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Abstract 37 

 38 

Measures of intrinsic brain function at rest show promise as predictors of cognitive decline in 39 

humans, including EEG metrics such as individual alpha peak frequency (IAPF) and the 40 

aperiodic exponent, reflecting the strongest frequency of alpha oscillations and the relative 41 

balance of excitatory:inhibitory neural activity, respectively. Both IAPF and the aperiodic 42 

exponent decrease with age and have been associated with worse executive function and 43 

working memory. However, few studies have jointly examined their associations with cognitive 44 

function, and none have examined their association with longitudinal cognitive decline rather 45 

than cross-sectional impairment. In a preregistered secondary analysis of data from the 46 

longitudinal Midlife in the United States (MIDUS) study, we tested whether IAPF and aperiodic 47 

exponent measured at rest predict cognitive function (N = 235; age at EEG recording M = 55.10, 48 

SD = 10.71) over 10 years. The IAPF and the aperiodic exponent interacted to predict decline in 49 

overall cognitive ability, even after controlling for age, sex, education, and lag between data 50 

collection timepoints. Post-hoc tests showed that “mismatched” IAPF and aperiodic exponents 51 

(e.g., higher exponent with lower IAPF) predicted greater cognitive decline compared to 52 

“matching” IAPF and aperiodic exponents (e.g., higher exponent with higher IAPF; lower IAPF 53 

with lower aperiodic exponent). These effects were largely driven by measures of executive 54 

function. Our findings provide the first evidence that IAPF and the aperiodic exponent are joint 55 

predictors of cognitive decline from midlife into old age and thus may offer a useful clinical tool 56 

for predicting cognitive risk in aging. 57 
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Significance Statement 59 

Measures of intrinsic brain function at rest assessed noninvasively from the scalp using 60 

electroencephalography (EEG) show promise as predictors of cognitive decline in humans. 61 

Using data from 235 participants from the Midlife in the United States (MIDUS) longitudinal 62 

study, we found two resting EEG markers (individual peak alpha frequency and aperiodic 63 

exponent) interacted to predict cognitive decline over a span of 10 years. Follow-up analyses 64 

revealed that “mismatched” markers (i.e., high in one and low in the other) predicted greater 65 

cognitive decline compared to “matching” markers. Because of the low cost and ease of 66 

collecting EEG data at rest, the current research provides evidence for possible scalable clinical 67 

applications for identifying individuals at risk for accelerated cognitive decline.  68 
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 5 

Introduction 69 

 70 

Measures of spontaneous (i.e., resting-state) neural activity yield important insights into 71 

the intrinsic functioning of the brain. For example, individual alpha peak frequency (IAPF), the 72 

frequency at which power in the alpha band (i.e., 7-13 Hz) is the strongest, is negatively 73 

correlated with age (Klimesch, 1997; Clark et al., 2004; Finley et al., 2022; Merkin et al., 2023), 74 

and may reflect neuroanatomical differences and age-related changes in white matter (Babiloni 75 

et al., 2008; Valdés-Hernández et al., 2010; Kramberger et al., 2017). Across adulthood, higher 76 

IAPF is associated with better performance on multiple metrics of cognitive function, including 77 

working memory, reading comprehension, and a general intelligence factor (e.g., (Klimesch, 78 

1997; Angelakis et al., 2004; Clark et al., 2004; Grandy et al., 2013a).  79 

In addition to the periodic (i.e., oscillatory) activity found in canonical EEG bands, 80 

aperiodic activity is present across all frequencies. Aperiodic activity follows a 1/f function and 81 

can be described by the slope of the function (referred to as the exponent), and where the 82 

function crosses the y-axis (referred to as the offset; Donoghue et al., 2020). The aperiodic 83 

exponent is thought to correspond to the synchronized firing of neurons, such that flatter spectra 84 

are indicative of reduced synchronization, or greater neural noise (Voytek and Knight, 2015). 85 

Recent data suggest that the aperiodic exponent is related to the ratio of excitatory to inhibitory 86 

neural activity, such that flatter slopes (i.e., smaller exponents) relate to greater excitatory to 87 

inhibitory activity (Gao et al., 2017), while the offset is related to neural spiking rates, such that 88 

greater spiking activity is reflected in greater overall spectral power (Manning et al., 2009; Miller 89 

et al., 2012). Although research on aperiodic activity is in its infancy, work has associated 90 

aperiodic activity, particularly the aperiodic exponent, with age and cognitive functioning, such 91 

that flatter spectra are associated with older age (Voytek et al., 2015; Finley et al., 2022; Merkin 92 

et al., 2023), physiological markers of cognitive decline (Tran et al., 2020), reduced processing 93 
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speed (Ouyang et al., 2020), and mediates cross-sectional associations between age and 94 

cognitive function (Voytek et al., 2015). 95 

This study aims to answer two main research questions: 1. To what extent are individual 96 

differences in the slope of the aperiodic exponent and IAPF measured at fronto-central sites 97 

associated with cognitive function in adults, both cross-sectionally and longitudinally? 2. Is the 98 

slope of the aperiodic exponent or IAPF more strongly associated with cognitive function in 99 

adults both cross-sectionally and longitudinally?  100 

To answer these questions, we examined the relationship between aperiodic exponent 101 

and IAPF in preregistered analyses with longitudinally assessed cognitive function in the Midlife 102 

in the United States (MIDUS) dataset. Prior work with MIDUS EEG data has found IAPF and 103 

aperiodic exponent are both negatively correlated with age, such that older individuals have 104 

lower IAPF and flatter aperiodic component slopes (Finley et al., 2022). Prior analyses of the full 105 

MIDUS2 and MIDUS3 longitudinal sample with Cognitive Project data found cross-sectional 106 

negative relationships between cognitive performance and age (n = 4,268; Lachman et al., 107 

2014) as well as longitudinal negative relationships (n = 2,518; Hughes et al., 2018), such that 108 

older adults showed a steeper longitudinal decline. Sex was related to initial performance, such 109 

that women performed better on the episodic memory factor and men performed better on the 110 

executive functioning factor, with no influence of sex on the rate of longitudinal change (Hughes 111 

et al., 2018). The relationship between cognitive function and age was replicated in two 112 

subsamples (Hamm et al., 2020, n = 732; Knight et al., 2020, n = 843). No work to date has 113 

examined the MIDUS2 resting EEG data with any cognitive data. 114 

Materials and Methods 115 

Preregistration of the following methods, hypotheses, and analyses are publicly available 116 

on OSF at https://doi.org/10.17605/OSF.IO/WYUCA. 117 
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Code Accessibility  118 

All code used for all analyses and plots are publicly available on OSF at 119 

https://doi.org/10.17605/OSF.IO/SR4MB. Additionally, all data are available at 120 

https://midus.wisc.edu/data/index.php. The demographic and cognitive task data are available 121 

through the MIDUS Portal or via the University of Michigan’s Inter-university Consortium of 122 

Political and Social Research (ICPSR). The EEG data are available upon request through the 123 

MIDUS Neuroimaging and Psychophysiology Repository. 124 

Participants 125 

This study uses data from the MIDUS longitudinal dataset, with variables collected 126 

during the MIDUS 2 Survey, Cognitive, and Neuroscience Projects and as well as MIDUS 3 127 

Cognitive Project. See Figure 1 for a diagram of the study design and participant flow. 128 

Education, sex, and race demographics were collected during the MIDUS 2 Survey Project, 129 

which was a prerequisite for participation in additional MIDUS 2 Projects. As depicted in Figure 130 

1, MIDUS 2 and MIDUS 3 Cognitive Project are longitudinal and collected approximately 10 131 

years apart (i.e., total lag; M = 9.71 years, SD = 0.92), while the MIDUS 2 Cognitive Project was 132 

completed before the MIDUS 2 Neuroscience Project (M = 2.06 years, SD = 1.26).  Additional 133 

details about the study are available at http://midus.wisc.edu. 134 

<Insert Figure 1 about here> 135 

Based on our preregistered exclusion criteria, participants were excluded if they had 136 

poor FOOOF algorithm fit (defined as more than 3 standard deviations below the mean in R2 137 

model fit for the frontal composite (n = 4); see section “Spectral parametrization: Fitting 138 

Oscillations and 1/f (FOOOF)” for more information), or had missing data from more than 50% 139 

of the frontal composite for any one EEG measure (note that no participants were excluded for 140 

this reason). Additionally, participants needed to participate in at least one wave of the Cognitive 141 
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Project and have sufficient task data to compute at least one cognitive function metric. Our final 142 

sample consisted of n = 235 participants. See Table 1 for demographic information. 143 

 144 

Table 1: Participant Demographics, n = 235 

Age in Years:  

MIDUS 2 Neuroscience Project 
Sex 

M(SD) = 55.10 (10.71) 
Male 

Female 

94 (40.0%) 

141 (60.0%) 

36-49 85 (36.2%) Race 

50-65 105 (44.7%) White 173 (73.6%) 

66-83 45 (19.1%) 

Total Black, 

Indigenous, and 

People of Color 

(BIPOC) 

62 (26.4%) 

Education 

High school or less 67 (29.3%) 

Some college 70 (30.6%) 

Bachelor’s or higher 92 (40.2%) 

 145 

Brief Test of Adult Cognition by Telephone (BTACT) 146 

During the MIDUS 2 and MIDUS 3 Cognitive Project, participants completed the Brief 147 

Test of Adult Cognition by Telephone (BTACT; Tun and Lachman, 2006; Lachman et al., 148 

2014; Hughes et al., 2018), which includes 7 neuropsychological tasks that load onto an 149 

episodic memory factor (immediate word list recall, delayed word list recall) and executive 150 

functioning factor (backward digit span, category verbal fluency, number series, 30 seconds 151 

and counting task, stop and go switch task mixed trials), as well as an overall BTACT 152 

composite score. The BTACT has good construct validity and performs comparably to lab-153 

based assessments (Lachman et al., 2014). Participants' performance on the BTACT 154 

(composite and separate episodic memory and the executive functioning factors) were 155 
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 9 

standardized to the MIDUS 2 sample scores (i.e., individual task measures were z-scored 156 

within the retained sample) and averaged across relevant tasks. BTACT scores were not 157 

computed for factors or the overall composite if participants were missing data for one or 158 

more tasks. See (Lachman et al., 2014) for additional details on the BTACT procedure. 159 

EEG Recording and Preprocessing 160 

Resting-state EEG data were recorded in one-minute periods (3 minutes eyes open, 3 161 

minutes eyes closed) using a 128-channel geodesic net of Ag/AgCl electrodes encased in 162 

saline-dampened sponges with an online vertex (Cz) reference (Electrical Geodesics, Inc 163 

[EGI], Eugene, OR). Signals were amplified and sampled at 500 Hz with an online bandpass 164 

filter (0.1 to 100 Hz, 16-bit precision). Offline EEG data were filtered with a 60 Hz notch filter, 165 

0.5 Hz high-pass filter, bad channels identified and removed, and bad sections of data 166 

identified and removed. A 20-component PCA/ICA was used to visually identify and remove 167 

obvious blink, eye movement, and other artifactual components. Bad channels were replaced 168 

using a spherical spline interpolation. Data from the eyes open and eyes closed conditions 169 

were collapsed for all analyses1 using a pre-registered fronto-central composite of F3/Fz/F4 170 

analog channels2. See Finley et al., 2022 for additional details. 171 

Spectral parametrization: Fitting Oscillations and 1/f (FOOOF) 172 

EEG data were re-referenced to the average and Cz was imputed before the continuous 173 

resting data was epoched into 2 second segments with 50% overlap. Bad segments were 174 

 

1 Additional parallel analyses were conducted on eyes open and eyes closed data separately. Overall these 

analyses were consistent with the findings on the combined data. These analyses are available on OSF at 

https://doi.org/10.17605/OSF.IO/SR4MB. 

2 The fronto-central composite of F3/Fz/F4 was comprised of the EGI GSN200 electrode montage (Electrical 

Geodesics, Inc, 2007) sensors 12, 20, 21, 25, 29 (comprising the analog for F3), sensors 4, 5, 118, 119, 124 

(comprising the analog for F4), and sensor 11 (comprising the analog for Fz). Note this is an older montage 

than the EGI HydroCel nets. 
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rejected if there was a voltage deviation of +/- 100 V in one or more channels. EEG spectral 175 

power was extracted using a 2 second Hamming window padded by a factor of 2 from 0 to 250 176 

Hz in 0.25 Hz increments for all sensors, then analyzed using FOOOF 1.0.0 (Donoghue et al., 177 

2020) to fit aperiodic and periodic components from 2 to 40 Hz (estimated without a knee, peaks 178 

limited in width from 1-6 Hz, minimum peak height of 0.05, relative peak threshold of 1.5 179 

standard deviations, and maximum of 6 peaks). Aperiodic offset, exponent, and IAPF measures 180 

were extracted individually for the channels in the frontal F3/Fz/F4 ROI composite and then 181 

averaged. See Finley et al., 2022 for additional details. 182 

Experimental Design and Statistical Analysis 183 

 184 

A summary of preregistered hypotheses and analyses are reported in Table 23. 185 

Additional details are available in our preregistration (https://doi.org/10.17605/OSF.IO/WYUCA).  186 

We used multilevel modeling implemented in R version 4.2.1 using the lmer() function within the 187 

lme4 package, which implements empirical Bayes slope estimation to handle missing data 188 

(Bates et al., 2015; R Core Team, 2022).  189 

As reported in our preregistration (https://doi.org/10.17605/OSF.IO/WYUCA), we 190 

conducted a sensitivity analysis in G*Power 3.1. Based on the most conservative estimate 191 

of complete data from our preregistration of n = 207, we have 95% power to detect a 192 

Pearson’s correlation of r = |.24|. After our final sample size was known (n = 235), we 193 

 

3 As described in the Table 1 note, analyses reported in the manuscript deviate from the preregistered 

analyses, such that A) after careful examination for possible interactions with education and finding none, 

we decided to include education as a covariate instead of race, and B) the specific equations 

preregistered for analyses were overly conservative by including the interaction between the covariates 

with wave, as well as splitting up lag into separate terms instead of adding into a single term. These more 

conservative, complex analyses do not change the interpretations of our findings. Because the results do 

not change regardless of covariates or complexity of the analyses, we report the simplified analyses with 

education here, and report the preregistered analyses as well as simplified analyses with race instead of 

education as robustness checks on OSF, available at https://doi.org/10.17605/OSF.IO/SR4MB. 
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 11 

conducted a simulation sensitivity analysis in R based on our most complex preregistered 194 

analysis in hypothesis 7 (i.e., hypothesis 7b and 7d, the interaction between MIDUS wave, 195 

age, and EEG metric), and determined we have 80% power to detect a small effect of B = 196 

0.15. Simulation code is available at https://doi.org/10.17605/OSF.IO/SR4MB. 197 
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Table 2: Summary of preregistered hypotheses and analyses 

Hypotheses Analytic Plan* Results 

H1: Cognitive function at time 1 

(indexed by the BTACT 

composite score) will be 

negatively associated 

with age. 

Multilevel linear model controlling for education, sex, 

and lag between waves in years as follows: 

 

Equation 1 

Level 1: 

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑣𝑒 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑖𝑗 =  𝛽0 + 𝛽1𝑊𝑎𝑣𝑒𝑖𝑗 + 𝜇𝑖𝑗  

Level 2: 

𝛽0 = 𝛾00 + 𝛾01𝑇1𝐴𝑔𝑒𝑗 + 𝛾02𝑇𝑜𝑡𝑎𝑙𝐿𝑎𝑔𝑗 +

𝛾03𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛𝑗 + 𝛾04𝑆𝑒𝑥 + 𝜀𝑗  

𝛽1 = 𝛾10 + 𝛾11𝑇1𝐴𝑔𝑒𝑗 

 

H1: Negative coefficient for the main effect of age at 

time 1 (i.e., 𝛾01). 

 

H2: Negative coefficient for the interaction between  

Age and Wave (i.e., 𝛾11). 

H1: Supported for 

BTACT 

composite and 

both Executive 

Functioning and 

Episodic Memory 

subfactors. 

H2: Within-person changes in 

cognitive function 

(indexed by time 1 to time 

2 changes in BTACT 

composite score) will be 

moderated by age, such 

that older age will be 

associated with greater 

decline in cognitive 

function between time 1 

and 2. 

H2: Not supported. 

H3: Cognitive function at time 1 

(indexed by the BTACT 

composite score) will be 

positively associated with 

aperiodic exponent, such 

that flatter spectra will be 

associated with poorer 

cognitive function. 

Multilevel linear model controlling for education, sex, 

and lag between waves in years. The placeholder 

“EEG” is used to represent the different EEG metrics 

included separately in each of the models as per 

hypotheses. 

 

Equation 2 

Level 1: 

𝐶𝑜𝑔𝑛𝑖𝑡𝑖𝑣𝑒 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑖𝑗 =  𝛽0 + 𝛽1𝑊𝑎𝑣𝑒𝑖𝑗 + 𝜇𝑖𝑗 

Level 2: 

𝛽0 = 𝛾00 + 𝛾01𝐸𝐸𝐺𝑗 + 𝛾02𝑇𝑜𝑡𝑎𝑙𝐿𝑎𝑔𝑗 +

𝛾03𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛𝑗 + 𝛾04𝑆𝑒𝑥 + 𝜀𝑗  

𝛽1 = 𝛾10 + 𝛾11𝐸𝐸𝐺𝑗  

 

H3: Supported for 

BTACT composite 

and Executive 

Functioning 

subfactor. 

H4: Within-person changes in 

cognitive function 

(indexed by time 1 to time 

2 changes in BTACT 

composite score) will be 

moderated by the 

aperiodic exponent, such 

that flatter spectra at time 

1 will be associated with 

greater decline in 

cognitive function 

between time 1 and 2. 

 

H4: Not supported. 
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 13 

 

 

H3: Significant positive coefficient for the EEG metric 

(i.e., 𝛾01) when aperiodic exponent is included in 

the model. 

 

H4: Significant coefficient for the EEG by Wave 

interaction (i.e., 𝛾11) when aperiodic exponent is 

included in the model, such that flatter aperiodic 

spectra associated with faster decline in 

cognitive function. 

 

H5: Significant positive coefficient for the EEG metric 

(i.e., 𝛾01) when IAPF is included in the model. 

 

H6: Significant coefficient for the EEG by wave 

interaction (i.e., 𝛾11) when IAPF is included in 

the model, such that lower IAPF are associated 

with faster decline in cognitive function. 

H5: Cognitive function at time 1 

(indexed by the BTACT 

composite score) will be 

positively associated with 

IAPF, such that lower 

IAPF will be associated 

with poorer cognitive 

function. 

H5: Not supported. 

H6: Within-person changes in 

cognitive function 

(indexed by time 1 to time 

2 changes in BTACT 

composite score) will be 

moderated by IAPF, such 

that lower IAPF at time 1 

will be associated with 

greater decline in 

cognitive function 

between time 1 and 2. 

H6: Supported for 

BTACT composite. 

H7: The relationships between 

the aperiodic exponent, 

individual alpha peak 

frequency, and cognitive 

function outlined in H3-H6 

will be moderated by age, 

such that greater 

cognitive decline will be 

observed in older-aged 

participants with flatter 

aperiodic exponents and 

lower IAPF. This 

hypothesis can be broken 

down into 4 parts (a-d) as 

described in the “Analytic 

Plan”. 

Multilevel linear model controlling for education, sex, 

and lag between waves in years. The placeholder 

“EEG” is used to represent the different EEG metrics 

we aim to include in each of the models.  

 

Equation 3 

Level 1: 

𝐶𝑜𝑔𝑛𝑖𝑡𝑖𝑣𝑒 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑖𝑗 =  𝛽0 + 𝛽1𝑊𝑎𝑣𝑒𝑖𝑗 + 𝜇𝑖𝑗 

Level 2: 

𝛽0 = 𝛾00 + 𝛾01𝐸𝐸𝐺𝑗 + 𝛾02𝑇1𝐴𝑔𝑒𝑗 + 𝛾03𝐸𝐸𝐺𝑗 ∗

𝑇1𝐴𝑔𝑒𝑗 + 𝛾04𝑇𝑜𝑡𝑎𝑙𝐿𝑎𝑔𝑗 + 𝛾05𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛𝑗 +

𝛾06𝑆𝑒𝑥 + 𝜀𝑗  

 

𝛽1 = 𝛾10 + 𝛾11𝐸𝐸𝐺𝑗 + 𝛾12𝑇1𝐴𝑔𝑒𝑗 + 𝛾13𝐸𝐸𝐺𝑗 ∗

𝑇1𝐴𝑔𝑒𝑗 + 𝛾14𝑇𝑜𝑡𝑎𝑙𝐿𝑎𝑔𝑗 + 𝛾15𝑅𝑎𝑐𝑒𝑗 + 𝛾16𝑆𝑒𝑥  

 

H7a: Significant coefficient for the interaction 

between the EEG by Age (i.e., 𝛾03) when 

aperiodic exponent is included in the model, 

such that older individuals with flatter aperiodic 

H7a: Not supported. 
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spectra will show the poorest time 1 cognitive 

function. 

 

H7b: Significant coefficient for the interaction 

between the EEG by Age (i.e., 𝛾03) when IAPF 

is included in the model, such that older 

individuals with lower IAPF will show the 

poorest time 1 cognitive function. 

 

H7c: Significant coefficient for the interaction 

between the EEG by Age by Wave (i.e., 𝛾13) 

when aperiodic exponent is included in the 

model, such that older individuals with flatter 

aperiodic spectra will show the steepest 

decline in cognitive function. 

 

H7d: Significant coefficient for the interaction 

between the EEG by Age by Wave (i.e., 𝛾13) 

IAPF is included in the model, such that older 

individuals with lower IAPF will show the 

steepest decline in cognitive function. 

 

 

 

 

 

 

 

H7b: Not supported. 

H7c: Not supported. 

H7d: Not supported. 

* The exact preregistered analyses were overly complicated and conservative by including lag as two separate 

variables (instead of a linear addition into a single variable), as well as the interaction between covariates and 

Wave. Additionally, after extensive testing for possible interactions with education and finding none, we decided 

to include education as a more appropriate covariate than race. We report the preregistered analyses, which are 

consistent with these findings, on OSF at https://doi.org/10.17605/OSF.IO/SR4MB. 
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We conducted all analyses on the full BTACT composite as well as separately for the 

episodic memory and executive functioning factors to explore if one or both of the BTACT 

factors are driving effects. Parallel exploratory analyses on the associations with the aperiodic 

offset are described on OSF at https://doi.org/10.17605/OSF.IO/SR4MB. We also explored 

whether the aperiodic exponent or IAPF are independently and uniquely associated with 

cognitive functioning, as well as if there is an interaction between the aperiodic exponent and 

IAPF associated with cognitive functioning, as follows: 

Equation 4: 

Level 1: 

𝐶𝑜𝑔𝑛𝑖𝑡𝑖𝑣𝑒 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑖𝑗 =  𝛽0 + 𝛽1𝑊𝑎𝑣𝑒𝑖𝑗 + 𝜇𝑖𝑗 

Level 2: 

𝛽0 = 𝛾00 + 𝛾01𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑗 + 𝛾02𝐼𝐴𝑃𝐹𝑗 + 𝛾03𝑇1𝐴𝑔𝑒𝑗 + 𝛾04𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑗 ∗ 𝐼𝐴𝑃𝐹𝑗 +

𝛾05𝑀2𝑀3𝑇𝑜𝑡𝑎𝑙𝐿𝑎𝑔𝑗 + 𝛾06𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛𝑗 + 𝛾07𝑆𝑒𝑥 + 𝜀𝑗  

 

𝛽1 = 𝛾10 + 𝛾11Exponent + 𝛾12𝐼𝐴𝑃𝐹𝑗 + 𝛾13𝑇1𝐴𝑔𝑒𝑗 + 𝛾14𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑗 ∗ 𝐼𝐴𝑃𝐹𝑗  

 

Results 

Descriptive statistics for all variables as well as zero-order correlations are presented in 

Table 3. Additional robustness check analyses are reported on OSF at 

https://doi.org/10.17605/OSF.IO/SR4MB, including analyses without controlling for sex and 

education and analyses accounting for the presence of twins and siblings to control for genetic 

dependencies, and analyses using a parietal electrode composite. None of these variations on 

the analyses change the interpretations of the following analyses.JN
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Table 3: Correlations and descriptive statistics. 

 Mean 

(SD) 

n 

2.  

Total Lag 

3. M2 

Episodic 

Memory 

4. M3 

Episodic 

Memory 

5. M2 

Executive 

Function 

6. M3 

Executive 

Function 

7. M2 

BTACT 

Composite 

8. M3 

BTACT 

Composite 

9. Aperiodic 

Exponent 

10. 

IAPF 

1. Age 

(MIDUS 2 

Neuro) 
55.10 

(10.71)   

n = 235 

-0.12 

[-0.25, 0.01] 

p = 0.076 

n = 235 

-0.18 

[-0.30,-0.05] 

p = 0.010 

n = 228 

-0.24 

[-0.36,-0.11] 

p = 0.001 

n = 223 

-0.35 

[-0.46,-0.23] 

p < 0.001 

n = 228 

-0.32 

[-0.43,-0.20] 

p < 0.001 

n = 230 

-0.36 

[-0.47,-0.24] 

p < 0.001 

n = 224 

-0.34 

[-0.45,-0.21] 

p < 0.001 

n = 219 

-0.29 

[-0.40,-0.17] 

p < 0.001 

n = 235 

-0.23 

[-0.34,-0.10] 

p = 0.001 

n = 235 

2. Total Lag 

(M2 to M3 

Cognitive 

Projects, yrs) 

9.71 

(0.92)     

n = 235 

- 

-0.06 

[-0.19, 0.07] 

p = 0.389 

n = 228 

-0.07 

[-0.20, 0.06] 

p = 0.362 

n = 223 

-0.17 

[-0.29,-0.04] 

p = 0.018 

n = 228 

-0.30 

[-0.41,-0.17] 

p < 0.001 

n = 230 

-0.16 

[-0.29,-0.03] 

p = 0.021 

n = 224 

-0.29 

[-0.41,-0.17] 

p < 0.001 

n = 219 

0.14 

[0.01, 0.26] 

p = 0.049 

n = 235 

-0.06 

[-0.18, 0.07] 

p = 0.416 

n = 235 

3. Episodic 

Memory 

MIDUS 2 
0.00 

(0.93)     

n = 228 

 - 

0.56 

[0.46, 0.64] 

p < 0.001 

n = 217 

0.36 

[0.24, 0.47] 

p < 0.001 

n = 224 

0.32 

[0.19, 0.43] 

p < 0.001 

n = 223 

0.56 

[0.47, 0.65] 

p < 0.001 

n = 224 

0.41 

[0.29, 0.52] 

p < 0.001 

n = 213 

0.03 

[-0.10, 0.16] 

p = 0.639 

n = 228 

0.16 

[0.03, 0.28] 

p = 0.023 

n = 228 

4. Episodic 

Memory 

MIDUS 3 
-0.11 

(1.10)     

n = 223 

  - 

0.26 

[0.13, 0.38] 

p < 0.001 

n = 217 

0.37 

[0.25, 0.48] 

p < 0.001 

n = 219 

0.39 

[0.27, 0.50] 

p < 0.001 

n = 213 

0.59 

[0.49, 0.67] 

p < 0.001 

n = 219 

0.01 

[-0.12, 0.14] 

p = 0.867 

n = 223 

0.19 

[0.06, 0.31] 

p = 0.007 

n = 223 

5. Executive 

Function 

MIDUS 2 
0.01 

(0.65)     

n = 228 

   - 

0.69 

[0.62, 0.76] 

p < 0.001 

n = 223 

0.97 

[0.96, 0.98] 

p < 0.001 

n = 224 

0.68 

[0.60, 0.74] 

p < 0.001 

n = 213 

0.13 

[0.00, 0.26] 

p = 0.054 

n = 228 

0.14 

[0.01, 0.27] 

p = 0.045 

n = 228 
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6. Executive 

Function 

MIDUS 3 
-0.44 

(0.74)     

n = 230 

    - 

0.69 

[0.61, 0.75] 

p < 0.001 

n = 219 

0.97 

[0.96, 0.98] 

p < 0.001 

n = 219 

0.04 

[-0.09, 0.17] 

p = 0.566 

n = 230 

0.19 

[0.06, 0.31] 

p = 0.006 

n = 230 

7. BTACT 

Composite 

MIDUS 2 
0.01 

(0.62)     

n = 224 

     - 

0.70 

[0.63, 0.77] 

p < 0.001 

n = 209 

0.13 

[0.00, 0.26] 

p = 0.062 

n = 224 

0.16 

[0.03, 0.29] 

p = 0.020 

n = 224 

8. BTACT 

Composite 

MIDUS 3 
-0.37 

(0.71)     

n = 219 

      - 

0.04 

[-0.09, 0.17] 

p = 0.566 

n = 219 

0.21 

[0.08, 0.34] 

p = 0.003 

n = 219 

9. Aperiodic 

Exponent 
1.20 

(0.28)     

n = 235 

       - 

-0.16 

[-0.28,-0.03] 

p = 0.020 

n = 235 

10. IAPF 9.60 

(0.98)     

n = 229 

        - 
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Time Effects: Hypotheses 1 and 2 

To test hypothesis 1 (cognitive function at time 1 will be negatively associated with age) 

and hypothesis 2 (within-person changes in cognitive function will be moderated by age), we 

conducted a multilevel model as described in Table 2. Results are reported in Table 4. Although 

age was significantly related to episodic memory, executive functioning, and overall BTACT 

composite scores (p’s < .010) in support of hypothesis 1, the age-by-wave interaction was not 

significant for any analysis, (p’s > 0.096), not supporting hypothesis 2. Given our sample size 

with Neuroscience data (n = 235) is much smaller than the smallest MIDUS subsample that 

previously reported an age by wave interaction (e.g. n = 2,518; Episodic Memory = -0.010,  Executive 

Function = -0.012, (Hughes et al., 2018), we may have been underpowered to detect this small 

interaction effect. 
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Table 4: Multilevel models to test hypothesis 1 and 2 

  Episodic Memory Executive Functioning BTACT Composite  

Predictors Estimates CI p Estimates CI p Estimates CI p 

Intercept (M2) -0.43 -0.60 – -0.26 <0.001 -0.07 -0.19 – 0.05 0.256 -0.12 -0.23 – -0.01 0.028 

MIDUS Wave -0.13 -0.26 – -0.00 0.043 -0.43 -0.50 – -0.36 <0.001 -0.38 -0.45 – -0.31 <0.001 

Age -0.02 -0.03 – -0.01 0.001 -0.02 -0.03 – -0.02 <0.001 -0.02 -0.03 – -0.02 <0.001 

Sex 0.74 0.53 – 0.94 <0.001 0.11 -0.03 – 0.26 0.128 0.22 0.08 – 0.35 0.001 

Education 0.17 0.04 – 0.29 0.008 0.13 0.05 – 0.21 0.001 0.14 0.06 – 0.21 0.001 

Lag between 

Waves 

-0.10 -0.21 – 0.01 0.073 -0.21 -0.29 – -0.14 <0.001 -0.20 -0.27 – -0.13 <0.001 

MIDUS Wave X 

Age 

-0.01 -0.02 – 0.00 0.096 0.00 -0.01 – 0.01 0.994 -0.00 -0.01 – 0.01 0.707 

Random Effects    

σ2 0.46 0.16 0.14 JN
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τ00 0.38 M2ID 0.22 M2ID 0.19 M2ID 

ICC 0.45 0.59 0.58 

N 234 M2ID 235 M2ID 234 M2ID 

Observations 451 458 443 

Marginal R2 / 

Conditional R2 

0.195 / 0.559 0.292 / 0.707 0.311 / 0.708 

Note: Repeated measured cognitive data nested within participant, indicated by M2ID. Sex coded as 0 = male, 1 = female. Education coded as -1 

= high school or less, 0 = some college, 1 = Bachelor’s degree or higher. MIDUS Wave coded as 0 = MIDUS 2, 1 = MIDUS 3. Years between 

Waves (i.e., between MIDUS 2 and MIDUS 3 Cognitive Projects) and Age at M2 Neuroscience Project are mean centered. Empirical Bayes slope 

estimation used (Bates et al., 2015). 
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Aperiodic Exponent Effects: Hypotheses 3 and 4 

 

To test hypothesis 3 (cognitive function at time 1 will be positively associated with 

aperiodic exponent) and hypothesis 4 (within-person changes in cognitive function will be 

moderated by aperiodic exponent), we conducted a multilevel model as described in Table 2. 

Results are reported in Table 5. We observed a positive association between the aperiodic 

exponent and the overall BTACT composite score (p = 0.018), such that larger aperiodic 

exponents were associated with better cognitive function, consistent with hypothesis 3. This 

association appeared to be primarily driven by the Executive Function factor (p = 0.012), while 

the effect for the Episodic Memory factor was in the same direction but not-significant (p = 

0.254). However, flatter spectra at time 1 was not associated with greater declines in cognitive 

function, p’s > 0.120, not supporting hypothesis 4. 
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Table 5: Multilevel models to test hypothesis 3 and 4 

  Episodic Memory Executive Functioning BTACT Composite 

Predictors Estimates CI p Estimates CI p Estimates CI p 

Intercept (M2) -0.41 -0.59 – -0.23 <0.001 -0.05 -0.18 – 0.08 0.450 -0.11 -0.23 – 0.01 0.085 

MIDUS Wave -0.13 -0.26 – 0.00 0.051 -0.43 -0.51 – -0.36 <0.001 -0.38 -0.45 – -0.31 <0.001 

Exponent 0.26 -0.19 – 0.71 0.254 0.40 0.09 – 0.71 0.012 0.39 0.10 – 0.68 0.009 

Sex 0.71 0.49 – 0.93 <0.001 0.08 -0.08 – 0.24 0.306 0.19 0.04 – 0.34 0.012 

Education 0.17 0.04 – 0.30 0.008 0.13 0.04 – 0.21 0.003 0.13 0.05 – 0.21 0.002 

Lag between 

Waves 

-0.08 -0.19 – 0.04 0.187 -0.19 -0.28 – -0.11 <0.001 -0.18 -0.26 – -0.10 <0.001 

Wave x Exponent -0.02 -0.48 – 0.44 0.926 -0.21 -0.47 – 0.05 0.120 -0.16 -0.42 – 0.09 0.204 

Random Effects    

σ2 0.47 0.15 0.14 

τ00 0.44 M2ID 0.28 M2ID 0.25 M2ID JN
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ICC 0.48 0.65 0.65 

N 234 M2ID 235 M2ID 234 M2ID 

Observations 451 458 443 

Marginal R2 / 

Conditional R2 

0.136 / 0.551 0.179 / 0.710 0.182 / 0.710 

Note: Repeated measured cognitive data nested within participant, indicated by M2ID. Sex coded as 0 = male, 1 = female. Education coded as -1 

= high school or less, 0 = some college, 1 = Bachelor’s degree or higher. MIDUS Wave coded as 0 = MIDUS 2, 1 = MIDUS 3. Years between 

Waves (i.e., between MIDUS 2 and MIDUS 3 Cognitive Projects) and Age at M2 Neuroscience Project are mean centered. Empirical Bayes slope 

estimation used (Bates et al., 2015). 
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Individual Alpha Peak Frequency Effects: Hypotheses 5 and 6  

To test hypothesis 5 (cognitive function at time 1 will be positively associated with IAPF) 

and hypothesis 6 (within-person changes in cognitive function will be moderated by IAPF, such 

that lower IAPF at time 1 will be associated with greater decline in cognitive function), we 

conducted a multilevel model as described in Table 2. Results are reported in Table 6. 

Hypothesis 5 was not supported. The effect of IAPF on episodic memory scores, executive 

function, or the overall composite were not significant, p’s > 0.055. However, the direction of the 

coefficients were in the predicted direction. Hypothesis 6 was supported and in the predicted 

direction (p = 0.047), such that lower IAPF at time 1 were associated with greater declines in 

cognitive function as depicted in Figure 2. 
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Table 6: Multilevel models to test hypothesis 5 and 6 

  Episodic Memory Executive Functioning BTACT Composite 

Predictors Estimates CI p Estimates CI p Estimates CI p 

Intercept (M2) -0.40 -0.57 – -0.22 <0.001 -0.03 -0.16 – 0.09 0.596 -0.09 -0.21 – 0.03 0.146 

MIDUS Wave -0.13 -0.25 – 0.00 0.052 -0.43 -0.51 – -0.36 <0.001 -0.38 -0.45 – -0.31 <0.001 

IAPF 0.12 -0.00 – 0.25 0.055 0.07 -0.02 – 0.16 0.115 0.08 -0.00 – 0.16 0.058 

Sex 0.68 0.47 – 0.89 <0.001 0.06 -0.10 – 0.21 0.469 0.16 0.02 – 0.31 0.030 

Education 0.17 0.05 – 0.30 0.007 0.14 0.05 – 0.22 0.002 0.13 0.05 – 0.21 0.001 

Lag between 

Waves 

-0.06 -0.17 – 0.06 0.326 -0.17 -0.26 – -0.09 <0.001 -0.16 -0.24 – -0.08 <0.001 

Wave x IAPF 0.07 -0.06 – 0.20 0.281 0.07 -0.00 – 0.15 0.061 0.07 0.00 – 0.14 0.047 

Random Effects    

σ2 0.47 0.15 0.13 

τ00 0.42 M2ID 0.28 M2ID 0.25 M2ID 

ICC 0.47 0.64 0.65 
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N 234 M2ID 235 M2ID 234 M2ID 

Observations 451 458 443 

Marginal R2 / 

Conditional R2 

0.156 / 0.553 0.188 / 0.711 0.196 / 0.715 

Note: Repeated measured cognitive data nested within participant, indicated by M2ID. Sex coded as 0 = male, 1 = female. Education coded as -1 = 

high school or less, 0 = some college, 1 = Bachelor’s degree or higher. MIDUS Wave coded as 0 = MIDUS 2, 1 = MIDUS 3. Years between Waves 

(i.e., between MIDUS 2 and MIDUS 3 Cognitive Projects) and Age at M2 Neuroscience Project are mean centered. Empirical Bayes slope 

estimation used (Bates et al., 2015). 
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<Insert Figure 2 about here> 

Moderation of EEG Metrics by Age: Hypothesis 7 

To test hypothesis 7a (older individuals with lower aperiodic exponents will show the 

poorest time 1 cognitive function) and hypothesis 7c (older individuals with lower aperiodic 

exponents will show the steepest decline in cognitive function), we conducted a multilevel model 

as described in Table 2. Results are reported in Table 7. Hypothesis 7a was not confirmed as 

the interaction between aperiodic exponent and age was non-significant for all BTACT scores, 

p’s > 0.632. Hypothesis 7c was not supported as the wave by aperiodic exponent by age 

interaction was non-significant, p’s > 0.201. 

To test hypothesis 7b (older individuals with lower IAPF will show the poorest time 1 

cognitive function) and hypothesis 7d (older individuals with lower IAPF will show the steepest 

decline in cognitive function), we conducted a multilevel model as described in Table 2. Results 

are reported in Table 8. Hypothesis 7b was not confirmed as the interaction between IAPF and 

age was non-significant for all BTACT scores, p’s > 0.374. Hypothesis 7c was not significant as 

the wave by IAPF by age interaction was non-significant, p’s > 0.301. 
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Table 7: Multilevel models to test hypothesis 7a and 7c 

  Episodic Memory Executive Functioning BTACT Composite 

Predictors Estimates CI p Estimates CI p Estimates CI p 

Intercept (M2) -0.44 -0.62 – -0.26 <0.001 -0.06 -0.18 – 0.06 0.340 -0.12 -0.23 – -0.00 0.046 

MIDUS Wave -0.11 -0.24 – 0.03 0.122 -0.43 -0.50 – -0.35 <0.001 -0.38 -0.46 – -0.31 <0.001 

Exponent 0.07 -0.38 – 0.52 0.748 0.16 -0.14 – 0.46 0.304 0.15 -0.13 – 0.43 0.290 

Age -0.02 -0.03 – -0.01 0.002 -0.02 -0.03 – -0.01 <0.001 -0.02 -0.03 – -0.01 <0.001 

Sex 0.73 0.52 – 0.94 <0.001 0.11 -0.04 – 0.26 0.140 0.22 0.08 – 0.36 0.002 

Education 0.16 0.04 – 0.29 0.010 0.13 0.05 – 0.21 0.002 0.13 0.06 – 0.21 0.001 

Lag between Waves -0.10 -0.21 – 0.01 0.080 -0.22 -0.29 – -0.14 <0.001 -0.20 -0.27 – -0.13 <0.001 

Wave x Exponent -0.14 -0.62 – 0.33 0.557 -0.23 -0.50 – 0.05 0.104 -0.19 -0.45 – 0.08 0.166 

Wave X Age -0.01 -0.02 – 0.00 0.122 -0.00 -0.01 – 0.01 0.687 -0.00 -0.01 – 0.00 0.476 

Exponent X Age -0.01 -0.06 – 0.04 0.677 0.01 -0.02 – 0.04 0.632 0.01 -0.02 – 0.03 0.695 

Wave X Exponent X 

Age 

0.03 -0.02 – 0.08 0.201 0.00 -0.02 – 0.03 0.755 0.00 -0.02 – 0.03 0.858 

Random Effects    

σ2 0.46 0.16 0.14 

τ00 0.39 M2ID 0.22 M2ID 0.19 M2ID 
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ICC 0.46 0.59 0.58 

N 234 M2ID 235 M2ID 234 M2ID 

Observations 451 458 443 

Marginal R2 / 

Conditional R2 

0.195 / 0.563 0.294 / 0.710 0.311 / 0.710 

Note: Repeated measured cognitive data nested within participant, indicated by M2ID. Sex coded as 0 = male, 1 = female. Education coded as -1 = high school or 

less, 0 = some college, 1 = Bachelor’s degree or higher. MIDUS Wave coded as 0 = MIDUS 2, 1 = MIDUS 3. Years between Waves (i.e., between MIDUS 2 and 

MIDUS 3 Cognitive Projects) and Age at M2 Neuroscience Project are mean centered. Empirical Bayes slope estimation used (Bates et al., 2015). 

 

 

Table 8: Multilevel models to test hypothesis 7b and 7d 

  Episodic Memory Executive Functioning BTACT 

Predictors Estimates CI p Estimates CI p Estimates CI p 

Intercept (M2) -0.42 -0.59 – -0.24 <0.001 -0.06 -0.18 – 0.06 0.360 -0.11 -0.22 – 0.00 0.052 

MIDUS Wave -0.13 -0.26 – 0.00 0.057 -0.44 -0.52 – -0.36 <0.001 -0.39 -0.46 – -0.32 <0.001 

IAPF 0.08 -0.05 – 0.21 0.225 0.01 -0.07 – 0.10 0.797 0.02 -0.06 – 0.10 0.610 

Age -0.02 -0.03 – -0.01 0.005 -0.02 -0.03 – -0.02 <0.001 -0.02 -0.03 – -0.02 <0.001 

Sex 0.72 0.51 – 0.93 <0.001 0.11 -0.04 – 0.25 0.145 0.21 0.08 – 0.35 0.002 

Education 0.17 0.04 – 0.29 0.009 0.14 0.06 – 0.22 0.001 0.14 0.06 – 0.21 <0.001 

Lag between Waves -0.09 -0.20 – 0.02 0.116 -0.21 -0.29 – -0.13 <0.001 -0.19 -0.26 – -0.12 <0.001 
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Wave x IAPF 0.05 -0.09 – 0.18 0.483 0.07 -0.01 – 0.15 0.071 0.07 -0.01 – 0.14 0.076 

Wave X Age -0.01 -0.02 – 0.00 0.165 0.00 -0.01 – 0.01 0.741 -0.00 -0.01 – 0.01 0.994 

IAPF X Age 0.00 -0.01 – 0.01 0.836 0.00 -0.00 – 0.01 0.350 0.00 -0.00 – 0.01 0.374 

Wave X IAPF X Age 0.00 -0.01 – 0.01 0.896 -0.00 -0.01 – 0.00 0.301 -0.00 -0.01 – 0.00 0.379 

Random Effects    

σ2 0.47 0.15 0.14 

τ00 0.38 M2ID 0.22 M2ID 0.19 M2ID 

ICC 0.45 0.59 0.58 

N 234 M2ID 235 M2ID 234 M2ID 

Observations 451 458 443 

Marginal R2 / 

Conditional R2 

0.203 / 0.559 0.298 / 0.713 0.318 / 0.715 

Note: Repeated measured cognitive data nested within participant, indicated by M2ID. Sex coded as 0 = male, 1 = female. Education coded as -1 = high school or 

less, 0 = some college, 1 = Bachelor’s degree or higher. MIDUS Wave coded as 0 = MIDUS 2, 1 = MIDUS 3. Years between Waves (i.e., between MIDUS 2 and 

MIDUS 3 Cognitive Projects) and Age at M2 Neuroscience Project are mean centered. Empirical Bayes slope estimation used (Bates et al., 2015). 
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Combined Effects of Aperiodic Exponent and Individual Peak Alpha Frequency: 

Exploratory Analysis 

We also explored whether the aperiodic exponent or IAPF are independently and 

uniquely associated with cognitive functioning, as well as if there an interaction between the 

aperiodic exponent and IAPF associated with cognitive functioning. Results of these analyses 

are in Table 9. There was a significant Wave by Aperiodic Exponent by IAPF interaction on the 

overall BTACT composite (p = 0.010), which was driven primarily by the Executive Functioning 

Factor (p = 0.013). These interactions are plotted in Figure 3 with 95% confidence bands.  

As shown in Table 10, we examined the 3-way interaction by calculating the slope of the 

change in cognitive function over waves by each EEG metric while holding the other EEG metric 

constant at a low or high level by centering each EEG metric separately at low (-1 SD below the 

mean) and high (+1 above the mean). This is computationally equivalent to simple slopes 

analyses in regression (Aiken and West, 1991) at the second level of the multilevel model, and 

represents the slopes of the lines in Figure 2. More specifically, after centering one EEG metric 

at the low or high level, we examined the 𝛾14  term from Equation 4. These analyses suggest 

that for individuals who have higher aperiodic exponents, having higher IAPF is associated with 

less decline in the BTACT overall composite (b = 0.15, p = 0.002) driven primarily by the 

executive function factor (b = 0.15, p = 0.004), whereas there was no significant relationship 

between IAPF and cognitive decline for individuals with low aperiodic exponents. For individuals 

with low IAPF, having a steeper aperiodic exponent is associated with faster cognitive decline 

for the overall BTACT composite (b = -0.36, p = 0.025) driven primarily by the executive function 

factor (b = -0.42, p = 0.013), whereas there was no significant relationship between aperiodic 

exponent and cognitive decline for individuals with high IAPF. Put another way, this suggests 

that individuals with “mismatched” IAPF and aperiodic exponents (e.g., higher exponent with 

lower IAPF) tend to experience faster rates of cognitive decline over a 10-year period compared 
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to individuals with “matching” IAPF and aperiodic exponents (e.g., higher exponent with higher 

IAPF; lower IAPF with lower aperiodic exponent). As shown in Figure 3, the pattern of 

association is similar in direction for episodic memory, although the interaction fails to reach 

significance. This may be because there was substantially less decline in episodic memory 

performance (M = -0.11) than in executive function in performance (M = -0.44) in standardized 

units, limiting our power to detect an effect. 
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Table 9: Multilevel models examine the interaction between aperiodic exponent and individual peak alpha frequency 

  Episodic Memory Executive Functioning BTACT 

Predictors Estimates CI p Estimates CI p Estimates CI p 

Intercept (M2) -0.43 -0.60 – -0.25 <0.001 -0.07 -0.19 – 0.05 0.228 -0.13 -0.24 – -0.02 0.024 

MIDUS Wave -0.12 -0.25 – 0.01 0.069 -0.41 -0.49 – -0.34 <0.001 -0.37 -0.44 – -0.30 <0.001 

Exponent 0.06 -0.41 – 0.53 0.802 0.13 -0.19 – 0.45 0.417 0.13 -0.17 – 0.42 0.393 

IAPF 0.07 -0.06 – 0.20 0.269 0.02 -0.07 – 0.11 0.634 0.03 -0.05 – 0.11 0.482 

Age -0.02 -0.03 – -0.01 <0.001 -0.02 -0.03 – -0.02 <0.001 -0.02 -0.03 – -0.02 <0.001 

Sex 0.73 0.52 – 0.94 <0.001 0.11 -0.03 – 0.26 0.135 0.22 0.08 – 0.35 0.002 

Education 0.17 0.05 – 0.30 0.007 0.14 0.06 – 0.22 0.001 0.14 0.07 – 0.22 <0.001 

Lag between Waves -0.09 -0.21 – 0.02 0.116 -0.21 -0.29 – -0.13 <0.001 -0.20 -0.27 – -0.12 <0.001 

Wave X Exponent 0.09 -0.39 – 0.58 0.714 -0.08 -0.36 – 0.19 0.546 -0.03 -0.29 – 0.23 0.826 

Wave X IAPF 0.07 -0.06 – 0.20 0.314 0.06 -0.02 – 0.13 0.146 0.06 -0.01 – 0.13 0.118 

Exponent X IAPF -0.07 -0.51 – 0.38 0.773 -0.15 -0.44 – 0.15 0.327 -0.14 -0.42 – 0.13 0.316 

Wave X Exponent X IAPF 0.20 -0.26 – 0.67 0.397 0.34 0.07 – 0.61 0.013 0.33 0.08 – 0.59 0.010 

Random Effects    
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σ2 0.47 0.15 0.13 

τ00 0.38 M2ID 0.23 M2ID 0.19 M2ID 

ICC 0.44 0.60 0.59 

N 234 M2ID 235 M2ID 234 M2ID 

Observations 451 458 443 

Marginal R2 / Conditional R2 0.202 / 0.557 0.302 / 0.722 0.323 / 0.724 

Note: Repeated measured cognitive data nested within participant, indicated by M2ID. Sex coded as 0 = male, 1 = female. Education coded as -1 = high school or 

less, 0 = some college, 1 = Bachelor’s degree or higher. MIDUS Wave coded as 0 = MIDUS 2, 1 = MIDUS 3. Years between Waves (i.e., between MIDUS 2 and 

MIDUS 3 Cognitive Projects) and Age at M2 Neuroscience Project are mean centered. Empirical Bayes slope estimation used (Bates et al., 2015). 

 

 

JN
eurosci

 Acce
pted M

an
uscr

ipt



 35 

Table 10: Examining the Wave X Aperiodic Exponent X Individual Peak Alpha Frequency 

interaction through the slope of the change in cognitive function over waves for each BTACT 

measure at high and low levels of each EEG metric. 

Change in BTACT Episodic Memory Factor from M2 to M3 

 Slope of IAPF 95% CI p-value 

Low Exponent (-1 SD) 0.01 -0.18 – 0.20 0.903 

High Exponent (+1 SD) 0.12 -0.05 – 0.30 0.173 

 Slope of Exponent 95% CI p-value 

Low IAPF (-1 SD) -0.11 -0.67 –0.45 0.709 

High IAPF (+1 SD) 0.29 -0.47 – 1.05 0.457 

Change in BTACT Executive Functioning Factor from M2 to M3 

 Slope of IAPF 95% CI p-value 

Low Exponent (-1 SD) -0.04 -0.15 – 0.07 0.482 

High Exponent (+1 SD) 0.15 0.05 – 0.25 0.004 

 Slope of Exponent 95% CI p-value 

Low IAPF (-1 SD) -0.42 -0.75 – -0.09 0.013 

High IAPF (+1 SD) 0.25 -0.17 – 0.67 0.244 

Change in BTACT Overall Composite from M2 to M3 

 Slope of IAPF 95% CI p-value 

Low Exponent (-1 SD) -0.04 -0.14 – 0.07 0.502 

High Exponent (+1 SD) 0.15 0.05 – 0.25 0.002 

 Slope of Exponent 95% CI p-value 

Low IAPF (-1 SD) -0.36 -0.67 – -0.04 0.025 

High IAPF (+1 SD) 0.30 -0.11 – 0.70 0.149 

 

 

<Insert Figure 3 about here> 

 

Discussion 
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In the current study, we investigated the role of periodic and aperiodic neural activity at 

rest measured from fronto-central sites in predicting cognitive decline in midlife and old age 

community dwelling adults. Due to their strong associations with age and cognitive impairment, 

we focused on the individual peak alpha frequency, or the frequency at which alpha oscillations 

peak (i.e., IAPF), and the slope of 1/f-like non-oscillatory (i.e. the aperiodic exponent) activity 

computed from a composite of frontal sites. Using a sample across the adult lifespan (age range 

36-83 at time of EEG assessment), we showed that the fronto-central aperiodic exponent was 

related to cognitive function, such that flatter aperiodic exponents were related to worse 

cognitive function overall (e.g., hypothesis 3, Table 5). Additionally, IAPF was predictive of 

cognitive decline over approximately 10 years, such that lower IAPF was associated with more 

cognitive decline (e.g., hypothesis 6, Table 6). However, our exploratory analyses demonstrated 

that the relationships between aperiodic exponent, IAPF, and cognitive decline was moderated 

by the interaction between the fronto-central IAPF and fronto-central aperiodic exponent: 

decline was more severe in participants with “mismatched” measures (e.g., higher exponent 

with lower IAPF) compared to participants with “matching” measures (e.g., higher exponent with 

higher IAPF; lower IAPF with lower aperiodic exponent). Importantly, our results provide support 

for recent work and theoretical models that have linked both IAPF and the aperiodic exponent to 

individual differences in cognitive function and provide the first evidence that these measures of 

intrinsic brain function interact to predict cognitive decline and not just impairment.  

The declines in cognitive function associated with the IAPF and aperiodic exponent were 

largely driven by the executive function component of the BTACT. This may be due to the 

relatively modest decline in the episodic memory component resulting in a floor effect due to 

relatively restricted range of episodic memory decline. Alternatively, it may be that our choice of 

fronto-central sites is uniquely sensitive to changes in executive functioning as they are closer to 
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prefrontal cortex regions. Additional research in samples with larger declines in episodic 

memory are needed to begin to tease apart these possibilities.  

In previous studies, age-related slowing of IAPF (e.g., Grandy et al., 2013b; Scally et al., 

2018), and slower IAPF in general, have been consistently associated with reduced processing 

speed, poorer working memory, and reduced cognitive capacity (Grandy et al., 2013a). The 

age-related slowing of alpha has been linked to alterations in inhibitory neural processes (e.g., 

the timing of neural inhibition), with the slowing observed in older adults attributed to an array of 

CNS pathology (e.g., vascular changes, white-matter lesions), as well as linked to mild and 

severe cognitive impairment (Babiloni et al., 2008; Kramberger et al., 2017). The frequency of 

alpha oscillations is also instrumental in the ‘gating’ of stimuli, with relatively slower IAPF being 

observed in individuals who struggle to rapidly adjust their attention to novel or task-relevant 

stimuli (Ramsay et al., 2021). However, previous work has almost exclusively focused on 

variations in the speed of oscillatory activity. While there was a significant IAPF by wave 

interaction, such that individuals with higher IAPF showed less cognitive decline, it was 

moderated by the higher-order aperiodic exponent by IAPF by wave interaction. This three-way 

interaction suggests that considering IAPF alone provides an incomplete understanding of 

neural activity and cognitive decline, and that consideration of non-oscillatory, aperiodic activity 

is also necessary.  

Current models of the aperiodic exponent propose that individual differences – and state 

differences – in the aperiodic exponent size reflect excitatory:inhibitory balance (Gao et al., 

2017; Waschke et al., 2021). Within this framework, relatively flatter slopes (i.e., smaller 

exponents) are associated with poorer cognitive performance due to the propagation of 

relatively dysregulated excitatory activity, which manifests in ‘noisier’, less efficient processing 

(Voytek et al., 2015; Dave et al., 2018; Pertermann et al., 2019). Our findings are broadly 

consistent with this perspective, with flatter exponents predicting overall reduced executive 
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function and BTACT scores, but highlight the need to consider periodic oscillatory activity in 

conjunction with aperiodic metrics.  

Simultaneous EEG/fMRI eyes-open resting recordings have found that the aperiodic 

exponent is related to increased BOLD signal in the auditory-salience-cerebellar network 

(including components of the salience network), and decreased BOLD signal in prefrontal 

networks, suggesting that steeper aperiodic exponents may be associated with increased 

arousal and/or increased attention to external stimuli (Jacob et al., 2021). It may be the case 

that individuals with “mismatched” aperiodic exponent and IAPF reflect a suboptimal balance 

between arousal and attention to external stimuli (indexed by the aperiodic exponent) with the 

ability to flexibly gate external stimuli (indexed by the IAPF) to perform complex cognitive tasks. 

Future research should attend to this possibility and examine if there are differences in the 

neurobiological mechanisms underlying increased rates of decline between individuals with low 

aperiodic exponents plus high IAPF vs. individuals with high aperiodic exponents plus low IAPF, 

and if these differences may signal different underlying pathologies or vulnerabilities.  

While our work focused on periodic and aperiodic measures at rest, recent work 

suggests that the aperiodic exponent may change in response to a stimulus itself, consistent 

with an increase in inhibitory activity with an increase in attentional demand, independent from 

ERPs elicited by the stimulus. This suggests flexible shifts in the aperiodic exponent in response 

to task demands may be important for attention and cognitive function (Gyurkovics et al., 2022).  

Future work would benefit from exploration of whether flexible adjustments in aperiodic activity 

during tasks are integral to long term cognitive function and decline, and what if any role 

changes in IAPF during a task may play in moderating these effects. 

Given research into the aperiodic exponent is in its infancy, it is unclear exactly why a 

high exponent paired with a low IAPF would be associated with increased rates of cognitive 

decline.  It may be that the optimal excitatory:inhibitory balance reflected in the aperiodic 

JN
eurosci

 Acce
pted M

an
uscr

ipt



 39 

exponent is not uniformly consistent across participants, but may vary with IAPF, such that 

higher aperiodic exponents may not always be better. Alternatively, excitatory:inhibitory balance 

can be shifted in complex ways between and across neural circuits, and the same endpoint may 

be achieved from reduction in excitatory activity or an increase in inhibitory activity, or some 

combination of both (Sohal and Rubenstein, 2019). It is possible that age-related slowing of 

IAPF may be associated with specific patterns of changes in inhibitory and or excitatory activity, 

such that lower IAPF associated with higher aperiodic exponents may reflect a suboptimal shift 

in activity. Future research would benefit from examining IAPF and aperiodic exponent in 

normally and pathologically aging participants to begin to tease apart these potential 

explanations and to determine when – or if – these shifts reflect pathological aging. Future work 

should also focus on better understanding what is causing age-related shifts in IAPF and how 

this may impact excitatory:inhibitory balance. 

Overall, our findings challenge a simplistic view of the neurobehavioral and 

neuropsychological consequences of varied aperiodic and periodic activity. On one hand, 

gradual flattening is typically associated with poorer performance – potentially reflecting an 

excess of excitatory to inhibitory activity, resulting in elevated noise. However, many diseases, 

such as Parkinson’s Disease, are characterized by an excess of inhibitory activity, and previous 

studies have emphasized that excessive inhibitory activity reduces behavioral flexibility (Song et 

al., 2021; Vinding et al., 2022; McKeown et al., 2023). These results hint at the importance of 

considering excitatory:inhibitory balance within an individual differences context, as what is 

optimal may differ based on a variety of neuroanatomical and physiological parameters. 

Our findings are particularly striking given the nearly 10-year span between data 

collection waves. This suggests that EEG resting measures of periodic and aperiodic neural 

activity may be a promising biomarker for predicting who is at risk for cognitive decline. Given 

the relative ease and low cost of collecting EEG data, these metrics could be easily scalable to 

JN
eurosci

 Acce
pted M

an
uscr

ipt



 40 

provide important information to clinicians for early interventions in a rapidly aging population. 

However, our sample is relatively modest in size and is composed of community-dwelling aging 

individuals who are able and willing to travel to participate in a multi-component study. Future 

work is needed to replicate these results in additional samples as well as investigate these 

measures in a variety of clinical samples and samples varying in demographic characteristics 

(including but not limited to race, ethnicity, education, and socioeconomic status) to further 

investigate the utility of IAPF and aperiodic exponent as a risk factor for accelerated cognitive 

decline. Particularly important would be a longitudinal study with repeated EEG and cognitive 

assessments completed at smaller time lags to assess when in aging measures of IAPF and 

aperiodic exponent signal increase the risk of cognitive decline. 

Our results are, however, limited by the lack of resting EEG measures at both time 

points. Although the MIDUS Neuroscience M3 project was recently completed, EEG data was 

not recorded. The lack of a second measurement point prevents us from partially out the 

variance associated with longitudinal change in aperiodic activity and IAPF and examining 

whether this predicts a change in cognitive function. Moreover, we are unable to examine how 

individual differences in EEG predict cognitive change independently from the intra-individual 

changes. Given the substantial age-related differences (Hill et al., 2022; Merkin et al., 2022) and 

changes (Chini et al., 2022) in aperiodic activity and IAPF, we anticipate that the inclusion of a 

second measurement point would increase the sensitivity of our model.  

In summary, our study highlights the importance of considering periodic and aperiodic 

measures in combination when examining resting-state EEG and measures of cognitive decline. 

In particular, a “mismatch” between low IAPF and high aperiodic exponent is associated with 

faster rates of cognitive decline over 10 years. Once considered meaningless, invariant noise, 

the features of the 1/f aperiodic neural activity are being recognized as an important feature of 

EEG signals, potentially reflecting global excitatory:inhibitory balance. Our work further 
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emphasizes that aperiodic activity is a critical feature of EEG signals and needs to be 

systematically investigated in conjunction with more typical periodic features, to fully understand 

the links between neural activity and cognition across the lifespan. 
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Figures and Tables 

Figure 1. Participant flow and at which timepoint data was collected. 

Figure 2: Wave by Individual Peak Alpha Frequency Interaction Plot. Plot depicting the two-way 

interaction wave X individual peak alpha frequency reported in Table 6 with 95% confidence 

interval error bars. Time 1 cognition assessed at MIDUS2 Cognitive Project, and time 2 

cognition was assessed at the MIDUS 3 Cognitive Project. 

Figure 3: Wave by Aperiodic Exponent by Individual Peak Alpha Frequency Interaction Plot. Plot 

depicting the three-way interaction wave X aperiodic exponent X individual peak alpha 

frequency reported in Table 9, with wave depicted as the estimated change in cognitive 

function between the M2 and M3 Cognitive Projects. 

 

Table 1: Participant Demographics, n = 235 

Table 2: Summary of preregistered hypotheses and analyses 

Table 3: Correlations and descriptive statistics. 

Table 4: Multilevel models to test hypothesis 1 and 2 

Table 5: Multilevel models to test hypothesis 3 and 4 

Table 6: Multilevel models to test hypothesis 5 and 6 

Table 7: Multilevel models to test hypothesis 7a and 7c 

Table 8: Multilevel models to test hypothesis 7b and 7d 

Table 9: Multilevel models examine the interaction between aperiodic exponent and individual 

peak alpha frequency 
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Table 10: Examining the Wave X Aperiodic Exponent X Individual Peak Alpha Frequency 

interaction through the slope of the change in cognitive function over waves for each BTACT 

measure at high and low levels of each EEG metric. 

JN
eurosci

 Acce
pted M

an
uscr

ipt



JN
eurosci

 Acce
pted M

an
uscr

ipt



JN
eurosci

 Acce
pted M

an
uscr

ipt



JN
eurosci

 Acce
pted M

an
uscr

ipt


