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Abstract  

 

The warmings associated with Dansgaard-Oeschger cycles (D-Os) during the last glacial were as fast as and 

of a similar magnitude to expected warming over the 21st century. Identifying these warmings in pollen 

records objectively may assist understanding of current and future climate change impacts. Identification of 

D-Os by age alone is hampered by dating uncertainties in both Greenland and pollen core age-depth 

models, so additional methods of identification are sought. Several statistical techniques applied directly to 

pollen series from the circum-Mediterranean area do not show D-Os clearly and consistently. An 

alternative approach using quantitative climate reconstructions made using WA-PLS and fxTWA-PLS is 

explored. First, the robustness of these methods is evaluated. A training set should sample a climate space 

which includes the target climate as comprehensively as possible. Actual distributions of taxon abundances 

along climate gradients often differ from the symmetrical unimodal shape assumed by WA-PLS and fxTWA-

PLS, so many taxa are unsuited to a mean-based method, and many are weakly evidenced or even 

misleading. Calibrations made including and excluding such suspect taxa are indistinguishable, yet provide 

different reconstructions. Large differences between the balance of abundances in the training set and a 

fossil core lead to poorly evidenced reconstructions. A proposed alternative reconstruction method avoids 

a problem identified in WA-PLS (but fxTWA-PLS is unaffected). Potential D-Os are found in reconstructions 

by their similarity to the signature asymmetrical shape of D-Os warmings in Greenland (‘pattern 

matching’). By combining the age uncertainties of the Greenland GIs and of the core age models, updated 

to IntCal20, many younger candidate D-Os can be assigned with high plausibility to specific GIs, and some 

rejected. Many older candidates are highly plausibly D-Os, being similar in number to the expected GIs, but 

cannot be firmly assigned. 
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1 Introduction  

This thesis examines ways of identifying Dansgaard-Oeschger cycles in glacial pollen records extracted from 

lacustrine cores from the circum-Mediterranean region. 

1.1 Why this is important  

The impact of current climate change on vegetation has raised concerns that some terrestrial species may 

suffer extinctions. This is strongly expressed in the Climate Change 2014 Synthesis Report (Pachauri, Mayer 

and Intergovernmental Panel on Climate Change, 2015) Figure 2.5a, where even with a future rate of 

change in temperature as low as < 0.01 oC yr-1 , which is less than that assumed in RCP2.6, the comment is 

made “Most trees and herbs can’t keep up” (Fig 2.5, p 66). The rate of temperature change translates to a 

rate of poleward movement of isotherms, and the assumption made is that plants cannot migrate fast 

enough in response to avoid extinctions.  

 

The IPCC comment is made plausible because there is no example in the instrumental or historical record 

of the impact on vegetation of a warming event of the scale and speed of current and projected climate 

change. Observations of current geospatial climate change and apparent changes in vegetation ranges 

cover only a few decades. Furthermore, climate velocity - the rate and direction of movement of constant 

temperature zones - is not a straightforward measure: the chosen spatial scale strongly influences its 

magnitude and direction, because of the influence of local topography, so studies can differ widely in the 

climate velocity given and their interpretations of its causal relationship with vegetation ranges (Loarie et 

al., 2009; Dobrowski et al., 2013; Dobrowski and Parks, 2016; Brito-Morales et al., 2018; Burrows and 

Schoeman, no date). 

 

During the glacial period, however, multiple rapid warmings occurred, and the response of vegetation to 

these warmings can improve the understanding of likely future vegetation behaviour. While these 

repeated events, associated with Dansgaard-Oeschger cycles (D-Os), were not caused by CO2 increase as is 
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current warming, and started from a much colder base, they were of similar amplitude and speed to 

current and projected warming. They are evidenced in the Greenland ice cores (e.g. Rasmussen et al., 

2014) but also at many other sites and in many materials. There are multiple examples in glacial pollen 

records of repeated alternations between cold-climate vegetation such as grasslands and more forested 

warm-climate landscapes during the last glacial period, and these are usually considered to be responses 

to D-Os (e.g. Fletcher et al., 2010). This behaviour suggests that under climate change plants are migrating 

repeatedly to suitable environments, not suffering wholesale extinction. There is only one known 

extinction of a tree in the Late Quaternary – Picea critchfieldii  (Jackson and Weng, 1999) – and that 

occurred during the deglaciation. 

 

Evidently during the glacial period processes were operating that are not captured in the modern 

observations which lead to the IPCC comment. Long distance transport mechanisms must exist to account 

for observed rates of range expansion in the past, for instance carriage by birds as food, in their guts or on 

their surfaces, or by water. This conclusion is described in Reid’s paradox, which originated in the 

realisation that the rate of northward spread of oak trees at the end of the last glacial in Britain was far in 

excess of that which can reasonably be explained by the extension of the range by seed fall and local 

transport at the forest edge (Reid, 1899; Clark et al., 1998).  

 

The terrestrial evidence of changes in the glacial period can be interpreted qualitatively, for instance using 

pollen to describe changes in vegetation and the implied climate changes, and this is the most frequent 

style of description associated with a pollen core (e.g. Beaulieu and Reille, 1984; de Beaulieu, J.-L. and 

Reille, M.:, 1992; Pèrez-Obiol and Julià, 1994; Magri, 1999; Tzedakis, Hooghiemstra and Pälike, 2006; 

Djamali et al., 2008; Margari et al., 2009; Di Rita, Anzidei and Magri, 2013; Fletcher et al., 2010). Terrestrial 

pollen can also be used to create quantitative reconstructions, providing time series of numerical climate 

values, but this is rarer (e.g. Allen and Huntley, 2009; Wei et al., 2019). 
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1.2 Characteristics of Dansgaard-Oeschger events 

Dansgaard-Oeschger (D-O) events are abrupt large-magnitude warmings registered in Greenland ice cores 

(Dansgaard et al, 1993; Huber et al., 2006; Steffensen et al., 2008; Rasmussen et al., 2014) that occurred 

multiple times during the last glacial period (115 ka to 11.7 ka) and probably in previous glacials (Rousseau 

et al., 2020).   

As evidenced in the Greenland ice cores, during D-O events a cold period is ended by a phase of rapid 

warming over an interval of 10-200 years which varies in magnitude from 6 to 15 oC (Huber et al., 2006; 

Kindler et al., 2014a; Rasmussen et al., 2014). This is followed by a period of decline in temperature, 

varying in duration from a few to many centuries, often ending with a sharper decline to a new cold state 

which then shows little variation over time. Warm periods are referred to interstadials (Greenland 

Interstadials, GIs) and cold periods as Greenland stadials (GSs). In addition to warmer conditions, 

interstadials are characterised by an increase in snow accumulation rate in Greenland, implying locally 

greater precipitation, and a reduction by orders of magnitude in the dust flux to the ice surface, implying 

lower wind speeds and/or a change in the atmospheric circulation.  

The mechanism which triggers the abrupt warming at the beginning of a D-O and controls the progress of 

the interstadial is the subject of active research. Climate models have not to date succeeded consistently in 

replicating D-Os (Malmierca-Vallet et al., 2023).  

D-O events relate to changes in the transport to the North Atlantic of heat in the ocean and transferred 

from the ocean to the atmosphere. An index of this is the change in the strength and poleward extent of 

the Atlantic Meridional Overturning Circulation (AMOC). The salty surface branch of the AMOC extends to 

the north of the Greenland-Scotland ridge today, and having given up its heat to the atmosphere sinks 

there owing to its density to form North Atlantic Deep Water (NADW); this sinking is often interpreted as a 

driver of the AMOC (Broecker, 1992). 

One explanation for abrupt warmings is as follows. During stadials, extensive sea-ice cover in the North 

Atlantic suppresses the release of heat and moisture from the ocean to the atmosphere, and the formation 
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of NADW; the AMOC is unable to transport heat very far into the North Atlantic (Broecker, 1992; 

Rahmstorf, 2002). The cause of the rapid warming event is a sudden reduction in sea-ice cover when a 

slow build-up of underlying warm surface water reaches the point it can melt the ice, causing a rapid 

release of heat and moisture to the atmosphere and the strengthening and poleward extension of the 

AMOC (Gildor and Tziperman, 2003; Dokken et al., 2013; Lynch-Stieglitz, 2017; Sime, Hopcroft and Rhodes, 

2019; Malmierca-Vallet et al., 2023).  

This is only one possible explanation; many different mechanisms affecting the AMOC have been invoked, 

including sea-ice fluctuations linked to ice-shelf growth and decay (Alley, Anandakrishnan and Jung, 2001; 

Petersen, Schrag and Clark, 2013; Boers, Ghil and Rousseau, 2018), shifts in atmospheric circulation 

associated with changes in the northern hemisphere ice sheets (Banderas et al., 2015; Seager and Battisti, 

2007) or changes in tropical climate modes (Clement, Cane and Seager, 2001; Seager and Battisti, 2007). 

D-O events are registered strongly in the North Atlantic both in ice cores and marine sediment cores, but 

their effects are transmitted globally (Leuschner and Sirocko, 2000; Voelker, 2002; Harrison and Sánchez 

Goñi, 2010; Corrick et al., 2020), and are clear in well-dated speleothem records in, for instance, China (e.g. 

Wang et al., 2001). Vegetation records suggest that they are expressed through temperature changes in 

the extratropics and changes in moisture in the tropics (Harrison and Sánchez Goñi, 2010).  

D-O events have been identified at many sites in the Mediterranean region, including from speleothem 

isotopic records (Corrick et al., 2020), marine (Sánchez Goñi et al., 2018) and terrestrial (Fletcher et al., 

2010) pollen records. 

1.3 Palaeoclimate archives which include D-O events 

Many natural archives and materials have been interpreted as evidence of past climate. The most 

significant for the purposes of this thesis are the Greenland ice cores, because they provide the most 

complete record of D-O cycles, and pollen, as the source of terrestrial information. Other major archives 

are briefly surveyed first. 
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1.3.1 Other archives 

Oxygen stable isotopes incorporated in the CaCO3 of foraminifera in marine cores demonstrate 

glacial/interglacial, orbital scale, and sometimes finer-resolution changes in the volume of the oceans, and 

hence of ice on land, and provide evidence of benthic and sea surface temperatures (Emiliani, 1955; 

Shackleton, 1987; Lisiecki and Raymo, 2005). 

Loess sequences in China and Europe exhibit glacial/interglacial and DO cycles by the alternation of loess 

and palaeosol horizons, in which palaeosols represent warm intervals with sufficiently abundant 

vegetation to permit the development of soils (e.g. Antoine et al., 2016; Tang, Du and Liu, 2017; Rousseau 

et al., 2020).  

Speleothems are calcium carbonate deposits in caves. Examples from across the world show changes in the 

oxygen stable isotope ratio (δ18Ocalc) in CaCO3 which clearly represent responses to the same climate 

changes as Greenland events, within dating error (Wang et al., 2001; Genty et al., 2005). Variations in 

δ18Ocalc denote changes in climate, principally temperature and precipitation. Partitioning the signal 

between the two is challenging, since many other factors than the isotopic content of meteoric water 

affect the result, such as the conditions in the ground through which the water has passed and the 

temperature in the cave (McDermott, 2004). Speleothems are often discontinuously deposited, and 

deposition may cease in cold conditions such as GSs. They typically contain uranium, so uranium-series 

disequilibrium radiometric dating is often available, which is more precise than 14C, and has a useful age 

range to ~ 500 ka (Bradley, 2015). 

 

1.3.2 Ice archives 

Ice cores reaching back over 100 ka have been recovered from Greenland and reaching much further back 

from Antarctica. These provide evidence of past temperatures and atmospheric gas composition (e.g. 

Rasmussen et al., 2014). The Greenland evidence is central to glacial climate science in the Northern 

Hemisphere. Ice sheets, where undisturbed by horizontal flow, provide a stratified record of past 
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precipitation, and variation in the oxygen stable isotope ratio of the ice (δ18Oice) principally signals changes 

in the local air temperature at the point of precipitation (Jouzel et al., 2003). Lighter δ18Oice  signifies lower 

temperature. Rayleigh distillation theory states that δ18Oice  is also influenced by the δ18O of the vapour-

source, the evaporation conditions, the moisture lost en route, and the altitude when precipitated, but 

these do not undermine the basic relationship with temperature (Bradley, 2015). 

δ18O for water is calculated as 

 δ18O = (18O/16O)sample - (18O/16O)vsmow       x 1000 

                                              (18O/16O)vsmow, 

VSMOW being Vienna Standard Mean Ocean Water. 

 

By combining borehole temperatures, which partially preserve original surface temperatures, with 

information from thermal fractionation of gas in the firn column at sudden warmings (δ15N), the oxygen 

isotope record has been translated to a more precise measure of temperature (Cuffey et al., 1994; Kindler 

et al., 2014). 

Ancient atmosphere is trapped in bubbles as snow compresses to ice, yielding information about past 

atmospheric gas concentrations. The atmospheric concentration of CO2, now ~420 ppm, was at the last 

glacial maximum (LGM) ~185 ppm (Bereiter et al., 2015) and varied during stadial/interstadial cycles by up 

to ~20 ppmv (Figure 1.1).  An understanding of changing CO2 concentrations is important both in 

demonstrating that CO2 is a follower not a driver of Northern Hemisphere stadial/interstadial cycles (e.g. 

Ahn and Brook, 2007, 2008, 2014), and also in the reconstruction of plant-available moisture (the ratio of 

actual to potential evapotranspiration) from plant evidence, since the water demands of plants vary 

inversely with atmospheric CO2 concentration (Prentice et al., 1996 and 1.4.2 below). 
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Figure 1.1 CO2 concentrations in ppmv in the Antarctic EPICA Dome C core (Bereiter et al., 2015). Red points are pre-industrial 
(1850) and current concentrations. Recent Greenland CO2 does not match the instrumental record, seemingly affected by carbonate 
dust, and is discounted. Antarctic CO2 is considered reliable (Brook, 2013) and is used to adjust plant-available moisture. Script: 
Antarctic CO2 

The Greenland ice cores contain information which can be used for dating (Seierstad et al., 2014).  Firstly, 

they show annual variations in layer thickness and geochemistry, indicating seasonal changes in 

precipitation, making layer counting possible to ~ 60 ka. Secondly, they contain many instances of 

identifiable and often datable tephra or the sulfate signature of volcanic activity, mainly Icelandic, so that 

the different cores (GISP2, GRIP, NGRIP, NEEM) can be correlated and dated. The result is the 

GICC05modelext age model (Seierstad et al., 2014) which is the most comprehensive and precise age 

model available for events in the Northern Hemisphere (Figure 1.2). Comparisons with new high-resolution 

data from NEEM and EGRIP mean that the glacial section of this age model is now considered rather more 

accurate than originally assumed (Rasmussen et al., 2023).  

A large part of the GICC05 age model was compared with speleothem U/Th dates by Adolphi et al  (2018), 

using cosmogenic nuclides found in both ice and speleothems; the two were found to be highly consistent, 

so that the dates of D-O signatures in both ice and speleothems are essentially identical. 
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Figure 1.2 Rasmussen et al (2014) Fig 1:  δ18O and dust flux records of the long Greenland ice cores GRIP, GISP2, and NGRIP, aligned by multiple match points. The close coincidence of all three 
provides great confidence in the records. δ18O is essentially a measure of temperature. Dust flux is an index of windiness and of aridity in the source regions of the dust.
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1.4 Pollen 

1.4.1 Pollen as a palaeoclimate archive 

Pollen is the most commonly used material for terrestrial climate reconstruction, and is also found in marine 

sediments. Pollen is ubiquitous and is produced in high volumes, and sporopollenin, which forms the outer casing of 

pollen grains, is robust, almost chemically inert, and has high preservation potential in anoxic conditions (Birks and 

Birks, 1980; Fægri, Kaland and Krzywinski, 1989; Moore and Webb, 1991; Smol, Last and Birks, 2001). 

 

The translation of pollen taxon abundances to climate or to vegetation cover is not straightforward (Birks and Birks, 

1980; Fægri, Kaland and Krzywinski, 1989; Moore and Webb, 1991; Smol, Last and Birks, 2001).  

 

Pollen taxonomy is morphological, that is, it is based on the shapes, sizes, aperture characteristics and surface 

sculpture of the grains (palynomorphs) (Tschudy and Scott, 1969; Moore and Webb, 1991; Punt et al., 2007). Pollen 

taxonomy is not necessarily identical with plant taxonomy; related plants typically produce morphologically highly 

similar pollen, making it hard to distinguish between them, and while Scanning Electron Microscopy (SEM) permits 

more discrimination than light microscopy, it is not universally used (Birks and Birks, 1980; Moore and Webb, 1991). 

Pollen is collected for many purposes (Moore and Webb, 1991), so different palynologists, depending on their 

specific interests, skills, and available technology and time, will apply different levels of taxonomic discrimination, 

and may use different naming conventions. Pollen is therefore often recorded not at a species level but at genus, 

family or higher taxonomic level (e.g. Moore and Webb, 1991). When samples from different sources are involved, 

the nomenclature of pollen data can be mapped to a harmonised list of names, and pollen recorded at finer 

taxonomic resolutions may be amalgamated into a higher level (Harrison, 2019; Wei et al., 2019; Turner et al., 2020). 

 

The relative abundance of pollen taxa is not directly indicative of the relative abundance of the parent plants (Birks 

and Birks, 1980; Fægri, Kaland and Krzywinski, 1989; Moore and Webb, 1991). Different plant species produce very 

different quantities of pollen, which in turn have different characteristics affecting their dispersal. While there are 

overlaps between these broad classes, anemophilous species tend to produce vast quantities of very light smooth-
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surfaced pollen which is then very widely distributed; zoophilous plants invest in flowers and nectar to attract 

vectors, and many only produce small amounts pollen, which is not widely dispersed, and the pollen of 

cleistogamous plants such as Viola rarely leaves the flower (Birks and Birks, 1980; Fægri, Kaland and Krzywinski, 

1989; Moore and Webb, 1991). Methods of adjusting for the production/dispersal bias have been developed (e.g. 

Sugita, 2007a; Hellman et al., 2008; Gaillard et al., 2010). 

 

Pollen is known to be capable of being transported enormous distances from the source plant (e.g. Salas, 1983; 

Fægri, Kaland and Krzywinski, 1989; Campbell et al., 1999; Rousseau et al., 2008), so an important question is what 

catchment is sampled by a pollen core. Pollen source theory (Prentice, 1985; Prentice, I C, 1988; Sugita, 1994; Davis, 

2000) considers how local and more distant sources contribute to pollen found in different sizes of lake, and 

distinguishes between local and regional pollen rain. This led to models such as REVEALS and LOVE (Sugita, 2007a, 

2007b; tested by Hellman et al., 2008) which estimate the local vegetation assemblage from pollen abundances. An 

important input is the relative pollen productivity of different taxa (RPP), which is not known for all taxa and can only 

be established by fieldwork (Broström et al., 2008). In general, small lakes (e.g. ~ 1 km2) tend to indicate local 

vegetation; larger lakes contain more regional signals (Prentice, 1985; Prentice, I C, 1988; Sugita, 1994). 

 

Marine pollen is the extreme case of terrestrial pollen collected from a large area, since pollen reaches the ocean 

both by wind and in river outflow; it is often dominated by Pinus, and may be re-deposited by currents (e.g. Fægri, 

Kaland and Krzywinski, 1989). The pollen assemblage therefore may represent a wide variety of climates. Marine 

pollen can provide a general picture of terrestrial conditions, whose broad features may correlate with nearby 

terrestrial records, and the same core may contain other material such as foraminifera which provide additional 

information on ocean conditions and, by correlation with Greenland events, on dating (e.g. Goñi et al., 2000; 

Sánchez Goñi, 2006; Naughton et al., 2016). The sources and depositional environment of marine pollen are unlike 

those of lacustrine or bog pollen, and the pollen records of the two environments are not directly comparable (Birks 

et al., 2010). 
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1.4.2 How plants and pollen represent climate 

Plants can provide evidence of multiple aspects of climate. The ecophysiological factors which limit the ranges of 

plants are well understood (e.g. Harrison et al., 2010). The principal factors are:  

• the available solar radiation budget during the growing season, often approximated by GDD (growing degree 

days) above a certain temperature e.g. 0 oC (GDD0); this determines the amount of energy available for 

growth, repair and respiration; 

• the minimum temperature and its duration, for which the mean temperature of the coldest month (MTCO) is 

a common proxy; plants have limits below which they cannot survive. These limits vary across a range of 

cold-tolerance mechanisms;  

• the maximum temperature, for which the mean temperature of the warmest month (MTWA) is a common 

proxy; beyond a given temperature, heat damage occurs;  

• plant-available moisture, which reflects the balance between actual and potential evapotranspiration, which 

depends ultimately on precipitation and warmth; some plants are water-loving and others prefer aridity; 

• seasonal variation in these factors. 

These are not simply limiting factors. Biota, including plants, exhibit environmental preferences not only by presence 

or absence but by their changing abundance along an environmental gradient, in response both to environmental 

factors and to competition. This distribution is often assumed to be approximately unimodal (Shelford, 1931; ter 

Braak, 1987; Ter Braak and Juggins, 1993), but other responses are well known (e.g. Huisman, Olff and Fresco, 1993). 

In the case of terrestrial plants, the gradients are the variables listed above. The location on the gradient of the peak 

abundance of a plant taxon therefore should represent its most preferred climate, or, more precisely, its preferred 

climate out of the range left available to it by competition. In practice, the pattern is rarely this neat, a subject 

examined in detail in Chapter 5.  

 

The climate variables listed above are not all conventional meteorological variables, though they are often 

correlated with such, and while many quantitative studies reconstruct more common variables such as annual 
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precipitation (e.g. Feurdean, 2008), climate variables more closely related to the controlling factors of plant 

distributions are likely to yield better reconstructions. For the European region, three climate variables have been 

shown by Canonical Correspondence Analysis (CCA) to be important to the pattern of modern pollen abundances 

and to be capable of being independently reconstructed (e.g. Wei et al., 2019). These are GDD0 (growing degree 

days above 0 oC), MTCO (mean temperature of the coldest month) and a measure of plant-available moisture, the 

square root of Moisture Index (MI), MI being the ratio of actual to potential evapotranspiration. 

 

When making reconstructions of moisture, account needs to be taken of the fact that the moisture requirement of 

plants varies inversely with the CO2 concentration in the atmosphere (Prentice et al., 1996). Plants absorb CO2 by 

allowing air to enter leaves passively via their stomata, but this simultaneously allows the escape of water vapour. 

When CO2 is in low concentration, plants tend to open their stomata more and/or for longer, and for a given level of 

carbon uptake will lose more water that would be the case today. Guiot et al. (2000) found that inverse modelling of 

glacial vegetation required atmospheric CO2 to be set to glacial levels if observed palaeovegetation was to be 

replicated well. An adjustment therefore needs to be made to the modern water requirement of each taxon, 

increasing it for lower CO2 levels, using a physiology-based model (Prentice and Harrison, 2009; Prentice, Villegas-

Diaz and Harrison, 2022).  

 

Climate is the primary, but not the only, influence on plant abundances, since there are many other factors, such as 

the availability of soil nutrients, herbivory, disease, and chance. A probable case of non-climatic influence is the 

interstadial forest composition found in the Megali Limni core from Lesvos (Margari et al. 2009) which is unusual 

compared to other Greek and Italian cores. Margari et al. (2009) attribute this to the serpentinised ophiolitic 

bedrock, which provides a soil low in nutrients. The signal of plant and pollen abundance is not a pure climate signal 

(Fægri, Kaland and Krzywinski, 1989). 
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1.4.3 Fossil pollen core age models 

A palaeoclimatic archive requires a sufficiently good age-depth model if it is to be set in a wider context. The 

Greenland GICC05modelext chronology (see 1.3.2) and the U/Th chronologies of speleothems are based on multiple 

radiometric and other dates and are sufficiently accurate and precise that their time series can be aligned with high 

confidence (Adolphi et al., 2018).  

 

In contrast, pollen cores covering the glacial period suffer from a comparative lack of dating points. Nearly all are 14C, 

whose uncertainties expand rapidly towards ~ 40 ka, just at the time when D-Os are most common, and is 

unavailable beyond ~ 50 ka (Reimer et al., 2020). Pollen itself has not normally been found capable of providing 14C 

dates, and other biological material or carbon-rich bulk sediment are the normal dating material (Bradley, 2015). In 

some cores tephra dates are available, or floating chronologies developed from varves (e.g. Brauer et al. (2007) at 

Lago Grande di Monticchio; Margari et al. (2007) at Megali Limni). Beyond ~ 40 ka changes in pollen assemblages 

have been attributed to particular Greenland events, or Marine Isotope Stage (MIS) transitions, based on similarity 

of features. Features in marine core pollen dated using δ18O in foraminifera (see 1.4.1) have been linked to terrestrial 

records (e.g. Fletcher and Sánchez Goñi, 2008). 

 

Many age-depth modelling techniques exist, each with their strengths and weaknesses (Blockley, Bronk Ramsey and 

Pyle, 2008; Bronk Ramsey, 2009; Blaauw, 2010; Trachsel and Telford, 2017; Lacourse and Gajewski, 2020). All attempt 

to fit a curve through dating points at given depths, the ages of which points are known within radiometric 

uncertainties, or, in the case of visual similarities with another record, are taken from that other record, including 

uncertainties. Age models compromise between closeness of fit to the dating points and plausible sedimentation 

rates between them, but there is no single statistically correct answer and a degree of judgement is called for.  

In most glacial-age pollen cores the lack of dating points leads to wide uncertainties whatever the method. So it is 

difficult reliably to find a DO in a pollen series by looking up the GICC05modelext date of the Greenland event (which 

itself has uncertainties) in the pollen core age model. This motivated the search by other means for the signature of 

D-Os in pollen records, which is central to this thesis.  
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1.4.4 Underlying assumptions  

Extracting climate information from fossil pollen using the current relationship between pollen and climate makes 

several assumptions. These have been widely discussed in the literature, e.g. Birks et al. (2010), Huntley (2012) and 

references therein. Ignoring for a moment the questions specific to reconstruction methodology, two fundamental 

assumptions stand out: 

• The taxa are related to the climate in which they live 

• The taxa are the same entities, and respond to their environment in the same way now, as in the past. 

They appear to be sufficiently reliable assumptions on which to proceed; pollen abundance can in general be 

demonstrated to vary with conditions, and the pollen taxa found in glacial cores are all recognisable in the modern. 

As noted in 1.1 only one tree is known to have gone extinct in the Late Quaternary; the same taxa appear to persist 

through the glacial. But there are several other issues to be aware of.  

1.4.5 Challenges in climate reconstruction from pollen 

1.4.5.1 Non-analogue and non-equilibrium conditions 

In the past, different patterns of insolation owing to Milanković cycles, low and varying levels of CO2, changing 

configurations and altitudes of ice sheets, and the lag time before vegetation responded fully to changing climate, 

combined at times to create climates and vegetation assemblages which are not found today (Williams, Shuman and 

Webb, 2001; Jackson and Williams, 2004; Williams and Jackson, 2007; Nogués-Bravo, 2009). Assemblages or biomes 

not known today are found in the late glacial/last termination (Overpeck, Webb and Webb, 1992; Behling, 1998; 

Correa-Metrio et al., 2012) or very early Holocene (Cruz-Silva et al., 2022) but fade away later in the Holocene. It is 

not clear to what extent such non-analogue assemblages existed during the earlier part of the glacial.  

Plants, especially trees, take time to mature and produce pollen, so that both vegetation and pollen rain may on a 

decadal scale be out of equilibrium with climate (Lowe and Walker, 2015). More significant than maturation, though, 

is migration (see 1.1). When tracts of the Earth’s surface become climatically suitable for, for instance, trees, the 

degree of disequilibrium depends on the migration rate of the trees. This is most pronounced under rapid climate 
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change, such as now and during D-Os. Nevertheless, Harrison and Sánchez Goñi (2010) found no lag, within the 

resolution of the records and the implied ages of the samples, between D-O warming and the vegetation response, 

so the theoretical concern that vegetation is at times too far out of equilibrium with climate to provide a valid 

reconstruction can be overstated. 

1.4.5.2 Sampling the climate gradient 

In a set of modern pollen samples used to establish the relationship between modern pollen and modern climate (a 

training set), taxa which are very infrequently found are unlikely to provide an adequate sampling of the climate 

gradient. One response is to set some limit to exclude these, say 5 or 10 occurrences, but this is necessarily arbitrary. 

In theory, if the realised niche of a taxon is known by other means, the adequacy of the sampling could be 

established, but this would require data which are not typically available. Another response is to rely on niche 

conservation (Ackerly, 2003) and combine thinly evidenced taxa into higher taxonomic levels of the same genus, sub-

family, or family to provide a more comprehensive reading of the climate, subject to checking that the climate 

preferences of the component taxa appear sufficiently similar.   

 

1.4.5.3 Taxa not representing climate, or missing 

There are taxa whose abundance is not primarily determined by climate, such as obligate aquatics and carnivorous 

plants, and these are often excluded from consideration in climatic studies. Modern pollen is also strongly affected 

by human activity, since the vegetation found today is far from the natural cover. Humans have fragmented forests, 

introduced industrial scale monocultures, and moved species around the globe. So modern pollen includes 

introduced species and cultivars, and it is arguable that they should be ignored; the counter-argument is that if these 

plants produce pollen, then they are capable of reproduction, and must be adapted to the local climate, of which 

they are good indicators. Conversely human-induced impoverishment of plant biodiversity means that modern 

pollen samples may not include all the taxa that would naturally occur locally. 

1.4.6 Registration of rapid climate change in pollen cores 

There are a number of generic issues which mean that pollen core records have to be carefully screened if the 

response to D-Os is to be identifiable. A core may not be stratigraphically continuous, so either an interval is missed 

and/or its chronological order is disturbed, and there may be intervals with no, or insufficient, pollen grains. The 
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abrupt warming phase of a D-O is very short ( < 150 years) and some interstadials are short (e.g. GI 3 and GI 4 ~ 400 

years), so that sampling resolution is important; too coarse a resolution, or dearth of pollen, may mean that a rapid 

change is not seen. The age resolution of pollen cores varies greatly both along individual cores and between cores, 

and is always much coarser than that in, say, the Greenland ice cores, where the underlying annual resolution is 

often expressed as a 20-year mean based on a near-annual resolution (Rasmussen et al., 2014).  

 

Some pollen cores show little variation in composition over time (e.g. contrast reconstructions for Lac du Bouchet 

and Monticchio in Appendix C). In these cases it may be that the local climate was more stable than the regional 

climate, reducing the likelihood of locating D-Os. 

1.4.7 Why Mediterranean pollen cores? 

This thesis focuses on records from the circum-Mediterranean region for several reasons. This region hosts most of 

the European glacial lacustrine evidence, since during the glacial period, fresh water lakes persisted only south of the 

periglacial region fringing the ice sheets, and the cores have sampling resolutions offering a good chance of 

identifying D-Os. Many modern pollen samples are available from Eurasia to provide a training set consistent with 

the taxa found in the cores and the expected glacial climate. There are several lines of evidence independent of 

pollen that D-Os affected the climate of this region, including most obviously speleothems (e.g. Genty et al., 2003; 

Lechleitner et al., 2018), and many studies have identified changes in the Mediterranean pollen records as responses 

to D-Os (e.g. Fletcher et al., 2010). Substantial changes in land cover occur between stadial and interstadial: Harrison 

and Sánchez Goñi (2010) took the examples of DOs 6, 8 and 19, and using multiple pollen records showed that in the 

Mediterranean region, grasslands dominate in stadials, are at least partially replaced by forest during interstadials, 

and return in the following stadial. 

 

For these reasons, Mediterranean glacial pollen cores were expected to host good evidence of the impact of D-Os on 

pollen and vegetation, and were chosen as the material for this thesis. 
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1.5 Climate reconstruction using pollen 

1.5.1 Qualitative reconstructions 

Many pollen studies describe past climate qualitatively and comparatively, such as describing one interval as being 

warmer/wetter than another (e.g. Beaulieu and Reille, 1984; de Beaulieu, J.-L. and Reille, M.:, 1992; Pèrez-Obiol and 

Julià, 1994; Magri, 1999; Tzedakis, Hooghiemstra and Pälike, 2006; Djamali et al., 2008; Margari et al., 2009; Di Rita, 

Anzidei and Magri, 2013). This often makes use of indicator species, whose climate preferences are widely accepted, 

and may be supported by statistical techniques such as CONISS to subdivide the pollen series into pollen zones on 

the basis of some similarity measure (Bennett, 1996). 

1.5.2 Quantitative climate reconstruction methods  

Quantitative climate reconstructions provide time series of numerical values of bioclimatic variables in physical units 

such as oC or degree days. Relatively few quantitative reconstructions have been made from pollen in the 

Mediterranean area for the glacial period; exceptions are Allen and Huntley (2009); Sinopoli et al. (2019); Wei et al. 

(2019). 

 

Figure 1.3 shows the context in which any training-set based statistical method is applied. Pollen accumulates in 

sediments; a core is extracted and the pollen identified; and a reconstruction method uses the training set to 

hypothesise the ancient climate. 
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Figure 1.3 The flow of information and processing in climate reconstruction using WA-PLS. 

There are several techniques for making quantitative climate reconstructions (e.g. Birks et al., 2010; Bartlein et al., 

2011; Sweeney et al., 2018; Chevalier et al., 2020), of which the most widely-used are Modern Analogue Technique 

(MAT) and the WA-PLS family, both of which depend on a training set and are discussed specifically below; first, 

some other less-used quantitative methods are noted. 

 

Artificial Neural Networks (ANNs) have been tried (e.g. in conjunction with other techniques Brewer et al., 2008), but 

ANNS offer no means of understanding how their conclusions are arrived at. 

 

Process-based vegetation modelling (e.g. Guiot et al., 2000; Alfano et al., 2003; Garreta et al., 2010; Izumi and 

Bartlein, 2016) models how key plant physiological processes respond to a set of environmental conditions, 

providing as output the vegetation assemblage which can be expected to result from the conditions. This can be 

used in the forward or reverse directions, either taking reconstructed climate and comparing the modelled 

vegetation with that observed in pollen records, or taking the observed vegetation and deducing the required 

climate. These models operate at the level of ~ 30 or fewer Plant Functional Types (PFTs), providing lower resolution 

than methods which operate at a more precise taxonomic level such as MAT or WA-PLS. They require a mapping 
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between pollen abundance and vegetation abundance, which introduces further uncertainty (see 1.4.1). Perhaps 

most importantly, they rely heavily of the realism of the vegetation model.  

Response surfaces (e.g. (Bartlein, Prentice and Webb, 1986; Birks et al., 2010) fit a surface through a cloud of points 

representing abundance of a taxon in a training set on the z axis and two bioclimatic variables on the x and y axes. By 

stacking the surfaces of multiple taxa together, pollen assemblages for grid points in the climate space can be 

interpolated, and a nearest match then found with a fossil pollen sample, to estimate the past climate values for the 

available dimensions of climate. It can be thought of as MAT (see below) using smoothed surfaces (Birks et al., 2010). 

However, dispersion of abundances in the z dimension, sparseness of the training set samples, and the choice of 

stiffness of the fit affect the precision with which the surface at any (x,y) point can represent climate. For these 

reasons, response surfaces are considered hard to interpret and the method has not commonly been applied in the 

recent literature. 

1.5.3 Modern Analogue Technique (MAT) 

Modern Analogue Technique (MAT) (Overpeck, Webb and Prentice, 1985; Guiot et al., 1989; Overpeck, Webb and 

Webb, 1992, p. 192; Jackson and Williams, 2004; Juggins and Birks, 2012) compares the taxon abundances in a fossil 

sample with those in a training set, and finds the nearest modern sample, or group of samples, typically using 

Squared Chord Distance (SCD) as the distance measure. The climate associated with the selected samples in the 

training set is taken as the ancient climate. Taxa may be weighted by their apparent sensitivity (Sweeney et al., 

2018). It is a form of k-nearest neighbours analysis and requires a substantial training set to ensure sufficiently dense 

sampling of the possible assemblages (Birks et al., 2010). 

 

Since MAT considers the assemblage in each sample as a whole, large distances between fossil and modern samples 

can arise where fossil assemblages have no modern analogues; the inability to handle no-analogue assemblages, or 

to interpolate or extrapolate where there is no analogue, has led some to avoid the use of MAT (Finsinger et al., 

2007; Sweeney et al., 2018). Large distances can lead to instability when a series of very similar fossil samples which 

are quite distant from all modern samples may become associated with two or more different modern samples 
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which themselves are very different in climate; but since the degree of similarity between the fossil and modern 

samples is quantified, the robustness of the reconstruction for each sample can be judged. 

1.5.4 Weighted Averaging Partial Least Squares (WA-PLS) 

Weighted Averaging Partial Least Squares (WA-PLS) (Ter Braak and Juggins, 1993), one of a number of regression-

based methods, assumes that the distribution of abundances of taxa along an environmental gradient are at least 

approximately unimodal and Gaussian, and that the mode represents the taxon’s most preferred environment.  

 

By two-way weighted averaging of the taxon abundances with a bioclimatic variable, regressing the observed against 

the trial result, and looking in the residuals for further information, WA-PLS provides a transfer function for each 

taxon, which represent the optimum or strongest preference of that taxon for that environmental  variable. The 

appropriate number of iterations of PLS is found by cross-validation and random t-testing of the skill in 

reconstructing the training set.  

 

By weighting the optima by the abundance of the taxa in a fossil sample, a reconstructed bioclimatic value is found 

for the sample. Unlike MAT, WA-PLS provides no evidence of the robustness of its results at a sample level, but will 

aways provide a value. This technique is widely applied to pollen and to aquatic and marine biota. Some of its 

assumptions are discussed and tested in Chapters 3 to 5.  

 

Frequency-adjusted tolerance weighted WA-PLS (fxTWA-PLS) (Liu et al., 2020, 2023) is a development of WA-PLS 

designed to overcome issues in WA-PLS. WA-PLS implicitly assumes that all taxa have the same tolerance to a given 

environmental factor, that is, that the dispersion of their abundances along the gradient is the same, and this is 

patently not the case. In addition, the robustness of the reading of climate by a taxon depends partly on the 

frequency with each part of the climate gradient is sampled by the training set, a subject discussed in Turner et al. 

(2020), which forms Chapter 3. fxTWA-PLS adjusts for both tolerance and frequency, but expresses the transfer 

function in a manner in which the optima are not directly accessible.  
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1.5.5 Comparisons of different  methods 

Many studies have applied multiple quantitative techniques to the same material, and it is often the case that their 

results are different in some key respect such as amplitude of change and/or absolute value (e.g. Brewer et al., 2008; 

Feurdean, 2008; Sinopoli et al., 2019). The discrepancy is typically attributed to weak representation in the training 

set of climates like that being reconstructed. 

1.6 Sources of fossil pollen data  

Fossil data were obtained  from the ACER database (Sánchez Goñi et al., 2017), available at 

https://doi.org/10.1594/PANGAEA.870867, Pangaea (https://www.pangaea. de/), and Neotoma 

(https://apps.neotomadb.org/explorer/). It was found that the ACER record for Les Echets does not appear to 

replicate the originally published pollen spectra well, and was partially manually redigitised. The nomenclature of the 

fossil pollen data was harmonised and aggregated to the same taxonomic level as SMPDSv1 (see following section) 

amalgamated version, using the mapping provided with SMPDS v1 and restated as fractional abundances. 

 

1.7 Sources of modern pollen and climate data 

To apply statistical methods to fossil pollen from the Mediterranean, a corresponding training set of modern pollen 

samples is required which samples climate space as broadly and continuously as possible (Chapter 3; Turner et al., 

2020). 

The modern pollen training set used is the amalgamated (number of taxa = 195) version 1 of the SPECIAL Modern 

Pollen Data Set (SMPDSv1: Harrison, 2019). This dataset combines counts of modern samples from the European 

Modern Pollen Database (EMPD) v3.0 (Davis et al., 2013), the Eastern Mediterranean-Black Sea-Caspian Corridor 

Biomes (EMBSeCBIO) database (Marinova et al., 2018), the European Pollen Database 

(http://www.europeanpollendatabase.net/) or Pangaea (https://www.pangaea. de/) and 73 modern surface 

samples from Spain from Wei et al. (2019). The SMPDSv1 has 6,458 samples.  

The modern climate at the SMPDS sample sites was derived from CRU CL 2.0 (New et al., 2002) available from 

https://doi.org/10.3354/cr021001, by geographically weighted regression, using latitude, longitude and elevation as 

https://apps.neotomadb.org/explorer/
https://doi.org/10.3354/cr021001
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predictors. CRU CL 2.0 has a resolution of 10 minutes, and in some analyses, this was compared with the WorldClim 

30 second dataset, available from https://www.worldclim.org/data/worldclim21.html. 

1.8 Analytical tools 

The analyses and plotting in this project were performed principally with versions of R up to 4.3.1  (R Core Team, 

2023). 

1.9 Structure 

The structure of this thesis is as follows. 

Chapter 2 tests methods of locating D-Os in multi-taxon fossil pollen abundance records. The anatomy of a D-O cycle 

is described and defined. The pollen records are summarised by dimension reduction and other methods to provide 

a limited set of time series, and a method is developed which finds the intervals in a time series which are most 

similar to the characteristic asymmetrical rapid rise in temperature seen in the Greenland ice cores at the initiation of 

an interstadial (‘pattern matching’). Other methods of matching the Greenland and pollen time series are examined. 

None perform very well, and all subsequent Chapters use time series made by quantitative climate reconstruction.  

Chapter 3 consists of Turner et al (2020), “The impact of methodological decisions on climate reconstructions using 

WA-PLS”. This paper deals with the treatment of a modern pollen and climate training set to be used for quantitative 

glacial climate reconstruction, illustrated by comparing the results of running WA-PLS using different components of 

the SMPDSv1. The key conclusion was that the climate space should be sampled as widely and continuously as 

possible. 

Chapter 4 describes the algorithms used in WA-PLS and fxTWA-PLS, both to provide context for the discussion in 

Chapter 5 of the appropriateness of the transfer functions they generate, and to identify, and suggest a mitigation for, 

a consequence of the way in which WA-PLS as implemented in the rioja R package (specifically) applies the transfer 

function to fossil pollen.  

https://www.worldclim.org/data/worldclim21.html
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Chapter 5 deals with how best to describe and understand the recorded abundance of taxa along climate gradients in 

a modern pollen training set, where and why abundance patterns depart from the unimodal and Gaussian model 

implicit in WA-PLS and fxTWA-PLS, and explores the consequences and possible mitigations.  

Chapter 6 applies ‘pattern matching’ as developed in Chapter 2 to quantitative climate reconstructions made using 

fxTWA-PLS, and tests the effect of different parameters on the robustness and plausibility of identification of 

potential D-Os. Then it combinies the evidential support for potential D-Os in the fossil records, the uncertainty in the 

fossil pollen age models, and the uncertainty in the GICC05modelext date of GIs, to create plausible matches 

between potential D-Os and GIs. 

Chapter 7 summarises and discusses the findings and suggests further work. 

Appendix A: Mean binned abundances and loess curves of 138 taxa from the SMPDS 

Appendix B: Bootstrapped loess curves of 138 taxa from the SMPDS 

Appendix C: Reconstructions of tmin and gdd for 16 cores 

Appendix D: Pattern matching filtering plots for 14 cores 

  



24 

 

1.10 References 

Ackerly, D.D. (2003) ‘Community assembly, niche conservatism, and adaptive evolution in changing environments’, 
International Journal of Plant Sciences, 164(S3), pp. S165–S184. Available at: https://doi.org/10.1086/368401. 

Adolphi, F. et al. (2018) ‘Connecting the Greenland ice-core and U∕Th timescales via cosmogenic radionuclides: 
testing the synchroneity of Dansgaard–Oeschger events’, Climate of the Past, 14, pp. 1755–1781. Available at: 
https://doi.org/10.5194/cp-14-1755-2018. 

Ahn, J. and Brook, E.J. (2007) ‘Atmospheric CO2 and climate from 65 to 30 ka B.P.’, Geophysical Research Letters, 
34(10), p. L10703. Available at: https://doi.org/10.1029/2007GL029551. 

Ahn, J. and Brook, E.J. (2008) ‘Atmospheric CO₂ and Climate on Millennial Time Scales during the Last Glacial Period’, 
Science, 322(5898), pp. 83–85. Available at: http://www.jstor.org.libezproxy.open.ac.uk/stable/20144949 (Accessed: 
20 May 2017). 

Ahn, J. and Brook, E.J. (2014) ‘Siple Dome ice reveals two modes of millennial CO2 change during the last ice age’, 
Nature Communications, 5. Available at: https://doi.org/10.1038/ncomms4723. 

Alfano, M.J. et al. (2003) ‘Comparison of climate model results with European vegetation and permafrost during 

oxygen isotope stage three☆’, Quaternary Research, 59(1), pp. 97–107. 

Allen, J.R.M. and Huntley, B. (2009) ‘Last Interglacial palaeovegetation, palaeoenvironments and chronology: a new 
record from Lago Grande di Monticchio, southern Italy’, Quaternary Science Reviews, 28(15), pp. 1521–1538. 
Available at: https://doi.org/10.1016/j.quascirev.2009.02.013. 

Alley, R.B., Anandakrishnan, S. and Jung, P. (2001) ‘Stochastic resonance in the North Atlantic’, Paleoceanography, 
16(2), pp. 190–198. Available at: https://doi.org/10.1029/2000PA000518. 

Antoine, P. et al. (2016) ‘Upper Pleistocene loess-palaeosol records from Northern France in the European context: 
Environmental background and dating of the Middle Palaeolithic’, Quaternary International, 411, pp. 4–24. Available 
at: https://doi.org/10.1016/j.quaint.2015.11.036. 

Banderas, R. et al. (2015) ‘An interhemispheric mechanism for glacial abrupt climate change’, Climate Dynamics, 
44(9–10), pp. 2897–2908. Available at: https://doi.org/10.1007/s00382-014-2211-8. 

Barbosa, S. et al. (2023) Automatic characterisation of Dansgaard-Oeschger events in palaeoclimate ice records. 
other. oral. Available at: https://doi.org/10.5194/egusphere-egu23-3612. 

Bartlein, P.J. et al. (2011) ‘Pollen-based continental climate reconstructions at 6 and 21 ka: a global synthesis’, Climate 
Dynamics, 37(3–4), pp. 775–802. Available at: https://doi.org/10.1007/s00382-010-0904-1. 

Bartlein, P.J., Prentice, I.C. and Webb, T. (1986) ‘Climatic Response Surfaces from Pollen Data for Some Eastern North 
American Taxa’, Journal of Biogeography, 13(1), p. 35. Available at: https://doi.org/10.2307/2844848. 

Beaulieu, J.-L.D. and Reille, M. (1984) ‘A long Upper Pleistocene pollen record from Les Echets, near Lyon, France’, 
Boreas, 13(2), pp. 111–132. Available at: https://doi.org/10.1111/j.1502-3885.1984.tb00066.x. 

Behling, H. (1998) ‘Late Quaternary vegetational and climatic changes in Brazil’, Review of Palaeobotany and 
Palynology, 99(2), pp. 143–156. Available at: https://doi.org/10.1016/S0034-6667(97)00044-4. 

Bennett, K.D. (1996) ‘Determination of the number of zones in a biostratigraphical sequence’, New Phytologist, 
132(1), pp. 155–170. Available at: https://doi.org/10.1111/j.1469-8137.1996.tb04521.x. 



25 

 

Bereiter, B. et al. (2015) ‘Revision of the EPICA Dome C CO2 record from 800 to 600 kyr before present’, Geophysical 
Research Letters, 42(2), pp. 542–549. Available at: https://doi.org/10.1002/2014GL061957. 

Birks, H.J.B. et al. (2010) ‘Strengths and Weaknesses of Quantitative Climate Reconstructions Based on Late-
Quaternary’, The Open Ecology Journal, 3(1). Available at: https://benthamopen.com/ABSTRACT/TOECOLJ-3-2-68 
(Accessed: 17 April 2023). 

Birks, H.J.B. (Harry J.B. and Birks, H.H. (1980) Quaternary palaeoecology. London : Edward Arnold, 1980. 

Blaauw, M. (2010) ‘Methods and code for “classical” age-modelling of radiocarbon sequences’, Quaternary 
Geochronology, 5(5), pp. 512–518. Available at: https://doi.org/10.1016/j.quageo.2010.01.002. 

Blockley, S.P.E., Bronk Ramsey, C. and Pyle, D.M. (2008) ‘Improved age modelling and high-precision age estimates of 
late Quaternary tephras, for accurate palaeoclimate reconstruction’, Journal of Volcanology and Geothermal 
Research, 177(1), pp. 251–262. Available at: https://doi.org/10.1016/j.jvolgeores.2007.10.015. 

Boers, N., Ghil, M. and Rousseau, D.-D. (2018) ‘Ocean circulation, ice shelf, and sea ice interactions explain 
Dansgaard–Oeschger cycles’, Proceedings of the National Academy of Sciences of the United States of America, 
115(47), pp. E11005–E11014. Available at: https://doi.org/10.1073/pnas.1802573115. 

ter Braak, C.J.F. (1987) ‘The Analysis of Vegetation-Environment Relationships by Canonical Correspondence Analysis’, 
Vegetatio, 69(1/3), pp. 69–77. Available at: https://www.jstor.org/stable/20038104 (Accessed: 1 August 2019). 

Bradley, R.S. (2015) Paleoclimatology. Third. San Diego: Academic Press. Available at: https://doi.org/10.1016/B978-
0-12-386913-5.00002-8. 

Brauer, A. et al. (2007) ‘Evidence for Last Interglacial Chronology and Environmental Change from Southern Europe’, 
Proceedings of the National Academy of Sciences of the United States of America, 104(2), pp. 450–455. Available at: 
http://www.jstor.org/stable/25426122 (Accessed: 27 April 2018). 

Brewer, S. et al. (2008) ‘The climate in Europe during the Eemian: a multi-method approach using pollen data’, 
Quaternary Science Reviews, 27(25–26), pp. 2303–2315. Available at: 
https://doi.org/10.1016/j.quascirev.2008.08.029. 

Brito-Morales, I. et al. (2018) ‘Climate Velocity Can Inform Conservation in a Warming World’, Trends in Ecology & 
Evolution, 33(6), pp. 441–457. Available at: https://doi.org/10.1016/j.tree.2018.03.009. 

Broecker, W.S. (1992) ‘The great ocean conveyor’, in AIP Conference Proceedings. AIP, pp. 129–161. Available at: 
http://aip.scitation.org/doi/abs/10.1063/1.41925 (Accessed: 3 February 2017). 

Bronk Ramsey, C. (2009) ‘Bayesian Analysis of Radiocarbon Dates’, Radiocarbon, 51(1), pp. 337–360. Available at: 
https://doi.org/10.1017/S0033822200033865. 

Brook (2013) Correlations Between Greenland and Antarctica. Available at: http://ac.els-
cdn.com.libezproxy.open.ac.uk/B9780444536433003228/3-s2.0-B9780444536433003228-main.pdf?_tid=21ee5bae-
2f4b-11e7-9715-00000aab0f02&acdnat=1493738719_ae6b5fc67d4080975a3dffd4c6eff74d (Accessed: 2 May 2017). 

Broström, A. et al. (2008) ‘Pollen productivity estimates of key European plant taxa for quantitative reconstruction of 
past vegetation: a review’, Vegetation History and Archaeobotany, 17(5), pp. 461–478. Available at: 
https://doi.org/10.1007/s00334-008-0148-8. 

Burrows, M.T. and Schoeman, D.S. (no date) Geographical limits to species-range shifts are suggested by climate 
velocity - ProQuest. Available at: https://search-proquest-



26 

 

com.idpproxy.reading.ac.uk/docview/1516066676/fulltextPDF/6E8C98508AB486APQ/1?accountid=13460 (Accessed: 
7 February 2018). 

Campbell, I.D. et al. (1999) ‘Long-distance transport of pollen into the Arctic’, Nature, 399(6731), pp. 29–30. Available 
at: https://doi.org/10.1038/19891. 

Chevalier, M. et al. (2020) ‘Pollen-based climate reconstruction techniques for late Quaternary studies’, Earth-Science 
Reviews, 210, p. 103384. Available at: https://doi.org/10.1016/j.earscirev.2020.103384. 

Clark, J.S. et al. (1998) ‘Reid’s Paradox of Rapid Plant Migration’, BioScience, 48(1), pp. 13–24. Available at: 
https://doi.org/10.2307/1313224. 

Clement, A.C., Cane, M.A. and Seager, R. (2001) ‘An Orbitally Driven Tropical Source for Abrupt Climate Change’, 
Journal of Climate, 14(11), pp. 2369–2375. Available at: https://www.jstor.org/stable/26247431 (Accessed: 22 August 
2022). 

Correa-Metrio, A. et al. (2012) ‘Rapid climate change and no-analog vegetation in lowland Central America during the 
last 86,000 years’, Quaternary Science Reviews, 38, pp. 63–75. Available at: 
https://doi.org/10.1016/j.quascirev.2012.01.025. 

Corrick, E.C. et al. (2020) ‘Synchronous timing of abrupt climate changes during the last glacial period’, Science, 
369(6506), pp. 963–969. Available at: https://doi.org/10.1126/science.aay5538. 

Cruz-Silva, E. et al. (2022) ‘A new method based on surface-sample pollen data for reconstructing palaeovegetation 
patterns’, Journal of Biogeography, 49(7), pp. 1381–1396. Available at: https://doi.org/10.1111/jbi.14448. 

Cuffey, K.M. et al. (1994) ‘Calibration of the δ18O isotopic paleothermometer for central Greenland, using borehole 
temperatures’, Journal of Glaciology, 40(135), pp. 341–349. Available at: 
https://doi.org/10.1017/S0022143000007425. 

Dansgaard et al (1993) ‘Evidence for general instability of past climate from a 250-kyr ice core record’, Nature 
[Preprint]. Available at: 
http://www.nature.com.libezproxy.open.ac.uk/nature/journal/v364/n6434/pdf/364218a0.pdf (Accessed: 24 
February 2017). 

Davis, M.B. (2000) ‘Palynology after Y2K—Understanding the Source Area of Pollen in Sediments’, Annual Review of 
Earth and Planetary Sciences, 28(1), pp. 1–18. Available at: https://doi.org/10.1146/annurev.earth.28.1.1. 

de Beaulieu, J.-L. and Reille, M.: (1992) ‘The last climatic cycle at La Grande Pile (Vosges, France), a new pollen 
profile’, Quaternary Sci. Rev., 11, 431–438, 1992. [Preprint]. 

Di Rita, F., Anzidei, A.P. and Magri, D. (2013) ‘A Lateglacial and early Holocene pollen record from Valle di Castiglione 
(Rome): Vegetation dynamics and climate implications’, Quaternary International, 288, pp. 73–80. Available at: 
https://doi.org/10.1016/j.quaint.2011.11.011. 

Djamali, M. et al. (2008) ‘A late Pleistocene long pollen record from Lake Urmia, Nw Iran’, Quaternary Research, 
69(3), pp. 413–420. Available at: https://doi.org/10.1016/j.yqres.2008.03.004. 

Dobrowski, S.Z. et al. (2013) ‘The climate velocity of the contiguous United States during the 20th century’, Global 
Change Biology, 19(1), pp. 241–251. Available at: https://doi.org/10.1111/gcb.12026. 

Dobrowski, S.Z. and Parks, S.A. (2016) ‘Climate change velocity underestimates climate change exposure in 
mountainous regions’, Nature Communications, 7, p. 12349. Available at: https://doi.org/10.1038/ncomms12349. 



27 

 

Dokken, T.M. et al. (2013) ‘Dansgaard-Oeschger cycles: Interactions between ocean and sea ice intrinsic to the Nordic 
seas’, Paleoceanography, 28(3), pp. 491–502. Available at: https://doi.org/10.1002/palo.20042. 

Emiliani, C. (1955) ‘Pleistocene temperatures’, Journal of Geology, 63, pp. 538–578. 

Fægri, K., Kaland, P.E. and Krzywinski, K. (1989) ‘Textbook of pollen analysis.’, Textbook of pollen analysis. [Preprint], 
(Ed. 4). Available at: https://www.cabdirect.org/cabdirect/abstract/19930670810?q=(Textbook+of+Pollen+Analysis) 
(Accessed: 3 July 2023). 

Feurdean, A. (2008) Lateglacial climate development in NW Romania--Comparative results from three quantitative 
pollen-based methods | Tudor Tamas - Academia.edu, Palaeogeography, Palaeoclimatology, Palaeoecology. Available 
at: https://www.academia.edu/1117108/Lateglacial_climate_development_in_NW_Romania--
Comparative_results_from_three_quantitative_pollen-based_methods?auto=download (Accessed: 9 October 2019). 

Finsinger, W. et al. (2007) ‘Modern Pollen Assemblages as Climate Indicators in Southern Europe’, Global Ecology and 
Biogeography, 16(5), pp. 567–582. Available at: https://www.jstor.org/stable/30134091 (Accessed: 2 January 2021). 

Fletcher, W.J. et al. (2010) ‘Millennial-scale variability during the last glacial in vegetation records from Europe’, 
Quaternary Science Reviews, 29(21), pp. 2839–2864. Available at: https://doi.org/10.1016/j.quascirev.2009.11.015. 

Fletcher, W.J. and Sánchez Goñi, M.F. (2008) ‘Orbital- and sub-orbital-scale climate impacts on vegetation of the 
western Mediterranean basin over the last 48,000 yr’, Quaternary Review [Preprint]. Available at: https://www-
cambridge-org.libezproxy.open.ac.uk/core/services/aop-cambridge-
core/content/view/228F2B11A480ADE72A701FC9FCA7D220/S0033589400005640a.pdf/orbital_and_suborbitalscale
_climate_impacts_on_vegetation_of_the_western_mediterranean_basin_over_the_last_48000_yr.pdf (Accessed: 11 
December 2017). 

Gaillard, M.-J. et al. (2010) ‘Holocene land-cover reconstructions for studies on land cover-climate feedbacks’, Climate 
of the Past, 6(4), pp. 483–499. Available at: https://doi.org/10.5194/cp-6-483-2010. 

Garreta, V. et al. (2010) ‘A method for climate and vegetation reconstruction through the inversion of a dynamic 
vegetation model’, Climate Dynamics, 35(2), pp. 371–389. Available at: https://doi.org/10.1007/s00382-009-0629-1. 

Genty, D. et al. (2003) ‘Precise dating of Dansgaard–Oeschger climate oscillations in western Europe from stalagmite 
data’, Nature, 421(6925), pp. 833–837. Available at: https://doi.org/10.1038/nature01391. 

Genty, D. et al. (2005) ‘Rapid climatic changes of the last 90 kyr recorded on the European continent’, Comptes 
Rendus Geoscience, 337(10), pp. 970–982. Available at: https://doi.org/10.1016/j.crte.2005.04.010. 

Gildor, H. and Tziperman, E. (2003) ‘Sea-Ice Switches and Abrupt Climate Change’, Philosophical Transactions: 
Mathematical, Physical and Engineering Sciences, 361(1810), pp. 1935–1944. Available at: 
https://www.jstor.org/stable/3559153 (Accessed: 22 August 2022). 

Giorgino, T. (2009) ‘Computing and Visualizing Dynamic Time Warping Alignments in R: The dtw Package’, Journal of 
Statistical Software, 31(1), pp. 1–24. Available at: https://doi.org/10.18637/jss.v031.i07. 

Golyandina, N. and Korobeynikov, A. (no date) ‘Basic Singular Spectrum Analysis and forecasting with R’, 
Computational Statistics &amp; Data Analysis, 71, pp. 934–954. Available at: 
https://www.academia.edu/12899418/Basic_Singular_Spectrum_Analysis_and_forecasting_with_R (Accessed: 16 
September 2020). 

Goñi, M.F.S. et al. (2000) European Climatic Response to Millennial-Scale Changes in the Atmosphere–Ocean System 
during the Last Glacial Period, Quaternary Research. Available at: https://doi.org/10.1006/qres.2000.2176. 



28 

 

Guiot, J. et al. (1989) ‘A 140,000-year continental climate reconstruction from two European pollen records’, Nature, 
338(6213), pp. 309–313. Available at: https://doi.org/10.1038/338309a0. 

Guiot, J. et al. (2000) ‘Inverse vegetation modeling by Monte Carlo sampling to reconstruct palaeoclimates under 
changed precipitation seasonality and CO2 conditions: application to glacial climate in Mediterranean region’, 
Ecological Modelling, 127(2), pp. 119–140. Available at: https://doi.org/10.1016/S0304-3800(99)00219-7. 

Harrison, S.P. et al. (2010) ‘Ecophysiological and bioclimatic foundations for a global plant functional classification’, 
Journal of Vegetation Science, 21(2), pp. 300–317. Available at: https://doi.org/10.1111/j.1654-1103.2009.01144.x. 

Harrison, S.P. (2019) ‘Modern pollen data for climate reconstructions, version 1 (SMPDS)’, University of Reading 
[Preprint]. Available at: http://dx.doi.org/10.17864/1947.194. 

Harrison, S.P. and Sánchez Goñi, M.F. (2010) ‘Global patterns of vegetation response to millennial-scale variability and 
rapid climate change during the last glacial period’, Quaternary Science Reviews, 29(21–22), pp. 2957–2980. Available 
at: https://doi.org/10.1016/j.quascirev.2010.07.016. 

Hassani, H. (no date) ‘A Brief Introduction to Singular Spectrum Analysis’, p. 11. 

Hellman, S. et al. (2008) ‘The REVEALS model, a new tool to estimate past regional plant abundance from pollen data 
in large lakes: validation in southern Sweden’, Journal of Quaternary Science, 23(1), pp. 21–42. Available at: 
https://doi.org/10.1002/jqs.1126. 

Huber, C. et al. (2006) ‘Isotope calibrated Greenland temperature record over Marine Isotope Stage 3 and its relation 
to CH4’, Earth and Planetary Science Letters, 243(3–4), pp. 504–519. Available at: 
https://doi.org/10.1016/j.epsl.2006.01.002. 

Huisman, J., Olff, H. and Fresco, L.F.M. (1993) ‘A Hierarchical Set of Models for Species Response Analysis’, Journal of 
Vegetation Science, 4(1), pp. 37–46. Available at: https://doi.org/10.2307/3235732. 

Huntley, B. (2012) ‘Reconstructing palaeoclimates from biological proxies: Some often overlooked sources of 
uncertainty’, Quaternary Science Reviews, 31, pp. 1–16. Available at: 
https://doi.org/10.1016/j.quascirev.2011.11.006. 

Izumi, K. and Bartlein, P.J. (2016) ‘North American paleoclimate reconstructions for the Last Glacial Maximum using 
an inverse modeling through iterative forward modeling approach applied to pollen data’, Geophysical Research 
Letters, 43(20), p. 10,965-10,972. Available at: https://doi.org/10.1002/2016GL070152. 

Jackson, S.T. and Weng, C. (1999) ‘Late Quaternary extinction of a tree species in eastern North America’, Proceedings 
of the National Academy of Sciences, 96(24), pp. 13847–13852. Available at: 
https://doi.org/10.1073/pnas.96.24.13847. 

Jackson, S.T. and Williams, J.W. (2004) ‘MODERN ANALOGS IN QUATERNARY PALEOECOLOGY: Here Today, Gone 
Yesterday, Gone Tomorrow?’, Annual Review of Earth and Planetary Sciences, 32, pp. 495–537. Available at: 
https://www.proquest.com/docview/220804837/abstract/B4D707EE96834FF9PQ/1 (Accessed: 1 June 2023). 

Jouzel, J. et al. (2003) ‘Magnitude of isotope/temperature scaling for interpretation of central Antarctic ice cores’, 
Journal of Geophysical Research: Atmospheres, 108(D12), p. 4361. Available at: 
https://doi.org/10.1029/2002JD002677. 

Juggins, S. and Birks, H.J.B. (2012) Quantitative Environmental Reconstructions from Biological Data., Tracking 
environmental change using lake sediments: data handling and   numerical techniques. [Developments in 



29 

 

Paleoenvironmental Research   Volume 5.]. Juggins, Steve; School of Geography, Politics & Sociology, Newcastle   
University, Newcastle-upon-Tyne, NE1 7RU, United Kingdom, United   Kingdom.: Springer, pp. 431–494. 

Keogh, E.J. and Pazzani, M.J. (2001) ‘Derivative Dynamic Time Warping’, in Proceedings of the 2001 SIAM 
International Conference on Data Mining. Proceedings of the 2001 SIAM International Conference on Data Mining, 
Society for Industrial and Applied Mathematics, pp. 1–11. Available at: https://doi.org/10.1137/1.9781611972719.1. 

Kindler, P. et al. (2014a) ‘Temperature reconstruction from 10 to 120 kyr b2k from the NGRIP ice core’, Climate of the 
Past, 10(2), pp. 887–902. Available at: https://doi.org/10.5194/cp-10-887-2014. 

Kindler, P. et al. (2014b) ‘Temperature reconstruction from 10 to 120 kyr b2k from the NGRIP ice core’, Climate of the 
Past, 10(2), pp. 887–902. Available at: https://doi.org/10.5194/cp-10-887-2014. 

Lacourse, T. and Gajewski, K. (2020) ‘Current practices in building and reporting age-depth models’, Quaternary 
Research, 96, pp. 28–38. Available at: https://doi.org/10.1017/qua.2020.47. 

Laskar, J. et al. (2004) ‘A long-term numerical solution for the insolation quantities of the Earth’, Astronomy & 
Astrophysics, 428(1), pp. 261–285. Available at: https://doi.org/10.1051/0004-6361:20041335. 

Lechleitner, F.A. et al. (2018) ‘The potential of speleothems from western europe as recorders of regional climate: A 
critical assessment of the sisal database’, Quaternary, 1(3). Available at: https://doi.org/10.3390/quat1030030. 

Leuschner, D.C. and Sirocko, F. (2000) ‘The low-latitude monsoon climate during Dansgaard–Oeschger cycles and 
Heinrich Events’, Quaternary Science Reviews, 19(1–5), pp. 243–254. Available at: https://doi.org/10.1016/S0277-
3791(99)00064-5. 

Lin, L. et al. (2014) ‘Probabilistic sequence alignment of stratigraphic records’, Paleoceanography, 29(10), pp. 976–
989. Available at: https://doi.org/10.1002/2014PA002713. 

Lisiecki, L.E. and Lisiecki, P.A. (2002) ‘Application of dynamic programming to the correlation of paleoclimate records: 
DYNAMIC PROGRAMMING SIGNAL CORRELATION’, Paleoceanography, 17(4), pp. 1-1-1–12. Available at: 
https://doi.org/10.1029/2001PA000733. 

Lisiecki, L.E. and Raymo, M.E. (2005) ‘A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records’, 
Paleoceanography, 20(1), p. PA1003. Available at: https://doi.org/10.1029/2004PA001071. 

Liu, M. et al. (2020) ‘An improved statistical approach for reconstructing past climates from biotic assemblages’, 
Proceedings of the Royal Society A [Preprint]. Available at: https://doi.org/10.1098/rspa.2020.0346. 

Liu, M. et al. (2023) ‘Holocene climates of the Iberian Peninsula: pollen-based reconstructions of changes in the 
west–east gradient of temperature and moisture’, Climate of the Past, 19(4), pp. 803–834. Available at: 
https://doi.org/10.5194/cp-19-803-2023. 

Loarie, S.R. et al. (2009) ‘The velocity of climate change’, Nature; London, 462(7276), pp. 1052–5. Available at: 
https://search.proquest.com/docview/204548344/abstract/EA83D4C2010346DBPQ/1 (Accessed: 18 January 2018). 

Lough, J.M. and Fritts, H.C. (1987) ‘An assessment of the possible effects of volcanic eruptions on North American 
climate using tree-ring data, 1602 to 1900 A.D.’, Climatic Change, 10(3), pp. 219–239. Available at: 
https://doi.org/10.1007/BF00143903. 

Lowe, J.J. (Joseph J. and Walker, M.J.C. (Mike J.C.) (2015) Reconstructing Quaternary environments. 3rd ed. 
Routledge, 2014. 



30 

 

Lynch-Stieglitz (2017) ‘The Atlantic Meridional Overturning Circulation and Abrupt Climate Change’, Annual Review of 
Marine Science, 9(1), pp. 83–104. Available at: https://doi.org/10.1146/annurev-marine-010816-060415. 

Magri, D. (1999) ‘Late Quaternary vegetation history at Lagaccione near Lago di Bolsena (central Italy)’, Review of 
Palaeobotany and Palynology, 106(3–4), pp. 171–208. Available at: https://doi.org/10.1016/S0034-6667(99)00006-8. 

Malmierca-Vallet, I. et al. (2023) ‘Dansgaard–Oeschger events in climate models: review and baseline Marine Isotope 
Stage 3 (MIS3) protocol’, Climate of the Past, 19(5), pp. 915–942. Available at: https://doi.org/10.5194/cp-19-915-
2023. 

Margari, V. et al. (2007) ‘Mediterranean tephra stratigraphy revisited: Results from a long terrestrial sequence on 
Lesvos Island, Greece’, Journal of Volcanology and Geothermal Research, 163(1–4), pp. 34–54. Available at: 
https://doi.org/10.1016/j.jvolgeores.2007.02.002. 

Margari, V. et al. (2009) ‘Character of vegetational and environmental changes in southern Europe during the last 
glacial period; evidence from Lesvos Island, Greece’, Quaternary Science Reviews, 28(13–14), pp. 1317–1339. 
Available at: https://doi.org/10.1016/j.quascirev.2009.01.008. 

Marinova, E. et al. (2018) ‘Pollen-derived biomes in the Eastern Mediterranean–Black Sea–Caspian-Corridor’, Journal 
of Biogeography, 45(2), pp. 484–499. Available at: https://doi.org/10.1111/jbi.13128. 

McDermott, F. (2004) ‘Palaeo-climate reconstruction from stable isotope variations in speleothems: a review’, 
Quaternary Science Reviews, 23(7–8), pp. 901–918. Available at: https://doi.org/10.1016/j.quascirev.2003.06.021. 

Moore, P.D. and Webb, J.A. (1991) Pollen analysis. 2nd ed. / P.D. Moore, J.A. Webb, M.E. Collinson. Oxford : Blackwell 
Scientific, 1991. 

Naughton, F. et al. (2016) ‘Climate variability across the last deglaciation in NW Iberia and its margin’, Quaternary 
International, 414, pp. 9–22. Available at: https://doi.org/10.1016/j.quaint.2015.08.073. 

New, M. et al. (2002) ‘A high-resolution data set of surface climate over global land areas’, Climate Research, 21, pp. 
1–25. Available at: https://doi.org/10.3354/cr021001. 

Nogués-Bravo, D. (2009) ‘Predicting the past distribution of species climatic niches’, Global Ecology and 
Biogeography, 18(5), pp. 521–531. Available at: https://doi.org/10.1111/j.1466-8238.2009.00476.x. 

Overpeck, J.T., Webb, R.S. and Webb, T., III (1992) ‘Mapping eastern North American vegetation change of the past 18 
ka: No-analogs and the future’, Geology, 20(12), pp. 1071–1074. Available at: https://doi.org/10.1130/0091-
7613(1992)020<1071:MENAVC>2.3.CO;2. 

Overpeck, J.T., Webb, T. and Prentice, I.C. (1985) ‘Quantitative Interpretation of Fossil Pollen Spectra: Dissimilarity 
Coefficients and the Method of Modern Analogs’, Quaternary Research, 23(1), pp. 87–108. Available at: 
https://doi.org/10.1016/0033-5894(85)90074-2. 

Pachauri, R.K., Mayer, L. and Intergovernmental Panel on Climate Change (eds) (2015) Climate change 2014: synthesis 
report. Geneva, Switzerland: Intergovernmental Panel on Climate Change. 

Pèrez-Obiol, R. and Julià, R. (1994) ‘Climatic Change on the Iberian Peninsula Recorded in a 30,000-Yr Pollen Record 
from Lake Banyoles’, Quaternary Research, 41(1), pp. 91–98. Available at: https://doi.org/10.1006/qres.1994.1010. 

Petersen, S.V., Schrag, D.P. and Clark, P.U. (2013) ‘A new mechanism for Dansgaard-Oeschger cycles’, 
Paleoceanography, 28(1), pp. 24–30. Available at: https://doi.org/10.1029/2012PA002364. 



31 

 

Prentice, I C (1988) ‘Palaeoecology-and-plant-population-dynamic_1988_Trends-in-Ecology---Evolutio.pdf’. 

Prentice, I.C. (1985) ‘Pollen Representation, Source Area, and Basin Size: Toward a Unified Theory of Pollen Analysis’, 
Quaternary Research, 23(1), pp. 76–86. Available at: https://doi.org/10.1016/0033-5894(85)90073-0. 

Prentice, I.C. et al. (1996) ‘Reconstructing biomes from palaeoecological data: a general method and its application to 
European pollen data at 0 and 6 ka’, Climate Dynamics, 12, pp. 185–194. 

Prentice, I.C. and Harrison, S.P. (2009) ‘Ecosystem effects of CO2 concentration: evidence from past climates’, Clim. 
Past, p. 11. 

Prentice, I.C., Villegas-Diaz, R. and Harrison, S.P. (2022) ‘Accounting for atmospheric carbon dioxide variations in 
pollen-based reconstruction of past hydroclimates’, Global and Planetary Change, 211, p. 103790. Available at: 
https://doi.org/10.1016/j.gloplacha.2022.103790. 

Punt, W. et al. (2007) ‘Glossary of pollen and spore terminology’, Review of Palaeobotany and Palynology, 143(1), pp. 
1–81. Available at: https://doi.org/10.1016/j.revpalbo.2006.06.008. 

R Core Team (2023) ‘R: A language and environment for statistical computing’. Vienna: R Foundation for Statistical 
Computing. Available at: http://www.R-project.org/. 

Rahmstorf, S. (2002) ‘Ocean circulation and climate during the past 120,000 years’, Nature, 419(6903), pp. 207–214. 
Available at: https://doi.org/10.1038/nature01090. 

Rasmussen, S.O. et al. (2014) ‘A stratigraphic framework for abrupt climatic changes during the Last Glacial period 
based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy’, 
Quaternary Science Reviews, 106, pp. 14–28. Available at: https://doi.org/10.1016/j.quascirev.2014.09.007. 

Rasmussen, S.O. et al. (2023) Evaluating the accuracy of the Greenland Ice-Core Chronology (GICC). EGU23-4545. 
Copernicus Meetings. Available at: https://doi.org/10.5194/egusphere-egu23-4545. 

Reid, C. (1899) The Origin of the British Flora. London: Dulau. 

Reille, M. and de Beaulieu, J.-L. (1990) ‘Pollen analysis of a long upper Pleistocene continental sequence in a Velay 
maar (Massif Central, France)’, Palaeogeograpy, Palaeoclimatology, Palaeoecology, 80, pp. 35–48. 

Reimer, P.J. et al. (2020) ‘The IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve (0–55 cal kBP)’, 
Radiocarbon, 62(4), pp. 725–757. Available at: https://doi.org/10.1017/RDC.2020.41. 

Rousseau, D.-D. et al. (2008) ‘Long-distance pollen transport from North America to Greenland in spring’, Journal of 
Geophysical Research: Biogeosciences, 113(G2). Available at: https://doi.org/10.1029/2007JG000456. 

Rousseau, D.-D. et al. (2020) ‘Dansgaard–Oeschger-like events of the penultimate climate cycle: the loess point of 
view’, Climate of the Past, 16(2), pp. 713–727. Available at: https://doi.org/10.5194/cp-16-713-2020. 

Salas, M.R. (1983) ‘Long-distance pollen transport over the southern Tasman Sea: evidence from Macquarie Island’, 
New Zealand Journal of Botany, 21, pp. 285–292. Available at: 
https://www.tandfonline.com/doi/epdf/10.1080/0028825X.1983.10428559?needAccess=true&role=button 
(Accessed: 2 June 2023). 

Sánchez Goñi, M.F. (2006) ‘Vegetation-climate relationships over the last 425,000 years in western Europe. What can 
pollen from marine archives tell us?’, Quaternaire, 17(1), pp. 3–25. 



32 

 

Sánchez Goñi, M.F. et al. (2017) ‘The ACER pollen and charcoal database: a global resource to document vegetation 
and fire response to abrupt climate changes during the last glacial period’, Supplement to: Sanchez Goñi, MF et al. 
(2017): The ACER pollen and charcoal database: a global resource to document vegetation and fire response to 
abrupt climate changes during the last glacial period. Earth System Science Data, 9(2), 679-695, 
https://doi.org/10.5194/essd-9-679-2017. Available at: https://doi.org/10.1594/PANGAEA.870867. 

Sanchez Goñi, M.F. et al. (2017) ‘The ACER pollen and charcoal database: a global resource to document vegetation 
and fire response to abrupt climate changes during the last glacial period’, Supplement to: Sanchez Goñi, MF et al. 
(2017): The ACER pollen and charcoal database: a global resource to document vegetation and fire response to 
abrupt climate changes during the last glacial period. Earth System Science Data, 9(2), 679-695, 
https://doi.org/10.5194/essd-9-679-2017. Available at: https://doi.org/10.1594/PANGAEA.870867. 

Sánchez Goñi, M.F. et al. (2018) ‘Pollen from the Deep-Sea: A Breakthrough in the Mystery of the Ice Ages’, Frontiers 
in Plant Science, 9. Available at: https://doi.org/10.3389/fpls.2018.00038. 

Sanchez Goñi, M.F. and Harrison, S.P. (2010) ‘Millennial-scale climate variability and vegetation changes during the 
Last Glacial: Concepts and terminology’, Quaternary Science Reviews, 29(21–22), pp. 2823–2827. Available at: 
https://doi.org/10.1016/j.quascirev.2009.11.014. 

Seager, R. and Battisti, D.S. (2007) ‘Challenges to our understanding of the general circulation: Abrupt climate 
change’, in The global circulation of the atmosphere / edited by Tapio Schneider and Adam H. Sobel ; foreword by 
Edward N. Lorenz. Princeton University Press. 

Seierstad, I.K. et al. (2014) ‘Consistently dated records from the Greenland GRIP, GISP2 and NGRIP ice cores for the 
past 104 ka reveal regional millennial-scale δ18O gradients with possible Heinrich event imprint’, Quaternary Science 
Reviews, 106, pp. 29–46. Available at: https://doi.org/10.1016/j.quascirev.2014.10.032. 

Shackleton, N.J. (1987) ‘Oxygen isotopes, ice volume and sea level’, Quaternary Science Reviews, 6(3–4), pp. 183–190. 
Available at: https://doi.org/10.1016/0277-3791(87)90003-5. 

Shelford, V.E. (1931) ‘Some Concepts of Bioecology’, Ecology, 12(3), pp. 455–467. Available at: 
https://doi.org/10.2307/1928991. 

Sime, L.C., Hopcroft, P.O. and Rhodes, R.H. (2019) ‘Impact of abrupt sea ice loss on Greenland water isotopes during 
the last glacial period’, Proceedings of the National Academy of Sciences of the United States of America, 116(10), pp. 
4099–4104. Available at: https://doi.org/10.1073/pnas.1807261116. 

Sinopoli, G. et al. (2019) ‘Pollen-based temperature and precipitation changes in the Ohrid Basin (western Balkans) 
between 160 and 70ka’, Climate of the Past, 15(1), pp. 53–71. Available at: https://doi.org/10.5194/cp-15-53-2019. 

Smol, J.P. (John P.), Last, W.M. and Birks, H.J.B. (Harry J.B. (2001) Tracking environmental change using lake 
sediments. Dordrecht ; London : Kluwer Academic Publishers, c2001- (Developments in paleoenvironmental research. 
v. 3). 

Steffensen, J.P. et al. (2008) ‘High-Resolution Greenland Ice Core Data Show Abrupt Climate Change Happens in Few 
Years’, Science, 321(5889), pp. 680–684. Available at: https://www.jstor.org/stable/20054642 (Accessed: 31 May 
2023). 

Sugita, S. (1994) ‘Pollen Representation of Vegetation in Quaternary Sediments: Theory and Method in Patchy 
Vegetation’, Journal of Ecology, 82(4), pp. 881–897. Available at: https://doi.org/10.2307/2261452. 



33 

 

Sugita, S. (2007a) ‘Theory of quantitative reconstruction of vegetation I: pollen from large sites REVEALS regional 
vegetation composition’, The Holocene, 17(2), pp. 229–241. Available at: 
https://doi.org/10.1177/0959683607075837. 

Sugita, S. (2007b) ‘Theory of quantitative reconstruction of vegetation II: all you need is LOVE’, The Holocene, 17(2), 
pp. 243–257. Available at: https://doi.org/10.1177/0959683607075838. 

Sweeney, J. et al. (2018) ‘Statistical challenges in estimating past climate changes’, Wiley Interdisciplinary Reviews: 
Computational Statistics, 10(5), p. e1437. Available at: https://doi.org/10.1002/wics.1437. 

Tang, Z., Du, S. and Liu, F. (2017) ‘Late Pleistocene changes in vegetation and the associated human activity at Beiyao 
Site, Central China’, Review of Palaeobotany and Palynology, 244, pp. 107–112. Available at: 
https://doi.org/10.1016/j.revpalbo.2017.04.002. 

Ter Braak, C.J.F. and Juggins, S. (1993) ‘Weighted averaging partial least squares regression (WA-PLS) : an improved 
method for reconstructing environmental variables from species assemblages’, Hydrobiologia, 269/270, pp. 485–502. 

Trachsel, M. and Telford, R.J. (2017) ‘All age–depth models are wrong, but are getting better’, The Holocene, 27(6), pp. 
860–869. Available at: https://doi.org/10.1177/0959683616675939. 

Tschudy, R.H. (Robert H. and Scott, R.A. (Richard A. (1969) Aspects of palynology. New York ; Chichester : Wiley-
Interscience, 1969. 

Turner, M.G. et al. (2020) ‘The impact of methodological decisions on climate reconstructions using WA-PLS’, 
Quaternary Research, pp. 1–16. Available at: https://doi.org/10.1017/qua.2020.44. 

Tzedakis, P.C., Hooghiemstra, H. and Pälike, H. (2006) ‘The last 1.35 million years at Tenaghi Philippon: revised 
chronostratigraphy and long-term vegetation trends’, Quaternary Science Reviews, 25(23–24), pp. 3416–3430. 
Available at: https://doi.org/10.1016/j.quascirev.2006.09.002. 

Vautard, R. and Ghil, M. (1989) ‘Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic 
time series’, Physica D: Nonlinear Phenomena, 35(3), pp. 395–424. Available at: https://doi.org/10.1016/0167-
2789(89)90077-8. 

Vautard, R., Yiou, P. and Ghil, M. (1992) ‘Singular-spectrum analysis: A toolkit for short, noisy chaotic signals’, Physica 
D: Nonlinear Phenomena, 58(1), pp. 95–126. Available at: https://doi.org/10.1016/0167-2789(92)90103-T. 

Voelker, A.H.L. (2002) ‘Global distribution of centennial-scale records for Marine Isotope Stage (MIS) 3: a database’, 
Quaternary Science Reviews, 21(10), pp. 1185–1212. Available at: https://doi.org/10.1016/S0277-3791(01)00139-1. 

Wang, Y.J. et al. (2001) ‘A High-Resolution Absolute-Dated Late Pleistocene Monsoon Record from Hulu Cave, China’, 
Science, 294(5550), pp. 2345–2348. Available at: http://www.jstor.org.libezproxy.open.ac.uk/stable/3085243 
(Accessed: 31 March 2017). 

Wei, D. et al. (2019) ‘Climate changes in interior semi-arid Spain from the last interglacial to the late Holocene’, 
Climate of the Past Discussions, pp. 1–31. Available at: https://doi.org/10.5194/cp-2019-16. 

Williams, J.W. and Jackson, S.T. (2007) ‘Novel Climates, No-Analog Communities, and Ecological Surprises’, Frontiers in 
Ecology and the Environment, 5(9), pp. 475–482. Available at: https://www.jstor.org/stable/20440743 (Accessed: 4 
July 2023). 

Williams, J.W., Shuman, B.N. and Webb, T. (2001) ‘Dissimilarity Analyses of Late-Quarternary Vegetation and Climate 
in Eastern North America’, Ecology, 82(12), pp. 3346–3362. Available at: https://doi.org/10.2307/2680157. 



34 

 

Yeh, M. et al. (2018) ‘Time series joins, motifs, discords and shapelets: a unifying view that exploits the matrix 
profile’, Data Mining and Knowledge Discovery, 32(1), pp. 83–123. Available at: https://doi.org/10.1007/s10618-017-
0519-9. 

 



35 
 

2 Identifying D-Os in pollen series 

  

This Chapter explores whether it is possible to find the shapes of D-Os in pollen-derived time series. 

One technique for matching palaeoenvironmental time series uses objective tie points; for instance, the 

GICC05modelext chronology (Seierstad et al., 2014) matched the GISP2, GRIP and NGRIP ice core data using a rich 

set of tie points such as tephra and other volcanogenic signals, caused principally by Icelandic volcanic events 

(Seierstad et al., 2014). Volcanogenic tie points are very rare between Mediterranean pollen cores from the glacial 

period, and none exist between them and the Greenland ice core record. Another technique uses similarity between 

geometric features in two time series; for instance, the LR04 benthic marine δ18O stack (Lisiecki and Raymo, 2005) 

matched multiple series by feature, using algorithms developed in Lisiecki and Lisiecki (2002); Lin et al. (2014) 

comment that this required parameter choices which depended “on user judgment to determine whether the 

resulting alignment is reasonable”.  A recently developed generic technique of very wide application which both 

discovers and locates ‘motifs’ (recurring patterns), Matrix Profile (e.g. Yeh et al. (2018)), has been applied to the 

Greenland δ18O series and was found to identify some D-Os (Barbosa et al., 2023).   

 

In this Chapter, features are used to attempt matches between the Greenland and pollen time series.  

2.1 D-Os and pattern matching 

The pattern which initiates a GI is distinctively asymmetrical. ‘Pattern matching’ is a technique used during this 

project. It searches in pollen records for events which are similar to these asymmetrical patterns in Greenland. The 

outline of the process is as follows. 

A window containing the pattern of a GI onset (a D-O) in the Kindler series (a ‘template’) is moved along a target time 

series in which D-Os are expected to be present. At each step, a distance measure is calculated between the template 

and the target series, creating a distance curve over time. The distance value is recorded in the target series at the 

point which aligns with the midpoint of the rise in the template. The lowest points in the curve are those where the 
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target series is most like the template, and therefore most like a D-O. A window with a perfect match has a distance 

of zero. The process is repeated using templates for other GIs onsets. The distance curves are combined and the 

result used to discriminate between intervals which are likely to represent D-Os (D-O-like points, DOLPs) and those 

which are not. In the following sections, the detailed definition of the distinctive pattern and the evidence that it is 

highly consistent between GIs are presented. Pattern matching is then tested on the Kindler series and on pollen 

data. 

2.2 Characteristics of D-Os 

The important distinction in Fig 1.2 is between the Greenland Interstadials (GIs), shown as grey blocks, denoting 

warm calm periods, and stadials, which are cold, windy and dusty. GIs are numbered youngest to oldest, and 

increased precision and sampling resolution over time means there are now decimal versions such as GI 5.2 and 5.1, 

and subdivisions such as GI 7 a, b and c. Stadials are numbered by the older interstadial.  

2.2.1 Definitions 

The term “Dansgaard-Oeschger cycle” or “Dansgaard-Oeschger event” have been used to refer to both the intervals 

of the abrupt increase in δ18O which initiates a Greenland Interstadial (GI), and more generically to a whole 

interstadial. Sanchez Goñi and Harrison (2010) define the initial rapid rise as the D-O event, and include it and the 

following slow cooling in the Greenland Interstadial. In contrast, Rasmussen et al. (2014), p. 15, recognise the 

ambiguity but define “‘event’ to refer to the entire stadial or interstadial periods (or their subperiods). However, the 

defining characteristic of each ‘event’ is the abrupt climatic change that occurs at its onset, and it is these major 

climatic signals that constitute the pinning points for the event stratigraphy." Kindler et al., (2014), p. 887, adopting 

the same principle, define a ‘D-O event’ as "a rapid temperature increase followed by a gradual cooling back to 

stadial conditions". Malmierca-Vallet et al. (2023) also provide definitions of these and related terms. 

In this thesis, the term “D-O” is used mainly to denote the signature asymmetrical pattern, starting before the abrupt 

rise and ending at some point early in the decline from the peak, and not the whole of an interstadial. The effect of 

choices of different start and end points for this D-O in pattern matching is discussed below in 2.4.3; while all the 
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abrupt rises at the initiation of GIs are of similar shape and duration, though of differing amplitude, the rate of 

decline in temperature after the peak in δ18Oice varies significantly. 

The term “D-O-like-point” (DOLP) is used in this thesis where a searching algorithm identifies an interval in a pollen 

series which appears like a Greenland D-O. 

2.2.2 Kindler temperature series 

In this thesis the Kindler temperature series (Kindler et al., 2014), rather than δ18Oice, is most commonly used to 

describe Greenland climate and patterns of change, since it is specifically a climate variable. The Kindler series 

adjusts the NGRIP2 δ18O series to give a time series in oC (Figure 2.1). It adjusts for changes in seasonal timing of 

precipitation and in water source, especially between stadial (low accumulation) and interstadial (high 

accumulation), and for δ15N and gas ages in reaching the final temperature (Kindler et al., 2014). The patterns of the 

δ18O series and the Kindler temperature series are in most intervals highly similar, and the difference in GI initiation 

pattern and location between the two series is small (Figure 2.1), though the Kindler series exhibits greater variation 

in some stadials, especially in GS 2 (15 ka to 23 ka).  

 

Figure 2.1 NGRIP Kindler temperatures oC (red) and δ18Oice ‰ (blue). Script SEA CoP v2 

Kindler et al. (2014) never specify the exact meaning of their resulting temperature, but since it is based on δ18O, the 

series represents a mean annual air temperature, or more precisely a mean during the periods of precipitation during 

the year.  
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Kindler et al. (2014) p. 887 count the temperature rise at a D-O from the low to the high point: "The detected 

temperature rises at the onset of D-O events range from 5 ◦C (D-O 25) up to 16.5 ◦C (D-O 11) with an uncertainty of 

±3 ◦C". These are equivalent to a substantial part of the temperature rise recorded in Greenland at the last glacial 

termination. 

2.3 Consistency of D-O patterns in Kindler series 

All the abrupt rises at the onset of GIs are of similar shape and duration, but the rate and pattern of decline after the 

peak in temperature varies greatly (Figure 2.2; age increases to the right). In this analysis, the Kindler series is 

normalised, and the intervals including the GIs are extracted and aligned on the midpoint of the rise at x = 100. They 

differ in absolute temperature and in amplitude despite the normalisation of the series as a whole. The long age 

range of ~ 2750 years also means that in some cases a younger GI is also seen in the tail, or younger interval (GI 4 

also shows GI 3, for instance).  

A reference dating point needs to be consistently defined in each D-O. In this project this is taken as the midpoint of 

the temperature rise; different D-Os can be centred on it to test for similarity. Inconsistencies with other practices 

and the Rasmussen dates are covered in the next section. 
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Figure 2.2: Kindler temperatures for all GIs, not individually normalised, aligned on common point (x = 100), and mean of all GIs (thick red line), 
taken from normalised Kindler series. X axis is data points in Kindler series, intervals ~ 20 years, time range  ~2750 years). Script: Pattern 
hunting Kindler May23 

To give a clear and consistent pattern for the initiation, to be compared with a target pollen series, these differences 

in scale and absolute temperature, and variability in the tail, need to be removed. An example result is presented in 

Figure 2.3, which shows the onset phases of multiple GIs, taken by extracting windows from the detrended Kindler 

series, from 15 data points before, or older than (~ 300 years), to 10 data points after, or younger than (~200 years), 

the Rasmussen date of the onset of each GI. The windows are then individually normalised to remove the scale and 

absolute temperature differences. The sensitivity to different start and end points for templates is tested in 2.4.3. The 

window width chosen in Figure 2.3 limits the impact of different post-peak rates of decline and duration seen in 

Figure 2.2.  

 

Figure 2.3 GI templates taken from normalised Kindler temperature then individually normalised; vertical lines denote midpoint of rise. Youngest 
on the left. Samples ~ 20 yrs apart, age range ~ 500 years. Headings are GI numbers. Script: Pattern matching simple CoP v2 pfac2. 



40 
 

The pattern of all D-Os is very similar when expressed like this, the variability being mainly in the tail. If the 

requirement is to identify specific D-Os in a target series by their individual patterns, a wider window than in Figure 

2.3 would be needed.  

2.3.1 Defining a reference dating point in a D-O 

The reference point during the pattern to which we can consistently attach a date was defined above as the midpoint 

of the rise. Others have chosen other points. Rasmussen et al (2014), p. 23, say "The aim has been to define the 

event onsets at the first clear mark of a transition, e.g. at the first data point of the steep part that clearly deviates 

from the base-line level preceding the transition". However the midpoints of the rise in the Kindler series, shown as 

vertical lines in Figure 2.3, clearly do not fall consistently at the same point in the Rasmussen-dated windows 

(Rasmussen et al (2014) Table 2), although both use the same GICC05modelext chronology. The difference may be to 

do with Kindler’s translation of δ18O to temperature. The difference in age between ‘first clear mark’ and midpoint of 

rise is small ( ~ 40-100 years) compared with the uncertainties in the GICC05modelext chronology (e.g. maximum 

counting error 1,133 years for GI 5 at 32.6 ka) but in this thesis, the midpoint of the rise (vertical line in Figure 2.3) is 

the preferred reference point.  

2.3.2 Similarity of GI onsets: Superposed Epoch Analysis 

Superposed Epoch Analysis (SEA) (Lough and Fritts, 1987, and references therein) is a more formal way than plotting 

of showing that GI onsets are (a) highly similar and (b) not like other parts of the Kindler series. SEA takes a set of 

intervals from a series which are believed to contain a consistent pattern, aligns them on a consistent point in the 

pattern, and averages (‘composites’) them. It compares this mean shape with shapes composited from multiple sets 

of randomly chosen intervals from the series to find the probability that the shape has arisen by chance. SEA was 

applied using code modified from the sea function of the dplR package (Bunn A, Korpela M, Biondi F, Campelo F, 

Mérian P, Qeadan F, Zang C (2022). dplR: Dendrochronology Program Library in R. R package version 1.7.4,  

https://CRAN.R-project.org/package=dplR) to the onsets of GIs 1 to 20, aligned on the midpoint of the rise. In this 

analysis, the Kindler series is not modified by detrending or normalisation, which provides a stiffer challenge than 

comparing windows from the modified series shown in Figure 2.3, which removes offsets and scale differences. 
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 The probability that these patterns arose by chance can be seen in Figure 2.4 to be very small by the low 

probabilities associated with each bar; thus the selected patterns are highly similar to one another and very different 

from other intervals in the Kindler series.  

 

Figure 2.4 SEA: composited mean of Kindler temperatures during GI initiations and early part of GIs for GIs 1 to 20, aligned on midpoint of rise.  
Script: SEA CoP v2 

The strong result in Figure 2.4 is not surprising, since the intervals were selected because of their clear patterns, but 

it gives assurance that SEA is able to provide clear evidence of the existence and uniqueness of such patterns within a 

series, in preparation for applying SEA to potential D-Os found in fossil pollen data. 

2.4 Objective pattern matching using Euclidean distance 

So far, it has been shown that GI onsets (D-Os) in the Greenland archives have highly similar and distinctive 

asymmetrical patterns. Although the response of vegetation and of pollen as recorded in cores to the climate 

changes recorded in Greenland is unlikely, for many reasons (see Chapter 1), exactly to replicate this crisp pattern, it 

is highly plausible that it would exhibit asymmetrical abrupt changes similar enough to be recognisable. 

This section describes pattern matching in more detail. It can be applied to any time series expected to contain 

evidence of D-Os, and although the processes involved in making quantitative reconstructions have not been 

described yet and are the subjects of Chapters 3, 4, and 5, some reconstructions are used below as examples of 
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target time series. Chapter 6.3.5 has the reference to the R code which performs pattern matching. One of the 

underlying concepts was taken from https://www.r-bloggers.com/2012/01/time-series-matching/. 

The choice of distance measure is first described, as it is key to the testing of template choices in subsequent 

sections. 

2.4.1 Distance measures 

A distance is calculated at each step between the template and the target series. Three distance measures were 

tested. The preferred measure is Euclidean distance (ED). 

ED =  √∑(𝑥𝑖 − 𝑦𝑖)
2

                                                                                     (1) 

Squared chord distance (SCD, ∑(√𝑥𝑖 − √𝑦𝑖)
2

) was rejected; it is structurally similar to ED but it cannot handle 

negative numbers, which occur in normalised data, and it suppresses large differences, which is undesirable.  

Cross-correlation ∑ 𝑥𝑖𝑦𝑖  is similar in effect to ED but gives high values, not low, when a good match is achieved. It 

identifies match points little different from those found by ED, and ED was preferred as logically superior and simpler. 

In the next section, a distance measure which combines Euclidean distance curves from multiple passes is used 

(smmdist); Section 2.4.5 describes how it is constructed. 

Figure 2.5 shows an example of this distance curve found by applying pattern matching to a time series 

reconstructing GDD0 for the Lac du Bouchet core using fxTWA-PLS. The red points are potential D-Os, since they are 

where the series is most like the templates, and the down-spikes are very clear, suggesting that precise and obvious 

matches are possible in the time dimension. 

https://www.r-bloggers.com/2012/01/time-series-matching/
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Figure 2.5  Standardised mean of means of Euclidean distances (smmdist) for a reconstructed GDD0 (growing degree days > 0 oC) time series 
from Lac du Bouchet. Blue line: smmdist. Red points: potential D-O, marking trough points where smmdist < 0.9 and nearest trough point is > ~ 
1 ka distant, since D-Os do not occur that close together.. Script # Pattern matching simple CoP v2 end. 

2.4.2 Methodological choices in pattern matching 

Several choices have to be made and tested during pattern matching, and these affect the clarity of the result 

significantly. These are: 

• Template choices; section 2.4.3 

• How far the template window should extend before and after the midpoint.  

• How many, and which, GI template(s), to use. 

• How to treat templates and target consistently, by detrending and normalising templates and target 

series; section 2.4.4. 

• How to combine the distance measures if many templates or target series are used; section 2.4.5. 

• How to accept/reject potential D-Os based on a continually varying distance curve; section 2.4.6. 

2.4.3 Template widths and choices 

The sharp rise is the most distinctive feature and varies only slightly between GIs.  The duration and behaviour of the 

subsequent decline varies much more between GIs, and the more of the declining interval included in the templates, 

the more the impact on the distance measure. Therefore the ideal is to choose a template window width that 

maximises the contribution of the rise and minimises the contribution of the decline to the calculation of the 

distance measure. Minimising the contribution of the declining portion of the event also minimises the chances of 

including part of another GI in the calculation. 
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Three window widths are tested against the Kindler series. Firstly, a window from 10 data points younger than the 

Rasmussen date of the GI initiation to 15 data points older, data points being  ~ 20 years apart in the Kindler series, 

giving a window from ~ 200 years younger to ~ 300 years older than the initiation (Figure 2.6; templates shown in 

Figure 2.7); this focusses on the abrupt rise.  

 

Figure 2.6 Pattern matching distance curve applied to detrended, normalised Kindler temperature series from which templates for GIs 1 to 20 
were taken. Template width: 10 points younger to 15 older than GI date.  Blue line: smmdist curve. Red points are troughs where smmdist < 0.7; 
these are candidate D-Os. Red figures: GI numbers. Black line: original Kindler series, arbitrarily scaled. Script: # Pattern hunting 6 sets v2test, p5 

Using this window width, an ED value of ~ 0.7 is a working definition of the cutoff which defines a probable D-O in 

the Kindler series (red points), since this successfully identifies all the named GIs with the exception of 10 and 11, but 

limits to a handful other events identified as D-O-like. (In Chapter 6 the events between GIs 1 and 2 are discussed 

further.)  
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Figure 2.7 GI templates extracted from Kindler series from 10 data points younger to 15 older than the GI initiation date. 

 

Secondly, a window including 37 datapoints both before and after the GI date, equating to ~750 years either side is 

tested (Figure 2.8). The discrimination is worse than in Figure 2.6, and many true GIs are missed at a cutoff of 

smmdist < 0.7; only 9 are identified as potential D-Os by red points. Relaxing this to ED < 0.75 only adds a handful of 

points, coloured grey. The worse performance is attributable to the less distinctive patterns now included in the 

templates (Figure 2.9). 

 

Figure 2.8 Pattern matching distance curve applied to Kindler temperature series from which templates for GIs 1 to 20 were taken. Template 
width: 37 points younger to 37 older than GI date.  Blue line: smmdist curve. Red points are troughs where smmdist < 0.7, and grey where 
smmdist < 0.75; these are candidate D-Os. Red figures: GI numbers. Black line: original Kindler series, arbitrarily scaled.. Script: # Pattern 
hunting 6 sets v2test, p5 
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Figure 2.9 GI templates extracted from Kindler series from 37 data points younger to 37 older than the GI initiation date. 

Lastly, a window is tested from 100 datapoints younger to 37 older than the GI date, equating to ~2000 years 

younger and ~750 years older, which usually includes a whole GI (templates in Figure 2.11). The result is of no value 

in identifying D-Os, because templates include long stretches which vary greatly between them, and in some case 

multiple GIs are included, despite truncation where appropriate (Figure 2.10). 

 

Figure 2.10 Pattern matching distance curve applied to Kindler temperature series from which templates for GIs 1 to 20 were taken. Template 
width: 100 data points younger to 37 older than the GI initiation date.  Blue line: smmdist curve. Red points are troughs where smmdist < 0.7, 
and grey where smmdist < 0.75; these are candidate D-Os. Red figures: GI numbers. Black line: original Kindler series, arbitrarily scaled. Script: # 
Pattern hunting 6 sets v2test, p5 
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Figure 2.11 Templates extracted from Kindler series from 100 data points younger to 37 older than the GI initiation date. 

This demonstrates the superiority of a narrow window focussed on the rapid rise, and a window of 10 younger to 15 

older data points than the Rasmussen GI initiation date (~ 200 years and ~300 years respectively) is the chosen 

option. 

2.4.3.1 Number of templates 

The simplest case is to use a single template to determine the distance curve. Each template scores a perfect match 

at one point when applied to the parent Kindler series - the point from which it was extracted.  However, GIs differ 

slightly; applying multiple GI templates may utilise the information from all the GIs in finding a match, especially in 

series less clear-cut than Kindler.  

It might be considered preferable to compare GI templates with intervals in the target series which are of apparently 

similar age to the GI. However, weighting the distance curves so that GIs of age closest to the apparent pollen age 

attract more weight provided no clearer distance curves than the unweighted use of multiple templates, so weighting 

was rejected. This is further evidence that the differences between GIs are very small. 

Then the choice is how many, and which, templates to use. Options include: 

• a representative selection, for instance from short, medium and long GIs 
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• those within the apparent age range of the core 

• all GIs, or all back to a certain age. 

It was found that the difference in the distance curves between these choices is small, and the choice was made to 

include GIs 1 to 20. GI 0, the termination, is excluded as not a true D-O; GI 21 and following are excluded because 

they are rather different in shape from most younger GIs, and since few of the cores used in this project extend to 

such ages, their slightly poorer matches would weaken the distance curves of cores in which, by reason of their ages, 

they could not in practice be matches. 

2.4.4 Consistency of treatment 

2.4.4.1 Template extraction 

Normalising then detrending the Kindler series before extracting the templates means that each template sits within 

roughly the same range. Figure 2.12 shows the normalised and detrended Kindler series. 

 

Figure 2.12 Detrending of normalised Kindler series. Black: normalised Kindler series;  red: loess curve through normalised series, span = 0.1; 
blue: detrended curve, i.e. normalised less loess curve.. Script Pattern matching simple CoP v2. 

The detrending was performed by subtracting a loess curve through the normalised Kindler series with span = 0.1. 

Singular Spectrum Analysis (SSA) was applied to test whether loess was too crude a method (SSA and its use in 

analysing Kindler and pollen series is discussed in detail in 2.6.5.2). The difference between detrending using loess 

(span = 0.1) and using the residuals after extracting the sum of SSA longwave components was not considered 
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significant (Figure 2.13), especially in terms of the position and amplitude of significant changes, so loess was 

accepted as simpler to implement.  

 

Figure 2.13 Upper panel: comparison of SSA residuals (red) and normalised and loess-detrended series for Kindler (black), both normalised. 
Lower panel: difference between (scaled) SSA residual and loess-based result. Script: Rssa v3 

Each template is then extracted as a window in the normalised and detrended Kindler series around the Rasmussen 

start date of the GI, the width defined by the number of Kindler data points younger and, separately, older than that 

point.  

Each template separately is then normalised again by subtracting its mean. This ensures that all templates have a 

mean of zero; if this is not done, despite the previous normalisation and detrending of the complete series, 

templates will have slightly different means, and difference curves will partly reflect these offsets. The start and end 

of the temperature rise are found and a midpoint identified.  

Figure 2.14 shows the resulting templates. 
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Figure 2.14 Templates extracted from Kindler series for GIs 1 to 20. Headings are GI numbers. Orange data points are the rising part of the 
temperature change, and the vertical line denotes the midpoint of the rise. 

2.4.4.2 Treatment of the target series 

To calculate a distance, the numbers of data points in the windows being compared must be the same. To achieve 

this the target series is linearly interpolated to the same resolution as the templates, i.e. the same as the Kindler 

series. All pollen series used in this project have resolutions much coarser that the ~ 20 years available in the Kindler 

series. Linear interpolation between core samples neither loses information nor adds spurious information: inflection 

points, rates of change and therefore shapes remain the same. However, in Chapter 6 the strength of the evidence 

for a D-O depends partly on the underlying number of original core samples which define a shape in an interpolated 

pollen series. 

The age-interpolated pollen series is normalised and detrended in the same way as the parent Kindler series. 

It can be argued that each instance of the running window in the target series should be normalised again, to be 

compatible with the treatment of templates. Such a second normalisation is applied to each template for the 
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purpose of removing residual differences in scale and absolute value, so that templates all have the same means and 

similar scales. The argument is that similar treatment of the running window would make matches between 

templates and the running window more precise: an exact match (ED = 0) might be achieved where the target series 

pattern is identical to the template, whereas unnormalized windows taken from a detrended normalised target series 

will suffer, like the templates, from small differences in absolute value. However, this is not safe where fossil pollen is 

concerned. Where the target series is already known to contain patterns highly similar to the templates and of 

similar amplitude, such as the parent Kindler series, this is safe, but is not safe where the target series may contain 

many different patterns of different scales. The effect of a second normalisation is to render all patterns in the target 

series of similar amplitude with a mean of zero, so that a pattern of originally small amplitude, possibly arising from 

noise, could appear identical to an originally large-amplitude pattern which marks an important change in the pollen. 

Both would attract the same low distance measure. Second normalisation of the running window is therefore 

rejected. 

In this way the templates and the running window in the target series are made as far as possible consistent and 

without significant offsets to cause spurious differences.  

2.4.5 Combining distance curves 

A single template provides a single distance time series, which is easily understood. But as discussed above, and 

especially where the patterns in the target series are less clear-cut than in the Kindler templates, it is important to 

use multiple templates to maximise the chance of good matches. This leads to multiple distance curves which then 

need to be combined in some way to be able to discriminate D-O-like intervals. 

2.4.5.1 The combination challenge 

When run against the Kindler series, the distance curve for a template exhibits a perfect match (ED = 0) only against 

the interval from which it was extracted; see Figure 2.15 which uses the GI 5 template alone and has a perfect match 

at GI 5. Note that the distance curve at many other GIs shows excellent matches for GI 5, demonstrating again the 

similarity between onsets, but also that the method is sensitive enough to show that there are differences. 
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Figure 2.15 Pattern matching distance curve applied to detrended, normalised Kindler temperature series using a single template (GI 5) . Blue 
line: smdist curve. Red figures: GI numbers. Black line: original Kindler series, arbitrarily scaled. Script: # Pattern hunting 6 sets v2test, p6 

The simplest combination is to take a mean of all the distance curves, implicitly attributing equal importance to each 

template. In 2.4.3 the idea of weighting template curves by the apparent nearness in age of the template to the 

interval in the target series was raised as a theoretical ideal, but it seems to have no practical value. Figure 2.16, a 

repeat of Figure 2.6, shows that a combined mean ED of multiple templates (smmdist – see below for definition), 

even in the ideal environment of being applied to the parent Kindler series, can never show ED = 0, but the 

similarities between templates still lead to many low-ED points at D-O-like points. In this figure low points with ED < 

0.7 are labelled red, as an initial filter to identify the most probable D-Os. 

 

Figure 2.16 Pattern matching distance curve applied to detrended, normalised Kindler temperature series from which templates for GIs 1 to 20 
were taken. Template width: 10 points before to 15 after GI date.  Blue line: smmdist curve. Red points are troughs where smmdist < 0.7; these 
are candidate D-Os. Red figures: GI numbers. Black line: original Kindler series, arbitrarily scaled. Script: # Pattern hunting 6 sets v2test, p5 

While pattern matching is based on shape, and by leaving the running windows unnormalized the differences in 

amplitude of any shapes in the target series are not lost, the method does not always distinguish perfectly between 
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smaller and larger scale patterns. In Figure 2.16 with a cut-off at smmdist = 0.7, small excursions in the Kindler series 

can register as good matches, for instance between GI 1 and GI 2, and between GI 22 and GI 24. These apparent 

inaccuracies arise because we have deliberately run multiple templates which are not identical, because the aim is to 

apply it to noisy fossil pollen data, and the intention is to capitalise on the slight differences between templates.  

As an alternative to using the mean, it is possible to combine curves by taking the minimum of all the individual 

curves. This is on the grounds that each template finds its own home in the parent series perfectly, whereas a mean 

allows the many other less perfect matches to dilute this. This provides a compelling plot (Figure 2.17) when run 

against the Kindler series, with each GI picked out perfectly at mdist = 0, where mdist is the minimum of all ED 

curves. A related possible combination is the lower quartile of the individual curves.  

 

Figure 2.17 Pattern matching distance curve applied to detrended, normalised Kindler temperature series from which templates for GIs 1 to 24 
were taken. Template width: 10 points before to 15 after GI date.  Blue line: mdist = minimum of all template curves. Red figures: GI numbers. 
Black line: original Kindler series, arbitrarily scaled.. Script: # Pattern hunting 6 sets v2test, p5 ?? 

Both minimum and lower quartile measures perform poorly when applied to pollen-based series, since the minima 

are much less pronounced, owing to the less clear features in the pollen-based series, so a mean measure smmdist 

was retained.  

2.4.5.2 The consistency issue and smmdist 

To permit satisfactory combination or comparison of EDs generated by different templates or by different pollen-

based series, ED must be consistently stated. The ED time series for each template is first standardised by division by 

the length of the template, since templates may be of different lengths, and greater length means greater sum of 

distance. Then it is divided by its own mean, such that the final series has a mean of 1. A value of 1 means the match 
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is no better than random for this series, and a perfect match has a value of zero. Points which resemble the template 

will fall between 1 and 0, and the nearer to 0, the better the match. This is referred to as the standardised mean of 

means distance (smmdist). 

ED series can then be directly compared and combined not only across multiple templates applied to a single target 

series, but also across multiple target series such as different bioclimatic variables, since they may all contribute 

information about the position of D-Os. In this case a second process is needed, taking the mean of the individual 

target series smmdist curves. This is only reliable if the standardisation described above has been applied. 

2.4.6 From distance curve to binary choice: D-O or not? 

Ideally criteria are needed which, applied to the distance curve (smmdist), allow acceptance or rejection of potential 

D-Os. 

The simplest option is to set a universal threshold value, so that troughs in the curve which project below this are 

accepted as potential D-Os (DOLPs). This may not be wholly satisfactory, even within a single series, as Figure 2.16 

demonstrates by missing GIs 10 and 11. Further, a single threshold cannot be applied to all series; pollen series from 

different cores exhibit different levels of variability, so that their distance curves may show different ranges of trough 

values. 

In Chapter 6, when applying pattern matching to quantitative reconstructions, additional filters are applied, for 

instance by testing the size of the apparent subsequent interstadial.  

2.4.7 Summary of section 2.4: pattern matching 

This section has described ‘pattern matching’, a technique designed to look in time series for patterns which 

resemble the distinctive asymmetrical shape of the sharp rise in temperature seen at the onset of GIs in the 

Greenland ice archives. This can identify intervals in the time series which may represent D-Os. 

The onset phase of all GIs has a very similar but not identical pattern. Templates extract the intervals around GI 

initiations from the Kindler temperature series to represent instances of this asymmetric pattern. A relatively narrow 

template around the GI initiation provides the best discrimination. A Euclidean distance between a template and a 
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target pollen-derived series along which it is run defines where and how well the target series matches the template. 

The two series must be consistently treated by detrending and normalisation, to minimise spurious differences. 

Multiple templates from GI 1 to GI 20 should be used to capitalise on the slight differences between them, when 

applying the method to fossil pollen. The distance curves of multiple templates can best be combined by taking their 

mean. 

This technique can be applied to any time series from a palaeoclimate archive. Below, time series are made directly 

from fossil pollen series, and in Chapter 6 time series are made by quantitative reconstruction of bioclimatic values 

from fossil pollen series. Pattern matching is applied in both cases, where suitable, to find possible D-Os.  

2.5 Application of pattern matching to identify D-Os in pollen time series. 

2.5.1 Selection of pollen core data 

Pollen core records were selected that extend as far as possible into the last glacial (Weichselian, 11.7 ka – 123 ka), 

but did not have to extend into intervals younger than 20 ka. Records that only provided summary information at 

functional type level (e.g. herbs, temperate trees) were discarded. Only records for which dating information was 

available were used. Records from atypical settings, such as deltaic formations or archaeological sites, were also 

discarded. This selection process resulted in the list of 16 cores in Table 2-1.  
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Table 2-1 Pollen cores. Source: C:\Users\markg\Dropbox\UoR\Paper 3\Supp Table 1.docx 

Lat Long Elevation 
(m) 

Site code used in this thesis Name in source Reference DOI for pollen counts 

39.650 20.916 470 Ioannina Ioannina  
Sanchez Goñi et al. (2017) 

 https://doi.org/10.1594/PANGAEA.870867 

44.830 3.820 1200 Lac_du_Bouchet Lac du Bouchet - DIGI 

42.570 11.800 355 Lagaccione Lagaccione 

40.940 15.610 656 Lago_Grande_di_Monticchio Lago Grande di Monticchio 

42.130 2.750 173 Lake_Banyoles Lake Banyoles 

39.050 22.270 500 Lake_Xinias Lake Xinias 

39.103 26.321 323 Megali_Limni Megali Limni 

39.100 -0.680 225 Navarres Navarrés 

42.130 12.320 220 Stracciacappa Stracciacappa 

41.900 12.760 44 Castiglione Valle di Castiglione 

31.508 35.471 -430 Dead_Sea Dead Sea Miebach et al. (2019) https://doi.org/10.1594/PANGAEA.900564  

35.683 36.300 167 Ghab Ghab-1 Bottema (2010) https://doi.org/10.1594/PANGAEA.738784 

40.433 29.533 83 Iznik Lake Iznik Miebach et al. (2016) https://doi.org/10.1594/PANGAEA.858056 

45.900 4.930 267 Les_Echets_redone_2 Les_Echets G Beaulieu and Reille (1984) https://D-OI: 10.1111/j.1502-
3885.1984.tb00066.x 

40.490 -1.290 985 Villarquemado El Canizar de Villarquemado Harrison et al. (2019)  http://dx.doi.org/10.17864/1947.219 

35.533  46.117 1287 Zeribar Lake Zeribar Bottema, Sytze; Neotoma 
Dataset 4548, Lake Zeribar, 
Pollen Dataset - European 
Pollen Database 

https://doi.org/10.21233/b54b-nw94 

https://doi.org/10.1594/PANGAEA.900564
https://doi.org/10.1111/j.1502-3885.1984.tb00066.x
https://doi.org/10.1111/j.1502-3885.1984.tb00066.x
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Figure 2.18 Age ranges of cores, according to age models provided with core data. Script: Sampling resolution all cores v2 

2.5.2 Testing whether sampling resolution affects the recognition of D-Os 

These cores vary in chronological sampling resolution (Figure 2.19), based on the age models provided with 

the cores. (Lac du Bouchet in the ACER database records 505 samples, but these are points digitised from 

the original printed figure; the number of physical samples was 279 (Reille and de Beaulieu, 1990). 

Nevertheless, the true resolution is still good in the context of the set of cores). A compromise must be 

struck between high sampling resolution and the time required for analysis, especially with a long core, and 

the choice of physical sampling resolution may be made before the dating is available and may turn out to 

provide low temporal resolution. Sediment compaction also means that consistently spaced physical 

samples cover longer time intervals towards the bottom of a core. 
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Figure 2.19 Sampling intervals of cores; horizontal lines at 250 and 500 years. Script: Sampling resolution all cores v2 

A test was performed to determine whether the sampling resolutions of these cores are too coarse to 

enable century-scale D-Os to be seen. For this test it was assumed that the ages attributed to samples in a 

core are precise GICC05modelext ages, and that the core provides data which perfectly replicate the Kindler 

temperatures at those ages. Figure 2.20 plots in colour the Kindler series only at the points when the core 

has physical samples, for a selection of cores. Only a few of the rapid warmings in the grey full Kindler series 

are not replicated in the coloured series overlying it; there are examples at, for instance, Lago Grande di 

Monticchio and Lake Xinias. This suggests that sampling resolution is not a major bar and that the great 

majority of D-Os are in principle capable of being represented by cores with these sampling resolutions. At 

Navarres, the missed GIs are the result of an hiatus.  
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Figure 2.20 Demonstration of sampling resolution: grey line: Kindler temperature series; coloured lines: Kindler series sampled only 
where core has samples; ages: ACER age models for cores, GICC05modelext for Kindler. Script: Sampling resolution v1. 

 

2.6 Evidence of D-Os in fossil pollen data sets of reduced dimensions 

2.6.1 Dimension reduction by PCA and DCA 

Pollen data is multi-dimensional (multiple taxa) and it is therefore helpful to reduce the number of 

dimensions to allow patterns to emerge. Principal Components Analysis (PCA), also known as Empirical 

Orthogonal Functions (EOF), and Detrended Correspondence Analysis (DCA) are established dimension 

reduction techniques. PCA and DCA were applied to multi-taxon fossil pollen series. Both provide multiple 

time series (‘components’ or ‘axes’) explaining decreasing fractions of the variation. PCA assumes 

monotonic linear relationships, which are not common in abundance distributions, whereas DCA is 

designed to handle unimodal distributions of abundance along an environmental gradient, which is 

approximately the expected distribution of taxon abundance (see Chapters 1, 4 and 5).  
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PCA was calculated in R using the prcomp() function in the R stats package (R Core Team, 2023). DCA used 

the decorana() function in the vegan package (Oksanen et al, 2022. vegan: Community Ecology Package. R 

package version 2.6-4, https://CRAN.R-project.org/package=vegan. 

In both PCA and DCA, the sign attributed to a component is arbitrary. This presents a problem, in that the 

climate change which denotes a D-O in Greenland is a temperature increase, but the direction of warming 

along a PCA or DCA component is not obvious, and in any case no component has been found to be 

interpretable as a simple aspect of climate such as temperature or moisture. This means that abrupt 

changes in PCAs and DCAs might be coolings, warmings, or both, or changes in another climate variable or 

combination of variables, whereas the templates against which they are compared are warmings; very poor 

matching might result.  

Below, Lac du Bouchet is used as the main example, since it is commonly considered to exhibit D-O patterns 

e.g. Fletcher et al. (2010).  

Table 2-2: % variation explained by PCA components at Lac du Bouchet 

 Component 
% 

variation 
explained 

Cumulative 
% variation 

explained 

PCA 1 39.4 39.4 

  2 28.6 68.0 

  3 13.6 81.6 

  4 12.3 93.9 

  5 1.4 95.3 

 

Figure 2.21 shows the first 3 components as time series obtained by applying PCA and DCA to the pollen 

record from Lac du Bouchet; similar results are obtained from other cores. The locations and amplitudes of 

abrupt changes, which might signify D-Os, differ significantly between PCA and DCA, and also between 

different components in each. The intervals between abrupt changes in PCA are very short and do not 

appear to relate to ages which might match any D-Os; there are few sharp changes in DCA, which should 

represent modal distributions better than PCA, and although the first components of PCA and DCA should 
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represent the strongest signals, the two are very different. This strongly suggests that PCA and DCA time 

series do not demonstrate D-O-like patterns well. Applying PCA and DCA to other cores, none appear to 

show markedly asymmetrical changes. 

 

Figure 2.21 First 3 PCA (orange) and DCA (blue) components for Lac du Bouchet, all normalised for comparability. Top to bottom: 
First, second and third components. Script: Pattern hunting DCA allT v1/porig 

This view gains strength when pattern matching is applied to the components for Lac du Bouchet, giving the 

three distance curves shown in Figure 2.22 for PCA and in Figure 2.23 for DCA. As noted above, owing to the 

arbitrary sign, there is no certainty that an increase in the y dimension is related to a warming rather than to a 

cooling, if either, so both troughs and peaks are identified by points. In both PCA and especially DCA plots for this 

and other cores, different components identify template-similar points at different locations in the core with few 

coincidences.  
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Figure 2.22 Euclidean distance curves (smmdist) for first 3 PCA components for Lac du Bouchet. Points are troughs (and peaks in 
case the series is inverted) in the curves. Age is from ACER age model. Script: Pattern hunting PCA allT v6, pb 

x 

 

Figure 2.23 Euclidean distance curves (smmdist) for first 3 DCA components for Lac du Bouchet. Points are trough points in the 
curves, most similar to templates. Age is from ACER age model. Script: # Pattern hunting DCA allT v2, pbx 

These time series do not tell similar stories about the location of abrupt changes. Combining these distance 

curves, in the expectation that each component contributes something new to the picture, results in a number 

of potential D-Os which far exceeds the number of GIs expected in the age range. This is interpreted to mean 

that we are finding genuine D-O events but also other events, presumably including rapid coolings, but that we 

cannot distinguish between them. 

2.6.2 Squared Chord Distance (SCD)  

Rapid climate change should result in rapid change of pollen composition, and this can be identified by 

Squared Chord Distance (SCD) (see 2.4.1 for the definition) by calculating the differences between 

sequential taxon abundance vectors (sample rows) in the fossil pollen. The rate of change of SCD was also 

calculated, as change per ka. 
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SCD gives a magnitude, but not a direction, of change between samples. While it integrates the effects of all 

influences on the pollen, and so should include a signal of climate, on the other hand it cannot distinguish 

between changes arising from warmings from those due to coolings or influences unrelated to temperature 

or even climate.  

An SCD curve, and its rate of change, for Lac du Bouchet is shown in Figure 2.24. It is interpolated to the 

Kindler timescale for comparability with plots above. In this case the rate of change is little different from 

the SCD since the intervals on which the timescale has been interpolated (those in the Kindler series) are 

evenly spaced along the series; this will not be the case with all series, so the adjustment should always be 

made. It identifies many points of rapid change as upward spikes. 

 

Figure 2.24 SCD (blue) and rate of change in SCD (orange), both normalised and interpolated to the Kindler timescale, for Lac du 
Bouchet pollen series. Script: Pattern hunting DCA allT v2, porig4. ‘interp_SCD’ 

The largest changes in pollen composition should indicate the sharpest changes in climate. In Figure 2.25, after 

removing a low amplitude long wave component using loess (span = 0.5) and normalising the residual SCD, peak 

changes are labelled with red points, and compared with the positions of GIs in the Kindler series. There are 

several apparently close coincidences, such as at GIs 4, 6, 8, 10 and 11. Conversely, GIs 2, 5, 7 and 12, which 

would be expected to leave a mark in the pollen, do not make a clear appearance, and an event is registered at 

~18 ka which has no counterpart in the Greenland record.  
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Figure 2.25 Orange line: detrended normalised SCD for Lac du Bouchet, on ACER age model scale; green line: arbitrarily scaled 
Kindler temperatures, on GICC05modelext chronology, with GI numbers and, below, ± 1 sigma error bar (MCE) in GI age (thick line) 
and ± 2 sigma error bar (thin line). Script: Pattern hunting DCA allT v2, porig6 

This inconclusive result is replicated in other cores. This leads to the conclusion that while SCD clearly describes 

substantial changes in pollen composition, and that some of these may well relate to D-Os, it cannot reliably be 

used to locate D-Os. The explanation may lie in the calculation of SCD, which utilises the fractional abundance of 

each taxon, and so attributes equal importance to all taxa. In Chapter 5 it is shown that different taxa are 

differently sensitive to climate; in particular, some abundant taxa are not very sensitive to some bioclimatic 

variables, so that substantial change in abundant taxa may be of little climatic importance. In addition, as noted 

above, SCD sweeps the result of all influences into one measure, so that it is possible that two or more 

influences, such as temperature and moisture, may mute or cancel each other out. 

2.6.3 Grouping taxa 

A common approach in palynology is to use a simple classification of pollen taxa to identify events. For 

example, the ratio of arboreal to non-arboreal pollen (‘AP/NAP’, e.g. Birks and Birks (1980)) has been used, 

with increased AP interpreted as interstadial conditions. This approach is explored by using objective ways 

of summarising pollen series into a small number of classes which behave similarly, and looks in time series 

constructed from those classes for abrupt changes. 
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2.6.3.1 Hierarchical clustering 

Hierarchical clustering was selected in preference to k-means clustering since the choice of k could be 

considered arbitrary. In hierarchical clustering, a correlation matrix of the pollen abundance is used to 

identify groups of taxa which are found together. In Figure 2.26, where this is applied to the Lagaccione 

pollen record from 14 ka to 36.2 ka, available from the ACER database, two large groups emerge, which 

have clear meanings: trees and non-trees. Within trees, other lesser clusters emerge. Within non-trees, 

Artemisia and Amaranthaceae form a cluster, and others can be suggested, but generally there is less 

clarity.   
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Figure 2.26 Heatmap of correlation matrix of taxon abundances for Lagaccione for 25 most abundance taxa (96% of total 
abundance) from 14 ka to 36.2 ka. 

However, the clusters found are sensitive to the time range considered. Clustering using an extended series 

from 9.2 ka to 76 ka (additional data provided by Donatella Magri, pers. comm., June 2020) shows a less 

clear result with different groupings, and the tree group is fragmented (Figure 2.27). This arises because the 

relative taxon abundances differ in different intervals. Thus the groups found by hierarchical clustering are 

unstable. 

 

Figure 2.27 Heatmap of correlation matrix of taxon abundances for Lagaccione for 25 most abundance taxa (96% of total 
abundance) for age range 9.2 ka to 76.2 ka. 

Similarly, different cores have different assemblages, and give different clusters in consequence. This in 

itself is not a problem, since each core will signify D-Os in its own way, but the sensitivity of the groups to 

the choice of age ranges renders clustering unreliable. 
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2.6.3.2 Grouping by Plant Functional Types (PFTs) 

Plants may be grouped into plant functional types (PFTs), of which there are many possible definitions 

depending on the purpose. A PFT is a group of taxa which have similar responses to physical or biotic 

environmental factors, and similar expressions of multiple traits such as physical form and phenology; that 

is, they ‘work the same way’, however distant they may be phylogenetically (e.g. Harrison et al., 2010), and 

changes in relative abundance of PFTs may therefore signal D-Os. AP and NAP form a very simple PFT 

classification, but here the set of PFTs provided for use with the ACER database is tested. Some taxa can 

belong to more than one PFT, and their allocation to a PFT therefore depends partly on context; if the other 

components of one of the candidate PFTs are abundant, a taxon is likely to be attributed to that PFT.  

In a typical fossil core, the 10 most abundant PFTs (as defined above) cover approaching 90% of the pollen 

abundance. The two examples below – Lac du Bouchet and Ioannina - show that cores can display rapid 

switches in abundance between different PFTs, which is promising as possible evidence of D-Os, and also 

that different cores can be dominated by different PFTs. 

 

Figure 2.28 Stacked area plot of abundances of 10 most abundant PFTs covering 86% of total abundance at Lac du Bouchet over 
time. Script: PFT and recons v1 
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Figure 2.29: Stacked area plot of abundances of 4 major PFTs covering 75% of total abundance at Ioannina over time (NB legend 
colours differ from Figure 2.28). Script: PFT and recons v1 

Figure 2.28 shows that at Lac du Bouchet there are major switches between xerophytic shrubs and grass 

graminoids, which between them dominate the abundance. 

Figure 2.29, which plots only the 4 major PFTs for clarity, show that at Ioannina at 470 m asl on the western 

side of Greece, temperate and warm-temperate broadleaved deciduous trees are the most abundant PFTs 

in the earlier part, and that the main switches are between on the one hand a combination of broadleaved 

deciduous trees and xerophytic shrubs and on the other grass graminoids. 

This means that the dominant changes are between (usually) two significant PFTs, which ignores much 

information, but more importantly the number of similar-scaled rapid changes appears much greater than 

the expected number of D-Os in the age range. For these reasons, grouping by PFTs was not pursued. 

2.6.4 Dynamic Time Warping (DTW) 

DTW, a method widely used in signal processing and speech recognition, matches features in two time 

series by locally stretching and shrinking the time frame of one of the series to minimise the distance 

between them (Giorgino (2009), Keogh and Pazzani (2001)). Here one is the Kindler temperature series, and 

the other a time series derived from pollen. Unlike pattern matching, which extracts multiple templates and 

deals with them individually, DTW attempts to match the Kindler series as a whole with a pollen series as a 

whole. Minimising the distance between the two series is achieved by moving features of the pollen series 

in the time dimension to match features in the reference (Kindler) series. Since the features in the Kindler 

series are principally D-Os, this should align any D-O-like features in the pollen series with counterparts in 
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the Kindler series by adjusting the pollen series sample ages. This would permit simultaneous identification 

of all these D-O-like features along with their revised ages. 

 

DTW matches series by finding the lowest cumulative distance through a distance matrix of the two series, 

given 

• permissible ‘step’ patterns, that is, which moves between cells are allowed 

• permissible ‘window’ types and widths, that is, how much deviation from the diagonal is allowed. 

The dtw R package (Giorgino, 2009) was used to explore this technique. 

The method recognises uncertainties in the pollen age model by defining how much the age of a sample 

can be changed, while the reference (Kindler) series ages remain fixed. This is achieved by constraining the 

permissible width of lowest-distance path within a window about the diagonal in the distance matrix; this 

determines the permitted change in the ages of the pollen samples. Since we need to reflect increasing age 

uncertainties with age, none of the standard window types available in the package are appropriate, and a 

parameter-driven function was implemented which provides a window which widens along the diagonal. 

DTW by default stretches a shorter series to match the longer, so if one series has many more observations 

than the other for a given age range, DTW will match many points in the shorter vector to a single point in 

the longer. This cannot represent physical reality in a pollen core, so the less densely sampled pollen series 

is interpolated to the same timescale as the Kindler series, as is done in pattern matching. 

Figure 2.30 is an example of the result. It shows the path taken through a distance matrix where the axes 

are the data points in the Kindler time series and those in the interpolated ACER age model for Ioannina. 

The matching is between the Kindler temperature series and a quantitative reconstruction of gdd at 

Ioannina. It uses the custom widening window reflecting increasing age uncertainty over time. The distance 

of the path from the 1:1 diagonal represents the amount by which the age of the Ioannina sample has been 

changed to achieve the match. This is an unsatisfactory result, and is repeated for other cores. If DTW were 
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providing good matches, the path would move in very small steps. The pronounced vertical and horizontal 

movements seen in practice mean that (a) several points in one series are matched with one in the other, 

which is physically impossible, and (b) that the age adjustment applied to sequential samples does not 

progress smoothly but often switches from one extreme permitted by the window to the other. This can be 

expressed as the change to sample ages shown in Figure 2.31. 

 

Figure 2.30 Ioannina distance matrix, with custom-built widening window and the path (blue) taken through it to minimise the 
cumulative distance (represented by colour). ‘Reference’ is the Kindler series, and ‘Query’ the interpolated points in the ACER age 
model for Ioannina, using a quantitative reconstruction of gdd as the time series to be matched. Script: Dynamic Time Warping v3 
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Figure 2.31 Changes in Ioannina sample ages implied by DTW run shown in Figure 2.30 above. 

Despite experimentation with several parameters available in the dtw R package, DTW always performs 

poorly when applied to pollen core data.  

There is no means of controlling the detail of how DTW matches the series, for instance by fixing certain 

points as already matching, or by providing dating points. This means that if DTW picks a poor match early 

in the sequence, the rest is nonsense. Long sequences tend to run out of control, while short sequences 

with a limited number of clear and already closely matching features, such as overlaps in speleothem 

records, or a spoken phrase and a reference sonogram, work well. DTW is known to suffer from the ease 

with which it can provide these ‘pathological’ solutions, and especially those where a point in one series is 

matched to many in the other (Giorgino (2009), Keogh and Pazzani (2001)). This is interpreted to mean that 

a high degree of initial similarity between the features of the two series is critical to success, and that the 

similarity between the pollen series features and those in the Kindler series is not sufficient.  

2.6.5 Other methods 

Ther are other methods that could be applied to quantitative reconstructions, such as those described in 

Chapter 5. These include Hidden Markov models and Singular Spectrum Analysis. 
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2.6.5.1 Hidden Markov models (HMMs) 

Hidden Markov models identify underlying ‘states’ in a time series. Given that D-Os represent a change 

from a stadial to an interstadial state, the expectation was that HMMs could identify D-Os in climate-related 

series.  

HMMs were used by Lin et al., (2014) to improve the matching process used in the LR04 marine benthic 

δ18O stack (Lisiecki and Raymo, 2005) and establish uncertainties in the match. 

A Markov chain is a series of sequential steps, each of which can be characterised by one of two or more 

different ’states’. To determine the current state, no information is needed from further back in the chain 

than the previous state; it ‘has no memory’, or more accurately, the entire memory is enshrined in the 

previous state. For instance a Fibonacci series is not a Markov chain: the last two states determine the 

current state. A Markov model requires a transition matrix, which is the table of probabilities that one state 

will at the next step change to another. 

A hidden Markov model uses ‘emissions’ (the observations, here the pollen data) to hypothesise the 

underlying unobservable Markov states (the climate states, e.g. GIs and GSs). The R package depmixS4 

(Ingmar Visser, Maarten Speekenbrink (2010). depmixS4: An R Package for Hidden Markov Models. Journal 

of Statistical Software, 36(7), 1-21. URL  https://www.jstatsoft.org/v36/i07/) was used to explore this 

possibility. In this package, the transition matrix is established heuristically by the software.  

The user chooses the number of states to use by experimentation. The method was first applied to the 

Kindler temperature series as a test. Applying 4 states to the detrended, normalised Kindler Greenland 

temperature series, the HMM clearly distinguishes GIs, GSs, and two climate regimes which are neither GS 

nor GI (Figure 2.32). While HMMs give no information about the physical meaning of the states, the clear 

interpretation here is that 1 (blue) is GSs, 4 (red) is GIs, 3 (orange) is low-amplitude change generally 

occurring at transitions and intervals slightly above the mean, and 2 (green) is similar to 3 but below the 

mean. This means that nearly all D-Os can be identified in the Kindler series by the transitions from state 1 

to state 4.  
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Figure 2.32 4-state HMM for Kindler temperature (normalised and detrended), with transition matrix. States: 1 = blue, 2 = green , 3 
= orange, 4 = red..  Script: Hidden Markov test2 

Applying 2, 3 and 4 state HMMs to pollen core series, whether quantitative reconstructions or PCA, DCA or 

other time series, does not, however, identify rapid increases neatly. For example Figure 2.33 shows a 3 

state HMM applied to a Lagaccione climate reconstruction.  

 

Figure 2.33 Lagaccione reconstruction mean: 3 states. Green = clear low peaks, orange = high amplitude peaks and troughs, blue = 
uneventful, near 0. Table is the heuristically found transition matrix. Script: Hidden Markov test2 

The conclusion is that HMMs do not help to locate D-Os in pollen series. HMMs find persistent states, not 

sharp transitions, and in pollen series this can degenerate to dividing above from below mean intervals. The 

method works for the Kindler series because the persistent states are separated by sharp transitions.  
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2.6.5.2 Singular Spectrum Analysis (SSA) 

Singular Spectrum Analysis (SSA) decomposes a time series into trends, periodic components, and a 

residual, which is considered noise; some choices are required in what is treated as periodic (Vautard and 

Ghil, 1989; Vautard, Yiou and Ghil, 1992; Hassani, no date). It is a non-parametric method, making no 

assumptions about underlying distributions or linearities. It is sometimes used for ‘de-noising’, that is, 

identifying noise so that it can be removed from a series. Its use was motivated by the possibility that some 

element of the decomposition would identify D-Os, and/or that it could de-noise the data or remove a 

periodic component to leave D-Os more clearly visible.  

Rssa is the only R package which performs SSA (Golyandina and Korobeynikov, no date).  It was applied to 

the Kindler series as a test. 

Figure 2.34 decomposes the unmodified Kindler series into components as time series, and Figure 2.35 

shows the results as trajectories in phase space. After trend (eigenvectors 1+6 in the figures), several 

sine/cosine pairs of eigenvectors are identifiable as approximately circular plots in phase space (Figure 

2.35), denoting sinusoidal components, e.g. 2+3, 4+5, 7+8, 9+10. 

 

Figure 2.34 First 20 principal components of SSA applied to the Kindler temperature series, plotted as time series; headings include 
% variation explained. Script: Taxon metrics\DTW\Rssa v3.R 
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Figure 2.35 First 20 principal components of SSA applied to the Kindler temperature series, plotted in phase space. Script: Taxon 
metrics\DTW\Rssa v3.R 

Combining selected pairs of principal components yields the reconstruction in Figure 2.36, in which it is 

plain that the D-Os are in the residuals. 

 

Figure 2.36 Reconstruction of components of the original series using the following combinations of principal components: F1 = 
(1,6), F2 = (2,3), F3 = (4,5), F4 = (7,8), F5 = (9,10), F 6 = (16,17). Residual is after these 6 series are extracted. X axis time steps are 
~20 year intervals, so x = 5000 represents age = 100 ka; max age ~123ka. 

The residuals can be decomposed further, finding ever smaller sinusoids, but there is never a component 

which isolates the D-O warmings, and there are no further significant qualitative changes in the remaining 
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residuals or in their range. In other words, because D-Os are neither trend nor periodic, it is not possible to 

separate D-O signals from noise using SSA even in the Kindler series. 

SSA provides further potentially useful information. In the Kindler series, the first four components after the 

trend are reconstructed into two longwave periodicities (F2, F3) with ranges of ~ +/- 3 oC which can readily 

be recognised as obliquity and precession from their periods and phases, and from the change in amplitude 

of precession over time, when compared with the Laskar et al. (2004) insolation values for 65 oN (Figure 

2.37). There is a lag from obliquity to the Greenland signal of ~ 1.9 ka and a larger lag from precession. This 

finding is not novel and is not explored further here. The physical meaning of three shorter low-amplitude 

periodicities, F4 at ~4300 years, F5 at ~6250 years and F6 at ~1670 years, is not known. 

 

 

Figure 2.37 Comparison of F2 and F3 components calculated by SSA from the Greenland Kindler series (Kindler et al., 2014) (bold) 
with (Laskar et al., 2004) obliquity and (inverted) precession (thin), both normalised, at 65 oN summer solstice. Script: Taxon 
metrics\DTW\Rssa v3.R 

 

In contrast, these Milanković periodicities are not clear in any pollen-based core series examined using SSA. 

Had they been present and explained a useful fraction of the variation, their extraction would have 
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removed a non-D-O signal from the series, leaving the D-O signal more obvious. The lack of a Milanković 

signal in fossil pollen series, when it is present in the Greenland record of the climate changes which must 

have driven changes in the pollen, is a sign of the lower signal-to-noise ratio of the pollen records, and 

again suggests that there is a considerable non-climatic component in the pollen signal. 

 

Singular Spectrum Analysis is designed to identify trend and periodic components. It is cannot separate out 

different non-periodic or asymmetrical components. Hence it leaves D-Os in its residuals, where they 

remain inseparable from noise.  

2.7 Summary of chapter 

This Chapter investigates how to find D-O-like patterns in time series derived in some way from pollen 

cores. The anatomy of a Dansgaard-Oeschger event is described and defined, and the Kindler temperature 

series is chosen as the key Greenland series and the source of D-O patterns (‘templates’). SEA shows that D-

Os – the initiation phases of Greenland Interstadials – are very similar but not identical to each other, and 

are distinctive compared with other intervals in the Greenland data. 

Pattern matching compares multiple D-O templates taken from the Kindler series with a pollen-based 

series, using Euclidean distance to establish the degree of similarity to the templates and to locate the 

points in the pollen series which are most like a D-O. Templates with a relatively narrow focus on the rising 

portion of the GI initiation yield the best discrimination, and a standardised mean of means of the 

Euclidean distances (smmdist) is the best way of combining distance curves from multiple passes. Pattern 

matching applied to the parent Kindler series successfully finds all but two GIs, suggesting good results may 

be obtainable when applied to pollen series. 

The selection of Mediterranean terrestrial fossil pollen cores is discussed, and it is shown that their 

relatively low chronological sampling resolution does not preclude them from identifying D-Os. 

A common theme emerges that pollen records are noisy and include non-climatic signals, and features 

which may represent Dansgaard-Oeschger events are much less clear than in the Greenland data. 
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The last section examines eight ways of summarising multi-taxon fossil pollen records to provide a limited 

number of time series in which D-Os may be visible, and may optionally be tested by pattern matching. 

These are PCA, DCA, SCD, grouping by hierarchical clustering and by PFTs, DTW, HMM, and SSA. As a test of 

principle, most of these are run against the Kindler series.  

None perform very well. PCA and DCA show few asymmetrical intervals, and when pattern matching is run, 

potential D-Os are inconsistently located across different components. None of the components appear to 

have a simple climatic meaning and the signs of the components are arbitrary. It appears that PCAs and 

DCAs sweep together many non-temperature influences, making comparison with a warming potentially 

nonsensical. 

SCD identifies abrupt changes in pollen composition, but it is not clear whether these are warmings, 

coolings or something else; only some coincide with expected dates of GIs, and other events are picked 

which are clearly not GIs. SCD in this analysis attributes equal importance to all percentage changes in 

abundance, so variability in highly abundant taxa which are climatically relatively insensitive, and therefore 

of little significance to the identification of D-Os, may dominate the result. 

The groups found by hierarchical clustering and by grouping by PFTs are unstable, being sensitive to the 

assemblage within the age range chosen, and vary between cores. DTW requires a higher degree of initial 

similarity between the Greenland features and those in the pollen series than the pollen series can offer. 

HMMs are good at identifying persistent states but not at locating sharp changes. SSA is unable to separate 

non-periodic components, leaving the irregular D-O signal included in noise. 

A contributor to the relatively poor performance of these methods is that few of the time series have an 

identifiable climatic meaning, whereas the Kindler series does. This led to the making of quantitative 

climate reconstructions to provide time series with clear climatic meaning in which to search for D-Os. The 

following three Chapters deal with the methodology of quantitative climate reconstruction, before 

returning in Chapter 6 to the use of pattern matching to locate D-Os in the reconstructed series.  
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3 The impact of methodological decisions on climate reconstructions 

using WA-PLS 

 

This Chapter is a paper published in Quaternary Research and is available to read online at 

https://doi.org/10.1017/qua.2020.44. It has been written and referenced in the style guidelines of that 

journal. The authors were Mark Turner, Dongyang Wei, Sandy P. Harrison and Iain Colin Prentice. All authors 

contributed to the concept, the analyses were performed by MT, and DW provided climate and Generalised 

Additive Model (GAM) data. The initial draft was written by MT and SPH, and all authors contributed to the 

final paper.  Estimated contributions: MT 60%, SPH 25%, DW and ICP together 15%. 

The motivation for the paper was to consider the selection and treatment of data in constructing training 

sets for quantitative climate reconstructions. The training set is the foundation of any calibration process in 

quantitative climate reconstruction. The main subjects were the climate space sampled by the set, and the 

inclusion, exclusion and amalgamation of taxa. The reconstruction method chosen was Weighted Averaging 

Partial Least Squares (WA-PLS).  

3.1 Abstract  

Most techniques for pollen-based quantitative climate reconstruction use modern assemblages as a 

reference data set. We examine the implication of methodological choices in the selection and treatment of 

the reference data set for climate reconstructions using Weighted Averaging Partial Least Squares (WA-PLS) 

regression and records of the last glacial period from Europe. We show that the training data set used is 

important because it determines the climate space sampled. The range and continuity of sampling along 

the climate gradient is more important than sampling density. Reconstruction uncertainties are generally 

reduced when more taxa are included, but combining related taxa that are poorly sampled in the data set 

to a higher taxonomic level provides more stable reconstructions. Excluding taxa that are climatically 

insensitive, or systematically overrepresented in fossil pollen assemblages because of known biases in 

https://doi.org/10.1017/qua.2020.44
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pollen production or transport, makes no significant difference to the reconstructions. However, the 

exclusion of taxa overrepresented because of preservation issues does produce an improvement. These 

findings are relevant not only for WA-PLS reconstructions but also for similar approaches using modern 

assemblage reference data. There is no universal solution to these issues, but we propose a number of 

checks to evaluate the robustness of pollen-based reconstructions. 

3.2 INTRODUCTION  

Models of the coupled climate system are used to project how changes in natural and anthropogenic 

forcing will affect future climates (Collins et al., 2013; Kirtman et al., 2013). The expected changes in 

twenty-first-century forcing and climate are larger than those experienced during the recent historic period 

against which these models have been calibrated. Quaternary climate states in which the changes in forcing 

and climate are as large as those projected for the end of the twenty-first century are therefore now 

routinely used as an out-of-sample test of such models (Braconnot et al., 2012; Schmidt et al., 2014; 

Harrison et al., 2015). This evaluation is crucially dependent on the availability of reliable quantitative 

reconstructions of multiple climate variables (Harrison et al., 2014). Indications of past climate can be found 

in many different marine and terrestrial archives, but pollen analysis provides by far the most 

geographically widespread source of data for terrestrial palaeoclimate reconstructions (Bartlein et al., 2011; 

Marsicek et al., 2018 and references therein). There are many methods to make quantitative 

reconstructions of climate variables from pollen data using both statistical relationships and process-based 

modelling. Most reconstructions of terrestrial palaeoclimate rely on statistical relationships between 

modern pollen abundances and modern climate. There are two basic approaches (see discussion in ter 

Braak and Juggins, 1993): analogue methods select the modern climate associated with the modern pollen 

samples whose abundance patterns are most like a given fossil sample; regression-based methods calculate 

a transfer coefficient for each pollen taxon and the climate variable, which is then applied to taxon 

abundances in fossil pollen samples to reconstruct climate through time. 
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Weighted averaging partial least squares (WA-PLS; ter Braak and Juggins, 1993) is the most widely used of 

the regression-based methods. Weighted averaging is a form of regression adapted to the fact that taxon 

abundances generally show unimodal, rather than monotonic, responses to climate variables. The climate 

estimate for any given sample is the abundance-weighted mean of the estimated optima of all the taxa 

present. WA-PLS refines these optima by looking for further information in the residuals between the initial 

regression and the modern observations and repeats this until the incremental change ceases to be 

statistically significant. WA-PLS is considered more robust against spatial autocorrelation than modern 

analogue methods—that is, it is considered to be less affected by the fact that geographically clustered sites 

may inherently show similar taxon composition (Telford and Birks, 2005). WA-PLS has been widely used for 

climate reconstructions based on biotic assemblages, including pollen, diatoms, chironomids, and 

foraminifera (Lotter et al., 1997; Brooks and Birks, 2001; Seppä et al., 2009). In some more recent 

publications WA-PLS reconstructions have been presented alongside reconstructions using other statistical 

methods, such as modern analogue methods (Brewer et al., 2008; Peyron et al., 2011; Sinopoli et al., 2019). 

A number of methodological choices have to be made in the application of WA-PLS, including the choice of 

a training data set and which taxa are included in the regression. Studies using WA-PLS generally rely on 

model performance statistics as a measure of the reliability of reconstructions. They are usually silent about 

how methodological decisions were reached, and the implications of specific choices for the quality of the 

reconstructions are rarely made explicit. However, a number of studies of quantitative reconstruction 

techniques (Birks and Seppä, 2004; Bjune et al., 2010; Telford and Birks, 2011; Juggins, 2013; Salonen et al., 

2013; Juggins et al., 2015; Shennan et al., 2015; Jonkers and Kuč era, 2018) have examined some of these 

choices and suggested that they can influence the quality of the reconstructions. None of the previous 

studies provides a comprehensive analysis of the issues or discriminates between the quality of the 

statistical model and the impact on the climate reconstructions. Our goal in this paper is to increase 

confidence in the quantitative reconstructions of past climates that are used for model evaluation through 

an analysis of the implications of methodological decisions both on model performance measures under 

modern conditions and the resulting quantitative reconstructions of glacial climates in southern Europe. We 
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propose ways in which the implications of specific methodological choices can be evaluated in order to 

document the reliability of the resulting reconstructions. 

3.3 METHODS  

We test the impact of methodological choices by making climate reconstructions for selected fossil pollen 

records using subsets of a continental-scale modern training data set as inputs to WA-PLS (see “Modern 

pollen data”). In order to run these tests under climate conditions substantially different from present, we 

use fossil pollen records from southern Europe covering the last glacial period (see “Fossil pollen”). We 

examine the effects of methodological choices on WA-PLS model parameters and on the resulting climate 

reconstructions and their uncertainties (see “Application of WA-PLS”). Modern pollen data The modern 

pollen data set (Figure 3.1, Supplementary Fig. 1), which we refer to as SMPDS, was constructed by 

combining records from the European Modern Pollen Database (EMPD) v3.0 (Davis et al., 2013), the 

Eastern Mediterranean-Black Sea-Caspian Corridor Biomes (EMBSeCBIO, which we abbreviate as EMB) 

database (Marinova et al., 2018), additional published records (see Supplementary Table 1) from the 

European Pollen Database (http://www.europeanpollendatabase.net/) or taken from Pangaea 

(https://www.pangaea. de/), and 73 modern surface samples from northern Spain (Wei et al., 2019a). 

About two-thirds of the sites (4575) were derived from the EMPD v3.0 (Davis et al., 2013), and a further 

1088 sites were derived from the EMBSeCBIO database (Marinova et al., 2018). Some of the sites in the 

EMPD also occur in the EMBSeCBIO database, and these duplicates have been removed. The final SMPDS 

data set consists of records from 6458 terrestrial sites (Harrison, 2019). We compare the EMPD and 

EMBSeCBIO subsets of the SMPDS data set to the full data set to examine the impact of the choice of 

training data set. The majority of the records were available as raw pollen counts; the remainder were 

percentages. The individual pollen records were taxonomically standardised and cleaned to remove 

obligate aquatics, insectivorous species, introduced species, and taxa that only occur as cultivars. The final 

data set expresses the counts as a percentage of the sum of all taxa remaining after this screening. There 

are 1558 taxa recorded in the SMPDS. Since some of these taxa are only recorded sporadically, we 
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amalgamated them at higher taxonomic levels to produce a data set with 249 taxa (Harrison, 2019). We 

confined our analyses to taxa with ten or more occurrences in the SMPDS (n = 195). 

3.3.1 Modern climate data  

Modern climate data were derived from the Climate Research Unit CRU CL 2.0 data set, which provides 

monthly mean precipitation, monthly mean temperature, and fractional sunshine hours as long-term 

means for 1961 to 1990 at 10 minute spatial resolution (New et al., 2002). Geographically weighted 

regression (GWR) (Brunsdon et al., 2002) using latitude, longitude, and elevation as predictors was 

performed in ArcGIS (ESRI, 2014) to obtain the climate at the location and elevation of each modern pollen 

site. We then calculated three bioclimatic variables: (a) mean temperature of the coldest month (MTCO), 

(b) growing degree days above a baseline of 0°C (GDD0), and (c) moisture index (MI), the ratio of annual 

precipitation to annual potential evapotranspiration. MTCO was taken directly from GWR output. Daily 

values of temperature, sunshine fraction, and precipitation were derived using a mean-conserving 

interpolation (Rymes and Myers, 2001) of the monthly data. MI was calculated from the daily temperature, 

precipitation, and sunshine data using modified Python code from the Simple Process-Led Algorithms for 

Simulating Habitats (SPLASH) model (Davis et al., 2017).  
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Figure 3.1 Distribution of modern pollen samples in climate space, represented by growing degree days above 0°C (GDD0) and mean 
temperature of the coldest month (MTCO), sampled by Eastern Mediterranean-Black Sea-Caspian Corridor Biomes (EMBSeCBIO) 
(labelled EMB), the European Modern Pollen Database (EMPD), and the full SMPDS data sets; SMPDS includes EMB and EMPD. The 
background shows the climate space for a rectangular area (latitude 29° N to 82° N, longitude 21° W to 150° E) enclosing the 
SMPDS data set, derived from the Climate Research Unit CRU CL 2.0 database (New et al., 2002). Stars indicate the present climate 
at the eight fossil sites used as examples. 

These three bioclimatic variables have been shown to provide a good prediction of vegetation distribution 

both at global (Wang et al., 2017) and regional (Wang et al., 2013) scales because they reflect important 

and distinct ecophysiological controls on plant growth (Harrison et al., 2010). MTCO is a surrogate for 

extreme winter temperatures and influences the survival of woody plants through a wide range of low 

temperature–tolerance mechanisms, GDD0 is a combined measure of the length and warmth of the 

growing season that determines potential annual carbon accumulation, and MI is a measure of plant-

available moisture (Harrison et al., 2010). Canonical correspondence analysis (CCA) applied to the SMPDS 

data set (Wei et al., 2019a) showed a strong correlation between species abundance and these climate 

variables. The modern climate data at each of the SMPDS sites (Harrison, 2020) are available online (doi: 

10.5281/zenodo.3605003). Partial CCA carried out using each climate variable in turn, with the other two 

as covariates, shows that each variable has a highly significant effect ( p < 0.001) that is independent of the 

others (Wei et al., 2019a). 
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3.3.2 Fossil pollen  

The fossil pollen data were taken from the Abrupt climate Changes and Environmental Responses (ACER) 

database (Sanchez Goñi et al., 2017). The ACER database includes 93 pollen records globally covering part 

or all of the last glacial period (73–15 ka) with a temporal resolution better than 1000 years. Glacial-age 

pollen records provide a test of reconstruction techniques under climate conditions substantially different 

from present and therefore allow rigorous testing of the adequacy of the modern training data set. As 

examples, we use eight lacustrine records from southern Europe from the ACER database (Supplementary 

Table 2). The database provides standardised age models for all these cores, but the sampling resolution 

varies among cores. The Ioannina core (northwestern Greece, 39° 45’ N, 20° 51’ E) is used here as the 

primary example because it covers a long period (79.7–10.6 ka) and has relatively high temporal resolution 

(mean 237 years). However, as discussed below, the conclusions based on this core are supported by 

analysis of the other fossil data sets.  

3.3.3 Climate space analysis  

One assumption of WA-PLS is that the taxa used for reconstruction show a unimodal response to the 

climate variable being reconstructed. In order to test whether this assumption holds true, particularly for 

amalgamations to higher taxonomic levels, the climate space occupied by individual pollen taxa was 

represented and visualised using Generalized Additive Models (GAM) (Guisan et al., 2002) implemented 

with the Mixed GAM Computation Vehicle (mgcv) R package (Wood, 2017). This approach fits a response 

surface to the concentration of the pollen abundance in 3D climate space. Abundance is taken as the pollen 

percentage based on a pollen sum that includes all of the 195 taxa. Convex hulls are used to delineate the 

area of climate space that contains sampling points and thus avoid representing taxon abundances in 

climates not closely constrained by the modern pollen data. Convex hulls were fitted using the alphahull 

and ggplot2 packages in R (Pateiro-Lopez and Rodriguez-Casal, 2016; Wickham, 2016). We used a square 

root transformation of MI, as differences between MI values at the low end of the MI scale are more 

important than differences at the high end in their effect on vegetation (Prentice et al., 2017); taking the 

square root “stretches” the lower values and “compresses” the higher ones. MTCO and GDD0 were not 
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transformed. We do not include interactions among the climate variables since previous analyses (Wei et 

al., 2019a) have shown that they each have a significant and independent influence on the distribution of 

plant taxa and vegetation types. For visualisation purposes, we show 2D slices (MTCO and MI) through the 

fitted 3D response surfaces at low, medium, and high values of GDD0. Here we present a number of 

illustrative GAMs; Wei et al. (2019b, 2020) provide GAMs for all of the 195 pollen and pteridophyte spore 

taxa from the SMPDS data set.  

3.3.4 Application of WA-PLS  

The modern bioclimatic and pollen data were used to create pollen-climate transfer functions 

independently for MTCO, GDD0, and √MI using WA-PLS (ter Braak and Juggins, 1993). WA-PLS was 

implemented with the rioja R package (v0.9-15.1; Juggins, 2017). The performance of the calibration 

models was assessed through leave-one-out crossvalidation. The number of components used in each 

model was estimated through a randomisation t-test on the results of this cross-validation (van der Voet, 

1994). We selected the significant component with the lowest root mean square error (RMSE), but only if 

there was a significant improvement in RMSE relative to a lower number of components—since including 

more components can result in over-fitting of the data so that model predictive value decreases. When 

making direct comparisons between different subsets of the data and SMPDS, we used the component that 

was considered significant for that subset (see Supplementary Table 3) rather than the same component 

across all sets. This choice does not affect the analysis, and for completeness we include an example 

comparison using the same components for all training sets in the Supplementary Information 

(Supplementary Figs. 2, 3, and 4). The (in)stability of transfer coefficients and the statistical uncertainty of 

reconstructions were assessed by bootstrapping the modern sample set with replacement 1000 times 

(Efron, 1979) and running WA-PLS each time to derive 1000 instances of both the taxon transfer coefficients 

and the reconstructed climate for each sample. The standard deviations (SDs) of the taxon transfer 

coefficients and the SDs of the reconstructions were then calculated from the 1000 bootstrap samples. The 

variability of a taxon coefficient, as measured by its SD, reflects how consistently the available modern 

samples including that taxon represent climate. The SD of the reconstruction calculated in this way 
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represents the combined effect of the taxon coefficient variability across all taxa in a fossil sample. This 

approach differs from the standard method for calculating uncertainties in the rioja R package (Juggins, 

2017), which is based only on bootstrapping of the modern data set, because it combines the uncertainties 

of individual taxa from the modern pollen data set. Data analysis and plotting were performed in R v3.5.1 (R 

Core Team, 2018). 

3.4 RESULTS  

WA-PLS provides a transfer coefficient for each taxon and each bioclimatic variable. The validity of this 

transfer coefficient depends on the taxon being sampled across the full range of its realised niche in climate 

space, and this in turn is determined by the climate space sampled in the modern pollen training data set. 

Our initial tests therefore focus on the impact of the sampling of climate space on WA-PLS performance 

metrics and the resulting reconstructions (see “Impact of choice of training data set” below). One of the 

factors that affects the width of the realised taxon niche is taxonomic resolution, with species in general 

occupying a more limited niche than genera or families. The use of higher taxonomic groupings increases 

the number of samples available and can improve the sampling of climate space. We therefore examine the 

impact of using higher taxonomic groupings on the sampling of climate (see “Impact of amalgamation of 

pollen taxa to higher taxonomic levels” below). The choice of taxa included in the WA-PLS model will also 

impact the overall width of the sampled climate space, and we also address the potential impact of 

including or excluding taxa on model performance and the resulting reconstructions (see “Impact of 

number of taxa” below).  

3.4.1 Impact of choice of training data set  

In order to test the impact of the choice of training data set on WA-PLS performance metrics and 

reconstructions, we compared results from the full SMPDS data set and those obtained using either the 

EMB or the EMPD subsets. The EMB samples warmer seasonal climates than the EMPD (see Figure 3.1, 

Supplementary Fig. 5). The SMPDS samples much colder winter climates (as measured by MTCO) than 

either the EMB or EMPD data sets, and colder summers (as measured by GDD0) than the EMB set. These 
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differences in the sampled climate space are reflected in reconstructions of winter (Figure 3.2, see 

Supplementary Fig. 2) and summer (see Supplementary Fig. 3) temperatures, and also in moisture (as 

measured by MI) (see Supplementary Fig. 4). 

 

Figure 3.2 Reconstructions of mean temperature of the coldest month (MTCO) during the last glacial period (80,000 to 10,000 
calendar years before 2000) using the pollen record from Lake Ioannina, (a) using the Eastern Mediterranean-Black Sea-Caspian 
Corridor Biomes (EMBSeCBIO) (labelled EMB) and the European Modern Pollen Database (EMPD) as training data sets, and (b) using 
the full SMPDS data set. The reconstruction spread (±2σ) is obtained by resampling the training set 1,000 times. 

Reconstructions based on the EMB data set are generally warmer than those based on the EMPD, and there 

is little overlap between the spread of the reconstruction estimates in the coldest intervals of the glacial 

period (see Figure 3.2). The SMPDS data set produces temperature reconstructions similar to those based 

on the EMPD but has a considerably narrower reconstruction spread because it samples a wider climate 

space and contains more samples for each pollen taxon and thus a more complete sampling of the taxon’s 

climatic range. The SDs of the coefficients are related to the number of occurrences (Figure 3.3) of the 

taxon in the sampled data set.  
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The difference in the reconstructions and their stability is not reflected in differences in the WA-PLS model 

performance measures (Table 3-1). Model performance is poorer for EMB-based reconstructions than for 

SMPDS-based reconstructions, but all of the measures of model performance (r2, RMSE, maximum bias) 

are better for EMPD than for the SMPDS data set because they are measures of how well the WA-PLS 

model replicates the sampled climate space, rather than whether the training data set encompasses a 

sufficiently large climate space. The standard performance measures are therefore an insufficient guide to 

the reliability of WA-PLS reconstructions. Comparison of observed versus predicted values (and their 

residuals) for the SMPDS data set show that this data set adequately reproduces modern climate 

(Supplementary Fig. 6).  

Both the range and the continuity of the sampled climate are important. This is a consequence of the 

underlying assumption of WA-PLS that response curves are unimodal and extend across the full realised 

niche of the taxon; an abundance distribution which is truncated or has gaps cannot be expected to give 

reliable coefficients. This is borne out by analyses in which the density of sampling is artificially reduced. A 

proportion of the modern samples was progressively removed while preserving the overall range of climate 

space (Figure 3.4, Supplementary Figs. 7, 8, and 9), having permuted the samples to avoid artificial 

similarities when samples which are neighbours in the database are also geographically close. Even a 70% 

reduction in the number of samples does not change the reconstructed winter (see Fig. 4, Supplementary 

Fig. 10) or summer (Supplementary Figs. 11 and 12) temperature, providing that the range of the sampled 

climate is maintained (see Supplementary Figs. 7 and 8). It does, however, lead to larger uncertainties 

because the number of times each taxon is sampled is reduced and the taxon coefficients are therefore less 

stable (Supplementary Fig. 9). Again, model performance measures do not discriminate between the 

quality of the reconstructions made with the reduced density or the full SMPDS data set (Table 3-2). 
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Figure 3.3 (color online) Relationship between the number of occurrences of a taxon and the standard deviation (SD) of the 
bootstrapped taxon coefficients. The analysis was made using the full SMPDS data set. 

Tests in which samples from part of the climate range are systematically removed demonstrate the 

importance of continuous sampling of the climate range (Figure 3.5). Removing blocks of the MTCO 

gradient representing equal numbers of samples shows that discontinuities result in greater uncertainties 

(as measured by the bootstrapped SDs of the taxon coefficients) than those of the full SMPDS set. With one 

marginal exception, the uncertainties are also greater than those of a set from which the same number of 

samples randomly selected has been removed. Width and continuity are both important for obtaining 

stable taxon coefficients. Thus, it is important to ensure that the modern pollen training data set 

encompasses a wide range of climate space, to avoid offsets in the climate reconstructions. It is also 

important that the training data set samples the bioclimatic gradient as continuously as possible, in order to 

provide the most precise coefficients. 

Table 3-1 Weighted Averaging Partial Least Squares (WA-PLS) model parameters for the reconstructions of mean temperature of the 
coldest month (MTCO, 0°C), growing degree days above a baseline of 0°C (GDD0, °day) and the square root of Moisture Index (√MI, 
unitless) using the Eastern Mediterranean-Black Sea-Caspian Corridor Biomes (EMBSeCBIO) (EMB), the European Modern Pollen 
Database (EMPD), and full SMPDS as training data sets, including the cross-validated r2, number of significant components ( p < 
0.05), root mean square error (RMSE), maximum bias, and number of samples. Supplementary Table 2 provides a complete list of 
WA-PLS model parameters for all data sets. 
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3.4.2 Impact of amalgamation of pollen taxa to higher taxonomic levels  

Large modern pollen data sets are created by combining data collected by many palynologists, often for 

different types of studies, and as a result the level of taxonomic discrimination varies among sites. Many 

pollen taxa are recorded at a limited number of sites in such data sets, either because they are not regularly 

identified or because they are genuinely rare. Using taxa that are only recorded rarely, or show geographic 

clustering suggesting that they have not been sampled across the whole of their potential climate range, 

leads to unstable WA-PLS coefficients because the bioclimatic range of the taxon is unlikely to have been 

sampled continuously. The principle of niche conservatism indicates that higher taxa commonly have 

coherent environmental distributions (Ackerly, 2003; Wake et al., 2009)(Figure 3.6), and this principle 

provides a basis for amalgamating taxa that are only recorded at a few sites in the training data set. The 

coherency of the climate space occupied by the amalgamated taxon can be assessed using, for example, 

GAMs. Wei et al. (2019b) have tested the assumption that the taxa used here for reconstructions show a 

unimodal response to individual climate variables. They show that some taxa are unimodal with respect to 

one climate variable but are insensitive to others; the classic example is Artemisia, which appears to be 

insensitive to temperature but shows a clear optimum with respect to moisture. The assumption of 

unimodality holds true for most taxa across all climate variables; amalgamation to higher taxonomic levels 

does not modify this response substantially. As we show here, amalgamating rare taxa into higher taxa 

improves the bootstrapped SD of the transfer coefficients (Table 3-3, Supplementary Information Tables 5 

and 6) by providing a more continuous sampling of bioclimatic gradients, and as a result leads to reduced 

uncertainties in the reconstructions. 

3.4.3 Impact of number of taxa  

Some taxa appear to be relatively uninformative either because they have a wide climatic tolerance or 

because they are rarely sampled, which raises the issue of whether such taxa should be excluded from the 

WA-PLS regression. However, analyses of randomly sampled taxa show that increasing the number of taxa 

monotonically narrows the reconstruction spread (Figure 3.7a). In our analyses, the impact of including 
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more taxa is steep initially and becomes discernibly more gradual above about 80 taxa, after which the 

mean reconstruction remains relatively stable with minimal offsets (Figure 3.7b).  

 

Figure 3.4 Impact of reducing the sampling density of the modern training data set on reconstructions of mean temperature of the 
coldest month (MTCO) during the last glacial period (80,000 to 10,000 calendar years before 2000) using the pollen record from 
Lake Ioannina. The plots show the impact of randomly removing 70% of the modern samples while preserving the overall range of 
climate space (see also Supplementary Figs. 7, 8, and 9) on the MTCO reconstructions compared to reconstructions made with the 
full SMPDS data set. 

The abundance of pollen does not directly correspond to the abundance of a taxon in the vegetation 

(Prentice and Parsons, 1983; Prentice, 1985; Sugita, 2007; Hellman et al., 2008). Some taxa are 

systematically overrepresented in pollen assemblages (e.g., Pinus) while others are systematically under-

represented (e.g., Larix). Furthermore, the comparative ease of pollen transport from closed canopy 

vegetation such as forest into more open landscapes that produce and disperse less pollen means that 

arboreal pollen is systematically overrepresented at sites in open tundra or steppe-type vegetation (e.g., 

Edwards et al., 2000; Bigelow et al., 2003; Marinova et al., 2018). However, the inclusion of taxa that are 

substantially overrepresented in modern assemblages compared to their abundance in the vegetation does 

not degrade model performance. Reconstructions made with the full SMPDS data set and with a data set 

that excludes Pinus (Supplementary Fig. 14) show little difference either in reconstructed MTCO or in 

reconstruction spread across multiple sites. Thus, although some studies (e.g., Sinopoli et al., 2019) have 

excluded such taxa, there is no general a priori reason to do so. 
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Table 3-2 Weighted Averaging Partial Least Squares (WA-PLS) model parameters for the reconstructions of mean temperature of the 
coldest month (MTCO), growing degree days above zero (GDD0) and the square root of Moisture Index (√MI) at Lake Ioannina using 
the full SMPDS data set and a version of this data set randomly reduced by 70% for the training data sets, including the cross-
validated r2, number of significant components ( p < 0.05), root mean square error (RMSE), maximum bias, and number of samples. 
Because the reduced sets are randomly chosen, different runs give different results; the standard deviations across 10 runs are 
given. The number of components is given as, for example, 2(7) meaning 7 runs allowed 2 significant components to be extracted; 
the balance allowed 3. 

 

 

Figure 3.5 Impact of lack of continuity in sampling showing the effect on standard deviation (SD) of coefficients of the full set of taxa 
(n = 195), weighted by abundance, of removal of all samples in a given specified range of MTCO from the calibration data set. The 
red blocks (weighted [Wtd] SD of coefficients if block removed) show the impact of removing a specified number of samples (in this 
case 646 samples) contiguous in climate space. The low number of cold samples means that the first gap (samples 647–1293) starts 
at -14.6°C. The abundance-weighted SD using the full sample set (n = 6458) is indicated as a grey line for comparison, and the effect 
of removal of 646 randomly selected samples is indicated by a red line. 

Fossil pollen assemblages almost always contain fewer taxa than the training data set. Thus, it might seem 

logical to base reconstructions solely on the taxa present in the fossil assemblages. However, the absence of 

taxa can also provide information about climate and thus can contribute usefully to the WA-PLS 
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reconstruction. Reconstructions of MTCO using only the taxa that are present in the fossil pollen samples at 

Lake Ioannina are not distinguishable from those made with the full SMPDS, either in terms of mean values 

or reconstruction spread (Supplementary Fig. 15b). However, at other sites, the use of only taxa present in 

the fossil record results in a difference in the reconstructions. At Megali Limni, for example, the 

reconstructions based on the fossil-taxa-only model are ca 1°C colder than those based on the full SMPDS 

data set (Supplementary Fig. 15a). At both Lake Ioannina and at Megali Limni, the model performance 

indicators show a substantial improvement using the full SMPDS data set: the r2 increases from ∼0.55 to 

0.7 at both sites, and the RMSE decreases from 5.80 to 4.82 at Ioannina and from 5.88 to 4.82 at Megali 

Limni (Supplementary Table 3). Using the full SMPDS data set is beneficial because, although taxon transfer 

coefficients are nearly independent of each other (and thus are little affected by the presence/ absence of 

other taxa), WA-PLS uses information from other taxa to refine the coefficients. 

The coefficients of rare taxa are not stable (see Figure 3.3), and this can cause problems if these taxa are 

anomalously abundant, even at relatively low levels, in fossil samples. Changes in reconstruction spread are 

one indication of what is essentially a poor-analogue problem. At Lake Ioannina, for example, the increased 

spread in reconstructed MTCO during the interval between 73 and 68 ka (see Figure 3.2b) occurs because 

the abundance of Ulmus/Zelkova increases from ca 0.75% to 6–8% of the sample total. This taxon is 

recorded at only 31 sites in the modern data set and has a very large SD (14.7°C). Alternative methods, such 

as squared chord distance (Supplementary Fig. 16), confirm that this interval has poor analogues. Although 

little can be done about such poor-analogue situations, it is important to identify them through the use of a 

robust measure of reconstruction uncertainty for individual samples, such as the reconstruction spread 

measure used here. 
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Figure 3.6 Climate space diagrams for individual taxa in the Asteroideae, based on Generalized Additive Models (GAMs). The plots 
are two dimensional representations of a three-dimensional space defined by mean temperature of the coldest month (MTCO, °C), 
growing degree days above a baseline of 0°C (GDD0, °C day), and the square root of a moisture index (MI, unitless), defined as the 
ratio of annual precipitation to annual potential evapotranspiration. The three columns show slices of the GAM at the points where 
GDD0 is 1000°C, 3000°C, and 5000°C day. The plots have been trimmed so that they only represent the sampled areas using convex 
hulls. The top four rows show the relative abundance on climate space of four of the most important taxa in the Asteroideae, the 
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fifth row shows the relative abundance of Asteroideae where this was explicitly recorded as a taxon in the original pollen counts, 
and the bottom panels show the relative abundance for the amalgamated taxon Asteroideae, created by summing all named 
component taxa together. Two scales are used, distinguished by colour: the scale for the top four panels is shown in the Solidago 
row, and for the bottom two the scale is shown in the Amalgamated row. Supplementary Fig. 13 shows the abundance in the same 
climate space at the sample level. 

3.5 DISCUSSION  

We have shown that the breadth and continuity of the climate space sampled by the modern training data 

set are important determinants of the quality of the reconstructions, although this may not be reflected in 

the WA-PLS model performance indicators. The number of samples in the data set does not provide a 

measure of the adequacy of sampling. There is a risk that training sets that rely on a very small number of 

samples (e.g., Xu et al., 2010; Salonen et al., 2012; Ding et al., 2017) do not sample a large enough range of 

climate space to encompass the true past climate if this is very different from present. However, as our 

comparison between reconstructions based on the EMPD and the full SMPDS shows, even large data sets 

may not have a sufficiently continuous sampling of climate space to provide stable coefficients and hence 

robust reconstructions. Furthermore, large data sets may still not encompass more extreme climates. This 

issue could be particularly important if the goal is to reconstruct climates very different from present-day 

climates, such as those of the last glacial period. Although most studies specify the training data set used, 

very few discuss how the training set was chosen or whether it samples an appropriate range of climate for 

the target reconstruction. Our analyses suggest that a minimum requirement is to plot the sampled climate 

space and thus to evaluate whether it is fit for purpose ( 

 

Table 3-4). From the perspective of improving existing training data sets, the focus should be on filling gaps in 

climate space rather than adding samples in climate space already represented.  

Amalgamating pollen taxa to higher taxonomic levels can provide a way of increasing the continuity of the 

sampling of climate and reducing the statistical error of the reconstructions. Huntley et al. (1989) were the 

first to demonstrate niche conservatism in surface pollen data, showing that the abundance distribution of 

Fagus as recorded in surface pollen samples in North America could be predicted from the distribution of 
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the genus in Europe and vice versa. Subsequent studies have emphasised the degree to which lineages are 

conservative in terms of climate preferences (Ackerly, 2003; Wake et al., 2009). Williams and Shuman 

(2008) have provided counterexamples, where congeneric species occur at different parts of the moisture 

gradient in eastern and western North America. However, they also point out that the impact of this on 

reconstructions of climate decreases as the number of taxa used increases. Nevertheless, it should not be 

assumed that taxon amalgamation is always or automatically justified. One way of testing whether taxon 

distributions are unimodal and whether amalgamations to higher taxonomic levels are defensible is to 

construct GAMs (Wei et al., 2019b). 

Table 3-3 Examples of the impact of amalgamating taxa to higher taxonomic levels on the bootstrapped standard deviation (SD) of 
transfer coefficients for mean temperature of the coldest month (MTCO). The mean SD of the component taxa (column 3) is 
weighted by abundance. Additional information on the component taxa and the transfer coefficients (climate optima) identified for 
the component taxa and the amalgamated taxon is given in Supplementary Tables 4 and 5. 
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Figure 3.7 (a) Change in the standard deviation (SD) of the reconstruction of mean temperature of the coldest month (MTCO) as 
increasing numbers of taxa are used in the Weighted Averaging Partial Least Squares (WA-PLS) regression, taken across the whole 
time series, and (b) the mean reconstructions at three example points. The specified number of taxa is randomly selected without 
replacement 100 times, and the WA-PLS reconstruction run. The SD is taken across the 100 runs. Three WA-PLS components were 
used, but only results with p < 0.05 in a random t-test were included in the means and SDs. 

The SMPDS includes sites from across the whole of the Palaearctic phytogeographic region (Wallace, 1876; 

Good, 1974; Kreft and Jetz, 2010; Dengler et al., 2014) in order to create a training data set that samples 

colder and more continental climates than would be available from a more limited region. Although the 

sampling of this region is incomplete, since there are large sampling gaps in Russia and northern China, the 

SMPDS provides samples from much colder winter climates and climates with a greater seasonal 

temperature range (see Figure 3.1). The expansion to the Palaearctic phytogeographic region relies on the 

fact that this region is characterised by taxa that have diversified in relatively recent geological time, that is, 

during approximately the past 20 Ma. The climate preferences of these taxa are expected to be 

conservative, as has been demonstrated for many plant lineages (Ackerly, 2003; Williams and Shuman, 

2008; Wake et al., 2009). 
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Table 3-4 Checklist of issues, steps to identify them, and some potential solutions. 

 

The expansion of a training data set to increase the diversity of sampled climates is useful in principle, 

because it increases the range of different climates that can be reconstructed. As in the case of 

amalgamations to higher taxonomic levels, however, it is both possible and desirable to test (e.g., using 

GAMs, see  

 

Table 3-4) whether the taxa considered retain a coherent, unimodal relationship to the climate variables of 

interest. There is no established rule about the choice of training data set, and the general hypothesis of 

climatic niche conservatism within phytogeographic regions would repay further research. However, the 
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common practice of using training data sets with limited geographic coverage (Xu et al., 2010; Salonen et 

al., 2012; Ding et al., 2017) effectively limits the range of climates that can be reconstructed. Similarly, 

exclusion of modern pollen samples from particular vegetation types (Sinopoli et al., 2019) prevents the 

reconstruction of climates characterised by these vegetation types. 

We have shown that WA-PLS model performance statistics and the stability of the coefficients improve as 

taxa are added. Several studies have examined the impact of using a subset of important taxa, defined in 

terms of abundance (Birks, 1994) or predictive importance (Racca et al., 2003), on reconstructions based on 

weighted averaging (WA). The results have been inconclusive. Juggins et al. (2015) showed that removing 

uninformative taxa resulted in better performance using artificially constructed data sets but did not have a 

similar impact on real data sets. Jonkers and Kuč era (2018) found no impact from reducing the number of 

foraminifera species on WA model performance but showed that the resulting sea surface temperature 

reconstructions were significantly different between reduced- and full-taxa reconstructions. A similar 

conclusion was reached by Bjune et al. (2010) in a study contrasting climate reconstructions based on 191 

vs. 321 core-top pollen samples. 

The impact of including taxa that do not have a significant relationship to the climate variable being 

reconstructed and therefore have limited predictive power is closely tied to whether they are influenced by 

other climate or environmental factors, which would result in a degradation of model performance as 

shown by the analysis in Juggins et al. (2015). Thus, the choice of appropriate variables to reconstruct, and 

accounting for interactions among variables, is probably more useful than removing taxa that are thought 

to be uninformative. 

Some studies have excluded taxa that are overrepresented in pollen assemblages, such as Pinus, on the 

assumption that these suppress the expression of the signal from less abundant taxa (e.g., Sinopoli et al., 

2019). Our analyses suggest there is no reason to exclude such taxa on a priori grounds. However, there 

may be circumstances that warrant exclusion of specific taxa. Wei et al. (2019a), for example, excluded both 

Poaceae and Polypodiales from the taxa used to reconstruct climate at El Cañizar de Villarquemado on the 
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grounds that high abundances of these two taxa caused anomalous excursions in moisture reconstructions 

that were not seen in temperature reconstructions, and because independent sedimentological evidence 

supported the idea that anomalously high abundances of these two taxa in some samples represented 

reeds (aquatic grasses, in the case of Poaceae) or erosional inputs (in the case of Polypodiales). They 

showed that the removal of these taxa had no impact except on the MI reconstructions of the anomalous 

samples. Insofar as anomalous results can be attributed to the high abundance of specific taxa that could 

reflect the influence of non-climatic factors, exclusions may be warranted. It is, however, important to test 

the impact of these exclusions on the final reconstructions (see Table 3-4).  

It is often tacitly assumed that better WA-PLS model performance means better reconstruction, but we 

have shown that WA-PLS models of equivalent performance can produce very different reconstructions 

(e.g., see Figure 3.2). WA-PLS model performance only reflects how well the model replicates the climate 

space of the modern training data set but says nothing about whether that climate space is adequate or 

appropriate. We conclude that model performance must be considered alongside an assessment of the 

representativeness of climate at the data set and taxon level (see Table 3-4).  

This could be done, for example, by plotting the sites and taxon abundances in climate space and expanding 

the calibration data set to ensure that it samples a range of climates commensurate with the climate that 

might have been experienced at a given location. Although the RMSE of the modern calibration is generally 

used as a measure of reconstruction uncertainty, it is in fact a measure of the average uncertainty for a 

randomly selected surface sample. Thus, it provides the same estimate of uncertainty for all fossil pollen 

samples, regardless of whether the taxa in the fossil samples are well represented in the modern data set 

and have stable coefficients. It provides no information about uncertainties arising because of mismatches 

between the sampling of modern taxa and their representation in fossil assemblages. We have used an 

alternative approach that propagates the calibration errors into the downcore reconstructions by assessing 

the calibration error associated with the particular assemblage in an individual pollen sample. This 

approach provides a way of identifying specific intervals downcore where the reconstruction errors are well 



104 
 

constrained and differentiating these from intervals with larger uncertainties. As we show in the Lake 

Ioannina example (see Figure 3.2b), it is then possible to identify the specific cause of these larger 

uncertainties and, in particular, a way of identifying poor-analogue situations that would be overlooked 

using the standard approach to representing uncertainty. Thus, the bootstrapped reconstruction spread 

provides an alternative, and we would argue better, measure of the consistency and redundancy of the 

calibration set and thus indirectly the robustness of the reconstructions than the standard use of RMSE. 

There will be a continuing need for quantitative estimates of past climates in order to evaluate climate 

model simulations, and it is important to continue to explore ways to demonstrate and, if possible, improve 

their robustness. While there are alternative approaches to statistical reconstruction, such as vegetation-

model inversion (Guiot et al., 2000;Wu et al., 2007, 2009; Izumi and Bartlein, 2016) or data assimilation 

(Goosse et al., 2006; Annan and Hargreaves, 2013; Cleator et al., 2019), they do not provide a panacea—in 

the one case because they are heavily dependent on the specifics of the model, in the other because they 

require quantitative estimates as inputs. It has been suggested (Brewer et al., 2008) that more robust 

estimates of past climates can be obtained by using multiple statistical approaches, and this has been done 

in an increasing number of studies (Xu et al., 2010; Guiot and de Vernal, 2011; Peyron et al., 2011; Jonkers 

and Kuč era, 2018; Sinopoli et al., 2019). However, many of the sampling issues described here apply 

equally to all analogue- or regression-based reconstruction methods. Thus, while using several methods 

together may provide an indication of the robustness of a reconstruction, such robustness does not 

necessarily demonstrate that the reconstructions are correct. Exploring and documenting methodological 

decisions, as suggested here, should lead to more transparent reconstructions and perhaps greater 

consistency between reconstructions at different sites. 

3.6 CONCLUSIONS  

Care needs to be exercised in the application of statistical reconstruction techniques, such as WA-PLS, in 

order to ensure that the results are robust and reasonable. We have demonstrated that WA-PLS model 

performance metrics are not a sufficient guide to the reliability of the reconstructions: models with similar 
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performance metrics nevertheless provide different reconstructions of past climates. We argue that the 

modern pollen training data set should not only sample the full width of the climate niche of each taxon but 

also provide a continuous sampling of this range. The width and continuity of the sampling of climate space 

are more important than number of samples. Width and continuity can be improved by amalgamating taxa 

to higher taxonomic levels, providing the assumptions about the unimodality of these higher taxa with 

respect to individual climate variables are explicitly tested. We also argue that it is important for the 

modern training set to sample climates that encompass the full range of the climates that might be 

expected to have occurred in the past; for example, to sample colder and drier climates that might be found 

in the Mediterranean during the last glacial period. While it is difficult to know a priori how broad a 

sampling of climate space is necessary to ensure this for a specific site or region, ensuring that the training 

data set is broad enough to test explicit hypotheses about the expected climate change would be useful. 

These hypotheses could be based on alternative sources of palaeoclimate information, including model 

experiments.  

Our analyses are not designed to provide a prescription for how to apply WA-PLS: we are not 

recommending the use of a specific modern pollen training data set or specific methods to test the 

usefulness of this data set. Instead, we are advocating that the robustness of statistical reconstructions 

should be explicitly tested and documented. We have suggested a number of straightforward checks (see 

Table 4) that should be made. These include: (1) testing the range and continuity of the sampling of climate 

gradients in the modern training data set by plotting the modern samples in climate space; (2) ensuring that 

the sampled climate covers a sufficient range to be able to reconstruct substantially different climates in the 

past, for example by ensuring that the training data set includes samples which are both much 

warmer/colder and wetter/drier than the modern climate of the region; (3) examining whether 

amalgamation to higher taxonomic levels provides a more continuous sampling of climate space by plotting 

the climate space of both individual taxa and the higher taxon into which they are placed; and (4) using the 

largest number of taxa in the reconstructions and avoiding a priori taxon exclusions. The reasons for any 

exclusions should be transparent and supported by independent evidence, and the impact of these 
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exclusions on the reconstructed climate should be tested. The proposed checks do not necessarily identify 

whether specific methodological choices are correct, but they do provide insights into the uncertainties 

associated with the reconstructions. 
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3.11 Supplementary Information: The impact of methodological decisions on climate 
reconstructions using WA-PLS 
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This supplementary contains the following figures and tables: 

 

SI Figure 1. Locations of samples in the EMBSeCBIO (Eastern Mediterranean-Black Sea-Caspian corridor BIOmes) 

database (EMB), the European Modern Pollen Database v3.0 (EMPD) and the additional sites in the SMPDS. Stars 

indicate location of example fossil cores. 

SI Figure 2. Reconstructions of mean temperature of the coldest month (MTCO, ° C) during the last glacial period 

(80,000 to 10,000 calendar years before 2000) using the pollen records from 8 example cores, using the EMBSeCBIO 

(Eastern Mediterranean-Black Sea-Caspian corridor BIOmes) database (EMB), the European Modern Pollen Database 

v3.0 (EMPD), and the full SMPDS data set as training data sets. The reconstruction spread (±2σ) is obtained by 

resampling the training set 1,000 times. 

SI Figure 3. Reconstructions of growing degree days above 0 ° C (GDD0, °days) during the last glacial period (80,000 

to 10,000 calendar years before 2000) using the pollen records from 8 example cores, EMBSeCBIO (Eastern 

Mediterranean-Black Sea-Caspian corridor BIOmes) database (EMB), the European Modern Pollen Database v3.0 

(EMPD), and the full SMPDS data set as training data sets. The reconstruction spread (±2σ) is obtained by resampling 

the training set 1,000 times. 

SI Figure 4. Reconstructions of the square root of Moisture Index (sqrt(MI) during the last glacial period (80,000 to 

10,000 calendar years before 2000) using the pollen records from 8 example cores, using the EMBSECBIO (Eastern 

Mediterranean-Black Sea-Caspian corridor BIOmes) database (EMB), the European Modern Pollen Database v3.0 

(EMPD)), and the full SMPDS data set as training data sets. The reconstruction spread (±2σ) is obtained by resampling 

the training set 1,000 times. The reconstruction shown here does not account for the direct impact of CO2 on plant 

growth and thus will underestimate the actual value of (sqrt(MI)) during the glacial period (Wei et al, 2019a). 

SI Figure 5. Comparison of reconstructions of mean temperature of the coldest month (MTCO, ° C) for downcore 

samples from Ioannina usingthe EMBSeCBIO (Eastern Mediterranean-Black Sea-Caspian corridor BIOmes) database 

(EMB) and the European Modern Pollen Database v3.0 (EMPD). 

SI Figure 6. WA-PLS predictions for mean temperature of coldest month (MTCO, ° C), growing degree days above a 

baseline of 0 °C (GDD0, °C days) and the square root of Moisture Index (sqrt(MI)), compared with observations of 

modern climate for the 6 458 SMPDS sample sites. The righthand plots show the residuals against the predicted values. 

Red stars indicate the modern position on the climatic gradient of the 8 fossil sites used as examples.  

SI Figure 7. Distribution of modern pollen samples in climate space, represented by growing degree days above 0oC 

(GDD0, °C days) and mean temperature of the coldest month (MTCO, °C), sampled by the full SMPDS (SMPDS) data 

set and after randomly reducing the data set by 70% (Red7).  

SI Figure 8. Histogram comparing of the distribution of samples along the mean temperature of the coldest month 

(MTCO, °C) and growing degree days above 0 oC (GDD0, °C days) gradients using the full SMPDS set (Full SMPDS) 

and a set randomly removing 70% of the samples (Red7). 

SI Figure 9. Change in mean standard deviation (reconstruction spread) of (a) mean temperature of the coldest month 

(MTCO, °C), (b) growing degree days above 0 oC (GDD0, °C days), and (c) square root of Moisture index (sqrt(MI), 

unitless) as the percentage of samples randomly removed increases. 10 runs were made for each reduction, each 

comprising 100 bootstrapped reconstructions. 

SI Figure 10. Impact of reducing the sampling density of the modern training data set on reconstructions of temperature 

of the coldest month (MTCO, °C) during the last glacial period (100,000 to 10,000 calendar years before 2000) using 

the pollen record from Lago Grande di Monticchio. The plots show the impact of removing 70% of the modern samples 

randomly while preserving the overall range of climate space on the MTCO reconstructions, compared to 

reconstructions made with the full SMPDS data set.  

SI Figure 11. Impact of reducing the sampling density of the modern training data set on reconstructions of growing 

degree days above a baseline of 0° C (GDD0, ° days) during the last glacial period (80,000 to 10,000 calendar years 

before 2000) using the pollen record from Lake Ioannina. The plots show the impact of removing 70% of the modern 

samples randomly while preserving the overall range of climate space on the GDD0 reconstructions, compared to 

reconstructions made with the full SMPDS data set.  
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SI Figure 12. Impact of reducing the sampling density of the modern training data set on reconstructions of growing 

degree days above a baseline of 0° C (GDD0, ° days) during the last glacial period (100,000 to 10,000 calendar years 

before 2000) using the pollen record from Lago Grande di Monticchio. The plots show the impact of removing 70% of 

the modern samples randomly while preserving the overall range of climate space on the GDD0 reconstructions, 

compared to reconstructions made with the full SMPDS data set.  

SI Figure 13. Abundance in climate space of Asteroideae and its main subtaxa at the sample level, complementing 

GAMs in Figure 5. “GDD <2000” includes all samples in that range, etc.  Scale applies to all plots. 

SI Figure 14. Reconstructed mean temperature of the coldest month (MTCO, °C) at 8 sites in Europe, comparing 

regression using the full SMPDS set and after removing Pinus. 

SI Figure 15. Reconstructed mean temperature of the coldest month (MTCO, °C) using the full SMPDS set compared 

to regressions based on only taxa found in the fossil set at (a) Megali Limni and (b) Ioannina. See SI Table 3. 

SI Figure 16. Squared chord distances of the 10 nearest analogues in the SMPDS to the fossil samples at Ioannina. The 

lowest dot, or end of line, represents the nearest analogue. 

SI Table 1. In addition to data from the EMPD and the EMBSeCBIO databases, the SMPDS modern training data set 

includes sites from the following publications.  

SI Table 2. Details of the 8 sites from the Abrupt climate Changes and Environmental Responses (ACER) database 

(Sanchez Goñi et al., 2017) used as examples in this study.  

SI Table 3. WA-PLS model parameters for all the data sets used in this study for reconstructions of mean temperature 

of the coldest month (MTCO, 0 C), growing degree days above a baseline of 0 C (GDD0, day) and the square root 

of Moisture Index (√MI, unitless) Cross-validated r2, number of components with p < 0.05, root mean square error 

(RMSE), maximum bias, p tested by random t-test, and sample set size. Best components are identified by bold p value.  

SI Table 4. WA-PLS model parameters for reconstructed mean temperature of the coldest month (MTCO, 0 C) 

comparing regression using the full SMPDS set with regression based only taxa found in the fossil set from (a) at Megali 

Limni (b) at Ioannina (see SI Figure 15). Cross-validated r2, number of components with p < 0.05, root mean square 

error (RMSE), maximum bias, and taxon set size.  

SI Table 5. Amalgamated taxa as in Table 3, for MTCO, GDD0 and square root (MI), showing number of occurrences, 

total abundance, abundance-weighted SD of coefficients (optima) of component taxa, SD of coefficient of amalgamated 

taxon, and coefficient of amalgamated taxon. SDs are obtained by bootstrapping the sample set 1000 times. 

SI Table 6. Component taxon data for amalgamated taxa in SI Table 5, for MTCO, GDD and square root (MI), showing 

number of occurrences, total abundance, SD of coefficients (optima) of component taxa, and coefficient of component 

taxa. SDs are obtained by bootstrapping the sample set 1000 times. 

 

 

 

 
SI Figure 1. Locations of samples in the EMBSeCBIO (Eastern Mediterranean-Black Sea-Caspian corridor BIOmes) 

database (EMB), the European Modern Pollen Database v3.0 (EMPD) and the additional sites in the SMPDS. Stars 

indicate location of example fossil cores. 
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SI Figure 2. Reconstructions of mean temperature of the coldest month (MTCO, ° C) during the last glacial period 

(80,000 to 10,000 calendar years before 2000) using the pollen records from eight example cores, using the 

EMBSeCBIO (Eastern Mediterranean-Black Sea-Caspian corridor BIOmes) database (EMB), the European Modern 

Pollen Database v3.0 (EMPD), and the full SMPDS data set as training data sets. The reconstruction spread (±2σ) is 

obtained by resampling the training set 1,000 times. 
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SI Figure 3. Reconstructions of growing degree days above 0 ° C (GDD0, °days) during the last glacial period (80,000 

to 10,000 calendar years before 2000) using the pollen records from eight example cores, EMBSeCBIO (Eastern 

Mediterranean-Black Sea-Caspian corridor BIOmes) database (EMB), the European Modern Pollen Database v3.0 

(EMPD), and the full SMPDS data set as training data sets. The reconstruction spread (±2σ) is obtained by resampling 

the training set 1,000 times. 
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SI Figure 4. Reconstructions of the square root of Moisture Index (sqrt(MI)) during the last glacial period (80,000 to 

10,000 calendar years before 2000) using the pollen records from eight example cores, using the EMBSECBIO (Eastern 

Mediterranean-Black Sea-Caspian corridor BIOmes) database (EMB), the European Modern Pollen Database v3.0 

(EMPD), and the full SMPDS data set as training data sets. The reconstruction spread (±2σ) is obtained by resampling 

the training set 1,000 times. The reconstruction shown here does not account for the direct impact of CO2 on plant 

growth and thus will underestimate the actual value of (sqrt(MI)) during the glacial period (Wei et al., 2019a). 
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SI Figure 5. Comparison of reconstructions of mean temperature of the coldest month (MTCO, ° C) for downcore 

samples from Ioannina using the EMBSeCBIO (Eastern Mediterranean-Black Sea-Caspian corridor BIOmes) database 

(EMB) and the European Modern Pollen Database v3.0 (EMPD). 
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SI Figure 6. WA-PLS reconstructions for mean temperature of coldest month (MTCO, ° C), growing degree days above 

a baseline of 0 °C (GDD0, °C days) and the square root of Moisture Index (sqrt(MI)), compared with observations of 

modern climate for the 6458 SMPDS sample sites. The right-hand plots show the residuals against the predicted values. 

Red stars indicate the modern position on the climatic gradient of the eight fossil sites used as examples. 
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SI Figure 7. Distribution of modern pollen samples in climate space, represented by growing degree days above 0oC 

(GDD0, °C days) and mean temperature of the coldest month (MTCO, °C), sampled by the full SMPDS (SMPDS) data 

set and after randomly reducing the data set by 70% (Red7).  
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  SI 

Figure 8. Histograms comparing the distribution of samples along the mean temperature of the coldest month (MTCO, 

°C), growing degree days above 0oC (GDD0, °C days), and square root of Moisture Index (sqrt(Moisture Index) 

gradients using the full SMPDS set (Full SMPDS) and a set randomly removing 70% of the samples (Red7). 
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SI Figure 9. Change in mean standard deviation (reconstruction spread) of (a) mean temperature of the coldest month 

(MTCO, °C), (b) growing degree days above 0 oC (GDD0, °C days), and (c) square root of Moisture index (sqrt(MI), 

unitless) as the percentage of samples randomly removed increases. 10 runs were made for each reduction, each 

comprising 100 bootstrapped reconstructions.  
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SI Figure 10. Impact of reducing the sampling density of the modern training data set on reconstructions of temperature 

of the coldest month (MTCO, °C) during the last glacial period (100,000 to 10,000 calendar years before 2000) using 

the pollen record from Lago Grande di Monticchio. The plots show the impact of removing 70% of the modern samples 

randomly while preserving the overall range of climate space on the MTCO reconstructions, compared to 

reconstructions made with the full SMPDS data set. 

 

   
SI Figure 11. Impact of reducing the sampling density of the modern training data set on reconstructions of growing 

degree days above a baseline of 0° C (GDD0, ° days) during the last glacial period (80,000 to 10,000 calendar years 

before 2000) using the pollen record from Lake Ioannina. The plots show the impact of removing 70% of the modern 

samples randomly while preserving the overall range of climate space on the GDD0 reconstructions, compared to 

reconstructions made with the full SMPDS data set.  

   
 

SI Figure 12. Impact of reducing the sampling density of the modern training data set on reconstructions of growing 

degree days above a baseline of 0° C (GDD0, ° days) during the last glacial period (100,000 to 10,000 calendar years 

before 2000) using the pollen record from Lago Grande di Monticchio. The plots show the impact of removing 70% of 

the modern samples randomly while preserving the overall range of climate space on the GDD0 reconstructions, 

compared to reconstructions made with the full SMPDS data set.  
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SI Figure 13. Abundance in climate space of Asteroideae and its main subtaxa at the sample level, complementing 

GAMs in Figure 6. “GDD <2000” includes all samples in that range, etc. Scale applies to all plots. 

 
SI Figure 14. Reconstructed mean temperature of the coldest month (MTCO, °C) at eight sites in Europe, comparing 

regression using the full SMPDS set and after removing Pinus. 
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SI Figure 15. Reconstructed mean temperature of the coldest month (MTCO, °C) using the full SMPDS set compared 

to regressions based on only taxa found in the fossil set at (a) Megali Limni and (b) Ioannina. See SI Table 3. 

   
SI Figure 16. Squared chord distances of the 10 nearest analogues in the SMPDS to the fossil samples at Ioannina. The 

lowest dot, or end of line, represents the nearest analogue. 
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SI Table 1. In addition to data from the EMPD and the EMBSeCBIO databases, the SMPDS modern training data set includes 

sites from the following publications: 

 

Bell, B.A. and Fletcher, W. J.: Modern surface pollen assemblages from the Middle and High Atlas, Morocco: Insights 

into pollen representation and transport, Grana, 55, 286-301, https://doi.org/10.1080/00173134.2015.1108996, 

2016. 

de Klerk, P., Haberl, A., Kaffke, A., Krebs, M., Matchutadze, I., Minke, M., Schulz, J., and Joosten, H.: Vegetation 

history and environmental development since ca 6000 cal yr BP in and around Ispani 2 (Kolkheti lowlands, 

Georgia), Quaternary Sci. Rev., 28, 890-910, https://doi.org/10.1016/j.quascirev.2008.12.005, 2009. 

Grüger, E. and Jerz, H.: Untersuchung einer Doline auf dem Zugspitzplatt: Ein palynologischer Beitrag zur holozänen 

Gletschergeschichte im Wettersteingebirge, E&G Quaternary Sci. J., 59, 66-75, https://doi.org/10.3285/eg.59.1-

2.06, 2010. 

Matthias, I., Semmler, M. S. S., and Giesecke, T.: Pollen diversity captures landscape structure and diversity, J. 

Ecol., 103, 880-890, https://doi.org/10.1111/1365-2745.12404, 2015.  

Müller, S., Tarasov, P., Andreev, A. A., Tutken, T., Gartz, S., and Diekmann, B.: Late Quaternary vegetation and 

environments in the Verkhoyansk Mountains region (NE Asia) reconstructed from a 50-kyr fossil pollen record 

from Lake Billyakh, Quat. Sci. Rev., 29, 2071-2086, https://doi.org/10.1016/j.quascirev.2010.04.024, 2010. 

Niemeyer, B., Klemm, J., Pestryakova, L. A., and Herzschuh, U.: Relative pollen productivity estimates for common 

taxa of the northern Siberian Arctic, Rev. Palaeobot. Palyno., 221, 71-82, 

https://doi.org/10.1016/j.revpalbo.2015.06.008, 2015. 

Novenko, E., Mazei, N., and Kusilman, M.: Tree pollen representation in surface pollen assemblages from different 

vegetation zones of European Russia, Ecological Questions, 26, 61–65, http://doi.org/10.12775/EQ.2017.018, 

2017.  

Saadi, F. and Bernard, J.: Rapport entre la pluie pollinique actuelle, le climat et la vegetation dans les steppes à 

Artemisia et les milieu limitrophes au Maroc, Palaeoecol. Africa, 22, 67-86, 1991. 

Tarasov, P. E., Nakagawa, T., Demske, D., Österle, H., Igarashi, Y., Kitagawa, J., Mokhova, L., Bazarova, V., Okuda, 

M., Gotanda, K., Miyoshi, N., Fujiki, T., Takemura, K., Yonenobu, H., and Fleck, A.: Progress in the 

reconstruction of Quaternary climate dynamics in the Northwest Pacific: A new modern analogue reference 

dataset and its application to the 430-kyr pollen record from Lake Biwa, Earth-sci. Rev, 108, 64-79, 

https://doi.org/10.1016/j.earscirev.2011.06.002, 2011.  

Werner, K., Tarasov, P. E., Andreev, A. A., Müller, S., Kienast, F., Zech, M., Zech, W., and Diekmann, B.: A 12.5-

kyr history of vegetation dynamics and mire development with evidence of Younger Dryas larch presence in the 

Verkhoyansk Mountains, East Siberia, Russia, Boreas, 39, 56-68, https://doi.org/10.1111/j.1502-

3885.2009.00116.x, 2010.  

 

SI Table 2. Details of the 8 sites from the Abrupt climate Changes and Environmental Responses (ACER) database 

(Sanchez Goñi et al., 2017) used as examples in this study. 

Site Lat Long References 

Lagaccione 42.57 11.8 Magri, D (1999): Late Quaternary vegetation history at 

Lagaccione near Lago di Bolsena (central Italy). Review of 

Palaeobotany and Palynology, 106(3-4), 171-208, 

doi:10.1016/S0034-6667(99)00006-8 

Magri, D (2008): Two long micro-charcoal records from central 

Italy. In: Charcoals from the Past: Cultural and 

Palaeoenvironmental Implications Proceedings of the Third 

International Meeting of Anthracology, Cavallino - Lecce (Italy), 

June 28th - July 1st 2004 BAR International Series 1807 

Lake_Banyoles 42.13 2.75 Pérez-Obiol, R P; Julia, R (1994): Climatic change on the Iberian 

Peninsula recorded in a 30,000-year pollen record from Lake 

Banyoles. Quaternary Research, 41(1), 91-98, 

doi:10.1006/qres.1994.1010 

https://doi.org/10.1080/00173134.2015.1108996
https://doi.org/10.1016/j.quascirev.2008.12.005
https://doi.org/10.3285/eg.59.1-2.06
https://doi.org/10.3285/eg.59.1-2.06
https://doi.org/10.1111/1365-2745.12404
https://doi.org/10.1016/j.quascirev.2010.04.024
https://doi.org/10.1016/j.revpalbo.2015.06.008
http://doi.org/10.12775/EQ.2017.018
https://doi.org/10.1016/j.earscirev.2011.06.002
https://doi.org/10.1111/j.1502-3885.2009.00116.x
https://doi.org/10.1111/j.1502-3885.2009.00116.x
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Site Lat Long References 

Lake_Xinias 39.05 22.27 Bottema, S (1979): Pollen analytical investigations in Thessaly 

(Greece). Palaeohistoria, 21, 19-40, 

http://rjh.ub.rug.nl/Palaeohistoria/article/view/24996/22455 

Megali_Limni 

 

39.1025 

 

26.3208 

 

Margari, V; Gibbard, P L; Bryant, C L; Tzedakis, PC (2009): 

Character of vegetational and environmental changes in southern 

Europe during the last glacial period; evidence from Lesvos 

Island, Greece. Quaternary Science Reviews, 28(13-14), 1317-

1339, doi:10.1016/j.quascirev.2009.01.008 

Margari, V; Pyle, D M; Bryant, C; Gibbard, P L (2007): 

Mediterranean tephra stratigraphy revisited: Results from a long 

terrestrial sequence on Lesvos Island, Greece. Journal of 

Volcanology and Geothermal Research, 163(1-4), 34-54, 

doi:10.1016/j.jvolgeores.2007.02.002 

Lago_Grande_di_Monticchio 

 

 

40.94 15.61 Allen, J R M; Huntley, B (2000): Weichselian palynological 

records from southern Europe: correlation and chronology. 

Quaternary International, 73-74, 111-125, doi:10.1016/S1040-

6182(00)00068-9 

Allen, J R M; Brandt, U; Brauer, A; Huntley, B; Keller, J; Kraml, 

M; Mackensen, A; Mingram, J; Negendank, J F W; Nowaczyk, N 

R; Watts, W A; Wulf, S; Zolitschka, B; Hubberten, H-W; 

Oberhänsli, H (1999): Rapid environmental changes in southern 

Europe during the last glacial period. Nature, 400(6746), 740-743, 

doi:10.1038/23432 

Allen, J R M; Watts, W  A; Huntley, Brian (2000): Weichselian 

palynostratigraphy, palaeovegetation and palaeoenvironment; the 

record from Lago Grande di Monticchio, southern Italy. 

Quaternary International, 73-74, 91-110, doi:10.1016/S1040-

6182(00)00067-7 

Brauer, A; Allen, J R M; Mingram, J; Dulski, P; Wulf, S; Huntley, 

B (2007): Evidence for last interglacial chronology and 

environmental change from Southern Europe. Proceedings of the 

National Academy of Sciences, 104(2), 450-455, 

doi:10.1073/pnas.0603321104 

Huntley, B; Watts, W A; Allen, J R M; Zolitschka, B (1999): 

Palaeoclimate, chronology and vegetation history of the 

Weichselian Lateglacial: comparative analysis of data from three 

cores at Lago Grande di Monticchio, southern Italy. Quaternary 

Science Reviews, 18(7), 945-960, doi:10.1016/S0277-

3791(99)00007-4 

Navarres 39.1 -0.68 Carrión, J S; van Geel, B (1999): Fine-resolution Upper 

Weichselian and Holocene palynological record from Navarrés 

(Valencia, Spain) and a discussion about factors of Mediterranean 

forest succession. Review of Palaeobotany and Palynology, 106, 

209-236, doi:10.1016/S0034-6667(99)00009-3 

Lac_du_Bouchet 44.83 3.82 Reille, M; de Beaulieu, J-L (1990): Pollen analysis of a long upper 

Pleistocene continental sequence in a Velay maar (Massif Central, 

France). Palaeogeography, Palaeoclimatology, Palaeoecology, 

80(1), 35-48, doi:10.1016/0031-0182(90)90032-3 

http://rjh.ub.rug.nl/Palaeohistoria/article/view/24996/22455


132 
 

Site Lat Long References 

Ioannina 39.75 20.85 Tzedakis, P C; Frogley, M R; Lawson, I T; Preece, R C; Cacho, I; 

de Abreu, L (2004): Ecological thresholds and patterns of 

millennial-scale climate variability: The response of vegetation in 

Greece during the last glacial period. Geology, 32(2), 109, 

doi:10.1130/G20118.1 

Tzedakis, P C; Lawson, I T; Frogley, M R; Hewitt, G M; Preece, 

R C (2002): Buffered tree population changes in a Quaternary 

refugium: evolutionary emplications. Science, 297(5589), 2044-

2047, doi:10.1126/science.1073083 
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SI Table 3. WA-PLS model parameters for all the data sets used in this study for reconstructions of mean temperature 

of the coldest month (MTCO, 0 C), growing degree days above a baseline of 0 C (GDD0, day) and the square root 

of Moisture Index (√MI, unitless). Cross-validated r2, number of components, root mean square error (RMSE), 

maximum bias, p tested by random t-test, and sample set size. Best components are identified by bold p value.  

Variable 
Data Set r2 

No of 

components 
RMSE 

Max.  

bias 

p No of 

samples 

MTCO EMB 0.377 1 4.08 20.6 0.001 1 088 

 EMB 0.417 2 3.97 19.6 0.002  

 EMB 0.418 3 4.02 18.6 0.534  

 EMPD 0.690 1 4.30 8.4 0.001 4 675 

 EMPD 0.731 2 4.01 5.7 0.001  

 EMPD 0.743 3 3.91 6.1 0.001  

 EMPD 0.743 4 3.92 5.9 0.500  

 70% reduced 0.618 1 5.27 17.8 0.001 1930 

 70% reduced 0.655 2 5.06 16.3 0.001  

 70% reduced 0.661 3 5.09 17.2 0.133  

 Megali Limni 

fossil assemblage 

(67 taxa) 

 

0.471 1 6.31 33.2 0.001 6 458 

 0.528 2 5.96 32.7 0.001  

 0.539 3 5.89 32.3 0.001  

 0.541 4 5.88 32.4 0.030  

 Ioannina fossil 

assemblage (78 

taxa) 

0.477 1 6.28 33.4 0.001  

 0.539 2 5.89 32.9 0.001  

 0.552 3 5.80 32.2 0.001  

 SMPDS 0.624 1 5.31 14.2 0.001 6 458 

 SMPDS 0.671 2 4.97 8.8 0.001  

 SMPDS 0.687 3 4.85 8.5 0.001  

 SMPDS 0.691 4 4.82 10.3 0.019  

GDD0 EMB 0.475 1 992 1843 0.001 1 088 

 EMB 0.508 2 960 1727 0.001  

 EMB 0.502 3 969 1690 0.889  

 EMPD 0.616 1 968 2567 0.001 4675 

 EMPD 0.654 2 917 1960 0.001  

 EMPD 0.667 3 901 1898 0.001  

 70% reduced 0.603 1 974 2110 0.001 1878 

 70% reduced 0.644 2 931 1948 0.001  

 70% reduced 0.649 3 941 1793 0.334  

 SMPDS 0.600 1 987 2419 0.001 6458 

 SMPDS 0.646 2 929 2155 0.001  

 SMPDS 0.660 3 910 2039 0.001  

√MI EMB 0.574 1 0.130 0.449 0.001 1 088 

 EMB 0.592 2 0.128 0.439 0.010  

 EMB 0.587 3 0.129 0.423 0.700  

 EMPD 0.546 1 0.203 0.978 0.001 4 675 

 EMPD 0.595 2 0.191 0.851 0.001  

 EMPD 0.602 3 0.190 0.838 0.001  

 70% reduced 0.542 1 0.194 1.069 0.001 1933 

 70% reduced 0.591 2 0.185 0.972 0.001  

 70% reduced 0.595 3 0.187 0.930 0.362  

 SMPDS 0.532 1 0.198 1.057 0.001 6 458 

 SMPDS 0.589 2 0.187 0.940 0.001  

 SMPDS 0.598 3 0.185 0.910 0.001  
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 SMPDS 0.600 4 0.185 0.911 0.130  

SI Table 4. WA-PLS model parameters for reconstructed mean temperature of the coldest month (MTCO, 0 C) 

comparing regression using the full SMPDS set with regression based only taxa found in the fossil set from (a) at Megali 

Limni (b) at Ioannina (see SI Figure 15). Cross-validated r2, number of components with p < 0.05, root mean square 

error (RMSE), maximum bias, and taxon set size. 

Set r2 No of 

components  

RMSE Maximum 

bias 

p No of taxa 

SMPDS set 0.691 4 4.82 10.3 0.019 195 

Megali Limni 

fossil only 

0.541 4 5.88 32.4 0.030 67 

Ioannina fossil 

only 

0.552 3 5.80 32.2 0.001 78 

 

SI Table 5. Amalgamated taxa as in Table 3, for MTCO, GDD0 and square root (MI), showing number of occurrences, 

total abundance, abundance-weighted SD of coefficients (optima) of component taxa, SD of coefficient of amalgamated 

taxon, and coefficient of amalgamated taxon. SDs are obtained by bootstrapping the sample set 1000 times. 

 
 

  

Amalgamated 

taxon Occurrences Total abundance

Abundance-

weighted 

SD of 

subtaxon 

coefficients 

MTCO

SD of 

amalgamated 

taxon 

coefficients 

MTCO

Coefficient of 

amalgamated 

taxon MTCO

Abundance-

weighted 

SD of 

subtaxon 

coefficients 

GDD

SD of 

amalgamated 

taxon 

coefficients 

GDD

Coefficient of 

amalgamated 

taxon GDD

Abundance-

weighted SD 

of subtaxon 

coefficients 

sqrt(MI)

SD of 

amalgamated 

taxon 

coefficients 

sqrt(MI)

Coefficient of 

amalgamated 

taxon sqrt(MI)

Apiaceae 5485 9617 2.4 1.7 -8.4 498 231 1667 0.07 0.04 0.90

Asteroideae 6171 8053 2.5 1.3 12.6 601 305 7135 0.09 0.05 0.40

Carduoideae 2363 1620 3.7 2.1 1.1 1033 659 3598 0.16 0.11 0.69

Cichorioideae 3260 8877 1.0 1.0 6.6 207 220 5906 0.04 0.04 0.48

Cistus 956 1756 2.7 1.7 10.9 674 418 6797 0.07 0.06 0.42

Ephedra 813 913 5.0 3.5 3.2 1012 652 6562 0.16 0.16 0.05

Plantaginaceae 5565 8012 2.2 1.2 13.0 592 366 5901 0.08 0.05 0.65

Quercus deciduous 4920 34212 0.8 0.5 3.4 213 109 4728 0.04 0.02 0.75

Quercus evergreen 2378 24196 0.7 0.4 6.3 206 119 5435 0.03 0.02 0.55
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SI Table 6. Component taxon data for amalgamated taxa in SI Table 4, for MTCO, GDD and square root (MI), showing 

number of occurrences, total abundance, SD of coefficients (optima) of component taxa, and coefficient of component 

taxa. SDs are obtained by bootstrapping the sample set 1000 times. 

 

 
Amalga
mated 
taxon Component taxon 

Occurren
ces 

Total 
abundance 

SD 
MTCO 

Coefficie
nt MTCO 

SD 
GDD 

Coefficient 
GDD 

SD 
sqrt(M

I) 
Coefficient 

sqrt(MI) 

Apiaceae 5485 9617       

 Aegopodium 2 2 5.5 -8.8 1350 6034 0.16 -0.31 

 Aegopodium.podagraria 2 0 8.4 -27.5 532 -4630 0.96 1.37 

 Ammi.type 1 0 1.7 -33.4 358 644 0.04 1.00 

 Angelica 4 6 12.2 4.7 4170 8807 0.85 -0.60 

 Angelica.archangelica 1 0 6.6 69.4 445 -1014 0.21 3.65 

 Angelica.type 84 17 4.0 6.4 473 538 0.22 2.44 

 Anisosciadium.type 6 1 14.1 -3.4 3307 7855 0.34 -0.07 

 Anthriscus 2 0 6.6 -52.6 420 -3992 0.20 1.30 

 Anthriscus.sylvestris 24 22 11.3 -21.0 1121 1394 0.44 0.41 

 Anthriscus.sylvestris.type 66 10 3.7 8.5 625 -769 0.12 1.93 

 Anthriscus.type 6 1 9.9 -21.2 1477 163 0.55 0.23 

 Apiaceae 3084 3618 1.3 0.9 336 3174 0.05 0.99 

 Apium.Berula 13 2 3.6 15.8 875 7791 0.18 -0.63 

 Apium.type 4 0 9.4 14.9 1095 4251 0.60 0.39 

 Astrantia 3 1 4.7 7.4 1806 -1663 0.35 1.46 

 Astrantia.type 34 3 13.4 -24.6 2212 -771 0.20 1.22 

 Athamanta.cretensis 11 35 8.0 -24.9 4804 -4044 1.22 2.27 

 Berula.erecta.type 1 0 1.3 22.2 201 7315 0.04 -0.24 

 Bunium.type 45 29 4.2 11.9 1380 9439 0.14 -0.17 

 Bupleurum 14 4 8.4 -3.6 3036 -2433 0.47 2.02 

 Bupleurum.type 150 159 5.9 -50.4 675 -673 0.23 0.89 

 Carum.carvi 10 2 5.4 14.8 839 -563 0.16 1.97 

 Chaerophyllum 5 2 12.1 -15.3 4271 -5583 0.60 2.44 

 Chaerophyllum.hirsutum.type 101 35 2.9 -8.2 626 -3610 0.13 2.45 

 Chaerophyllum.type 10 7 23.6 -36.9 3675 557 0.11 0.75 

 Conopodium 3 1 18.8 64.7 1518 8932 0.50 2.64 

 Conopodium.majus 1 0 2.9 16.6 584 6549 0.32 -1.27 

 Daucaceae 2 0 1.3 -9.7 287 1974 0.11 0.29 

 Daucus.carota 38 3 6.2 -0.2 1633 -2029 0.30 2.32 

 Daucus.carota.type 2 0 11.2 24.4 3948 6312 0.25 1.13 

 Daucus.type 50 12 6.5 -5.3 789 4420 0.24 0.20 

 Echinophora 5 3 5.9 6.6 1371 5850 0.14 1.02 

 Echinophora.type 2 0 4.3 29.3 1279 11793 0.10 -0.91 

 Eryngium 265 282 4.1 8.5 1246 5736 0.09 1.01 

 Eryngium.ilicifolium 37 63 3.2 26.7 745 9613 0.12 -0.24 

 Eryngium.type 138 152 8.6 22.1 1858 8491 0.20 0.22 

 Falcaria.type 402 2790 2.7 -12.0 294 1284 0.06 0.93 

 Ferula.type 12 2 9.3 12.8 2719 6711 0.23 0.24 

 Heracleum 76 42 3.9 -2.3 1118 -806 0.24 1.79 

 Heracleum.laciniatum.type 1 0 5.5 29.8 881 -804 0.35 5.64 

 Heracleum.sphondylium 25 8 10.0 -68.8 1015 621 0.16 1.02 

 Heracleum.type 13 2 18.5 -37.7 2793 -669 0.22 0.16 

 Laserpitium.latifolium.type 4 0 9.6 8.4 1155 -565 0.30 1.77 

 Laserpitium.prutenicum 2 1 7.3 -5.3 3745 -563 0.61 2.22 

 Ligusticum.mutellina 62 16 2.1 -15.8 897 -5266 0.23 2.78 

 Malabaila 13 3 4.3 -5.6 2140 2956 0.23 0.20 

 Meum 9 6 5.6 0.2 868 -5242 0.15 2.19 

 Meum.athamanticum 1 0 1.4 -6.4 257 -6191 0.06 3.03 

 Neogaya.simplex.type 2 0 13.6 1.4 815 -831 0.92 2.67 

 Oenanthe 2 0 4.5 -20.3 1122 4598 1.10 -1.04 
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 Oenanthe.type 2 0 1.4 -3.9 860 2952 0.04 0.55 

 Orlaya 5 1 4.4 -0.9 1137 3712 0.25 -0.19 

 Orlaya.grandiflora 2 0 3.7 -8.7 552 -3666 0.11 2.53 

 Pastinaca.type 4 1 15.2 -13.8 2252 4523 0.19 0.40 

 Peucedanum 16 4 6.6 -9.1 1422 -3051 0.28 1.68 

 Peucedanum.ostruthium 1 0 2.2 -24.8 440 -7019 0.09 3.35 

 Peucedanum.type 128 65 7.7 0.8 2022 3274 0.32 1.15 

 Pimpinella 5 0 12.4 -23.9 1657 578 0.36 0.57 

 Pimpinella.major.type 34 3 6.0 -8.8 1542 -3474 0.31 2.49 

 Pimpinella.type 274 2078 1.9 -6.8 571 943 0.05 1.10 

 Pleurospermum.austriacum 3 0 9.2 -17.0 5555 4430 1.09 1.18 

 Sanicula 13 5 13.7 -1.0 1490 -362 0.14 1.48 

 Sanicula.europaea 2 0 2.2 -18.6 544 -5902 0.10 2.93 

 Sanicula.type 38 52 2.5 3.2 748 4451 0.13 0.23 

 Scandix 5 4 7.0 -11.3 1561 839 0.39 0.47 

 Seseli.type 9 2 17.9 -29.6 3585 -7763 0.68 3.33 

 Smyrnium.type 4 0 22.2 -28.9 3935 -1219 0.28 1.19 

 Torilis 3 4 21.2 2.1 5431 4126 0.41 0.53 

 Torilis.arvensis 5 1 9.5 -8.5 2254 -3331 1.48 3.52 

 Torilis.type 31 7 2.4 6.7 628 5517 0.09 -0.31 

 Turgenia.type 51 44 5.4 3.8 1510 4051 0.19 0.34 

Asteroideae 6171 8053       

 Achillea 29 14 9.3 -17.4 1132 2589 0.26 0.46 

 Achillea.Aster 24 22 3.8 8.8 1171 2945 0.20 -0.01 

 Achillea.Aster.type 13 10 5.8 -2.2 1083 -5355 0.13 0.92 

 Achillea.type 341 230 3.5 -5.4 1440 -693 0.38 1.85 

 Adenostyles.type 2 1 2.3 -6.6 1430 -4210 0.41 2.90 

 Ambrosia 156 118 5.3 -3.3 874 4456 0.11 0.65 

 Ambrosia.artemisiifolia.type 52 14 2.5 -8.1 344 3142 0.09 0.67 

 Ambrosia.type 78 34 9.6 14.3 1920 8737 0.33 0.99 

 Ambrosia.Xanthium 7 1 4.7 -79.1 556 -6281 0.12 0.98 

 Antennaria 1 0 1.9 13.2 337 -613 0.05 0.64 

 Antennaria.type 7 7 25.1 39.2 8377 11119 0.78 0.13 

 Anthemis 25 61 9.8 35.7 2403 11515 0.20 0.10 

 Anthemis.type 785 697 4.7 12.1 978 7425 0.10 0.32 

 Arnica.montana 47 12 2.1 -6.4 617 -1737 0.15 1.88 

 Aster 39 18 9.5 -19.8 1175 -721 0.23 0.63 

 Aster.bellidiastrum 1 0 2.2 -24.8 440 -7019 0.09 3.35 

 Aster.type 827 1016 1.3 16.5 368 8932 0.06 0.04 

 Asteroideae 2020 4543 1.1 11.7 307 6537 0.05 0.46 

 Bellis 13 8 26.2 -13.8 4528 2585 0.52 0.57 

 Bellis.type 20 36 3.1 16.2 541 5010 0.06 1.09 

 Bidens 5 4 16.0 -6.0 3363 -2707 0.69 1.90 

 Bidens.type 60 37 4.1 14.7 1403 5280 0.17 0.54 

 Calendula 11 1 5.1 1.7 859 2929 0.46 0.94 

 Calendula.type 2 1 3.3 68.3 679 19527 0.09 -0.03 

 Chrysanthemum.alpinum 1 0 2.2 -24.8 440 -7019 0.09 3.35 

 Doronicum 2 0 10.7 25.4 1689 12070 0.47 -0.45 

 Erigeron 56 9 3.1 -17.4 1132 -4120 0.32 2.34 

 Eupatorium 1 0 2.0 23.1 465 6590 0.06 1.42 

 Eupatorium.type 1 1 1.4 31.7 159 2332 0.04 2.24 

 Evax 1 0 4.1 17.1 1329 9679 0.11 0.72 

 Filago.type 74 48 3.2 14.8 1577 12170 0.10 -0.24 

 Gnaphalium 13 1 10.9 -7.9 794 -3178 0.57 2.77 

 Gnaphalium.type 29 3 6.4 -24.3 1125 -7796 0.31 3.26 

 Helianthus 23 11 4.0 41.6 934 13380 0.32 1.50 
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 Helianthus.type 1 0 1.3 16.6 229 6595 0.04 -0.06 

 Homogyne 39 3 5.1 -13.9 1216 -5609 0.29 2.80 
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 Homogyne.alpina 7 2 3.6 -12.7 1014 -34 0.20 0.50 

 Inula 1 0 2.1 12.1 282 -68 0.05 1.68 

 Inula.type 4 1 14.5 15.6 2385 8943 0.69 0.19 

 Matricaria.type 263 300 2.6 2.8 1024 5477 0.10 0.31 

 Petasites 6 1 15.8 0.6 3087 4559 0.76 0.38 

 Petasites.type 3 0 15.1 -11.6 4643 -2114 0.58 1.48 

 Senecio 67 18 2.6 -11.4 814 -3489 0.18 2.43 

 Senecio.type 186 148 16.5 -15.3 2531 2210 0.16 0.49 

 Solidago 82 65 12.3 -19.4 838 -2421 0.17 1.83 

 Solidago.type 323 214 5.1 7.3 1374 2779 0.26 1.44 

 Solidago.virgaurea.type 20 46 2.4 31.3 637 4056 0.18 3.85 

 Tussilago.farfara 2 0 15.5 22.8 8037 9311 0.80 1.18 

 Tussilago.type 6 0 8.2 -34.9 1283 -1334 0.20 1.13 

 Xanthium 290 179 4.5 6.0 1098 6333 0.10 0.46 

 Xanthium.spinosum 1 0 4.2 10.1 470 2474 0.17 0.72 

 Xanthium.spinosum.type 7 1 29.2 -21.1 1556 -688 0.42 0.38 

 Xanthium.strumarium 1 0 7.3 30.9 1610 9551 0.16 -1.14 

 Xanthium.type 96 113 4.2 1.0 771 4393 0.11 0.72 

Carduoideae 2363 1620       

 Arctium 7 1 17.1 -12.1 4369 4593 0.85 0.15 

 Arctium.Jurinea 18 8 5.5 4.4 2057 5039 0.21 0.10 

 Arctium.type 4 2 15.7 13.8 5636 6330 0.97 0.24 

 Carduoideae 20 20 3.8 -3.6 1177 1800 0.18 0.71 

 Carduus 72 11 3.1 -11.0 980 -4964 0.16 2.69 

 Carduus.type 120 68 3.4 7.8 955 7405 0.17 -0.08 

 Carlina 26 4 5.9 -3.3 1525 -4790 0.44 2.76 

 Carlina.type 6 2 8.3 22.1 2727 7926 0.18 0.52 

 Carthamus 20 5 5.7 7.1 2225 5748 0.20 0.46 

 Centaurea 262 507 2.8 7.3 1357 3199 0.21 1.00 

 Centaurea.collina 1 0 1.4 -9.4 364 -8785 0.06 2.87 

 Centaurea.collina.type 1 0 2.8 29.6 467 3137 0.07 1.13 

 Centaurea.cyanus 221 59 2.1 -8.7 446 2896 0.09 0.53 

 Centaurea.cyanus.type 227 123 1.9 3.7 428 4449 0.07 0.45 

 Centaurea.depressa.type 4 3 4.1 -0.3 3194 3563 0.31 0.31 

 Centaurea.diffusa 1 0 2.0 -4.0 966 6100 0.14 0.06 

 Centaurea.jacea 11 5 10.4 2.7 1390 4175 0.29 1.24 

 Centaurea.jacea.type 113 73 2.4 -10.1 818 557 0.10 0.75 

 Centaurea.montana 18 2 6.2 7.5 1272 -2008 0.28 2.26 

 Centaurea.montana.type 4 1 19.9 -94.7 3401 -6312 0.72 -0.05 

 Centaurea.nigra 10 4 11.0 -11.3 3758 -7100 0.83 2.61 

 Centaurea.nigra.type 141 51 3.6 7.2 754 5713 0.14 0.54 

 Centaurea.rhenana.type 1 0 3.9 12.7 337 4457 0.06 0.94 

 Centaurea.scabiosa 12 4 4.4 5.4 1633 4103 0.41 1.21 

 Centaurea.scabiosa.type 17 4 4.4 -11.5 1150 -113 0.37 1.00 

 Centaurea.solstitialis 2 0 3.9 38.9 962 11509 0.19 1.06 

 Centaurea.solstitialis.type 257 231 1.8 1.5 605 4805 0.09 0.36 

 Centaurea.type 17 21 3.2 40.2 1769 15153 0.20 -1.78 

 Cirsium 124 35 4.9 -17.0 595 -388 0.17 1.28 

 Cirsium.Carduus 74 26 5.7 -8.6 1026 3136 0.11 0.70 

 Cirsium.Carduus.type 1 1 1.2 -9.9 243 3385 0.04 0.24 

 Cirsium.Gundelia 41 23 5.5 -0.7 1558 4738 0.14 -0.15 

 Cirsium.type 355 266 6.4 2.9 983 5214 0.12 0.62 

 Cousinia 14 15 4.8 -11.6 1450 -1782 0.20 1.02 

 Echinops 32 8 4.6 10.4 1342 6631 0.18 0.14 
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 Echinops.ritro 1 0 2.2 -11.1 569 5594 0.10 0.07 

 Jurinea.type 5 2 6.8 3.1 633 5200 0.46 0.73 

 Onopordum.type 8 2 9.1 -3.5 2896 1557 0.38 0.58 

 Saussurea 27 8 6.3 -8.9 869 -2562 0.31 2.05 
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 Saussurea.alpina 9 2 8.9 -13.5 1180 -4305 0.28 1.83 

 Saussurea.type 48 17 17.0 -69.8 1186 -3222 0.14 -0.25 

 Serratula 4 1 10.5 -17.7 3775 -7910 0.92 2.22 

 Serratula.type 7 3 7.7 24.8 2667 9202 0.37 1.07 

Cichorioideae 3260 8877       

 Cichorioideae 2950 8331 0.7 7.5 179 5508 0.03 0.60 

 Cichorium 16 34 9.9 -36.7 1077 -2633 0.19 1.34 

 Cichorium.intybus.type 31 20 4.9 -13.1 1503 -8329 0.21 2.72 

 Cichorium.type 59 125 4.4 -42.2 809 166 0.08 0.54 

 Crepis 2 1 6.1 13.8 1740 5225 0.40 0.75 

 Crepis.aurea 1 0 2.2 -24.8 440 -7019 0.09 3.35 

 Crepis.type 1 0 1.3 27.9 207 6693 0.04 0.00 

 Hieracium.type 2 1 2.2 27.4 809 6610 0.20 0.96 

 Lactuca 16 4 8.1 -1.5 2418 2312 0.29 0.78 

 Lactuca.sativa.type 1 0 1.2 20.8 234 1826 0.04 1.47 

 Lactuca.type 4 0 2.7 19.6 214 4939 0.04 0.22 

 Leontodon.helveticus 1 0 2.2 -24.8 440 -7019 0.09 3.35 

 Leontodon.type 20 27 10.6 -8.0 872 -2965 0.71 2.92 

 Scorzonera.humilis.type 15 15 6.3 5.6 874 3216 0.14 0.85 

 Scorzonera.type 6 9 6.4 -7.9 2111 2515 0.54 0.01 

 Sonchus.type 10 1 6.3 -8.4 684 3623 0.07 0.48 

 Taraxacum 36 10 8.6 -40.2 1564 -3322 0.26 1.24 

 Taraxacum.type 89 299 3.8 -4.0 331 4349 0.22 0.36 

Cistus 956 1756       

 Cistus 202 666 2.7 15.5 640 7353 0.06 0.54 

 Cistus.albidus.type 12 6 12.8 37.0 2172 13274 0.39 0.28 

 Cistus.incanus.type 10 2 8.8 46.6 2078 16839 0.40 -0.18 

 Cistus.ladanifer 222 432 1.1 2.2 345 4943 0.04 0.47 

 Cistus.ladanifer.type 14 18 6.1 18.4 857 9717 0.22 -0.11 

 Cistus.monspeliensis 5 4 16.7 75.0 4049 24041 0.47 -1.20 

 Cistus.monspeliensis.type 3 10 25.1 37.6 4726 12791 0.73 0.27 

 Cistus.populifolius.type 67 164 3.4 5.2 937 4235 0.08 0.70 

 Cistus.salvifolius 46 28 11.8 32.5 2645 11182 0.16 0.27 

 Cistus.salviifolius.type 7 9 13.3 50.8 2506 15361 0.36 0.06 

 Cistus.type 320 340 1.6 5.3 504 5077 0.05 0.55 

 Cistus.villosus.type 48 78 5.2 18.6 1201 7446 0.12 0.41 

Ephedra 813 913       

 Ephedra 79 69 19.5 7.8 2701 9331 0.24 -0.49 

 Ephedra.alata.type 6 18 11.2 -23.5 948 4555 0.54 -0.90 

 Ephedra.distachya 198 309 4.3 -4.0 1078 6798 0.19 -0.27 

 Ephedra.distachya.type 118 62 7.5 -7.1 971 6214 0.21 -0.56 

 Ephedra.fragilis 68 60 3.3 4.5 1355 4166 0.26 0.92 

 Ephedra.fragilis.type 326 392 2.5 8.8 617 6251 0.09 0.42 

 Ephedra.major 1 0 1.5 23.3 308 2685 0.05 1.37 

 Ephedra.type 17 3 5.2 -12.6 1503 -509 0.19 1.13 

Plantaginaceae 5565 8012       

 Globularia 21 1 11.4 -5.2 1853 -3773 0.39 2.52 

 Gratiola.officinalis 2 0 1.5 17.8 407 4505 0.06 0.30 

 Hippuris.vulgaris 10 7 12.0 13.3 1177 2428 0.99 2.72 

 Plantaginaceae 73 61 3.9 -14.1 1898 2514 0.22 0.41 

 Plantago 1156 2049 1.4 19.2 525 7305 0.09 0.51 

 Plantago.afra.type 1 0 1.7 23.9 465 10737 0.06 0.88 
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 Plantago.albicans 38 37 8.6 2.2 1695 4828 0.10 0.06 

 Plantago.alpina 39 105 3.7 -20.4 831 -8347 0.15 2.82 

 Plantago.alpina.type 160 241 1.6 -17.8 559 -5527 0.15 2.63 

 Plantago.coronopus 243 546 3.7 18.7 832 8327 0.09 0.34 

 Plantago.coronopus.type 348 527 1.9 13.9 465 8662 0.09 0.13 

 Plantago.cylindrica.type 11 2 6.7 -15.0 2992 -1592 0.45 0.48 
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 Plantago.lanceolata 1407 1655 1.8 3.2 421 1961 0.07 1.46 

 Plantago.lanceolata.Plantago.major.type 3 3 9.1 -16.6 1894 445 0.40 -0.19 

 Plantago.lanceolata.type 1110 2082 1.7 6.2 471 5577 0.04 0.45 

 Plantago.lusitanica 4 3 36.6 41.3 11290 13788 0.80 -0.84 

 Plantago.major 244 73 2.2 -6.8 772 -421 0.14 1.19 

 Plantago.major.type 93 69 11.2 -20.7 2258 1649 0.12 0.54 

 Plantago.maritima 25 20 7.3 17.3 1557 6365 0.44 1.69 

 Plantago.maritima.Plantago.alpina.type 1 0 2.2 -9.8 355 -9180 0.05 1.27 

 Plantago.maritima.type 134 87 6.9 -12.6 1858 5797 0.12 0.21 

 Plantago.media 116 40 3.0 13.4 397 129 0.09 1.71 

 Plantago.media.type 43 28 2.4 10.0 672 5667 0.29 0.86 

 Plantago.montana.type 42 14 3.6 15.7 891 -612 0.20 1.82 

 Plantago.ovata.type 25 26 4.8 4.5 1915 8798 0.19 -0.11 

 Plantago.psyllium.type 71 81 3.4 22.8 760 8542 0.11 0.30 

 Plantago.tenuiflora.type 9 4 6.0 -4.1 1760 6250 0.25 -0.83 

 Plantago.type 136 250 4.0 1.4 1069 2752 0.12 1.13 

Quercus deciduous 4920 34212       

 Quercus 2695 16051 0.7 3.7 132 4613 0.03 0.80 

 Quercus.cerris 1 1 3.0 18.5 371 2924 0.07 -0.16 

 Quercus.cerris.type 747 6277 0.6 1.3 161 4944 0.02 0.62 

 Quercus.deciduous 992 8818 0.6 3.3 253 4385 0.03 0.82 

 Quercus.infectoria.type 1 1 1.4 17.9 316 9965 0.06 -0.79 

 Quercus.petraea 2 27 3.8 1.0 1167 6584 0.22 0.40 

 Quercus.robur 75 1077 3.1 16.1 1106 6405 0.15 0.46 

 Quercus.robur.Quercus.petraea 4 1 4.0 -5.6 1213 1722 0.13 0.65 

 Quercus.robur.type 403 1959 1.6 9.5 356 3948 0.07 1.03 

Quercus evergreen 2378 24196       

 Quercus.coccifera 307 4057 0.9 9.5 278 6268 0.02 0.56 

 Quercus.coccifera.Quercus.ilex 36 174 4.8 8.5 1192 5024 0.12 0.53 

 Quercus.coccifera.type 89 801 2.4 6.3 594 5487 0.17 0.12 

 Quercus.evergreen 1050 12664 0.3 4.6 106 4949 0.02 0.60 

 Quercus.ilex 126 184 3.0 23.1 1005 7902 0.11 0.04 

 Quercus.ilex.type 514 4553 0.7 4.2 211 4525 0.02 0.64 

 Quercus.rotundifolia.type 2 61 0.4 8.5 91 6895 0.02 0.20 

 Quercus.suber 165 1331 1.1 14.2 333 7369 0.03 0.55 

 Quercus.suber.type 89 370 2.8 23.7 611 9716 0.08 0.14 
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4 Examination of some algorithms in WA-PLS and fxTWA-PLS 

 

Since D-Os could not be reliably identified directly from pollen series (Chapter 2) an alternative approach 

using pollen-derived quantitative reconstruction of climate variables was explored. The reconstructions 

were made using fxTWA-PLS, a variant of WA-PLS. In this chapter, the algorithms in WA-PLS and fxTWA-PLS 

and their implications for the reliability of these reconstructions are examined. 

This Chapter describes the algorithms in WA-PLS (Ter Braak and Juggins, 1993) and fxTWA-PLS version 1 (Liu 

et al., 2020), both to give context for later Chapters, and because scrutiny reveals a problem with the 

reconstruction process in WA-PLS as implemented in the R package rioja (Juggins, 2017) , which has 

potentially significant implications for the robustness of reconstructions.  

In this Chapter ‘MTCO’ and ‘Tmin’ are used synonymously to indicate the mean temperature of the coldest 

month; Tmin here does not indicate the lowest winter temperature. ‘gdd’ is synonymous with ‘GDD0’ 

(growing degree days over 0 oC), and ‘rtmi’ is the square root of MI, Moisture Index, the ratio of actual to 

potential evapotranspiration. 

4.1 WA-PLS 

WA-PLS was developed in Ter Braak and Juggins (1993). Juggins later provided WAPLS functions in the rioja 

R package (Juggins, 2017), though the algorithms can be shown not to be identical with those in Ter Braak 

and Juggins (1993) - see Table 4-1. WA-PLS performs weighted averaging and inverse regression. WA-PLS, 

used in Chapter 3, Turner et al. (2020), was improved in fxTWA-PLS (Liu et al., 2020, 2023), the 2020 version 

of which is used in this project.  

In the ‘calibration’ process, WA-PLS provides a transfer function for each taxon, which is intended to 

represent the central location of the abundance distribution of the taxon along an environmental gradient. 

Statistical tests are available to test how well it performs in replicating the observed climate in the training 
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set. The ‘reconstruction’, or ‘prediction’, process then applies the transfer function to fossil abundances to 

reconstruct past climate.  

The internal processes of averaging, regression and de-shrinking and their effects are discussed in this 

Chapter and further in Chapter 5, which focusses on the distribution of taxon abundance along a climate 

gradient, and compares this with the climate preferences as found by fxTWA-PLS, as far as they can be 

known. 

4.1.1 Calibration 

Below, ‘WA-PLS’ refers to the algorithms described in Ter Braak and Juggins (1993), and ‘WAPLSrioja’ to the 

WA-PLS-related functions implemented in rioja (Juggins, 2017). 

Figure 4.1 outlines the calibration process. The weighted averaging element multiplies the environmental 

vector by the abundances, and finds a weighted mean environmental value for each taxon. This is the first 

estimate of the ‘optimum’ or taxon preference. These first-estimate optima are then taken as good, and 

multiplied by the abundances again to give a taxon-weighted environment. Summing the sample rows of 

the taxon-weighted environment provides a trial reconstruction vector which, in a perfect world, would 

replicate the original environmental vector. The observed and reconstructed vectors are then regressed to 

establish the fit. 
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Figure 4.1 WA-PLS calibration: the weighted averaging and regression process. 

An example of the regression is shown in Figure 4.2, using the SMPDS v1 training set. A line of best fit 

through the trial reconstruction lies at an angle to the 1:1 line which would represent a good fit with the 

observed environment. The difference in slope arises because the double averaging has reduced, or shrunk, 

the range of the values in the reconstruction, and is a well-understood issue (e.g. Ter Braak and Juggins, 

1993; Simpson, 2013). This is corrected by ‘de-shrinking’, by twisting the reconstruction vector to the 1:1 

line, that is, multiplying by the slope coefficient of the inverse regression. This leaves a cloud of points 

aligned along the 1:1 line as the current best estimate of the reconstructed environmental vector. The 

dispersion of the points about the line shows that the training set abundances do not perfectly reflect this 

climate variable and must be influenced by other factors, including noise. 
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Figure 4.2  An example of the result of WA-PLS regression, and the de-shrinking requirement using SMPDS v1 and component 1 for 

MTCO in oC (temperature of coldest month). Script: Test of WA v WA-PLS. 

Table 4-1 shows the calibration algorithm more formally, using the terminology of Ter Braak and Juggins 

(1993), notes where the rioja function WAPLS() (Juggins, S, 2017) differs, and includes notes resulting from 

reverse engineering the rioja WAPLS() function and the C code called by it. 

Table 4-1 WA-PLS calibration algorithms in ter Braak and Juggins and in rioja WAPLS() function. 

ter Braak and Juggins (1993) WAPLSrioja (Juggins) 

Step 0. Centre the environmental variable by subtracting the 
weighted mean, i.e.  
       xi = xi - ∑i yi+ xi /y++  
This simplifies the formulae. 

Same 

Step 1. Take the centred environmental variable (xi ) as initial 
site scores (ri ) . 
Do Steps 2 to 7 for each component : 

Same 

Step 2. Calculate new species scores (u*k) by weighted 
averaging of the site scores, i.e.  
        u*k = ∑i yik ri/y+k  

Same 

Step 3. Calculate new site scores (ri ) by weighted averaging 
of the species scores, i.e.  
       new ri = ∑k yik u*k/yi+ 

Same 
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Step 4. For the first axis go to Step 5. For second and higher 
components, make the new site scores (ri) uncorrelated with 
the previous components by orthogonalization (Ter Braak, 
1987: Table 5.2b) 

Never performed (no explanation). If 
performed, has very small effect. 

Step 5. Standardize the new site scores (ri) (Ter Braak (1987 : 
Table 5.2c). 

Not performed. Has no effect on ‘prediction’ if 
performed, since it is exactly counteracted by 
regression. Step 6. Take the standardized scores as the new component.  

Step 7. Regress the environmental variable (xi) on the 
components obtained so far using weights (yi+/y++) in the 
regression and take the fitted values as current estimates 
(xhati).  
 
This is multiple linear regression for 2nd and later components. 
 
Go to Step 2 with the residuals of the regression as the new 
site scores (ri). 

Same. Purpose is 2-fold:  
(i) obtain residuals for use in next component 
as new ri in Step 2 
(ii) obtain intercept and slope coefficient(s) a0, 
a1, …, ac for Prediction Step 2 below. 
 
Notes: 
xi is the observed, not centred, environment, 
and “components so far” means ri for each 
component c.  
xhati is not used. 
Weights are unimportant if sample abundance 
sums are equal e.g. all samples sum to 1. 

 

The ‘partial least squares’ process (PLS) is based on the expectation that the residuals of the inverse 

regression after de-shrinking contain further information, so they are taken as the environmental vector 

input to a second round of weighted averaging and regression. This search for additional information in the 

residuals is iterated, finding a series of ‘components’ whose values are cumulated. Statistical tests of the 

skill of the different components in replicating the observed climate, using leave-one-out cross validation 

and random t-testing, then determine the number of components (the result of iterations) to be used. 

There are examples of the results in Chapter 3, Turner et al. (2020). 

4.1.2 Reconstruction (‘prediction’) 

For each component, the WA-PLS calibration process provides a transfer function for each taxon enshrining 

the climate preference of that taxon. The highest component which is still statistically valid is selected 

based on the cross-validation and random t-tests. Ter Braak and Juggins (1993) does not specify how the 

calibration result should be applied to data from which a reconstruction is to be made, and an issue arises 

with the method applied in WAPLSrioja.  

 



145 
 

4.2 De-shrinking and reconstruction in WAPLSrioja 

Two interacting issues are covered in the following sections: how de-shrinking is applied, and how this 

impacts reconstructions where the relative abundances of taxa in the fossil core are very different from 

those in the training set. 

The de-shrinking factor is found in the calibration process from the slope of the inverse regression of the 

observed environmental vector against the reconstructed vector, which has been averaged twice. In the 

reconstruction process, WAPLSrioja applies this factor not, as consistency would require, to the twice-

averaged new trial reconstruction of the fossil climate but to the once-averaged taxon optimum. It then 

multiplies these ‘de-shrunk’ optima by the sample abundances of the related taxa to reconstructed a 

climate value for each sample. 

This can make some optima nonsensical, for instance by placing them outside the range of climate 

observed in the training set of the individual taxon, or even outside the entire observed range of the 

training set. Whether or not the observed ranges in the training set represent the true climatic ranges of 

the taxa is not relevant; the point is that WAPLSrioja is capable of placing optima outside the ranges it is 

given. Figure 4.3 show the 91 taxa out of 195 in the SMPDS for which WAPLSrioja provides Component 3 

de-shrunk optima which fall outside the observed Tmin (temperature of coldest month) range for the 

individual taxa; similar results are seen for gdd and rtmi. Many of these are low-abundance or rarely 

sampled taxa in the SMPDS, but this does not mean that their optima are of no importance, since some 

occur in much higher abundances in fossil cores, and some of the 91 taxa are abundant even in the SMPDS. 

While these 91 optima are obviously problematical by virtue of falling outside the observed ranges, the 

same process is likely to have displaced the optima of other taxa which fall within their observed ranges. 
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Figure 4.3 Observed ranges for Tmin (temperature of coldest month) in SMPDS (black lines and points) and ranges of Component 3 
optima provided by WAPLSrioja (red dotted lines and points). Blue lines: maximum and minimum observed Tmin in SMPDS.. Script: 
Simple coefficient extraction 

It could be argued that these ‘optima’ are just a stage in the calculation and that no physical meaning 

should be attached to them, but 4.2.6 below shows that it matters greatly when the taxon abundances in a 

fossil data set are very different from those in the training set, and explains why the issue is not 

immediately obvious at the calibration stage. WA-PLS will no doubt remain in use, so that a method of 

avoiding this error is a useful option. 

4.2.1 An alternative reconstruction algorithm 

This proposal tackles differences in reconstruction algorithms, not whether the underlying unmodified, 

first-estimate optima found by WAPLSrioja are good estimates of the climate preferences of the taxa. That 

subject is examined in Chapter 5. 

WA-PLSrioja de-shrinks not the trial reconstruction but the first-estimate optima, or taxon coefficients. The 

proposed alternative leaves the taxon coefficients unmodified, and applies the de-shrinking to the estimate 

of the trial reconstruction of the environmental variable instead, as the method by which it was determined 

dictates. It results in good predictions of the training set and good statistical results, but potentially very 

different reconstructions when applied to fossil pollen.  
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The key point is that shrinking and its correction are determined by the effect on the vector of sample 

reconstructions, the combined result of two averaging processes. It does not describe the effect on the 

taxon coefficients, which have only suffered one averaging. It is not obvious how the shrinking can be 

partitioned between the two steps, and the once-averaged taxon coefficients remain shrunk to some 

degree.  

4.2.2 WAPLSrioja regression coefficients and taxon coefficients  

 

WAPLSrioja applies the entire de-shrinking factor to the once-averaged coefficients, then adds the intercept 

to yield scalar transfer coefficients. When multiplied by the taxon abundances in the training set, these give 

sample reconstructions with a 1:1 regression line with the observed. Since the entire de-shrinking is 

allocated to the coefficients, this necessarily widens the range of the coefficients, which is one cause of the 

out-of-range optima identified above. The process is more formally described as follows. 

There are i samples (or sites), k taxa and n PLS components are extracted. 

𝑦𝑖,𝑘 is the abundance in sample i of taxon k.  

p is the intercept, represents the centring offset applied to the observed environmental variable for 

simplicity of calculation, and does not change with n.  

𝑠𝑛,𝑚  are the slope coefficient(s) found by inverse regression of the observed environmental vector on the 

site scores for the nth component. There are as many slope coefficients m as the number of the current 

component (i.e. m = n) (Table 4-2).  Note that sx,m for the current component may not be the same as sx-1,m 

or for previous component(s), because further explanatory variables have been added.  

 

 

 



148 
 

Table 4-2 WA-PLS slope coefficient notation 

Slope coefficient notation m 
   

 
n  1 2 3 4 

PLS1 1 S1,1   
  

PLS2 2 S2,1 S2,2   
 

PLS3 3 S3,1 S3,2 S3,3 
 

PLS4 4 S4,1 S4,2 S4,3 S4,4 

 

𝑢𝑘,𝑛 is the initial coefficient found for taxon k for component n without de-shrinking. It is the centred 

weighted average of the taxon abundances multiplied by the preceding site/sample environmental scores 

(uk* in Ter Braak and Juggins (1993) notation denotes the vector of 𝑢𝑘,𝑛 for all k taxa).  

The coefficient for taxon k for the nth component in WAPLSrioja is given by 

𝑐𝑘,𝑛 = 𝑝 + 𝑢𝑘,1𝑠𝑛,1 + 𝑢𝑘,2𝑠𝑛,2 + ⋯ + 𝑢𝑘,𝑛𝑠𝑛,𝑚         Equation 4-1 

It is these coefficients that are perceived to lack physical realism. 

Prediction for sample i for component n is then 

∑ 𝑦𝑖,𝑘𝑐𝑘,𝑛 ∑ 𝑦𝑖,𝑘
⁄𝑘

1                                Equation 4-2 

In calculating the next component, these modified coefficients are ignored. Each component is 

independent, with the same process repeated. The residuals from the last component are taken as the 

environmental vector, new uk* coefficients are found, and an inverse regression of the observed against the 

current sample estimates is performed. The slope-adjusted transfer coefficient for the new component is 

added to the previous transfer coefficient.  

4.2.3 Alternative method  

Instead of taking taxon optima to which the de-shrinking factor has been applied, and applying them to 

pollen samples, it is logical instead to preserve the unmodified once-averaged coefficient, calculated as by 

WAPLSrioja in Step 2 of Table 4-1, and apply some de-shrinking factor f to the trial reconstructed 

environmental vector as follows:  
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 (uk*. yik) f      Equation 4-3 

In the case of Component 1 this is identical to the rioja WAPLSrioja method, which is  (uk*. f) yik... 

The issue is how to obtain f  for higher components. In WAPLSrioja for components  > 1 there is no single 

value for f, and the de-shrinking adjustment is a composite of the slopes applied in each component (Table 

4-2). 

The alternative uses inverse regression of the observed against the trial reconstruction to adjust the trial 

reconstruction, and adds the intercept to the result. The slope provides a single de-shrinking adjustment f 

at any component. The regression may be simple linear regression on the cumulative reconstruction, or 

multiple linear regression on incremental reconstructions. The two processes are compared in Table 4-3. 

Table 4-3 WAPLSrioja and alternative ‘prediction’ algorithms 

ter Braak and Juggins (1993) Rioja WAPLS () and WA() 
functions 

Alternative method 

From WA description, which has only 
one “component”: 
Estimate the x-values of the sites by 
weighted averaging of the species 
optima, 
          xi*= ∑k yik u*k/yi+     

ri is the equivalent of xi* in 
WA. 

Estimated x-values for 
samples/site at each component 
are available as ri in Step 3 in Table 
4-1. 
Step A0:  sum ri for each 
component c to obtain the 
cumulative trial reconstruction,  
          xi*,c  = ∑cri,c. 

 
 
 
 
 
The final prediction formula […] is 
thus  
   xhato = ao +aIx*0     
             = ao + a1∑ky0ku*k/y0+ 
             = ∑ky0k ûk/y0+ 
where ao and a1 are the coefficients 
of the deshrinking regression and  
          ûk = ao + a1 u*k.  

Step 1: For cth component, 
find transfer coefficient û k,c 
by applying regression 
coefficients from Step 7 
above: 
û k,c = ao + a1 u*k,1 + a2 u*k,2 + 
…  + ac u*k,c 

 
Step 2: Estimate x-values by 
applying transfer coefficients 
û k,c to the abundances. 
      xhati,c = ∑kyi,k ûk,c/yi+ 
 

Step A1: Regress the observed 
environmental variable on the trial 
reconstruction (= sample/site 
scores)  xi*c for each  component, 
(otherwise as Step 7), to obtain 
           ao, ac  
 
Step A2: Estimate x-values by 
applying slope and intercept to xi* 
for each component: 
xhati,c = ao + a1 xi*,c. 
For 1st component the result is 
identical to rioja WAPLS() result. 
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4.2.4 Comparison of the methods 

Figure 4.4 compares the reconstructions of the training set by the alternative method with that by 

WAPLSrioja for Tmin, the mean temperature of the coldest month, for Component 3. The gross patterns are 

almost identical, which is to be expected. At the sample level, there are no differences at Component 1; 

differences are expected at higher components, and are seen in the lower two panels of Figure 4.4, where > 

95% of the differences are within 2.5 oC and the mode of the differences is near zero. Such a difference will 

also be found in reconstructions from fossil cores. 

 

Figure 4.4 Top panel: alternative (red open circles) v WAPLSrioja (black points) “prediction” of training set for Tmin (temperature of 
the coldest month) for Comp 3 in oC. Red line = 1:1 slope. Middle panel: difference between them. Lower  panel: differences between 
them as violin plot, with quantiles shown as horizontal lines at 0.025, 0.5 and 0.975.  Script “Apply proper coefficients v7”, pc,pd 
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The results of cross-validation and random t-testing, taking Tmin as an example, are shown in Table 4-4 

(WAPLSrioja), Table 4-5 (Alternative, simple linear regression) and Table 4-6 (Alternative, multiple linear 

regression); similar results are obtained for gdd and rtmi. The cross-validation code used in producing Table 

4-4 is native rioja. The first cross-validation of the alternative (Table 4-5) uses code in fxTWA-PLS v1 

modified for the alternative reconstruction method, and applies simple linear regression on the cumulative 

component; the second version (Table 4-6) applies multiple linear regression on incremental 

reconstructions. The random t-test code is taken directly from fxTWA-PLS, and can be shown to give the 

same result as WAPLSrioja when run on WAPLSrioja data. 

Table 4-4 WAPLSrioja cross-validation and random t-test results reconstructing Tmin (temperature of the coldest month) 

Component RMSE R2 Avg.Bias Max.Bias delta.RMSE p 

Comp01 5.31 0.624 0.00349 14.24 -38.71 0.001 

Comp02 4.97 0.671 -0.00248 8.841 -6.39 0.001 

Comp03 4.84 0.687 -0.00056 8.491 -2.44 0.001 

Comp04 4.82 0.690 -0.00487 10.259 -0.55 0.025 

 

Table 4-5 Alternative leave-one-out cross-validation and random t test result for Tmin (temperature of the coldest month), simple 
linear regression 

Component RMSEP R2 Avg.Bias Max.Bias delta.RMSEP p 

Comp01 5.31 0.624 -0.00348 32.70 -38.71 0.001 

Comp02 5.00 0.668 0.00073 31.77 -5.93 0.001 

Comp03 4.95 0.674 -0.00141 31.17 -0.96 0.001 

Comp04 4.94 0.674 0.00160 31.31 -0.05 0.347 

 

Table 4-6 Alternative leave-one-out cross-validation and random t test result for Tmin (temperature of the coldest month), multiple 
linear regression on incremental reconstructions.: [Script: MT crossval multiple linear] 

Component RMSEP R2 Avg.Bias  Max.Bias delta.RMSEP p 

Comp01 5.31 0.624 -0.00348  32.70 -38.71 0.001 

Comp02 5.00 0.668 0.00072  31.73 -5.92 0.001 

Comp03 4.95 0.674 -0.00145  30.97 -0.88 0.001 

Comp04 4.95 0.674 0.00162  31.03 0.04 0.57 

 

The alternative replicates the training set as successfully as WAPLSrioja, which was to be expected. For the 

first component, as expected, the results are the same, with the exception of maximum bias. Thereafter the 
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alternative is highly similar to WAPLSrioja. In each case, component 3 is preferred on the basis of the 

statistical tests. There is little difference between multiple and simple linear regression in the alternative 

method, and such differences as there are may well be within the variability generated by the random t-

test.  

Large differences, however, emerge between WAPLSrioja and alternative method reconstructions when 

applied to fossil pollen. Using Lac du Bouchet and Tmin as an example (Figure 4.5), unmodified coefficients 

are substantially different from double-shrunk WAPLSrioja transfer coefficients, as intended, and the 

relative abundance of taxa is also very different between the SMPDS training set and fossil cores.  

  

Figure 4.5 Upper panel: differences in mean fractional abundances in SMPDS and in Lac du Bouchet core. Lower panel: differences in 
oC between unmodified (“alternative”) and WAPLSrioja transfer coefficients for Tmin (temperature of the coldest month) for Comp 3, 
for the 40 most abundant taxa at Lac du Bouchet. Script: “Apply proper coefficients v7”, g1a, g2 

Figure 4.6 shows that while there are many similarities between the WAPLSrioja and alternative 

reconstructions of Tmin, including ages and directions of changes, which are important to the search for D-

Os, there are also significant differences in some intervals, most obviously around 25 ka where a 2 oC 

difference arises (red line). How does this difference arise and does it appear justified? 
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Figure 4.6 WAPLSrioja Tmin (temperature of the coldest month) Component 3 for Lac du Bouchet reconstruction (orange); blue = 
reconstructed by alternative. Red vertical line at 25.05 ka. 

The contribution of different taxa to this difference is not easy to compare directly because of the 

application of the intercept in the alternative. In the 25.05 ka sample the end values are constructed as in 

Table 4-7; this analysis of taxon contribution is not available within WAPLSrioja, but can be obtained by 

preserving taxon-level data at Steps 2 and 3 in Table 4-1. 

Table 4-7 Different contributions of taxa to Tmin at 25.05 ka under WAPLSrioja and alternative methods 

  
Contribution to reconstruction, oC 

Taxon Abundance % Alternative WAPLSrioja 

Amaranthaceae 9.49 0.4562 0.7123 

Artemisia 45.47 -2.6611 -2.3319 

Brassicaceae 2.5 0.1017 0.1606 

Caryophyllaceae 6.01 -0.436 -0.5611 

Lamiaceae 1.29 -0.0112 -0.0257 

Oxyria/Rumex 4.67 0.0487 0.2605 

Pinus diploxylon 0.4 -0.0334 -0.0144 

Poaceae 26.97 -0.5541 0.2223 

Thalictrum 3.2 -1.5031 -2.0428 

Sum 100 
  

Intercept 
 

3.103 
 

Reconstructed Tmin, 0C  -1.49 -3.62 

 

As an example, Thalictrum pulls the final temperature down much less in the alternative. Thalictrum 

represents 3.2% of the 25.05 ka sample abundance, but 0.07% of the SMPDS abundance. It attracts an out-

of-range -64 oC WAPLSrioja optimum, and an alternative unshrunk optimum of -21.3 oC.  While Thalictrum 

may be very thinly evidenced in the SMPDS and its optimum therefore suspect, a visual comparison with its 
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abundance on the Tmin gradient in SMPDS suggests that -21.3 oC is a not unreasonable value (Figure 4.7) 

and that -64 oC is unacceptable. (Chapter 5 focusses on abundance distributions). 

 

Figure 4.7 SMPDS fractional abundance of Thalictrum on Tmin (temperature of the coldest month) gradient: points are mean 
fractional abundance in each 0.5 oC bin; line is loess curve (span = 0.5) with ± 2 SD ribbon. Script:  Reconstructions experiment 6, cs1 

This appears indicative of an improvement in fossil reconstructions using the alternative, and the 

coefficients applied appear more plausible, though there is no reconstruction made using other materials 

against which to test them; this unfalsifiability is a persistent issue with reconstructions made from fossil 

cores. 

4.2.5 Conclusion on the alternative reconstruction method 

The new method is a more logical alternative to the WAPLSrioja method. It uses the same principle as WA-

PLS that replication of the observed is the touchstone. It avoids a fossil site reconstruction being strongly 

influenced by optima which are physically impossible.  

The alternative deals with only one aspect of three which must be considered relating to the reliability of 

optima.  
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• The extreme nature of some double-shrunk WAPLSrioja optima and their impact on 

reconstructions; this is avoided by the alternative method, or by the use of fxTWA-PLS which 

correctly applies the de-shrinking factor to the trial reconstruction. 

• How coefficients move with higher components; this is intrinsic to the operation of WAPLSrioja and 

fxTWA-PLS, and does not always provide plausible optima. This is dealt with in Chapter 5, is not 

related to the de-shrinking issue and is not solved by the use of the alternative or fxTWA-PLS. 

• Whether transfer functions as calculated by WAPLSrioja and fxTWA-PLS properly represent the 

climate preferences of the taxa. This is also dealt with in Chapter 5. 

4.2.6 Taxon abundance imbalance between training set and fossil set 

The de-shrinking issue identified above becomes important because of the dissimilarity of taxon 

abundances between training set and fossil set (Figure 4.5). Put at its most extreme, the optima are only 

strictly true for the set of relative abundances of the taxa in the training set. If a fossil sample has a very 

different balance of taxon abundances from that in the training set, which is common as will be seen in 

Chapter 5 and is exampled in Figure 4.5, taxa with weakly-based or improbable optima can significantly 

influence the reconstruction.  

This problem is not obvious during calibration. The calibration process and its statistical tests only say how 

well the calibration succeeds in replicating the training set. Calibration attempts to make the reconstructed 

value for each training set sample as close to the observed environment as possible. In each sample, high-

abundance taxa influence the reconstruction far more than low-abundance taxa. Taxa which do not form an 

important fraction of the samples they inhabit have little influence on the reconstructions of those samples. 

The optima of taxa with persistently low abundances or rare occurrences may therefore be 

unrepresentative of their true preferences.  

These effects are natural and intended results of the calibration process: more frequently occurring and 

more abundant taxa provide better evidence of climate. The consequence when training set and fossil set 

differ widely in abundances, however, has not been debated.  
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The de-shrinking problem is not obvious when reconstructing the training set, because the effect of 

abnormal optima is exactly counteracted by the de-shrinking factor derived from the regression, which is 

weighted by the balance of taxon abundance in the training set. The overall result is arithmetically correct, 

and the optima never need to be looked at either in the calibration or the reconstruction. It is only when 

the optima are examined - as when identifying the contributions of different taxa to a sample 

reconstruction -  that the problem becomes visible. 

Many studies apparently successfully apply WA-PLS to (for instance) aquatic and marine biotic abundances 

and their relationship to water chemistry and temperature. This is interpreted to mean that in these cases 

the ranges of species abundances and of environmental variables are similar enough between the training 

sets and the sets to be reconstructed for the problem not to become obvious or important. 

The consequence is that apparently minor taxa whose influence in the calibration process is negligible can 

have significant impact on reconstructions. This places more importance on the robustness of their optima, 

a question dealt with above in 4.2.1, and a key subject in Chapter 5. 

4.3 Frequency weighted tolerance adjusted WA-PLS (fxTWA-PLS) 

In future Chapters fxTWA-PLS, not WA-PLS, is used to make reconstructions. This section describes the 

differences between them, one of which is that fxTWA-PLS correctly applies the slope coefficient to the trial 

reconstruction, avoiding the optimum-de-shrinking problem in WA-PLS; another is that there is no simple 

expression of the taxon climate preferences it finds, which presents a difficulty when trying in Chapter 5 to 

test its transfer functions against abundance distributions. 

Investigation of the WA-PLS processes and assumptions and their consequences were part of the 

motivation for the development of ‘frequency weighted tolerance adjusted WA-PLS’ (fxTWA-PLS) (Liu et al., 

2020), but the principal motivation was the observation that the training set reconstruction was still 

compressed in range after de-shrinking. fxTWA-PLS makes two adjustments. 



157 
 

Firstly, an implicit assumption in WA-PLS is that all taxa have equally wide tolerances, i.e. that the width of 

the unimodal distribution is the same for all taxa for a given climate gradient (Ter Braak and Juggins, 1993). 

This is demonstrably not the case (see Chapter 5), so fxTWA-PLS weights different taxa based on the widths 

of their dispersions (‘tolerance weighting’). 

Secondly, as Turner et al. (2020) point out, if training sets do not sample the climate gradient evenly, this 

can result in a poor reading of the climate and poor transfer functions. In Turner et al. (2020) the proposed 

mitigation is to ensure as far as possible that a training set samples the climate gradients continuously and 

comprehensively. fxTWA-PLS recognises that in reality, training sets will not achieve sampling perfection, 

and weights the importance of different parts of the gradient by a factor inversely related to the frequency 

with which the training set samples that part (‘frequency adjustment’). While fxTWA-PLS can mitigate the 

effect of uneven sampling, a training set which samples the climate gradient well remains a prerequisite, as 

demonstrated under WA-PLS in Chapter 3, Turner et al. (2020). 

The transfer function in fxTWA-PLS is not a scalar. As shown below at Step 2 in Table 4-8, during calibration 

the initial trial reconstruction is made combining the initial optima and the tolerance factor; since this 

vector is standardised then regressed and then multiplied by the regression slope and the intercept added, 

the final effective optima are not available to the user, and a way has not been found of deconvolving the 

final reconstruction to obtain them (Mengmeng Liu, pers. comm., July 2021, April 2023). The fxTWA-PLS 

package provides so-called ‘optima’ in Step 6, but these are a memo item, not used in the reconstruction, 

and Liu recommends paying no attention to them (pers. comm., July 2023).  

Table 4-8 fxTWA-PLS summary algorithms 

fxTWA-PLS summary algorithms, R pseudocode 

y = training set abundance matrix 
x = observed environmental vector for training set 
t = taxon tolerance vector (dispersion of abundance of each taxon) 
fx = frequency vector (no. of training set samples in each bin) 
%*% is the matrix multiplication operator 
t() is the matrix transposition function in R 

Calibration for a single component: 

Step 1: Calculate vector of initial taxon optima 
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                            u <- t(y) %*% x / colSums(y)               

Step 2: Calculate vector of trial site scores, adjusting for tolerance 
    r <- (y %*% (u / t ^ 2)) / (y %*% (1 / t ^ 2)) 

Step 3: Standardise 
                             z = mean(r) 
                             s <- sqrt(sum((r - z)^2)/ sum(y)) 
                             r <- (r- z) / s 

Step 4: Regress observed against trial score, weighting for frequency of sampling 
                             lm <- MASS::rlm(x ~ r, weights = 1 / fx ^ 2)              
 

Step 5: Record regression coefficients and obtain fit 
                            alpha<- lm[["coefficients"]] 
                            fit<- lm$fitted 

Step 6: Record partial optima: standardise u, apply intercept and slope   
                             u_sd <- (u - z) / s 
    optimum <- alpha[intercept] + u_sd * alpha[slope] 

Reconstruction (‘prediction’) for a fossil core for a single component: 

Requires from calibration: u, t, z, s, alpha 
y = fossil abundance matrix 

Step 1: Calculate trial site scores, adjusting for tolerance 
    r <- (y %*% (u / t ^ 2)) / (y %*% (1 / t ^ 2)) 

Step 2: Standardize 
                            r <- (r- z) / s 

Step 3: Reconstruct fossil climate vector 
  fit <-alpha[intercept] + alpha[slope] * r 

 

Before considering transfer functions in more detail, note that the calibration shows that despite the 

improvements over WA-PLS, fxTWA-PLS cannot replicate the observed environmental vector precisely, as 

illustrated for gdd in Figure 4.8. The distribution lies satisfactorily on the 1:1 line, but there remains 

dispersion about the line and some extreme reconstructed values fall outside the observed range (313, 

8112) degree days, or are even physically impossible (gdd < 0). This indicates two things: 

• The abundance of pollen is not wholly controlled by this bioclimatic variable, which is not 

surprising; other factors are involved, which are assumed to be other bioclimatic variables, non-

climatic variables, and noise. 

• fxTWA-PLS is capable of providing suspect results, which may only be obvious at the extremes of a 

climate gradient. 



159 
 

 

Figure 4.8 fxTWA-PLS calibration Step 4: fitted (trial reconstructed) gdd (growing degree days > 0 oC)  plotted against observed gdd 

in SMPDS, Component 4. Red line is 1:1 

4.4 (Un)availability of effective optima 

Chapter 5 examines how abundance distributions exhibit the climate preferences of taxa, and seeks to 

compare this with the transfer functions found by WA-PLS and fxTWA-PLS; a simple example of such a 

comparison was given in Figure 4.7.  

The ‘effective optima’ are those scalars which, multiplied by the taxon abundance and summed by sample, 

would give the reconstructed environmental vector. However, the transfer functions provided by WA-PLS 

and fxTWA-PLS are not expressed as scalars, except in the case of WAPLSrioja, which uses the de-shrunk 

optimum, with its attendant problems. In the case of the alternative method and fxTWA-PLS, the intercept 

added at the last stage of reconstruction makes it impossible to determine a scalar optimum for each taxon, 

and in the case of fxTWA-PLS the frequency and tolerance adjustments add further complexity. In both 

cases, the situation is made more complex by progressive change through the higher components.  

Simpler alternatives have to substitute for the unknowable true effective optima. The simplest is the 

unmodified ‘optimum’ for Component 1, although by definition this has already suffered an indeterminable 

degree of shrinking. 



160 
 

4.5 Chapter summary 

This Chapter is the first in a series designed to evaluate the robustness of quantitative reconstructions 

which can provide time series of variables with specific climatic meanings, which could in turn be used to 

identify D-Os. 

The algorithms in WA-PLS are analysed and the differences between WA-PLS and fxTWA-PLS are described. 

The most important problem is that large differences in relative abundance between the taxa which (a) 

dominate the training set (b) dominate a fossil sample can result in the fossil sample reconstruction 

becoming dependent on weakly evidenced optima. This is compounded when WAPLSrioja inappropriately 

applies a de-shrinking factor directly to taxon optima. A method of avoiding this issue by an alternative WA-

PLS reconstruction algorithm is described and evaluated.  

No scalar value is available from the fxTWA-PLS transfer function to represent the position of the taxon 

climate preference on the climate gradient. When Chapter 5 attempts to compare pollen abundance 

distributions with the implicit preference, first-estimate optima which do not include all the elements used 

in the reconstruction have to substitute. 
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5 The representation of abundance and its application in the WA-PLS 
family 

 

The reliability of WA-PLS and fxTWA-PLS reconstructions depends on their ability to utilise abundance 

distributions in a training set. There are two questions here. The first is how well the taxa in the training set 

represent the climate, a question mostly relating to the number and distribution of samples of a taxon and 

its abundance. The second is how the distribution of abundance exhibits climate preference and how this 

accords with how WA-PLS and fxTWA-PLS operate. This Chapter explores how best to describe the 

abundance of taxa along climate gradients in a modern pollen training set, and by applying this to the 

SMPDS, examines whether these abundance distributions provide reliable representations of climate 

preferences. Then it focusses on where and why abundances depart from the unimodal and Gaussian 

model implicit in WA-PLS and fxTWA-PLS, and what the consequences and mitigations are.  

5.1 Gradient analysis and response patterns 

The distribution of abundance of a taxon along an environmental gradient demonstrates the environment 

preference of the taxon. There is a substantial literature on gradient analysis and ordination, that is, 

methods of organising and describing distributions of abundance, or present/absence, of one or more taxa, 

along environmental gradients (Gauch, Whittaker and Wentworth, 1977; Ter Braak and Prentice, 1988; 

Oksanen and Minchin, 2002; Jansen and Oksanen, 2013).  

Ter Braak and Prentice (1988) describe three families of gradient analysis methods where an environmental 

variable is already known; firstly, linear response models, which are statistically simple but are of limited 

practical use since few biotic responses are linear; secondly, those which use a unimodal, Gaussian-like 

response model; and lastly, those based on weighted averaging, which they describe as heuristic.  

Hill (1973) introduced reciprocal averaging (RA), also known as correspondence analysis (CA), which 

implicitly assumes a linear response. Starting with a vector of arbitrary values, by iteratively averaging taxon 

(column) scores and sample (row) scores it converges on a stable vector, to which the abundances appear 

to respond. This vector then must be interpreted in some physical sense; this is termed indirect gradient 
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analysis. ter Braak (1986) developed this further into Canonical Correspondence Analysis (CCA) by adding 

regression techniques. Two further ordination techniques, Principal Components Analysis (PCA), which 

assumes linear responses, and Detrended Correspondence Analysis (DCA), which assumes a unimodal 

response and is a development of RA (ter Braak, 1986), were described and applied in Chapter 2 to 

summarise pollen abundance matrices. 

fxTWA-PLS is the current end-point development of weighted averaging, CCA, and partial least squares. It 

retains the implicit assumption that the distribution is unimodal and Gaussian or approximately so (Ter 

Braak and Juggins, 1993).  

The typical shape of abundance along the environmental gradient is often assumed to be approximately 

unimodal and symmetrical and approximately Gaussian (Shelford, 1931; Gauch, Whittaker and Wentworth, 

1977; Braak and Looman, 1986). This model has convenient mathematical properties. However, abundance 

distributions often depart from this symmetrical pattern, and response models other than symmetrical 

unimodal have been fitted to ecological data. Huisman, Olff and Fresco  (1993) describe five response 

models (no trend/null response, two types of sigmoidal monotonic change, symmetrical unimodal, and 

skewed unimodal). Oksanen and Minchin (2002) found that the responses of less than half of the taxa 

studied in a Tasmanian plant dataset could be fitted by a Gaussian model, and skewness was often present. 

Bjune et al. (2010), applying the same models to Norwegian pollen abundance-climate relationships, found 

that only a minority of abundance patterns could be characterised as symmetrical unimodal. Jansen and 

Oksanen (2013) added two further bimodal models based on analysis of a large set of data relating plant 

abundances to soil pH.  

In this Chapter, since the WA-PLS family consider a single bioclimatic gradient at a time, the interest lies 

mostly in the response curve of individual taxa (a 1-D approach). This approach is a potential weakness, 

since plants respond to multiple climatic and other variables. Although in principle the ideas can be 

extended to multiple dimensions, this is not pursued here.  
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The climate variables considered here are growing degree days above 0 oC (gdd), mean temperature of the 

coldest month (MTCO, or synonymously in this project Tmin or tmin) and the square root (rtmi) of Moisture 

Index, which is the ratio of actual evapotranspiration to potential evapotranspiration. 

5.2 Substitute for true optima 

Chapter 4 showed that no scalar value is available which represents the position of the environmental 

‘optimum’ underlying the transfer function provided by WA-PLS or fxTWA-PLS. The simplest substitute for 

this unknowable true optimum found by WA-PLS and fxTWA-PLS is the mean climate in which the taxon is 

found, weighted by abundance (abundance-weighted mean, ‘awm’). The algorithm finding this is described 

in Table 4-1 at Step 2 for WA-PLS: ‘Calculate new species scores (u*k)’, for the first component’, and Table 4-

8 at Step 1 for fxTWA-PLS. The mean climate value must be added back; using the variables in the fxTWA-

PLS calibration, awm =  u[,1] + meanx. In Chapter 4 it was noted that the range of these values has been 

shrunk to an undeterminable degree. 

5.3 Distilling abundance along a gradient 

5.3.1 Scatterplots 

The simplest representation of the abundance of a taxon in a training set is a scatterplot. Figure 5.1 shows 

these for Picea, an example of a frequently occurring taxon in the SMPDS v1 modern pollen training set. 

The abundance distribution of this taxon is assumed to represent its climate preferences well since it occurs 

in nearly half of the samples in the SMPDS, which in Chapter 3 was seen to sample a wide climate space. 

These scatterplots can be compared with the overall sampling density of the gradients by SMPDS in the 

histograms in the lower panels. Picea is a single genus, which limits the risk that the distribution conflates 

genera with potentially different behaviours. 

This figure demonstrates some important features of real abundance distributions. 

• The picture is more complex than a symmetrical unimodal curve. 
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• Even in an apparently preferred region of the gradient, there are many instances of low abundance; 

conversely, there are few regions where the taxon is not found, and there can be instances of high 

abundance well away from the preferred regions.  

• Nevertheless, abundances can show climate preferences: taking the position of the abundance-

weighted means, Picea prefers cooler gdd and wetter soil than the average taxon (shown in the 

lower panel histograms). 

• One of the distributions (Tmin) appears bimodal.  

Scatterplots do not allow us to summarise abundance distributions by drawing a line through, or an 

envelope round, the points. 

 

Figure 5.1 Upper panels: Abundance of Picea as fraction of total pollen count in a sample for each SMPDS sample including Picea, 
against modern climate at that point; gdd = growing degree days above 0 oC, Tmin = mean temperature of the coldest month 
(MTCO) in oC; sqrt(MI) = square root of Moisture Index, which is actual evapotranspiration / potential evapotranspiration. Orange 
vertical line: mean climate, weighted by abundance (awm). Lower panels: histograms of counts of samples in SMPDS (n = 6458) 
showing how densely the gradients are sampled at different points. Orange vertical line: mean climate, weighted by observations.. 
Script: Simple scatterplot abundances late. 
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5.3.2 Shapes versus means 

The orange vertical line in Figure 5.1 upper panels is the mean climate in which the taxon is found, 

weighted by abundance (abundance-weighted mean, ‘awm’) for Component 1. 

Neither WA-PLS nor fxTWA-PLS test the shape of the distribution, despite their ultimate reliance on the 

unimodality and symmetry of the shape. Departure from this shape, for instance by skewness or 

multimodality, may result in a misleading or meaningless optimum. To understand whether a taxon’s shape 

is problematical, its abundance distribution must be described in a way which identifies such departures.  

5.3.3 Simple 1-D case 

The aim is to develop a smooth curve which represents the abundance along the gradient. It must not be 

too stiff, since this may disguise multiple peaks in response, and can introduce cliffs at the edge of the 

observed range, where a few high values occur near the ends of the gradient. It must be sufficiently stiff 

that it usefully exhibits modes and does not overfit. There is no useful statistical test of the ideal degree of 

smoothing. 

There are many smoothing techniques available, such as moving averages using different weighting systems 

(e.g. kernel smoothing), polynomial curve fitting, and local regressions methods such as loess. These are 

partially controllable by specifying the width and shape of the weighting or the span or the style of the 

regression. If the gradient is treated as a continuous variable, none of these techniques perform well when 

applied directly to the abundances. This is illustrated in Figure 5.2. A loess curve with span = 0.3 and a 

Generalised Additive Model (GAM) curve are fitted to the data, and neither appears to represent well either 

the visual pattern, the abundance-weighted mean, or the pattern of occurrences along the gradient shown 

in the histogram. As with many smoothing mechanisms, the ends of the series lack data and can show 

instability. This poor ability to summarise abundance arises because neighbouring samples record very 

different abundances.  
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Figure 5.2 Upper panel: Picea fractional abundance along Tmin gradient, with attempted summarisation by loess, span = 0.3 (red 
curve) and GAM (yellow curve). Orange vertical line: abundance-weighted mean Tmin. Lower panel: occurrence of Picea samples 
along gradient (binwidth  0.5 oC). Script: Simple scatterplot abundances late q. 

5.3.4 Binning 

This is mitigated by summarising abundance into bins along the gradient.  

Figure 5.3 shows that summing the abundances in the bin is greatly influenced by the number of 

occurrences in the bin, which in turn is greatly influenced by how the SMPDS as a whole samples the 

climate gradient (Figure 5.1). Therefore a histogram or pdf of the summed abundances does not meet the 

need to describe the climate preference. 

A mean of the abundances in each bin, on the other hand, demonstrates a taxon’s average preference for 

that small part of the gradient, and this is the best basis on which to construct a curve. The mean 
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abundance of the taxon in each bin is calculated by reference to the number of all samples found in the bin, 

which is here denoted fxab. The example in Figure 5.3 is fxab. 

 

Figure 5.3 From the bottom: simple histogram of counts of occurrences of Picea in SMPDS, binned at 0.5 oC intervals; sums of 
fractional abundances in bins; means of fractional abundances in bins. Orange vertical line: abundance-weighted mean Tmin.  
Script: Simple scatterplot abundances late version w 

A measure other than mean might be considered applicable, for instance the top quartile, or the maximum 

(see the discussion in Chapter 2, where distance measures are combined). The argument is that if high 

abundances are present in a bin, then the climate is self-evidently suitable for the taxon, and low 

abundances may be the consequence of other factors and are of lesser importance. Figure 5.4 shows that 

in practice, for this taxon (and the condition is replicated in many others) the mean and the upper and 
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lower quartiles travel in company. It was concluded that there was no advantage in using anything but the 

mean. 

 

Figure 5.4 Distribution of abundances of Picea in each bin: lower panel: mean binned abundance (fxab); upper panel, boxplots of 
distribution, on log scale. X axes not precisely aligned. Script: Simple scatterplot abundances x 

It is already clear that the abundance-weighted mean climate (orange vertical line) at -9 oC, identified by 

fxTWA-PLS, may not usefully represent the preferred climate of Picea, which is widely tolerant and is 

commonest around ~-20 oC and ~-4 oC. 

The absolute values of fxab vary with the total abundance of the taxon in the SMPDS training set, and for 

consistency between taxa they can be expressed as a fractional abundance, fxabf, which is fxab divided by 

the sum of fxab for that taxon, so that the sum of fxabf for each taxon is 1. 

5.3.5 Smoothing 

Having chosen fractional mean binned abundances as the basis of the curve, there are then two smoothing 

considerations: bin widths, and the smoothing method and its stiffness. 

Dividing a gradient into ~ 100 bins strikes a sensible balance between computational run time and 

sensitivity. Large bins e.g. n < 50 tend to fail to show modes well; small bins e.g. n > 300 result in 
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neighbouring bin means which vary greatly, and merely move the smoothing load to the smoothing 

method.  

The bin widths used in fxTWA-PLS v1 are adopted here, for ease and for consistency when comparing with 

fxTWA-PLS products: 

• For gdd,    50 degree days 

• For Tmin,  0.5 oC 

• For rtmi,    0.01 (dimensionless units). 

Many smoothing methods are available. Loess gives a smooth curve and provides a standard error of the fit, 

though near the ends of the gradient, where data become sparse, the s.e. expands and the polynomial 

becomes unreliable. GAMs are highly similar to loess for degree 2 polynomial with spans in the ranges 

evaluated, and loess is preferred as simpler to implement. All smoothing methods produce similar results if 

smoothing parameters are chosen carefully, but rolling means and kernel smoothing remain locally rough, 

unless parameters are set so wide that modal behaviour becomes invisible. 

No statistical test is available which optimises the balance between closeness of fit and ability to 

demonstrate modal behaviour since the latter is not quantifiable, and the choice is made by judgement. 

The span parameter can be chosen by minimising a value, for instance the sum of squares of the residuals, 

but this will follow the points very closely and will overfit (typical suggested span = 0.04). Figure 5.5 shows 

loess curves using three spans, 0.3, 0.5 and 0.75, for 9 abundant taxa taken as examples. The span 

significantly affects the visibility of modes; in general, span = 0.3 yields too flexible and 0.75 too stiff a 

curve, and span = 0.5 tends to demonstrate the modal behaviour adequately. In the plots in section 5.4 

more than one span is shown to give a more comprehensive picture.  
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Figure 5.5 Response curves of 9 abundant taxa in the SMPDS by abundance to Tmin (MTCO, temperature of the coldest month), 
using different loess spans. No weighting is applied. Numbers in headings are respectively the sum of fractional abundances of the 
taxon and the number of occurrences of the taxon in SMPDS (number of SMPDS samples = sum of fractional abundances = 6458). 
Points: fxabf (fractional mean binned abundance). Blue line: loess curve, span = 0.3; orange line: loess curve, span = 0.5; green line: 
loess curve, span = 0.75. Script: Reconstructions experiment 7, cs2 

5.3.6 Sampling frequency 

Chapter 3 (Turner et al 2020) showed that adequate sampling of climate space is important in providing 

robust taxon abundance distributions, and the distribution of taxon samples along the modern pollen 

climate gradient depends partly on how densely each part of the gradient is sampled by the training set.  

The mean binned value fxab does not consider sampling density, attributing equal importance to each bin 

however many samples it contains, and the use of fxab without adjusting for frequency is consistent with 

the WA stages of both WA-PLS and fxTWA-PLS. fxTWA-PLS responds to possible uneven sampling by 

applying a frequency adjustment late in the process.  

The robustness of the mean abundance of each bin is a function of the number of samples in the bin 

(frequency) and how well each bin mean fits with its neighbours. One possible response is to weight the 

loess curve by the frequency, which is determined by counting the samples of each taxon in each bin of the 
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climate gradient. This evidences the frequency with which the given taxon samples the climate, rather than 

how the whole SMPDS samples the climate. This weighting has limited impact (Figure 5.6) since the 

regressions are local. The differences between curves which are unweighted, weighted by the reciprocal of 

the square root of frequency and weighted by the reciprocal of frequency are small. On the basis that 

frequency varies greatly across bins, the square root option is preferred. 

 

Figure 5.6 Response curves of 9 abundant taxa in the SMPDS by abundance to Tmin (MTCO), using different loess weightings: span = 
0.5 in all cases. Numbers in headings are respectively the sum of fractional abundances of the taxon and the number of occurrences 
of the taxon in SMPDS (number of SMPDS samples = sum of fractional abundances = 6458). Points: fxabf (mean binned fractional 
abundance). Blue line: loess curve, no weighting; orange line: loess curve, weighted by square root of frequency; green line: loess 
curve, weighted by frequency. Script: Test whether loess weighting works  

 

The confidence intervals of the weighted loess curve are tested in Figure 5.7, and are found to be narrow.  
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Figure 5.7 Response curves of 9 abundant taxa in the SMPDS by abundance to Tmin (MTCO), using loess weighting = 1/square root 
of frequency, and span = 0.5. Numbers in headings are respectively the sum of fractional abundances of the taxon and the number 
of occurrences of the taxon in SMPDS (number of SMPDS samples = sum of fractional abundances = 6458). Points: fxabf (mean 
binned fractional abundance). Blue line: loess curve; ribbon = ± 2 SD provided by loess calculation. Script: Reconstructions 
experiment 7 pq2 

5.4 Results of applying loess curves to abundant taxa 

Figure 5.8 shows the response of the 24 taxa with the greatest total abundances in the SMPDS training set, 

using fxabf, to Tmin (or MTCO), Figure 5.9 to gdd and Figure 5.10 to rtmi. These taxa represent 83% of the 

total abundance across the 195 taxa in the SMPDS v1 training set. The loess curves, using three different 

spans, are compared with the awm selected by fxTWA-PLS. The plots for the 138 taxa in the SMPDS (out of 

the total of 195 taxa) with summed fractional abundances in excess of 0.5 (an arbitrary cut-off) are given in 

Appendix A. 

Several different response behaviours emerge:- 

• Approximately unimodal responses (e.g. for Tmin: Betula, Castanea, Fagus), some nearly 

symmetrical and some more skewed 
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o The locations of obvious modes reflect the known range preferences of the taxa: e.g. Abies 

and Betula are cold-temperate trees, Fagus is a temperate tree and Olea is a warm-

temperate tree.  

• Ramps, or highly skewed distributions: the response reaches its high point at or near the edge of 

the gradient (e.g. for Tmin: Amaranthaceae,  Asteroideae, Cichorioideae) 

o Were the gradient only narrowly sampled, these might represent truncation of the realised 

niche (see Turner et al., 2020), but the sampled gradient has a wide range, making this 

unlikely. 

• Multimodal response, where different loess spans may give different pictures (e.g. for Tmin: Abies, 

Quercus deciduous). This shades into… 

• … unclear preferences or insensitivity, ranging from wide tolerance (e.g. for Tmin: Cyperaceae) to 

no clear preference: e.g. Apiaceae, Ericaceae, Salix. 

These align broadly with the HOF models of Huisman, Olff and Fresco (1993) and Jansen and Oksanen 

(2013) (symmetrical unimodal, skewed unimodal, two types of sigmoidal monotonic change, bimodal, and 

no trend/null response). However, the eHOF R package (Jansen and Oksanen, 2013) assigns all taxa in the 

SMPDS for all three bioclimatic variables to model Type I, which is ‘no trend/null response’, whether applied 

to the mean binned abundances (fxab), the fractional mean binned abundances (fxabf), or the points 

defining the weighted loess curve (span = 0.5). In all cases a GAM is preferred. This is interpreted to mean 

that the patterns in the SMPDS data may be too complex for this package to handle, and supports our use 

of loess, which under these conditions is effectively indistinguishable from GAM. 

 

The locations of the abundance-weighted means (awm) reflect the differences in response. 

• Symmetrical unimodal responses place the awm close to the mode, e.g. Tmin: Fagus, Quercus 

evergreen, Polemoniaceae. 
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• Skewed unimodal responses and their extreme expression, ramp responses, attract awms which lie 

nearer the centre of their distributions than where the highest preference is expressed; e.g. for 

Tmin: Amaranthaceae, Asteroideae, Cichorioideae, Cupressaceae, Carpinus betulus. 

• Bimodal responses place the awm between the modes, e.g. for Tmin: Artemisia, Picea. 

• Insensitivity, and curves which are neither unimodal nor ramp but a more complex or 

indeterminate shape, result in awms which tend to miss the mode, if any, and end up in the middle 

of the distribution. e.g. for Tmin: Alnus, Cyperaceae, Calluna, Ericaceae. 

Loess curves with spans of 0.3 (blue), 0.5 (orange) and 0.75 (grey) are shown in these figures. In most cases 

the qualitative differences between them are not great and the same pattern (unimodal, ramp, multimodal, 

or inconclusive) is seen in each. In some cases, however, such as Picea, Quercus deciduous and Poaceae, 

span = 0.3 and 0.5 show bimodality when span = 0.75 does not. This suggests that the lower-value spans 

more usefully exhibit important behaviours at the scales of the gradients under study, and typically span = 

0.5 is used going forward.  
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Figure 5.8 Response curves of top 24 taxa in the SMPDS by abundance to Tmin (MTCO). Numbers in taxon headings are respectively the 
sum of fractional abundances of the taxon and the number of occurrences of the taxon in SMPDS (number of SMPDS samples and sum 
of fractional abundances = 6458). Points: fxabf (mean fractional binned abundance). Blue lines: loess curve, span = 0.3; orange lines; 
loess curve, span 0.5; grey lines: loess curve, span = 0.75. Vertical line: fxTWA-PLS abundance-weighted mean for component 1 (awm). 
Script: Reconstructions experiment 7, pq1 
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Figure 5.9 Response curves of top 24 taxa in the SMPDS by abundance to gdd. Numbers in taxon headings are respectively the sum 
of fractional abundances of the taxon and the number of occurrences of the taxon in SMPDS (number of SMPDS samples and sum of 
fractional abundances = 6458). Points: fxabf (mean fractional binned abundance). Blue lines: loess curve, span = 0.3; orange lines; 
loess curve, span 0.5; grey lines: loess curve, span = 0.75. . Vertical line: fxTWA-PLS abundance-weighted mean for component 1 
(awm). Script: Reconstructions experiment 7, pq1 
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Figure 5.10  Response curves of top 24 taxa in the SMPDS by abundance to sqrt(Moisture Index). Numbers in taxon headings are 
respectively the sum of fractional abundances of the taxon and the number of occurrences of the taxon in SMPDS (number of 
SMPDS samples and sum of fractional abundances = 6458). Points: fxabf (mean fractional binned abundance). Blue lines: loess 
curve, span = 0.3; orange lines; loess curve, span 0.5; grey lines: loess curve, span = 0.75. Vertical line: fxTWA-PLS abundance-
weighted mean for component 1 (awm). Script: Reconstructions experiment 7, pq1 
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In Figure 5.11, Figure 5.12 and Figure 5.13, the robustness of the curves of these 24 abundant taxa to 

differences in the training set is tested, by bootstrapping the SMPDS sample set 500 times with 

replacement, each time recalculating the binned mean abundances and the loess curves. The narrow ± 2 SD 

blue ribbons show the curves are stable. Span = 0.5 was chosen as the most useful in showing behaviour, 

but other spans yield the same picture of stability. There appears little difference in the robustness of the 

curves between different bioclimatic variables, though perhaps Tmin shows wider uncertainties. All 

variables show instability at the edges of the gradient.  

Bootstrapped curves for all 138 taxa with summed abundances > 0.1 in the SMPDS are given in Appendix B. 
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Figure 5.11 Bootstrapped response curves of top 24 taxa in the SMPDS by abundance to Tmin (MTCO, temperature of coldest 
month). Numbers in taxon headings are respectively the sum of fractional abundances of the taxon and the number of occurrences 
of the taxon in SMPDS (number of SMPDS samples = sum of fractional abundances = 6458). Points: fxabf (mean fractional binned 
abundance of SMPDS set). Black line: loess curve, span = 0.5, weighting 1/square root of frequency. Blue ribbon: mean ± 2 SD of 
loess curve resulting from bootstrapping. Script: Reconstructions experiment boot 8, pq1 
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Figure 5.12 Bootstrapped response curves of top 24 taxa in the SMPDS by abundance to gdd (growing degree days > 0 oC). Numbers 
in taxon headings are respectively the sum of fractional abundances of the taxon and the number of occurrences of the taxon in 
SMPDS (number of SMPDS samples = sum of fractional abundances = 6458). Points: fxabf (mean fractional binned abundance of 
SMPDS set). Black line: loess curve, span = 0.5, weighting 1/square root of frequency. Blue ribbon: mean ± 2 SD of loess curve 
resulting from bootstrapping. Script: Reconstructions experiment boot 8, pq1 
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Figure 5.13 Bootstrapped response curves of top 24 taxa in the SMPDS by abundance to rtmi (square root of Moisture Index). 
Numbers in taxon headings are respectively the sum of fractional abundances of the taxon and the number of occurrences of the 
taxon in SMPDS (number of SMPDS samples = sum of fractional abundances = 6458). Points: fxabf (mean fractional binned 
abundance of SMPDS set). Black line: loess curve, span = 0.5, weighting 1/square root of frequency. Blue ribbon: mean ± 2 SD of 
loess curve resulting from bootstrapping.  Script: Reconstructions experiment boot 8, pq1 
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5.5 Do abundance distributions represent climate well? 

Unimodality and symmetry of the abundance distribution is far from universal in the SPMDS (Figure 5.8 to 

Figure 5.13). This is not a function of restricted sampling, at least for taxa with more than sparse 

representation, since SMPDS samples a wide climate space relatively comprehensively (Chapter 3; Turner et 

al., 2020).  

A pervasive issue is that the fewer the occurrences and the lower the abundances of a taxon in the training 

set, the less capable it is of representing the climate gradient. Often such taxa do not exhibit clear patterns, 

and show wide uncertainties in their bootstrapped curves (Appendix B). Secondly, even where occurrences 

and abundances appear adequate, caution is needed since pollen does not respond only to a single 

bioclimatic variable, and there are many sources of noise.  

A multimodal curve is potentially suspect. Whether a taxon appears multimodal can depend on the degree 

of smoothing (Figure 5.8 to Figure 5.10). The amplitude of the modes varies between the obvious and the 

unconvincing, where, while technically multimodal, the taxon shows low variability along the gradient.  At 

least in theory, bimodality may be a genuine representation of the realised niche of a taxon, if it is 

outcompeted in its preferred range by others, though there are no clear examples of this in the SMPDS. 

Most of the taxa in the SMPDS v1 do not represent the pollen of a single species. Some are deliberate 

amalgamations of relatively infrequently found taxa into higher taxonomic groups, after checking the 

similarity of their climate preferences using 2.5D GAMs (see Turner et al., 2020). But some taxa perforce 

represent multiple plant species because their pollen is indistinguishable, or not in practice distinguished. 

These may conflate plants with different climate preferences, and this may result in peaks in abundance at 

different points along the climate gradient. There are multiple examples of multimodality or possible 

multimodality in the SMPDS, e.g. Abies Tmin response (n = 2410 or 37% of samples in SMPDS) at span = 0.3 

is trimodal and possibly bimodal at span = 0.5, but at span = 0.75 looks simply unimodal. Alnus (n = 4863 or 

75% of samples in SMPDS) has a very variable response to Tmin and multimodality at span = 0.3 is not 

convincing. In no case can a specific cause be identified. 
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Some taxa have no significant preference respecting a given bioclimatic variable, and these appear 

insensitive by showing no clear abundance pattern. This may be indistinguishable from the effects of low 

abundance and infrequent and/or patchy occurrence, which cannot reliably sample the gradient. Both may 

result in apparent multimodality. There are potential examples of this among the less abundant taxa (see 

Appendix A). Considering gdd, apparent multimodality/insensitivity in e.g. Boraginaceae, Papaveraceae, 

Platanus, Thalictrum, and Mercurialis may result from patchy sampling. 

Some distributions may be actively misleading, where an apparent preference for one variable can be 

shown to be largely driven by another. This can be demonstrated for Artemisia, a very abundant taxon in 

many fossil samples (see section 5.6). It consistently requires dry conditions (Figure 5.10) but occurs in 

environments with widely varying temperatures. It appears to respond positively to gdd in Figure 5.9, giving 

a ramp distribution. 

It is not immediately obvious that there is an issue. The abundance of Artemisia responds mainly to low 

moisture, which is associated with low latitude, which in turn is associated with high gdd. Figure 5.14 shows 

that Artemisia in every latitude band strongly prefers the dry end of the available moisture gradient, and is 

largely absent from wetter latitudes, but in any latitude band it does not respond to gdd within the range 

available (Figure 5.15) and can be considered almost indifferent to gdd. Its apparent preference for high gdd 

arises because places with high gdd tend to have low plant available moisture. This undermines the use of 

its transfer function in reconstructing gdd. 
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Figure 5.14 Red open circles: scaled Artemisia mean binned abundance on the rtmi (square root of Moisture Index) gradient by 
latitude band in degrees N, with blue loess curves span = 0.5, plotted against background (grey histogram) of SMPDS samples in the 
latitude band. Script: QD analysis v3. 

 

Figure 5.15 (Scaled) Artemisia mean binned abundance on the gdd gradient by latitude band in degrees N (red points), with blue 
loess curves span = 0.5, plotted against background (grey histogram) of SMPDS samples in the latitude band. Script: QD analysis v3 
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5.5.1 Summary: reading the climate 

Some circumstances have been identified in which the abundance distribution may be an unreliable 

representation of the response to climate. These are taxa 

• with multimodal or unclear abundance distributions; 

• with low number of occurrences or abundances; 

• which are insensitive to a specific climate gradient or whose abundance distribution along that 

climate gradient reflects correlations between this variable and some other aspect of climate. 

5.6 Do abundance distributions support fxTWA-PLS transfer functions? 

Statistical techniques which assume a unimodal distribution will not provide a good reconstruction for taxa 

which (a) show a climate preference distant from the mean, (b) show no clear pattern or a multimodal 

pattern, and (c) have a broad tolerance range. 

5.6.1 Skewness and tolerance 

There are many instances of skewed unimodal distributions in the SMPDS. WA-PLS and fxTWA-PLS find 

abundance-weighted mean environmental values for each taxon, but the mode represents the most-

preferred environment. In a unimodal symmetrical distribution, the mean is also the mode, but skewness 

moves the mode away from the mean, so the abundance-weighted mean no longer represents the most 

preferred environment. However distant from unimodal and symmetrical the abundance distribution may 

be, however wide its dispersion and however insensitive the taxon, WA-PLS and fxTWA-PLS always provide 

a transfer function, which is then applied to all instances of the taxon during reconstruction.  

WA-PLS makes no distinction between taxa whose distributions offer strong evidence of narrow preferences 

and those with very wide or unclear preferences. fxTWA-PLS adjusts for one aspect of this, the dispersion 

(tolerance), but still assumes symmetry. The tolerance adjustment weights the abundance-weighted mean 

of each taxon inversely as the square of its dispersion of its abundance along the climate gradient when 

constructing the trial environmental vector (1/t2 is applied in Step 2 in Table 4.8; Liu et al. (2020) derived 

1/t2 algebraically). A large t, reflecting a wide dispersion, reduces the contribution of the taxon. Some of 

these weightings are large, as can be seen in Figure 5.16. awm does not include any tolerance adjustment. 
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Figure 5.16 Spread of tolerance factor t for all taxa in SMPDS with respect to Tmin (temperature of the coldest month in  oC), gdd 
(growing degree days > 0 oC), and rtmi (square root of Moisture Index), provided by fxTWA-PLS for Components 1 (blue), 2 (orange) 
and 3 (purple). Script: Tolerance exploration. 

Since skewed and multimodal distributions are common in Figure 5.8, Figure 5.9, Figure 5.10, and Appendix 

A, the degree of displacement of the mode must be considered in evaluating the robustness of the fxTWA-

PLS transfer function for a taxon. But before this, the impact of higher components on the transfer function 

must be considered. 

5.6.2 Components higher than 1 

The abundance weighted mean for Component 1 has been used to substitute for the unknowable true 

optima found by WA-PLS and fxTWA-PLS. Since the PLS elements of both methods make progressive 

changes to the unknowable true optimum embodied in the transfer function, it is important to examine 

how PLS develops this series of components, and whether this adversely impacts the calculation of the 

transfer function.  

5.6.2.1 How components change 

Transfer functions are cumulative as components are added. Here WA-PLS is used to illustrate the processes 

since its de-shrunk optima are available, and tolerance and frequency adjustments do not complicate the 

picture. For some taxa, there is little change between initial (Component 1) and final (e.g. Component 4), 

while for others there is large change. 
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There are two parts to the mechanism by which reconstructions are progressively changed in WA-PLS: 

firstly the incremental change as components are added in the abundance weighted taxon mean, or 

unmodified optimum, and secondly, the application of the slope coefficient for that component, obtained in 

the inverse regression for the purpose of de-shrinking the reconstructed environmental vector. The first 

element also occurs in fxTWA-PLS, but fxTWA-PLS handles the de-shrinking differently and (correctly) 

applies the coefficient to the trial reconstruction. In both cases the end reconstruction, which changes 

across components, includes the effects of both the change in the abundance-weighted mean and the de-

shrinking slope. In WAPLSrioja the application of the slope coefficient to the abundance-weighted mean 

amplifies the movement and is the primary cause of out-of-range coefficients discussed in Chapter 4. 

5.6.2.2 Incremental change in abundance-weighted means 

The magnitudes of the transfer function increments in WAPLS calibration are determined as follows. The 

new environmental vector for a component > 1 is the residuals of the previous regression. For a given 

taxon, the increment in the optimum for components > 1 starts as the vector of the products of the 

residuals and the taxon abundances. The mean of this vector becomes the increment.  

If the vector elements (the individual sample scores) are evenly distributed about zero, a weighted mean of 

zero results and there will be no change in the coefficient. A large increment requires that the elements are 

unbalanced about zero. This arises when the abundances are unevenly distributed about the zero residual, 

for instance when samples with abundances which are large in the context of the given taxon are found at 

some distance from zero, and are not balanced by similar moment on the other side. Samples near zero are 

of little relevance. In theory change could be caused or contributed to by residuals which are centred well 

away from zero, but in practice this is rare. 

This imbalance tends to be a feature of weakly represented taxa, in that they are of low abundance and/or 

low occurrence and/or their distribution is not unimodal. The reconstructed value of each sample, and 

therefore the residual, is dominated by the high-abundance taxa in the sample. Common and highly 

abundant taxa tend to have small coefficient increments. This effect is a natural and not necessarily 

undesirable consequence of WA-PLS. 
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Figure 5.17, using the residuals from the first regression, shows that where samples are evenly balanced 

about zero, the weighted mean environmental preference of a taxon is very similar to the mean of the 

environments of the samples in which it is found, so the coefficient increment for Component 2 is small. 

Some of the example taxa are common, some very thinly evidenced, but because the product of the total 

sample abundances and the environment are equal on either side of zero, the new mean is approximately 

zero. The new mean is aligned with the centre of the histogram of the environmental vector (the previous 

regression residuals), restricted to the samples in which the taxon appears.  

 

Figure 5.17 6 examples of taxa where the Component 2 Tmin increment is effectively zero in WA-PLSrioja. Histogram is residuals 
from previous regression, i.e. environmental vector for this component, for the samples which include this taxon; points are absolute 
values of product of abundance and environment i.e. elements contributing to coefficient increment; size of points is proportional to 
abundance; red line is resulting coefficient increment; movement is distance of red line from zero. Script: Apply proper coefficients 
v8/ Identifying iffy residuals v1 

Figure 5.18 by contrast shows unbalanced distributions, where a small number of samples with high 

abundance exert great leverage (Thalictrum, Polygonaceae, Saxifragaceae). Here, the new weighted mean is 

not aligned with the histogram denoting the environment of the samples in which it appears. In other 

words, the taxon does not exactly share the typical preferences of the taxa with which it shares samples, so 

change is justified. This is a feature of low-abundance taxa; high-abundance taxa of necessity control the 

preferences shown by the histogram. 
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Figure 5.18 6 examples of taxa where Component 2 Tmin increment becomes colder.  Histogram is residuals from previous 
regression, i.e. environmental vector for this component, for the samples which include this taxon; points are absolute values of 
product of abundance and environment i.e. elements contributing to coefficient increment; size of points is proportional to 
abundance; red line is resulting coefficient increment; movement is distance of red line from zero. Script: Apply proper coefficients 
v8/ Identifying iffy residuals v1 

This example shows coefficients moving towards cold, but there are many examples resulting in warmer 

Tmin, and of similar behaviour in gdd and rtmi.  

The conclusion is that the movement of the optima with higher components is logical, but that low-

abundance taxa may suffer large changes in their transfer functions which undermine their utility. 

5.6.2.3 Multiplication by the de-shrinking slope coefficient 

The double-averaging in WA leads to the need for ‘de-shrinking’ by applying the slope coefficient to the 

reconstructed environmental vector (Chapter 4), and its application to the optima, rather than the trial  

environmental vector, is an error of principle in WAPLSrioja. The great amplification of the incremental 

change by applying the slope coefficient is a problem when the resulting coefficients are applied to taxa 

with very different fossil abundances to those in the modern, such that their weight is far greater.  

The effect is seen in the example of Thalictrum in Table 5-1. Each new component taxon coefficient is found 

by summing the increments so far, and the related slope coefficient is then found by multiple linear 

regression of the reconstructed against the observed environmental vectors. Since the slope coefficients 
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change with each new component, finding the increments is most simply done by reverse engineering the 

final slope as in Table 5-1. In this example, the slope-adjusted cumulative on the right is the WAPLSrioja 

transfer coefficient of -63.9 oC for Component 3, and the Component 2 unmodified increment for 

Thalictrum (-5.6oC) is seen in Figure 5.18. The Component 3 value is lower than both the coldest observed 

Thalictrum sample and the coldest observed SMPDS sample, and is therefore not a transfer function which 

can be safely applied to reconstruct climate from fossil pollen. 

The cumulative unmodified Component 3 optimum for Tmin for Thalictrum (-21.3 oC; Table 5-1) matches 

well with the apparent mode of its mean binned abundance in Appendix A. The application of the 

regression slope is shown in Table 5-1 to be the main driver of the physically impossible final Component 3 

optimum. 

 

 

 

Table 5-1 Thalictrum WA-PLS optima increments for Tmin oC (temperature of the coldest month) 

 Unmodified optimum oC Slope Slope-adjusted oC 

Thalictrum Increment Cumulative Slope Increment Cumulative 

Comp 1 -12.4 -12.4 1.8 -22.7 -22.7 

Comp 2 -5.6 -18.1 3.3 -18.6 -41.3 

Comp 3 -3.2 -21.3 7.0 -22.6 -63.9 

 

This illustrates again that WA-PLS transfer functions are strictly true only in the context of the relative taxon 

abundances in the training set. Thalictrum in the training set occurs 693 times with a fractional abundance 

total of 4.4 out of 6458, and mean of 0.0007. Arithmetically, the reconstructed environmental vector owes 

almost nothing to the influence of Thalictrum, and its coefficients are for practical purposes irrelevant to a 

replication of the SMPDS environment. At the detail level, however, WA-PLS, finding that Thalictrum does 

not share the climate preferences of the other taxa in the samples it shares, compensates for its tiny 
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abundances by a high coefficient. While the calculation is logically correct under the principles of WA-PLS, 

the problem is that (a) the result is physically impossible and (b) Thalictrum is a significant player in some 

fossil cores/samples.  

Because fxTWA-PLS applies the de-shrinking correctly to the trial reconstruction, not the optimum, this 

issue is a feature of WA-PLS but not of fxTWA-PLS. 

5.6.3 Mean versus mode 

Modes as indicators of climate preference have so far been illustrated graphically. This section quantifies 

the gap between mean and mode as a measure of how far a distribution is from (approximately) Gaussian.  

Figure 5.19 illustrates how apparent modes exist in the gdd loess curves of the 24 most abundant taxa in 

the SMPDS (blue points for most obvious, and red points for lesser modes) and how far they can be from 

the abundance weighted means (vertical line). Modes are defined here as points greater than their 

neighbours on either side within a window 20% of the length of gradient centred at that point. This means 

ramp responses such as Amaranthaceae do not attract modes at their high points because there is no 

subsequent decline. 
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Figure 5.19 Response curves of top 24 taxa in the SMPDS by abundance to gdd. Numbers in taxon headings are respectively the sum 
of fractional abundances of the taxon and the number of occurrences of the taxon in SMPDS (number of SMPDS samples = sum of 
fractional abundances = 6458). Blue points: fxabf (mean fractional binned abundance of SMPDS set). Orange line: loess curve, span 
= 0.5, weighting 1/square root of frequency. Red points: apparent modes; blue large points: ‘best’ mode (largest > 1800). Vertical 
line: fxTWA-PLS abundance-weighted mean for component 1 (awm). Script: Finding modes in lcurves. 

In the majority of these 24 taxa, mean and mode are sufficiently far apart to cast doubt on whether WA-PLS 

and fxTWA-PLS will find a good transfer value. The exceptions are Abies, Betula, Fagus, Picea, Pinus 

diploxylon and haploxylon (though both are broadly tolerant), and Quercus evergreen. Corylus, Olea, and 
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Quercus deciduous have broad unimodal tolerance but the mean misses the mode. Few others qualify. 

There is a bimodal class where the abundance weighted mean is offset from the modes (Alnus, Artemisia, 

Asteroideae, Poaceae), and a ramp class where the maximum abundance is at the warm end, sometimes 

with no mode found, and the mean is unrepresentative (Amaranthaceae, Carpinus betulus, Cichorioideae, 

Cupressaceae, Plantaginaceae); in Figure 5.11 the warm ends of these ramps can be seen to have wide 

uncertainties. The preferences of Apiaceae, Cyperaceae, Oxyria/Rumex, and Polemoniaceae are not clear. 

The class of response for a given taxon varies between bioclimatic variables (for instance, Quercus 

deciduous shows a bimodal response to Tmin), but the same classes of response are found in each variable. 

The distances between the abundance-weighted mean and the apparent mode, expressed numerically in 

Table 5-2, are therefore a potential index of the reliability of the transfer function. 

Table 5-2 Most obvious mode, abundance-weighted mean found by fxTWA-PLS, and the difference between them for gdd (growing 
degree days > 0  oC). Source: Mxmod from Finding modes in lcurves  

Taxon mode mean diff 

Abies 2488 2741 253 

Alnus 5638 3241 -2397 

Apiaceae 2238 3432 1194 

Artemisia 6438 4413 -2024 

Asteroideae 6888 4503 -2385 

Carpinus betulus 6338 4348 -1990 

Cichorioideae 5888 4292 -1596 

Corylus 4338 3210 -1128 

Cupressaceae 5838 4028 -1809 

Cyperaceae 6338 2693 -3645 

Fagus 2988 3110 122 

Olea 5938 5193 -745 

Oxyria/Rumex 5988 3504 -2484 

Picea 2288 2279 -9 

Pinus diploxylon 2688 2876 188 

Pinus  haploxylon 3538 3187 -351 

Plantaginaceae 3688 4106 418 

Poaceae 5138 3378 -1760 

Polemoniaceae 5038 4650 -388 

Polypodiales 1838 2818 980 

Quercus deciduous 4888 3932 -956 

Quercus evergreen 4838 4929 91 
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5.6.4 Should outliers be removed? 

Arguably, where a taxon has very high fractional abundances which fall outside the envelope of the 

remaining samples, these samples should be removed from the calibration, in accordance with typical 

statistical practice. For example, two Thalictrum samples have fraction abundance > 0.2 in Figure 5.18; the 

mean abundance of Thalictrum is 0.0007. In another case, Figure 5.20 plots the abundance of the far more 

abundant Artemisia in a 2D climate space of gdd and rtmi against a background of the density of SMPDS 

sampling of the climate space. The purple points denote fractional abundances in excess of 0.75, one 

reaching 0.96. 

 

Figure 5.20 Abundance of Artemisia (red points, size ~ abundance) in a 2D rtmi/gdd climate space. Background contours are density 
of SMPDS samples in the climate space. Purple points: fractional abundance> 0.75. Script: QD analysis, p 

However, in the case of Artemisia, the effect of removing samples with fractional abundance > 0.75 is 

shown in Figure 5.21 to be minor. This is because the bins in which they occur contain tens of other samples 

with more typical abundances. In the case of Thalictrum the components still run away (but less quickly) to 

impossible negative values. The removal of high-abundance samples was therefore not pursued. 
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Figure 5.21 Fractional mean binned abundances (fxabf) of Artemisia along gdd gradient. Black open points: all Artemisia  samples; 
grey line and pink ribbon mean: loess span = 0.5 curve, and bootstrapped ±2 SD limits. Red open points: Artemisia samples excluding 
samples with fractional abundance > 0.75; black line and blue ribbon: mean loess span = 0.5 curve, and bootstrapped ±2 SD limits. 
Script: Reconstructions experiment 6, cs1 modified 

5.7 Applying learnings to reconstructions 

5.7.1 Inclusion/exclusion of taxa in calibration 

Turner et al. (2020) concluded that all available taxa should be used in calibration unless there is good 

reason not to. Since WA-PLS combines information from all taxa in the calibration set to refine the trial and 

final reconstructions, it was argued that some information, however little, is lost to the remaining taxa if 

any taxon is removed from the calibration. The removal of insensitive, or very broadly tolerant, taxa from 

the WA-PLS calibration set was tested in Turner et al (2020) using the example of Pinus diploxylon and the 

difference in the reconstructions was found in that case to be unimportant. However, this project has 

identified good reasons to consider excluding or down-weighting some taxa. 

Since some low abundance/low occurrence taxa are of significant abundance in the fossil record, it is not 

possible simply to exclude them, otherwise the reconstruction will be based on a very small set of taxa. 
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It might appear attractive to create core-specific calibrations, including only those taxa which occur in the 

core; but then different transfer functions are then being applied to different cores, which cannot be 

justified. 

The SMPDS set already excludes such plants as obligate aquatics, carnivorous plants, introduced species, 

and cultivars, on the grounds that they do not represent the naturally occurring response to climate (see 

Chapter 1 for this and a counter-argument), and includes only taxa with occurrences > 10; the calibration 

excludes taxa with sum of abundance in the set < 0.1. 

5.7.2 Identifying potentially unreliable taxa important in fossil record 

The taxa which are most abundant in the fossil cores are often not those most abundant in the modern. The 

smaller the presence of a taxon in the training set, the less reliably fxTWA-PLS transfer functions may reflect 

its true climate preference. Where taxa are abundant in the fossil record but not in the modern, 

reconstructions may be undermined. Figure 5.23 and Figure 5.24 compare abundances in the SMPDS 

(Figure 5.22 )with those in the fossil record, combining abundances from a set of 11 circum-Mediterranean 

fossil cores (the selection of fossil cores is discussed in Chapter 6). Taxa falling above the red 1:1 line are 

more abundant in the fossil than the SMPDS set, and some of the differences are very large; this is the class 

of taxa with the greatest risk of providing poor optima, followed by highly abundant taxa falling below the 

line. 
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Figure 5.22 Summed fractional abundances of taxa in the SMPDS in descending order. Top few taxa labelled. Script: SMPDS v fossil 
abundances p1 

 

Figure 5.23 Log/log plot of summed fractional abundance (as fraction of total abundance in the set) of SMPDS and a set of fossil 
cores (Villarquemado, Lac_du_Bouchet, Les_Echets_redone_2, Lagaccione, Stracciacappa, Castiglione, 
Lago_Grande_di_Monticchio, Ioannina, Lake_Xinias, Megali_Limni, Dead_Sea). Taxa where fossil abundance is greater than in 
SMPDS are highlighted in red and labelled. Point size proportional to 1/t2 for Tmin (temperature of the coldest month). Red line: 1:1. 
Script: SMPDS v fossil abundances p2 
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Figure 5.24 Summed fractional abundance (as fraction of total abundance in the set) of SMPDS and a set of fossil cores 
(Villarquemado, Lac_du_Bouchet, Les_Echets_redone_2, Lagaccione, Stracciacappa, Castiglione, Lago_Grande_di_Monticchio, 
Ioannina, Lake_Xinias, Megali_Limni, Dead_Sea). Taxa where fossil abundance is greater than in SMPDS highlighted in red and 
labelled. Point size proportional to 1/t2 for Tmin (temperature of the coldest month). Red line: 1:1. Script: SMPDS v fossil abundances 
p2 

The fossil set combines cores which themselves differ widely in the abundances of their dominant taxa, so 

these Figures present a composite picture. Both at the core level and at the sample level within cores, 

reconstructions are often based on a small set of potentially unreliable taxa, and this set varies between 

cores. Figure 5.25 uses the spread of abundances to illustrate in more detail how some taxa have very much 

greater presence in the fossil set than in the SMPDS.  
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Figure 5.25 Differences in distributions on log scale of fractional abundances in samples between SMPDS (coloured, unfilled) and 
fossil set (dark grey with orange fill) for taxa with high abundance in SMPDS. Script: SMPDS v fossil abundances.R  

 

This discrepancy between modern and glacial pollen assemblages encompasses both abundance 

differences and a relatively restricted repertoire of taxa in the glacial cores. It is not surprising that glacial 

climates and low CO2 led to assemblages different from the modern, often dominated by plants of low 

stature and wide tolerance, though it is also possible that lacustrine cores register, or preserve, pollen 

rather differently from the majority of the modern pollen samples, of which ~ 9% are lacustrine core tops 

and the majority are surface samples.  

5.7.3 Tolerance 

Nearly all the taxa abundant in the fossil but less so in the modern have wider tolerances (larger t) than the 

average of the SMPDS, and this is supported by their loess curves in Figure 5.8 to Figure 5.10. This suggests 

that applying a single effective optimum to all instances of these taxa in the fossil cores introduces falsely 

high precision. The tolerance t and tolerance weighting applied by fxTWA-PLS (1/t2) is shown in Table 5-3 

for the taxa with the highest abundance in SMPDS (excluding Pinus haploxylon, which does not appear in 
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the fossil records), which make up 69% of the SMPDS abundance and 83% of the abundance in the fossil 

set. The narrower tolerances of Quercus evergreen and Fagus mean their transfer functions reflect 

narrower and more justifiably precise climate preferences; this is strongly supported by their loess curves. 

But neither are significant in the fossil set. 

Table 5-3 Top 14 by SMPDS abundances. Fossil abundances greater than SMPDS abundances in bold red. t greater than the SMPDS 
mean and 1/t2 less than the SMPDS mean in bold. Source: Risky taxon abunds and tolerances.csv 

Taxon SMPDS 
abundance as 
fraction of total 

Fossil set 
abundance as 
fraction of 
total 

t for 
Tmin, oC 
C 

t for g 
gdd 

t for 
rtmi 

1/t2 for 
Tmin 

1/t2 for 
gdd 

1/t2 for 
rtmi 

Pinus diploxylon 0.187 0.128 8.07 1278 0.243 0.0154 6.12E-07 16.90 

Poaceae 0.097 0.216 7.34 1526 0.298 0.0186 4.29E-07 11.22 

Betula 0.082 0.012 7.48 831 0.246 0.0179 1.45E-06 16.51 

Quercus deciduous 0.053 0.102 5.42 1186 0.210 0.0340 7.11E-07 22.59 

Picea 0.042 0.002 6.95 608 0.154 0.0207 2.70E-06 42.40 

Quercus evergreen 0.038 0.008 3.11 887 0.122 0.1033 1.27E-06 67.10 

Alnus 0.036 0.008 7.49 1287 0.245 0.0178 6.04E-07 16.61 

Artemisia 0.029 0.165 9.64 1625 0.239 0.0108 3.79E-07 17.43 

Amaranthaceae 0.029 0.077 6.80 1508 0.217 0.0216 4.40E-07 21.17 

Cyperaceae 0.027 0.049 8.64 1491 0.327 0.0134 4.50E-07 9.37 

Polypodiales 0.022 0.004 6.26 1340 0.389 0.0255 5.57E-07 6.60 

Fagus 0.017 0.023 3.10 838 0.137 0.1042 1.43E-06 53.12 

Apiaceae 0.015 0.012 7.36 1509 0.217 0.0185 4.39E-07 21.23 

Cupressaceae 0.015 0.022 7.09 1814 0.384 0.0199 3.04E-07 6.79 

Sum of abundance 0.688 0.828 
      

Mean of set 
 

 6.77 1266 0.245 0.0315 8.41E-07 23.50 

Overall SMPDS mean 
 

 5.69 1133 0.219 0.0833 2.48E-06 95.99 

 

5.7.4 Taxon characteristics and possible treatment 

The different characteristics of taxon abundance distributions, how they are identified, their significance, 

and possible responses to them are tabulated in Table 5-4. These possible changes to the calibration can be 

tested by (a) random t-test of the leave-one-out cross-validation and (b) changes in the reconstructions. A 

number of thresholds are proposed, which can be set by experimentation. Taxa which appear actively 

misleading include Artemisia for gdd (see 5.5.2). 
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Table 5-4 Characteristics of taxon abundance distributions, identification, effects, and possible responses. Grey boxes: condition not 
affected by characteristic. Source: What to do Chapter 5 table.xlsx 

 

5.7.5 Results of exclusion of taxa from a training set 

The principle that some taxa provide little, or confusing, information about climate preferences was tested 

by performing a fxTWA-PLS gdd calibration excluding the taxa with the 4 greatest tolerances, and/or with 

absolute mean-mode distances > 2300 for gdd, plus Artemisia as misleading (not representing gdd) (Table 

5-5). These were arbitrary cut-offs. This excluded set represents 33% of the total abundance in the SMPDS. 

Table 5-5 Taxa to exclude from test calibration. Source:  

Taxon Tolerance t abs(mean-mode) gdd 

Pinus diploxylon 1278 188 

Amaranthaceae 1508  - 

Cyperaceae 1491 3645 

Alnus 1287 2397 

Asteroideae  - 2385 

Oxyria/Rumex  - 2484 

Artemisia 1625 2024 

 

 

 

 

 

Characteristics of taxon 

abundance distribution 

(more than one may apply) How identified

Assumed 

quality of 

climate read

Shape 

suitability for 

WA

Applicability 

of transfer 

function Possible responses

Symmetrical unimodal Count of modes = 1, mean-mode 

distance low

Good Excellent Include in calibration

Skewed unimodal Count of modes = 1, mean-mode 

distance high

Good Depends on 

mean-mode

Exclude from calibration if mean-

mode > threshold; or downweight in 

reconstruction ~ mean-mode

Wide tolerance Tolerance large Good Over precise fxTWA-PLS already weights by 

tolerance. Consider exclusion of 

highly abundant widely tolerant taxa

Multimodal Count of modes > 1 and modes similar, 

mean-mode distance

Suspect Poor Exclude from calibration if mean-

mode > threshold; or select most 

obvious mode; or downweight in 

reconstruction ~ mean-mode

Unclear/uninformative Inspection, low variation Suspect Poor Over precise Unless significant in fossil, exclude 

from calibration

Low abundance/occurrence Count of occurrences, sum of 

abundances, bootstrap SD

Suspect Set thresholds: occurrences > 10, 

sum(abundance) > 0.1 already set.

Misleading Inspection and analysis Ignore Exclude from calibration
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Table 5-6 shows that despite removing a third of the volume of evidence, the cross-validation and random 

t-test results are very similar to the full SMPDS set.  

 

 

 

 

Table 5-6 Random t-test results for full and reduced SMPDS taxon set for gdd. Source: Random t-test 13Jul23 on fxTWAPLS for gdd 
Tmin rtmi.csv 

Full set Component R2 Avg.Bias Max.Bias Min.Bias RMSEP delta.RMSEP p 

1 0.67039 121.26 4510.63 0.15 987.19 -36.74 0.001 

2 0.71568 91.13 5083.84 0.12 900.2 -8.81 0.001 

3 0.73048 64.93 5900.69 0.02 859.86 -4.48 0.001 

4 0.73197 72.44 6138.2 0.01 857.79 -0.24 0.013 

Reduced 
set 

1 0.67074 140.41 4455.68 0.19 977.09 -37.39 0.001 

2 0.71288 103.04 4968.16 0.63 889.14 -9.00 0.001 

3 0.72334 94.07 5718.96 0.50 861.92 -3.06 0.001 

4 0.72162 122.34 6666.16 0.28 877.41 1.80 0.001 

 

Figure 5.26 shows minimal difference in the observed versus reconstructed (fitted) regression plots for the 

different taxon sets. 

 

Figure 5.26 Left panel: fitted versus observed calibration result for gdd using full SMPDS set, Component 4. Right panel: using 
reduced set. Script: Crossval fxTWAPLS 13Jul23 p1 p2 

The interpretation is that these 7 taxa add little to the precision of the reconstruction of the training set, 

since either set appears to reconstruct the training set equally well. 
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The reduced set calibration was used to reconstruct gdd at Lac du Bouchet (Figure 5.27). While there are 

many similarities to the full set reconstruction, especially in the location of sharp changes, which are 

important in the search for evidence of D-Os, the restricted set yields an obviously different and cooler 

result with less amplitude of change (the loss of Artemisia is largely responsible for the cooling). 

 

Figure 5.27 Reconstruction of gdd at Lac du Bouchet. Blue: using full SMPDS set of taxa (Component 4); orange: using restricted set 
(Component 3). Script: Full v reduced set gdd 

The taxa excluded in this demonstration are chosen based on arbitrary limits of tolerance and mean-mode 

distance. More experimentation would be needed to establish the impact of adjusting these thresholds, 

and the demonstration includes no test of the thresholds for the low abundance/low occurrence class, or of 

multimodal taxa. At some point the clarity of the reconstruction will start to suffer as taxa are removed or 

down-weighted. 

This is another demonstration of the point made by Turner et al (2020) that indistinguishable calibration 

results do not lead to indistinguishable reconstructions from fossil cores, and conversely calibration results 

may not allow us to identify superior training sets. There is no available independent climatic evidence to 

show which reconstruction of the glacial climate is better, so we are thrown back on the plausibility of the 

argument that some classes of taxa are unlikely to help fxTWA-PLS reconstruct climate.  
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5.7.6 Exclusion of taxa from fossil core reconstructions 

Legitimate exclusions of taxa from a fossil core when making a reconstruction include those where there is 

evidence to suggest that the taxon does not (or does not consistently) represent climate conditions, as for 

Polypodiales and Poaceae at Villarquemado (Wei et al., 2019), where in some intervals sedimentary 

evidence suggests they reflect lacustrine conditions. Inspection of the reconstructions and the 

sedimentology is needed to identify such cases.  

5.8 Chapter summary 

Two questions are addressed: (a) how well the abundance distributions of taxa demonstrate their genuine 

climate preferences (b) how well WA-PLS and fxTWA-PLS can interpret abundance distributions. To do this, 

abundance distributions are first summarised as frequency-weighted loess curves through fractional mean 

binned abundances. The behaviours, or shapes, of the taxa in the SMPDS training set are categorised, and 

reasons are explored for shapes which do not fit the symmetrical unimodal ideal which WA-PLS and fxTWA-

PLS assume, and/or which show that these taxa do not provide good evidence for climate preferences. 

Characteristics which may denote a poor reading of climate, or shapes not ideally suited to WA-PLS and 

fxTWA-PLS, include: skewness and multimodality, where the mode, which best demonstrates a climate 

preference, does not accord with the mean; broad tolerances, which do not closely define a preference; 

insensitivity or unclear preferences; and low occurrences and abundances. One abundant taxon, Artemisia, 

can be shown to be misleading, in that its response is not principally to gdd. The taxa which stand the  

highest risk of providing unreliable transfer functions are identified, partly by their greater abundance in 

the fossil cores than in the SMPDS training set.  

Treatments of taxa with these problematical characteristics are suggested. It is shown that by removing 7 

such taxa, representing a third of the SMPDS abundance, from the training set, the calibration is almost 

unaffected, but fossil reconstructions are noticeably different. Without external evidence to help distinguish 

between the reconstructions, both options are taken forward to Chapter 6. 
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6 Identifying DOs in quantitative climate reconstructions 

In this Chapter, fxTWA-PLS is applied to 16 terrestrial pollen records from the circum-Mediterranean region 

covering parts of the last glacial period to make quantitative climate reconstructions. These are tested for 

robustness using internal evidence and comparison against modern conditions. Pattern matching then 

locates D-O-like points (‘DOLPs’) in the reconstructions. The sensitivity of the identification of DOLPs to a 

number of pattern matching parameters is explored. To compare the apparent ages of the DOLPs identified 

with the ages of events in Greenland, a new set of Bayesian age models, updating the 14C calibration to 

IntCal20 (Reimer et al., 2020), is developed, and potential matches, and series of matches, between GIs and 

DOLPs are proposed.  

This Chapter has three parts, each with methods and results sections. First the reconstruction methods and 

results are covered, followed by the pattern matching methods and results, and finally pattern matching is 

integrated with age modelling to evaluate whether DOLPs represent real D-Os and whether they can be 

assigned to specific GIs. 

6.1 Methods: reconstructions 

6.1.1 Bioclimatic variables  

Reconstructions are made of mean temperature of the coldest month (MTCO or synonymously Tmin), and 

growing degree days (GDD0, or gdd), for 16 cores from the Mediterranean region (Chapter 2.4).  

6.1.2 Treatment of suspect materials 

Calibrations are made using two versions of the training set. Chapter 5 identified that equally good 

reconstructions of the training set climate can be made using either the full set of SMDPS taxa or a 

restricted set excluding taxa with very wide tolerances, highly skewed abundance distributions, or which fail 

to represent a response to the bioclimatic variable considered. The restricted set excludes Artemisia, 

Amaranthaceae, Pinus diploxylon, Cyperaceae, Alnus, Asteroideae, and Oxyria/Rumex. Successful 

replication of the training set is a necessary but not sufficient condition for the robust reconstruction of 



208 
 
 

climate from fossil pollen, and the close similarity of the calibrations does not allow us to discount either 

set.  

In the Villarquemado record, Polypodiaceae and Poaceae are excluded from the fossil taxa following Wei et 

al. (2019), as not representing climatic but lacustrine conditions (Chapters 2 and 5). 

6.1.3 Component selection 

The performance of each fxTWA-PLS calibration model was assessed through leave-one-out cross-validation 

using the cv.w function of fxT, and the highest statistically reliable component was selected through a 

randomisation t-test on the results of this cross-validation using the rand.t.test.w function of fxTWA-PLS 

(Ter Braak and Juggins, 1993; Liu et al., 2020). Table 6-1 shows results up to Component 6 for the SMPDS 

full set. For GDD0/gdd Component 4 was selected as the highest statistically significant component, and for 

MTCO/Tmin Component 3. 

Table 6-1 Results of random t-test on leave-one-out cross-validation of fxTWA-PLS calibration for SMPDS full set. b0 , b1, b0.se, b .se 
are the intercept, slope, standard error of the intercept, and standard error of the slope of the regression, respectively. Selected 
components are in bold. Script: Crossval fxTWAPLS 13Jul23/ Random t_test 13Jul23 on fxTWAPLS for gdd Tmin rtmi.xlsx 

  
Compo-
nent R2 Avg.Bias Max.Bias Min.Bias RMSEP 

delta. 

RMSEP p b0 b1 b0.se b1.se 

gdd 1 0.67039 121.26 4510.63 0.15 987.19 -36.74 0.001 532.16 0.88 28.53 0.01 

  2 0.71568 91.13 5083.84 0.12 900.20 -8.81 0.001 445.32 0.90 26.13 0.01 

  3 0.73048 64.93 5900.69 0.02 859.86 -4.48 0.001 456.14 0.88 24.88 0.01 

  4 0.73197 72.44 6138.20 0.01 857.79 -0.24 0.013 461.25 0.88 24.80 0.01 

  5 0.73194 73.82 6228.87 0.13 857.35 -0.05 0.290 466.22 0.88 24.78 0.01 

  6 0.72897 73.85 6610.72 0.09 861.83 0.52 0.984 475.75 0.88 24.88 0.01 

Tmin 1 0.67770 -2.8805 30.6405 0.0001 6.2554 -27.7814 0.001 -3.0783 0.9228 0.0715 0.0079 

  2 0.73697 -1.9641 38.7902 0.0019 5.1352 -17.9076 0.001 -2.2148 0.9022 0.0606 0.0067 

  3 0.74142 -1.8085 43.2219 0.0012 5.0939 -0.8038 0.005 -2.0100 0.9214 0.0612 0.0068 

  4 0.74179 -2.0138 55.2912 0.0025 5.0498 -0.8658 0.082 -2.3086 0.8849 0.0587 0.0065 

  5 0.73132 -1.3113 81.6816 0.0002 5.2789 4.5355 1.000 -1.3806 0.9729 0.0663 0.0073 

  6 0.71801 -1.2574 94.1278 0.0001 5.4314 2.8904 1.000 -1.3281 0.9724 0.0685 0.0076 
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Table 6-2 shows results up to Component 4 for the restricted taxon set. Component 4 was selected as the 

last statistically significant component for GDD0/gdd and MTCO/Tmin. Part of this table is shown in Chapter 

5. 

Table 6-2 Results of random t-test on leave-one-out cross-validation of fxTWA-PLS calibration for first 4 components of restricted set. 
b0 , b1, b0.se, b .se are the intercept, slope, standard error of the intercept, and standard error of the slope of the regression, 
respectively. Selected components are in bold. Script: Crossval fxTWAPLS 13Jul23/ "Random t_test 8Aug23 vshort on fxTWAPLS for 
",biovar,".csv”. 

 

Compo
-nent R2 

Avg.Bia
s 

Max.Bia
s 

Min.Bia
s 

RMSE
P 

delta.RMSE
P p b0 b1 b0.se b1.se 

gdd 1 0.67074 140.41 4455.68 0.19 
977.0

9 -37.39 0.001 605.9 0.86 27.98 0.01 

  2 0.71288 103.04 4968.16 0.63 
889.1

4 -9 0.001 553.72 0.87 25.47 0.01 

  3 0.72334 94.07 5718.96 0.5 
861.9

2 -3.06 0.001 576.58 0.86 24.55 0.01 

  4 0.72162 122.34 6666.16 0.28 
877.4

1 1.8 0.001 552.81 0.87 25.1 0.01 

Tmin 1 0.71976 -1.7648 29.7667 0.0000 
5.236

5 -39.5450 0.001 -2.0283 0.8972 0.0629 0.0070 

  2 0.75333 -1.3049 30.5895 0.0004 
4.562

6 -12.8689 0.001 -1.7368 0.8314 0.0535 0.0059 

  3 0.73944 -1.1522 29.6493 0.0006 
4.823

0 5.7082 0.001 -1.4269 0.8928 0.0596 0.0066 

  4 0.75875 -1.2940 32.3841 0.0007 
4.638

0 -3.8372 0.001 -1.5726 0.8913 0.0565 0.0063 

 

6.1.4 Testing the reliability of reconstructions  

A form of sample-by-sample uncertainty in the reconstructions is yielded by resampling the modern pollen 

training set with replacement 100 times and making a reconstruction for each resampling (‘bootstrapping’) 

(Chapter 3, Turner et al. (2020). Bootstrapping demonstrates the (in)stability in the climate information 

available in the training set arising from infrequently sampled taxa and/or those which appear in a wide 

range of climates. 

The emphasis in pattern matching is on the robustness of the gdd reconstruction, since it is the main 

comparator with the Kindler series on the grounds that it is the nearest in climatic meaning (Chapter 2). 

Nevertheless both gdd and tmin are considered; issues affecting the reconstruction of one variable may 

inform the robustness of the other. 
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Hill’s N2 (Hill, 1973) is a sample-by-sample measure of diversity in the fossil assemblage. Values below 2 are 

usually taken to indicate an assemblage too lacking in diversity to yield reliable measures of the 

environment. Hill’s N2 is calculated using the Hill.N2 function in rioja (Juggins, S, 2017). 

The level of indeterminate grains in the pollen analysis is checked. 

Common sense checks are made of the range of each reconstruction, its consistency over time and 

between sites, and the frequency and amplitude of changes. 

The reconstructions are compared with modern climate at the site, obtained by Geographically Weighted 

Regression using the same algorithms as those used to determine modern climate at the SMPDS sites 

(Chapter 1.8), using both CRU CL 2.0 (New et al., 2002) at 10’ resolution and, to test the impact of higher 

spatial resolution, WorldClim at 30” resolution (Fick and Hijmans, 2017). To give a more complete picture 

than top of core, the whole of the available Holocene reconstruction is considered. A further qualitative 

check, for the cores whose age range includes it, is made on the registration of the last glacial termination, 

since it is expected to be the most significant climate change experienced at these sites; good registration 

of the termination bodes well for locating D-Os. 

The reconstructions are compared with the climatic interpretations in the literature on the cores. With one 

exception, Lago Grande di Monticchio, these are qualitative. 

No other palaeoclimatic indicators are available from the same cores against which to test the 

reconstructions. While speleothems showing well-dated changes in climate that match Greenland events 

are to be found in the region, no sites were close enough to the pollen core sites for direct comparisons to 

be made, and consideration of speleothem-based climate across wider areas was prevented by the lack of 

pinning points between the speleothem and pollen core age models. 
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6.2 Results and discussion: reconstructions 

6.2.1 Reliability of reconstructions 

The set of reconstructions for both bioclimatic variables, using the full SMPDS set, including the results of 

bootstrapping, for all 16 selected cores are shown in Appendix C.  

To ensure that a sharp rise is reliably evidenced, the upper 2σ bounds of the bootstrapped uncertainty at 

the beginnings of sharp rises should be well below the lower bounds at the peaks of the rises. Appendix C 

shows that most intervals in most cores satisfy this condition and should permit the identification of rapid 

warming events by pattern matching. But the width of the uncertainties differs between cores and along 

core, and at Iznik the reconstruction in the interval older than ~ 20 ka, which should include 4 GIs, fails this 

test, and similarly the pre-hiatus section of the Castiglione core. Neither is taken forward to pattern 

matching. 

Some short intervals in some cores are suspect; these have wide bootstrapped uncertainties, unusual 

excursions, low Hill’s N2, or a high fraction of indeterminate grains. We do not reject the core as a whole; 

when we come to the final evaluation of DOLPs, and such an interval determines the shape identified as a 

DOLP, we consider the evidence specifically and may reject the DOLP. 

 A few intervals have bootstrapped uncertainties wide enough to undermine pattern matching. These can 

usually be attributed to high abundance in the fossil samples of taxa poorly represented in the SMPDS 

which may have attracted poorly-evidenced optima (Chapter 5). For example, the uncertainty in Ioannina 

Tmin and gdd widens greatly between 73 and 68 ka “because the abundance of Ulmus/Zelkova increases 

from ca 0.75% to 6–8% of the sample total. This taxon is recorded at only 31 sites in the modern data set” 

(Turner et al., 2020).  

Unusual excursions in the reconstructions can also sometimes similarly be attributed to taxon abundances 

which are high compared to the SMPDS. Examples are the peak in reconstructed Tmin and gdd at Lake 

Xinias ~ 19 ka, which is driven by the dominance of Amaranthaceae, peaking at 91% of the pollen sum, 
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whereas in the SMPDS, this family represents 2.8% of the total abundance; and at Lago Grande di 

Monticchio, sharp excursions in all three variables at ~ 31 ka are attributable to 4 samples where 

Equisetum, which otherwise does not exceed 5% of the pollen sum in the 16 out of 542 core samples in 

which it is present, exceeds 50%; it forms only 0.1% of the abundance in the SMPDS.  

Hill’s N2 measures taxon diversity to establish how reliable a measure of the environment each sample 

provides. Appendix C shows vertical red lines at samples with Hill’s N.2 < 2; these are scarce, and represent 

no general threat to the identification of DOLPs. They rarely coincide with wide uncertainties (an exception 

is the earliest Monticchio excursion), which is interpreted to mean that the main driver of bootstrapped 

uncertainties is high abundance of taxa poorly represented in the SMPDS, not a dearth of taxa. 

6.2.2 Full versus restricted set calibration 

A set of comparisons of the gdd reconstruction made using the restricted taxon set with that using the full 

set is shown in Figure 6.1; an example for one site was shown in Figure 5.28. The degree of difference 

between the two reconstructions varies greatly between cores and by age; at one extreme, they are very 

similar at Castiglione and Ioannina, but at the other, Iznik (already discounted above) and Zeribar diverge. 

The purpose is to identify sharp rises, so the offsets seen for instance in the Dead Sea and Ghab 

comparisons are not in themselves a problem, because the sharp rises are mostly in the same locations; but 

this is tested specifically in pattern matching. The match with modern climate is tested below. 

The two sets yields very similar reconstructions during the termination and Holocene (~ 15 ka onwards), 

but the restricted set makes generally cooler reconstructions in the glacial (earlier than ~ 15 ka). Partly 

because of this, Lagaccione, Stracciacappa and Ghab appear to record the termination (~ 15k to 11.7 ka) 

better with the restricted set. The interpretation is that this reflects the substantial changes in taxon 

assemblages as the cores pass through the termination; both the full modern assemblage and the restricted 

set are good training sets for post-termination pollen cores, evidenced by highly similar calibrations and 

very similar Holocene reconstructions, but the difference in relative abundances drives the divergence in 

the glacial.  
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Based on this evidence, and in the absence of external evidence to support either set, we have no means of 

judging which is better, other than theoretical considerations – see Chapter 5. So in pattern matching (6.3) 

gdd based on the restricted set is included as one of the base reconstructions from which to derive DOLPs.  

 

Figure 6.1  Comparison between gdd (growing degree days > 0 oC) reconstructed using the full set of 195 SMDS taxa (blue line) and 
using the restricted set (orange line) for the 16 selected cores. Script: Full v reduced set gdd 
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Castiglione post-hiatus has a variable but often high fraction of indeterminate grains (Figure 6.2), which 

throws doubt on its ability to demonstrate D-Os well. Other cores have much lower fractions which do not 

impact pattern matching. This is taken into consideration when evaluating DOLPs below. 

 

Figure 6.2 Castiglione fraction of indeterminate pollen grains, up to hiatus. Script: Castiglione indeterminates 

 

6.2.3 Modern climate comparison 

In Figure 6.3 and Figure 6.4, the Holocene portions of reconstructions for Tmin and gdd made using the full 

SMPDS set are tested against modern climate at the site, and appear broadly consistent with modern 

values, with no consistent offset. The modern climate differs very little between the 10’ resolution CRU set 

and the 30” WorldClim set. Above it was noted that the restricted set yields very similar Holocene 

reconstructions. 

Among the few inconsistencies are cool reconstructions for Dead Sea and Ghab, and a warm gdd (but not 

Tmin) reconstruction at Lac du Bouchet. A possible contribution to these differences is the nature of the 

catchments. The Dead Sea/Jordan catchment includes mountainous areas over 1000 m asl, so the climates 
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represented in its pollen are likely to be in general cooler than that at the lake site well below sea level. 

Similarly Ghab lies in a valley ~1000 m below the immediately surrounding terrain. Conversely, Lac du 

Bouchet lies at 1200 m asl at the top of a south-west facing slope in the Massif Central and may receive 

lowland pollen on upslope winds, a known feature of highland lakes (Liu et al., 2020, and references 

therein), and may register pollen from climates warmer than its elevation suggests. Such offsets do not in 

themselves undermine the ability of the sites to register D-Os.  

 

Figure 6.3 Bootstrapped (x 100) full SMPDS set reconstructions (ribbon width is ± 2 SD) for Tmin (temperature of the coldest month 
in oC) for the Holocene intervals (11.7 ka onwards)  of the selected set of 16 cores (4 have no Holocene presence). Green points: CRU 
CL 2.0 modern climate at the site; pink open triangles: WorldClim modern climate at the site. Script: Find youngest age of fossil 
reconstructions. 
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Figure 6.4 Bootstrapped (x 100) full SMPDS set reconstructions (ribbon width is ± 2 SD) for gdd (growing degree days > 0 oC) for the 
Holocene intervals of the selected set of 16 cores (4 have no Holocene presence). Green points: CRU CL 2.0 modern climate at the 
site; pink open triangles: WorldClim modern climate at the site. Script: Find youngest age of fossil reconstructions. 

In the plots in Appendix C, Lac du Bouchet, Lagaccione, Stracciacappa, and Ghab exhibit clear last glacial 

terminations, Navarres and Villarquemado less clearly; Zeribar may show a small offset. The situation is 

unclear at Banyoles and Xinias, and the Lago Grande di Monticchio termination is compromised by low N2. 

The restricted set reconstructions for gdd, as noted in 6.2.1, may record the termination better than the full 

set reconstructions, and since both sets record similar values in the youngest intervals, the restricted set 

reconstructions also match the modern climate well, again providing no evidence to distinguish between 

the two calibrations.  

6.2.4 Literature comparison 

The only record in the 16 core set for which quantitative, rather than qualitative, reconstructions exist is 

Lago Grande di Monticchio. Allen et al. (1999) and Allen and Huntley (2000), provide quantitative 
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reconstructions using response surfaces and “7816 surface samples obtained from sites scattered 

throughout the temperate and boreal latitudes of the northern hemisphere”, and using climate 

“interpolated from the IIASA database” (Allen and Huntley, 2000). They reconstructed MTCO, GDD5 

(growing degree days above 5 oC) and alpha (ratio of actual to potential evapotranspiration). Their 

reconstructions and those made here using fxTWA-PLS show few resemblances (Figure 6.5). The response 

surface reconstructions tend to hop between certain values so that many sudden changes occur, and MTCO 

and GDD5 are both cooler on average than those made by fxTWA-PLS, which reconstructs GDD0, 

accounting for some of the offset. The step changes in the response surface reconstructions make it difficult 

to compare usefully with the fxTWA-PLS reconstructions.  

 

Figure 6.5 Comparison of (Allen et al., 1999; Allen and Huntley, 2000) response surface reconstructions with those made using 
fxTWA-PLS full SMPDS for GDD (GDD0 for fxTWA-PLS, GDD5 for A&H). Blue: Allen reconstructions. Orange: fxTWA-PLS 
reconstructions. Source: Monty comparison.xlsx 
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Parnell et al. (2016) applied BClim to the Monticchio record reconstructing the same bioclimatic values as 

Allen and Huntley (Figure 6.6). Some gross similarities are visible for both bioclimatic variables between the 

BClim and the fxTWA-PLS bootstrapped reconstructions: the instability at ~ 30 k, the feature at ~ 90 ka and 

the general shape between ~ 40 ka and ~ 70 ka. Closer comparison is not possible since the Parnell plots 

have such wide uncertainties and no mean is plotted. There is little visible similarity between the Allen and 

Huntley and the Parnell reconstructions. 

The conclusion is that the previous reconstructions do not provide useful comparisons with fxTWA-PLS 

reconstructions. 

 

Figure 6.6 Part of Fig 3 from (Parnell et al. (2016): Monticchio BClim reconstructions of GDD5 and MTCO. “The blue areas represent 
the 95% credible regions of the slice clouds whilst the red ribbons represent the 95% confidence intervals for each time grid point on 
a centennial time grid. Darker regions indicate the 75% and 50% regions.” 
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6.3 Methods: pattern matching 

6.3.1 Choice of base reconstructions for pattern matching 

Pattern matching (Chapter 2) takes templates from the Kindler et al. (2014) series, which are initially 

compared with GDD0 made using the full SMPDS taxon set (a ‘base reconstruction'), with which it is most 

directly comparable because the Kindler temperature is likely to be weighted towards that during the 

season of highest snowfall, which was summer. Two other ‘base reconstructions’ were tested: MTCO using 

the full SMPDS taxon set reconstruction, since it might add information not contained in the GDD0 

comparison, and GDD0 reconstructions made with the restricted taxon set. 

Base reconstructions locate DOLPs. These locations can then be applied to other bioclimatic variables to 

test how well those other variables also exhibit DOLPs. For instance, the locations of DOLPS found by GDD0 

can be applied to MTCO.  

Samples younger than 13.5 ka were excluded to prevent the identification of the last termination as a D-O-

like event. 

6.3.2 Template and other pattern matching parameters 

Template settings that were determined in Chapter 2 to be optimal are applied here, specifically:- 

before = 10; after = 15     Template width younger and older than GI date, no. of datapoints (~20 yrs 

  apart)                                                                       

safe = 200                           Minimum years between DOLPs: avoids 2 DOLPs in 1 template 

meas = "smmdist"            The Euclidean distance: smmdist is standardised mean of mean distances  

lspan = 0.1                          Span used in loess detrending of Kindler series when extracting templates 

 

Application of the pattern matching technique to the original Kindler temperature series showed that 

known D-Os were identified most reliably when the ED threshold was < ~0.7 (Chapter 2) and a default value 

of 0.75 was chosen for pattern matching using fossil cores, adjusted for individual cores. 
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To avoid identifying DOLPs which are patently too close together, the minimum age between recognised 

Euclidean distance troughs is 1000 years. 

A DOLP is followed by a potential interstadial, a warm interval defined here as starting at the DOLP, the 

midpoint of the rapid rise in the bioclimatic value (Chapter 2), and ending when the reconstructed value 

returns to the value at the DOLP.  Starting from the mid-point is a more conservative approach than starting 

from the first sign of a rise, the definition used by Rasmussen et al. (2014). 

The shape traced by the bioclimatic variable during a warm interval is tested, to support the claim of the 

DOLP to be a real D-O. The shapes are characterised by the rise in the climatic variable after the DOLP, the 

area-under-the-curve of the subsequent warm interval, and the duration of the warm period. Small values 

reduce the probability that this is an interstadial and that the DOLP is a genuine D-O event.  

rfilt  = 0.75                  minimum rise above DOLP (excursion; varies by bioclimatic variable)  

afilt  = 5                       minimum area-under-curve (varies by bioclimatic variable) 

tail = 100                     limit to no of data points permitted in 'warm' interval (~ 2000 yrs) 

 

Area-under-the-curve is the sum of the excess of the reconstructed values for each data point over the 

DOLP value during the warm interval.  

To further characterise the strength of the evidence for the DOLP, the number of original physical samples 

which determine the shape identified as a warm interval is found, and their mean Hill’s N2 is calculated. 

samfilt =  3                 Filters DOLPs based on sample counts 

N2filt = 2                    Removes warm intervals with mean N2 values < = N2filt 

 

Figure 6.7 shows that to identify a DOLP, the underlying number of physical samples in the fossil record, 

from which the 20 year interval datapoints were interpolated, can never be less than four. Of these, at least 

two fall in the template-width window, defining the base and peak of the rise. At least one younger and one 

older physical sample are needed to define the low start and declining tail, and these may fall outside the 
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template-width window. The DOLP is the midpoint of rise, which except by accident is not a physical 

sample.  

To define a warm interval, once the DOLP is established, a minimum of three physical samples are needed: 

the base and peak of the rise, and the younger sample. Of these, only the peak will necessarily fall inside 

the warm interval, and the base will fall before it. The count of defining physical samples for a warm 

interval is therefore those in the warm interval plus 2. In most cases there is more than one physical sample 

in the warm period. ‘Rise’ in Figure 6.7 is the rise from DOLP to peak tested by rfilt above, and the red area 

is the area-under-the-curve tested in afilt. 

 

Figure 6.7 Cartoon showing the minimum number of physical samples defining a DOLP and a warm interval in a quantitative 
reconstruction. Orange point is DOLP at midpoint of rise, which except by accident is not a physical sample. The template-width 
window is the window which has identified the DOLP (interpolated points are in reality denser than shown, with 26 in the normal 
template-width window).  

6.3.3 Core specific adjustments 

The temporal resolution of the pollen cores is variable (Figure 2.19), and the amplitude of change in the 

reconstructed variables differs widely between cores (Appendix C). Applying the same filters to all cores 

finds too few rapid warming events in some and too many in others, compared with the number of 

Greenland D-Os to be expected during the respective interval. Therefore the ED thresholds and other 

parameters for these cores were adjusted, such that the number of identified points was ≤ the expected 

number. There is no practical alternative to setting the parameters by inspection for each core.  
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6.3.4 SEA tests 

The plausibility of chosen sets of rapid warming events (DOLPs) was tested by Superposed Epoch Analysis 

(SEA) (Chapter 2).  

6.3.5 Code availability 

R code to provide template extraction, pattern matching and the evaluation of DOLPs is available at 

https://github.com/MarkGrenTurner/pattern_matching. 

6.4 Results: pattern matching  

The pattern matching technique works well in locating D-Os in the parent Greenland Kindler series (Chapter 

2), so any weaknesses in identification of DOLPs are not principally algorithmic but relate to the data.   

6.4.1 Impact of filter settings 

Figure 6.8 shows by example how settings are applied and affect the identification of DOLPs, using the gdd 

reconstruction made using the full SMPDS set from Castiglione, including the pre-hiatus interval. After 

rejecting several trough points in the ED curve as being insufficiently like the templates, using the ED = 0.75 

threshold, five more are rejected as the rise to the subsequent gdd peak is small; no further DOLPS are 

rejected on the grounds of area-under-the-curve, sample count or N2. The importance of the area and rise 

filters is seen where the ED curve identifies a small-scale event as a potential DOLP at ~ 100 ka which has 

minimal rise and area. The method is proof against some perturbations: Castiglione has a hiatus between 

63 ka and 73 ka, which has not been removed prior to this analysis, and a potential DOLP is identified at 73 

ka which is clearly artificial; the rise test removes it. The final result, with these filter settings, is that 18 

DOLPs are accepted, compared with a potential 28 GIs in the Greenland series, though some GIs cannot 

registered because of the hiatus. 

The bottom panel addresses the matching of DOLPs with Greenland events simplistically, without 

considering age uncertainties either in the core age model, which here is the ACER CLAM model, or the 

GICC05modelext chronology. It compares the location of DOLPs on the ACER age model chronology as red 

https://github.com/MarkGrenTurner/pattern_matching
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lines with the GI initiation dates on the GICC05modelext chronology (Rasmussen et al., 2014; Seierstad et 

al., 2014), and shows rejected DOLPs as grey lines. Qualitatively it is clear that many DOLPs are highly 

plausibly real D-Os, but often it is not clear which D-O matches which DOLP; and before 73 ka the 

bootstrapped reconstruction uncertainties are too great to offer reliable DOLPs. 

 

Figure 6.8 Pattern matching filtering process applied to gdd (growing degree days > 0 oC) reconstruction at Castiglione. Top panel: 
gdd reconstruction; red points = finally accepted DOLPs; blue points = rejected DOLPs; red segments of reconstruction = warm 
intervals following all potential DOLPs. Second panel: ED curve with troughs falling below threshold (ED = 0.75) shown as points, size 
inverse to ED. Third panel: increase in gdd from DOLP value to peak as black points, size inverse to ED; orange points = DOLPs 
already rejected on grounds of ED; red line: threshold for rise (rfilta) = 200 degree days. Fourth panel: area-under-the-curve traced 
by warm interval; orange points = DOLPs already rejected on ground of ED; blue line: threshold for area (afilta) =  1000. Fifth panel: 
count of physical samples defining the shape of the warm interval. Sixth panel: mean Hill’s N.2 for warm interval; red line = 
threshold for N.2 = 2 (n2filt). Bottom panel: repeat of gdd reconstruction with blue points indicating physical samples, with ±2 SD 
uncertainty added; red vertical lines mark finally accepted DOLPs, grey vertical lines mark rejected DOLPs; numbers are number of 
finally accepted DOLPs / number of GIs in apparent age range; numbers in triangles are GI numbers; GI dates on GICC05modelext 
scale. In all other panels, age is ACER age model. Script: Making GI patches all bases extra filters funct 
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Inspection of Figure 6.9, which replicates the post-hiatus part of the lower panel in Figure 6.8, suggests  

• Reconstruction uncertainty is not damaging to pattern matching (until the hiatus ~ 63 ka) 

• if GI 2 is a genuine match for the nearby DOLP, the core age model may be inaccurate  

• these settings have failed to pick up GI 3 but have picked up GI 4 

• in the GI 5 to 9 interval, too many DOLPs are found and it is not clear which DOLP is which GI  

• beyond that, matches are too unclear to assign to a specific GI, and GIs 14 to 17 do not appear to 

be registered (if the age models are sufficiently aligned to make this comparison).  

 

Figure 6.9 As lower panel in Figure 6.8, up to 63 ka, with ±2 SD uncertainty added. 

The filter settings included in Table 6-3 appear to the best compromise for this core.  

6.4.2 Pattern matching based on gdd reconstructions 

Iznik and the pre-hiatus interval of Castiglione have been rejected on the grounds of wide bootstrapped 

uncertainty, and Villarquemado is now rejected because sharp rises in gdd cannot reliably be separated 

from changes caused by the multiple hiatus it contains. The plots showing pattern matching filtering for the 

14 surviving cores made using the full SMPDS set reconstruction of gdd as the base reconstruction are in 

Appendix D. Table 6-3 summarises the filters used and the DOLPs found compared with the expected GIs in 

the age range of the cores, though this does not (yet) imply that the accepted DOLPs are all true D-Os.  
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Table 6-3 Settings applied to 14 cores, the age ranges of the cores, the number of GIs in those ranges, and the number of DOLPs 
accepted.  

Core ED 
threshold 

Rise 
(rfilta) 

Area 
(afilta)  

Min. age Max. age Potential GIs 
in range 

DOLPs 
accepted 

Castiglione 0.75 200 1000          11,912           116,903  28 18 

Dead_Sea 0.80 150 1000          14,244             88,031  24 13 

Ghab 0.85 100 1000            1,000             76,335  21 6 

Ioannina 0.75 300 1500          10,679             79,677  22 22 

Lac_du_Bouchet 0.75 250 1000                  30             68,869  19 18 

Lagaccione 0.75 200 1000            4,600           106,174  27 17 

Lago_Grande_di_Monticchio 0.75 200 1000          10,034           100,417  25 16 

Lake_Banyoles 0.85 200 1000            5,742             29,092  3 3 

Lake_Xinias 0.75 200 1000            4,098             53,048  13 3 

Les_Echets_redone_2 0.75 200 1000          21,720             67,520  18 11 

Megali_Limni 0.75 200 1000          22,000             61,500  17 13 

Navarres 0.75 200 1000            3,018             35,210  6 4 

Stracciacappa 0.80 200 1000            8,106             66,013  19 9 

Zeribar 0.75 200 1000            1,157             46,386  11 7 

 

6.4.3 Plausibility of selected D-O-like points (DOLPs) 

Application of SEA to the gdd reconstruction using the full SMPDS taxon set shows that the DOLPs identified 

exhibit the pattern characteristic of D-O events. Navarres, Lake Banyoles, Lake Xinias, Ghab, and Zeribar 

provide too few DOLPs to perform SEA; Castiglione excludes the pre-hiatus interval.  
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Figure 6.10 Superposed Epoch Analysis of potential warm intervals identified in the GDD0 (growing degree days > 0 0C) 
reconstructions made with full SMPDS. The centre-points of the rises (DOLPs) are aligned on year 0. The p value scale indicates the 
probability that this mean bin value arose by chance, and applies to all panels.. Script: SEA CoP v2 

Applying SEA to the tmin (MTCO) reconstruction using the DOLP locations identified from gdd 

reconstructions (Figure 6.11), the SEA pattern is very similar but with sometimes higher p-values than for 

gdd, which suggests that gdd is, as proposed, the better match with Greenland events. 
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Figure 6.11 Superposed Epoch Analysis of potential warm intervals identified in the MTCO (tmin, temperature of the coldest month) 
reconstructions made with full SMPDS, using DOLP locations found using gdd as base reconstruction. The centre-points of the rises 
(DOLP) are aligned on year 0. The p value scale indicates the probability that this mean bin value arose by chance, and applies to all 
panels. Script: SEA CoP v2 

6.4.4 Base reconstructions other than full set gdd 

Figure 6.12 compares DOLPs identified using (a) gdd, as above, and (b) tmin as base reconstructions, both 

using the full SMPDS taxon set. These bases find many DOLPS which are coeval, or nearly so, between 

them, especially if all potential DOLPs (rejected as well as accepted) are considered since the binary nature 

of the filtering process means that some DOLPs are only marginally rejected, but always there are DOLPS 

unique to each. While differences can be expected between the gdd and tmin patterns owing to changing 

seasonality due to Milanković cycles, the strong coincidences between the two strengthens support for 

both the reconstruction method and pattern matching. It is notable that some cores exhibit much less 

variability than others (for instance Ghab and Lake Xinias), making it less likely that DOLPs can be identified. 
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Figure 6.12 EDs (smmdist, standardised mean of mean distance) and DOLPs using full SMPDS set for 14 cores. Blue: using gdd 
(growing degree days > 0 oC) as base reconstruction; blue line = smmdist, blue points are final accepted DOLPs and open points on 
same line rejected DOLPs. Orange: using tmin (temperature of coldest month, oC) as base reconstruction; orange line = smmdist, 
orange points are final accepted DOLPs and open points on same line rejected DOLPs. Age is ACER or original given age.. Script: 
Restricted v full comparisons 
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Both Figure 6.11 and Figure 6.13 show composited warm intervals in tmin. In the first, the intervals are 

located using gdd as the base reconstruction, in the second, using tmin. The tmin-based SEA gives a rather 

clearer picture with lower p-values in the peak area, but the difference between the two is at most sites 

small. The interpretation is that the differences in the patterns exhibited by gdd and tmin reconstructions 

are not significant. 

 

Figure 6.13 Superposed Epoch Analysis of potential warm intervals identified in the MTCO (tmin, temperature of the coldest month) 
reconstructions made with full SMPDS, using DOLP locations found using MTCO as base reconstruction. The centre-points of the 
rises (DOLP) are aligned on year 0. The p value scale indicates the probability that this mean bin value arose by chance, and applies 
to all panels. Script: SEA CoP v2 

6.4.5 Restricted set gdd reconstructions 

Pattern matching applied to gdd reconstructions made using (a) the full and (b) the restricted sets (Figure 

6.14) generally identifies the same DOLPs, though the degree of coincidence varies between cores. There is 

some evidence that the amplitude of the smmdist curve is increased with the restricted set, with lower 

trough points, signifying improved resolution of sharp rises. Given that the restricted set pattern matching 

used the same filters as the full set reconstructions for convenience, and that these could be tuned to the 
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specific reconstruction, this supports a view that, certainly for most cores, both sets provide plausible and 

similar DOLPs. Again this provides no grounds for preferring either set. 
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Figure 6.14 Blue line: smmdist using gdd (growing degree days > 0 oC) reconstruction for Lac du Bouchet using full SMPDS set as 
base reconstruction; blue points are final accepted DOLPs and open points on same line rejected DOLPs. Orange line: smmdist using 
restricted taxon set gdd as base reconstruction; orange points are final accepted DOLPs and open points on same line rejected 
DOLPs. Core age is ACER or original age.  Script: Restricted v full comparisons 

6.5 Age comparisons 

The probability that a DOLP represents a real D-O depends not only the robustness of the reconstruction 

locally and the strength of the evidence that the shape is D-O-like, but also its closeness in age to a 
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plausibly matching Greenland event. This requires consideration of the core age models, their uncertainties, 

and the uncertainties in the GICC05modelext chronology.  

6.5.1 Age-depth modelling 

Age-depth models were developed by the original palynologists for all 14 remaining cores. The models 

differ in methodology. To harmonise chronologies between cores, the ACER database project (Sánchez Goñi 

et al., 2017) built consistently treated models, updating the radiocarbon age calibration to IntCal13; 11 of 

the 14 cores are taken from the ACER database, and all except Lago Grande di Monticchio, which retains its 

original well-based model (Allen et al., 1999, and references therein), have CLAM models (Blaauw, 2010) 

for the majority of their age ranges, in addition to their original models. In this project, for consistency, a 

new set of age models was developed, updating to IntCal20, for all but Lago Grande di Monticchio. 

Uncertainties in the form of maximum counting errors (‘MCE’) are given for the GICC05modelext 

chronology back to 60.2 ka, but none for the interval older than that; MCE is considered to be roughly 

equivalent to 2 SD (Andersen et al., 2006). 

6.5.2 Matching DOLPS and GIs 

Potential matches between DOLPs and GIs can be proposed using the overlaps between the age 

uncertainties of both, but a match cannot be considered in isolation. Where a DOLP or GI is a potential 

match for more than one partner, which is common, the assignment of it to a specific partner excludes all 

other matches. This leads to the concept of a limited number of valid series of matches which must 

monotonically increase in both age and depth, and whose uniqueness may depend on as few as one initial 

match. 

6.6 Methods: age comparison 

6.6.1 Consistent updated age-depth models 

ageR is used to develop a consistent set of age models for 13 of the 14 cores (Villegas-Diaz, Roberto, Cruz-

Silva, Esmeralda, Harrison, Sandy P., 2021. ageR:  Supervised Age Models. doi:10.5281/zenodo.4636715). 
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This is a wrapper for rbacon  (Blaauw M, Christen J, Aquino Lopez M (2022). rbacon: Age-Depth Modelling 

using Bayesian Statistics. R package version 2.5.8, https://CRAN.R-project.org/package=rbacon). IntCal20 is 

used as the radiocarbon age calibration (Reimer et al., 2020).  

Dating points are taken from the ACER database for 11 cores and from Neotoma for the remainder. Some 

dating points are ‘events’. These are changes in the pollen assemblage which are deemed to reflect climatic 

events, for instance D-O 8 or 12, or the onset of MIS 3, and are given the dates of these events in the 

Greenland record on the GICC05modelext chronology. These were ignored in constructing the new age 

models to avoid circularity, the purpose being to locate such events by other means. Points ignored by the 

ACER modelling were also ignored. Hiatus were set where they exist. 

ageR runs an rbacon age model for every combination of (a) a set of values for sedimentation times, in 

years cm-1 (‘accumulation rate’) and (b) a set of values for thicknesses of slices which are treated as having 

constant accumulation, in cm (’thickness’). These values are set by the user. Each age model or ‘scenario’ is 

ranked in descending order of success, defined as lowest “abc” i.e. lowest area between curves of prior and 

posterior accumulation rates. However the process can yield implausible results, and the user must judge 

which model is most satisfactory. The criteria are: 

• The prior distribution of accumulation rates (which assumes a gamma distribution) should be very 

similar to the posterior; the area between the two is “abc”. 

• The log of objective plot should be trendless and narrow. 

• The age-depth plot should make sense compared with the dating points and their uncertainties. 

Table 6-4 lists the parameters of the models selected as most plausible for the 14 cores. The original 

Monticchio age model is well-based, but the dating points used are not available and the dating points 

published with ACER do not accord with it, so no rbacon model was built. 

 

 

https://cran.r-project.org/package=rbacon
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Table 6-4 Accumulation rates and thicknesses for preferred rbacon age models. Source: Selected list of bacon models.xlsx 

Core 
Accumulation rate 
(years cm-1) Thickness (cm) 

Ioannina 10 40 

Lac_du_Bouchet 38 15 

Lagaccione 20 50 

Lago_Grande_di_Monticchio Original model only 

Lake_Banyoles 05 50 

Lake_Xinias 20 24 

Megali_Limni 38 13 

Navarres 66 2 

Stracciacappa 50 14 

Castiglione 53 50 

Les_Echets_redone_2 30 50 

Dead_Sea 07 100 

Ghab 57 10 

Zeribar 10 25 

 

Each age model, other than the original, specifies the uncertainty in the age. Each core except Lago Grande 

di Monticchio has at least two, often three, age-depth models available, each created by a different 

methodology. The principal models use here are those developed using ageR, but ACER models are also 

plotted for information and to illustrate the degree of variability even in well-founded models, and 

differences are discussed where necessary.  

6.6.2 Uncertainty overlaps 

To identify possible matches of DOLPs with GIs, for each core, each DOLP accepted at the end of pattern 

matching is dated using the age model(s) above, including uncertainties, and compared with the ages and 

uncertainties associated with GIs. The repertoire of DOLPs is that provided using the full set gdd 

reconstruction as the base reconstruction. 

A possible match is identified when the 2 SD uncertainties of the DOLP and the MCE of a GI overlap, so a 

given DOLP may be a possible match for more than one GI, and a given GI for more than one DOLP. The 

youngest DOLPs and GIs have the narrowest uncertainties. Starting at the young end, if a given DOLP is then 

assigned to a given GI, the next oldest assignment must be of an older DOLP to an older GI.  
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The results integrate pattern matching results with age modelling, and in coming to views on the realism of 

proposed DOLPs consider all the evidence collected so far on the reliability of the underlying data. This 

includes bootstrap uncertainties, unusual excursions, Hill’s N2, the level of indeterminates, the filtering 

tests in pattern matching, the variability of the reconstruction (complacency), and the presence of hiatus. 

The process may be iterative, in that initially rejected DOLPs may be reviewed in the light of age uncertainty 

overlaps, or accepted DOLPS rejected on the grounds of age.  

6.7 Results: age comparisons 

6.7.1 Potential matches: example 

Figure 6.15  illustrates, for Lagaccione, the process by which potential matches can be identified and 

evaluated.  

 

Figure 6.15 Potential matches between DOLPs, using gdd reconstruction and the full SMPDS set, and GIs for Lagaccione. Main panel: 
age model; vertical red lines mark accepted DOLPs, with sequential identifying numbers; blue horizontal lines are GICC05modelext 
ages of GIs (less 50 years), red points are intersections of DOLP and rbacon age model median; blue ribbon: central line is rbacon 
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age model median value, with 75% (darker) and (lighter) 95% uncertainties; green points and error bars are core dating points with 
uncertainties; blue points and error bars are ages and MCEs of those GIs which overlap with uncertainty of DOLP age. Orange curve: 
ACER age model. Purple circles with cross: ‘events’ determining ACER age model. Lower panel: gdd reconstruction for Lagaccione 
using full SMPDS taxon set, with accepted DOLPs marked by orange points; red segments of reconstruction are warm intervals; blue 
points are rejected DOLPs; vertical purple lines: ‘event’ locations in ACER age model. Vertical panel: Kindler Greenland temperature 
in oC on GICC05modelext scale, aligned with main panel. Script: Trial id of GIs v4   

The age model up to DOLP 8 (red number) is constrained by several radiometric dates with narrow 

uncertainties, so potential matches in this interval can be evaluated with some confidence. By inspection, 

DOLP 1 can be accepted as matching GI 1, but DOLPs 2 and 3 are rejected as matching no possible GI. DOLP 

4 matches GI 2, which has no other matches. DOLP 5 could be GI 3 or 4, and DOLP 6 could be GI 3, 4 or 5; 

GIs 3 and 4 have no other potential matches, so probably DOLP 5 matches GI 3 and DOLP 6 matches GI 4. 

DOLPs 7 and 8 could each match any of GIs 5, 6 and 7. After that, DOLP 9 cannot match GI 7, so there are 2 

DOLPs to fit 3 GIs. Given the error bar on the dating point after DOLP 8, any monotonic combination is 

acceptable. Reviewing the rejected DOLPs immediately older than DOLP 8 (Appendix D) shows these are 

rightly rejected, so it appears GI 7 is not recorded.  

The conclusions from the review up to this point are that  

• Some accepted DOLPs are very probably real D-Os, but conversely some are clearly not. 

• Not all GIs are registered as DOLPs. 

• Age uncertainties can make it hard to assign a DOLP to a specific GI even when the DOLP is highly 

plausibly a D-O.  

After DOLP 8, the situation is more challenging because the median rbacon and ACER (orange line) age 

models now diverge, because the ACER model depends on ‘event’ dates, deliberately ignored by rbacon. 

These dates are shown as purple crosses in circles in the main panel of Figure 6.15 and their positions by 

vertical purple lines in the lower panel, and are listed in Table 6-5, where their dates are taken from the 

GICC05modelext chronology. These ‘events’ are assigned to specific D-Os and attract the Greenland dates in 

the ACER dating information table. This way of identifying D-Os is independent of pattern matching, yet 

both methods have identified highly similar intervals as D-O like, in this case DOLPS 9, 10, 11, and 14/15. 

This is independent support for the skill of pattern matching. 
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Table 6-5 ‘Event’ based dating points at Lagaccione using GICC05modelext chronology, source: ACER database  

Depth 
(cm) Age 

SD of 
age Event 

2710 46,810 956 D-O 12 

3000 54,170 1150 D-O 14 

3260 58,230 1256 D-O 16 

3602 72,280 1478 D-O 19 

 

The rbacon model ignores the ‘events’, to avoid circularity; the interval after DOLP 8 is a straight-line 

extrapolation, and rbacon disregards the Vico tephra date of 87 000 ± 7 000 years cal BP at 3798 cm depth 

with all tested settings, so its slope is less than that of the ACER model. Even were the slope similar, 

similarly wide uncertainties would still exist, so this older interval is a demonstration of the issues when 

wide uncertainties are involved.  

Because of this divergence, the assignments of DOLPs to GIs in Table 6-5 differ from those likely to be 

deduced from the rbacon model in Figure 6.15; DOLP 9 could match any GI from 8 to 12, DOLP 11 could 

match any GI from 12 to 17, and so forth. More generally, the interval from DOLP 9 on contains 9 DOLPs, 4 

of which are supported by independent opinion based on pollen assemblage changes, and 11 candidate GIs 

ranging from 8 to 19, so some GIs are not registered as accepted DOLPs. Taking the matches closest to the 

median rbacon model, DOLP 10 matches with GI 11, 11 with 13, 12 with 15, 13 with 16, 14 with 17, and 15 

and/or 16 with 19.  

The review of this older interval reinforces the view that many DOLPS are real D-Os, that not all GIs are 

registered as DOLPs, and that wide uncertainties can make it impossible to assign DOLPs to specific GIs.  

6.7.2 Potential matches: 12 cores  

The plots for 12 further cores are given below, with commentary on them. At the end of the section, Table 

6-6 summarises the conclusions.  

Lake Banyoles identifies 3 DOLPs but yields no points where the uncertainties in the DOLP age model date 

overlap with the GI uncertainties, and is not shown. 



239 
 
 

 

Figure 6.16 Potential matches for Navarres between DOLPs using gdd reconstruction and the full SMPDS set, and GIs. Main panel: 
age model; vertical red lines mark accepted DOLP, with sequential identifying numbers; blue horizontal lines are GICC05modelext 
ages of GIs (less 50 years), red points are intersections of DOLP and rbacon age model median; blue ribbon: central line is rbacon 
age model median value, with 75% (darker) and (lighter) 95% uncertainties; green points and error bars are core dating points with 
uncertainties; blue points and error bars are ages and MCEs of those GIs which overlap with uncertainty of DOLP age. Grey ribbon: 
model extrapolation beyond last effective dating point. Orange curve: ACER age model. Lower panel: gdd reconstruction for 
Lagaccione using full SMPDS taxon set, with accepted DOLPs marked by orange points; red segments of reconstruction are warm 
intervals; blue points are rejected DOLPs. Vertical panel: Kindler Greenland temperature in oC on GICC05modelext scale, aligned with 
main panel. Script: Trial id of GIs v4   

Commentary on Navarres: all 4 DOLPS match with GIs: DOLP 1 matches GI 1, 2 matches 3, 3 matches 4, and 

4 matches 5. GI 2 is missed in the hiatus from 135 to 160 cm. (The short red interval younger than the blue 

rejected DOLP at 163 cm is an error.) 
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Figure 6.17 Lac du Bouchet; otherwise as caption for Figure 6.16. 

Commentary for Lac du Bouchet: this core is unusually well furnished with dating points and exhibits high 

variability. DOLP1 is probably GI 1; DOLP 2 is rejected (but see below 6.7.3); DOLP 3 matches GI 2; DOLPs 4 

and 5 match GIs 3 and 4. DOLP 6, given the neighbouring dating point, is probably GI 5 and DOLP 9 is most 

probably GI 8, leaving DOLPs 7 and 8 to match GIs 6 and 7. DOLP 10 could be GI 9 or 10 and DOLP 11 could 

be any unassigned GI from 10 to 12. To this point, all but possibly one GI is registered, and all but one DOLP 

matches a GI, a remarkably strong performance. Thereafter the age model is extrapolation, but the 

numbers of DOLPs and of GIs are the same, and the evidence of the younger interval suggests all the DOLPs 

are GIs.  
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Figure 6.18 Les Echets: otherwise as caption for Figure 6.16. 

 

Commentary for Les Echets: DOLP 1 is rejected. Review of the spike at ~1850 cm (Appendix D) shows it is 

not D-O-like at all, so it is not GI 2. DOLPs 2 and 3 are GIs 3 and 4. Widening uncertainties and reliance on 

extrapolation in the older interval render matches unclear, but since 8 DOLPs are available in an interval 

containing 9 GIs (assuming the rbacon model), these accepted DOLPS are very probably D-Os, and the 

rejected DOLPs are rightly rejected.  

Note: the portion of the ACER age model older than DOLP 4 is based on ‘events’ (2975 cm is matched with 

GI 20, and 3095 cm with GI 21). The Les Echets pollen values in ACER are not consistent with the original 

hard copy pollen diagrams in Beaulieu and Reille (1984) from which it was digitised; the interval in the plot 
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above was re-digitised by hand for this project. These ‘events’ do not occur in this interval and their 

similarity to D-Os and the robustness of the ACER age model cannot be evaluated. 
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Figure 6.19 Castiglione: otherwise as caption for Figure 6.16. 

 

Commentary for Castiglione: The pre-hiatus interval of Castiglione has already been discounted, and the 

remaining interval is suspect on the ground of high indeterminates (Figure 6.2), which are greatest in the 

20-30 ka interval. The ACER model ignores all 14C dates after DOLP 1 (reason not known), and the black line 

is the median of the mostly extrapolated rbacon model making the same assumption. The ACER dating 

points identify pollen changes shown by purple circles with crosses as ‘events’, which are close to but not 

identical with identified DOLPs.  

Other than assigning DOLP 1 to GI 2, it is not safe to assign any DOLPS at Castiglione to GIs, or claim them as 

genuine D-Os, on the grounds of high indeterminates and lack of dating points. 
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Figure 6.20 Stracciacappa: otherwise as caption for Figure 6.16. 

 

Commentary for Stracciacappa: DOLP 1 and 2 are probably GI 3 and 4: DOLP 3 may be rejected; DOLPs 4 

and 5 match some of GIs 5-7; DOLP 6 or 7 is GI 8; pre-DOLP 8 the age model is extrapolation, and DOLPs 8 

and 9 can match a range of GIs.  Potential DOLPS between 7 and 8 were rejected owing to poor EDs, so are 

unlikely to represent the GIs in this interval. 



245 
 
 

 

Figure 6.21 Lago Grande di Monticchio: no rbacon model exists and the original age model (orange line) has no uncertainties. 
Otherwise as caption for Figure 6.16. 

 

Commentary for Lago Grande di Monticchio: the age model provided by Allan and Huntley to the ACER 

database is strongly based on multiple tephra dates and on varves, but no uncertainties are given, so only 

the overlap between the single-line model and the GI age uncertainty is evaluated. The very earliest part of 

the record is vitiated by low N2 (Appendix C) so no opinion is offered on the spike coinciding with GI 1. 

DOLP 1 can be rejected, DOLP 2 including possibly the succeeding spike is GI 2, and DOLP 3 is GI 3 or 4 or an 

amalgam; none of the rejections between DOLPs 3 and 4 appear marginal; DOLP 4 is probably GI 8, or 

possibly DOLP 4 and 5 combine GIs 7 and 8. The interval from DOLP 5 onwards shows low variability, and 

consistently with this, the DOLP selection criteria (Appendix C) show that the rejected DOLPs in this interval 

exhibit good shapes, as evidenced by their good EDs, and that their rejection is due to low rises and area-

under-the-curve. With the current filters, larger-amplitude GIs (8, 12, 14) stand out well but lesser ones are 
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lost, but since the areas and rises of many potential DOLPs are so similar, tiny changes in the filters yield 

considerable changes. DOLPs 6 and 7 appear to match GIs 12 and 14. GI 19, however, does not emerge 

clearly.  

 

Figure 6.22 Ioannina: otherwise as caption for Figure 6.16. 

 

Commentary for Ioannina: DOLP 1 is probably GI 1; DOLP 2 is rejected; DOLP 3 is GI 2, and DOLPS 4 and 5 

are probably GIs 3 and 4.  rbacon age model is extrapolation beyond 2318 cm, and ACER age model is based 

on an ‘event’ at 3600 cm identified as MIS3/4 boundary = GI 17; 3600 cm is the location of DOLP 15, so its 

assignment to GI 17 is very plausible but unprovable, so neither model provides robust dates in this 

interval. But the number of DOLPs and the number of GIs in this interval are similar, supporting the view 

that the great majority of the DOLPs are real D-Os. 
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Figure 6.23 Lake Xinias: otherwise as caption for Figure 6.16. 

 

Commentary for Lake Xinias: Lake Xinias exhibits low sampling resolution and low variability, which 

hampers the identification of DOLPs. The prominent spike ~ 250 cm is caused by the dominance of 

Amaranthaceae, peaking at 91% of the pollen sum, and should be ignored, though it is still present in a 

muted form in the restricted set reconstruction which eliminates Amaranthaceae (Figure 6.1). The earliest 

part of the core (not shown since the termination is excluded from pattern matching) is well dated, 

supporting the rejection of all potential DOLPs before DOLP 1. DOLPs 1 could be GI 3 or 4, and DOLP 2 could 

be 4 (if not already assigned to DOLP 1) or 5. A review of the rejected DOLPs between DOLPs 2 and 3 

suggest they were rightly rejected on multiple grounds. DOLP 3 could be any of GIs 8 to 11, though the 14C 

date at 1350 cm is at the limit of 14C.  
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Figure 6.24 Megali Limni full core length: purple line: original age model; otherwise as caption for Figure 6.16. 

Commentary on Megali Limni: the younger interval is well dated, anchored by the Y-5 tephra at 752 cm; see 

Figure 6.25. The older interval, shown in Figure 6.24, contains highly plausible DOLPs, but no attempt is 

made to assign them to GIs given the absence of dating information. 
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Figure 6.25 Megali Limni, well dated section only: purple line: original age model; otherwise as caption for Figure 6.16. Script: Trial 
id GIs v4 ML 

 

Commentary on Megali Limni well-dated interval: DOLP 1 is improbable; DOLP 2 is GI 3, and DOLP 3 may be 

GI 4 or a composite of GI 4 and 5; the rejected DOLP between 3 and 4 may be GI 5; DOLP 4 may be any of GI 

5 to 7, and DOLP 5, given the dating precision available, is most probably GI 9. 
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Figure 6.26 Dead Sea: Orange line is original, not ACER, model; otherwise as caption for Figure 6.16. Inset: locations of starts of 
hiatus marked by red points. 

 

Commentary on Dead Sea: there are multiple hiatus (inset: red points are starts of hiatus), suggesting 

DOLPs 3 and 6 should be rejected.  DOLP 1 is probably GI 2, DOLP 2 (and rejected older neighbour?) are GIs 

3 and 4. The rejected DOLP between DOLP 5 and DOLP 6 (rejected only marginally by the ED filter but no 

others) is probably GI 12, given the neighbouring dating point. So DOLP 4 could be GI 9 or 10, and DOLP 5 

GI 10 or 11. Beyond this, only valid series can be hypothesised, but the number of DOLPs is roughly equal to 

the number of available GIs. 
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Figure 6.27 Ghab: otherwise as caption for Figure 6.16. 

 

Commentary on Ghab: there is only one dating point (at DOLP 3), and sampling resolution and variability 

are low. It appears unsafe to assign any DOLPs to GIs, and it is not clear that DOLPs are real D-Os. 
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Figure 6.28 Zeribar: otherwise as caption for Figure 6.16. 

 

Commentary on Zeribar: DOLPS 1, 2 and 3 are rejected; DOLP 4 is probably GI 2, DOLP 5 is GI 3 or 4 or an 

amalgam; DOLP 6 could be any of GIs 5 to 8 and DOLP 7 could be any (unassigned) GI from 6 to 9. The 

rejected DOLPs in the low-variability interval between DOLP 5 and 6 appear rightly rejected (Appendix D). 

Table 6-6 summarises the DOLPs found and the GIs to which they are most probably assigned. Where no 

specific assignment is possible, the count of available DOLPS and available GIs is given. 
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Table 6-6 Matches between DOLP numbers and GI numbers; ‘X’ denotes rejected DOLP; ‘rej’ denotes previously rejected DOLP now 
accepted; beyond the point where specific assignments are made, counts of available DOLPs and available GIs are given. ‘GIs 
missed’ are not registered in the core. Source: DOLPS v GIs.xlsx 

 

In summary, in the range in which DOLPs could be directly assigned, and excluding Ghab where no matches 

were proposed, 48 out of 61 DOLPs were assigned with high plausibility to specific GIs; these included 2 

previously rejected DOLPs. Of the 13 DOLPs rejected, 9 fell in the interval between GI 1 and 2 (see section 

below). Most cores rejected one DOLP or none, and missed one GI or none, but Monticchio owing to low 

variability and the Dead Sea owing to multiple hiatus missed several. In the range where DOLPS could not 

Lagaccione DOLP 1 2 3 4 5 6 7 8 Count 9

GI 1 X X 2 3 4 5 6 Count 11

GI missed 7

Navarres DOLP 1 2 3 4

GI 1 3 4 5

GI missed 2 hiatus

Lac du Bouchet DOLP 1 2 3 4 5 6 7 8 9 Count 9

GI 1 X 2 3 4 5 6 7 8 Count 10

GI missed

Les Echets DOLP 1 2 3 Count 8

GI X 3 4 Count 9

GI missed 1 prior; 2

Castiglione DOLP 1 Count 10  Indeterminates, poor age model

GI 2 Count ?

GI missed 1

Stracciacappa DOLP 1 2 3 4 5 Count 4

GI 3 4 X 5 6 Count 6

GI missed

Lago Grande di Monticchio DOLP 1 2 3 4 5 6 7 Count 6

GI X 2 3 8 ? 12 14 Count 5

GI missed 1 4, 5, 6, 7, 9, 10, 11 Low variability

Ioannina DOLP 1 2 3 4 5 Count 14

GI 1 X 2 3 4 Count 14

GI missed

Lake Xinias DOLP 1 2 Count 1

GI 3 4 Count 4

GI missed 1, 2

Megali Limni DOLP 1 2 3 rej 4 5

(well dated only) GI X 3 4 5 5-7 9

GI missed 2

Dead Sea DOLP 1 2 3 4 5 rej 6 Count 7

GI 2 3 X 9 10 12 X Count 6

GI missed     1, 4, 5, 6, 7, 8, 11

Ghab DOLP 1 2 3 4 5

GI None clear

GI missed

Zeribar DOLP 1 2 3 4 5 Count 2

GI X X X 2 3/4 Count 4

GI missed
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be specifically assigned owing to age uncertainties, a total of 64 DOLPs had plausible matches within a set 

of 69 GIs. In the younger intervals where DOLPs have been assigned to GIs, the age uncertainties in both 

the GIs and the DOLPs appear sufficiently small to justify these assignments. 

6.7.3 Events between GI 1 and GI 2 

Between GI 1 and GI 2, five out of the 13 cores (Lac du Bouchet, Lago Grande di Monticchio, Ioannina, 

Lagaccione and Megali Limni) show one or more DOLPs, and four more (Castiglione (though compromised 

by indeterminates), Stracciacappa, Dead Sea and Zeribar) show one or more previously rejected DOLPS; all 

are rejected during the age comparison process as matching no possible GI. Les Echets does not include this 

interval, Lake Xinias has an unreliable interval here, and Ghab has inadequate resolution to make a 

judgement. This consistency hints at the existence of a warming event or events in the Mediterranean area, 

but it is not necessary to propose previously unknown events. Pattern matching registers two excursions in 

the Kindler series in this interval, seen in Figure 2.6 and commented on there, and marked with red 

triangles in Figure 6.29. These are not recognised GIs, which are located using δ18Oice and dust flux, neither 

of which register as strong a change as the Kindler temperature series. While they may not be GIs, the 

probable identification in Mediterranean cores of small-scale D-O-shaped events already identified in the 

Kindler series adds confidence that Mediterranean cores exhibit similar patterns to those in Greenland.  

 

Figure 6.29 Kindler series (black line) and NGRIP δ18Oice ‰ (blue line) with YD and GIs 1 and 2 (blue triangles). Red triangles mark 
small excursions picked up by pattern matching applied to the Kindler series.  (Figure 2.11).  
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6.7.4 Age comparison section summary 

Evidence from bootstrapping, unusual excursions, Hill’s N2, the level of indeterminates, the filtering tests in 

pattern matching, the complacency of the reconstruction, and the presence of hiatus is used as a decision 

support system to propose the final matches of DOLPs with GIs through age comparison. Different cores 

provide different levels of confidence in the matches. In the younger intervals, specific assignment of DOLPs 

to GIs, or rejection of DOLPs, is usually possible, depending on the robustness of the core age model, and 

pattern matching can resolve assignments which date overlaps alone cannot. The confidence gained from 

these younger intervals that many DOLPs are real D-Os carries over to older intervals, where age 

uncertainties are usually too wide to allow specific assignments, but the number of DOLPs identified is the 

same or fewer than the count of real GIs in the age range considered, and series of matches can be 

proposed. The filter settings may be too conservative, but varying these locally rather than for a whole core 

is special pleading. 

6.8 Chapter summary 

Pattern matching seeks to identify D-O-like events in quantitative reconstructions made using fxTWA-PLS by 

comparing them with templates of D-O initiations extracted from the Kindler temperature series. The 

intervals it identifies as D-O-like highly plausibly reflect true D-Os, with low rates of false positives and false 

negatives. Though the method is not perfectly reliable and is dependent on the characteristics of the core, 

in the younger intervals it is often possibly to assign a D-O-like event to a specific GI with high plausibility. In 

the absence of other methods, such as high-precision age-depth models, pattern matching  may serve to 

locate GIs. 
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7 Conclusions and Future Work 

The aim of this thesis is to examine ways of locating the responses in circum-Mediterranean terrestrial 

pollen records to D-O (Dansgaard-Oeschger) events during the last glacial period. 

This Chapter is broken into four areas: 

• Modern pollen and climate, training sets, and how pollen abundance reflects climate. 

• WA-PLS and fxTWA-PLS, and how they translate a training set and a fossil record into a quantitative 

climate reconstruction. 

• Ways of finding D-O-like events in pollen records and in quantitative reconstructions. 

• Possible future work. 

7.1 Pollen, climate, and training sets 

Pollen reflects climate, and can be used to make good quantitative reconstructions, but the relationship is 

not perfect. This is seen in the cloud of points in the inverse regression in WA-PLS (e.g. Figure 4.4), in the 

bootstrapped uncertainties in reconstructions (Appendix C), and in the dispersion of binned means of 

abundance along a climate gradient (e.g. Figure 5.8). There are many possible reasons for these 

imperfections, including the influence of other climate variables, non-climatic variables, and noise. These 

imperfections do not usually obscure the fundamental relationship, but this depends on how well the taxon 

samples the climate space; low occurrences and low abundances make for unstable sampling, as illustrated 

by the bootstrapping of loess curves in Chapter 5 and Appendix B.  

Statistical climate reconstruction methods need a training set from which to deduce the pollen/climate 

relationship. There have been few debates about the requirements of a training set compared with the rich 

literature on the statistical merits of different reconstruction methods (e.g. Birks et al., 2010; Bartlein et al., 

2011; Sweeney et al., 2018; Chevalier et al., 2020), and the training set used in a reconstruction is often not 

described well or at all. Yet as Turner et al (2020)(Chapter 3) demonstrate, the set chosen controls the 

climate space sampled and therefore limits the climate that can be reconstructed. The climatic range 
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sampled by a training set should therefore be wide, should  include the expected reconstructed climate, 

and should sample the climate space as continuously as possible, to avoid abundance distributions more 

influenced by patchy sampling than true climate preferences. 

From as far back as Shelford (1931) it has often been assumed that biotic responses to environmental 

variables are typically unimodal and symmetrical, or approximately Gaussian, and the weighted averaging 

method is founded on this assumption (Ter Braak and Juggins, 1993, and references therein). Chapter 5 

shows that in practice other classes of response are commonly found in pollen, including skewed, 

multimodal, and those showing no clear preference. Even where modes are clear, the width of dispersion 

may vary. These non-Gaussian responses are well known in the literature (e.g. Bio, Alkemade and 

Barendregt, 1998; Oksanen and Minchin, 2002). While some non-Gaussian distributions, especially of low-

frequency, low-abundance taxa, may stem from deficiencies in the training set sampling of the climate, 

others clearly reflect genuine responses to the bioclimatic variable in question, which can include 

indifference. These become important in considering how well WA-PLS and fxTWA-PLS are able to utilise 

the information provided by non-Gaussian responses.  

In summary, some taxa are more robust and/or more precise guides than others to the modern climate 

they typically experience. The difference may arise from sampling issues, which can be mitigated by more 

comprehensive training sets, or from genuine wide tolerance or insensitivity. 

7.2 WA-PLS and fxTWA-PLS 

Quantitative climate reconstructions were made using WA-PLS and fxTWA-PLS, which extract transfer 

functions from a training set (calibration) and apply them to fossil pollen to reconstruct a climate variable 

(reconstruction or ‘prediction’). fxTWA-PLS improves on WA-PLS by considering the frequency with which a 

taxon samples each part of the environmental gradient, and the taxon’s tolerance. In neither case is the 

transfer function expressed as a scalar value per taxon, which makes understanding and testing the transfer 

function against abundance curves describing climate preferences a challenge (Chapters 4 and 5). The 
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transfer function includes both a taxon-related element and sample-related elements, the regression and 

intercept, which cannot be decomposed to a taxon level. 

In the case of WA-PLS as implemented in the rioja R package (Juggins, S, 2017), a shorthand method of 

arriving at the final reconstruction leads to a problem which is not initially obvious and has not been 

discussed (Chapter 4; fxTWA-PLS is free of this problem). When applied to a sample set other than the 

training set, the WAPLSrioja reconstruction is based on optima which can take patently impossible values. 

Chapter 4 proposes an alternative procedure, applying the regression coefficients to the abundance-

weighted ‘optima’, which results in an indistinguishable calibration but a very different reconstruction of a 

fossil core. 

This leads to an important general point. In Chapters 3, 4 and 5, different training sets or treatments yield 

highly similar calibrations but different reconstructions. In the first case subsets of the SMPDS training set 

are used, in the second the corrected WAPLSrioja reconstruction method mentioned above, and in the last 

high-abundance but suspect taxa are excluded from the full SMPDS. This shows that the statistical tests of 

the calibration only describe the internal consistency of the training set, and say nothing of its applicability 

to a fossil, or any other, set. Any sufficiently internally consistent training set can provide a good calibration, 

regardless of the climate envelope it encompasses, so calibrations cannot usefully distinguish between 

training sets. Furthermore, the transfer functions are strictly true only for the training set, and differentials 

in the abundances of taxa between the training and target sets lead to reconstructions dependent on 

weakly evidenced taxa. 

The weighted averaging process in WA-PLS and fxTWA-PLS finds an abundance-weighted mean as the basis 

of the transfer function. In an (approximately) Gaussian response, the mean is also (approximately) the 

mode, but in all distributions the mode, rather than the mean, better represents the climate preference of 

the taxon, and many taxon responses, including some abundant in both to the training and fossil sets, differ 

from (approximately) Gaussian. Their modally expressed preferences can diverge significantly from the 

mean, leading to the suspicion that WA will find an inappropriate transfer function. A mode-based 
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‘optimum’ would be logically preferable, but in the series of papers in which Cajo ter Braak and others 

developed the thinking behind what became WA-PLS I find no discussion of response shapes other than 

(approximately) unimodal and symmetrical.  

Before considering mitigations for these characteristics, note that the tolerance of taxa (the width of the 

abundance distribution) varies, and while WA-PLS assumes all taxa have equal tolerance, fxTWA-PLS down-

weights widely tolerant taxa. Combined with a frequency adjustment to account for uneven sampling along 

the climate gradient, this reduces the remaining compression in the final calibration. All instances of the 

taxon in the target series attract the same transfer function. When a taxon’s preference is narrowly defined 

(for instance, Fagus exhibits a narrow peak in GDD0) this is valuable. When a taxon is very widely tolerant 

or insensitive (e.g. Pinus diploxylon or Poaceae), and especially when the abundance in the target series is 

large, the transfer function is misleadingly precise and the down-weighting tolerance adjustment does not 

fully account for this. 

In Chapter 5, some tests are proposed based on these considerations to identify taxa which could be 

damaging to a calibration (repeated as Table 7.1). The effect of excluding Pinus diploxylon, Amaranthaceae, 

Cyperaceae, Alnus, Asteroideae, Oxyria/Rumex, and Artemisia, being those taxa with the widest tolerances 

and the largest differences between mean and mode, is that the calibration was highly similar to that 

generated from the full SMPDS set, but an example reconstruction was substantially different. There is no 

independent test of which calibration better reconstructs glacial climate.  
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Table 7-1 Characteristics of taxon abundance distributions, identification, effects, and possible responses. Grey boxes: condition not 
affected by characteristic (copy of Table 5-4). 

 

Whether a calibration should include all available taxa or a subset, and if so on what criteria, is discussed by 

e.g. Juggins, Simpson and Telford (2015) and Sinopoli et al. (2019), but no consensus exists. Turner et al. 

(2020) (Chapter 3) concluded that ‘uninformative’ taxa should be included unless there were good reasons 

not to, but the evidence above shows that exclusion may be valuable. 

7.3 Reconstructions from fossil cores 

Comparisons of the youngest intervals of the reconstructions, including the Holocene where available, with 

modern climate at the sites show good consistency. This suggests that despite the possible pitfalls 

associated with climate representation and reconstruction methodology, successful quantitative 

reconstructions can be made. Reconstructions made with the restricted set described above tend to be very 

similar to full set reconstructions in the Holocene but diverge and become colder in the glacial. This is a 

function of the substantial changes in taxon assemblages as the cores pass through the termination; the 

interpretation is that both are good training sets post-termination, but the full modern set may be less good 

for the glacial. Only Monticchio has previous quantitative reconstructions, neither of which can usefully be 

compared with the new reconstructions. 

Characteristics of taxon 

abundance distribution 

(more than one may apply) How identified

Assumed 

quality of 

climate read

Shape 

suitability for 

WA

Applicability 

of transfer 

function Possible responses

Symmetrical unimodal Count of modes = 1, mean-mode 

distance low

Good Excellent Include in calibration

Skewed unimodal Count of modes = 1, mean-mode 

distance high

Good Depends on 

mean-mode

Exclude from calibration if mean-

mode > threshold; or downweight in 

reconstruction ~ mean-mode

Wide tolerance Tolerance large Good Over precise fxTWA-PLS already weights by 

tolerance. Consider exclusion of 

highly abundant widely tolerant taxa

Multimodal Count of modes > 1 and modes similar, 

mean-mode distance

Suspect Poor Exclude from calibration if mean-

mode > threshold; or select most 

obvious mode; or downweight in 

reconstruction ~ mean-mode

Unclear/uninformative Inspection, low variation Suspect Poor Over precise Unless significant in fossil, exclude 

from calibration

Low abundance/occurrence Count of occurrences, sum of 

abundances, bootstrap SD

Suspect Set thresholds: occurrences > 10, 

sum(abundance) > 0.1 already set.

Misleading Inspection and analysis Ignore Exclude from calibration
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We can now come to an initial view of the robustness of the fxTWA-PLS reconstruction method. While 

there are factors which, if not considered and mitigated, would undermine the reconstructions, the 

similarity of Holocene reconstructions under different treatments to each other and to modern climate 

strongly suggest that the method is capable of providing good reconstructions, certainly for the Holocene. 

Because typical glacial pollen assemblages differ significantly from the modern, and the transfer functions 

are only strictly true of the modern relative abundances, glacial quantitative reconstructions may be less 

robust than those for the Holocene. But below it will be seen that glacial reconstructions are nevertheless 

sufficiently good that D-Os can be convincingly identified in them. 

7.4 Locating D-O-like responses 

7.4.1 Direct use of pollen records 

It proves difficult to identify D-O-like events by looking directly in the fossil pollen records, rather than in 

quantitative reconstructions of climate. Dimension reduction techniques (PCA, DCA) and sample-to-sample 

change described by SCD do not show D-O-like changes clearly or in the numbers expected, and the axes of 

PCA and DCA have no clear climatic meaning and have arbitrary signs. This failure is not easy to explain, 

since the responses later convincingly found by pattern matching in quantitative reconstructions must exist 

in the raw pollen data. In the case of SCD, all changes are swept together and all changes are positive, so 

temperature rises are not separately identifiable. In all three cases, some highly abundant taxa in the fossil 

record are relatively insensitive to climate, so changes in their abundances which have little climatic 

significance may dominate the result.  

Creating time series by grouping taxa together by hierarchical clustering proved unstable because highly 

dependent on the time range chosen, and pre-defined functional groups found many more sharp changes 

than the expected D-Os. Three further statistical methods, Dynamic Time Warping (DTW), Singular 

Spectrum Analysis (SSA) and. Hidden Markov Models, were applied but none reliably identified D-O events.  
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None of the series created directly from pollen had a clear climatic meaning, which is believed to be part of 

the difficulty. None of the methods deconvolved the multi-dimensional nature of the climate signal 

contained in the pollen record adequately to be comparable with a Greenland temperature signal. 

7.4.2 Pattern and age matching 

The circum-Mediterranean glacial cores which provide the fossil pollen used in this project vary in sampling 

resolution and in the variability over time of the pollen abundances; low variability (complacency) hampers 

the identification of D-O-like shapes. The sampling resolution of most cores is on the order of 200-500 

years, which is shown to be adequate to define the shape of most D-Os (Figure 2.20), and though there are 

intervals in some cores when there are too few physical samples to identify a D-O well, the presence of 

hiatus is a more common cause (e.g. Dead Sea and Villarquemado).  

‘Pattern matching’ finds shapes in a target series which resemble the distinctive asymmetrical rise in 

temperature at a D-O, the initiation of a Greenland Interstadial. Focussing narrowly on a window  ~ 300 

years before the temperature rise to ~ 200 years after, the shape of which is very consistent between GIs, 

avoids dilution of the asymmetrical pattern by the much more variable declining part of the GI (Chapter 2). 

In a Euclidean distance (ED) calculated between templates of these patterns for GIs 1 to 20 and the target 

series, the down-spikes locate the intervals most like a D-O, and these are mostly very clear. When tested 

on the Kindler series from which the templates were extracted, all GIs but two were identified, but also a 

few other events which are not recognised GIs. In the first case, this signifies that GI initiations are all very 

similar but not identical, and combining many GIs means that relatively unusual ones may not be picked. In 

the second, some small-scale D-O-like events exist in the Kindler temperature series which are less 

pronounced in the δ18Oice series. 

While its shape, denoted by ED, is the first line of evidence that an interval in a pollen-based series is D-O-

like, other attributes add to the evidence:  

• size: small-scale and brief excursions are less likely to be GIs 
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•  the strength of support for the shape in the core reconstruction 

o Number of physical samples defining the shape 

o Whether low Hill’s N2, abnormal excursions, wide bootstrapped uncertainties or hiatus 

affect these samples.  

This second category rarely disqualifies an interval, but making the check is important. 

Applying an ED cutoff taken from the test against Kindler, only minor parameter variations between cores 

are required to select sets of potential D-O-like points (DOLPs) which are equal to or lower in number than 

the expected GIs in the cores’ age ranges. 

So far, the age of the event has not been considered, only its similarity to a D-O, and the final step is to 

consider the closeness, or otherwise, of a DOLP in age to a Greenland D-O. Pollen core age models are 

based on rather sparse dating points and tend to have widening uncertainties just when D-Os become more 

frequent, so identifying pollen core intervals as D-Os by age model date alone is not robust. New age-depth 

models for the pollen cores were created, updating the 14C calibration to IntCal20, and ignoring dating 

points which assumed that features of the pollen reflected specific D-O events, to avoid circularity. In 

Chapter 6, the locations and characteristics of DOLPs found by pattern matching are combined with the 

overlaps in the age uncertainties in the core age models and the GICC05modelext chronology to propose 

the final matches of DOLPs with GIs.  

The result is that pattern matching applied to quantitative reconstruction, while not perfect, locates many 

D-O responses with highly plausibility, generates few false positives and few false negatives, and in younger 

intervals allows assignments to specific GIs.  

More specifically, across 12 cores which yielded good evidence, 48 out of 61 DOLPs were assigned with high 

plausibility to specific GIs. Of the 13 which were not assigned, 9 fell in the interval between GI 1 and 2, an 

interval in which pattern matching finds in the Kindler series two D-O-like events not officially recognised as 

D-Os because of their small scale, so it may be these which are found. Most cores rejected one DOLP or 
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none, and missed one GI or none. In the older range (> ~ 40 ka) where DOLPS could not be specifically 

assigned, a total of 64 DOLPs had plausible matches within a set of 69 GIs. The imperfections in the pattern 

and age matching method stem from core-related causes such as complacency and hiatus which 

compromise the registration of D-Os, wide age model uncertainties, and, though probably of lesser 

importance, imprecise reconstructions leading to less sharp changes. Of these, only the last can be 

mitigated by improved techniques. 

7.5 What would make reconstructions better? 

Higher sampling resolution of cores shares top place with access to data from other climate-sensitive 

materials in the same cores, to provide an independent check of the pollen-based reconstructions. Current 

practice favours the extraction of other materials and data alongside pollen (e.g. Pini, Ravazzi and Reimer, 

2010; Camuera et al., 2018). More comprehensive sampling of cold dry climates, for instance from Russia, 

in the training set would strengthen the evidence of glacial-like climates. 

7.6 Possible future work 

7.6.1 Improvements to reconstruction methods 

While fxTWA-PLS assumes that the patterns of taxon abundances along environmental gradients are 

approximately Gaussian, many taxon responses do not resemble this, so it may misread the climate 

preference. A formal evaluation of classes of response could be created, for instance starting from HOF 

models (Huisman, Olff and Fresco, 1993; Oksanen and Minchin, 2002; Jansen and Oksanen, 2013), building 

towards a mechanism for accepting/rejecting taxa based on shape, and/or treating non-Gaussian responses 

differently, during fxTWA-PLS calibration. However, separate treatments of mode, tolerance and sensitivity 

by class may prove too simplistic, and continuous treatment of these characteristics may be preferable. 

Since the mode and not the mean represents the preferred environment of biota, a calibration which 

establishes a mode, or more strictly a modal class, could be made, at least when the response is not 

approximately symmetrical and unimodal. Several choices need to be made in establishing a modal class, 
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such as bin widths, curve stiffness, and rules for selection of a principal mode where the distribution is 

multimodal or unclear, and many combinations of these would need to be tested. The output should 

include a measure of taxon tolerance, reflecting the peakiness of the mode. This should be propagated to 

the sample level in the reconstruction to provide an uncertainty in the climate value.  

A possible alternative to reconstruction using fxTWA-PLS, and which respects the importance of the mode, 

is to create an abundance-weighted sum of the individual taxon abundance curves for each fossil sample, 

thus reconstructing the climate for the sample as a curve along a climate gradient. The expected benefit is 

that the combined curve for a climate dimension is a unimodal probability density, the mode of which is the 

best estimate of the climate, and the probabilistic nature of the result provides uncertainties. The method 

might be capable of extension to encompass 2 or 3 dimensions of climate simultaneously.  

7.6.2 Regional climate regime 

Reliably identified and dated D-Os from multiple cores could be used to assemble a regional picture of the 

climate regime, relate this to changes in climate dynamics, and examine the hypothesis that an east-west 

moisture dipole existed during the glacial. If the aim is to describe the climate of all, or specific, GIs/GSs, 

only some events can be used, and they may not be registered in all the available cores. Alternatively, cold 

and warm intervals can be treated as two classes. This does not require that all D-O-like events are firmly 

assigned to GIs, but the definition of a cold interval, which is much harder to specify than a warm interval, 

requires close attention.  

The concept of a moisture dipole arises because the West and the East of the region may differ climatically, 

beyond simple continentality. Moisture in modern Mediterranean climate has a well-documented relation 

with the position of the eddy-driven jet (the North Atlantic Oscillation), which at the LGM was much further 

south than today: it ran almost West-East over Iberia (e.g. Li and Born, 2019), and the oceanic polar front 

was off Iberia in stadials (Eynaud et al., 2009; Marchal, Waelbroeck and Verdière, 2016). Rapid meridional 

movement of the jet stream during significant temperature changes such as D-Os is both climate-

dynamically necessary (e.g. Corrick et al., 2020) and is documented for the end of GS 1 (Lane et al., 2013). 
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Rohling et al. (2013) show that the water source of precipitation in the Mediterranean tends to be the 

Atlantic in the West and the Mediterranean itself in the East. García-Alix et al. (2021) noted millennial-scale 

changes between the two sources in Iberia back to 35 ka. The literature consistently supports the view that 

interstadials were wetter than stadials (Nebout et al., 2002; Stockhecke et al., 2016; Budsky et al., 2019). 

All these conclusions are based on relatively small areas, so a regional picture assembled from multiple 

consistently treated cores is desirable. 

Tentative results were presented at the EGU (Turner and Harrison, 2022), though this suggested that 

stadials in the west could be wetter than interstadials. Now that it is clear that many D-Os are identifiable in 

pollen reconstructions and some can be matched with specific GIs it could be possible to pursue this 

project. 

7.6.3 Data-model comparisons 

In this project no attempt has been made at data-model comparison. The benefit of such comparison would 

be that models which successfully replicate robust quantitative reconstructions may make the processes 

underlying D-Os clearer and improve understanding of climate dynamics during rapid temperature changes. 

To date, general circulation climate models (GCMs) have not been able to replicate D-Os reliably, and the 

suspicion is that the models are too stable, a dangerous position under current warming. But the conditions 

tested have differed between models; protocols are being developed to ensure consistency (Malmierca-

Vallet et al., 2023) which will allow the outputs of multiple models to be directly comparable. 

7.6.4 Matrix Profile 

Recently Matrix Profile, a generic statistical pattern matching approach which does not require prior 

specification of a pattern, has been applied with partial success to the identification of D-Os in the 

Greenland δ18Oice series (Barbosa et al., 2023). The window used to identify patterns was rather wide, and 

experience from pattern matching suggests that a narrower window which could focus on the rapid rise 

would be more successful. This method deserves exploration.  
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Appendix A: Mean binned abundances, loess curves and fxt optima of 

SMPDSv1 taxa with summed fractional abundance > 0.1 (n = 138) 
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Response curves taxa in the SMPDS, in blocks of 24 in descending order of abundance, to Tmin (MTCO), gdd, and rtmi. Numbers in 
taxon headings are respectively the sum of fractional abundances of the taxon and the number of occurrences of the taxon in 
SMPDS (number of SMPDS samples = sum of fractional abundances = 6458). Points: fxabf (fractional mean binned abundance). Blue 
lines: loess curve, span = 0.3; orange lines; loess curve, span 0.5; grey lines: loess curve, span = 0.75. Vertical line: fxTWA-PLS 
abundance-weighted mean for component 1. Script: Reconstructions experiment 8, pq1  
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Appendix B: Bootstrapped loess curves and fxt optima of SMPDSv1 taxa 

with summed fractional abundance > 0.1 (n = 138) 
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Bootstrapped response curves taxa in the SMPDS, in blocks of 24 in descending order of abundance, to Tmin (MTCO, temperature of 
the coldest month), gdd (growing degree days > 0 oC), and rtmi (square root of Moisture Index). Numbers in taxon headings are 
respectively the sum of fractional abundances of the taxon and the number of occurrences of the taxon in SMPDS (number of 
SMPDS samples = sum of fractional abundances = 6458). Points: fxabf (fractional mean binned abundance). Points: fxabf (mean 
fractional binned abundance of SMPDS set). Black line: loess curve, span = 0.5, weighting 1/square root of frequency. Blue ribbon: 
mean ± 2 SD of loess curve resulting from bootstrapping with 500 iterations. 

 

xperiment boot 8, pq1
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Appendix C: Reconstructions of tmin and gdd for 16 cores 
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Reconstructed tmin (mean temperature of coldest month)  for 16 fossil pollen cores, full SMPDS set. Central black line with black 
points: fxTWA-PLS reconstruction using Component 3. Mid-blue ribbon: mean bootstrapped reconstruction ± 1 SD derived from 
bootstrapping ; light blue ribbon: mean bootstrapped reconstruction ± 2 SD. Red vertical lines: samples where Hill’s N2 < 2. Ages are 
the ages provided by the original palynologist, or where available the ACER ages. Script: Tel recon TWAPLS Jul12. 
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Reconstructed gdd (growing degree days > 0 oC) for 16 fossil pollen cores, full SMPDS set. Central black line with black points: 
fxTWA-PLS reconstruction using Component 3. Mid-blue ribbon: mean bootstrapped reconstruction ± 1 SD derived from 
bootstrapping ; light blue ribbon: mean bootstrapped reconstruction ± 2 SD. Red vertical lines: samples where Hill’s N2 < 2. Ages are 
the ages provided by the original palynologist, or where available the ACER ages. Script: Tel recon TWAPLS Jul12. 
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Appendix D: Pattern matching filtering plots for 14 cores 

 

 

No of GIs in range 6                              

No of DOLP candidates 5                           

No of DOLPs left after ED/area/range filtering 4  

No of DOLPs left after sample filter 4            

No of DOLPs left after N2 filter 4 
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No of GIs in range 3                              

No of DOLP candidates 5                           

No of DOLPs left after ED/area/range filtering 3  

No of DOLPs left after sample filter 3            

No of DOLPs left after N2 filter 3 
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No of GIs in range 19                             

No of DOLP candidates 27                          

No of DOLPs left after ED/area/range filtering 18 

No of DOLPs left after sample filter 18           

No of DOLPs left after N2 filter 18 
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No of GIs in range 18                                

No of DOLP candidates 22                             

No of DOLPs left after ED/area/range filtering 11    

No of DOLPs left after sample filter 11              

No of DOLPs left after N2 filter 11 
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No of GIs in range 27                                

No of DOLP candidates 38                             

No of DOLPs left after ED/area/range filtering 17    

No of DOLPs left after sample filter 17              

No of DOLPs left after N2 filter 17 
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No of GIs in range 19                                

No of DOLP candidates 22                             

No of DOLPs left after ED/area/range filtering 11    

No of DOLPs left after sample filter 11              

No of DOLPs left after N2 filter 9 
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No of GIs in range 28                                

No of DOLP candidates 38                             

No of DOLPs left after ED/area/range filtering 18    

No of DOLPs left after sample filter 18              

No of DOLPs left after N2 filter 18 
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No of GIs in range 25                                      

 No of DOLP candidates 39                                   

 No of DOLPs left after ED/area/range filtering 16          

 No of DOLPs left after sample filter 16                    

 No of DOLPs left after N2 filter 16  
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No of GIs in range 22                             

No of DOLP candidates 35                          

No of DOLPs left after ED/area/range filtering 22 

No of DOLPs left after sample filter 22           

No of DOLPs left after N2 filter 22   
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No of GIs in range 13                             

No of DOLP candidates 17                          

No of DOLPs left after ED/area/range filtering 4  

No of DOLPs left after sample filter 4            

No of DOLPs left after N2 filter 3   
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No of GIs in range 17                             

No of DOLP candidates 21                          

No of DOLPs left after ED/area/range filtering 13 

No of DOLPs left after sample filter 13           

No of DOLPs left after N2 filter 13 
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No of GIs in range 24                             

No of DOLP candidates 34                          

No of DOLPs left after ED/area/range filtering 13 

No of DOLPs left after sample filter 13           

No of DOLPs left after N2 filter 13 
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No of GIs in range 21                             

No of DOLP candidates 19                          

No of DOLPs left after ED/area/range filtering 6  

No of DOLPs left after sample filter 6            

No of DOLPs left after N2 filter 6 
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No of GIs in range 11                             

No of DOLP candidates 16                          

No of DOLPs left after ED/area/range filtering 7  

No of DOLPs left after sample filter 7            

No of DOLPs left after N2 filter 7   

Pattern matching filtering process applied to gdd (growing degree days > 0 oC) reconstruction at core named in top panel. Top panel: 
gdd reconstruction; red points = finally accepted DOLPs; blue points = rejected DOLPs; red segments of reconstruction = warm 
intervals following all potential DOLPs. Second panel: ED curve with troughs falling below threshold (ED = 0.75) shown as points, size 
inverse to ED. Third panel: increase in gdd from DOLP value to peak as black points, size inverse to ED; orange points = DOLPs 
already rejected on grounds of ED; red line: threshold for rise (rfilta) = 200 degree days. Fourth panel: area-under-the-curve traced 
by warm interval; orange points = DOLPs already rejected on ground of ED; blue line: threshold for area (afilta) =  1000. Fifth panel: 
count of physical samples defining the shape of the warm interval. Sixth panel: mean Hill’s N.2 for warm interval; red line = 
threshold for N.2 = 2 (n2filt). Bottom panel: repeat of gdd reconstruction with blue points indicating physical samples, and red 
vertical lines marking finally accepted DOLPs, grey vertical lines marking rejected DOLP; numbers are number of finally accepted 
DOLPs / number of GIS in apparent age range; numbers in triangles are GI numbers;  GI dates on GICC05modelext scale. In all other 
panels, age is ACER age model. Script: Making GI patches all bases extra filters funct 


