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Avoiding Breakdown in Incomplete Factorizations in
Low Precision Arithmetic

JENNIFER SCOTT, STFC Rutherford Appleton Laboratory, Oxfordshire, UK and
University of Reading, Reading, UK
MIROSLAV TŮMA, Charles University, Prague, Czech Republic

The emergence of low precision floating-point arithmetic in computer hardware has led to a resurgence of
interest in the use of mixed precision numerical linear algebra. For linear systems of equations, there has been
renewed enthusiasm for mixed precision variants of iterative refinement. We consider the iterative solution of
large sparse systems using incomplete factorization preconditioners. The focus is on the robust computation
of such preconditioners in half precision arithmetic and employing them to solve symmetric positive definite
systems to higher precision accuracy; however, the proposed ideas can be applied more generally. Even
for well-conditioned problems, incomplete factorizations can break down when small entries occur on the
diagonal during the factorization. When using half precision arithmetic, overflows are an additional possible
source of breakdown. We examine how breakdowns can be avoided and implement our strategies within new
half precision Fortran sparse incomplete Cholesky factorization software. Results are reported for a range of
problems from practical applications. These demonstrate that, even for highly ill-conditioned problems, half
precision preconditioners can potentially replace double precision preconditioners, although unsurprisingly
this may be at the cost of additional iterations of a Krylov solver.

CCS Concepts: • Mathematics of computing→ Solvers; Mathematical software performance; Compu-
tations on matrices;
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1 Introduction
We are interested in solving sparse linear systems �G = 1, where � ∈ R=×= is nonsingular and
G, 1 ∈ R= . The majority of algorithms for solving such systems fall into two main categories: direct
methods and iterative methods. Direct methods transform � using a finite sequence of elementary
transformations into a product of simpler sparse matrices in such a way that solving linear systems
of equations with the factor matrices is comparatively easy and relatively inexpensive. For example,
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9:2 J. Scott and M. Tůma

for a general nonsymmetric matrix, � = %!*& , where ! is a lower triangular matrix,* is an upper
triangular matrix, and % and & are permutation matrices chosen to preserve sparsity in the factors
and ensure the factorization is stable. Direct methods, when properly implemented, are robust,
frequently very fast, and can be confidently used as black-box solvers for computing solutions
with predictable accuracy. However, they require significant expertise to implement efficiently
(particularly in parallel). They can also need large amounts of memory (which increases nonlinearly
with the size and density of �) and the matrix factors normally contain many more nonzero entries
than �; these extra entries are termed the fill-in and much effort goes into trying to minimize the
amount of fill-in.
By contrast, iterative methods compute a sequence of approximations G (0) , G (1) , G (2) , . . . that

(hopefully) converge to the solution in an acceptable number of iterations. The number of iterations
(and whether or not convergence occurs at all) depends on G (0) , � and 1 as well as the required
accuracy in G . Basic implementations of iterative solvers are relatively straightforward as they
only use the sparse matrix � indirectly, through matrix–vector products and, most importantly,
their memory demands are limited to a (small) number of vectors of length =, making them
attractive for very large problems as well as for problems where � is not available explicitly.
However, preconditioning is usually essential to enhance the convergence of the iterative method.
Preconditioning seeks to transform the system into one that is more tractable and from which
the required solution of the original system can easily be recovered. Determining and computing
effective preconditioners is highly problem dependent and generally very challenging. Algebraic
preconditioners that are built using an incomplete factorization of � in which entries that would be
part of a complete factorization are dropped are frequently used, especially when the underlying
physics of the problem is difficult to exploit. Such preconditioners can be employed within more
sophisticated methods; for example, to precondition subdomain solves in domain decomposition
schemes or as smoothers in multigrid methods.
The performance differences for computing and communicating in different precision formats

have led to a long history of efforts to enhance numerical algorithms by combining precision
formats. The goals of mixed-precision algorithms include accelerating the computational time
by including the use of lower-precision formats while obtaining high-precision accuracy of the
output and, by reducing the memory requirements, extending the size of problems that can be
solved as well as potentially lowering energy usage. Numerical linear algebra software, and linear
system solvers in particular, traditionally uses double precision (64-bit) arithmetic, although some
packages (including the BLAS and LAPACK routines and some sparse solvers, such as those in
the HSL mathematical software library [27]) have always also offered single precision (32-bit)
versions. In the mid-2000s, the speed difference between single and double precision arithmetic on
what were then state-of-the-art architectures, notably Sony/Toshiba/IBM Cell processors (see, e.g.,
[10, 32, 33]), led to studies into the feasibility of factorizing amatrix in single precision and then using
the factors as a preconditioner for a simple iterative method to regain higher precision accuracy
[5, 11, 12]. Hogg and Scott [26] extended this to develop a mixed precision sparse symmetric
indefinite solver. More recently, the potential for employing single precision arithmetic in solving
sparse systems to double precision accuracy using multiple cores has been considered by Zounon
et al. [49]. For such systems, the integer data used to hold the sparse structures of the matrix and its
factors are independent of the precision, and memory savings come only from the real factor data.
This offers the potential to increase the size of problem that can be tackled and, in the incomplete
factorization case, to allow more entries to be retained in the factors, which can result in a higher
quality preconditioner, leading to savings in the total solution time.
In the past few years, the emergence of lower precision arithmetic in hardware has led to

further interest in mixed precision algorithms. A key difference compared to earlier work is the
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Avoiding Breakdown in Incomplete Factorizations in Low Precision Arithmetic 9:3

use of half precision (16-bit) arithmetic. A comprehensive state-of-the-art survey of work on
mixed precision numerical linear algebra routines (including an extensive bibliography) is given in
[22] (see also [1]). In particular, there have been important ideas and theory on mixed precision
iterative refinement methods that employ the matrix factors computed in low precision as a
preconditioner to recover higher precision accuracy [2, 14, 15]. The number of entries in the factors
of a sparse matrix� is typically much greater than in� and so, unlike in the dense case, the overhead
of keeping a high precision copy of � for computing the residual in the refinement process is small.
Amestoy et al. [3] investigate the potential of mixed precision iterative refinement to enhance
methods for sparse systems based on a particular class of approximate sparse factorizations. They
employ the well-known parallel sparse direct solver MUMPS [4], which is able to exploit block
low-rank factorizations and static pivoting to compute approximate factors. The reported results in
[3] are restricted to combining single and double precision arithmetic because, in common with all
other currently available sparse direct solvers, MUMPS does not support the use of half precision
arithmetic. Developing an efficient half precision solver is not straightforward, requiring 16-bit
versions of the dense linear algebra routines that provide the building blocks behind direct solvers.
Such routines are becoming available (e.g., dense matrix–matrix multiplication in half precision is
now supported by NVIDIA’s cuBLAS library), making the future development of efficient software
potentially more feasible.
Higham and Pranesh [24] focus on symmetric positive definite (SPD) linear systems. They

compute a Cholesky factorization using low precision arithmetic and employ the factors as pre-
conditioners in GMRES- and conjugate gradient (CG)-based iterative refinement. While they are
interested in the sparse case, their MATLAB experiments (which simulate low precision using
their chop function [23]) store the sparse test examples as dense matrices and their Cholesky
factorizations are computed using dense routines. The reported theoretical and numerical results
demonstrate the potential for low precision (complete) factors to be used to obtain high precision
accuracy. Most recently, Carson and Khan [16] have considered using sparse approximate inverse
(SPAI) preconditioners that are based on Frobenius norm minimization [20]. They again propose
computing the preconditioner using low precision and then employing GMRES-based iterative
refinement and report MATLAB experiments using the chop function. Mixed precision has also
been investigated for multigrid methods (see, e.g., the error analysis of McCormick et al. [39], who
observed that different levels in the grid hierarchy should use different precisions).
Our emphasis is on low precision incomplete factorization preconditioners, combined with

Krylov subspace-based iterative refinement. Although our ideas can be used for general sparse linear
systems, we focus on the sparse SPD case. We use half precision arithmetic to construct incomplete
Cholesky (IC) factorizations that are then employed as preconditioners to recover double precision
accuracy. Our primary objective is to show that for a range of problems (some of which are highly
ill-conditioned) it is possible to successfully obtain and use low precision incomplete factors. We
consider the potential sources of overflow during the incomplete factorization and look at how to
safely detect and prevent overflow. We follow a number of others working on the development
of numerical linear algebra algorithms in mixed precision in performing experiments that aim to
explore the feasibility of the ideas by simulating half precision (see, e.g., [13, 16, 23]). We want the
option to experiment with sparse problems that may be too large for MATLAB and have chosen to
develop our software in Fortran. Half precision and double precision versions are tested on systems
coming from practical applications.

This paper makes the following contributions:

(a) It considers the practicalities of computing classical incomplete factorizations using low
precision arithmetic, in particular, the safe prediction of possible overflows.

ACM Transactions on Mathematical Software, Vol. 50, No. 2, Article 9. Publication date: June 2024.



9:4 J. Scott and M. Tůma

Table 1. Parameters for bfloat16, fp16, fp32, and fp64 Arithmetic: The Number of Bits in
the Significand and Exponent, Unit Roundoff D, Smallest Positive (Subnormal) Number GB

<8=
,

Smallest Normalized Positive Number G<8= , and Largest Finite Number G<0G , All Given to
Three Significant Figures

Signif. Exp. D GB<8= G<8= G<0G

bfloat16 8 8 3.91 × 10−3 a 1.18 × 10−38 3.39 × 1038
fp16 11 5 4.88 × 10−4 5.96 × 10−8 6.10 × 10−5 6.55 × 104
fp32 24 8 5.96 × 10−8 1.40 × 10−45 1.18 × 10−38 3.40 × 1038
fp64 53 11 1.11 × 10−16 4.94 × 10−324 2.22 × 10−308 1.80 × 10308

aIn Intel’s bfloat16 specification, subnormal numbers are not supported.

(b) It successfully employs global modifications combined with a simple prescaling to prevent
breakdowns during the factorization.

(c) It develops level-based IC factorization software in half precision (written in Fortran).
(d) It demonstrates the potential for robust half precision incomplete factorization precondition-

ers to be used to solve ill-conditioned SPD systems.
The rest of the paper is organized as follows. In Section 2, we briefly recall incomplete factoriza-

tions of sparse matrices and consider the challenges that IC factorizations can face, particularly
when low precision arithmetic is employed. In Section 3, we summarize basic mixed precision
iterative refinement algorithms before presenting numerical results for a range of problems coming
from practical applications in Section 4. Concluding remarks and possible future directions are
given in Section 5.

Terminology. We use the term high precision for precision formats that provide high accuracy
at the cost of a larger memory volume (in terms of bits) and low precision to refer to precision
formats that comprise fewer bits (smaller memory volume) and provide low(er) accuracy. Unless
stated otherwise, we mean IEEE double precision (64-bit) when using the term high precision
(denoted by fp64) and the 1985 IEEE standard 754 half precision (16-bit) when using the term
low precision (denoted by fp16). bfloat16 is another form of half-precision arithmetic that was
introduced by Google in its tensor processing units and formalized by Intel; we do not use it in this
paper. Table 1 summarizes the parameters for different precision arithmetic. We use D16, D32, and
D64 to denote the unit roundoffs in fp16, fp32, and fp64 arithmetic, respectively.

2 Incomplete Factorizations
In this section, we briefly recall incomplete factorizations of sparse matrices and then discuss how
breakdown can happen, particularly when using low precision.

2.1 A Brief Introduction to Incomplete Factorizations
For a general sparse matrix �, the incomplete factorizations that we are interested in are of the
form � ≈ !* , where ! and * are sparse lower and upper triangular matrices, respectively (for
simplicity of notation, the permutations % and & that are for preserving sparsity in the factors are
omitted).The computed incomplete factors are used to define the preconditioner; the preconditioned
linear system is * −1!−1� = * −1!−11. If � is an SPD matrix then � ≈ !!) . There are three main
classes of incomplete factorization preconditioners. Firstly, threshold-based �!* (g) methods in
which the locations of permissible fill-in in the factors are determined in conjunction with the
numerical factorization of �; entries of the computed factors that are smaller than a prescribed
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Avoiding Breakdown in Incomplete Factorizations in Low Precision Arithmetic 9:5

Algorithm 1. Basic right-looking IC factorization
Input: SPD matrix � and a target sparsity pattern S{!}
Output: Incomplete Cholesky factorization � ≈ !!) .

1: Initialize ;8 9 = 08 9 for all (8, 9) ∈ S{!}
2: for : = 1 : = do ⊲ Start of :-th major step
3: ;:: ← (;:: )1/2 ⊲ Diagonal entry is the pivot
4: for 8 = : + 1 : = such that (8, 9) ∈ S{!} do
5: ;8: ← ;8:/;:: ⊲ Scale pivot column : of the incomplete factor by the pivot
6: end for ⊲ Column : of ! has been computed
7: for 9 = : + 1 : = such that ( 9, :) ∈ S{!} do
8: for 8 = 9 : = such that (8, 9) ∈ S{!} do
9: ;8 9 ← ;8 9 − ;8:; 9: ⊲ Update operation on column 9

10: end for
11: end for
12: end for

threshold are dropped, for example, [41]. Secondly, memory-based �!* (<) methods in which the
amount of memory available for the incomplete factorization is prescribed and only the largest
entries are retained at each stage of the factorization, for example, [29]. Thirdly, structure-based
�!* (ℓ) methods in which an initial symbolic phase uses a hierarchy of sparsity structures and
determines the location of permissible entries using only the sparsity pattern of�, for example, [48].
The memory requirements for the incomplete factors are then determined before the numerical
factorization is performed. The simplest such approach (for which the symbolic phase is trivial)
is an �!* (0) factorization (or �� (0) in the SPD case) that limits entries in the incomplete factors
to positions corresponding to entries in � (no fill-in is permitted). �!* (0) preconditioners are
frequently used for comparison purposes when assessing the performance of other approaches.

The different approaches have been developed, modified, and refined over many years. Variants
have been proposed that combine the ideas and/or employ them in conjunction with discarding
entries in � (sparsification) before the factorization commences. For an introduction to ILU-based
preconditioners and details of possible variants, we recommend [17] and Chapter 10 of [45], while
[46] provides a brief historical overview and further references.

Algorithm 1 outlines a basic (right-looking) IC factorization of an SPD matrix � = {08 9 }. Here all
computations are performed in the same precision as �. The algorithm assumes a target sparsity
pattern S{!} for ! = {;8 9 } is provided, where

S{!} = {(8, 9) | ;8 9 ≠ 0, 1 ≤ 9 ≤ 8 ≤ =}.
It is assumed that S{!} includes the diagonal entries. Modifications can be made to incorporate
threshold dropping strategies and to determine S{!} as the method proceeds. At each major
step : , outer product updates are applied to the part of the matrix that has not yet been factored
(Lines 7–11).

2.2 Breakdown during Incomplete Factorizations
For arbitrary choices of the sparsity pattern S{!}, the IC factorization exists if � is an M-matrix
or an H-matrix with positive diagonal entries [38, 40]. But for a general SPD matrix, there is no
such guarantee and an incomplete factorization algorithm can (and frequently does) break down.

ACM Transactions on Mathematical Software, Vol. 50, No. 2, Article 9. Publication date: June 2024.



9:6 J. Scott and M. Tůma

Algorithm 2. Safe test for a safe update operation (detecting B3 breakdown)
Input: Scalars 0,1, 2 such that |0 |, |1 |, |2 | ≤ G<0G .
Output: Either E = 0 − 12 or 5 ;06 = −3 (unsafe to perform update).

1: 5 ;06 = 0

2: if |1 | ≤ 1 or |2 | ≤ 1 then ⊲ G<0G/|2 | cannot be tested if |2 | < 1

3: F = 12

4: else if |1 | ≤ G<0G/|2 | then
5: F = 12

6: else
7: 5 ;06 = −3 and return ⊲ Unsafe to compute 12
8: end if
9: if 0 ≥ 0 then
10: ifF ≥ 0 or (G<0G − 0 ≥ −F ) then
11: E = 0 −F
12: else
13: 5 ;06 = −3 and return ⊲ Unsafe to perform subtraction
14: end if
15: else
16: ifF < 0 or (G<0G + 0 ≥ F ) then
17: E = 0 −F
18: else
19: 5 ;06 = −3 and return ⊲ Unsafe to perform subtraction
20: end if
21: end if

There are three places where breakdown can occur. We refer to these as problems B1, B2, and B3
as follows:

— B1: The computed diagonal entry ;:: (which is termed the pivot at step :) may be unacceptably
small or negative.

— B2: The scaling ;8: ← ;8:/;:: may overflow.
— B3: The update ;8 9 ← ;8 9 − ;8:; 9: may overflow.
It is crucial for a robust implementation to detect the possibility of overflow before it occurs

(otherwise, the code will simply crash). Tests for potential breakdown must themselves only use
operations that cannot overflow. We say that an operation is safe in the precision being used if it
cannot overflow; otherwise, it is unsafe.
Safe detection of problem B1 is straightforward as we simply need to check at Line 3 of

Algorithm 1 that the pivot satisfies ;:: ≥ g > G<8= , where the threshold parameter g depends on
the precision used. Based on our experience with practical problems, in our reported results in
Section 4, we use g = 10−5 for half precision factorizations and, for double precision factorizations,
g = 10−20 (note that preconditioner quality is not sensitive to the precise choice of g).

Problem B2 can happen during the column scaling at Line 5 of Algorithm 1. Let 0 be the entry
of largest absolute value in the current pivot column : and let 3 denote the current pivot ;::

ACM Transactions on Mathematical Software, Vol. 50, No. 2, Article 9. Publication date: June 2024.



Avoiding Breakdown in Incomplete Factorizations in Low Precision Arithmetic 9:7

Algorithm 3. Basic IC factorization with safe checks for breakdown
Input: SPD matrix �, a target sparsity pattern S{!} and parameter g > 0 for testing small entries.
Output: Either 5 ;06 < 0 (breakdown occurred) or � ≈ !!) with ! lower triangular

1: Initialize ;8 9 = 08 9 for all (8, 9) ∈ S{!}
2: Set 5 ;06 = 0

3: for : = 1 : = do ⊲ Start of :-th major step
4: if ;:: < g then
5: Set 5 ;06 = −1 and return ⊲ B1 breakdown
6: end if
7: ;:: ← (;:: )1/2
8: 0 = max8=:+1:={|;8: | : (8, :) ∈ S{!}}
9: if ;:: ≥ 1 or ;:: ≥ 0/G<0G then ⊲ Note that if ;:: ≥ 1 then 0 does not need to be computed
10: for 8 = : + 1 : = such that (8, :) ∈ S{!} do
11: ;8: ← ;8:/;:: ⊲ Perform safe scaling
12: end for ⊲ Column : of ! has been computed
13: else
14: Set 5 ;06 = −2 and return ⊲ B2 breakdown
15: end if
16: for 9 = : + 1 : = such that ( 9, :) ∈ S{!} do
17: Use Algorithm 2 to test for safe update
18: if 5 ;06 = −3 then
19: return ⊲ B3 breakdown
20: end if
21: for 8 = 9 : = such that (8, 9) ∈ S{!} do
22: ;8 9 ← ;8 9 − ;8:; 9: ⊲ Perform safe update operation
23: end for
24: end for ⊲ Column 9 of ! has been updated
25: end for

(set at Line 3). If 0 ≤ G<0G and 1 ≤ 3 ≤ G<0G then 3 ≥ 0/G<0G and it is safe to compute 0/3 (and
thus safe to scale column :).

Problem B3 can occur during the update operations at Line 9 of Algorithm 1. Algorithm 2 can be
used to perform safe updates. Here the scalars and the computation are in the working precision.
Algorithm 3 presents the basic IC factorization algorithm with the inclusion of safe checks

for possible breakdown. Here the matrix � and the computation are in the working precision. In
practice, when using single and double precision the tests in Lines 8–11 and 16–20 are omitted, but
B1 can occur when using any arithmetic. Note that the safe test for B3 breakdown does not have to
be applied to individual scalar entries but can be applied to each column 9 ≥ : + 1.
Observe that the occurrence of underflows when using fp16 arithmetic does not prevent the

computation of the incomplete factors, although underflows could lead to a loss of information
that affects the preconditioner quality. However, provided the problem has been well scaled, the
dropping strategy used within the incomplete factorization normally has more influence on the
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9:8 J. Scott and M. Tůma

computed factors than underflows do. A subnormal floating-point number is a nonzero number
with absolute value less than that of the smallest normalized number. Floating-point operations on
subnormals can be very slow because they often require extra clock cycles, which introduces a high
overhead. If an off-diagonal factor entry is subnormal, it can again be replaced by zero without
significantly affecting the preconditioner quality.

2.3 Prescaling of the System Matrix
Sparse direct solvers typically prescale � and factorize �̂ = (−11 �(−12 , where (1 and (2 are diagonal
scaling matrices ((1 = (2 = ( in the symmetric case). Because no single choice of scaling always
results in the best performance (in terms of the time, factor sizes, memory requirements, and data
movement), several possibilities (with different associated costs) are typically offered to allow a
user to experiment and select the optimum for their application. For incomplete factorizations,
prescaling can reduce the incidence of breakdowns. This is illustrated for SPD matrices in [47],
where experiments (in double precision arithmetic) show that the cheap scaling in which the entries
in column 9 of � are normalized by the 2-norm of column 9 (so that the absolute values of the
entries of the scaled matrix are all less than 1) is generally a good choice. However, scaling alone
cannot guarantee to prevent breakdown. If breakdown does happen then modifications need to be
made to the scaled matrix that is being factorized, either before or during the factorization; this is
discussed in the next subsection.

In their work on matrix factorizations in low precision, Higham et al. [25] prescale � using the
working precision and then round to fp16 once all the absolute values of all the entries of the matrix
are at most G<0G (see also [22, 24]). They employ an equilibration approach [31] and then multiply
each entry of the scaled matrix by ` = \G<0G/W , where W is the entry of largest absolute value in the
scaled matrix �̂ and \ ∈ (0, 1) is a parameter chosen with the objective of limiting the possibility
of overflow during the factorization. Our experiments have found, in the incomplete factorization
case, that it is sufficient to use an inexpensive ;2-norm scaling and we set ` = 1.

2.4 Global Modifications to Prevent Breakdown
Local diagonal modifications were first described in the 1970s by Kershaw [30]. The idea is to simply
modify an individual diagonal entry of � during the factorization if it is found to be too small
(or negative) to use as a pivot, that is, at the Lines 4–6 of Algorithm 3, instead of terminating the
factorization, the pivot is perturbed by some positive quantity so that it is at least g . While such
local modifications are inexpensive to implement within a right-looking factorization algorithm, it
is frequently the case that even a small number of modifications can result in a poor preconditioner.
Consider, for example, the extreme case that, at the start of the major step : of Algorithm 3 the
diagonal entry ;:: is equal to zero and the absolute values of all the remaining entries of column
: are G<0G . A local modification that replaces ;:: by some chosen value less than 1 prevents B1,
but the corresponding column then does not scale (entries overflow) so that B1 is transferred into
a B2 problem.
Global strategies are generally more successful in terms of the quality of the resulting precon-

ditioner (see, e.g., [8] and the theoretical and numerical results given in [34, 38, 47]). When an
incomplete factorization breaks down, a straightforward strategy is to select a shift U > 0, replace
the scaled matrix �̂ by �̂ +U� (� is the identity matrix), and restart the factorization. This is outlined
in Algorithm 4. The factors of the shifted matrix are used to precondition �̂. If �� and �� are,
respectively, the diagonal and off-diagonal parts of �̂, then there is always some U for which
(1 + U)�� + �� is diagonally dominant. Provided the target sparsity pattern of the incomplete
factors contains the positions of the diagonal entries, then it can be shown that the incomplete
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Avoiding Breakdown in Incomplete Factorizations in Low Precision Arithmetic 9:9

Algorithm 4. Shifted incomplete IC factorization
Input: SPD matrix �, scaling matrix ( , and initial shift U( ≥ 0, all in precision D
Output: Shift U ≥ 0 and incomplete Cholesky factorization (−1�(−1 + U� ≈ !!) in precision D; ≥ D

1: U0 = 0

2: �̂ = (−1�(−1 in precision D
3: if D; ≠ D then �̂ (ℓ ) = 5 ; (�̂) ⊲ Squeeze the scaled matrix into precision D;
4: for 8 = 0, 1, 2, . . . do
5: �̂ (ℓ ) + U8 � ≈ !!) in precision D; ⊲ Use Algorithm 3
6: if successful then set U = U8 and return ⊲ This is the case of no breakdown
7: U8+1 = max(2U8 , U( ) ⊲ Breakdown detected so increase the shift and restart
8: end for

factorization of this shifted matrix does not break down [38]. Diagonal dominance is sufficient for
avoiding breakdown, but it is not a necessary condition, and an incomplete factorization may be
breakdown free for much smaller values of U . An appropriate U is not usually known a priori: too
large a value may harm the quality of the incomplete factors as a preconditioner and too small a
value will not prevent breakdown, necessitating more than one restart, with a successively larger
U . Typically, the shift is doubled after a breakdown, although more sophisticated strategies are
sometimes used (see, e.g., [47]).
When using fp16 arithmetic for the factorization (Dℓ = D16), Line 3 in Algorithm 4 “squeezes”

the scaled matrix �̂ from the working precision D into half precision. The squeezed matrix �̂ (ℓ ) is
factorized using Algorithm 3 with everything in precision D; . Our experiments on SPD matrices
confirm that, provided we prescale �, the number of times we must increase U and restart is
generally small but it depends on the IC algorithm and the precision (see the statistics =<>3 and
=> 5 ; is the tables of results in Section 4).

2.5 Using the Low Precision Factors
Each application of an incomplete LU factorization preconditioner is equivalent to solving a system
!*E = F (or !!) E = F in the SPD case). This involves a solve with the lower triangular ! factor
followed by a solve with the upper triangular * (or !) ) factor; these are termed forward and back
substitutions, respectively. Algorithm 5 outlines a simple lower triangular solve.
If the factors are computed and stored in fp32 or fp64 arithmetic, then overflows are unlikely

to occur in Algorithm 5. However, if half precision arithmetic Dℓ is used for the factors and the
forward and back substitutions are applied in precision Dℓ , then overflows are much more likely
at Lines 3 and 6. We can try and avoid this using simple scaling of the right-hand side so that
we solve !*E = F/‖F ‖∞ (or !!) E = F/‖F ‖∞) and then set ~ = E × ‖F ‖∞ (see [15]). Neverthe-
less, as in problems B2 and B3 above, overflows can still happen. The safe tests for monitoring
potential overflow can again be used. If detected, higher precision arithmetic can be used for the
triangular solves.

3 LU- and Cholesky Factorization-Based Iterative Refinement
3.1 LU-IR and Krylov-IR Using Low Precision Factors
As already observed, a number of studies in the late 2000s looked at computing the (complete)
matrix factors in single precision and then employing them as a preconditioner within an iterative
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Algorithm 5. Forward substitution: lower triangular solve !~ = F

Input: Lower triangular matrix ! with nonzero diagonal entries and right-hand sideF .
Output: The solution vector ~.

1: Initialise ~ 9 = F 9 , 1 ≤ 9 ≤ =

2: for 9 = 1 : = do
3: if ~ 9 ≠ 0 then
4: ~ 9 ← ~ 9/; 9 9
5: for 8 = 9 + 1 : = do
6: if ;8 9 ≠ 0 then
7: ~8 ← ~8 − ;8 9~ 9

8: end if
9: end for
10: end if
11: end for

Algorithm 6. LU-based iterative refinement using three precisions (LU-IR)
Input: Non singular matrix � and vector 1 in precision D, three precisions satisfying DA ≤ D ≤ Dℓ
Output: Computed solution of the system �G = 1 in precision D

1: Compute the factorization � = !* in precision Dℓ
2: Initialize G1 (e.g., by solving !*G1 = 1 using substitution in precision Dℓ )
3: for i = 1 : itmax or until converged do ⊲ 8C<0G is the maximum iteration count
4: Compute A8 = 1 −�G8 in precision DA ; store A8 in precision D
5: Use the computed factors to solve�38 = A8 by substitution in precision Dℓ ; store 38 in precision D
6: Compute G8+1 ← G8 + 38 in precision D
7: end for

solver to regain double precision accuracy (e.g., [5, 11, 12, 26]). The simplest method is iterative
refinement, which seeks to improve the accuracy of a computed solution G by iteratively repeating
the following steps until the required accuracy is achieved, the refinement stagnates, or a prescribed
limit on the number of iterations is reached.
(1) Compute the residual A = 1 −�G .
(2) Solve the correction equation �3 = A .
(3) Update the computed solution G ← G + 3 .
A number of variants exist. For a general matrix �, the most common is LU-IR, which computes

the LU factors of � in precision Dℓ and then solves the correction equation by forward and back
substitution using the computed LU factors in precision Dℓ . The computation of the residual is
performed in precisionDA and the update is performed in the working precisionD, withDA ≤ D ≤ Dℓ .
This is outlined in Algorithm 6. Here and in Algorithm 7, � and 1 are held in the working precision
D and the computed solution is also in the working precision. A discussion of stopping tests (and
many references) may be found in [21] (see also the later papers [7, 18]).
LU-IR can stagnate. In particular, if the LU factorization is performed in fp16 arithmetic, then

LU-IR is only guaranteed to reduce the solution error if the condition number ^ (�) satisfies
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Algorithm 7. Krylov-based iterative refinement using precisions (Krylov-IR)
Input:Non singular matrix� and vector1 in precisionD, a Krylov subspace method, and five precisions
DA , D6, D? , D, Dℓ
Output: Computed solution of the system �G = 1 in precision D

1: Compute the factorization � = !* in precision Dℓ
2: Initialize G1 (e.g., by solving !*G1 = 1 using substitution in precision Dℓ )
3: for i = 1 : itmax or until converged do ⊲ 8C<0G is the maximum iteration count
4: Compute A8 = 1 −�G8 in precision DA ; store A8 in precision D
5: Solve * −1!−1�38 = * −1!−1A8 using the Krylov method in precision D6, with * −1!−1�

performed in precision D? ; store 38 in precision D
6: Compute G8+1 ← G8 + 38 in precision D
7: end for

^ (�) � 2 × 103. To extend the range of problems that can be tackled, Carson and Higham [14]
propose a variant that uses GMRES preconditioned by the LU factors to solve the correction
equation. This is outlined in Algorithm 7, with the Krylov subspace method set to GMRES. Carson
and Higham use two precisions D = Dℓ and DA = D6 = D? = D2; this was later extended to
allow up to five precisions [2, 15]. If the LU factorization is performed in fp16 arithmetic and
D6 = D? = D64, then the solution error is reduced by GMRES-IR provided ^ (�) � 3 × 107. Note that
Algorithm 7 requires two convergence tests and stopping criteria: firstly, for the Krylov method on
Line 5 (inner iteration) and secondly, for testing the updated solution (outer iteration).

In the SPD case, a natural choice is to choose the Krylov method to be the CG method. However,
the supporting rounding error analysis applies only to GMRES, because it relies on the backward
stability of GMRES and preconditioned CG is not guaranteed to be backward stable [19]. This is
also the case for MINRES. Nevertheless, the MATLAB results presented in [24] suggest that in
practice CG-IR generally works as well as GMRES-IR.

We observe that Arioli and Duff [5] earlier proposed a simplified two precision variant of Krylov-
IR in which 8C<0G was set to 1. They used single and double precision and employed restarted
FGMRES [44] as the Krylov solver. This choice was based on their experience that FGMRES is more
robust than GMRES [6]. Hogg and Scott [26] subsequently developed a single–double precision
solver for large-scale symmetric indefinite linear systems; this Fortran code is available as HSL_MA79
within the HSL library [27]. It uses a single precision multifrontal method to factorize� (it computes
a sparse LDLT factorization) and then mixed precision iterative refinement (that is, LU-IR with
DA = D = D64 and Dℓ = D32). If iterative refinement stagnates, HSL_MA79 employs restarted FGMRES
to try and obtain double precision accuracy, that is, a switch is automatically made within the code
from LU-IR to Krylov-IR with G1 in Line 2 of Algorithm 7 taken to be the current approximation to
the solution computed using LU-IR and 8C<0G = 1 (see Algorithms 1–3 of [26]).

3.2 Generalization to Low Precision Incomplete Factors
GMRES-IR can be modified by replacing * −1!−1 with a preconditioner "−1. Work on using scalar
Jacobi and ILU(0) preconditioners has been reported by Lindquist et al. [35, 36], with tests performed
on a GPU-accelerated node combining single and double precision arithmetic. Loe et al. [37] present
an experimental evaluation of multi precision strategies for GMRES on GPUs using block Jacobi
and polynomial preconditioners. Carson and Khan [16] use an SPAI preconditioner computed in
low precisions and present MATLAB results. In addition, Amestoy et al. [3] use the option within
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Algorithm 8. Krylov-based iterative refinement with an incomplete factorization precon-
ditioner using five precisions (IC-Krylov-IR)
Input: SPD matrix � and vector 1 in precision D, a Krylov subspace method, and five precisions DA , D6 ,
D? , D and Dℓ
Output: Computed solution of the system �G = 1 in precision D

1: Compute an incomplete Cholesky factorization of
� in precision Dℓ ⊲ Use Algorithm 4 to compute !

2: Initialize G1 = 0

3: for i = 1 : itmax or until converged do ⊲ 8C<0G is the maximum iteration count
4: Compute A8 = 1 −�G8 in precision DA ; store A8 in precision D
5: Solve �38 = A8 using the preconditioned Krylov method in precision D6,

with preconditioning and products with � performed in precision D? ; store 38
in precision D ⊲ Computed factors used as the preconditioner

6: Compute G8+1 ← G8 + 38 in precision D
7: end for

the MUMPS solver to compute sparse factors in single precision using block low-rank factorizations
and static pivoting and then employ them within GMRES-IR to recover double precision accuracy.
Our interest is in using the IC factors of the SPD matrix � as preconditioners within CG-IR

and GMRES-IR. Algorithm 8 summarizes the approach, which we call IC-Krylov-IR to emphasize
that an IC factorization is used (this is consistent with the notation used in [16]). Note that if
8C<0G = 1 then the algorithm simply applies the preconditioned Krylov solver to try and achieve
the requested accuracy. Algorithm 6 can be modified in a similar way to obtain what we will call the
IC-LU-IR method.

4 Numerical Experiments
In this section, we investigate the potential effectiveness and reliability of half precision IC pre-
conditioners. Our test examples are SPD matrices taken from the SuiteSparse Collection; they are
listed in Table 2. In the top part of the table are those we classify as being well-conditioned (those
for which our estimate 2>=32 of the 2-norm condition number is less than 107) and in the lower
part are ill-conditioned examples. We have selected problems coming from a range of application
areas and of different sizes and densities. Many are initially poorly scaled and some (including
the first three problems in Table 2) contain entries that overflow in fp16 and thus prescaling of
� is essential. We use the ;2 norm scaling (computed and applied in double precision arithmetic).
We have performed tests using equilibration scaling (implemented using the HSL routine MC77
[42, 43]) and found that the resulting preconditioner is of a similar quality; this is consistent with
[47]. The right-hand side vector 1 is constructed by setting the solution G to be the vector of 1’s.
We use Algorithm 8 to explore whether we can recover (close to) double precision accuracy

using preconditioners computed in fp16 arithmetic, although we are aware that in practice much
less accuracy in the computed solution may be sufficient (indeed, in many practical situations,
inaccuracies in the supplied data may mean low precision accuracy in the solution is all that can
be justified). We thus use two precisions: Dℓ = D16 for the factorization and DA = D6 = D? = D64.
Algorithm 8 terminates when the normwise backward error for the computed solution satisfies

A4B =
‖1 −�G ‖∞

‖�‖∞‖G ‖∞ + ‖1‖∞
≤ X. (1)
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Table 2. Statistics for Our Test Examples

Identifier = ==I (�) =>A<� =>A<1 2>=32

HB/bcsstk27 1,224 2.87 × 104 2.96 × 107 9.74 × 105 2.41 × 104

Nasa/nasa2146 2,146 3.72 × 104 2.79 × 108 9.05 × 106 1.72 × 103

Cylshell/s1rmq4m1 5,489 1.43 × 105 8.14 × 106 1.73 × 105 1.81 × 106

MathWorks/Kuu 7,102 1.74 × 105 4.73 × 102 5.01 1.58 × 104

Pothen/bodyy6 19,366 7.71 × 104 1.09 × 105 9.81 × 104 9.91 × 104

GHS_psdef/wathen120 36,441 3.01 × 105 1.52 × 103 2.66 × 102 9.58 × 102

GHS_psdef/jnlbrng1 40,000 1.20 × 105 3.29 × 101 2.00 × 10−1 1.83 × 102

Williams/cant 62,451 2.03 × 106 2.92 × 105 5.05 × 103 8.06 × 103

UTEP/Dubcova2 65,025 5.48 × 105 6.67 × 101 1.18 3.33
Cunningham/qa8fm 66,127 8.63 × 105 4.28 × 10−3 9.51 × 10−4 8.00
Mulvey/finan512 74,752 3.36 × 105 3.91 × 102 3.78 × 101 2.51 × 101

GHS_psdef/apache1 80,800 3.11 × 105 8.10 × 105 6.76 × 10−1 4.18 × 102

Williams/consph 83,334 3.05 × 106 6.61 × 105 7.20 × 103 1.25 × 105

AMD/G2_circuit 150,102 4.38 × 105 2.27 × 104 2.17 × 104 2.02 × 104

Boeing/msc01050 1,050 1.51 × 104 2.58 × 107 1.90 × 106 4.58 × 1015

HB/bcsstk11 1,473 1.79 × 104 1.21 × 1010 7.05 × 108 2.21 × 108

HB/bcsstk26 1,922 1.61 × 104 1.68 × 1011 8.99 × 1010 1.66 × 108

HB/bcsstk24 3,562 8.17 × 104 5.28 × 1014 4.21 × 1013 1.95 × 1011

HB/bcsstk16 4,884 1.48 × 105 4.12 × 1010 9.22 × 108 4.94 × 109

Cylshell/s2rmt3m1 5,489 1.13 × 105 9.84 × 105 1.73 × 104 2.50 × 108

Cylshell/s3rmt3m1 5,489 1.13 × 105 1.01 × 105 1.73 × 103 2.48 × 1010

Boeing/bcsstk38 8,032 1.82 × 105 4.50 × 1011 4.04 × 1011 5.52 × 1016

Boeing/msc10848 10,848 6.20 × 105 4.58 × 1013 6.19 × 1011 9.97 × 109

Oberwolfach/t2dah_e 11,445 9.38 × 104 2.20 × 10−5 1.40 × 10−5 7.23 × 108

Boeing/ct20stif 52,329 1.38 × 106 8.99 × 1011 8.87 × 1011 1.18 × 1012

DNVS/shipsec8 114,919 3.38 × 106 7.31 × 1012 4.15 × 1011 2.40 × 1013

Um/2cubes_sphere 101,492 8.74 × 105 3.43 × 1010 3.59 × 1010 2.59 × 108

GHS_psdef/hood 220,542 5.49 × 106 2.23 × 109 1.51 × 108 5.35 × 107

Um/offshore 259,789 2.25 × 106 1.44 × 1015 1.16 × 1015 4.26 × 109

Those in the top half are considered to be well conditioned and those in the lower half to be ill conditioned. ==I (�)
denotes the number of entries in the lower triangular part of �. =>A<� and =>A<1 are the infinity norms of � and 1.
2>=32 is a computed estimate of the condition number of �.

In our experiments, we set X = 103 × D64. The implementations of CG and GMRES used are MI21
and MI24, respectively, from the HSL software library [27]. Except for the results in Table 4, the CG
and the GMRES convergence tolerance is X:A~;>E = D

1/4
64 and the limit on the number of iterations

for each application of CG and GMRES is 1,000.
The numerical experiments are performed on a Windows 11-Pro-based machine with an Intel(R)

Core(TM) i5-10505 CPU processor (3.20 GHz). Our results are for the level-based IC factorization
�� (ℓ) for a range of values of ℓ ≥ 0. The sparsity pattern of ! is computed using the approach
of Hysom and Pothen [28]. This computes the pattern of each row of ! independently. Our soft-
ware is written in Fortran and compiled using the NAG compiler (Version 7.1, Build 7118). This
is currently the only Fortran compiler that supports the use of fp16. The NAG documentation
states that their half precision implementation conforms to the IEEE standard. In addition, using
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the -round_hreal option, all half-precision operations are rounded to half precision, both at
compile time and runtime. Section 3 of [23] presents an insightful discussion on rounding every
operation or rounding kernels (see also [22]). Because of all the conversions needed, half precision
is slower using the NAG compiler than single precision and so timings are not useful.
We refer to the �� (ℓ) factorizations computed using half and double precision arithmetic as

fp16-�� (ℓ) and fp64-�� (ℓ), respectively. The key difference between the fp16 and fp64 versions
of our �� (ℓ) software is that for the former, during the incomplete factorization, we incorporate
the safe checks for the scaling and update operations (as discussed in Section 2.2); for the fp64
version, only tests for B1 breakdowns are performed (B2 and B3 breakdowns are not encountered
in our double precision experiments). In addition, the fp16 version allows the preconditioner to
be applied in either half or double precision arithmetic; the former is for IC-LU-IR and the latter
for IC-Krylov-IR. In the IC-Krylov-IR case, preconditioning is performed in double precision. For
! computed using fp16, there are two straightforward ways of handling solving systems with !

and !) in double precision. The first makes an explicit copy of ! by casting the data into double
precision, but this negates the important benefit that half precision offers of reducing memory
requirements. The alternative casts the entries on the fly. This is straightforward to incorporate into
a serial triangular solve routine and only requires a temporary double precision array of length =.
In the results tables, ==I (!) is the number of entries in the incomplete factor !; 8>DC4A denotes

the number of iterative refinement steps (that is, the number of times the loop starting at Line 3 in
Algorithm 8 is executed) and C>C8CB is the total number of CG (or GMRES) iterations performed;
A4B8=C is Equation (1) with G = !−)!−11 (because ! depends on the precision used to compute it,
A4B8=C is precision dependent), and A4B 5 8=0; is Equation (1) for the final computed solution; =<>3

and => 5 ; are the numbers of times problems B1 and B3 occur during the incomplete factorization,
with the latter for fp16 only. Increasing the global shift and restarting the factorization after the
detection of problem B1 avoided problem B2 in all our tests. Problem B3 can occur in column : if
after the shift, the diagonal entry ;:: is close to the shift U and |;8: |/G<0G ≥ U for some 8 > : . In
all the experiments on well-conditioned problems, we found => 5 ; = 0 and so this statistic is not
included in the corresponding tables of results. As expected, =<>3 > 0 can occur for fp16 and fp64,
and for both well-conditioned and ill-conditioned examples.

4.1 Results for IC-LU-IR
IC-LU-IR is attractive because if fp16 arithmetic is used then the application of the preconditioner
is performed in half precision arithmetic. Table 3 reports results for IC-LU-IR with the �� (3)
preconditioner. The iteration count is limited to 1,000. When using fp16 and fp64 arithmetic, we
were unable to achieve the requested accuracy within this limit for some problems. Additionally,
for problem Williams/consph, the refinement procedure diverges and the process is stopped when
the norm of the residual approaches G<0G in double precision. For the ill-conditioned problems,
results are only given for the ones that were successfully solved; for the other test examples, we
failed to achieve convergence.

4.2 Dependence of the Iteration Counts on the CG Tolerance
The results in Table 4 illustrate the dependence of the number of iterative refinement steps and
the total iteration count on the convergence tolerance X:A~;>E used by CG within IC-CG-IR. The
preconditioner �� (3) was computed using fp16 arithmetic. For six examples, we test X:A~;>E ranging
from 10−10 to 10−1. As expected, the number of outer iterations increases slowly with X:A~;>E , but
the precise choice of X:A~;>E is not critical. The results confirm the choice of D1/4

64 , which is used for
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Table 3. IC-LU-IR Results Using the �� (3) Preconditioner

Preconditioner fp16-�� (3)
Identifier A4B8=8C A4B 5 8=0; ==I (!) 8C4AB =<>3

HB/bcsstk27 8.27 × 10−5 6.11 × 10−14 4.88 × 104 13 0
Nasa/nasa2146 9.07 × 10−5 1.89 × 10−13 7.89 × 104 15 0
Cylshell/s1rmq4m1 5.81 × 10−5 6.77 × 10−9 3.15 × 105 >1,000 0
MathWorks/Kuu 1.74 × 10−4 2.17 × 10−13 7.65 × 105 194 0
Pothen/bodyy6 7.39 × 10−3 2.22 × 10−13 1.76 × 105 822 2
GHS_psdef/wathen120 4.34 × 10−4 1.72 × 10−14 8.30 × 105 5 0
GHS_psdef/jnlbrng1 1.41 × 10−3 6.48 × 10−14 2.77 × 105 16 0
Williams/cant 3.26 × 10−4 4.61 × 10−8 9.95 × 106 >1,000 0
UTEP/Dubcova2 1.54 × 10−3 2.19 × 10−13 6.22 × 106 736 0
Cunningham/qa8fm 3.54 × 10−4 3.42 × 10−15 5.14 × 106 5 0
Mulvey/finan512 3.50 × 10−4 2.59 × 10−15 4.08 × 106 5 0
GHS_psdef/apache1 8.52 × 10−5 1.05 × 10−7 1.54 × 106 >1,000 0
Williams/consph 1.05 × 10−4 a 2.02 × 107 a 0
AMD/G2_circuit 8.16 × 10−4 7.71 × 10−8 1.04 × 106 >1,000 0
Oberwolfach/t2dah_e 6.81 × 10−4 1.42 × 10−14 3.29 × 105 5 0
Um/2cubes_sphere 1.02 × 10−3 9.10 × 10−16 8.70 × 106 5 0

Preconditioner fp64-�� (3)
Identifier A4B8=8C A4B 5 8=0; ==I (!) 8C4AB

HB/bcsstk27 3.93 × 10−5 2.06 × 10−14 4.88 × 104 7
Nasa/nasa2146 4.32 × 10−5 6.29 × 10−14 7.89 × 104 15
Cylshell/s1rmq4m1 3.55 × 10−5 4.11 × 10−9 3.15 × 105 >1,000
MathWorks/Kuu 2.50 × 10−4 1.95 × 10−13 7.64 × 105 110
Pothen/bodyy6 9.31 × 10−3 2.20 × 10−13 1.76 × 105 >1,000
GHS_psdef/wathen120 1.77 × 10−4 5.62 × 10−15 8.30 × 105 5
GHS_psdef/jnlbrng1 9.40 × 10−3 1.14 × 10−13 2.77 × 105 14
Williams/cant 3.19 × 10−4 2.55 × 10−8 9.95 × 106 >1,000
UTEP/Dubcova2 1.65 × 10−3 2.17 × 10−13 6.22 × 106 709
Cunningham/qa8fm 3.29 × 10−4 1.49 × 10−15 5.14 × 106 4
Mulvey/finan512 3.72 × 10−4 9.22 × 10−15 4.08 × 106 4
GHS_psdef/apache1 8.28 × 10−5 2.83 × 10−8 1.54 × 106 >1,000
Williams/consph 3.38 × 10−4 a 2.02 × 107 a

AMD/G2_circuit 8.42 × 10−5 2.64 × 10−8 1.04 × 106 >1,000
HB/bcsstk24 4.01 × 10−7 2.21 × 10−13 2.77 × 105 801
HB/bcsstk16 7.01 × 10−4 1.81 × 10−9 4.89 × 106 >1,000
Oberwolfach/t2dah_e 5.49 × 10−6 5.95 × 10−14 3.29 × 105 4
Um/2cubes_sphere 2.25 × 10−5 1.10 × 10−13 8.70 × 106 3

A4B8=C and A4B 5 8=0; are the initial and final scaled residuals; ==I (!) is the number of entries in the �� (3) factor;
8C4AB is the number of refinement steps; and =<>3 denotes the number of times problem B1 occurs during the
factorization (for fp64-�� (3) it is equal to 0 for all our test cases and is omitted). >1,000 indicates the requested
accuracy was not obtained within the iteration limit.
aIndicates the refinement procedure breaks down.

ACM Transactions on Mathematical Software, Vol. 50, No. 2, Article 9. Publication date: June 2024.



9:16 J. Scott and M. Tůma

Table 4. The Effects of Changing the CG Convergence Tolerance X:A~;>E Used in
IC-CG-IR

UTEP/Dubcova2
X:A~;>E 10−10 10−9 10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1

8>DC4A 2 2 2 2 2 3 3 4 6 8
C>C8CB 79 73 64 58 49 68 55 57 58 65

HB/bcsstk26
X:A~;>E 10−10 10−9 10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1

8>DC4A 2 2 2 2 2 3 3 4 6 9
C>C8CB 134 121 107 93 78 103 81 84 97 93

Cylshell/s2rmt3m1
X:A~;>E 10−10 10−9 10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1

8>DC4A 2 2 2 2 2 3 3 4 5 8
C>C8CB 132 130 125 120 116 94 83 117 85 150

GHS_psdef/wathen120
X:A~;>E 10−10 10−9 10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1

8>DC4A 2 2 2 2 2 2 3 3 6 6
C>C8CB 9 8 7 6 6 5 6 5 6 6

GHS_psdef/jnlbrng1
X:A~;>E 10−10 10−9 10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1

8>DC4A 2 2 2 2 2 2 3 4 5 7
C>C8CB 20 18 16 14 12 15 12 12 11 12

Oberwolfach/t2dah_e
X:A~;>E 10−10 10−9 10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1

8>DC4A 2 2 2 2 2 3 3 3 5 5
C>C8CB 9 8 7 6 5 7 6 5 5 5

The preconditioner is fp16-�� (3) . 8>DC4A and C>C8CB denote the number of outer iterations and the
total number of CG iterations, respectively.

all remaining experiments. Similar results are obtained for IC-GMRES-IR, emphasizing that an
advantage of the IR approach is that it can significantly reduce the maximum number of Krylov
vectors used.

4.3 Results for �� (0)
As already remarked, �� (0) is a very simple preconditioner but one that is frequently reported on
in publications. Results for IC-CG-IR using an �� (0) preconditioner computed in half and double
precision arithmetics are given in Tables 5 and 6 for well-conditioned and ill-conditioned problems,
respectively. If the total iteration count (C>C8CB) for fp16 is within 10% of the count for fp64 (or is less
than the fp64 count) then it is highlighted in bold. Note that the number of entries in ! is equal to
the number of entries in the matrix that is being factorized, that is, ==I (!) = ==I (�̂ (; ) ) for fp16 and
==I (!) = ==I (�) for fp64. The difference between them is the number of entries that underflow
and are dropped when the scaled matrix is squeezed into half precision. For the well-conditioned
problems, the only problem for which �̂ (; ) is significantly sparser than � is Williams/cant but for
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Table 5. Results for IC-CG-IR Using an �� (0) Preconditioner: Well-Conditioned Problems

Preconditioner fp16-�� (0)
Identifier A4B8=8C A4B 5 8=0; ==I (!) 8>DC4A C>C8CB =<>3

HB/bcsstk27 4.19 × 10−4 2.02 × 10−14 2.87 × 104 3 35 0
Nasa/nasa2146 3.26 × 10−4 3.82 × 10−15 3.72 × 104 3 24 0
Cylshell/s1rmq4m1 1.49 × 10−4 2.16 × 10−14 1.15 × 105 3 210 0
MathWorks/Kuu 3.27 × 10−3 1.38 × 10−14 1.43 × 105 3 274 4
Pothen/bodyy6 1.71 × 10−4 1.58 × 10−16 7.03 × 104 4 178 2
GHS_psdef/wathen120 1.09 × 10−2 1.09 × 10−13 3.01 × 105 3 17 0
GHS_psdef/jnlbrng1 9.98 × 10−3 1.18 × 10−14 1.20 × 105 3 40 0
Williams/cant 4.62 × 10−3 2.81 × 10−8 1.46 × 106 2 >1,000 9
UTEP/Dubcova2 5.55 × 10−3 1.86 × 10−13 4.19 × 105 3 225 0
Cunningham/qa8fm 3.59 × 10−3 3.52 × 10−16 8.63 × 105 4 14 0
Mulvey/finan512 2.88 × 10−3 1.25 × 10−14 3.36 × 105 3 14 0
GHS_psdef/apache1 3.61 × 10−4 2.54 × 10−14 3.11 × 105 2 274 0
Williams/consph 8.59 × 10−5 1.62 × 10−14 3.05 × 106 3 435 7
AMD/G2_circuit 7.75 × 10−4 9.01 × 10−16 4.38 × 105 4 842 0

Preconditioner fp64-�� (0)
Identifier A4B8=8C A4B 5 8=0; ==I (!) 8>DC4A C>C8CB =<>3

HB/bcsstk27 4.31 × 10−4 2.42 × 10−14 2.87 × 104 3 35 0
Nasa/nasa2146 3.06 × 10−4 4.74 × 10−15 3.72 × 104 3 24 0
Cylshell/s1rmq4m1 1.61 × 10−4 1.57 × 10−14 1.43 × 105 3 176 0
MathWorks/Kuu 9.47 × 10−4 2.47 × 10−14 1.74 × 105 3 130 0
Pothen/bodyy6 8.68 × 10−5 1.40 × 10−16 7.71 × 104 4 138 0
GHS_psdef/wathen120 1.09 × 10−2 1.10 × 10−13 3.01 × 105 3 17 0
GHS_psdef/jnlbrng1 9.96 × 10−3 1.05 × 10−14 1.20 × 105 3 40 0
Williams/cant 2.63 × 10−3 4.82 × 10−8 2.03 × 106 2 >1,000 8
UTEP/Dubcova2 5.36 × 10−3 1.40 × 10−13 5.48 × 105 3 227 0
Cunningham/qa8fm 3.57 × 10−3 1.23 × 10−16 8.63 × 105 4 14 0
Mulvey/finan512 2.92 × 10−3 4.18 × 10−14 3.36 × 105 3 14 0
GHS_psdef/apache1 3.63 × 10−4 1.81 × 10−14 3.11 × 105 2 244 0
Williams/consph 8.26 × 10−5 2.46 × 10−14 3.05 × 106 3 440 7
AMD/G2_circuit 5.44 × 10−4 6.55 × 10−16 4.38 × 105 4 855 0

A4B8=C and A4B 5 8=0; are the initial and final scaled residuals. ==I (!) is the number of entries in the �� (0) factor.
8>DC4A and C>C8CB denote the number of outer iterations and the total number of CG iterations, respectively >1,000
indicates CG tolerance not reached on outer iteration 8>DC4A . =<>3 denotes the number of times problem B1
occurs during the factorization. A count in bold indicates the fp16 result is within 10% of (or is better than) the
corresponding fp64 result.

some of the ill-conditioned problems (including Boeing/msc01050 and DNVS/shipsec8), ==I (!) is
much smaller for fp16 than for fp64.
From the tables we see that, for well-conditioned problems, using fp16 arithmetic to compute

the �� (0) factorization is often as good as using fp64 arithmetic. For problem Williams/cant, on
the second outer iteration, the CG method fails to converge within 1,000 iterations for both the
fp16 and the fp64 preconditioners. => 5 ; is omitted from Tables 5 and 6 because it was 0 for all
our test examples. However, for many problems (particularly the ill-conditioned ones), =<>3 > 0
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Table 6. Results for IC-CG-IR and IC-GMRES-IR Using an �� (0) Preconditioner:
Ill-Conditioned Problems

Preconditioner fp16-�� (0)
Identifier A4B8=8C A4B 5 8=0; ==I(!) 8>DC4A C>C8CB =<>3

Boeing/msc01050 1.45 × 10−5 1.20 × 10−13 9.49 × 103 3 (3) 572 (333) 7
HB/bcsstk11 5.37 × 10−4 1.66 × 10−13 1.52 × 104 3 (3) 914 (644) 5
HB/bcsstk26 6.70 × 10−4 1.18 × 10−16 1.33 × 104 4 (4) 488 (422) 2
HB/bcsstk24 4.50 × 10−5 1.41 × 10−12 7.97 × 104 3 (3) >1,000 (834) 3
HB/bcsstk16 3.36 × 10−3 3.50 × 10−14 1.27 × 105 3 (3) 88 (80) 4
Cylshell/s2rmt3m1 1.41 × 10−4 9.88 × 10−15 1.02 × 105 3 (3) 347 (473) 0
Cylshell/s3rmt3m1 1.13 × 10−5 1.64 × 10−14 1.02 × 105 3 (3) >1,000 (>1,000) 3
Boeing/bcsstk38 3.27 × 10−2 1.58 × 10−10 1.63 × 105 3 (3) >1,000 (>1,000) 8
Boeing/msc10848 5.46 × 10−6 1.96 × 10−14 6.18 × 105 3 (3) >1,000 (622) 2
Oberwolfach/t2dah_e 4.87 × 10−2 5.61 × 10−9a 9.38 × 104 1 (4) 15 (34) 0
Boeing/ct20stif 3.82 × 10−3 1.83 × 10−9 1.30 × 106 3 (3) >1,000 (>1,000) 7
DNVS/shipsec8 2.31 × 10−3 2.40 × 10−9 1.53 × 106 3 (3) >1,000 (>1,000) 8
Um/2cubes_sphere 1.88 × 10−2 1.77 × 10−14 8.74 × 105 3 (3) 13 (11) 0
GHS_psdef/hood 1.93 × 10−3 5.01 × 10−17 5.06 × 106 4 (3) 620 (346) 2
Um/offshore 1.49 × 10−2 2.88 × 10−16 2.25 × 106 4 (3) 602 (101) 0

Preconditioner fp64-�� (0)
Identifier A4B8=8C A4B 5 8=0; ==I(!) 8>DC4A C>C8CB =<>3

Boeing/msc01050 6.03 × 10−3 3.11 × 10−14 1.51 × 104 3 (3) 555 (485) 8
HB/bcsstk11 7.49 × 10−4 7.44 × 10−14 1.79 × 104 3 (3) 902 (475) 4
HB/bcsstk26 1.59 × 10−3 2.37 × 10−16 1.61 × 104 4 (4) 592 (504) 4
HB/bcsstk24 4.59 × 10−5 1.11 × 10−13 8.17 × 104 3 (3) >1,000 (812) 3
HB/bcsstk16 2.76 × 10−3 2.66 × 10−14 1.48 × 105 3 (3) 68 (66) 0
Cylshell/s2rmt3m1 1.45 × 10−4 1.10 × 10−14 1.13 × 105 3 (3) 314 (455) 0
Cylshell/s3rmt3m1 1.14 × 10−5 7.88 × 10−15 1.13 × 105 3 (3) 584 (719) 0
Boeing/bcsstk38 1.21 × 10−2 1.69 × 10−13 1.82 × 105 3 (3) >1,000 (>1,000) 7
Boeing/msc10848 1.07 × 10−5 1.38 × 10−15 6.20 × 105 3 (3) >1,000 (760) 3
Oberwolfach/t2dah_e 4.86 × 10−2 1.52 × 10−16a 9.38 × 104 1 (4) 15 (34) 0
Boeing/ct20stif 3.65 × 10−3 3.20 × 10−12 1.38 × 106 3 (3) >1,000 (>1,000) 7
DNVS/shipsec8 2.75 × 10−4 6.00 × 10−13 3.38 × 106 3 (3) >1,000 (>1,000) 4
Um/2cubes_sphere 1.89 × 10−2 2.55 × 10−14 8.74 × 105 3 (3) 13 (11) 0
GHS_psdef/hood 9.82 × 10−4 1.73 × 10−13 5.49 × 106 3 (3) 546 (377) 2
Um/offshore 1.51 × 10−2 1.92 × 10−13 2.25 × 106 4 (3) 590 (100) 0

A4B8=C is the initial scaled residual; A4B 5 8=0; is the final IC-CG-IR scaled residual. ==I (!) is the number of entries in
the �� (0) factor. 8>DC4A and C>C8CB denote the number of outer iterations and the total number of CG iterations with
the GMRES statistics in parentheses. >1,000 indicates CG (or GMRES) tolerance not reached on outer iteration 8>DC4A .
=<>3 denotes the number of times problem B1 occurs during the factorization. A count in bold indicates the fp16 result
is within 10% of (or is better than) the corresponding fp64 result.
aDenotes early termination of CG.

for both half precision and double precision and this can lead to a poor quality preconditioner,
indicated by high iteration counts, with the limit of 1,000 iterations being exceeded on the third
outer iteration for a number of test examples (such as Boeing/bcsstk38 and Boeing/msc10848).
Although the requested accuracy is not achieved, there are still significant reductions in the initial

ACM Transactions on Mathematical Software, Vol. 50, No. 2, Article 9. Publication date: June 2024.



Avoiding Breakdown in Incomplete Factorizations in Low Precision Arithmetic 9:19

Table 7. Results for IC-GMRES (Without Outer Steps) and IC-GMRES-IR Using the
fp16-�� (0) Preconditioner: Ill-Conditioned Problems

Identifier A4B 5 8=0; C>C8CB <0G10B8B

Boeing/msc01050 7.68 × 10−16 439 (333) 162
HB/bcsstk11 1.28 × 10−14 602 (644) 510
HB/bcsstk26 3.21 × 10−14 273 (422) 148
HB/bcsstk24 1.00 × 10−14 755 (834) 695
HB/bcsstk16 2.05 × 10−15 61 (80) 29
Cylshell/s2rmt3m1 1.66 × 10−15 262 (473) 223
Cylshell/s3rmt3m1 2.71 × 10−15 841 (>1,000) 739
Boeing/bcsstk38 4.01 × 10−13 >2,000 (>1,000) >1,000
Boeing/msc10848 4.36 × 10−16 491 (622) 474
Oberwolfach/t2dah_e 2.35 × 10−16 54 (34) 11
Boeing/ct20stif 1.71 × 10−12 >2,000 (>1,000) >1,000
DNVS/shipsec8 1.52 × 10−12 >2,000 (>1,000) >1,000
Um/2cubes_sphere 1.63 × 10−16 26 (11) 4
GHS_psdef/hood 2.13 × 10−14 365 (346) 189
Um/offshore 3.32 × 10−13 >2,000 (101) 92

A4B 5 8=0; is the final scaled residual. C>C8CB denotes the number of GMRES iterations, with the
counts for IC-GMRES-IR in parentheses. >2,000 indicates convergence is not achieved within 2,000
iterations. >1,000 indicates GMRES tolerance not reached on an outer iteration.<0G10B8B is the
maximum number of GMRES iterations performed on an outer iteration of IC-GMRES-IR.

residual, so the preconditioners may be acceptable if less accuracy is required. Nevertheless, the
fp16 performance is often competitive with that of fp64. For problem Oberwolfach/t2dah_e, the
CG algorithm terminates before the requested accuracy has been achieved; this is because the
curvature encountered within the CG algorithm is found to be too small, triggering an error return.
We have also tested IC-GMRES-IR with the �� (0) preconditioners. For the well-conditioned

problems, the iteration counts using GMRES are similar to those for CG. For the ill-conditioned
examples, the IC-GMRES-IR counts are given in parentheses in the 8>DC4A and C>C8CB columns of
Table 6. Our findings are broadly consistent with those reported in [24]. Although IC-GMRES-IR
can require fewer iterations than IC-CG-IR, it is important to remember that a GMRES iteration is
more expensive than a CG iteration, so simply comparing counts may be misleading.

In Table 7, we give results for 8C<0G = 1, that is, preconditioned GMRES is not applied within a
refinement loop (we denote this by IC-GMRES). The initial residual, the number of entries in the
factor, and the number of occurrences of problem B1 are as in Table 6 and so are not included. We
also report the maximum number<0G10B8B of GMRES iterations performed on an outer iteration
of IC-GMRES-IR using the same fp16-�� (0) preconditioner. We see that the total iteration count
for IC-GMRES-IR can exceed the count for IC-GMRES but, for many of the problems (including
Boeing/msc01050, HB/bcsstk26, and Oberwolfach/t2dah_e), the maximum size of the constructed
Krylov basis is smaller for IC-GMRES-IR than for IC-GMRES. Another option would be to use
restarted GMRES, which would involve selecting an appropriate restart parameter. We do not
consider this here.

4.4 Results for �� (ℓ)
Figure 1 illustrates the influence of the number of levels ℓ in the �� (ℓ) preconditioner computed
in half precision and double precision. Typically, ℓ is chosen to be small (large values lead to
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Fig. 1. IC-CG-IR total iteration counts for the fp16+�� (ℓ) preconditioner (dashed line) and fp64+�� (ℓ)
preconditioner (solid line) with ; ranging from 1 to 9 for problems UTEP/Dubcova2 (left) and Cylshell/s2rmt3m1
(right).

slow computation times and loss of sparsity in !) although there are cases where larger ℓ may be
employed [28]. In general, it is hoped that as ℓ increases, the additional fill-in in ! will result in a
better preconditioner (but there is no guarantee of this). We observe that for the well-conditioned
problem UTEP/Dubcova2, the half precision and double precision preconditioners generally behave
in a similar way (with the fp16 preconditioner having a higher iteration count for ℓ = 4 and 5). As
ℓ increases from 1 to 9, the number of entries in the incomplete factor increases from 1.76 × 106
to 3.65 × 107. For the ill-conditioned problem Cylshell/s2rmt3m1, the corresponding increase is
from 1.43 × 105 to 5.58 × 105. In this case, the iteration count for fp64+�� (ℓ) steadily decreases as ℓ
increases but for fp16+�� (ℓ) the decrease is much less and it stagnates for ℓ > 4. In the rest of this
section, we use ℓ = 3.

Tables 8 and 9 present results for IC-CG-IRwith the fp16-�� (3) and fp64-�� (3) preconditioners for
the well-conditioned and ill-conditioned test sets, respectively. The latter also reports total iteration
counts for IC-GMRES-IR (the number of outer iterations 8>DC4A for IC-GMRES-IR and IC-CG-IR are
the same for all the test examples). B3 breakdowns occur for a small number of the ill-conditioned
problems. We see that, for our examples, the number of entries in ! is (approximately) the same
for both fp16 and fp64 arithmetic, indicating that (in contrast to �� (0)) the number of subnormal
numbers is small. fp16-�� (3) performs as well as fp64-�� (3) on most of the well-conditioned
problems. Note that for problemWilliams/consph the required accuracy was not achieved using fp64
on the first outer iteration. For the ill-conditioned problems, while the fp16-�� (3) preconditioner
combined with IC-CG-IR and IC-GMRES-IR is able to return a computed solution with a small
residual, for the problems for which B1 and/or B3 are detected in fp16 arithmetic the iteration counts
are significantly greater than for the fp64-�� (3) preconditioner (see, for instance, Boeing/msc01050
and HB/bcsstk11). This is because the use of shifts to prevent breakdowns means the computed
factors are for a shifted matrix. However, for a small number of problems the computation of the
fp64-�� (3) preconditioner fails because the computed factor has very large entries, which do not
overflow in double precision but make it useless as a preconditioner. This indicates that it is not
just in half precision arithmetic that it is necessary to monitor the possibility of growth occurring
in the factor entries, something that is not currently considered when computing IC factorizations
in double (or single) precision arithmetic.
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Table 8. Results for IC-CG-IR Using an �� (3) Preconditioner: Well-Conditioned Problems

Preconditioner fp16-�� (3)
Identifier A4B8=8C A4B 5 8=0; ==I (!) 8>DC4A C>C8CB =<>3

HB/bcsstk27 8.27 × 10−5 1.23 × 10−15 4.88 × 104 3 11 0
Nasa/nasa2146 9.07 × 10−5 7.41 × 10−15 7.89 × 104 3 11 0
Cylshell/s1rmq4m1 5.81 × 10−5 1.05 × 10−14 3.15 × 105 3 47 0
MathWorks/Kuu 1.74 × 10−4 8.21 × 10−15 7.65 × 105 3 33 0
Pothen/bodyy6 7.39 × 10−3 1.40 × 10−16 1.76 × 105 4 108 2
GHS_psdef/wathen120 4.34 × 10−4 6.69 × 10−16 8.30 × 105 3 6 0
GHS_psdef/jnlbrng1 1.41 × 10−3 5.10 × 10−15 2.77 × 105 3 12 0
Williams/cant 3.28 × 10−4 3.74 × 10−15 9.95 × 106 3 1,103 0
UTEP/Dubcova2 1.54 × 10−3 1.88 × 10−13 6.22 × 106 3 54 0
Cunningham/qa8fm 3.54 × 10−4 1.04 × 10−16 5.14 × 106 3 6 0
Mulvey/finan512 3.50 × 10−4 4.97 × 10−17 4.08 × 106 3 6 0
GHS_psdef/apache1 8.51 × 10−5 3.65 × 10−14 1.54 × 106 2 116 0
Williams/consph 1.04 × 10−4 1.57 × 10−14 2.02 × 107 3 160 0
AMD/G2_circuit 8.15 × 10−4 3.28 × 10−16 1.04 × 106 4 282 0

Preconditioner fp64-�� (3)
Identifier A4B8=8C A4B 5 8=0; ==I (!) 8>DC4A C>C8CB

HB/bcsstk27 3.93 × 10−5 3.13 × 10−16 4.88 × 104 3 8
Nasa/nasa2146 4.32 × 10−5 8.80 × 10−16 7.89 × 104 3 11
Cylshell/s1rmq4m1 3.55 × 10−5 1.66 × 10−15 3.15 × 105 3 56
MathWorks/Kuu 2.50 × 10−4 2.25 × 10−15 7.65 × 105 3 30
Pothen/bodyy6 9.31 × 10−3 1.40 × 10−16 1.76 × 105 4 63
GHS_psdef/wathen120 1.77 × 10−4 9.56 × 10−17 8.30 × 105 3 6
GHS_psdef/jnlbrng1 9.40 × 10−4 3.22 × 10−16 2.77 × 105 3 12
Williams/cant 3.19 × 10−4 6.09 × 10−15 9.95 × 106 3 927
UTEP/Dubcova2 1.65 × 10−3 1.84 × 10−13 6.22 × 106 3 55
Cunningham/qa8fm 3.29 × 10−5 1.24 × 10−16 5.14 × 106 3 5
Mulvey/finan512 3.72 × 10−5 6.63 × 10−17 4.08 × 106 3 6
GHS_psdef/apache1 8.28 × 10−5 4.12 × 10−14 1.54 × 106 2 120
Williams/consph 3.39 × 10−4 6.07 × 10−3 2.02 × 107 1 >1,000
AMD/G2_circuit 8.42 × 10−5 2.46 × 10−16 1.04 × 106 4 273

A4B8=C and A4B 5 8=0; are the initial and final scaled residuals. ==I (!) is the number of entries in the �� (3) factor. 8>DC4A
and C>C8CB denote the number of outer iterations and the total number of CG iterations, respectively. >1,000 indicates
CG tolerance not reached on outer iteration 8>DC4A . =<>3 denotes the number of times problem B1 occurs during the
factorization (for fp64-�� (3) it is equal to 0 for all our test cases and is omitted). A count in bold indicates the fp16 result
is within 10% of (or is better than) the corresponding fp64 result.

Note that, because the ! factor computed using fp16 arithmetic is less accurate than that computed
using fp64 arithmetic, the initial residual scaled A4B8=C given by Equation (1) with G = !−)!−1 is
typically larger for fp16 than for fp64 arithmetic. However, if double precision accuracy in the
computed solution is not required, performing refinement may be unnecessary (or a small number
of steps may be sufficient), even for fp16 incomplete factors.
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Table 9. Results for IC-CG-IR and IC-GMRES-IR Using an �� (3) Preconditioner: Ill-Conditioned Problems

Preconditioner fp16-�� (3)
Identifier A4B8=8C A4B 5 8=0; ==I(!) 8>DC4A C>C8CB =<>3 => 5 ;

Boeing/msc01050 1.61 × 10−3 6.47 × 10−14 3.74 × 104 3 125 (64) 2 0
HB/bcsstk11 5.84 × 10−4 1.89 × 10−13 4.18 × 104 3 265 (184) 0 2
HB/bcsstk26 6.42 × 10−5 1.51 × 10−13 3.43 × 104 3 80 (70) 2 0
HB/bcsstk24 5.91 × 10−7 1.77 × 10−13 2.27 × 105 3 437 (260) 0 2
HB/bcsstk16 6.16 × 10−4 6.64 × 10−15 4.89 × 105 3 17 (17) 0 0
Cylshell/s2rmt3m1 9.24 × 10−6 4.11 × 10−15 2.60 × 105 3 83 (117) 0 0
Cylshell/s3rmt3m1 1.72 × 10−6 9.01 × 10−15 2.60 × 105 3 386 (504) 1 1
Boeing/bcsstk38 1.07 × 10−3 1.43 × 10−15 5.64 × 105 4 1,004 (282) 2 0
Boeing/msc10848 5.97 × 10−7 1.13 × 10−14 2.51 × 106 3 138 (89) 0 0
Oberwolfach/t2dah_e 6.81 × 10−4 1.88 × 10−16 3.29 × 105 3 6 (6) 0 0
Boeing/ct20stif 2.78 × 10−5 1.63 × 10−9 6.70 × 106 3 >1,000 (>1,000) 2 0
DNVS/shipsec8 5.56 × 10−6 1.26 × 10−16 1.22 × 107 4 2,067 (1,399) 2 0
Um/2cubes_sphere 1.02 × 10−3 1.63 × 10−16 8.70 × 106 3 6 (6) 0 0
GHS_psdef/hood 6.80 × 10−4 5.01 × 10−17 2.78 × 107 4 444 (406) 0 4
Um/offshore 1.53 × 10−3 1.38 × 10−13 2.08 × 107 3 103 (40) 0 4

Preconditioner fp64-�� (3)
Identifier A4B8=8C A4B 5 8=0; ==I(!) 8>DC4A C>C8CB

Boeing/msc01050 1.41 × 10−4 5.80 × 10−14 3.74 × 104 3 38 (25)
HB/bcsstk11 1.48 × 10−5 6.96 × 10−14 4.18 × 104 3 29 (29)
HB/bcsstk26 9.24 × 10−5 1.68 × 10−13 3.43 × 104 3 60 (62)
HB/bcsstk24 4.01 × 10−7 1.01 × 10−13 2.27 × 105 3 71 (67)
HB/bcsstk16 7.01 × 10−4 3.13 × 10−15 4.89 × 105 3 15 (14)
Cylshell/s2rmt3m1 8.61 × 10−6 8.74 × 10−15 2.60 × 105 3 71 (105)
Cylshell/s3rmt3m1 2.00 × 10−6 6.12 × 10−5 2.60 × 105 1 >1,000 (>1,000)
Boeing/bcsstk38 4.67 × 10−9 8.34 × 10−14 5.64 × 105 3 154 115)
Boeing/msc10848 8.73 × 10−10 2.26 × 10−16 2.51 × 106 3 47 (46)
Oberwolfach/t2dah_e 5.49 × 10−6 6.54 × 10−16 3.29 × 105 3 5 (5)
Boeing/ct20stif 5.82 × 10−8 2.02 × 10−11 6.70 × 106 3 >1,000 (>1,000)
DNVS/shipsec8 7.50 × 10−7 1.11 × 10−16 1.22 × 107 4 313 (181)
Um/2cubes_sphere 2.25 × 10−5 1.63 × 10−16 8.70 × 106 3 5 (5)
GHS_psdef/hood a a a a a a

Um/offshore a a a a a a

A4B8=C is the initial scaled residual; A4B 5 8=0; is the final IC-CG-IR scaled residual. ==I (!) is the number of entries in
the �� (3) factor. 8>DC4A and C>C8CB denote the number of outer iterations and the total number of CG iterations with
the GMRES statistics in parentheses. >1,000 indicates CG (or GMRES) tolerance not reached on outer iteration 8>DC4A .
=<>3 and =>5 ; denote the numbers of times problems B1 and �3 occur during the factorization (for fp64-�� (3) they are
equal to 0 for all our test cases and are omitted). A count in bold indicates the fp16 result is within 10% (or better) of the
corresponding fp64 result.
aIndicates failure to compute the factorization because of enormous growth in its entries.

5 Concluding Remarks and Future Directions
The focus of this study is the construction and employment of incomplete factorizations using
half precision arithmetic to solve large-scale sparse linear systems to double precision accuracy.
Our experiments, which simulate half precision arithmetic through the use of the NAG compiler,
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demonstrate that, when carefully implemented, the use of fp16 level-based incomplete factorization
preconditioners may not impact on the overall accuracy of the computed solution, even when a
small tolerance is imposed on the requested scaled residual. Unsurprisingly, the number of iterations
of the Krylov subspace method that is used in the refinement process can be greater for fp16 factors
compared to fp64 factors, but generally this increase is only significant for highly ill-conditioned
systems. Our results support the view that, for many real-world problems, it is sufficient to employ
half precision arithmetic. Its use may be particularly advantageous if the linear system does not
need to be solved to high accuracy. Our study also encourages us to conjecture that by building safe
operations into sparse direct solvers, it should be possible to build efficient and robust half precision
variants, and because this would lead to substantial memory savings for the matrix factors, it could
potentially allow direct solvers to be used (in combination with an appropriate refinement process)
to solve much larger problems than is currently possible. This is a future direction that is becoming
more feasible to explore as compiler support for fp16 arithmetic improves and becomes available
on more platforms and for more languages.
It is of interest to consider other Krylov solvers such as flexible CG and flexible GMRES and to

explore other classes of algebraic preconditioners to consider how they can be safely computed
using fp16 arithmetic and how effective they are compared to higher precision versions. For SPAI
preconditioners, we anticipate that it may be possible to combine the systematic dropping of
subnormal quantities with avoiding overflows in local linear solves as we have discussed without
significantly affecting the preconditioner quality because such changes may only influence a small
number of the computed columns of the SPAI preconditioner (see also [16] for a recent analysis of
SPAI preconditioners in mixed precision). For other approximate inverses, such as AINV [9] and
AIB [45], the sizes of the diagonal entries follow from maintaining a generalized orthogonalization
property and avoiding overflows using local or global modifications may be possible but challenging.
We also plan to consider the construction of the HSL_MI28 [47] IC preconditioner using low precision
arithmetic. HSL_MI28 uses an extended memory approach for the robust construction of the factors.
Once the factors have been computed, the extended memory can be freed, limiting the size of the
factors and the work needed in the substitution steps, generally without a significant reduction in
the preconditioner quality. A challenge here is safely allowing intermediate quantities of absolute
value at least G<8= to be retained in the factors or in the extended memory.
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