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A B S T R A C T   

Lasts are foot-shaped forms made of plastic, wood, aluminum, or 3D-printed plastic. The last of a 
shoe determines not only its shape and style but also how well it fits and protects the foot. A 
weight-updated boosting-based ensemble learning (WUBEL) algorithm is presented in this paper 
to extract critical features (points) from plantar pressure imaging to optimize the shoe’s last 
surface to satisfy a comfortable shoe’s last surface optimization design. An enhanced last design is 
constructed from the foot measurement data of the bottom surface of the base last, the critical 
control lines (points) of the shoe’s last body, and the running-in degree of the pressure-sensitive 
area lattice data. Using a Likert scale (LS) and relevant evaluation indicators, we conducted an 
experimental evaluation and comparative study of our enhanced last design. With a point-cloud 
dataset, the proposed method performs highly effectively in constructing shoes, which will help 
diabetes patients find comfortable and customized shoes.   

1. Introduction 

Shoes are an essential item in our daily lives, serving not only as a means of protection for our feet but also as an aesthetically 
pleasing and spiritually fulfilling accessory. With the rise in living standards, people’s expectations for footwear have also increased, 
demanding not only comfort but also style, color, and fashion. To achieve comfortable footwear, the shoe last design plays a crucial 
role. It is necessary to ensure that the shoe is comfortable before it is finished. Plantar pressure analysis is commonly used to optimize 
shoe last design by creating a point cloud measurement dataset through human pressure measurement data [1,2]. The objectives of the 
research are to develop a robust algorithm for processing point-cloud measurements of shoe lasts and generating accurate curvature 
profiles and to improve comfort and fit for shoe wearers. Deep learning (DL), a mainstay of artificial intelligence (AI), has successfully 
addressed various two-dimensional vision problems [3,4]. However, point cloud data differ from image data, as they do not encode 
spatial relationships between pixels. Thus, deep learning models for image recognition require additional processing for point cloud 
data. Methods such as reordering disordered data, performing data augmentation with all permutations, using recurrent neural net-
works (RNNs), and using asymmetric functions ensure permutation invariance when processing point cloud data [5,6]. Additionally, 
invariance should also apply to rotation and translation. Therefore, aligning the input point cloud, altering the pose, using shared 
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weights in convolution, and utilizing farthest point sampling (FPS) and hierarchical feature extraction are necessary when using point 
cloud data for deep learning. In conclusion, optimizing shoe last design is critical in achieving comfortable and fashionable footwear. 
The use of plantar pressure analysis and DL methods on point cloud datasets can greatly improve the design process. However, 
additional processing is necessary to ensure permutation and spatial invariance, which can be achieved through various techniques, 
such as reordering, data augmentation, and pose alignment. With continued research and development, we can expect even more 
advanced techniques to further enhance the design and manufacturing of comfortable and stylish footwear [7,8]. 

Among all deep learning technologies currently, ensemble learning (EL) is one of the most powerful deep learning technologies 
available that combines several weak learners to overcome the shortcomings listed above. An ensemble learning indicator is usually a 
decision tree. In most cases, a decision tree is used as an indicator of ensemble learning. Various components of the eigenvector are 
then compared to the threshold of the decision tree node to determine whether they should be entered into the left or right child node. 
For classification problems and regression problems, the prediction result is stored in the leaf node as the category value or regression 
value. Classification regression trees are mostly used to accomplish ensemble learning [9–11]. Classification trees map a multidi-
mensional space with a piecewise linear division, that is, they divide it along a line parallel to each axis; regression trees map a 
piecewise constant function. Any function on the closed interval can be approximated to any specified accuracy when the interval is 
finely defined. Therefore, decision trees are suitable for all types of data [12]. 

In traditional machine learning, several different possible functions are constructed, and a classifier closest to the actual classifi-
cation function is selected. Decision trees, artificial neural networks, and naive Bayes classifiers are among the most common single 
classifier models. When classifying new instances, ensemble learning integrates several single classifiers and determines the final 
classification by combining the classifications of multiple classifiers, resulting in a more accurate classification than a single classifier 
alone. Compared to a single classifier, the ensemble learning method is equivalent to multiple classifiers deciding together. A single 
ensemble classifier can be an artificial neural network classifier. As a final classification, the combined output of the integrated 
classifier is obtained from the output of each artificial neural network based on the same input [13]. Integrating the basic classifiers 
based on different feature sets and studying methods such as linear integration, winner-take-all (WTA), and evidence reasoning is a 
promising research direction. As a result of linear integration, the outputs of each basic classifier are combined linearly as the clas-
sification results. Zhao et al. [14] developed multiview-based random rotation ensemble pruning (MVRR-EP) as a technique for 
improving weak classifiers to strong ones. Ma et al. [15] developed ensemble learning using multiple features and performed a visual 
inspection system to demonstrate the advanced and practical nature of the proposed algorithm. 

Based on approximate probability theory, strongly learnable objects are those that can be learned with high accuracy by a poly-
nomial learning algorithm. A weakly learnable system is slightly more accurate than random guessing. Strongly learnable objects must 
be weakly learnable as a sufficient condition. Algorithms that are weakly learnable are generally easier to obtain than algorithms that 
are strongly learnable. This means that the best method of improving the learning algorithm is to start with a weak learning algorithm, 
obtain many weak classifiers, and combine the weak classifiers to form a strong learning algorithm. Bagging, also known as bootstrap 
aggregation, is an ensemble technique that reselects new datasets from the original dataset by sampling with replacement to train the 
classifier. Using the set of trained classifiers to classify new samples, it counts the classification results of all classifiers by majority vote 
or averaging the output, and the final label is the one that scored the highest. These algorithms are effective in reducing bias and 
variance [16]. As an example, 70% of the data from the original data can be set in each round, extract multiple rounds, trained in 
different classifiers (if the same model is used, the difference will be the parameters), and the test set data can be predicted with k 
models. The prediction result is determined by using the classifiers that receive the most votes for classification problems. As a result of 
regression problems, the mean of the predicted values is used. Basically, the training data are collected randomly by random forests 
[17,18]. Based on ensemble learning, two classifiers were proposed to classify shoe last curvature using point clouds, therefore 
improving shoe last customization. 

Since point cloud data are discrete, no clear modeling method can be demonstrated to be effective. Using point cloud data, 
nonuniform rational B-splines (NURBS) can adequately fit irregular surfaces. As part of the research on shoe-last shape, NURBS is also 
shown to be an effective way of fitting the foot because the wearing comfort of footwear is based on the study of psychological quantity. 
Establishing a relationship between psychological quantity and point cloud data of shoe-last surfaces is one of the biggest challenges 
and hot topics in footwear comfort research. Deep learning technologies can bridge this data gap. 

2. Methodology 

2.1. Weights updated boosting ensemble learning 

Weight updated algorithms are widely used in decision-making and prediction. They are also widely used in algorithm design and 
game theory. The simplest use case is forecasting based on expert advice, where a decision-maker must continually decide on an 
expert’s advice. Initial weights are assigned to experts (usually the same initial weights), and these weights are updated, multipli-
catively and iteratively, based on feedback from the expert’s performance. 

The objective of traditional machine learning algorithms (e.g., decision trees, artificial neural networks, support vector machines, 
naive Bayes, etc.) is to find an optimal classifier that separates training data as much as possible. Ensemble learning combines multiple 
classifiers to produce a classifier with better prediction ability. Since several classifiers have a relationship, it is more likely that the Nth 
classifier will be divided into the N-th classifier. Currently, a classifier has no paired data, and the previously paired data cannot be 
paired again. Therefore, each weak classifier has its own most concerned point, and each weak classifier only pays attention to a part of 
the data in the entire dataset, so they must be combined to be effective. Weighted voting must be performed according to the weight of 
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the weak classifier. The weight is calculated based on the classification error rate of the weak classifier. The higher the weight is, the 
lower the error rate of the weak classifier. 

For training data X = {xi|i∈ N} in classifying space Y, the number of classifiers is h, and e is the error for h. The weighted update 
algorithm for ensemble learning classifiers is described in Algorithm 1. The recognition error rate is less than 1/2; that is, the learning 
algorithm that is only slightly more accurate than random guessing is called a weak learning algorithm; the recognition accuracy is 
extremely high and can be applied in polynomial time. It is referred to as a strong learning algorithm. Iteratively using weak learning of 
the classifier composition, boosting algorithms add its results to a final strong learned classifier. As part of the joining process, different 
weights are usually applied according to their classification accuracy. Data points previously misclassified are usually reweighted after 
weak learners are added to make the classification more accurate. Some recent examples are LPBoost, TotalBoost, BrownBoost, 
MadaBoost, and LogitBoost. In the AnyBoost framework, many boosting methods can be viewed as gradient descent with convex error 
functions. 

By using a special lifting algorithm, this method can transform a weak learning algorithm into a strong one. First, the base learner is 
trained by the initial training sample set. Second, the weight of the samples misclassified by the base learner is increased so that these 
samples receive more attention in the next round of training, and the adjusted samples are applied to train the next base learner. These 
steps are repeated until several learned classifiers are obtained. 

To obtain predicted values for classification problems, weighted voting is used; for regression problems, the weighted average is 
used. Details can be found in Algorithm 2. 

2.2. Point-cloud dataset-based curvature construction and evaluation 

2.2.1. Point cloud dataset-based curvature 
Data from the last motherboard are acquired to generate the surface of the bottom of the shoe-last. Senior technicians usually 

complete these experience data during the production of the shoe-last body. First, the model’s library imports the digitized model after 
it is digitized. Second, it is necessary to obtain the plantar pressure image based on the geometry, pixel structure, and texture seg-
mentation results. A lattice dataset includes the area number, location, lattice coordinate vector, etc. In addition, the boundary point 
set and control point set of the nonuniform rational basis spline (NURBS) surface must be generated, and then the splicing patch can be 
smoothed. After that, all the bottom surfaces of the last are seamlessly spliced together [19–21]. The last link is to evaluate the 
generated last bottom surface, design the evaluation index and combine it with the psychological scale method, and interactively 
design and modify the last bottom surface through the surface generation program and design software until the last bottom surface 
that meets the requirements is generated.  
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Reverse construction of the shoe last based on the point set of the plantar pressure key region is complex reverse engineering. 
Through the combination of reverse engineering and rapid prototyping technology, the model can be copied quickly, changing the 
traditional product development design and manufacturing mode. For the reverse construction of the shoe last, the point cloud data 
can be divided into 6 base surfaces, including the bottom surface, top surface, and 4 sides. Then, it is realized by the smooth surface 
splicing algorithm of graphics. Here, more attention is given to the generation of the surface of the bottom of the last, and the method 
based on the base board of the bottom of the last is adopted, which can greatly reduce the complexity of the surface construction. All 
graphics algorithms are based on NURBS. This chapter mainly uses the bicubic B-spline surface patch to construct the bottom surface of 
the last. Initially, a baseline is generated from an NURBS curve; the NURBS curve is defined by its order, a set of weighted control 
points, and a node vector. NURBS curves and surfaces are the generalizations of B-spline curves and Bezier curves and surfaces. The 
main difference is the weight of the control points; the weight of the control points can make NURBS curves more perfect to fit in-
dustrial products. 

To generate an NURBS surface, a set of recursive sequence values must be calculated, denoted as Ni, n. The calculation can be done 
using: 

Ni,n = fi.nNi,(n− 1) + g(i+1),nN(i+1),(n− 1) (1)  

where f and g are linear combination factors, calculated by: 

fi,n(u)=
u − ki

ki+n − ki
(2)  

gi,n(u)=
ki+n − u
ki+n − ki

(3)  

Fig. 1. Bicubic NURS.  
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where fi,n(u)+ gi,n(u) = 1;ki is the inserted node data. By using Eqns. (1)–(3), the node vector of the NURBS surface is then constructed 
(bicubic); and let u = [u0,u1,L,um+p]， v = [v0,v1,L,vn+q]，then the p × q rank NURBS is defined by: 

p(u, v)=
∑m

i=0

∑n

j=0
Pi,jNi,p(u)Nj,q(v) (4)  

where Pi,j is a characteristic style called a B-spline surface that constitutes a control network; Ni,p(u) and Nj,q(v) are NURBS baselines 
determined by the node vectors U and V according to the deBoor-Cox recursion formula. When m = n = 3, it is defined as a bicubic 
NURBS, as shown in Fig. 1, and the control point of Pij is calculated by Eqn. (4). 

Inserting the characteristic data vector of the key area of plantar pressure together with the female last dataset constitutes the 
NURBS control mesh data of the bottom surface of the last, and the optimal design of the bottom surface of the last is synthesized 
through the smoothing splicing algorithm presented in the next section. It is preferable to build a NURBS grid line system (Python- 
NURBS program) through the program and store the node data (the node data will be compared with other key area lattice data later). 
Fig. 2 shows the NURBS control matrix that determines the position of the curve, usually not on the curve, forming the control polygon. 
Surface splicing based on the smoothing method is a relatively mature operation at present. So-called smoothing means that the surface 
is smooth as a whole; mathematically, it can be described as having second-order geometric continuity (G2) or continuity above G3, 
and there are no inflection point, singular points, or curvature changes uniformly; the control points of the surface change uniformly, 
with no sudden changes or jumps and no bulges or wrinkles. The G2 continuity is shown in Fig. 3. 

In G2, curvature continuity, or radial continuity, two faces/surfaces intersect at the same point, are tangent to each other, and their 
curvatures are equal along each edge. Therefore, smooth surfaces must have continuous transitions across their edges. In the case of 
surface reflections, control point stitching is another way to describe the process since it is impossible to tell where one patch ends and 
another begins. Here, an edge-based splicing method is used for bicubic NURBS surface splicing. When N nonuniform bicubic B-spline 
surfaces are surrounded by N sides, the nonuniform B-spline surfaces interpolated at the corners are used, and adjacent surfaces only 
need to have the same corners. The contour deletion mode is unified with the curve subdivision formula interpolated at the corner 
points. It can be proven that when the outermost two control grids are regular, the first and last edges of each row and column are 
regular according to the new formula for the nonuniform Catmull-Clark subdivision mode. When the weight of the extended edges is 
zero, the next layer of control vertices generated by the nonuniform Catmull-Clark subdivision mode is the new control vertex, and the 
subdivided weights remain in the original control network. 

2.2.2. Curvature evaluation based on running-in degree 
Regarding the effect of the last, it is necessary to exclude the artificial subjective influence in the software design process and only 

evaluate the impact of the NURBS control points generated by the pressure-sensitive data on the design of the last. There are two kinds 
of evaluation indicators: one is an evaluation based on the degree of running-in, and the other is based on the psychological scale 
method. Among them, the second method requires small batch production of shoes and is completed by the wearing comfort eval-
uation system. 

First, the concept of running-in degree is clarified. The running-in degree refers to the comprehensive average value of the distance 
between the control point set and the point set generated by the intersection of the surface in the z-axis direction. Here, it is necessary 
to make it clear that the running-in degree can be calculated by the average of the single dimension or the comprehensive average of 
the three-dimensional space; the distance measure can be customized, such as the Euclidean distance method. Here, a relatively mature 
method based on NURBS fitting error is used to calculate the degree of running-in, and different datasets are compared, as shown in 
Fig. 4. The z-axis is a running-in degree based on the example dataset. The x and y here are u(x) and v(x) of the NURBS curvature. We 
show the running-in degree and NURBS curvature in a 3D-axis system, so the example dataset was reproduced. 

Fitting error calculation process: given surface control points c(i, j)(i= 1, 2,⋯n, j= 1, 2,⋯,m) generate node vectors U = (u0, u1,⋯ 
, un+4) and V = (v0,v1,⋯,vm+4), the deviation error is: 

e=
⃒
⃒q(i, j) − p

(
ũi, ṽj

)⃒
⃒ (5)  

where i = 1,2,⋯, r， j = 1,2,⋯, s. Accordingly, the degree of running-in can be defined as: 

Fig. 2. Shoe last curvature, NURBS and control matrix.  
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β=
|e|

mn‖c‖Ni,3(ui)Nj,3
(
vj
) (6)  

where N(u) and N(v) are baselines of NURBS. ‖c‖ is the vector norm of the control points defined as: 

‖c‖=
⃒
⃒ci − cj

⃒
⃒=

∑l

k=1

⃒̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
⃒c(k, i)2

− c(k, j)2⃒⃒
√

(7) 

Fig. 5 shows the pipeline of how the fitting degree of a NURBS is calculated using Eqns. (5)–(7). 

3. Results 

3.1. Experimental design and measurement data processing 

Plantar pressure experiments were conducted using an RSscan foot scanner (RSscan International, Belgium). Sixty healthy vol-
unteers over the age of 18 recruited for the plantar pressure imaging study completed the data collection. In addition to being free of 
neurological diseases, volunteers were also required to have a normal gait, no walking instability, no intermittent claudication, and 
clear vision. Before collecting medical information, volunteers were asked about their shoe-wear habits and were required to take their 
socks off for inspection. Name, age, gender, height, weight, blood pressure, and other personal information were included in the 
questionnaire. In the acquisition test, volunteers performed 10 repetitive tests while walking normally to identify the medial, lateral, 
midfoot, five metatarsals, thumb, and four toes, dividing the plantar arches artificially into 10 anatomical partitions. Table 1 shows the 
plantar pressure for different functional area of the foot. 

3.2. Point-cloud learning results 

The boosting figures for different estimations are plotted in Fig. 6. The difference classifications are c1-c8. According to Fig. 6, there 
was a boosting with different estimations. c1 has two different zones after boosting, while the remaining seven classifications have 

Fig. 3. Smoothing G2 surface stitching.  

Fig. 4. Calculation of the running-in degree of the relationship between the point set and the surface.  
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three zones. This is the main difference for the different classifications. Here, the x-axis is the pressure value from the plantar pressure 
dataset, and the y-axis is the number of points. The learning rate for the boosting ensemble learning algorithms was seen in which 30% 
of the datasets are test sets, and 70% are training datasets. Fig. 7 shows the training-testing percentages (Fig. 7(a)) and ensemble size 
with accuracies (Fig. 7. (b)); ensemble size means the number of individual base learners or models that are combined to create the 
final ensemble model. By using different classifiers, the proposed boosting methods are compared for ensemble learning and point 
cloud classification compared to k nearest neighbor (k-NN), random forest (RF), and naive Bayes (NB) (shown in Fig. 8). The proposed 
method has higher accuracy (90.8%) than k-NN (87.1%), RF (85.78%), and NB (85.89%). 

4. Discussion 

4.1. Evaluation using running-in degree 

The result is calculated by applying formula (5-7) of the running-in degree in the relevant last design evaluation index in Section 
2.2.2. The results of the running-in degree are presented in Table 2, where Control means the control point of NURBS, the value is the 
pressure value of the point, and fitting is the fitting point. Under the same fitting algorithm proposed in Fig. 5, the data from different 
sources are averaged for the three running-in degrees, and three types of datasets are applied: preservation morphology, domain 
segmentation deep learning, and fully convolutional network, as shown in Table 3. In addition, an assessment of the wearing comfort 
psychological scale can also be performed. Using the Likert scale (1, 3, 5, 7, 9), the scale vocabulary is defined as “very uncomfortable” 
(1), “discomfort” (3), “moderate” (5), “comfortable” (7), and “very comfortable” (9). The Likert scale is a psychological scale often 
used in psychological questionnaires. It was developed and named after organizational psychologist Rensis Likert. The self-report 

Fig. 5. NURBS surface fitting process based on control points.  
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checklist is one of the most widely used tools in psychological research. On the Likert scale, respondents were asked to rate the comfort 
level of the product. According to the results of the shoe last optimization design and small batch production, 30 pairs of shoes (five 
pairs for men and five pairs for women, using three different datasets) were collected from 30 people, and the results of wearing 
comfort evaluation are shown in Table 4. 

Among them, pixel fusion segmentation is the previous research result of the research group; it is mainly through the method of k 
nearest neighbor (kNN) clustering, and then the image is segmented based on the clustering results. As a result of the evaluation 
process, we can see that the dataset processed by WUBEL has a low level of running-in (the smaller the value proportional to the error, 
the more obvious the effect) as well as a higher psychological scale value. Furthermore, the evaluation results exclude the artificial 
pruning factor of the last body design in the evaluation part of this experiment. From the evaluation process, it can be seen that the 
dataset processed by WUBEL not only has a low degree of running-in (the smaller the value proportional to the error, the more obvious 
the effect) but also a higher psychological scale value. In the evaluation part of this experiment, it should be further explained that the 
evaluation results exclude the artificial pruning factor of the last body design. From the point of view of data generation, last body 
optimization design and shoe wearing, the last surface optimization guided by dot matrix data based on pressure-sensitive imaging is 
feasible and effective. 

4.2. Applications 

4.2.1. Surface design of the last bottom surface based on Delcam 
First, the original measurement data of the last female (the data of the last female come from empirical data) are imported; the 

footprint method is used to form a relatively matching foot corresponding model. Then, the last shoe is repaired and refined by manual 
experience, and a one-size shoe last is produced, which is usually completed by multiple shoe last designers. After the mother is 
completed, it is scanned in 3D and imported into the last body design software for meshing operation to provide basic data models for 
last body trimming, different shoe size expansion and contraction, paired custom processing, and mass production processing. The 
optimized last design of the basic mother last data is a common design process at present, and the key lies in the collection and 
processing of the superior last data. Fig. 9 shows an example of the Delcam-based last design process. Among them, Fig. 9 (a) is the 
visual model of the basic data of the mother last, Fig. 9 (b) is the edge curve and point of the modified shoe last body, and Fig. 9 (b) and 
Fig. 9 (c) need to fully combine the pressure-sensitive lattice data to continuously optimize the last body correction. Fig. 9 (d) is the 
trimming process for the last. 

4.2.2. Design process of the last bottom surface based on Python-NURBS and easy3D 
The pressure-sensing data are organized into a set of lattice data and imported into the Python-NURBS program for surface 

optimization processing and then imported into the last bottom surface design software for last body design. The general splicing 
process of the last surface is shown in Fig. 10. Fig. 10 (a) is the different views of the last dataset; Fig. 10(b) id the interface of how the 
rear rocker of the last body is designed; Fig. 10(c) shows the process of the high waist last design; and Fig. 10 (d) shows the last molding 
and rendering results. 

The last is further trimmed, expanded, and shaped. Finally, these data are imported into the last engraving machine for pre-
processing preparation, including knife pattern generation and mass production of the last body, to provide the shoe last entity for the 

Table 1 
Raw dataset of plantar pressure for different zones of the foot using a pressure scan device.  

Left % N/cm N/cms Ns/cm N/cm 

Toe 1 85 5.1 0.02 1.1 0.7 
Toe 2-5 25 0.6 0.02 0.1 4.4 
Meta 1 85 6.5 0.03 2 0 
Meta 2 86 7 0.03 2.2 1.5 
Meta 3 86 7.2 0.03 2.4 2.9 
Meta 4 84 5 0.16 1.9 2.6 
Meta 5 80 1.9 0.06 0.6 0 
Midfoot 52 2.9 0.07 0.4 7.3 
Heel Medial 55 5.8 1.73 1.1 0 
Heel Lateral 53 6.3 1.89 1 6.6 

Right % N/cm N/cms Ns/cm N/cm 

Toe 1 87 2.6 0.01 0.8 8.1 
Toe 2-5 75 0.8 0 0.2 1.5 
Meta 1 87 6.6 0.02 2.1 12.8 
Meta 2 88 7.9 0.04 2.6 11.7 
Meta 3 90 6.1 0.06 2.5 7.7 
Meta 4 88 5.1 0.05 1.5 5.1 
Meta 5 62 1.4 0.01 0.3 4.4 
Midfoot 38 2.3 0.03 0.3 6.2 
Heel Medial 41 7.5 0.28 1.2 9.9 
Heel Lateral 41 6.3 0.63 1.1 10.6  
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Fig. 6. Different classifications of c1 and c2-c7 for point clouds from the plantar pressure dataset 
(a) the performance of the training set and test set (b) the ensemble size of all classification with their accuracy. 
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Fig. 7. Training/testing set learning rate (a) and ensemble size accuracy for eight classifications (b).  

Fig. 8. Comparison of results for different classifiers (a) K-nearest neighbor (b) Random forest (c) Bayes, and (d) Boosting ensemble proposed.  

Table 2 
Calculation results of point value error and running-in degree (average distance running-in degree).  

Order Control Value Fitting Points Error Running-in degree 

1 (127.877,129.822,158.432) (127.877,129.822,158.432) (127.877,129.822,158.432) − 27.322 9.857 
2 (89.524,88.965,41.566) (89.422,147.635,534.522) (125.236,253.233,24.285) − 17.201 12.530 
3 (23.666,24.621,411.321) (235.211,242.210,146.233) (100.201,31.254,127.584) − 14.522 5.781 
4 (127.356,21.354,101.275) (124.365,124.358,144.254) (351.245,301.256,15.222) − 52.231 9.211 
5 (125.366,122.235,49.522) (54.233,57.231,102.233) (104.253,125.321,58.231) 40.235 5.417 
6 (230.212,200.154,18.365) (12.540,210.231,100.268) (174.286,152.896,54.396) 27.328 7.697 
7 (100.333,105.387,142.65) (98.632,68.522,107.356) (170.254,130.256,87.533) 16.957 5.962 
8 (201.369,200.365,201.378) (189.562,175.231,59.63) (188.564,188.522,73.546) 17.521 7.698 
9 (263.365,200.351,198.563) (201.254,189.524,188.251) (187.524,156.354,100.587) 21.364 2.752 
… … … … … … 
100 (523.236,400.236,78.365) (489.521,351.200,140.369) (488.521,256.321,107.563) − 17.254 11.236  
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subsequent production of comfortable shoes. The interactive last surface optimization design process currently mainly relies on 
professional shoe last design software. This chapter primarily focuses on whether the dot matrix data generated by the pressure-sensing 
data can be used for the last design. Through the application of the shoe last comfort design process in this section, it is feasible to use 
the sensory data for the experimental design study of the superior last design. 

5. Conclusions 

In this article, the general process of the superior last design from the generation of the NURBS baseline and surface is explained, 
along with the shoe-last data of the motherboard. The self-defined running-in degree was combined with the psychological scale to 
evaluate different datasets. The experiment utilizes preservation morphology, domain segmentation deep learning, and fully con-
volutional network mining technology to study the wearing comfort of finished shoes. Algorithms for ensemble learning are highly 
accurate. Despite this, the boosting method is a complex training process and is inefficient, which can be improved through algorithm 
improvements. An approach to improving weak classification algorithms is presented here. Through this method, a prediction function 
is constructed and then combined in a certain way. Through the operations with the sample set, a sample subset is obtained, and weak 
classifiers are then generated. The main contributions of this work are to develop a weight-updated boosting-based ensemble learning 

Table 3 
The running-in degree calculation of different pressure-sensing algorithm datasets under the same fitting situation.  

Methods Data size Plantar areas Average running-in degree 

Local Preservation Morphology [22] 100 Front (30), Middle (40), Rear (30) 7.563 
Domain Segmentation Deep Learning [23] 102 Front (30), Middle (42), Rear (30) 8.23 
Fully Convolutional Network [24] 89 Front (30), Middle (29), Rear (30) 6.588 
Pixel fusion segmentation [25] 120 Front (50), Middle (40), Rear (30) 7.544 
WUBEL (*) 109 Front (40), Middle (34), Rear (35) 9.874  

Table 4 
Psychological scale results for different datasets.  

Methods Average scale 

Local Preservation Morphology 4.523 
Domain Segmentation Deep Learning 6.123 
Fully Convolutional Network 6.228 
Pixel fusion segmentation 2.567 
WUBEL (*) 7.569  

Fig. 9. Delcam’s optimization design process based on mother last (a) the basic raw data of the last, (b) NURBS constructed using control points. (c) 
corrected baseline of the bottom side of the shoe last, and (d) is the interface for interactive trimming process. 
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algorithm named WUBEL for generating 3D surfaces based on shoe last point-cloud datasets. This surface will benefit the customization 
of the shoe-last and improve wearing comfort. 

The limitation of the study is the precision of the surface generation. In future works, a feedback system based on real-life tests 
should be founded. A way to improve shoe last surface generation is to use other NURBS. The shoe’s last design should significantly 
improve the accuracy and efficiency of the process. The NURBS modeling technique has made it possible to create complex, smooth 
curves and surfaces that accurately replicate the shape of the human foot, resulting in comfortable and well-fitting shoes. However, this 
area still has room for further research and development. One potential future direction is the integration of machine learning al-
gorithms to automate and optimize the shoe’s last design process. Another area of focus could be using advanced materials and 
manufacturing techniques to enhance the durability and performance of the shoe. Furthermore, it is essential to note that the success of 
the shoe’s last design using NURBS depends heavily on the skill and expertise of the designer. Therefore, future works should also 
involve the development of training programs and educational resources to train designers on the use of NURBS for shoe last design. On 
the other hand, the risk of foot injuries in people with diabetes could be effectively mitigated by developing custom shoes based on 
pressure distribution data from the study results. This is critical in preventing diabetic foot disease and related complications, such as 
ulcers and infections. By gaining insights into the data on foot pressure distribution from the study results, shoe designers and 
manufacturers will be able to more accurately design and build shoes for people with diabetes. These shoes can be customized to an 
individual’s foot anatomy and pressure distribution, reducing foot pain, potential ulcers and the risk of diabetic foot disease. 
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