (Loreau et al. 2001; Hooper et al. 

2005; Tilman et al. 2014; Delgado-Baquerizo et al. 2020), and due to human activity we are 

losing biodiversity, thus threatening the delivery of ecosystem functions across the globe 

(Cardinale et al. 2012; IPBES 2019). Initial research into the relationship between 

biodiversity and ecosystem function used basic measures such as species richness, which 

provide relatively crude information about the differences between species and their 

ecological functions (Díaz & Cabido 2001). To provide further insight, ecologists now more 

commonly estimate the extent of functional differences in a community (i.e. functional 

diversity) using functional traits that reflect differences in species’ resource use as well as 

their responses to environmental change (Hooper et al. 2005; Violle et al. 2007b; Cadotte et 
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al. 2011). Previous analyses have shown that such measures of functional trait diversity 

perform better than species richness in predicting key aspects of ecosystem function (Gagic et 

al. 2015). However, the trait-based approach is sensitive to a number of methodological 

details, including the number and type of traits available for each species.  

The choice of traits is a key factor in particular because it can influence the ability of 

functional diversity estimates to predict ecosystem processes (Petchey & Gaston 2006; 

Petchey et al. 2009; Lefcheck et al. 2015; Maire et al. 2015). Different combinations of traits 

affect the strength of association between functional diversity indices and basic ecosystem 

properties such as species richness (Zhu et al. 2017). Furthermore, different categories of 

traits may provide insight into contrasting aspects of biodiversity related to ecosystem 

function (Tobias et al. 2020). For example, ecologists investigating the impacts of 

environmental change increasingly use traits that reflect species’ responses to environmental 

conditions (i.e. ‘response traits’) for example traits relating to species’ reproductive effect 

(Luck et al. 2012). On the other hand, to understand the relationship between functional 

diversity and ecosystem functioning, ecologists use traits that determine the effect a species 

has on ecosystem functioning (i.e. ‘effect traits’), for example bill morphology (Luck et al. 

2012). However some features act simultaneously as an effect and response trait (e.g. body 

size, Luck et al. 2012; Díaz et al. 2013). Since multivariate functional diversity metrics 

routinely combine response and effect traits to produce a single index (Gagic et al. 2015), it is 

not clear whether additional information could be obtained from calculating response and 

effect trait diversity separately. 

From ecological theory, we would expect communities with a high diversity of response traits 

to have more stable ecological function, based on the insurance hypothesis where greater 

response diversity buffers ecosystems against the loss of function caused by environmental 

change (Yachi & Loreau 1999). Communities with high response diversity will have a more 

diverse set of environmental requirements and tolerances, resulting in asynchronous 

community dynamics leading to increased community stability (Yachi & Loreau 1999; 

Loreau & de Mazancourt 2013). This association has been observed in many real-world 

systems (Elmqvist et al. 2003; Catano et al. 2020), including wild bee populations wherein 

increased response diversity – measured by changes in species’ abundance after perturbations 

– contributes to the stability of pollinator abundance (Winfree & Kremen 2009). On the other 

hand, communities with high diversity of effect traits are expected to have higher mean levels 
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of ecosystem function delivery, thereby enhancing ecosystem service provision; for example, 

providing greater levels of pollen transfer in a given year, reducing the likelihood of 

pollination deficit and reduced crop yield. Such communities may deliver ecosystem services 

more efficiently because higher niche partitioning and reduced competitive exclusion allows 

species to coexist and have larger populations (Macarthur & Levins 1967; Cardinale 2011). 

In practice, the mean and stability of ecosystem functions provided over time are related 

(Oliver et al. 2015b; Redhead et al. 2020). For example, Garibaldi et al. (2011) found 

pollinator communities with low abundance provided less stable and lower rates of 

pollination services, which could be driven by low response diversity. However, it has not yet 

been investigated whether functional diversity metrics calculated using different 

combinations of response and effect traits provide different insights into the functioning of 

ecological communities, despite the growing use of functional diversity metrics in guiding 

ecosystem restoration (Cadotte et al. 2011; Manning et al. 2019). 

Here, we compiled data on the ecological and morphological traits of functionally important 

bird species to examine how long-term community dynamics are related to the diversity of 

response and effect traits. We focus on 105 British bird species that provide two key 

ecosystem functions: seed dispersal and insect predation. In the absence of direct measures of 

these functions, and their variation over time, we analyse the total abundance of the relevant 

community. We do not presume that total abundance equates to ecosystem functioning, 

simply that the two are related (Kleijn et al. 2015; Winfree et al. 2015). Total community 

abundance refers to the total number of individuals contributing a particular function within a 

community, often related to biomass, and is a good predictor of ecosystem functioning in a 

variety of ecosystems (Grime 1998; Smith & Knapp 2003; Dangles & Malmqvist 2004). The 

link between total community abundance and any particular ecosystem function can arise due 

to the ‘mass ratio hypothesis’ whereby the level of function delivered is driven by the most 

common species in a community (Grime 1998). This is supported by empirical evidence in 

pollination systems where dominant species provide greater ecosystem services than rarer 

species (Kleijn et al. 2015; Winfree et al. 2015). Therefore, total community abundance is 

assessed here as an important metric that is relevant to ecosystem functioning. However, we 

recognise that levels of functional redundancy versus complementarity between species, as 

well as the existence of saturating relationships between abundance and ecosystem function, 

can potentially make relationships non-linear. 
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We test whether functional diversity is associated with either the mean or stability of total 

community abundance over time, and how this relationship varies according to whether 

metrics are calculated using response traits, effect traits, or a mix of both. To measure total 

community abundance for each functional group (seed dispersers and insectivores), we use 

Breeding Bird Survey (hereafter BBS) data over 15 breeding seasons (2004–2018) at 200 

sites. We then relate these community dynamics to functional diversity measured using 

functional dispersion (FDIS) (Laliberté & Legendre 2010) using three different combinations 

of traits: i) effect only, ii) response only, and iii) effect only, response only and both (i.e. 

traits classed as both effect and response) traits pooled together (hereafter ‘all traits’). Based 

on the ecological theory outlined above, we test a priori hypotheses where we hypothesize 

that higher functional diversity measured using response traits will provide a more stable 

community abundance, whereas higher functional diversity measured using effect traits will 

have a higher mean community abundance measured as the total community abundance, 

averaged over time. Our goal is to establish how trait choice in functional diversity metrics is 

related to our ability to observe patterns in community structure and dynamics, and thus to 

enable more appropriate use of such metrics in ecosystem management. 

4.3 Methods 

4.3.1 Bird abundance data 

We obtained abundance data from the Breeding Bird Survey (BBS), which has been running 

since 1994 with over 4,000 sites currently monitored. The BBS uses a stratified random 

sampling design with skilled volunteers surveying two parallel 1-km transects twice a year 

(April to early May to capture the early breeding season and late May to June for the late 

breeding season) between 6am and 7am, avoiding poor weather conditions. Birds seen and 

heard are recorded along the two 1-km line transects in four distance categories (0–25 m from 

the line, 25–100 m, >100 m and flying over). Each transect is split into 200-m sections, in 

each of which habitat is recorded using a hierarchical coding system with nine broad 

categories (woodland, scrubland, semi-natural grassland / marsh, farmland, waterbodies, 

human sites, coastal, inland rock, and miscellaneous; Crick 1992). The total number of adult 

birds of each species detected in each 1-km square, i.e. summed over all distance categories, 

and transect sections, are calculated for each year. We obtained complete time series of 

annual abundances for a 15-year period (2004–2018) for 108 species, which represents the 
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time period where the greatest number of BBS sites were surveyed. Abundance data were 

adjusted for detectability, using calculations outlined below by supplementing our data with 

additional BBS transect data.  

4.3.2 Site selection 

Sites were only included if they were surveyed during each of the 15 years (2004-2018) of 

the study. Population dynamics can be mediated by both landscape heterogeneity and 

position in geographic range (Oliver et al. 2010; Mills et al. 2017). These factors also 

influence species richness (Jonsen & Fahrig 1997; Weibull et al. 2000) and functional 

diversity. Sites with higher species richness have been shown to have higher community-

level stability by promoting diversity in their response to environmental fluctuations (Ives et 

al. 2000). Our sampling controlled for these issues by being restricted to one bioclimatic zone 

– i.e. the Atlantic Central (Metzger et al. 2013) – with survey sites distributed evenly along a 

gradient of species richness. Finally, sites were split into 10 categories of increasing species 

richness and 20 random sites from each category of species richness were chosen, resulting in 

200 selected sites (Figure C1).  

4.3.3 Accounting for detectability 

As heterogeneity in detectability may result in biased abundance estimates, we calculated 

detectability estimates for each species-site-visit combination using a distance-sampling 

approach using data for all BBS squares south of 54°N within England and Wales (Buckland 

et al. 2001; Massimino et al. 2015). To estimate site-, visit- and species-specific detection 

probabilities, analysis was conducted at the 200m transect level (assuming that birds on the 

transect line were detected), using the number of individual birds of each species detected in 

each distance band. We then estimated the half-normal detection function for each species, 

with ‘habitat type’ and ‘visit’ as co-variates. Detectability estimates were produced for each 

species, BBS square and visit (early or late). The detectability estimated from this model was 

used to adjust the abundance value at each site (adjusted abundance = observed 

abundance/detectability probability). Finally, the maximum adjusted abundance value of the 

two visits (early and late) were used as the annual measure of abundance at each site (Harris 

et al. 2019). Detectability data were missing for 70 sites and 12 species (Anas querquedula, 

Anthus petrosus, Bucephala clangula, Caprimulgus europaeus, Coccothraustes 

coccothraustes, Coturnix coturnix, Grus grus, Melanitta nigra, Pernis apivorus, Pyrrhocorax 
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pyrrhocorax, Scolopax rusticola, and Turdus iliacus) either due to lack of BBS data to fit a 

detection function, or sites were missing habitat data for at least one year. To deal with this 

we took two approaches. First, we removed the missing data, resulting in the removal of 12 

species and 70 sites from our analysis, resulting in a complete detectability dataset (n = 96 

species and 130 sites). Second, we filled in data gaps in detectability using available data 

from Johnston et al. (2014) for 9 out of the 12 species (removing Grus grus, Melanitta nigra, 

and Pernis apivorus from the analysis). To fill in gaps for the site-species combinations with 

no detectability data (i.e., the 70 sites with missing habitat data), we took the average of non-

missing values for the site-species combinations, resulting in an interpolated dataset (n = 105 

species and 200 sites, with 7.2% of the total dataset interpolated). We ran the analysis 

separately on the complete dataset and the one with interpolated detectability. The two 

datasets produced very similar results, so we present those from the interpolated detectability 

dataset here with the alternative results presented in the tables C10 and C11.  

4.3.4 Functional groups 

We used dietary data for the world’s birds (Tobias & Pigot 2019) to identify species 

performing functions as seed dispersers and insectivores, which include a combination of 

both breeding and non-breeding diets depending on where data were available. Seed 

dispersers included both frugivores and granivores; insectivores included terrestrial 

invertivores (i.e. non-aquatic invertivores) which use a variety of foraging techniques (e.g. 

invertivore glean, invertivore aerial, invertivore ground; Pigot et al. 2020). Specifically, we 

classified species as important seed dispersers if their diets comprised at least 30% of seeds 

and fruit combined, and as insectivores if their diet comprised at least 30% of terrestrial 

invertebrates (see Table C1 for species list and functional group classification). To focus on 

species most closely associated with control of insect populations, we excluded aquatic 

invertivores consuming non-insect prey – including molluscs, crustaceans, annelids worms – 

following more recent published dietary classifications (Pigot et al. 2020).  

4.3.5 Functional traits  

We grouped traits into two types – those that reflect species’ response to environmental 

conditions (i.e. ‘response traits’; Lavorel & Garnier 2002) and those that determine the effect 

species has on ecosystem functioning (i.e. ‘effect traits’; Lavorel & Garnier 2002), with some 

traits occurring in both categories (i.e. ‘both traits’; rationale outlined in Table 1; Luck et al. 
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2012). Our trait selection resulted in four effect traits, seven response traits and five both 

traits (Table 4.1). Where species had missing trait data, we selected congeneric species to fill 

in these gaps, because deleting taxa with missing data can reduce statistical power and lead to 

biased results (Nakagawa & Freckleton 2008). The only gaps in data that needed filling in 

this way were lifespan for Sylvia undata (surrogate species: Sylvia melanocephala) and 

Regulus ignicapillus (surrogate species: Regulus regulus), and gape width for Actitis 

hypoleucos (surrogate species: Actitis macularius). The resulting dataset had 48 seed 

dispersing bird species and 87 insect eating bird species, with some species performing both 

functions, making a combined total of 105 species (Table C1). 
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Table 4.1. Functional traits chosen for the analysis, description of each trait, the category chosen (effect, response or both), the rationale for 

including the trait as either effect, response or both and source of trait data. 

Trait Description Category Rationale Source 

Beak length 
Length from the anterior edge of the nostril to the 

tip of the beak 

Effect 

Bill shape and size predicts the size and type of food (i.e. 

seeds and insects) to be handled and consumed 

(Wheelwright 1985; Luck et al. 2012). 

Pigot et al. 2020 
Beak width 

Width of the beak measured from the anterior edge 

of the nostril 

Beak depth 
Vertical height measured from the anterior edge of 

the nostril 

Gape width The external distance between commissural points 

Species 

specialization 

index 

Coefficient of variation (SD/mean) of the species 

density in six habitat categories – high values 

indicate more specialized species and low values 

indicate more generalized species 

Response 

More specialized species have traits associated with slow 

reproduction (Mckinney & Lockwood 1999) and are less 

able to respond to environmental variation and novel 

environments (Sol et al. 2002). 

Johnston et al. 2014 

Species 

temperature 

index 

Long-term average temperature experienced by 

individuals over its breeding range 

Species temperature index indicates a species climate 

envelope, with warm species better able to adapt to 

increasing temperatures (Devictor et al. 2012).   

Devictor et al. 2012 

Thermal 

maximum 

Mean temperature of the 5% hottest cells of the 

breeding range 

Species with a lower thermal maximum are less tolerant to 

changing climatic conditions and show negative 

population trends (Jiguet et al. 2007) 

Jiguet et al. 2007 

Mean latitude 
The mean latitude of an individual species 

calculated from its geographic range 

Changes in temperature are strongest at northern latitudes, 

hence these species are likely to respond more strongly to 

these changes (Parmesan 2007) 

http://datazone.birdlife.

org/  

http://datazone.birdlife.org/
http://datazone.birdlife.org/
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Trait Description Category Rationale Source 

Lifespan Maximum recorded longevity for a species 

Response 

Long lifespan can be correlated with small clutch size and 

infrequent breeding (Zammuto 1986), therefore species are 

less able to recover from environmental perturbations 

(Luck et al. 2012) 

Myhrvold et al. 2015 

Clutch size Number of eggs per clutch These traits measure the reproductive potential of species, 

and species with high clutch size/multiple broods will 

recover more quickly after an environmental disturbance 

(Newbold et al. 2013) 

Myhrvold et al. 2015 

Number of 

broods 
Number of clutches produced per year 

Myhrvold et al. 2015 

Johnston et al. 2014 

Body mass 
Geometric mean of average values provided for 

both sexes 

Both 

Body size is strongly related to resource use and foraging 

behaviour, hence indicates species’ capacity to consume 

seeds and invertebrates (Luck et al. 2012). 

 

Body mass is also strongly related to reproductive output, 

longevity and dispersal abilities (Luck et al. 2012), and 

hence species’ response to environmental conditions 

Pigot et al. 2020 

Sheard et al. 2020 

Hand-wing 

index 
Aspect ratio of the wing 

Wing and leg morphological traits align with movement or 

dispersal ability, which in turn influences resource use and 

frugivore (Miles et al. 1987; Luck et al. 2012; Sheard et al. 

2020). 

 

These traits also indicate locomotory behaviour (Miles et 

al. 1987) and provide species with the ability to withstand 

environmental changes e.g. disrupted landscape 

connectivity (Luck et al. 2012) 

Kipp’s distance 

The distance between the tip of the longest primary 

and the first secondary feather measured on the 

folded wing 

Wing length 
The distance between the bend of the 

wing and the tip of the longest primary feather 

Tarsus length 
Length from the middle of the rear ankle joint to the 

end of the last scale of acrotarsium 
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4.3.6 Total community abundance of functional groups 

To estimate key aspects of community dynamics, we calculated the mean total community 

abundance and stability of total community abundance over time for both our focal functional 

groups. To calculate mean abundance at each site, we used the total community abundance of 

species in either functional group averaged across all 15 years. To measure stability over 

time, we took the reciprocal of the coefficient of variation in annual abundance, 1/CV (e.g. 

Hautier et al. 2015), also known as invariability (Schlapfer & Schmid 1999). This resulted in 

an estimate of mean total abundance and stability of each functional group for each site.  

4.3.7 Functional diversity metrics 

To visualize trait variation among species, we projected species-level data into a multivariate 

trait space (termed ‘morpho-space’), commonly used to assess the volume of variation in 

functional traits, i.e. functional diversity. To quantify functional diversity at each survey site, 

we used functional dispersion (FDIS) (Laliberté & Legendre 2010) which measures the mean 

distance of all species, weighted by abundance, relative to the community mean trait value. 

While a number of different functional diversity metrics exist, each with different advantages 

and drawbacks, FDIS is less sensitive to species richness per se and more sensitive to the 

overall spread of traits in morpho-space than most alternative metrics (Laliberté & Legendre 

2010) and is widely used in studies of functional diversity in ecological communities 

(Bregman et al. 2016; Cadotte 2017). All functional traits were standardized with a mean of 0 

and standard deviation of 1. As functional traits in birds are often strongly correlated, we 

used a principal component analysis (PCA) to obtain independent trait axes and reduce 

dimensionality (Villéger et al. 2008). PCAs were undertaken separately on three groups of 

traits: effect, response and all traits together (see Tables C2-C7 for trait loadings). Previous 

studies have shown that description of species niche space requires at least a 3-dimensional 

trait morphospace (Maire et al. 2015; Pigot et al. 2020). Hence, we selected a minimum of 3 

PCA axes while also maintaining a minimum of 85% explained variation which resulted in 

three axes for effect traits, four axes for response traits, and five axes for all traits. See figures 

4.1 and 4.2 for the variation in effect and response traits for each ecological function. FDIS 

was calculated for each site using a species x species distance matrix and a matrix containing 

the average abundance of species at each site using the dbFD function (FD package, 

Laliberté et al. 2014). This analysis was undertaken for each functional group separately.  
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Figure 4.1. Variation in effect traits (beak length, width, depth, and gape width) for (a) seed 

dispersers and (b) insectivores. Each point represents a single bird species and each axis is 

derived from a principal component analysis showing percentage of variance in functional 

traits explained. See Tables C2 & C5 for trait loadings. Images reproduced with permission 

from Mike Langman (www.rspb-images.com). 

Figure 4.2. Variation in response traits for (a) seed dispersers and (b) insectivores. Each 

point represents a single bird species and each axis is derived from a principal component 

analysis showing percentage of variance in functional traits explained. Abbreviations as 

follows: SSI— species specialisation index; STI —  species temperature index; mean 

latitude— average latitude calculated from all grid cells in the global geographical range; 

thermal max— mean temperature of the 5% hottest cells of the breeding range. See Tables 

C3 & C6 for trait loadings. Images reproduced with permission from Mike Langman 

(www.rspb-images.com) 

http://www.rspb-images.com/
http://www.rspb-images.com/
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4.3.8 Statistical analysis 

All statistical analysis was undertaken using R version 3.5.3 (R Core Team 2019).  

We fitted linear regression models with either the mean total abundance of species or stability 

of total community abundance over time as the response variable and functional dispersion 

using different combinations of traits as the explanatory variable. Mean and stability 

measures were log-transformed to meet assumptions of normal distribution. As sites that are 

closer together could have more similar abundances, we tested for spatial autocorrelation in 

the residuals from each model. We used the correlog function (ncf package, Bjornstad 2020) 

to estimate the spatial dependence and plot Mantel correlograms, which showed no evidence 

of spatial autocorrelation. Furthermore, we examined the Pearson’s correlation between FDIS 

effect and FDIS response values for both functional groups. The resulting correlation between 

effect and response trait diversity could be due to the co-occurrence of traits within 

individuals, i.e. effect and response traits are positively or negatively correlated within 

individuals – indicated by our simulated communities showing this correlation, or due to 

differences in the composition of the specific communities we observed – indicated by this 

correlation being present in real communities but absent in simulated communities. To test 

for this, we compared the correlations between FDIS effect diversity and FDIS response 

diversity for the observed communities with correlations of simulated communities. We used 

the same species richness at each site over time to select 100 random communities (by 

randomly drawing species) and calculated FDIS using effect traits and response traits 

separately for each simulated community. The Pearson’s correlation coefficients between 

FDIS effect diversity and FDIS response diversity for simulated communities was then 

compared with that of the true observed communities. 

4.4 Results 

4.4.1 Summary statistics 

Species richness at each site ranged from 12 to 35 species for seed dispersing communities, 

and 18 to 56 species for insectivore communities. Total community abundance averaged over 

time for each site ranged from 70.9 to 1432.5 for seed dispersing communities and 107.0 to 

1005.4 for insectivore communities. Stability of total community abundance for each site, as 
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measured by 1/CV, ranged from 1.89 to 11.94 for seed dispersing communities and 1.42 to 

18.72 for insectivore communities.  

4.4.2 Seed dispersers 

We found a positive relationship between response trait diversity and mean total community 

abundance for seed dispersers (Figure 4.3c, Table C8). A similar result was found for ‘all 

trait’ diversity (i.e. both response and effect trait diversity; Figure 4.3b). However, we found 

a negative relationship for effect trait diversity (Figure 4.3a), although this result was non-

significant in the complete case data, i.e. where we removed species and sites where 

detectability could not be estimated (Table C10). For community stability, we found a 

positive relationship with response trait diversity (Figure 4.3f, Table C8), as predicted, and a 

similar result for all trait diversity (Figure 4.3e). However, we found no significant 

relationship with effect trait diversity (Figure 4.3d). These results were the same when we 

used the complete case data (Table C10). Our significant positive results here could have 

been driven by outlying points with high functional diversity driving positive trends (Figure 

4.3b, 4.3c, 4.3e and 4.3f). Therefore, we removed outlying points as identified using Cook’s 

distance with a threshold of D < 4/n. Our results remained the same after these points were 

removed (Figure C2).  

Functional dispersion of effect and response traits were negatively correlated (Pearson’s r = -

0.29, p<0.001; Fig. 4.5a). To understand whether this relationship was due to the relationship 

between the traits themselves or due to differences in the composition of the specific 

communities we observed, we compared this to 100 randomly selected communities of the 

same species richness which showed similar negative relationships (Fig. 4.5a). The average 

correlation coefficient of the 100 iterations was -0.19. We found a weak positive relationship 

between mean and stability of total community abundance of observed communities 

(Pearson’s r=0.39, p<0.001).  
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Figure 4.3. Relationships between the mean total community abundance of seed dispersers 

and functional dispersion (FDIS) of effect traits (a), all traits (b), and FDIS response traits (c). 

Lower panel shows relationships between the temporal stability of total seed disperser 

abundance and functional dispersion of effect traits (d), all traits (e) and response traits (f). In 

both cases results are for 48 birds at 200 sites. Shaded areas around the line show 95% 

confidence intervals around significant slope coefficients (see Table C8). 

 

4.4.3 Insectivores 

For insectivores, we found no significant relationships between functional diversity and mean 

total community abundance (Figure 4.4a-c, Table C9). For community stability, we found a 

negative relationship with effect trait diversity (Figure 4.4d, Table C9) and all trait diversity 

(Figure 4.4e). However, we found no significant relationship with response trait diversity 

(Figure 4.4f). These results were consistent when the complete case data were used (Table 

C11).  

Functional dispersion of effect and response traits were not significantly correlated 

(Pearson’s r = -0.12, p=0.08). When compared to 100 randomly selected communities of the 

same species richness, we found relationships in the same negative direction between 
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functional dispersion of effect and response traits compared to the observed communities 

(Fig. 4.5b). The average correlation coefficient of the 100 iterations was -0.08. We found a 

weak positive relationship between mean and stability of total community abundance of 

observed communities (Pearson’s r=0.26, p<0.001).  

Figure 4.4. Relationships between the mean total abundance of insectivores and functional 

dispersion (FDIS) of effect traits (a), all traits (b), and FDIS response traits (c). Lower panel 

shows relationships between the temporal stability of total insectivore abundance and 

functional dispersion of effect traits (d), all traits (e) and response traits (f) for 87 birds at 200 

sites. Shaded areas around the line show 95% confidence intervals around significant slope 

coefficients (see Table C9).
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Figure 4.5. Correlation between FDIS response traits and FDIS effect traits for (a) seed dispersers and 

(b) insectivores. Red line shows results from observed communities; black lines show results from 

100 randomly selected communities of the same species richness. Grey areas around the lines 

represent 95%  confidence intervals. 

4.5 Discussion 

Our results show that communities of seed dispersers with high response trait diversity have 

more stable total community abundance over time, in line with predictions of the insurance 

hypothesis (Yachi & Loreau 1999). Most existing support for this hypothesis has been found 

in synthetic plant communities, often at small spatial scales (Allan et al. 2011; Pillar et al. 

2013; Craven et al. 2016; van Klink et al. 2019, but see Wilcox et al. 2017). Our finding that 

response trait diversity in assemblages of wild birds can predict stability in a property linked 

closely to ecosystem function suggests that the insurance hypothesis applies more generally 

and at larger spatial scales, with implications for how functional diversity metrics are used in 

ecosystem management (Manning et al. 2019). In particular, the relationship we establish 

between response (but not effect) trait diversity and the stability of total community 

abundance over time suggests that the type of traits used to calculate functional diversity 

metrics influences which aspect of ecosystem function these metrics are likely to reflect. 

Focusing on a different type of trait, we tested the hypothesis that communities with high 

effect trait diversity should have higher mean total community abundance. In other words, an 

assemblage composed of species with divergent niche requirements should have more 

available resources due to reduced interspecific competition, and therefore populations of 

each species may be larger, generating higher total community abundance (Macarthur & 

Levins 1967; Abrams 1983). However, our results run counter to these predictions in that 
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communities of seed dispersers with high effect trait diversity had lower mean total 

community abundance (Figure 4.3a), while effect traits had no significant relationship with 

total abundance of insectivores (Figure 4.4a). Our findings therefore add to a growing 

number of empirical studies finding little support for a positive association between effect 

trait diversity and total community abundance (e.g. see Thompson et al. 2010). This is 

perhaps unsurprising since the core regions of trait morphospace can be densely packed in 

bird assemblages (Pigot et al. 2016b) with trait overdispersion in co-occurring species being 

relatively slight (Ulrich et al. 2017), and mostly at smaller spatial scales (Trisos et al. 2014). 

In addition, vertebrate species at the periphery of morphospace tend to be rarer than those at 

the core (Ripple et al. 2017), suggesting that assemblages with a higher proportion of 

morphologically unusual species may have fewer individuals, perhaps explaining the 

negative relationship we detected between effect diversity and community abundance in 

avian seed dispersers. 

A surprising result from our study was that insectivore bird communities with higher effect 

trait diversity tended to have less stable total abundance over time (Figure 4.4d). A possible 

explanation is the negative correlation we found between effect and response diversity for 

both functional groups. To assess whether this relationship was a result of  species 

composition in real communities (i.e. a product of environmental filtering and/or competitive 

interactions), we also tested for correlations in simulated communities. There was no 

relationship between effect and response diversity of randomly selected insectivore 

communities, whereas real communities showed a weak negative relationship, although this 

was non-significant (Figure 4.5b). Randomly selected seed dispersing communities showed 

much weaker negative relationships between effect and response diversity because response 

diversity was consistently high compared to real communities (Figure 5.5a). Therefore, as 

these simulated communities did not show the same relationship as our real communities, the 

negative correlation between effect and response diversity is likely due to environmental 

filtering and/or competitive interactions. 

In real communities, environmental filtering, which selects for species that are well suited to 

the average environmental conditions (Kraft et al. 2015), can lead to a subset of species with 

more similar response traits (i.e. lower response diversity) than the full range possible. 

Competitive exclusion is also common among species with more similar traits, which leads to 

overdispersion in traits of coexisting species. However, competitive exclusion can result in 
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trait clustering (Cadotte & Tucker 2017) if particular traits are associated with higher average 

fitness (Kraft et al. 2015). Disentangling environmental filtering and competitive exclusion is 

difficult because the two processes can leave similar signatures in the phylogenetic or trait 

structures of assemblages and may operate simultaneously (Mayfield & Levine 2010; Kraft et 

al. 2015). However, our results suggest that the latter process is important here because we 

found that seed dispersing communities are less likely to be formed of species with low 

diversity of both effect and response traits (Figure 4.5). In contrast, when response diversity 

is high then species with low effect trait diversity can coexist. A possible explanation is that 

temporal variation in the environment promotes coexistence in species which would 

otherwise compete (Hutchinson 1961; Kirk 2002), i.e. responding differently to weather 

conditions leads to reduced competition between species with similar effect traits allowing 

them to coexist in the same communities (Hutchinson 1961; Roth & Schreiber 2014; Li & 

Chesson 2016).  

Having shown the influence of response trait diversity on community abundance differs from 

that of effect trait diversity, we tested whether the standard approach of mixing both types of 

trait together result in a best-of-both-worlds scenario for functional diversity metrics. This 

was true for seed disperser communities, where we found that combined functional trait 

diversity was positively related to mean community abundance (Figure 4.3b) and to the 

stability of total abundance (Figure 4.3e), equivalent to the results found for response 

diversity. However, for insectivore communities, we found a negative relationship of all trait 

diversity with stability of total abundance (Figure 4.4e), comparable to the relationship found 

with effect diversity. These inconsistent results highlight an important trade-off between 

evidence for mean and stability of abundance in UK bird communities. Studies using indices 

of functional diversity often use traits regarded as effect traits (e.g. foraging type) and both 

traits (e.g. body size; (Prescott et al. 2016). Our results highlight that communities with high 

diversity of such traits can potentially indicate low stability. Ecologists have suggested 

maximising functional diversity when restoring communities (Cadotte et al. 2011), but 

depending on how this is calculated it could lead to communities with unstable abundance, 

risking years of low ecosystem functioning (as well as high).  

Our results also emphasise that different functional groups of birds respond differently to the 

same group of traits used in our measure of functional diversity. Response trait diversity acts 

similarly to all trait diversity for seed dispersers, whereas effect trait diversity acts similarly 
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to all trait diversity in insectivores. Therefore, it may be advisable to maximise functional 

diversity within functional groups, as opposed to the entire bird community; with the specific 

traits used in metrics of functional diversity guided by research such as that shown here. It is 

unclear to what extent our results hold for bird guilds in different bioregions (e.g. desert, 

tropics), emphasising the need for further work on this topic. 

Our approach has some limitations worth outlining. The proportion of variance in community 

dynamics explained by functional diversity was low; varying from 3.1-15.0% (Table C8-

C11). Our predictive ability was not improved by removing outlying points in our seed 

disperser dataset (Figure C1) where some sites had extreme functional diversity values. The 

low proportion of variance could partly be due observer bias including identification mistakes 

or sampling error related to habitat type (Johnston et al. 2014), however, we accounted for 

heterogeneity in detectability, by adjusting the raw abundance data by a detectability 

probability coefficient (Johnston et al. 2014; Massimino et al. 2015). Furthermore, our 

measurements of functional diversity could also be imprecise due to missing data in 

functional trait datasets leading to low r-squared values. ‘Hard’ functional traits with more 

proximate effects on ecosystem functioning are often more difficult or expensive to measure 

(Hodgson et al. 1999; Violle et al. 2007b). Due to this, some ‘soft’ traits were used in this 

analysis (e.g. reproductive traits such as clutch size), although these often correlate with hard 

traits (Violle et al. 2007b). A further source of error in functional diversity estimates could be 

due to the use of mean trait values per species. Including intraspecific variation in traits has 

been shown to improve the ability to detect niche differentiation processes (Jung et al. 2010). 

Disregarding this variation underestimates the degree of niche and trait overlap between 

species (Violle et al. 2012), however, Pigot et al. (2020) found most variation in global bird 

trait values existed across rather than within species. Finally, there was higher variance in 

total mean abundance between sites versus variance in functional diversity, which might also 

reduce the degree of fit in their relationship. 

Although we find many significant relationships between functional diversity and mean and 

stability of abundance, our low predictive ability highlights the difficulty in linking functional 

traits to community abundance, and the additional step of linking to ecosystem functioning. 

However, we demonstrate that effect and response traits provide different information on 

community abundance which can be used to inform management actions to maintain 

ecosystem functioning. 
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Our findings extend previous research emphasising the importance of trait choice 

methodology in producing accurate functional diversity measures and deriving accurate 

ecological conclusions (Maire et al. 2015; Zhu et al. 2017) while demonstrating a novel link 

between trait choice and community dynamics. This can help infer whether increased 

functional diversity will lead to higher mean or stability of community dynamics, and 

therefore ecosystem functioning. In particular, to measure stability of total community 

abundance it appears crucial to include in functional diversity metrics traits reflecting the 

response of species to environmental conditions. Selecting functional traits appropriately will 

enable conservation practitioners to use functional diversity metrics in informative ways to 

ensure the long-term stability of ecosystem functioning.
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Chapter 5. Resolution of data used in functional diversity metrics affects ability to 

predict community dynamics of avian functional guilds 

5.1 Abstract 

Functional diversity, measured using species traits, can be used to understand changes in 

community dynamics of functionally important species. More resolved trait data provides 

higher quality information on the niche requirements of species, but the impact of the 

resolution of trait and abundance data on functional diversity metrics and their ability to 

explain community dynamics is largely unknown. Here, we compile nine functional traits for 

105 British birds supplying two key ecological services – seed dispersal and insect predation 

– to understand how the number, type and weighting of traits used in analysis (continuous 

versus categorical; abundance versus presence-absence) could influence the ability to predict 

community abundance. Overall, the explanatory power of functional traits was low, with a 

maximum of 9.5% of variance in community abundance explained. We found inconsistent 

results when we investigated whether continuous or non-continuous traits increased 

explanatory power, depending on whether our metric was weighted with abundance and the 

functional group being investigated. In most instances, a lower number of traits increased the 

mean R2 and increased the variation around our R2  values. Our predictive ability was 

influenced by the identity of the traits which are included in our functional diversity metric, 

which differed between our functional groups. These findings highlight the practical 

difficulty in making meaningful predictions of community dynamics with implications for a 

predictive ecology of ecosystem functioning.   

5.2 Introduction 

Biodiversity is being lost at an increasing rate across the globe due to human activity, 

potentially threatening crucial ecosystem functions and the ecosystem functions that humans 

derive from them (Cardinale et al. 2012; IPBES 2019). Initial attempts to capture biodiversity 

to understand the impact on ecosystem functioning used basic measures such as species 

richness (Díaz & Cabido 2001). However, research has shown species richness alone to be a 

poor determinant of ecosystem functioning (Gagic et al. 2015). Increasingly, studies now use 

functional diversity, the breadth of functions performed by a species in a community, to 

provide further insight into ecological processes (Hooper et al. 2005; Violle et al. 2007a; 
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Cadotte et al. 2011). Functional diversity has been shown to be a better predictor of 

ecosystem processes in a wide variety of taxa compared to species richness (Gagic et al. 

2015).  

Initial techniques to calculate functional diversity (FD) were based on functional 

dendrograms where a matrix of functional traits is used to calculate the sum of branch lengths 

of the dendrogram, producing a multivariate measure of functional diversity (Petchey & 

Gaston 2002). More recent methods are based on a multidimensional functional space where 

species are plotted along trait axes, which allow the computation and visualisation of 

functional diversity (Villéger et al. 2008; Laliberté & Legendre 2010; Mammola & Cardoso 

2020). Research has demonstrated a definitive link between trait morphospace (i.e. species 

traits visualised in a multivariate space) and trophic niches of avian species, providing 

compelling evidence for using these methods to understand ecosystem functioning (Pigot et 

al. 2020).  

Selecting the most informative traits for the ecological function of interest will increase the 

success of using trait-based methods (Hortal et al. 2015). However, there exists a trade-off 

between collecting a large amount of low quality information, and a small amount of high 

quality information (Petchey & Gaston 2006). The number of functional traits selected can 

influence multivariate functional diversity metrics (Legras et al. 2019) highlighting how 

sensitive these metrics are to the type of data used to calculate them. Trait spaces with low 

dimensionality (i.e. low number of traits) reduced the quality of functional trait space, i.e. the 

ability to represent initial functional distance between species (Maire et al. 2015). 

Furthermore, increasing the dimensionality of trait space has been shown to more accurately 

predict trophic niches (Pigot et al. 2020) and adequately capture phenotypic differences 

between species (Carscadden et al. 2017). However, using more traits increases the 

likelihood of the inclusion of correlated traits which do not provide any additional phenotypic 

information and can increase the probability of detecting functional redundancy (Petchey et 

al. 2007; Calba et al. 2014). For example, when correlated traits are used, the ability to 

accurately identify plant species within trait space is reduced, compared to using uncorrelated 

traits (Laughlin 2014). Traits chosen are often those easily measurable and captured as basic 

categorical variables, which leads to lower quality estimates of functional diversity, and thus 

require more dimensions to capture unique functional strategies (Maire et al. 2015). Whereas 
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continuous traits can provide more in-depth information on species resource use, they tend to 

be more difficult to collect (Kohli & Jarzyna 2021).  

Some functional diversity metrics have the ability to be weighted by the average abundance 

of species, giving more weight to common species based on their greater contribution to 

ecosystem functioning (Grime 1998; Villéger et al. 2008; Winfree et al. 2015). Functional 

diversity measures that integrate abundance in this way have been shown to better predict key 

ecosystem functions compared to those which do not weight by abundance (Gagic et al. 

2015). In practice, however, abundance data are not always readily available, and presence-

absence data may be the only option, resulting in each species being given equal weighting 

regarding its contribution to the ecosystem function. Despite these studies exploring how data 

resolution influences different aspects of the functional diversity calculation, it has not yet 

been investigated what are the consequences for predicting total community abundance of 

functional guilds. Aspects of community dynamics, such as total community abundance over 

time are highly relevant to ecosystem functioning (Grime 1998; Kleijn et al. 2015; Winfree et 

al. 2015).  

Here, we compile data on the ecological and morphological traits of functionally important 

bird species to examine how altering the resolution of functional trait and abundance data 

used in functional diversity metrics influences the ability to predict community abundance. 

We focus on 105 British bird species that provide two key ecosystem functions: seed 

dispersal and insect predation. In the absence of direct measures of these functions we use the 

total abundance of the relevant community. We do not presume that total abundance equates 

to ecosystem functioning, simply that the two are related (Kleijn et al. 2015; Winfree et al. 

2015); thus if the functional composition of communities relates to total abundance then there 

are likely to be cascade effects on ecosystem functioning too. Total community abundance 

refers to the total number of individuals contributing a particular function within a 

community, often related to biomass, and is a good predictor of ecosystem functioning in a 

variety of ecosystems (Grime 1998; Smith & Knapp 2003; Dangles & Malmqvist 2004). The 

link between total community abundance and any particular ecosystem function can arise due 

to the ‘mass ratio hypothesis’ whereby the level of function delivered is driven by the most 

common species in a community (Grime 1998). This is supported by empirical evidence in 

pollination systems where dominant species provide greater ecosystem services than rarer 

species (Kleijn et al. 2015; Winfree et al. 2015).  
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We use abundance data from the Breeding Bird Survey (hereafter BBS) dataset for over 15 

breeding seasons (2004–2018) at 200 sites to measure total community abundance for each 

functional group (seed dispersers and insect predators). We then relate this to functional 

dispersion (FDIS) (Laliberté & Legendre 2010) calculated using species effect traits, which 

determine a species’ effect on ecosystem functioning.  We expect effect trait diversity and 

community abundance to be related because communities with high effect trait diversity may 

deliver ecosystem services more efficiently due to higher niche partitioning and reduced 

competitive exclusion which allows species to coexist and have larger populations 

(Macarthur & Levins 1967; Cardinale 2011). We investigated the ability for FDIS to explain 

variation in community abundance while: (1) varying the number of traits (from 2-9); (2) 

altering the variable type (continuous or categorical); and (3) shifting between abundance and 

presence-absence data. We hypothesise that more resolved data (i.e. a higher number of 

continuous functional traits and abundance data) used in our measure of FDIS will explain 

more variation in community abundance. 

5.3 Methods 

Bird abundance data 

We obtained abundance data from the Breeding Bird Survey (BBS), which has been running 

since 1994 with over 4,000 sites currently monitored. The BBS uses a stratified random 

sampling design with skilled volunteers surveying two parallel 1-km transects twice a year 

(April to early May to capture the early breeding season and late May to June for the late 

breeding season). Birds seen and heard are recorded in four distance categories (0–25 m from 

the line, 25–100 m, >100 m and flying over). The total number of adult birds of each species 

detected in each 1-km square, i.e. summed over all distance categories, and transect sections, 

are calculated for each year. We obtained complete time series of annual abundances for a 

15-year period (2004–2018) for 108 species, which represents the time period where the 

greatest number of BBS sites were surveyed. Abundance data were adjusted for detectability, 

using calculations outlined below by supplementing our data with additional BBS transect 

data. 
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Site selection 

Sites were only included if they were surveyed during each of the 15 years (2004-2018) of 

the study. Population dynamics can be mediated by both landscape heterogeneity and 

position in geographic range (Oliver et al. 2010; Mills et al. 2017). These factors also 

influence species richness (Jonsen & Fahrig 1997; Weibull et al. 2000) and functional 

diversity. Sites with higher species richness have been shown to have higher community-

level stability through a diversity in species’ responses to environmental fluctuations (Ives et 

al. 2000). Our sampling controlled for these issues by being restricted to one bioclimatic zone 

– i.e. the Atlantic Central (Metzger et al. 2013) – with survey sites distributed evenly along a 

gradient of species richness. Sites were split into 10 categories of increasing species richness 

and 20 random sites from each category of species richness were chosen, resulting in 200 

selected sites.  

Accounting for detectability 

As heterogeneity in detectability may result in biased abundance estimates, we calculated 

detectability estimates for each species-site-visit combination using a distance-sampling 

approach using data for all BBS squares south of 54°N within England and Wales (Buckland 

et al. 2001; Massimino et al. 2015). To estimate site-, visit- and species-specific detection 

probabilities, analysis was conducted at the 200m transect level (assuming that birds on the 

transect line were detected), using the number of individual birds of each species detected in 

each distance band. We then estimated the half-normal detection function for each species, 

with ‘habitat type’ and ‘visit’ as co-variates. Detectability estimates were produced for each 

species, BBS square and visit (early or late). The detectability estimated from this model was 

used to adjust the abundance value at each site (adjusted abundance = observed 

abundance/detectability probability). Finally, the maximum adjusted abundance value of the 

two visits (early and late) were used as the annual measure of abundance at each site (Harris 

et al. 2019). Detectability data were missing for 70 sites and 12 species (Anas querquedula, 

Anthus petrosus, Bucephala clangula, Caprimulgus europaeus, Coccothraustes 

coccothraustes, Coturnix coturnix, Grus grus, Melanitta nigra, Pernis apivorus, Pyrrhocorax 

pyrrhocorax, Scolopax rusticola, and Turdus iliacus) either due to lack of BBS data to fit a 

detection function, or sites were missing habitat data for at least one year. To deal with this 

we took two approaches. First, we removed the missing data, resulting in the removal of 12 
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species and 70 sites from our analysis, resulting in a complete detectability dataset (n = 96 

species and 130 sites). Second, we filled in data gaps in detectability using available data 

from Johnston et al. (2014) for 9 out of the 12 species (removing Grus grus, Melanitta nigra, 

and Pernis apivorus from the analysis). To fill in gaps for the site-species combinations with 

no detectability data (i.e., the 70 sites with missing habitat data), we took the average of non-

missing values for the site-species combinations, resulting in an interpolated dataset (n = 105 

species and 200 sites, with 7.2% of the total dataset interpolated). We ran the analysis 

separately on the complete dataset and the one with interpolated detectability. The two 

datasets produced very similar results, so we present those from the interpolated detectability 

dataset here with the alternative results presented in figures D1 and D2.  

Feeding guilds 

We used dietary data for the world’s birds (Tobias & Pigot 2019) to identify species 

performing functions as seed dispersers and insectivores, which include a combination of 

both breeding and non-breeding diets depending on where data were available. Seed 

dispersers included both frugivores and granivores; insectivores included terrestrial 

invertivores (i.e. non-aquatic invertivores) which use a variety of foraging techniques (e.g. 

invertivore glean, invertivore aerial, invertivore ground; Pigot et al. 2020). Specifically, we 

classified species as important seed dispersers if their diets comprised at least 30% of seeds 

and fruit combined, and as insectivores if their diet comprised at least 30% of terrestrial 

invertebrates (see Table D1 for species list and functional group classification). To focus on 

species most closely associated with control of insect populations, we excluded aquatic 

invertivores consuming non-insect prey – including molluscs, crustaceans, annelids worms – 

following more recent published dietary classifications (Pigot et al. 2020).  

Functional traits  

To investigate how the relationship between functional diversity and mean total community 

abundance is affected by the resolution of data, we selected functional traits which determine 

species’ effects on ecosystem functioning (i.e. functional ‘effects traits’; Díaz et al. 2013). 

We selected 9 traits in total: beak length, width and depth, gape width, body mass, wing 

length, hand-wing index, Kipp’s distance and tarsus length. We had missing trait data for one 

species: gape width for Actitis hypoleucos. As deleting taxa with missing data can reduce 
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statistical power and lead to biased results (Nakagawa & Freckleton 2008), we selected gape 

width data from a morphologically similar congeneric species (Actitis macularius). The 

resulting dataset had 48 seed dispersing bird species and 87 insect eating bird species, with 

some species performing both functions, making a combined total of 105 species. 

Total community abundance of feeding guilds 

We calculated the mean total community abundance over time for both our focal feeding 

guilds at each site. To calculate this, we used the total community abundance of species in 

either functional group averaged across all 15 years. This resulted in an estimate of mean 

abundance of each functional group for each site. Species richness at each site ranged from 

12 - 35 species for seed dispersing communities, and 18 - 56 species for insect predating 

communities. Total average community abundance averaged over time for each site ranged 

from 70.9 – 1432.5 for seed dispersing communities and 107 – 1005.4 for insect predating 

communities. 

Functional diversity metrics 

Functional diversity metrics require both functional traits and either abundance or presence-

absence data to calculate multivariate indices (Laliberté & Legendre 2010). Here, to modify 

the resolution of input data into FD metrics, we investigated the impact of both changing the 

number of traits and the proportion of continuous traits used to calculate FD metrics. We 

analysed the effect of trait number (from 2-9 traits), removing a different trait each time and 

repeating, so all combinations were used. To assess the effect of proportion of continuous 

traits (Pcontinuous) used in functional diversity metrics, for each number of traits selected, we 

initially calculated functional diversity when Pcontinuous = 1, i.e. when all traits are continuous. 

Subsequently, at the other extreme, we investigate the lowest possible level of trait resolution 

by converting any given trait into a categorical variable with two factor levels (low and high) 

until all proportions and combinations are used. For example, when 4 traits are selected, 

functional diversity is calculated when all traits are continuous (Pcontinuous = 1), when all traits 

are categorical (Pcontinuous  = 0), and for Pcontinuous  = 0.25, 0.5 or 0.75 using different 

combinations of traits each time (in this example, sample sizes are 126, 126, 504, 756 and 

504 respectively).  
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To measure functional diversity at each bird monitoring site, we used functional dispersion 

(FDIS) (Laliberté & Legendre 2010). First, we use Gower’s distance (Gower 1971) to 

calculate a dissimilarity matrix between all pairs of species as it can be used for all types of 

trait data (Podani & Schmera 2006). FDIS was calculated for each site using the species x 

species distance matrix constructed from raw trait data and a matrix firstly weighted using the 

average detectability-adjusted abundance of each species at each site (hereafter abundance-

weighted FDis), and secondly using presence-absence data (hereafter unweighted FDis) using 

the dbFD function (FD package, Laliberte et al. 2014). When Pcontinuous = 1, the traits were 

standardized with a mean of 0 and standard deviation of 1. This analysis was undertaken for 

each ecosystem function separately.  

Statistical analysis 

All statistical analysis was undertaken using R version 4.0.4 (R Core Team 2021). 

We fitted linear models with the mean total community abundance at each site as the 

response variable and corresponding FDIS values at each site as our explanatory variable (i.e. 

separate models using FDIS calculated with different numbers of traits and different 

proportions continuous). Mean total community abundance was log-transformed to meet the 

assumptions of normality. We extracted the R2 from each model to show how much variation 

in mean total community abundance was explained by each FDIS value as well as the direction 

of relationship. Then we calculated the mean R2 with associated standard deviation across all 

combinations for each trait number and proportion of continuous traits.  

To further explore how trait number and the proportion of continuous traits was impacting the 

R2 values, we also tested whether continuous traits or categorical/mixed traits have 

significantly different mean R2 using a Mann-Whitney Wilcoxon test as the data were not 

normally distributed. As we found a significant difference in R2 values between the variable 

trait types, we used linear models with the mean R2 from categorical/mixed traits only as the 

response variable and as explanatory variables: trait number, proportion of continuous traits 

and the interaction term between these two. 

As there were non-linear relationships between mean R2 and number of continuous traits, we 

further investigated whether this could be due to redundant traits being present in the FDIS  

measure. We calculated the absolute average correlation coefficient for each of the 9 traits 
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relative to each other trait. FDIS was then calculated by removing each of the 9 traits in turn 

and re-fitting the linear models with mean total community abundance and extracting each R2 

value. This was compared with the R2 value from the model with FDIS calculated using all 9 

traits, i.e. the difference in R2 as each trait is removed showing its individual explanatory 

power. Finally, linear models were used to analyse the relationship between R2 difference and 

absolute average correlation coefficient for each of the 9 traits.  

5.4 Results 

Seed dispersers 

The maximum R2 values from the relationship between total community abundance and FDIS 

was 9.4% for abundance weighted FDIS (Figure 5.1a) and 4.9% for unweighted FDIS (Figure 

5.1d). The highest mean R2 values for abundance weighted FDIS occur when both a larger 

number of traits were used (i.e. n = 9) and the trait type was continuous (Figure 5.1b), and 

there was corresponding low variation around these R2  values (Figure 5.1c). These results 

were qualitatively similar when using the complete case data, i.e. where species without 

detectability estimates were removed (Figure D1). Across all numbers of traits used, we 

found that continuous traits have a significantly higher mean R2 compared to categorical 

traits or a mix of the two types for abundance weighted FDIS (Mann-Whitney Wilcoxon W = 

352, p<0.001; Figure D3a).  When we looked at mean R2 from continuous traits separately, 

we found that more continuous traits both increase the mean R2 and decrease the variation for 

abundance weighted FDIS (Figure D4a). Considering the mean R2  from categorical/mix traits 

for abundance weighted FDIS, we found that as both trait number and Pcontinuous increased the 

mean R2 increased in an additive fashion (Figure 5.2a; Table D2). 
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Figure 5.1. Maximum R2 values (a) and mean R2 values (b) with associated standard 

deviation (c) produced from abundance weighted FDIS, and maximum R2 values (d) and mean 

R2 values (e) with associated standard deviation (f) produced from unweighted FDIS for seed 

dispersing birds.  

 

In contrast, for unweighted FDIS we found that using the fewest traits (i.e. n = 2) and the trait 

type as a categorical variable provided the highest mean R2 values (Figure 5.1e), although this 

had high variation, suggesting results differ depending on which specific traits are included 

(Figure 5.1f). Across all numbers of traits used, categorical or a mix of variable types had a 

significantly higher mean R2 compared to continuous trait types (Mann-Whitney Wilcoxon 

W = 75, p = 0.009; Figure D3b). When considering mean R2 from continuous traits 

separately, a low number of continuous traits led to higher mean R2, but with large variation 

(Figure D4b).  Considering the mean R2  from categorical/mix traits for unweighted FDIS, 

there was a negative relationship between the number of continuous traits and mean R2, and a 

significant interaction between trait number and Pcontinuous (Table D2), showing that as trait 

number increases, the negative relationship between Pcontinuous and mean R2 becomes slightly 

weaker (Figure 5.2b).   
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Figure 5.2. The relationship between mean R2 and trait number and the proportion of 

continuous traits for non-continuous traits for seed dispersers with abundance weighted FDIS 

(a), and insect predators with unweighted FDIS (b). Lines represents the linear regression 

with shaded 95% confidence intervals. 

 

To understand why the mean R2 differed when using a different number of continuous traits, 

we investigated the difference in R2 when we removed each of the 9 traits separately and 

related this to the average correlation coefficient of the removed trait. For seed dispersers, we 

found a significant positive relationship between the difference in R2 and average correlation 

coefficient using abundance weighted FDIS (Figure 5.3; Table D3). This demonstrated that 

traits which are highly correlated, for example, Kipp’s distance, wing length and body mass, 

caused substantial increase in R2 values when removed, meaning that their inclusion hampers 

the ability to predict total community abundance using abundance weighted FDIS (Figure 

5.4a). In contrast, removing traits such as bill width, bill depth and gape width caused a 

substantial decrease in R2 values, showing that they are important to include to improve 
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prediction of total community abundance using abundance weighted FDIS (Figure 5.4a). This 

sensitivity to trait identity may explain the very high variation in R2 values when just a few 

continuous traits are used in the calculation of abundance weighted FDIS (Figure 5.1c). 

However, the relationship between difference in R2 and average correlation coefficient was 

non-significant when using presence-absence data (Table D3), and the calculation of 

unweighted FDIS appears relatively insensitive to trait identity (Figure 5.4b). This is probably 

because using continuous traits for this metric resulted in poor predictive capacity, as outlined 

above (and shown in Figure 5.1e). 

Figure 5.3. Relationship between the difference in R2 and average correlation coefficient of 

each continuous trait from abundance weighted FDIS for seed dispersers. Shaded area around 

the line shows 95% confidence intervals around significant slope coefficients (see Table S2).  
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Figure 5.4. The difference in R2 when each of the 9 continuous traits is removed from the 

calculation of FDIS for seed dispersers with abundance-weighed FDIS (a) and unweighted FDIS 

(b), and insect predators with abundance-weighted FDIS (c) and unweighted FDIS (d). Negative 

values for the difference in R2 indicate that when a trait is removed, the R2 is lower, 

suggesting that including that trait in the FDIS  calculation improves the ability to predict total 

community abundance.  

 

Insectivores 

In contrast to seed dispersers, the highest R2 values from the relationship between total 

community abundance and FDIS for insectivorous birds was obtained using unweighted FDIS 

(i.e. presence-absence data). The maximum R2 value was 4.3% for abundance weighted FDIS 

(Figure 5.5a) and 7.5% for unweighted FDIS (Figure 5.5d). Using abundance weighted FDIS, 
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the highest R2 values arise when a low number of traits  (i.e., n=2) with mixed variable type 

are used (i.e., Pcontinuous = 0.5) (Figure 5.5b), however this results in high variation (Figure 

5.5c). These results were qualitatively similar when using the complete case data, i.e. where 

species without detectability estimates were removed (Figure D2).  Across all numbers of 

traits used, we found that using categorical traits or a mix of the two types had significantly 

higher mean R2 values compared to continuous traits for abundance weighted FDIS (Mann-

Whitney Wilcoxon W = 84, p = 0.019; Figure D3c). When we looked at mean R2 from 

continuous traits separately, we found that less continuous traits both increase the mean R2 

but also increase the variation (Figure D4c) for abundance weighted FDIS. Considering the 

mean R2 from categorical/mix traits for abundance weighted FDIS, we found that as the 

number of traits increase, the mean R2 decreases (Figure 5.2c; Table D2). 

Figure 5.5. Maximum R2 values (a) and mean R2 values (b) with associated standard 

deviation (c) produced from abundance weighted FDIS, and maximum R2 values (d) and mean 

R2 values (e) with associated standard deviation (f) produced from unweighted FDIS for 

insectivore birds.  

 

In contrast, for unweighted FDIS, the highest mean R2 values occur when we use a low number 

of continuous traits (Figure 5.5e), although this had high variation, again suggesting that 

obtaining the highest R2 values depend on the specific traits included in the FDIS calculation 

(Figure 5.5f). Across all numbers of traits used, continuous traits had significantly higher 
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mean R2 values compared to categorical traits or a mix of variable types (Mann-Whitney 

Wilcoxon W = 352, p<0.001; Figure S3d). When considering the mean R2 from 

categorical/mix traits from unweighted FDIS we found a negative relationship between trait 

number and mean R2 (Table D2), however when Pcontinuous is high, a higher number of traits 

increases the mean R2 (Figure 5.2d).  

For insectivores, we found no significant relationships between the difference in R2 and the 

absolute average correlation coefficient for both abundance weighted and unweighted FDIS 

(Table D3). For abundance weighted FDIS, the identity of individual traits has very little 

impact on the R2 (Figure 5.4c), likely because continuous traits resulted in poor predictive 

capacity (Figure 5.5b). However, when using presence absence data, removing certain traits, 

for example, body mass, bill width, and bill depth which, caused a substantial increase in R2 

values, meaning that their inclusion reduces the ability to predict total community abundance 

using presence-absence data (Figure 5.4d). In contrast, traits such as Kipp’s distance and 

hand-wing index, reduce the R2 values when they are removed, showing that they improve 

our predictive ability (Figure 5.4d). Again, this could explain the high variation in our R2 

values when few continuous traits are used in the calculation of unweighted FDIS (Figure 

5.5f). 

5.5 Discussion 

Our analyses show that altering the resolution of data used to calculate metrics of functional 

dispersion affects our ability to predict community abundance of functionally important birds. 

Recent studies have highlighted the influence of trait type and number on values of functional 

diversity and the quality of functional trait space represented by these values (Lefcheck et al. 

2015; Maire et al. 2015; Legras et al. 2019), but not the impact of using abundance to weight 

functional diversity metrics (but see Kohli & Jarzyna 2021). Additionally, there been no 

investigation into how these factors could influence our ability to predict community 

abundance of functionally important species. We show that, for seed dispersing bird 

communities, using a higher number of continuous traits improved our ability to predict 

variation in community abundance, but only when our metric of functional diversity (FDIS) 

was weighted by species’ relative abundance. However, this result was not reflected when 

each species was given equal weighting (i.e., using presence-absence data), where overall 

explanatory power was lower.  
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When our metric of functional diversity was unweighted, we found that using categorical 

traits, or a mix of continuous and categorical traits, improved our predictive ability compared 

to using continuous traits alone (Figure D3b). We found a similar result in insectivore 

communities when FDIS was weighted by species’ relative abundance (Figure D3c). This is a 

surprising result, as studies have shown that categorical traits do not reflect the true 

functional distance between species (Maire et al. 2015) and can alter the ability to detect 

community assembly processes (Kohli & Jarzyna 2021), ultimately affecting the ability to 

draw robust ecological conclusions. Continuous traits are thought to provide in-depth 

information on species resource use, therefore more accurately representing unique functional 

strategies (Maire et al. 2015). Some co-occurring bird assemblages can have densely packed 

trait morphospace and low levels of trait overdispersion (Pigot et al. 2016a; Ulrich et al. 

2017). These communities may be better represented by categorical traits which can capture 

under dispersion, i.e. clumped regions of trait morphospace more accurately than continuous 

traits.  

In instances where a mix of continuous and categorical traits resulted in poor predictive 

capacity, using a higher number of traits only counteracted our low R2 values for seed 

dispersers using abundance weighted FDIS (Figure 5.2a). This was consistent with the results 

from Maire et al., (2015), who found that using more dimensions is required when using 

categorical traits to capture unique functional strategies. However, across the remaining 

datasets, using a higher number of categorical traits, or a mix of categorical and continuous, 

did not improve our predictive ability (Figure 5.2b & 5.2c). Explanatory power was better 

when a high proportion of those traits are continuous (Figure 5.2d). Similarly, when we 

looked at continuous traits separately, using more traits only increased our predictive ability 

for seed dispersers using abundance weighted FDIS (Figure D4a), whereas using fewer traits 

actually increased the mean R2 across the other datasets (Figure D4b-d). Many studies have 

shown that using a higher number of traits can better detect unique functional strategies and 

represent the true functional diversity of communities (Villéger et al. 2011; Laughlin 2014; 

Maire et al. 2015; Pigot et al. 2020). However, more traits is not always better (Lefcheck et 

al. 2015). Using low dimensional functional diversity metrics has been shown improve the 

association with species richness compared to using a higher number of traits (Zhu et al. 

2017) and can better help understand the structure of ecological networks (Eklöf et al. 2013), 

suggesting trait identity is more important than the number of traits used.      
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A consistent result across all datasets is that using a low number of continuous traits results in 

greater variation around our mean R2 value (Figure D4). This is further shown whereby a 

given trait number did not provide both the highest mean R2 value and the highest maximum 

R2 value. For example, using two continuous traits can provide the highest maximum R2 

value of 0.09, whereas the mean R2 across all possible combinations of two traits reduces our 

R2 to 0.04, with corresponding high variation (±0.02) (Figure 5.1a). This suggests that when 

certain combinations of traits are included in our metric of functional diversity, we are able to 

obtain the highest predictive ability. This could be due to the exclusion of traits which are 

highly correlated, therefore when more traits are added into our functional diversity estimate, 

the predictive power saturates due to additional traits being correlated with those already 

included, therefore increasing functional redundancy, and providing no additional 

contribution to the dimensionality of trait space (Petchey et al. 2007). Previous research has 

shown that using traits that are independent of each other (i.e. uncorrelated) maximises the 

intrinsic dimensionality of trait space, which increases the ability to predict species 

distributions and predict phenotypic differences (Laughlin 2014; Carscadden et al. 2017). We 

found further support for this in seed dispersing communities using abundance weighted FDIS, 

whereby when traits which have a high absolute correlation coefficient are removed from our 

FDIS calculation, the resulting R2 increases (Figure 5.3). Including these highly correlated 

traits, such as Kipp’s distance, wing length, and body mass, hamper our ability to explain 

variation in community abundance when they are included in our metric of functional 

diversity (Figure 5.4a). In contrast, traits relating to species morphology, such as beak size 

and tarsus length, are crucial to include to capture differences in species’ resource use and 

markedly improve the ability to predict total abundance (Figure 5.4a). When using presence-

absence data in calculating functional diversity for seed dispersers, the identity of traits is less 

sensitive to changes in R2 (Figure 5.4b; Table D3) likely because using categorical traits 

explained more variation in community abundance compared to continuous traits as 

explained above (Figure 5.1e). In insectivore communities, traits relating to species flight 

ability, i.e. Kipp’s distance and hand-wing index, are detrimental to predicting community 

abundance when our metric of FDIS is weighted by abundance, with the remaining traits 

making little impact on the R2 when removed (Figure 5.4c) again likely to be due to 

continuous traits being worse at predicting community abundance compared to categorical 

traits. In contrast, in our unweighted FDIS metric, including mobility traits is crucial to 

produce higher R2 values (Figure 5.4d). Our results here reinforce conclusions from previous 
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studies stating that the identity of traits is more important than trait number (Carscadden et al. 

2017; Zhu et al. 2017). 

This could explain why our results for seed dispersers and insectivores differ when using 

abundance weighted vs unweighted FDIS to predict community abundance. Weighting 

functional dispersion metrics by species’ relative abundance gives more weight to common 

species based on their greater contribution to ecosystem functioning (Grime 1998; Villéger et 

al. 2008; Winfree et al. 2015) which have been shown to better predict key ecosystem 

functions (Gagic et al. 2015). However, we find for insectivore communities that using 

abundance weighted FDIS resulted in lower R2 and just using presence-absence data (i.e., 

giving each species equal weighting) improved our predictive ability. This could be due to 

insectivore communities containing rarer species which contribute greatly to functional 

diversity as they possess outlying trait values. This has been shown in vertebrate communities 

where species at the periphery of morphospace tend to be rarer than those at the core (Ripple 

et al. 2017). Therefore, when such species are included in our abundance weighted FDIS, they 

are penalised for being rare, causing their unique traits to contribute less to functional 

diversity. Such traits are linked to some insectivore species, for example goldeneye and 

shoveler, which have low relative abundance and extreme values of body size and bill width 

(Figure D5), which were found to be important in predicting community abundance (Figure 

5.4c). Therefore, we must consider not only the identity of traits, but the composition of the 

communities of interest to determine whether weighting functional diversity metrics by 

species’ relative abundance will improve our ability to detect changes in community 

dynamics.   

There are many methodological choices to make when calculating functional diversity, and 

choosing the correct traits to measure functional diversity is a frequent challenge (Petchey & 

Gaston 2006; Lefcheck et al. 2015). Ideally, traits should only be included in a measure of 

functional diversity if they are important for the ecosystem function of interest (Leps et al. 

2006; Petchey & Gaston 2006). However, there is often a lack of knowledge on the links 

between specific traits and ecosystem functions, making it difficult to select specific traits 

(Lefcheck et al. 2015). To overcome this challenge, there are multiple trait selection methods 

to determine which traits should be used to measure functional diversity (Zhu et al. 2017). 

First, all measured traits can be included in the functional diversity measures, but this can 

include correlated traits, which as we have shown, can lead to reductions in predictive ability. 
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Other methods include using ordination techniques to reduce the information of all traits into 

independent axes (Laliberté & Legendre 2010; Maire et al. 2015), or trait selection methods 

to identify a subset of traits which represent the variation of all traits (Zhu et al. 2017). 

Finally, a complete search method can be used which calculates all possible functional 

diversity indices using many combinations of traits to determine which combination best 

measures ecosystem functioning (Petchey et al. 2004; Maire et al. 2015). The complete 

search method has been recommended to assess the quality of functional diversity metrics 

using different trait combinations (Zhu et al. 2017). Our results have shown that the identity 

of traits that explain the greatest variation in community abundance vary across functional 

groups and depend on whether functional diversity metrics are weighted by abundance. This 

highlights the importance of using techniques such as the complete search to ensure that 

functional diversity metrics are providing the greatest predictive capacity of ecosystem 

functioning.       

Our approach has some limitations worth outlining. The proportion of variance in community 

abundance explained by functional diversity was low, with 9.5% maximum R2 obtained 

across all datasets (Figure 5.1a). Communities with a high diversity of effect traits are 

expected to have higher mean levels of ecosystem function delivery. These communities can 

deliver ecosystem functions more efficiently because higher niche partitioning and reduced 

competitive exclusion allows species to coexist, and therefore have higher community 

abundance (Macarthur & Levins 1967; Cardinale 2011). However, this relationship assumes 

that resources remain constant over time (Macarthur & Levins 1967), which is unrealistic as 

we consider a 15-year period at multiple sites, possibly explaining our low explanatory 

power. The low proportion of variance could also be due to observer bias including 

identification mistakes or sampling error related to habitat type (Johnston et al. 2014), 

however, we did account for heterogeneity in detectability by adjusting the raw abundance 

data by a detectability probability coefficient (Johnston et al. 2014; Massimino et al. 2015).  

In conclusion, our findings highlight the role of trait resolution, number, and identity in 

predicting community abundance of functionally important birds. In particular, we show that 

using highly refined data (i.e. a high number of continuous functional traits and abundance 

data) can provide the greatest predictive capacity, although the outcome depends on the 

functional group being investigated. Our findings contribute to previous work emphasising 



 

 

86 

 

the practical difficulty in making meaningful predictions of community dynamics with 

implications for a predictive ecology of ecosystem functioning.   
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Chapter 6: Discussion 

Human-mediated environmental impacts, including climate change and habitat loss and 

fragmentation, have extensive impacts on biodiversity (Millennium Ecosystem Assessment 

2005). This has a detrimental effect on humanity, as biodiversity is essential for the provision 

of ecosystem services that humans rely on (Cardinale et al. 2012). Therefore, we need an 

understanding of how species and populations are changing across time and space to quantify 

biodiversity change and the consequences for ecosystem functioning. Furthermore, this 

information is crucial to develop informative indicators of biodiversity which can feed into 

policy decision making and track progress towards biodiversity targets (Buchanan et al. 

2020). 

The aim of this thesis was to quantify spatiotemporal changes in populations and 

communities, understand what factors are driving these changes, and how these changes 

might influence ecosystem functioning and the management of ecosystems under 

environmental change. In particular, this thesis develops a new method to measure functional 

connectivity and links functional diversity to changes in community dynamics and ecosystem 

functioning. Throughout this thesis, a key theme was the use of long-term monitoring data 

and species trait data, which provided key insights into how certain types of species are 

changing in response to anthropogenic drivers, and how this could impact ecosystem 

stability.  

In this final chapter I summarise the findings of the previous chapters and discuss the 

implications of their results for understanding changes in population and community 

dynamics, and the impact on ecosystem functioning. Then, I discuss the limitations and 

implications of the current work and potential future research directions.  

6.1 Thesis overview  

The value of biodiversity for providing ecosystem functions and services was introduced in 

Chapter 1, emphasising the importance of quantifying biodiversity change to understand the 

impact environmental change on ecosystem service provisioning. I introduced the value of 

long-term monitoring schemes in providing an estimation of species abundance over space 

and time using data collected by volunteers. Using such data has been crucial for 
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understanding how species and the environment interact, resulting in spatiotemporal 

population fluctuations, such as population synchrony. I then discussed the key drivers of 

synchronised population dynamics (Moran 1953; Hanski & Woiwod 1993; Paradis et al. 

1999; Ims & Andreassen 2000; Koenig 2002), and the challenges of disentangling each driver 

to determine which is the dominant force (Kendall et al. 2000). A research gap is highlighted 

here, whereby if we can account for key climatic drivers of population synchrony, we could 

obtain a signal of dispersal, enabling us to quantify functional connectivity across the UK 

(Powney et al. 2011, 2012; Oliver et al. 2017). I discussed how population fluctuations can 

impact the stability of communities (Ives et al. 1999; Tilman 1999; Gonzalez & Loreau 

2009), and the resilience of ecosystem functions and services (Greenwell et al. 2019). By 

using functional diversity, measured using species traits (Mason et al. 2003; Petchey & 

Gaston 2006; Villéger et al. 2008; Laliberté & Legendre 2010), we can quantify 

biodiversity’s contribution to ecosystem functioning (Cardinale et al. 2012). This can be 

hampered by the many methodological decisions required to accurately measure functional 

diversity (Laughlin 2014; Maire et al. 2015; Carscadden et al. 2017; Zhu et al. 2017; Legras 

et al. 2019), such as the choice of number and type of input traits, and therefore predict 

ecosystem function provision. Finally, I provided an overview of the biodiversity ecosystem 

function (BEF) relationships which can be used to make evidence-based conservation 

decisions and ensure the resilience of ecosystem functioning.  

Having established the need for indicators of biodiversity change in the UK, in Chapter 2, I 

demonstrated the application of long-term monitoring data to develop a novel method to 

measure functional connectivity of UK birds and butterflies. Quantifying functional 

connectivity, the ability of species to move between resource patches, is essential for 

conservation management as habitat loss and fragmentation reduce the permeability of the 

landscapes to the movement of individuals (Hanski 1998). Previous measurements of 

functional connectivity are hampered by data availability (Laliberté & St-Laurent 2020), 

conducted at small spatial scales (Finch et al. 2020), or rely on expert opinion (Watts & 

Handley 2010). Therefore, this chapter represents a significant milestone in our ability to 

measure connectivity using widely available abundance data which can be updated annually. 

The indicator of functional connectivity was calculated using a temporal trend in population 

synchrony for UK birds and butterflies using long-term monitoring data from three recording 

schemes: UKBMS, CBC, and BBS. It has been used as an experimental indicator of 
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biodiversity by the Joint Nature Conservation Committee (JNCC) and the Department for 

Environment, Food and Rural Affairs (Defra) as part of the England Biodiversity Indicators 

(Defra 2020a).  

As outlined in Chapter 1, synchronised population fluctuations are driven by not only the 

movement of individuals between sites, but also shared environmental conditions, i.e. the 

Moran effect (Moran 1953). Therefore, I accounted for synchrony in temperature and rainfall 

between monitoring sites over time, representing a dynamic Moran effect. This resulted in a 

measure of residual population synchrony over time, highlighting how functional 

connectivity may be changing for UK birds and butterflies. This methodology could be 

extended to other taxonomic groups where similar long-term monitoring data exists, and 

ultimately will be useful to improve the effectiveness of land management strategies to 

negate the impact of habitat loss and fragmentation.  

To develop further evidence for the use of population synchrony as an indicator of functional 

connectivity, in Chapter 3, I sought to determine whether dispersal was driving temporal 

trends in population synchrony after accounting for shared environmental effects. I used the 

residual population synchrony trend over time for UK butterflies and birds calculating from 

Chapter 2, to test whether movement-related species attributes were related changes in 

synchrony over time. Previous evidence has linked species’ dispersal ability to population 

synchrony (Sutcliffe et al. 1996; Paradis et al. 1999; Bellamy et al. 2003; Tittler et al. 2009), 

however there had been no attempt to disentangle climate and dispersal from temporal trends 

in population synchrony. The results of this study showed associations between mobility-

related species attributes and population synchrony, after accounting for synchrony in 

temperature and rainfall. This suggests that species dispersal is important in driving changes 

in population synchrony over time but shared environmental conditions must be accounted 

for.  

In Chapter 4, I used long-term monitoring data to quantify community abundance and 

stability of UK bird species which contribute to two ecosystem functions: seed dispersal and 

insect predation. Chapter 1 reviewed how the total abundance of a community is important 

for the provisioning of ecosystem functions under the mass ratio hypothesis (Grime 1998; 

Smith & Knapp 2003; Dangles & Malmqvist 2004). However, no research has assessed 

whether functional diversity could detect changes in community dynamics, and if this is 

dependent on whether a trait was classified as an effect or response trait. I show that trait 



 

 

90 

 

choice in functional diversity metrics is crucial in predicting community dynamics. In 

particular, to measure community stability, functional diversity needs to be calculated using 

response traits to capture the diversity in species’ responses to environmental conditions.   

I further evaluated the impact of methodological choices when using functional diversity to 

predict community dynamics in Chapter 5. Using data on the community abundance of 

functionally important birds calculated in Chapter 4, I investigated the impact of data 

resolution in functional diversity metrics. There exists a trade-off between collecting a large 

amount of less resolved information on species, and a small amount of highly resolved 

information (Petchey & Gaston 2006) and this study aimed to determine whether collecting 

high resolution data (i.e. a high number of continuous traits and abundance data) resulted in 

an increased ability to predict community abundance. I showed that a lower number of 

continuous traits used to measure functional diversity increased the predictive capacity, and 

this was linked to the identity of individual traits. Therefore, this suggests that the specific 

traits which are used to capture species’ resource use in our functional diversity metric, 

impact the ability to detect changes in communities. Overall, across both Chapter 4 and 5, the 

predictive capacity was low, highlighting the practical difficulty in using functional diversity 

to predict community dynamics, and further linking this to ecosystem functioning.   

Overall, this thesis has demonstrated how we can use long-term monitoring data and 

functional trait data to understand the drivers of spatiotemporal population dynamics and 

predict community dynamics of birds which deliver important ecosystem functions and 

services.  

6.2 Limitations  

Across all four chapter of my thesis, I have utilised abundance data from long-term 

monitoring schemes for birds and butterflies, but such schemes have inherent biases that can 

influence the reliability of the abundance estimates derived from field surveys. These biases 

include observer bias, site-selection bias, taxonomic bias, temporal coverage, and 

detectability bias (Johnston et al. 2014; Mihoub et al. 2017; Proença et al. 2017; Fournier et 

al. 2019; Moussy et al. 2021). Some biases are difficult to overcome, and there exists a trade-

off in long-term monitoring schemes between maximising geographic coverage and sampling 

effort per site (Couvet et al. 2011; Proença et al. 2017). For example, the Breeding Bird 

Survey have maximised geographic coverage across the UK, but volunteers only record sites 
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twice a year. Such trade-offs, and therefore resulting biases, must be taken into account when 

considering the implications of results gained from using long-term monitoring schemes. 

Measuring population synchrony requires extensive abundance data, covering many 

monitoring sites with the least possible missing data. Therefore, in Chapters 1 and 2, our 

temporal trend in population synchrony relates chiefly to more common birds and butterflies 

which are detected at multiple sites across multiple years. As a result, our indicator of 

connectivity over time does not include rare species who are more at risk of habitat loss and 

fragmentation (Barbaro & Van Halder 2009), and therefore have reduced connectivity. 

However, I have taken care to try and minimise error in using abundance data to make 

inferences about ecosystem functioning. As the total community abundance is an important 

indicator of the contribution to ecosystem functioning (Grime 1998), it is essential that our 

estimates of abundance are as accurate as possible. Although there are no ways to overcome 

some biases (e.g. observer error), we were able to adjust bird species’ abundances based on 

their detectability across difference habitat types in Chapters 4 and 5. In light of this, 

extending this work to other taxonomic groups may be challenging, as extensive monitoring 

schemes, such as the BBS and UKBMS, focus on popular and conspicuous species groups. 

Whereas reptiles, amphibians, plants, and other insect groups are not well covered by 

structured monitoring schemes (Eaton et al. 2015; Proença et al. 2017).  

6.3 Implications and future research 

6.3.1 Estimating functional connectivity  

Habitat loss and fragmentation, driven by anthropogenic land use change, remains one of the 

greatest threats to biodiversity loss in the UK (Fahrig 2003; Butchart et al. 2010; Pimm et al. 

2014). This in turn limits landscape permeability, and reduces the ability of species to move 

across the landscape, i.e. reducing functional connectivity (Hanski 1998; Tischendorf & 

Fahrig 2000). Despite substantial attempts to quantify functional connectivity in the UK, a 

cohesive method to track levels of connectivity across the UK was lacking. Therefore, the 

method and analysis proposed in Chapter 2 offers a novel approach to this problem, using 

widely available long-term monitoring data, providing a ‘species-eye’ view of connectivity.  

Where sufficient long-term data are available, the method should be easily applicable to other 

taxonomic groups, enabling policymakers to track progress towards future biodiversity 



 

 

92 

 

targets. Our indicator aggregates both the structure and quality of habitats used by species 

and the local abundance of populations that provide potential colonists, combining elements 

of functional and structural connectivity. However, an additional indicator based solely on 

structural connectivity, i.e. the amount and spatial distribution of suitable habitat across the 

landscape, could be used to supplement our indicator, or be validated by it. Remote sensing 

can provide cost-effective and rapid opportunities to map habitats and identify changes to 

habitats across the UK (Bell et al. 2015; Neumann et al. 2015), and if obtained at a fine-scale, 

could be used to develop a structural connectivity indicator (e.g. Guo et al. 2018). This would 

enable the identification of which landscape elements promote species movement between 

sites, and therefore inform upon conservation management strategies. Furthermore, structural 

elements of the landscape must enhance functional connectivity, i.e. enable species dispersal 

between resource patches, to maintain biodiversity (Kimberley et al. 2021). Therefore, 

supplementing our functional connectivity indicator with one on structural connectivity could 

lead to a useful tool to robustly inform how to enhance landscape connectivity and increase 

metapopulation persistence.  

6.3.2 Drivers of population synchrony 

Understanding the mechanisms driving population dynamics is a critical challenge in ecology 

and conservation. In Chapter 3, I disentangled the two key drivers of population synchrony; 

climate and dispersal, demonstrating that once spatiotemporal autocorrelation in climate has 

been accounted for, population synchrony is related to species’ movement ability. This work 

makes an important contribution to the field of population dynamics, as we take an explicit 

long-term temporal perspective, demonstrating the significance of dispersal in not only 

driving average levels of population synchrony, but also for producing trends in synchrony 

over time.  

This provides important evidence to support the use of population synchrony as a method to 

quantify changes in functional connectivity over time, as shown in Chapter 2. Disentangling 

the drivers of population synchrony and producing a dispersal-driven trend in population 

synchrony, can enable conservationists to determine whether changes to landscape 

connectivity are improving species ability to move across the landscape. We also showed that 

population synchrony is driven by shared weather conditions, i.e. the Moran effect (Moran 

1953). Climate change, alongside habitat loss and fragmentation, are predicted to have severe 
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impacts on biodiversity. Future global warming is likely to cause considerable changes to the 

spatial autocorrelation and variability of the weather, and the frequency of extreme weather 

events (Koenig 2002; Parmesan & Yohe 2003; Walther 2010; Palmer et al. 2017; Black et al. 

2018a). Such changes can directly alter population synchrony (Hansen et al. 2020), possibly 

leading to increased levels of synchrony over time in parallel with climate change (Allstadt et 

al. 2015; Tack et al. 2015; Sheppard et al. 2016; Kahilainen et al. 2018). Global warming 

could also impact population synchrony indirectly, whereby higher temperatures can 

influence species’ dispersal rates or by influencing habitat fragmentation, preventing species’ 

from dispersing (Hansen et al. 2020).  

Therefore, future research could explore how future climate change might influence 

population synchrony trends. This would enable investigation into whether climate change is 

influencing population synchrony indirectly through altering species’ dispersal abilities 

(Kuussaari et al. 2016; Evans et al. 2019) or changing connectivity of the landscape (Oliver 

et al. 2015c; Holyoak & Heath 2016). This would have important implications for 

conservation management strategies to ensure that species are able to move across the 

landscape and remain functionally connected under future global warming.  

6.3.3 Predicting ecosystem functioning 

There is unequivocal evidence that biodiversity enhances the provision of ecosystem 

functions and services (Cardinale et al. 2012). Much research has measured the extent of 

functional differences within communities, i.e., functional diversity, to predict ecosystem 

processes. However, a gap exists in linking functional diversity to the community dynamics 

of functionally important species, where direct measures of ecosystem functioning are 

difficult to obtain. The results from Chapters 4 and 5 have shown that we can predict 

community dynamics of birds linked to ecosystem functioning using functional diversity, 

which is a novel finding in the field of functional ecology and the findings will hopefully help 

shape conservation management decisions aiming to enhance community abundance and 

stability. However even when using highly resolved data (e.g., a high number of continuous 

traits and abundance data) in our measure of functional diversity, our predictive ability was 

low. This highlights the difficulty in not only using functional diversity to predict community 

abundance, but also the additional step of linking community abundance to ecosystem 

functioning.  
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An ambitious potential avenue of future research could be to obtain direct measurements of 

ecosystem functions provided by birds to gain a mechanistic understanding of whether 

community abundance can be used to quantify avian ecosystem functioning. This would be a 

vital step forward in BEF research and would enable research into the impacts of 

environmental change on ecosystem functioning using widely available long-term monitoring 

data and trait data, in regions of the globe where we lack direct measurements of ecosystem 

functioning. This has been widely executed in plant communities, where direct measures of 

ecosystem functioning are easily obtainable using experimental field plots. Such studies have 

quantified ecosystem functioning in plants by measuring plant productivity (e.g. above-

ground plant biomass), nutrient capture, nutrient leaching, and decomposition (Naeem et al. 

1994; Tilman et al. 1996; Hector et al. 1999; Loreau 2000), which are crucial for providing 

ecosystem services such as carbon storage (Balvanera et al. 2006; Isbell et al. 2011). This has 

also been done for animals, for example quantifying crop pollination services by measuring 

flower-visitor richness and visitation rate to flowers in bees (Garibaldi et al. 2011) and 

measuring biocontrol of crop pests and weeds, nutrient cycling, dung removal and seed burial 

through numerous field studies (Gagic et al. 2015). Ecosystem functions provided by birds, 

including seed dispersal and pest control, have been estimated in real-world ecosystems 

(García & Martínez 2012; Barbaro et al. 2017; Denmead et al. 2017; García et al. 2018). This 

involves substantial fieldwork to directly measure avian predation or occurrence of seed 

dispersal and studies often occur at small spatial scales. However, quantification of 

ecosystem functions by birds in the UK would allow the development of mechanistic models 

to determine the best predictor of ecosystem functioning. This could be done at a basic level 

using community abundance alone, whereby function delivery is proportional to the 

abundance of functionally important species (Grime 1998; Winfree et al. 2015), or at a more 

refined level by combining information on species traits. The latter would weight species 

functional traits by the relative community abundance, producing an estimation of the 

community contribution to the function of interest. It could also, in principle, explore 

interactions between species based on trait data. Functional traits could include diet, body 

size, and morphological trait (e.g. beak size) as they have been shown to predict species’ 

trophic niches (Pigot et al. 2020), and therefore likely to be important for the provisioning of 

ecosystem functioning. Including traits can be done iteratively to determine which trait(s) are 

most important to the direct measure of ecosystem functioning, and potentially provide 
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further empirical evidence of the importance of community abundance for ecosystem 

function delivery.    

6.4 Conclusion 

The overall aim of this thesis was to understand drivers of spatiotemporal population and 

community dynamics and ascertain the impact on ecosystem functioning. This has been 

achieved by using long-term monitoring data and functional trait data for British birds and 

butterflies. The data were used to produce temporal trends in population synchrony over time, 

producing a novel method to track changes in functional connectivity across the UK. Next, 

the importance of dispersal and climate in driving fluctuations in population dynamics was 

established. Finally, the ability for functional diversity to measure avian community 

dynamics and how this might impact the delivery of ecosystem functions. The research as a 

whole has highlighted how long-term monitoring data can be used to describe dynamics 

related to ecosystem functioning, however, there remains a large body of potential research 

needed to more accurately predict ecosystem functioning. Quantifying ecosystem functioning 

will bring a greater understanding of the impact of anthropogenic driven changes on 

biodiversity and ultimately drive conservation decision-making and policy towards reducing 

biodiversity loss.  
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Appendices  

Appendix A: Supplementary material for Chapter 2  

 

 

 

 

Figure A1. The temporal trend in population synchrony fitted using a LOESS regression 

function with standard error bars for BBS birds showing the five repeated runs to calculate 

population synchrony using a different random subset of 10,000 sites when species had large 

amounts of data.
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Figure A2. Maps of the UK with points showing locations for all sites included in the analysis for (a) UKBMS, (b) CBC, and (c) BBS schemes 

with a total of 686, 106 and 2490 sites respectively.  

(a)      (b)      (c) 
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Table A1. Summary data of each butterfly species used in the analysis including common and Latin name, biotype specialism (WC=wider 

countryside, HS=habitat specialist), relative mobility, average abundance, abundance change, and change in synchrony over time. Dashes 

represent missing data or species with insufficient data.  See main text for source data on species attributes. 

Common name Latin name 
Abundance change 

85-00 

Abundance 

change 00-12 

Synchrony 

change 85-00 

Synchrony change 

00-12 

Brimstone Gonepteryx rhamni Increase Decrease Decrease Increase 

Brown argus Aricia agestis Increase Decrease Decrease Increase 

Chalk-hill blue Polyommatus coridon Increase Decrease No change Increase 

Comma Polygonia c-album Increase Increase No change Increase 

Common blue Polyommatus icarus Increase Decrease Decrease Increase 

Dark green fritillary Argynnis aglaja Increase Increase Decrease No change 

Dingy skipper Erynnis tages Decrease Increase No change Decrease 

Essex skipper Thymelicus lineola Decrease Decrease − No change 

Gatekeeper Pyronia tithonus Increase Decrease Decrease Increase 

Grayling Hipparchia semele Decrease Decrease − Increase 

Green hairstreak Callophrys rubi Decrease Decrease − Increase 

Green-veined white Pieris napi Decrease Decrease Increase Increase 

Grizzled skipper Pyrgus malvae Increase Decrease − No change 

Holly blue Celastrina argiolus Increase Decrease − Decrease 

Large skipper Ochlodes sylvanus Decrease Decrease Decrease Increase 

Large white Pieris brassicae Decrease Increase Decrease Increase 

Marbled white Melanargia galathea Increase Decrease Decrease Increase 

Meadow brown Maniola jurtina Increase Decrease Decrease Increase 

Orange tip Anthocharis cardamines Decrease Increase Decrease Increase 

Peacock Aglais io Increase Decrease Decrease Increase 
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Common name Latin name 
Abundance change 

85-00 

Abundance 

change 00-12 

Synchrony 

change 85-00 

Synchrony change 

00-12 

Purple hairstreak Favonius quercus Increase Decrease − No change 

Ringlet Aphantopus hyperantus Increase Increase No change Increase 

Silver-washed fritillary Argynnis paphia Increase Increase − Increase 

Small copper Lycaena phlaeas Decrease Decrease Decrease Increase 

Small heath 

Coenonympha 

pamphilus 
Decrease Decrease No change Decrease 

Small pearl-bordered 

fritillary 

Boloria selene 
Decrease Decrease − − 

Small skipper Thymelicus sylvestris Decrease Decrease Decrease Increase 

Small tortoiseshell Aglais urticae Decrease Decrease Decrease Increase 

Small white Pieris rapae Increase Decrease Decrease Increase 

Speckled wood Pararge aegeria Increase Increase Decrease Increase 

Wall brown Lasiommata megera Decrease Decrease Decrease No change 

White admiral Limenitis camilla Decrease Decrease No change Increase 
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Table A2. Summary of all CBC bird species used in the analysis including common and Latin names, biotype specialism, relative mobility, 

average abundance, STI group, abundance change, and change in synchrony over time. Dashes represent missing data or species with 

insufficient data. See main text for source data on species attributes. 

Common name Latin name Abundance change Synchrony change 

Blackbird Turdus merula Decrease No change 

Blackcap Sylvia atricapilla Increase No change 

Blue tit Cyanistes caeruleus Increase No change 

Bullfinch Pyrrhula pyrrhula Decrease No change 

Chaffinch Fringilla coelebs Increase No change 

Chiffchaff Phylloscopus collybita Increase Increase 

Coal tit Periparus ater Increase No change 

Dunnock Prunella modularis Decrease No change 

Garden warbler Sylvia borin Increase No change 

Goldcrest Regulus regulus − No change 

Great spotted 

woodpecker 
Dendrocopos major Increase No change 

Great tit Parus major Increase No change 

Green woodpecker Picus viridis − No change 

Jay Garrulus glandarius Decrease Increase 

Lesser whitethroat Sylvia curruca Decrease − 

Long-tailed tit Aegithalos caudatus − No change 

Marsh tit Poecile palustris Decrease No change 

Nuthatch Sitta europaea Increase Increase 

Redstart 
Phoenicurus 

phoenicurus 
Increase − 
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Common name Latin name Abundance change Synchrony change 

Robin Erithacus rubecula Increase Decrease 

Song thrush Turdus philomelos Decrease No change 

Tawny owl Strix aluco Decrease Decrease 

Treecreeper Certhia familiaris Decrease No change 

Willow tit Poecile montanus Decrease − 

Willow warbler Phylloscopus trochilus − No change 

Wren 
Troglodytes 

troglodytes 
Increase Increase 
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Table A3. Summary of all BBS bird species used in the analysis including common and Latin names, biotype specialism, relative mobility, 

average abundance, STI group, abundance change, and change in synchrony over time. Dashes represent missing data or species with 

insufficient data. See main text for source data on species attributes. 

Common name Latin name Abundance change Synchrony change 

Blackbird Turdus merula Increase No change 

Blackcap Sylvia atricapilla Increase Increase 

Blue tit Cyanistes caeruleus Increase Decrease 

Bullfinch Pyrrhula pyrrhula Increase No change 

Chaffinch Fringilla coelebs Increase No change 

Chiffchaff Phylloscopus collybita Increase Decrease 

Coal tit Periparus ater Increase No change 

Dunnock Prunella modularis Increase No change 

Garden warbler Sylvia borin Decrease No change 

Goldcrest Regulus regulus − Increase 

Great spotted 

woodpecker 
Dendrocopos major Increase No change 

Great tit Parus major Increase No change 

Green woodpecker Picus viridis − No change 

Jay Garrulus glandarius Increase No change 

Lesser redpoll Carduelis cabaret − No change 

Long-tailed tit Aegithalos caudatus − No change 

Nuthatch Sitta europaea Increase Decrease 

Redstart 
Phoenicurus 

phoenicurus 
Increase No change 

Robin Erithacus rubecula Increase No change 
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Common name Latin name Abundance change Synchrony change 

Song thrush Turdus philomelos Increase No change 

Tree pipit Anthus trivialis − No change 

Treecreeper Certhia familiaris Increase − 

Willow warbler Phylloscopus trochilus − No change 

Wren 
Troglodytes 

troglodytes 
Decrease Decrease 
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Table A4. Results from linear mixed models for each dataset with population synchrony as 

the response variable and climate synchrony as explanatory variables. Significant climate 

variables (p<0.05) were included as covariates in future analyses.  

Dataset 
Climate synchrony 

variable 
t-value SE p-value 

UKBMS 

Spring temperature 4.99 0.02 <0.001*** 

Summer temperature 2.71 0.003 0.0068** 

Autumn temperature -8.12 0.03 <0.001*** 

Winter temperature 3.1 0.006 0.0019** 

Spring rainfall 6.86 0.006 <0.001*** 

Summer rainfall 7.16 0.003 <0.001*** 

Autumn rainfall 10.02 0.009 <0.001*** 

Winter rainfall 4.34 0.009 <0.001*** 

CBC 

Spring temperature 1.25 0.27 0.209 

Summer temperature 2.28 0.74 0.023* 

Autumn temperature 0.12 0.39 0.91 

Winter temperature -1.02 0.7 0.31 

Spring rainfall -1.87 0.02 0.061 

Summer rainfall 0.97 0.04 0.33 

Autumn rainfall 1.37 0.03 0.17 

Winter rainfall -0.19 0.02 0.85 

BBS 

Spring temperature 1.63 0.03 0.103 

Summer temperature -0.07 0.03 0.94 

Autumn temperature 0.56 0.02 0.57 

Winter temperature -0.21 0.08 0.83 

Spring rainfall 4.42 0.002 <0.001*** 

Summer rainfall -0.77 0.005 0.44 

Autumn rainfall 2.65 0.005 0.0079** 

Winter rainfall 2.33 0.004 0.019* 

Significance is as follows: ***p < .001, **p < .01, *p < .05. 
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Table A5. Results from F-tests comparing the variation in seasonal mean 

temperature and total precipitation between 1985-2000 and 2000-2012. 

Climate variable Season F value 95% CI p-value 

Mean temperature 

Spring 2.10 [0.66-6.23] 0.20 

Summer 1.21 [0.38-3.60] 0.75 

Autumn 0.80 [0.24-2.25] 0.61 

Winter 1.29 [0.41-3.81] 0.67 

Total rainfall 

Spring 1.35 [0.42-3.99] 0.61 

Summer 0.74 [0.23-2.18] 0.57 

Autumn 0.93 [0.29-2.76] 0.88 

Winter 1.05 [0.33-3.12] 0.94 
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Table A6. Results from randomisation tests with 1,000 permutations to determine 

the significance of individual predictor variables where mixed effect models 

produced significant results (<0.05).  

Dataset Explanatory variable Response variable F value p-value 

UKBMS 

Northing Average synchrony  214.27 0*** 

Distance Average synchrony  64.96 0*** 

Habitat similarity Average synchrony  287.35 0*** 

BBS Habitat similarity Average synchrony  47.43 0*** 

Significance is as follows: ***p < .001, **p < .01, *p < .05. 
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A1. Mixed effects models 

All species model 

The ‘all species model’ (discussed section 2.3.6 ‘Accounting for climatic synchrony’) has 

population synchrony as the response variable, and year, mean northing, habitat similarity, 

distance and the selected climate synchrony variable(s) as fixed effects, and site pair ID and 

species as random effects. This was fitted for each dataset separately.  

Eq. A1 𝑌𝑖𝑗 =  𝛽0 +  𝛽1𝑋1𝑖𝑗 +  𝛽2𝑋2𝑖𝑗 +  𝛽3𝑋3𝑖𝑗 +  𝛽4𝑋4𝑖𝑗 + 𝛽5𝑋5𝑖𝑗 +  𝜇𝑖 + 𝑣𝑗 +  𝜀𝑖𝑗 

 where 𝑖 refers to the site pair ID and 𝑗 to species and 𝑌 is the outcome variable, 

population synchrony. The model contains a parameter for intercept, 𝛽0, parameters for the 

slope of the fixed effects,  𝛽1 (year), 𝛽2 (mean northing), 𝛽3 (habitat similarity), 𝛽4 (distance) 

and 𝛽5 (climate synchrony variable(s)), random intercepts for both site pair ID and species, 𝜇𝑖 

and 𝑣𝑗 , and residual error term, 𝜀𝑖𝑗.  

Single-species model 

The ‘single-species model’ (discussed in the ‘Temporal trends in population synchrony’ 

section) assesses how individual species were changing in population synchrony over time, 

we refitted the mixed effects model for each species within each dataset separately 

Eq. A4 𝑌𝑖 =  𝛽0 +  𝛽1𝑋1𝑖 +  𝛽2𝑋2𝑖 +  𝛽3𝑋3𝑖 +  𝛽4𝑋4𝑖 +  𝛽5𝑋5𝑖 +  𝜇𝑖 +  𝜀𝑖 

 where 𝑖 refers to the site pair ID and 𝑌 is the outcome variable, population synchrony. 

The model contains a parameter for intercept, 𝛽0, parameters for the slope of the fixed 

effects,  𝛽1 (year), 𝛽2 (mean northing), 𝛽3 (habitat similarity), 𝛽4 (distance) and 𝛽5 (climate 

synchrony variable(s)), random intercepts for site pair ID, 𝜇𝑖, and residual error term, 𝜀𝑖.  
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Appendix B: Supplementary material for Chapter 3 

 

 

 

 

Figure B1. The temporal trend in population synchrony fitted using a LOESS regression 

function with standard error bars for BBS birds showing the five repeated runs to calculate 

population synchrony using a different random subset of 10,000 sites when species had large 

amounts of data.
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Figure B2. Maps of the UK with points showing locations for all sites included in the analysis for (a) UKBMS, (b) CBC, and (c) BBS schemes 

with a total of 686, 106 and 2490 sites respectively. 

(a)       (b)      (c) 
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Figure B3. The change in population synchrony over time for butterflies between 1985 and 

2000 (a) and 2000 and 2012 (b) in relation to significant changes in abundance over time. 

Grey points represent each species raw data with standard error bars, and black points 

represent the slope (i.e. change in synchrony over time) from the mixed effects models with 

their associated standard errors. Grey points were scattered randomly with a small deviation 

to increase clarity.
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Figure B4. The change in population synchrony over time for CBC birds between 1985 and 

1996 in relation to significant changes in abundance over time. Grey points represent each 

species raw data with standard error bars, and black points represent the slope (i.e. change in 

synchrony over time) from the mixed effects models with their associated standard errors. 

Grey points were scattered randomly with a small deviation to increase clarity.  
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Table B1. Summary data of each butterfly species used in the analysis including common and Latin name, biotype specialism (WC=wider 

countryside, HS=habitat specialist), relative mobility, average abundance, abundance change, and change in synchrony over time. Dashes 

represent missing data or species with insufficient data.  See main text for source data on species attributes. 

Common name Latin name 
Biotype 

Specialism 

Mobility 

rank 

Average 

abundance 

between 

2009-2016 

Abundance 

change 85-00 

Abundance 

change 00-12 

Synchrony 

change 85-00 

Synchrony 

change 00-12 

Brimstone 

Gonepteryx 

rhamni 
Generalist 46 

279.22 
Increase Decrease Decrease Increase 

Brown argus Aricia agestis Generalist 14 139.89 Increase Decrease Decrease Increase 

Chalk-hill blue 

Polyommatus 

coridon 
Specialist 13 

65.11 
Increase Decrease No change Increase 

Comma Polygonia c-album Generalist 42 680.22 Increase Increase No change Increase 

Common blue 

Polyommatus 

icarus 
Generalist 28 

1234.56 
Increase Decrease Decrease Increase 

Dark green 

fritillary 

Argynnis aglaja 
Specialist 37 

57.56 
Increase Increase Decrease No change 

Dingy skipper Erynnis tages Specialist 10 6.44 Decrease Increase No change Decrease 

Essex skipper Thymelicus lineola Generalist 23 286.11 Decrease Decrease − No change 

Gatekeeper Pyronia tithonus Generalist 28 7168.22 Increase Decrease Decrease Increase 

Grayling Hipparchia semele Specialist 29 163.78 Decrease Decrease − Increase 

Green hairstreak Callophrys rubi Specialist 17 4.00 Decrease Decrease − Increase 

Green-veined white Pieris napi Generalist 45 5153.00 Decrease Decrease Increase Increase 

Grizzled skipper Pyrgus malvae Specialist 8 − Increase Decrease − No change 

Holly blue 

Celastrina 

argiolus 
Generalist 44 

244.67 
Increase Decrease − Decrease 

Large skipper Ochlodes sylvanus Generalist 27 611.78 Decrease Decrease Decrease Increase 
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Common name Latin name 
Biotype 

Specialism 

Mobility 

rank 

Average 

abundance 

between 

2009-2016 

Abundance 

change 85-00 

Abundance 

change 00-12 

Synchrony 

change 85-00 

Synchrony 

change 00-12 

Large white Pieris brassicae Generalist 57 6853.78 Decrease Increase Decrease Increase 

Marbled white 

Melanargia 

galathea 
Generalist 31 

738.67 
Increase Decrease Decrease Increase 

Meadow brown Maniola jurtina Generalist 32 15339.44 Increase Decrease Decrease Increase 

Orange tip 

Anthocharis 

cardamines 
Generalist 41 

17.44 
Decrease Increase Decrease Increase 

Peacock Aglais io Generalist 54 1941.89 Increase Decrease Decrease Increase 

Purple hairstreak Favonius quercus Specialist 18 57.22 Increase Decrease − No change 

Ringlet 

Aphantopus 

hyperantus 
Generalist 22 

6600.44 
Increase Increase No change Increase 

Silver-washed 

fritillary 

Argynnis paphia 
Specialist 39 

202.78 
Increase Increase − Increase 

Small copper Lycaena phlaeas Generalist 33 337.56 Decrease Decrease Decrease Increase 

Small heath 

Coenonympha 

pamphilus 
Generalist 23 

672.78 
Decrease Decrease No change Decrease 

Small pearl-

bordered fritillary 

Boloria selene 
Specialist 25 

37.33 
Decrease Decrease − − 

Small skipper 

Thymelicus 

sylvestris 
Generalist 25 

1116.11 
Decrease Decrease Decrease Increase 

Small tortoiseshell Aglais urticae Generalist 51 3269.56 Decrease Decrease Decrease Increase 

Small white Pieris rapae Generalist − 9695.56 Increase Decrease Decrease Increase 

Speckled wood Pararge aegeria Generalist 30 2526.00 Increase Increase Decrease Increase 

Wall brown 

Lasiommata 

megera 
Generalist 38 

207.33 
Decrease Decrease Decrease No change 

White admiral Limenitis camilla Specialist 34 43.44 Decrease Decrease No change Increase 
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Table B2. Summary of all CBC bird species used in the analysis including common and Latin names, biotype specialism, relative mobility, 

average abundance, STI group, abundance change, and change in synchrony over time. Dashes represent missing data or species with 

insufficient data. See main text for source data on species attributes. 

Common name Latin name 
Biotype 

Specialism 

Dispersal 

distance 

(km) 

Average 

abundance 

(number of 

pairs/territories) 

Abundance 

change 

Synchrony 

change 

Blackbird Turdus merula Generalist 3.2 4900000 Decrease No change 

Blackcap Sylvia atricapilla Specialist 27.5 1100000 Increase No change 

Blue tit Cyanistes caeruleus Generalist 2.3 3400000 Increase No change 

Bullfinch Pyrrhula pyrrhula Generalist 2.5 190000 Decrease No change 

Chaffinch Fringilla coelebs Generalist 2.8 5800000 Increase No change 

Chiffchaff Phylloscopus collybita Specialist − 1100000 Increase Increase 

Coal tit Periparus ater Specialist 1.2 680000 Increase No change 

Dunnock Prunella modularis Generalist 1.4 2300000 Decrease No change 

Garden warbler Sylvia borin Specialist − 170000 Increase No change 

Goldcrest Regulus regulus Specialist − 520000 − No change 

Great spotted woodpecker Dendrocopos major Specialist 3.7 140000 Increase No change 

Great tit Parus major Generalist 2.5 2500000 Increase No change 

Green woodpecker Picus viridis Specialist 1.7 52000 − No change 

Jay Garrulus glandarius Specialist 2.8 4300 Decrease Increase 

Lesser whitethroat Sylvia curruca Generalist 16.4 74000 Decrease − 

Long-tailed tit Aegithalos caudatus Generalist 3.7 330000 − No change 

Marsh tit Poecile palustris Specialist − 41000 Decrease No change 

Nuthatch Sitta europaea Specialist 0.8 220000 Increase Increase 
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Common name Latin name 
Biotype 

Specialism 

Dispersal 

distance 

(km) 

Average 

abundance 

(number of 

pairs/territories) 

Abundance 

change 

Synchrony 

change 

Redstart 
Phoenicurus 

phoenicurus 
Specialist − 100000 Increase − 

Robin Erithacus rubecula Generalist 8 6000000 Increase Decrease 

Song thrush Turdus philomelos Generalist 4 1100000 Decrease No change 

Tawny owl Strix aluco Generalist 3.1 50000 Decrease Decrease 

Treecreeper Certhia familiaris Specialist − 180000 Decrease No change 

Willow tit Poecile montanus Specialist 1.7 3400 Decrease − 

Willow warbler Phylloscopus trochilus Specialist 16.9 2200000 − No change 

Wren Troglodytes troglodytes Generalist 6.5 7700000 Increase Increase 
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Table B3. Summary of all BBS bird species used in the analysis including common and Latin names, biotype specialism, relative mobility, 

average abundance, STI group, abundance change, and change in synchrony over time. Dashes represent missing data or species with 

insufficient data. See main text for source data on species attributes. 

Common name Latin name 
Biotype 

Specialism 

Dispersal 

distance 

(km) 

Average 

abundance 

(number of 

pairs/territories) 

Abundance 

change 

Synchrony 

change 

Blackbird Turdus merula Generalist 3.2 4900000 Increase No change 

Blackcap Sylvia atricapilla Specialist 27.5 1100000 Increase Increase 

Blue tit Cyanistes caeruleus Generalist 2.3 3400000 Increase Decrease 

Bullfinch Pyrrhula pyrrhula Generalist 2.5 190000 Increase No change 

Chaffinch Fringilla coelebs Generalist 2.8 5800000 Increase No change 

Chiffchaff Phylloscopus collybita Specialist 2.8 1100000 Increase Decrease 

Coal tit Periparus ater Specialist − 680000 Increase No change 

Dunnock Prunella modularis Generalist 1.2 2300000 Increase No change 

Garden warbler Sylvia borin Specialist 1.4 170000 Decrease No change 

Goldcrest Regulus regulus Specialist − 520000 − Increase 

Great spotted woodpecker Dendrocopos major Specialist − 140000 Increase No change 

Great tit Parus major Generalist 2.5 2500000 Increase No change 

Green woodpecker Picus viridis Specialist 1.7 52000 − No change 

Jay Garrulus glandarius Specialist 2.8 4300 Increase No change 

Lesser redpoll Carduelis cabaret Specialist − 190000 − No change 

Long-tailed tit Aegithalos caudatus Generalist 3.7 330000 − No change 

Nuthatch Sitta europaea Specialist 0.8 220000 Increase Decrease 

Redstart 
Phoenicurus 

phoenicurus 
Specialist − 100000 Increase No change 
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Common name Latin name 
Biotype 

Specialism 

Dispersal 

distance 

(km) 

Average 

abundance 

(number of 

pairs/territories) 

Abundance 

change 

Synchrony 

change 

Robin Erithacus rubecula Generalist 8 6000000 Increase No change 

Song thrush Turdus philomelos Generalist 4 1100000 Increase No change 

Tree pipit Anthus trivialis Specialist − 88000 − No change 

Treecreeper Certhia familiaris Specialist − 180000 Increase − 

Willow warbler Phylloscopus trochilus Specialist 16.9 2200000 − No change 

Wren Troglodytes troglodytes Generalist 6.5 7700000 Decrease Decrease 
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Table B4. Results from linear mixed models for each dataset with population synchrony as 

the response variable and climate synchrony as explanatory variables. Significant climate 

variables (p<0.05) were included as covariates in future analyses.   

 

Dataset 
Climate synchrony 

variable 
t-value SE p-value 

UKBMS 

Spring temperature 4.99 0.02 <0.001*** 

Summer temperature 2.71 0.003 0.0068** 

Autumn temperature -8.12 0.03 <0.001*** 

Winter temperature 3.1 0.006 0.0019** 

Spring rainfall 6.86 0.006 <0.001*** 

Summer rainfall 7.16 0.003 <0.001*** 

Autumn rainfall 10.02 0.009 <0.001*** 

Winter rainfall 4.34 0.009 <0.001*** 

CBC 

Spring temperature 1.25 0.27 0.209 

Summer temperature 2.28 0.74 0.023* 

Autumn temperature 0.12 0.39 0.91 

Winter temperature -1.02 0.7 0.31 

Spring rainfall -1.87 0.02 0.061 

Summer rainfall 0.97 0.04 0.33 

Autumn rainfall 1.37 0.03 0.17 

Winter rainfall -0.19 0.02 0.85 

BBS 

Spring temperature 1.63 0.03 0.103 

Summer temperature -0.07 0.03 0.94 

Autumn temperature 0.56 0.02 0.57 

Winter temperature -0.21 0.08 0.83 

Spring rainfall 4.42 0.002 <0.001*** 

Summer rainfall -0.77 0.005 0.44 

Autumn rainfall 2.65 0.005 0.0079** 

Winter rainfall 2.33 0.004 0.019* 

Significance is as follows: ***p < .001, **p < .01, *p < .05. 
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Table B5. Results from F-tests comparing the variation in 

seasonal mean temperature and total precipitation between 

1985-2000 and 2000-2012. 

Climate variable Season 
F 

value 
95% CI p-value 

Mean temperature 

Spring 2.10 [0.66-6.23] 0.20 

Summer 1.21 [0.38-3.60] 0.75 

Autumn 0.80 [0.24-2.25] 0.61 

Winter 1.29 [0.41-3.81] 0.67 

Total rainfall 

Spring 1.35 [0.42-3.99] 0.61 

Summer 0.74 [0.23-2.18] 0.57 

Autumn 0.93 [0.29-2.76] 0.88 

Winter 1.05 [0.33-3.12] 0.94 
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Table B6. Results from linear mixed effects models for butterflies using species attributes and control variables as explanatory variables with 

either average synchrony, or change in synchrony over two time periods, as the response variable.  

Explanatory 

variable 
Response variable 

No. of 

species 
Estimate t value SE p-value  Direction of change 

Biotype 

specialism 

 

Average synchrony 

32 

0.046 1.07 0.04 0.29 Non-significant 

Change in synchrony 

1985-2000 
-0.12 -3.88 0.03 <0.001** Generalists decline in synchrony more steeply compared to specialists 

Change in synchrony 

2000-2012 
0.064 6.27 0.01 <0.001** Generalists increase in synchrony more steeply compared to specialists 

Mobility 

Average synchrony 

31 

0.004 2.99 0.001 0.0056** More mobile species have higher average levels of synchrony 

Change in synchrony 

1985-2000 
0.0002 -0.45 0.0005 0.65 Non-significant 

Change in synchrony 

2000-2012 
0.003 21.61 0.0002 <0.001*** 

Species with high mobility show a greater increase in synchrony over 

time compared to species with low mobility 

Average 

abundance 
Average synchrony 31 0.038 1.51 0.025 0.14 Non-significant 

Non-significant 

changes in 

abundance 

Change in synchrony 

1985-2000 
32 

-0.014 -1.22 0.012 0.22 Non-significant 

Change in synchrony 

2000-2012 
0.033 9.10 0.004 <0.001*** Species increasing in abundance increase in synchrony more rapidly  

Significant 

changes in 

abundance 

Change in synchrony 

1985-2000 
9 0.0047 2.18 0.002 0.029* Species increasing in abundance increase in synchrony more rapidly 

Change in synchrony 

2000-2012 
10 -0.002 -3.65 0.0006 <0.001*** Species increasing in abundance decline in synchrony more rapidly 

Significance is as follows: ***p < .001, **p < .01, *p < .05. 
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Table B7. Results from linear mixed effects models for CBC birds using species attributes and control variables as explanatory variables with 

either average synchrony, or change in synchrony over two time periods, as the response variable.  

Explanatory 

variable 

Response 

variable 

No. of 

species 
Estimate t value SE p-value Direction of change 

Biotype 

specialism 

Average 

synchrony 
26 

-0.067 -1.79 0.038 0.09 Non-significant 

Change in 

synchrony 
0.05 3.45 0.014 <0.001*** Specialists show a more positive change in synchrony over time 

Mobility 

Average 

synchrony 
20 

0.014 0.62 0.022 0.545 Non-significant 

Change in 

synchrony 
0.0096 1.30 0.007 0.192 Non-significant 

Average 

abundance 

Average 

synchrony 
26 0.057 2.72 0.021 0.013* 

Species which are more abundant have higher average levels of 

synchrony 

Non-

significant 

changes in 

abundance 

Change in 

synchrony 
22 0.029 1.88 0.016 0.06 Non-significant 

Significant 

changes in 

abundance 

Change in 

synchrony 
19 0.032 1.97 0.016 0.0492* 

Species increasing in abundance increase in synchrony more 

rapidly 

 Significance is as follows: ***p < .001, **p < .01, *p < .05. 
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Table B8. Results from linear mixed effects models for BBS birds using species attributes and control variables as explanatory variables with 

either average synchrony or change in synchrony over two time periods as the response variable.  

Explanatory 

variable 

Response 

variable 

No. of 

species 
Estimate t value SE p-value Direction of change 

Biotype 

specialism 

Average 

synchrony 
24 

0.0033 0.22 0.015 0.828 Non-significant 

Change in 

synchrony 
0.0084 2.00 0.004 0.045* 

Generalists show a more negative change in synchrony over 

time 

Mobility 

Average 

synchrony 
17 

0.0062 1.09 0.006 0.29 Non-significant 

Change in 

synchrony 
0.0065 3.61 0.002 <0.001*** 

More mobile species have a greater change in synchrony over 

time 

Average 

abundance 

Average 

synchrony 
24 0.01 1.34 0.007 0.195 Non-significant 

Non-

significant 

changes in 

abundance 

Change in 

synchrony 
18 -0.081 -1.12 0.072 0.261 Non-significant 

Significant 

changes in 

abundance 

Change in 

synchrony 
17 -0.074 -1.03 0.072 0.31 Non-significant 

 Significance is as follows: ***p < .001, **p < .01, *p < .05. 
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Table B9. Results from randomisation tests with 1,000 permutations to determine the significance of individual predictor variables where mixed 

effect models produced significant results (<0.05).  

Dataset Explanatory variable Response variable F value p-value 

UKBMS 

Biotype specialism 
Change in synchrony 1985-2000 15.12 0*** 

Change in synchrony 2000-2012 39.34 0*** 

Mobility 
Average synchrony  8.95 0.004** 

Change in synchrony 2000-2012 466.94 0*** 

Non-significant 

abundance 
Change in synchrony 2000-2012 82.84 0*** 

Significant abundance 
Change in synchrony 1985-2000 4.77 0.017* 

Change in synchrony 2000-2012 12.68 0*** 

BBS 
Biotype specialism Change in synchrony 4.02 0.068 

Mobility Change in synchrony 13.01 0*** 

CBC 
Biotype specialism Change in synchrony 11.88 0*** 

Abundance Average synchrony 7.71 0.008** 

 Significant abundance Change in synchrony 3.68 0.045* 

Significance is as follows: ***p < .001, **p < .01, *p < .05. 
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B1. Mixed effects models 

The ‘all species model’ (discussed in section 3.3.6 ‘Accounting for climatic synchrony’) has 

population synchrony as the response variable, and year, mean northing, habitat similarity, 

distance and the selected climate synchrony variable(s) as fixed effects, and site pair ID and 

species as random effects. This was fitted for each dataset separately.  

Eq. A1 𝑌𝑖𝑗 =  𝛽0 +  𝛽1𝑋1𝑖𝑗 +  𝛽2𝑋2𝑖𝑗 +  𝛽3𝑋3𝑖𝑗 +  𝛽4𝑋4𝑖𝑗 + 𝛽5𝑋5𝑖𝑗 +  𝜇𝑖 + 𝑣𝑗 +  𝜀𝑖𝑗 

 where 𝑖 refers to the site pair ID and 𝑗 to species and 𝑌 is the outcome variable, 

population synchrony. The model contains a parameter for intercept, 𝛽0, parameters for the 

slope of the fixed effects,  𝛽1 (year), 𝛽2 (mean northing), 𝛽3 (habitat similarity), 𝛽4 (distance) 

and 𝛽5 (climate synchrony variable(s)), random intercepts for both site pair ID and species, 𝜇𝑖 

and 𝑣𝑗 , and residual error term, 𝜀𝑖𝑗.  

To understand whether mobility-attributes could explain differences in population synchrony, 

we fitted a variant of the ‘all species model’ for each dataset (discussed in the ‘Population 

synchrony and species attributes’ section). Firstly, we included each mobility attribute as a 

fixed effect. 

Eq. A2 𝑌𝑖𝑗 =  𝛽0 +  𝛽1𝑋1𝑖𝑗 +  𝛽2𝑋2𝑖𝑗 +  𝛽3𝑋3𝑖𝑗 +  𝛽4𝑋4𝑖𝑗 + 𝛽5𝑋5𝑖𝑗 +  𝛽6𝑋6𝑖𝑗 +  𝜇𝑖 + 𝑣𝑗 +

 𝜀𝑖𝑗 

 where  𝛽6 is the mobility attribute of interest (specialism, mobility or mean 

abundance). 

Secondly, we included an interaction between each mobility attribute and year to determine 

whether certain types of species increase or decrease in population synchrony over time.  

Eq. A3 𝑌𝑖𝑗 =  𝛽0 +  𝛽1𝑋1𝑖𝑗 +  𝛽2𝑋2𝑖𝑗 +  𝛽3𝑋3𝑖𝑗 +  𝛽4𝑋4𝑖𝑗 + 𝛽5𝑋5𝑖𝑗 +  𝛽6𝑋6𝑖𝑗 +  𝛽7𝑋1𝑖𝑗𝑋6𝑖𝑗 +

 𝜇𝑖 + 𝑣𝑗 +  𝜀𝑖𝑗 

where 𝛽7 is the interaction between the mobility attribute of interest and year.  
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Appendix C: Supplementary material for Chapter 4 

 

Figure C1. A map of all 200 sites included in the analysis.
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Table C1. List of species and their corresponding function (seed disperser, insectivore, or 

both) n=105.  

English name Scientific name Functional group 

Bearded Tit Panurus biarmicus Both 

Black Redstart Phoenicurus ochruros Both 

Blackbird Turdus merula Both 

Blackcap Sylvia atricapilla Both 

Black-headed Gull Chroicocephalus ridibundus Insectivore 

Black-tailed Godwit Limosa limosa Insectivore 

Blue Tit Cyanistes caeruleus Both 

Bullfinch Pyrrhula pyrrhula Seed disperser 

Carrion Crow Corvus corone Insectivore 

Cetti Warbler Cettia cetti Insectivore 

Chaffinch Fringilla coelebs Both 

Chiffchaff Phylloscopus collybita Insectivore 

Chough Pyrrhocorax pyrrhocorax Insectivore 

Coal Tit Periparus ater Insectivore 

Collared Dove Streptopelia decaocto Seed disperser 

Common Sandpiper Actitis hypoleucos Insectivore 

Coot Fulica atra Seed disperser 

Corn Bunting Emberiza calandra Both 

Crossbill Loxia curvirostra Seed disperser 

Cuckoo Cuculus canorus Insectivore 

Curlew Numenius arquata Seed disperser 

Dartford Warbler Sylvia undata Both 

Dipper Cinclus cinclus Insectivore 

Dunlin Calidris alpina Insectivore 

Dunnock Prunella modularis Both 

Firecrest Regulus ignicapillus Insectivore 

Gadwall Mareca strepera Seed disperser 

Garden Warbler Sylvia borin Both 
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English name Scientific name Functional group 

Garganey Anas querquedula Insectivore 

Goldcrest Regulus regulus Insectivore 

Golden Plover Pluvialis apricaria Insectivore 

Goldeneye Bucephala clangula Insectivore 

Goldfinch Carduelis carduelis Seed disperser 

Grasshopper Warbler Locustella naevia Insectivore 

Great Spotted Woodpecker Dendrocopos major Insectivore 

Great Tit Parus major Both 

Green Woodpecker Picus viridis Insectivore 

Greenfinch Chloris chloris Seed disperser 

Greenshank Tringa nebularia Insectivore 

Grey Partridge Perdix perdix Both 

Grey Wagtail Motacilla cinerea Insectivore 

Hawfinch 
Coccothraustes 

coccothraustes 
Seed disperser 

Hobby Falco subbuteo Insectivore 

House Martin Delichon urbicum Insectivore 

House Sparrow Passer domesticus Seed disperser 

Jackdaw Coloeus monedula Both 

Jay Garrulus glandarius Both 

Lapwing Vanellus vanellus Insectivore 

Lesser Spotted Woodpecker Dendrocopos minor Insectivore 

Lesser Whitethroat Sylvia curruca Both 

Linnet Linaria cannabina Seed disperser 

Little Ringed Plover Charadrius dubius Insectivore 

Long-tailed Tit Aegithalos caudatus Insectivore 

Marsh Tit Poecile palustris Both 

Meadow Pipit Anthus pratensis Insectivore 

Mediterranean Gull Larus melanocephalus Insectivore 

Mistle Thrush Turdus viscivorus Both 

Moorhen Gallinula chloropus Seed disperser 
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English name Scientific name Functional group 

Nightingale Luscinia megarhynchos Insectivore 

Nightjar Caprimulgus europaeus Insectivore 

Nuthatch Sitta europaea Insectivore 

Pied Flycatcher Ficedula hypoleuca Insectivore 

Pied Wagtail Motacilla alba Insectivore 

Quail Coturnix coturnix Seed disperser 

Redstart Phoenicurus phoenicurus Insectivore 

Redwing Turdus iliacus Both 

Reed Bunting Emberiza schoeniclus Both 

Reed Warbler Acrocephalus scirpaceus Insectivore 

Ring Ouzel Turdus torquatus Both 

Ringed Plover Charadrius hiaticula Insectivore 

Robin Erithacus rubecula Insectivore 

Rock Dove Columba livia Seed disperser 

Rock Pipit Anthus petrosus Insectivore 

Rook Corvus frugilegus Both 

Sand Martin Riparia riparia Insectivore 

Sedge Warbler 
Acrocephalus 

schoenobaenus 
Insectivore 

Shoveler Anas clypeata Insectivore 

Siskin Spinus spinus Seed disperser 

Skylark Alauda arvensis Both 

Snipe Gallinago gallinago Insectivore 

Song Thrush Turdus philomelos Both 

Spotted Flycatcher Muscicapa striata Insectivore 

Starling Sturnus vulgaris Both 

Stock Dove Columba oenas Seed disperser 

Stonechat Saxicola rubicola Insectivore 

Swallow Hirundo rustica Insectivore 

Swift Apus apus Insectivore 

Teal Anas crecca Insectivore 
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English name Scientific name Functional group 

Tree Pipit Anthus trivialis Insectivore 

Tree Sparrow Passer montanus Both 

Treecreeper Certhia familiaris Insectivore 

Turtle Dove Streptopelia turtur Seed disperser 

Wheatear Oenanthe oenanthe Insectivore 

Whimbrel Numenius phaeopus Both 

Whinchat Saxicola rubetra Insectivore 

Whitethroat Sylvia communis Both 

Willow Tit Poecile montanus Both 

Willow Warbler Phylloscopus trochilus Insectivore 

Wood Warbler Phylloscopus sibilatrix Insectivore 

Woodcock Scolopax rusticola Insectivore 

Woodlark Lullula arborea Both 

Woodpigeon Columba palumbus Seed disperser 

Wren Troglodytes troglodytes Insectivore 

Yellow Wagtail Motacilla flava Insectivore 

Yellowhammer Emberiza citrinella Both 
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Table C2. Loadings for each seed disperser effect trait resulting from the principal 

components analysis. Large loadings indicate that a trait has a strong relationship to a 

particular principal component, and the sign indicates whether they are positively or 

negatively correlated.  

Trait PC1 PC2 PC3 PC4 

Bill length 0.38 0.91 -0.17 0.09 

Bill width 0.53 -0.29 -0.65 -0.46 

Bill depth 0.54 -0.30 0.01 0.79 

Gape width 0.54 -0.05 0.74 -0.40 

Variance % 75.7 17.2 4.9 2.2 

Cumulative variance 75.7 92.9 97.8 100 

Table C3. Loadings for each seed disperser response trait resulting from the principal 

components analysis. Large loadings indicate that a trait has a strong relationship to a 

particular principal component, and the sign indicates whether they are positively or 

negatively correlated.  

Trait PC1 PC2 PC3 PC4 PC5 PC6 PC7 

Mean latitude 0.51 -0.28 0.08 -0.06 -0.07 -0.80 -0.02 

SSI -0.07 0.26 0.64 0.70 -0.05 -0.13 0.10 

Clutch size 0.13 0.72 -0.22 -0.05 0.59 -0.24 -0.07 

Maximum longevity -0.12 -0.22 -0.68 0.64 0.07 -0.13 0.18 

STI -0.50 0.27 -0.06 -0.27 -0.36 -0.38 0.57 

Thermal maximum -0.56 -0.02 -0.03 0.02 -0.10 -0.32 -0.75 

Brood size -0.38 -0.45 0.26 -0.11 0.71 -0.11 0.24 

Variance % 39.5 20 15.4 12.9 6.3 3.6 2.3 

Cumulative variance 39.5 59.5 74.9 87.8 94.1 97.7 100 
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Table C4.  Loadings for each seed disperser effect, response, and both traits resulting from the principal components analysis. Large loadings 

indicate that a trait has a strong relationship to a particular principal component, and the sign indicates whether they are positively or negatively 

correlated.  

Trait PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13 PC14 PC15 PC16 

Bill length 0.31 -0.08 0.16 -0.23 -0.13 0.32 0.20 -0.10 0.41 -0.14 -0.37 -0.38 0.21 0.11 -0.33 0.11 

Bill width 0.30 0.00 -0.27 0.29 0.21 -0.26 -0.13 0.08 0.27 0.08 -0.03 -0.35 0.36 -0.33 0.41 0.09 

Bill depth 0.29 0.01 -0.26 0.37 0.27 0.13 -0.16 0.07 0.04 0.15 -0.35 0.02 -0.49 0.46 -0.03 -0.03 

Gape width 0.31 -0.01 -0.08 0.33 0.26 0.29 0.06 0.11 -0.14 -0.38 0.19 0.29 0.15 -0.34 -0.42 -0.15 

Mean latitude 0.03 -0.49 0.26 0.12 0.07 -0.36 0.02 -0.12 0.39 -0.43 0.27 0.03 -0.33 0.09 0.04 0.05 

SSI 0.04 0.08 -0.01 -0.59 0.66 0.13 -0.35 -0.08 0.12 -0.03 0.17 0.06 0.02 0.05 0.04 0.04 

Clutch size 0.00 -0.13 -0.62 -0.32 -0.29 -0.21 -0.16 0.38 -0.01 -0.39 -0.06 0.05 0.08 0.17 -0.10 -0.02 

Maximum longevity 0.22 0.17 0.14 0.12 -0.45 0.17 -0.71 -0.24 0.14 -0.05 0.16 0.17 0.09 0.07 0.05 0.03 

STI -0.05 0.48 -0.29 0.03 -0.02 -0.10 0.36 -0.29 0.51 0.00 0.08 0.42 0.02 0.07 0.00 0.04 

Thermal maximum -0.03 0.56 0.01 0.03 0.02 -0.07 0.00 -0.18 -0.22 -0.52 0.03 -0.49 -0.29 -0.04 0.05 -0.02 

Brood size -0.12 0.36 0.43 0.07 0.05 -0.08 -0.09 0.74 0.30 -0.06 -0.10 0.09 0.00 0.02 -0.02 -0.02 

Kipps’ distance 0.36 0.07 0.15 -0.10 -0.01 -0.25 0.13 -0.03 -0.08 0.06 0.13 -0.03 0.22 0.34 0.07 -0.75 

Wing length 0.35 0.10 0.11 0.02 0.01 -0.10 0.20 0.12 -0.28 0.01 0.34 0.03 0.20 0.42 0.03 0.60 

Tarsus length 0.33 -0.05 0.04 -0.23 -0.17 0.38 0.24 0.14 -0.04 -0.16 -0.06 0.22 -0.26 -0.19 0.64 -0.03 

Body size 0.34 0.09 -0.10 -0.21 -0.18 -0.13 0.03 0.15 0.11 0.41 0.36 -0.18 -0.45 -0.33 -0.32 0.00 

Hand-wing index 0.30 0.07 0.19 -0.17 0.03 -0.51 -0.09 -0.17 -0.22 -0.04 -0.53 0.33 -0.05 -0.25 -0.11 0.15 

Variance % 43.2 17.7 9.9 8.1 6 4 3.6 2.4 1.4 1.2 1.1 0.7 0.3 0.2 0.1 0.1 

Cumulative variance 43.2 60.9 70.8 78.9 84.9 88.9 92.5 94.9 96.3 97.5 98.6 99.3 99.6 99.8 99.9 100 
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Table C5. Loadings for each insectivore effect trait resulting from the principal components 

analysis. Large loadings indicate that a trait has a strong relationship to a particular principal 

component, and the sign indicates whether they are positively or negatively correlated.  

Trait PC1 PC2 PC3 PC4 

Bill length 0.42 0.83 0.34 0.17 

Bill width 0.54 -0.18 -0.53 0.63 

Bill depth 0.56 0.01 -0.34 -0.76 

Gape width 0.47 -0.53 0.70 0.03 

Variance % 74 16.4 7.9 1.7 

Cumulative variance 74 90.4 98.3 100 

Table C6. Loadings for each insectivore response trait resulting from the principal 

components analysis. Large loadings indicate that a trait has a strong relationship to a 

particular principal component, and the sign indicates whether they are positively or 

negatively correlated.  

Trait PC1 PC2 PC3 PC4 PC5 PC6 PC7 

Mean latitude 0.55 -0.08 0.11 -0.04 0.09 0.81 -0.09 

SSI 0.18 0.16 -0.70 0.46 -0.49 0.07 0.02 

Clutch size -0.01 -0.65 -0.28 -0.60 -0.37 0.00 0.08 

Maximum longevity 0.17 0.54 0.36 -0.37 -0.63 -0.07 0.01 

STI -0.55 0.13 -0.13 -0.12 -0.08 0.32 -0.73 

Thermal maximum -0.56 0.15 -0.01 -0.01 -0.07 0.47 0.66 

Brood size -0.14 -0.46 0.53 0.52 -0.45 0.05 -0.08 

Variance % 39.9 17.9 15.8 11.5 10.2 2.9 1.8 

Cumulative variance 39.9 57.8 73.6 85.1 95.3 98.2 100 
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Table C7.  Loadings for each insectivore effect, response, and both traits resulting from the principal components analysis. Large loadings 

indicate that a trait has a strong relationship to a particular principal component, and the sign indicates whether they are positively or negatively 

correlated.  

Trait PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13 PC14 PC15 PC16 

Bill length 0.31 -0.07 -0.03 0.17 -0.15 -0.39 -0.30 0.28 -0.40 -0.27 -0.37 -0.09 -0.31 0.23 0.06 -0.01 

Bill width 0.31 0.17 0.33 -0.04 0.00 0.16 0.18 -0.14 -0.43 -0.01 0.01 0.01 0.08 -0.39 0.58 0.03 

Bill depth 0.33 0.17 0.20 0.00 -0.16 0.00 0.06 -0.17 -0.35 0.11 0.13 0.45 0.18 0.13 -0.60 0.07 

Gape width 0.26 0.27 0.01 -0.21 -0.03 -0.11 0.51 -0.19 0.36 -0.11 -0.52 -0.12 -0.21 -0.06 -0.15 0.10 

Mean latitude 0.10 -0.50 0.08 -0.18 -0.07 0.08 0.12 0.21 -0.06 0.72 -0.33 0.03 -0.01 0.05 0.03 0.01 

SSI 0.09 -0.17 -0.04 0.55 0.63 -0.16 0.02 -0.43 -0.02 0.13 -0.16 0.05 0.01 0.00 -0.01 0.01 

Clutch size -0.02 0.03 0.72 -0.01 0.20 0.18 -0.39 0.15 0.34 -0.13 -0.24 0.18 0.02 0.04 -0.02 -0.01 

Maximum longevity 0.24 -0.07 -0.29 -0.13 -0.22 0.39 -0.55 -0.52 0.08 0.03 -0.19 -0.09 -0.05 -0.10 -0.01 0.01 

STI -0.06 0.52 -0.07 0.22 0.01 0.02 -0.18 0.18 0.05 0.45 0.06 0.12 -0.53 -0.30 -0.06 -0.07 

Thermal maximum -0.09 0.51 -0.18 0.08 0.11 0.16 -0.09 0.17 -0.13 0.19 -0.34 -0.20 0.55 0.32 0.07 0.07 

Brood size -0.05 0.12 0.01 -0.67 0.40 -0.48 -0.27 -0.15 -0.13 0.14 0.07 -0.06 0.01 -0.05 -0.02 0.00 

Kipps’ distance 0.35 0.01 -0.19 -0.08 0.22 0.14 -0.02 0.18 0.18 0.00 0.25 0.21 -0.14 0.27 0.22 0.67 

Wing length 0.37 0.09 -0.12 -0.07 0.04 -0.03 0.05 0.00 0.24 0.06 0.15 0.26 0.02 0.36 0.29 -0.68 

Tarsus length 0.31 -0.03 -0.06 0.19 -0.24 -0.47 -0.17 0.14 0.37 0.10 0.06 0.01 0.46 -0.41 0.03 0.10 

Body size 0.34 0.03 0.28 0.08 0.04 0.06 -0.01 -0.01 0.05 0.15 0.36 -0.75 -0.07 0.17 -0.19 -0.04 

Hand-wing index 0.28 -0.11 -0.26 -0.12 0.42 0.32 0.02 0.43 -0.10 -0.23 -0.05 -0.04 0.08 -0.40 -0.31 -0.21 

Variance % 41.9 18.4 9.4 7.5 6.1 4.9 3.9 2.2 1.7 1 1 0.8 0.7 0.3 0.3 0.2 

Cumulative variance 41.6 60 69.4 76.9 83 87.9 91.8 94 95.7 96.7 97.7 98.5 99.2 99.5 99.8 100 
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Table C8. Results from linear regression models for seed disperser species using interpolated 

data i.e. where we filled in missing detectability data gaps. Mean or stability of total 

community abundance was the response variable and functional dispersion calculated using 

three trait combinations (effect, response, and all traits) as the explanatory variable. 

Response variable Trait combination t-value SE p-value R2 

Mean 

Effect -2.51 0.16 0.013* 0.031 

Response 3.75 0.15 <0.001*** 0.066 

All 4.06 0.2 <0.001*** 0.077 

Stability 

Effect -1.56 0.13 0.12 0.012 

Response 4.09 0.12 <0.001*** 0.078 

All 3.6 0.16 <0.001*** 0.061 

Table C9. Results from linear regression models for insectivorous species using interpolated 

data i.e. where we filled in missing detectability data gaps. Mean or stability of total 

community abundance was the response variable and functional dispersion calculated using 

three trait combinations (effect, response, and all traits) as the explanatory variable. 

Response variable Trait combination t-value SE p-value R2 

Mean 

Effect -1.06 0.13 0.29 0.0056 

Response -1.81 0.23 0.072 0.016 

All -1.53 0.14 0.13 0.012 

Stability 

Effect -4.77 0.13 <0.001*** 0.1 

Response 0.93 0.26 0.36 0.0043 

All -5.64 0.15 <0.001*** 0.14 
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Table C10. Results from linear regression models for seed disperser species with complete 

case data, i.e. where species and sites without detectability estimates were removed. Mean or 

stability of total community abundance was the response variable and functional dispersion 

calculated using three trait combinations (effect, response, and all traits) as the explanatory 

variable. 

Response variable Trait combination t-value SE p-value R2 

Mean 

Effect -1.11 0.18 0.27 0.0094 

Response 3.05 0.2 0.0028** 0.068 

All 3.6 0.25 <0.001*** 0.092 

Stability 

Effect -0.92 0.14 0.36 0.007 

Response 3.23 0.16 0.0016** 0.075 

All 2.4 0.2 0.018** 0.043 

 

 

Table C11. Results from linear regression models for insectivorous species with complete 

case data, i.e. where species and sites without detectability estimates were removed. Mean or 

stability of total community abundance was the response variable and functional dispersion 

calculated using three trait combinations (effect, response, and all traits) as the explanatory 

variable. 

Response variable Trait combination t-value SE p-value R2 

Mean 

Effect 0.03 0.15 0.97 0.000008 

Response -0.24 0.28 0.81 0.0004 

All -0.61 0.17 0.54 0.0029 

Stability 

Effect -3.7 0.15 <0.001*** 0.1 

Response 0.49 0.3 0.62 0.0019 

All -4.81 0.16 <0.001*** 0.15 
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Figure C2. Relationships between the mean total community abundance of seed dispersers 

and functional dispersion (FDIS) of all traits (a), and FDIS response traits (b) after removing 

outlying points identified using Cook’s distance. Lower panel shows relationships between 

the temporal stability of total seed disperser abundance and functional dispersion of all traits 

(c) and response traits (d) after removing outlying points identified using Cook’s distance.  
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Appendix D: Supplementary material for Chapter 5 

Table D1. List of species and their corresponding function (seed disperser, insectivore, or 

both) n=105.  

English name Scientific name Functional group 

Bearded Tit Panurus biarmicus Both 

Black Redstart Phoenicurus ochruros Both 

Blackbird Turdus merula Both 

Blackcap Sylvia atricapilla Both 

Black-headed Gull Chroicocephalus ridibundus Insectivore 

Black-tailed Godwit Limosa limosa Insectivore 

Blue Tit Cyanistes caeruleus Both 

Bullfinch Pyrrhula pyrrhula Seed disperser 

Carrion Crow Corvus corone Insectivore 

Cetti Warbler Cettia cetti Insectivore 

Chaffinch Fringilla coelebs Both 

Chiffchaff Phylloscopus collybita Insectivore 

Chough Pyrrhocorax pyrrhocorax Insectivore 

Coal Tit Periparus ater Insectivore 

Collared Dove Streptopelia decaocto Seed disperser 

Common Sandpiper Actitis hypoleucos Insectivore 

Coot Fulica atra Seed disperser 

Corn Bunting Emberiza calandra Both 

Crossbill Loxia curvirostra Seed disperser 

Cuckoo Cuculus canorus Insectivore 

Curlew Numenius arquata Seed disperser 

Dartford Warbler Sylvia undata Both 

Dipper Cinclus cinclus Insectivore 

Dunlin Calidris alpina Insectivore 

Dunnock Prunella modularis Both 

Firecrest Regulus ignicapillus Insectivore 

Gadwall Mareca strepera Seed disperser 
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English name Scientific name Functional group 

Garden Warbler Sylvia borin Both 

Garganey Anas querquedula Insectivore 

Goldcrest Regulus regulus Insectivore 

Golden Plover Pluvialis apricaria Insectivore 

Goldeneye Bucephala clangula Insectivore 

Goldfinch Carduelis carduelis Seed disperser 

Grasshopper Warbler Locustella naevia Insectivore 

Great Spotted Woodpecker Dendrocopos major Insectivore 

Great Tit Parus major Both 

Green Woodpecker Picus viridis Insectivore 

Greenfinch Chloris chloris Seed disperser 

Greenshank Tringa nebularia Insectivore 

Grey Partridge Perdix perdix Both 

Grey Wagtail Motacilla cinerea Insectivore 

Hawfinch 
Coccothraustes 

coccothraustes 
Seed disperser 

Hobby Falco subbuteo Insectivore 

House Martin Delichon urbicum Insectivore 

House Sparrow Passer domesticus Seed disperser 

Jackdaw Coloeus monedula Both 

Jay Garrulus glandarius Both 

Lapwing Vanellus vanellus Insectivore 

Lesser Spotted Woodpecker Dendrocopos minor Insectivore 

Lesser Whitethroat Sylvia curruca Both 

Linnet Linaria cannabina Seed disperser 

Little Ringed Plover Charadrius dubius Insectivore 

Long-tailed Tit Aegithalos caudatus Insectivore 

Marsh Tit Poecile palustris Both 

Meadow Pipit Anthus pratensis Insectivore 

Mediterranean Gull Larus melanocephalus Insectivore 

Mistle Thrush Turdus viscivorus Both 
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English name Scientific name Functional group 

Moorhen Gallinula chloropus Seed disperser 

Nightingale Luscinia megarhynchos Insectivore 

Nightjar Caprimulgus europaeus Insectivore 

Nuthatch Sitta europaea Insectivore 

Pied Flycatcher Ficedula hypoleuca Insectivore 

Pied Wagtail Motacilla alba Insectivore 

Quail Coturnix coturnix Seed disperser 

Redstart Phoenicurus phoenicurus Insectivore 

Redwing Turdus iliacus Both 

Reed Bunting Emberiza schoeniclus Both 

Reed Warbler Acrocephalus scirpaceus Insectivore 

Ring Ouzel Turdus torquatus Both 

Ringed Plover Charadrius hiaticula Insectivore 

Robin Erithacus rubecula Insectivore 

Rock Dove Columba livia Seed disperser 

Rock Pipit Anthus petrosus Insectivore 

Rook Corvus frugilegus Both 

Sand Martin Riparia riparia Insectivore 

Sedge Warbler 
Acrocephalus 

schoenobaenus 
Insectivore 

Shoveler Anas clypeata Insectivore 

Siskin Spinus spinus Seed disperser 

Skylark Alauda arvensis Both 

Snipe Gallinago gallinago Insectivore 

Song Thrush Turdus philomelos Both 

Spotted Flycatcher Muscicapa striata Insectivore 

Starling Sturnus vulgaris Both 

Stock Dove Columba oenas Seed disperser 

Stonechat Saxicola rubicola Insectivore 

Swallow Hirundo rustica Insectivore 

Swift Apus apus Insectivore 
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English name Scientific name Functional group 

Teal Anas crecca Insectivore 

Tree Pipit Anthus trivialis Insectivore 

Tree Sparrow Passer montanus Both 

Treecreeper Certhia familiaris Insectivore 

Turtle Dove Streptopelia turtur Seed disperser 

Wheatear Oenanthe oenanthe Insectivore 

Whimbrel Numenius phaeopus Both 

Whinchat Saxicola rubetra Insectivore 

Whitethroat Sylvia communis Both 

Willow Tit Poecile montanus Both 

Willow Warbler Phylloscopus trochilus Insectivore 

Wood Warbler Phylloscopus sibilatrix Insectivore 

Woodcock Scolopax rusticola Insectivore 

Woodlark Lullula arborea Both 

Woodpigeon Columba palumbus Seed disperser 

Wren Troglodytes troglodytes Insectivore 

Yellow Wagtail Motacilla flava Insectivore 

Yellowhammer Emberiza citrinella Both 
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Table D2. Impact of trait number, proportion of continuous traits and the interaction on the R2 

values from linear models between mean total community abundance and FDIS using a mix of 

continuous and categorical traits.  

  

 

Feeding 

guild 
FDIS metric Explanatory Estimate SE t-value p-value 

Seed 

dispersers 

Abundance-

weighted 

Trait number 0.0014 0.00018 7.67 <0.001*** 

Prop. continuous 0.021 0.0026 7.99 <0.001*** 

Trait number * 

prop. continuous 
-0.00013 0.00039 -0.34 0.74 

Unweighted 

Trait number -0.12 0.012 -9.68 <0.001*** 

Prop. continuous -0.14 0.17 -0.78 0.44 

Trait number * 

prop. continuous 
-0.062 0.025 -2.44 0.019* 

Insectivores 

Abundance-

weighted 

Trait number -0.061 0.0093 -6.59 <0.001*** 

Prop. continuous 0.13 0.14 0.96 0.34 

Trait number * 

prop. continuous 
0.008 0.02 0.39 0.7 

Unweighted 

Trait number -0.00068 0.00004 -15.99 <0.001*** 

Prop. continuous 0.00041 0.00062 -0.65 0.518 

Trait number * 

prop. continuous 
0.0011 0.000091 12.37 <0.001*** 
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Table D3. Results from linear regression models with the difference in R2 when a trait is removed 

as the response variable, and the absolute correlation coefficient of a trait as the explanatory 

variable using abundance weighted and unweighted FDIS for seed dispersers and insectivores. 

Feeding guild FDIS metric Estimate SE t-value p-value 

Seed dispersers 

Abundance-

weighted 
0.083 0.022 2.6 0.035* 

Unweighted -0.0088 0.0046 -1.89 0.102 

Insectivores 

Abundance-

weighted 
-0.014 0.0077 -1.78 0.12 

Unweighted 0.023 0.021 1.35 0.22 
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Figure D1. Maximum R2 values (a) and mean R2 values (b) with associated standard deviation 

(c) produced from abundance weighted FDIS, and maximum R2 values (d) and mean R2 values 

(e) with associated standard deviation (f) produced from unweighted FDIS for seed dispersing 

birds using the complete case data, i.e. where species and sites without detectability estimates 

were removed.
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Figure D2: Maximum R2 values (a) and mean R2 values (b) with associated standard 

deviation (c) produced from abundance weighted FDIS, and maximum R2 values (d) and mean 

R2 values (e) with associated standard deviation (f) produced from unweighted FDIS for 

insectivore birds. using the complete case data, i.e. where species and sites without 

detectability estimates were removed.
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Figure D3. The relationship between mean R2 and the variable type used to calculate FDIS for 

seed dispersers with abundance-weighed FDIS (a) and unweighted FDIS (b), and insectivores 

with abundance-weighted FDIS (c) and unweighted FDIS (d).   
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Figure D4. The relationship between mean R2 and number of continuous traits used to calculate 

FDIS for seed dispersers with abundance-weighed FDIS (a) and unweighted FDIS (b), and 

insectivores with abundance-weighted FDIS (c) and unweighted FDIS (d). Black line represents the 

LOESS regression with shaded 95% confidence intervals.
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Figure D5. The relationship between insectivore species’ relative abundance and two traits 

(a) bill width and (b) body size.  
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