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Abstract

One of the most debated processes of motor control is how biological systems
solve the degrees of freedom problem, using the redundancy of the motor system
advantageously. Optimisation strategies and control theory result in models that
are task specific and limited at generalising. In this thesis, motor redundancy is
addressed from a biologically inspired perspective, developing a model for spinal
motor control in dynamic field theory (DFT). Empirical studies show that patterns of
muscle activation contribute to coordination, emerging from the integration of cortical
and spinal sensorimotor information. These patterns, called motor primitives, are at
the core of the proposed model and are represented as attractors in two-dimensional
neural fields. Weighted by cortical activations and combined with sensory feedback
carrying the position of the end effector, primitives are combined in a resultant force
field, associated to the motor plan. This process is formalised by a control law that,
giving the forces at the joints of the manipulator, allows for the direct simulation of
the forward dynamics. Other processes in the spinal cord are modelled, including a
neural controller for the autonomous development of the task, an adaptive threshold
enabling stable representations of motor features, and synaptic nodes converting
neural representations into motor variables used to calculate the forces at the next
time-step. Results show a generalised reaching repertoire, emerging from a few
motor primitives and successful straight trajectories, with unimodal velocity profiles.
Introducing two-dimensional traveling peak solutions as elemental behaviour shows
how the developed methodology can be used to add physiologically inspired elements
to cognitive robotics. The findings of this thesis connect existing models in DFT
to biomechanical accounts based on motor primitives, resulting in a fully embodied
account for motor control and opening the way for a unified framework to understand
hand-eye coordination and develop bio-inspired robotics.
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Chapter 1

Introduction

The original title of this research project was ‘Frog in Silico: Understanding
Hand-Eye Coordination’. The initial idea was to develop a model linking a sensory
input (visual) to the development of a motor plan expressed in terms of a force field
able to guide a robotic interface. This was inspired by the encoding of visual input in
patterns in the frog’s retina and by electrophysiological experiments linking recorded
spinal force fields to patterns of muscle activation in the frog’s spinal cord (Giszter
et al., 1993; Lettvin et al., 1959).

This simple task requires the simulation of several processes that go from visual
mapping of the target to some motor reference for reaching, and from some repres-
entation of the motor plan to the effective muscle pattern of activation. It is also
necessary to include a recurrent pathway to adjust online the trajectory, based on
sensory input, and some mechanism to detect task completion and avoid overshoot.

The sequence just described, with the addition of some learning process necessary
to acquire and perfect existing motor skills, defines what is referred to as motor
control (Rosenbaum, 2010). Modelling visuospatial coordination means appropriately
representing and interconnecting these processes, mindful of the properties of the
body and of the environment in which it senses and acts.

A number of models already exist in literature revolving around motor control
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Chapter 1. Introduction

and its components represented in Fig. 1.1. They all share a common aim that is
to study and understand how biological systems move autonomously, performing
tasks situated in time (autonomy & timing block in Fig. 1.1), constantly adapting to
the environment (sensory-motor integration block in Fig. 1.1), selecting effortlessly
suitable muscle activations for the ongoing motor goals (motor activation selection
block in Fig. 1.1) and continuously learning and improving their adaptive motor
response (learning block in Fig. 1.1)(Rosenbaum, 2010).

learning

motor
commands

perceptual
information

autonomy & timing

sensory-motor
integration

motor activation
selection

perceptual system: body + 
environment

Figure 1.1: A schematic representation of the processes involved in motor control.
Red and blue side bar represent the stream of information coming from the brain
to the motor system and to the brain from the perceptual system. Existing models
for motor control have already addressed to some extent autonomy, timing and
sensory-motor integration in the embodied framework. The way in which motor
activations are selected, that is the degrees of freedom problem, is still poorly
understood. In the present thesis this problem is addressed linking dynamic fields
as neural representation and motor primitives for movement formation.

The traditional approach to motor control considers a hierarchical development
of it, assigning all the planning to the cortical regions in order to optimise some
control variable (Todorov, 2004; Uno et al., 1989; Wolpert, 1997, among the others).
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Chapter 1. Introduction

A distributed theory of motor control is supported, on the other hand, by the
development of the concept of embodied cognition, that considers the emergence of its
processes, from higher cognition to spinal circuits integration, from the continuous
exchange of information between the body and the environment (Bizzi et al., 1991;
Brooks, 1991; Schöner, 2007; Shapiro, 2012; M. Wilson, 2002).

The ability of biological systems to take advantage of their redundant motor
system (i.e., the body) is still little understood, despite the presence of a great
number of studies that span from electrophysiology to mathematical modelling of
voluntary movement. This is mirrored by the fact that biological levels of behavioural
adaptability seem until now unattainable with traditional robotics (Brooks, 1991;
Clark, 1997; Hart & Giszter, 2010; Pfeifer et al., 2007).

The study of the strategies used by a system to compensate for this redundancy,
or to take advantage of it, to produce an appropriate motor outcome goes under
the name of the degrees of freedom problem (Bongaardt & Meljer, 2000; Rosenbaum,
2010). Considering the processes of motor control distributed at different levels of
sensory-motor integration from the cortex to the spinal cord, the degrees of freedom
problem describes the appropriate motor selection at different stages accordingly.
Understanding how this problem is handled by the central nervous system and
coordinated at the level of the spinal cord is still debated.

At a cortical level, the degrees of freedom problem can be represented in terms
of the selection of motor activations that are then sent down to the spinal cord,
based on the representation of the current motor task emerging from sensory-motor
integration. In other words, the first DoF problem encountered consists in the
mapping of perceptual features into motor features.

Dynamic Field Theory (DFT) has supported the development of architectures
based on the Dynamic Neural Field (DNF) to give a sensory-motor representation
of elements of cognition. Elemental behaviours, according to this account, are
encoded in the dynamics of localised peaks of activation on a multidimensional
feature space. The formation of these peaks and their instabilities can be triggered
by the process of integration of sensory input and motor representations in coupled
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Chapter 1. Introduction

fields (Sandamirskaya et al., 2013; Schöner, 2007; Spencer et al., 2009).

Neural fields have been used already to model visuospatial integration, motor
sequencing and autonomous motor plan development in an embodied framework,
moving the degrees of freedom problem down the line, at least to the point in
which motor activations are selected to produce appropriate joint forces (Erlhagen &
Bicho, 2006; Fard et al., 2015; Rudolph et al., 2015; Sandamirskaya & Schöner, 2010;
Sandamirskaya & Storck, 2014).

Empirical studies show that motor commands are sent from the cortex to the spinal
cord, where they form synapses with single motor neurons or with local spinal circuitry.
At this level, the degrees of freedom problem is given by the recruitment of muscles to
produce the correct forces at the joints. The redundancy of the musculoskeletal system
gives multiple possible patterns of muscle activation that satisfy the motor task. Local
spinal circuitry also provides local sensory motor integration and pre-shaped networks
that contribute to the synergic activation of muscles (Luppino & Rizzolatti, 2000).

Existing models that attempt to solve the DoF problem at this level, including
those that use DNFs, compute the toques at the joints directly solving the so-called
inverse dynamic problem. The solution of the inverse dynamics consists in inferring
the torques to apply at the joints of the desired actuator (i.e., the body or the robotic
set-up) from the desired kinematics (i.e., the final displacement and orientation)
satisfying the motor task. This solution can be estimated using analytical strategies
that minimise cost functions representative of the motor goals, using traditional
robotic control techniques (feedback control (Jazar, 2007), feedforward control or
internal models (Miall & Wolpert, 1996) and adaptive observers (Wolpert, 1997) or
abstract attractor/repeller control laws (Bicho & Schoner, 1997).

Using these strategies, it is possible to simulate reaching tasks based on sensory
motor integration resulting in hand-eye coordination (Fard et al., 2015; Johnson
et al., 2008). Nonetheless, these methods are not based on the physiology of the
motor system and the solution of the DoF problem in this sense doesn’t match
the embodiment of the associated accounts. What is more, the computation of the
torques using robotic controls and optimisation strategies does not provide the correct
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Chapter 1. Introduction

framework to understand how the motor plan develops in biological systems, since
algorithms and cost functions do not have a physiological counterpart (Latash, 2012).

It was decided then to develop an alternative approach to the DoF problem,
introducing a model inspired by the physiological organisation of the spinal cord
where, according to a growing number of empirical studies, this process of selection of
muscle activation takes place, combining descending signals from the brain and local
sensory feedback (Bizzi et al., 1991; Giszter, 2015; Giszter & Hart, 2013; Mussa-Ivaldi
et al., 1994; Overduin et al., 2008).

The concept of spinal modularity emerged from the first studies on spinalised
frogs. Giszter et al. (1993) noted that spinal stimulation of deafferented frogs elicited
structured motor activation (muscle synergies). These can be represented in terms
of an associated force field, recorded by keeping the limb position fixed in different
points of the workspace. Each force field is characterised by an equilibrium point
that is the point in the workspace where the forces acting on the limb are null and
the limb keeps the equilibrium position. Superimposition of force fields yields to the
formation of a resultant force field with its equilibrium point: superimposition of
force fields can account for a greater motor repertoire. This concept was formalised
by Mussa-Ivaldi et al. (1994) and goes under the name of the motor summation
hypothesis. The modular elements encoding muscle synergies in the spinal cord are
called motor primitives.

Supported by these findings, the focus of the project becomes modelling the
spinal cord using dynamic fields to build an embodied layer where cortical activations,
resulting from higher sensory-motor integration, can be combined with local sensory
feedback, activating pre-shaped motor patterns (the motor primitives) to give the
resultant forces at the joints, mirroring empirical results (Overduin et al., 2008).

In this sense, the degrees of freedom problem is addressed in this thesis from the
cybernetic point of view. Cybernetics defines a broad field of research characterised
by a common element: understanding the functioning of both artificial and biological
systems in a unified account based on control mechanisms that regulate the exchange
of information between the system and the environment in which it operates (Wiener,
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Chapter 1. Introduction

1948). A bottom-up design process characterises the proposed model, that is not
based on an algorithm satisfying some task related constraint, as traditional artificial
intelligence would do. On the contrary, it builds from physiological and behavioural
findings and from the understanding of stability of both DNFs and robotic controllers.

Describing the development of the forces at the level of the joints leaves open the
problem of muscle recruitment down the line. This is addressed by a number of studies
that extend the initial results on motor primitives, using clustering and extraction
techniques to analyse muscle activation in intact animals (D’Avella et al., 2003; Flash
& Hochner, 2005; Hart & Giszter, 2010, for instance) and, using electromyogram
(EMG) recordings, in humans (Giszter, 2015; Giszter & Hart, 2013; Kurt A. &
Reza, 2000). From these emerges that, complex movements can be represented in
terms of a few motor primitives representing groups of muscles that are co-activated,
appropriately scaled and shifted in time. The scaling and shifting coefficients can be
represented by the cortical activations mentioned above, responsible for the selection
of the primitives and resulting from sensorimotor integration at a cortical level.

Regardless of the kinematic or dynamic nature of motor primitives, biomechanical
models for motor control have developed based on the following main assumptions: a
limited number of motor primitives can account for a larger movement repertoire; such
repertoire is implemented using a simple recruitment rule that sums weighted motor
primitives; sensory-motor integration of proprioceptive and central commands at the
level of the spine is mediated by interneuron circuits, giving the neural substrate for
the synergic muscles activation (Alessandro et al., 2013; Flash & Hochner, 2005; Hart
& Giszter, 2010).

Both the elements presented above, dynamic fields for cognition and motor
primitives-based models, share the same embodied embedding:

– elements of cognition in DFT and force fields associated to motor primitives
are described in terms of attractor dynamics on a two-dimensional feature
space;

– both cognitive and motor representation in the embodied framework
require continuous sensory-motor integration;
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Chapter 1. Introduction

– complex cognitive or motor representation can be modelled using simple
scaling and additive operation, despite the highly nonlinear underlying
biological processes.

These shared features lead to the development of a novel model where motor
primitives are represented as stable attractors, using the dynamic field equation in two
dimensions. Cortical activations are assumed known and represented for convenience
as stable attractors in one-dimensional neural fields. These could be computed in
the same framework using sensory motor integration and motor learning by existing
architectures in DFT, or extracted from biological datasets. The hypothesis of motor
summation is translated into a control law based on the weighted sum of the motor
output of motor primitives and activations neural fields, referred to as the spinal
attractor model (SAM). The SAM provides robotic controls for the robotic model
used for simulation, computing the force field at every position in the workspace
based on the DNF representation of the motor plan and the current position of the
end effector.

Controllers for autonomous motor development and for a stable representation of
motor features in the spinal cord are developed to complement the spinal attractor
model. Two other physiologically based elements are modelled and integrated in the
DNFs architecture: an adaptive threshold that activates working memory repres-
entations of spinal motor features, namely motor primitives and cortical activation
signals; a model for motor output mapping that resembles the function of the physical
junction between motoneuron and muscle.

The system is tested in a reaching task: the position of the target, the value
of the activations and the attractor-like motor primitives are passed to the model
and represented in DFT. The information on the distance from the target is used to
monitor task completion and to activate working memory instabilities to retain stable
representations of the motor features. The motor variables are extracted from their
field representation by means of motor junction synaptic models (synaptic nodes) and
then used to compute the torques at the joints using the SAM control law. This gives
the forces necessary for the planar link to move. The next position of the end effector
is obtained computing the forward dynamics. This information is sent in feedback to
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Chapter 1. Introduction

update that state of the motor task, in a way that is inspired by spinal reflexes.

The results show successful reaching tasks presenting some relevant motor invari-
ants, such as trajectory straightness and a unimodal velocity profile. The representa-
tion of the motor plan in the spinal cord using dynamic fields as the weighted sum of
planar motor primitives, together with the sensory feedback carrying the position of
the end effector, provides at every step of the simulation a resultant force field on
the workspace where the movement is taking place. This is the model correlate of
empirically recorded spinal force fields.

Existing mathematical methods to study the stability of neural fields controllers
are adapted to build this spinal motor control representation, creating a unified
framework to design neural controllers that show the appropriate instabilities and
elemental behaviours when triggered. Understanding stability (and the conditions
that trigger instability) is fundamental to model strategies that are compatible with
the empirical findings or, as it is done with synaptic nodes, to reunite existing elements
in DFT with biological elements of motor control. The proposed methodology can
be also used to introduce new attractor dynamics for a more physiological neural
representation. An example is the proposed method to build travelling peaks on two
dimensional neural fields to encode motor plans.

The proposed model for spinal motor control reconciles traditional control theory
for the study of stability, biomechanical models based on spinal modularity and
dynamic neural fields for cognition, contributing to the development of an architecture
for motor control that can include more physiological elements and use the abundance
of degrees of freedom of the motor system to produce flexible and adaptive behaviour.

The SAM proves that it is possible to simulate voluntary movements without
the direct solution of the inverse problem. This is done here at the level of the
computation of the forces at the joints using the concept of spinal force fields. These
are representative of motor primitives and are associated to muscles recruitment which,
in future developments, could be modelled using more sophisticated biomechanic
datasets from behavioural experiments or simulations that include motor learning.
Using existing models based on primitives for movement formation together with
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Chapter 1. Introduction

architectures for cortical motor control in DFT, the problem of selection of the
appropriate motor strategy can be finally studied in a unified embodied framework.

Future developments of the proposed approach could promote advances in un-
derstanding neural mechanisms underlying motor control and shed light onto the
emergence of invariants typical of voluntary movements. An example could be rep-
resented by velocity profiles of voluntary movements that result unimodal in the
proposed account, but not bell-shaped as found in behavioural studies (Plamondon
et al., 1993). Results from simulation of the spinal level could confirm whether this
invariant emerges from cortical processing (Fard et al., 2015) or as a consequence of
the shape of the motor primitives (Miranda et al., 2018). The outlined account could
also encourage the development of a new generation of robotics, benefitting from the
flexibility typical of the motor primitive-based models for movement formation and
embedded dynamic neural fields controllers.

9



Chapter 1. Introduction

1.1 Aims of the Thesis

The connection between dynamic models for neural systems and biomechanical
models for motor control, based on a modular organisation of motor primitives, is the
distinctive aspect of this thesis. In fact, it creates a bridge between neural attractors
and biomechanical attractors, in a structure that supports both the flexibility and
the stability needed for motor control in the context of embodied cognition.

This link fills the existing gap between the simulation of cortical structure involved
in motor planning and the biomechanical modelling of movement formation at a lower
level, both fields aiming at understanding the processes related to motor control.

The main goal of this project is to outline a system of controllers, both neural
and biomechanical, for the study of voluntary movement coordination at the level of
the spinal cord. This primary goal is addressed within the following four aims. These
aims are addressed in detail in the following chapters. The associated contributions
are discussed in detail in Chapter 6 and summarised below.

List of Aims:

1. Developing a model for motor control based on physiological findings
that uses the motor primitive summation hypothesis, overcoming the
need for optimisation tools to solve the inverse dynamics.

2. Implementing appropriate neural controllers for spinal motor control
in the Dynamic Field Theory (DFT).

3. Introducing new types of elements of cognition in the DFT that can
account for cognitive processes in terms of propagation of peaks of
activation.

4. Simulating a reaching task with the architecture satisfying Aims (1-3),
using a simple robotic interface with two planar joints.

10



Chapter 1. Introduction

To address the first aim, it was necessary to think about a control law for a robotic
manipulator whose position could be updated without reverse-engineering its dynamics.
From considerations on the organisation of motor primitives in the spinal cord and on
the empirical finding of recorded spinal force fields, a new control law is formalised
that gives stable reaching behaviours. This is possible calculating the resultant force
field on the workspace from dynamic field representations of cortical activations,
motor primitives and sensory feedback, modelling the motor summation hypothesis
in DFT. This control law represents the fundamental step to bridge existing models
for motor control that use neural fields to existing models for movement formation
that represent muscle synergies in terms of spinal motor primitives (see Contribution
1 in Section 6.2.1). In this framework, it will be possible to address in the future the
degrees of freedom problem in terms of muscle recruitment and selection of cortical
activations, connecting the proposed architecture with existing DNFs models and
with biomechanical datasets (see Section 6.3 for future developments).

To address the second aim, the study of solution of the neural field equation
is carried out and controllers are developed inspired by physiological findings on
the spinal circuitry and the connection to the ascending (sensory) and descending
(motor) pathway. In particular, a model for autonomous motor response is developed
considering spinal reflexes and represented using detection/forgetting instabilities in
a one-dimensional neural field (see Contribution 2 in Section 6.2.2). Motor features
for the ongoing motor plan are represented triggering a working memory instability
in one and two-dimensional neural fields, for cortical activations and motor primitives
respectively. These spinal motor features are stabilised using a threshold mechanism
for the duration of the task. The conversion of neural representations into motor
variables is modelled using instantaneous synapses, usually called neural nodes in
DFT, here considered as a simplified representation of the neuromuscular junction
(see Contribution 3 in Section 6.2.3). Activations, in future developments, could be
computed from sensorimotor integration, using existing models that include learning
to solve the degrees of freedom problem at a cortical level. More refined motor
primitives and patterns of muscle activations could give more detail to the proposed
model, for instance, using more complex biomechanical models or behavioural datasets
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Chapter 1. Introduction

(see further developments in Section 6.3).

The development of a unified framework for the study of stability, as well as the
conditions to trigger instability, led to consider traveling peak solutions as interesting
elements of cognition in DFT. In this thesis, methods for the analytical study of
perturbation are reviewed and numerical methods to simulate the drifting behaviour
are outlined (see Contribution 4 in Section 6.2.4). The use of traveling peaks to
model cognition is discussed in Section 6.3 and left as a future development of the
proposed account. It is anticipated that more physiological elemental behaviours,
including drifting solutions to the field equation, can be used to model more complex
tasks, such as obstacle avoidance and periodic motor patterns, without the need for a
new motor plan to emerge.

As regards the last aim, simulations of the controllers modelling spinal motor
control are performed using a planar two revolute joint manipulator. Numerical
methods used are outlined, with particular attention to Fourier methods for convo-
lution. The results are successful reaching trajectories that, despite the simplified
cortical activations and motor primitives, are straight and show unimodal velocity
profiles. These features emerge directly from sensory motor integration and are not
the result of optimisation processes or inverse models (see Section 5.4.2 for results and
Contribution 1 in Section 6.2.1 for a discussion on motor invariants and limitations
of the proposed approach).
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Chapter 1. Introduction

1.2 Overview of the Chapters

Chapter 1: Introduction

The field of study is introduced leading to the identification of an existing knowledge
gap in the development of models that address the degrees of freedom problem. The
concepts that have inspired the development of the proposed model are presented
together with an anticipation of results and future applications. The list of aims of
the thesis is detailed.

Chapter 2: Movement and Motor Control

The core problems of motor control are discussed, together with relevant neural and
musculoskeletal structures involved in the development of voluntary movements. The
degrees of freedom problem is described in terms of limitations and opportunities
offered by motor redundancy. It follows the introduction of the concept of motor
primitive and motor summation. These have a key role in the development of a model
based on empirical findings that gives motor activations without direct solution of
inverse dynamics (Aim 1).

Chapter 3: Neural Fields for Embodied Motor Control

The perspective offered by embodied cognition is the one used in the proposed
framework for motor control and finds its formalism in the Dynamic Field Theory.
Elements of DFT are introduced in order to build the substrate from which controllers
for the proposed spinal model are designed (Aim 2) and highlight the limitations
of the current approach to motor control. By doing so, the existing gap between
sensory motor representation of motor plans and sensory motor representation of
motor activations at the level of the spine is identified.

13
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Chapter 4: Methods

A unified methodology is developed to design neural controllers using the neural field
equation. The proposed method, adapted from the study of the field equation with
transmission delays, gives a clear representation of the dynamics of neural fields in
one and two dimensions, proving to be well suited to develop controllers that are
physiologically based. Control theory elements necessary for the design of the spinal
attractor model are presented together with the biomechanical description of the
robotic interface used for simulations (Aims 2-4).

Chapter 5: A Physiologically Based Architecture for Motor Control

The proposed architecture for motor control in the spinal cord is presented. Math-
ematical and numerical implementation are detailed; results from a simulation of
a reaching task are given, completing the development of Aims 1, 2 and 4. The
description of numerical methods for travelling peak solutions and relative simulation
partly address Aim 3.

Chapter 6: Discussion

The proposed model for spinal motor control is discussed in comparison with other
existing frameworks. A list of contributions is detailed considering simulation results
and the developed methodology, highlighting how these findings are related to the
initial aims of the project. Future developments are presented, considering future
task simulations, links to other existing DFT architectures and datasets of simulated
or behavioural motor primitives. Long term implications of physiologically based
models for motor control on neuroscience and robotics are considered.

14



Chapter 2

Movement and Motor Control

2.1 Introduction

The term Motor Control identifies the field that studies the processes underlying
purposeful coordinated movement formation and stability. This term encloses different
high level human behaviours such as motor planning, performance monitoring and
attentional enhancement, that emerge from continuous integration of internal and
external environmental information. Motor control is ultimately responsible for
behavioural flexibility and adaptivity, achieved by means of feedback mechanisms for
monitoring and learning.

The questions at the core of this field can be summarised as follows (Rosenbaum,
2010):

– the perceptual-motor integration problem, that responds for the flexible
adaptation of motor plans to the ever-changing environment in which the
system operates;

– the sequencing and timing problem, that encompasses the strategies to
create ordered sequences of motor activations to accomplish a motor task;

– the learning problem, that is how motor skills are acquired and adjusted
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in time;

– the degrees of freedom problem or motor redundancy, that addresses the
selection of a particular set of motor activations among the many pos-
sibilities offered by the musculoskeletal system to achieve some motor
goals.

In this chapter, elements to address such problems are presented in light of the
available knowledge on the structures involved, from the central nervous system to
the spinal cord and the muscles.

In Section 2.2, the role of the parts of the Central Nervous System (CNS) in the
development of voluntary movement is presented: from the cortex involvement in
motor planning and in the representation of salient motor features, to the structure of
the spine and its role in local sensory-motor integration. The overview continues with
a description of the neuromuscular junction and the contractile properties of muscular
tissue, highlighting the number of variables at play during motor coordination.
Invariant properties of voluntary movements are reviewed along with considerations
regarding motor planning and existing models for motor control.

Section 2.3 focuses specifically on the degrees of freedom (DoF) problem, consider-
ing the traditional approach to motor redundancy and a new account that sees it as an
evolutionary advantage. In this second account, the concept of motor primitive and
of motor primitives summation is introduced, considering behavioural experiments
and modelling strategies.

This theoretical background offers the context necessary for the development
of the proposed model that, drawing inspiration from biological systems, addresses
existing limitations in modelling motor control at the level of the spine (Aim 1).
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2.2 Physiology of Motor Control

Voluntary movements are typically smooth, accurate and appropriately sequenced
in time. This is possible thanks to the continuous integration of multi-sensorial and
proprioceptive information and to the cooperation of cortical, subcortical and spinal
structures that contribute to the development of the motor output (Kandel et al.,
2012).

It is possible to distinguish two pathways, one carrying information to the Central
Nervous System (CNS) and one streaming information from it:

– the afferent pathway conveys sensory information from visual input and
proprioceptors through the spinal cord to the central nervous system;

– the efferent pathway carries information from motor areas of the cortex,
through the spinal cord, to the ultimate effectors of the motor plan, the
muscles.

In Fig. 2.1 the neural structures involved in motor control are illustrated. These
include cerebral cortex, cerebellum, thalamus, basal ganglia, brainstem and spinal
cord (Kandel et al., 2012).

2.2.1 Cortical Organization

Coming from the spinal cord, information access is gated by the thalamus that
allows or prevents afferent signals enhancement according to the state of the system.
This structure is formed by several defined nuclei: some receive sensory and somatic
information to send to the neocortex; some project directly onto the frontal lobe;
others play a role in motor control passing information to cerebellum and basal
ganglia.
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Chapter 16 / The Functional Organization of Perception and Movement  367
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Figure 16–9 Voluntary movement requires coordina-
tion of all components of the motor system. The principal 
components are the motor cortex, basal ganglia, thalamus, 
midbrain, cerebellum, and spinal cord. The principal descend-
ing projections are shown in green; feedback projections and 
local connections are shown in purple. All of this processing is 

incorporated in the inputs to the motor neurons of the ventral 
horn of the spinal cord, the so-called “!nal common pathway” 
that innervates muscle and elicits movements. (This !gure is 
a composite view made from sections of the brain taken at 
 different angles.)

Schwartz, James, et al. Principles of Neural Science, Fifth Edition, McGraw-Hill Publishing, 2012. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/reading/detail.action?docID=4959346.
Created from reading on 2021-09-27 09:35:01.
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Figure 2.1: Descending pathways and the principal components of the of the CNS
for voluntary movement control. In purple: local feedback projection; in green:
principal descending projection. Adapted from Principles of Neural Science, Fifth
Edition by Kandel et al. (2012).
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Feedback loops among these regions are involved in producing smooth skilled
movements based on a learning process and on the evaluation of the outcome of
motor behaviour (Kandel et al., 2012). The cerebellum, in particular, is involved in
motor learning triggered by unfavourable outcomes of motor actions (Ito, 2000) and
in sequencing and timing (Johansson et al., 2016).

Receiving input directly or through the thalamus from the hypothalamus, mesen-
cephalon and the limbic system, the prefrontal cortex has a crucial role elaborating
information coming from the internal and external environment to update the internal
state and motivation of the system (Fuster, 1981).

Prefrontal Areas and Internal Models

Prefrontal areas have been found to be essential for initiation, selection and
monitoring of the development of the behaviour, although they are not directly
responsible for the selection of single muscular contractions. The motor planning
function, in fact, could be carried out in terms of representation of the motor task,
and prefrontal cortex appears particularly activated when internal models are used
to anticipate the motor outcome (Goldman-Rakic, 1987).

Such models are considered by the traditional cognitivist approach as a represent-
ation of the behaviour of the motor system and are thought to provide a solution to
a number of problems concerning motor control. Internal models can be grouped in
two categories (Miall & Wolpert, 1996):

– forward models, that predict the outcome of ongoing motor plans using
a copy of efferent motor commands and the current state of the motor
system, coming from the afferent pathway;

– inverse models, that generate appropriate output commands in order to
achieve a desired state.

Forward models explain a number of empirical findings, such as the cancellation
of sensory reafference, that is the afference generate by the system on the system
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itself, and compensation for time delays arising from information elaboration (Miall
& Wolpert, 1996).

Inverse models could represent the way in which the CNS ‘solves’ the degrees
of freedom problem, providing appropriate motor commands from the available
knowledge on the system and on the environment (Wolpert, 1997).

These concepts have been used extensively in the development of mathematical
models for motor control and are further described in the next sections of this chapter.
Nonetheless, the hierarchical organisation that is subsumed has been questioned and
a more modular and distributed view of motor control, emerging from the features
and the interactions of the motor system and the environment, has been considered
as an alternative (or overlapping) control strategy (Giszter & Hart, 2013; Graziano
et al., 2002). An integrated perspective that takes into account the recent embodied
approach is presented in Chapter 3.

The Motor Cortex

Traditionally motor cortex is divided into three distinct areas (Meier et al., 2008):

– the primary motor cortex (Brodmann’s area 4), from which originates
most of the output from the motor cortex, has most fibres that connect
directly with motoneurons in the corticospinal tract ;

– the premotor cortex (Brodmann’s area 6) is involved into movement
preparation;

– the supplementary motor area (medial area 6) could have a role in co-
ordination and postural stabilisation.

A peculiar feature of motor areas is the supposed somatotopic organisation. In
particular, it was thought that the primary motor cortex included a topographic
map of the body, where each point is associated with tension development in a single
muscle (or a small group of muscles) and connections among different areas follow
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a hierarchical organisation, so that premotor areas project onto motor areas that
project onto the spinal cord (Fulton, 1939).

Recent studies on motor cortical areas have confirmed that a general somatotopic
organisation exists, but with patterns of muscle activation mostly overlapping with
each other and a gradual transition between primary and premotor cortex (Graziano
et al., 2002). Patterns of connection among motor areas can be grouped in two major
functional classes from this analysis:

– areas that receive sensory input and elaborate motor commands;

– areas that manage the sensory-motor transformation.

The interpretation of such findings together with the examination of spinal
projection led to the hypothesis that some areas activate pre-shaped circuits at the
spinal level that determine the global frame of the movement. At the same time,
direct projections to the motor neurons allow fine regulation of movements breaking
pre-shaped synergies (Luppino & Rizzolatti, 2000).

Another relevant hypothesis considers primary motor cortex as the locus in which
relevant motor features are mapped. According to in vivo recording during pointing
tasks, in fact, neurons of the motor cortex in primates are capable to produce a
tuning response to some features of the movement. For example, it has been found
that the firing rate of some pools of neural cells is higher for a preferred direction of
the movement and decreases in the other directions (Georgopoulos et al., 1986).

These findings can be modelled using a function that links the firing rate and the
direction of the movement of the type

d(M) = b+ k cos ✓(M), (2.1)

where ✓(M) is the angle between the preferred direction of the cell (i.e., the direction
corresponding to the highest firing rate) and the direction of the movement M; d(M)

is the discharge rate.

It is possible to represent the neural population of cells, firing according to their
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tuning curve, as the sum of each vector Ni(M) associated to the firing rate di(M) of
the i-th neuron, dependant on the direction of the movement. The resultant directional
vector is called the population vector and gives the encoding of the direction of the
movement represented by the neural population (Georgopoulos et al., 1986):

P(M) =
X

i

Ni(M). (2.2)

This type of analysis has been used in several studies on the motor cortex and other
brain areas to understand how salient motor features are represented (Georgopoulos,
1997).

A number of studies have investigated if there are neurons in the cortex responding
to variations in direction, velocity, position of the joint angles and so on, performing
voluntary movements, finding evidence for some kind of encoding for each one of them.
Questioning whether motor control is based on one property or another could be the
wrong strategy to understand it. It seems more likely, from recent cortical stimulation
experiments in primates, that the organisation of movement control is structured
in terms of a mixed representation of features that are behaviourally relevant for a
specific task or posture (Graziano et al., 2002).
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2.2.2 The Spinal Cord and Muscle Activation

The spinal cord is composed by a H-shape grey matter internal part enclosed into
white matter, as shown in Fig. 2.2. The grey matter in the posterior part is called
dorsal horn, whereas the grey matter in the anterior part is the ventral horn.

360  Part IV / The Neural Basis of Cognition

Each Somatic Submodality Is Processed in a Distinct 
Subsystem from the Periphery to the Brain

The submodalities of somatic sensation—touch, pain, 
and position sense—are processed in the brain through 
different pathways that end in different brain regions. 
To illustrate the speci!city of these parallel pathways, 
we will follow the path of information for the submo-
dality of touch.

The primary afferent !bers that carry information 
about touch enter the ipsilateral dorsal column and, 
without crossing to the contralateral column, ascend 
to the medulla. Fibers from the lower body run in the 
gracile fascicle and terminate in the gracile nucleus, 
whereas !bers from the upper body run in the cuneate 
fascicle and terminate in the cuneate nucleus. Neurons 
in the gracile and cuneate nuclei give rise to axons that 
cross to the other side of the brain and ascend to the 
thalamus in a long !ber bundle called the medial lem-
niscus (Figure 16–4).

As in the dorsal columns of the spinal cord, the !b-
ers of the medial lemniscus are arranged somatotopi-
cally. Because the sensory !bers cross the midline to 
the other side of the brain, the right side of the brain 
receives sensory information from the left side of the 
body, and vice versa. The !bers of the medial lemnis-
cus end in a speci!c subdivision of the thalamus called 
the ventral posterior nucleus (Figure 16–4). There the 
!bers maintain their somatotopic organization such 
that those carrying information from the lower body 
end laterally and those carrying information from the 
upper body and face end medially.

The Thalamus Is an Essential Link Between 
Sensory Receptors and the Cerebral Cortex for 
All Modalities Except Olfaction

The thalamus is an egg-shaped structure that consti-
tutes the dorsal portion of the diencephalon. It conveys 
sensory input to the primary sensory areas of the cer-
ebral cortex but is more than simply a relay. It acts as a 
gatekeeper for information to the cerebral cortex, pre-
venting or enhancing the passage of speci!c informa-
tion depending on the behavioral state of the animal.

The thalamus is a good example of a brain region 
made up of several well-de!ned nuclei. As many as 
50 thalamic nuclei have been identi!ed. Some nuclei 
receive information speci!c to a sensory modality and 
project to a speci!c area of the neocortex. Cells in the 
ventral posterior lateral nucleus (where the medial lem-
niscus terminates) process somatosensory information, 

The Central Axons of Dorsal Root Ganglion 
Neurons Are Arranged to Produce a Map of the 
Body Surface

The central axons of the dorsal root ganglion cells form 
a neural map of the body surface when they terminate 
in the spinal cord. This orderly somatotopic distribu-
tion of inputs from different portions of the body sur-
face is maintained throughout the entire ascending 
somatosensory  pathway.

Axons that enter the cord in the sacral region 
ascend in the dorsal column near the midline, whereas 
those that enter at successively higher levels ascend 
at progressively more lateral positions within the dor-
sal columns. Thus, in the cervical cord, where axons 
from all portions of the body have already entered, 
sensory !bers from the lower body are located medi-
ally in the dorsal column, while !bers from the trunk, 
the arm and shoulder, and !nally the neck occupy 
progressively more lateral areas. At cervical levels 
of the cord the axons forming the dorsal columns are 
divided into two bundles: a medially situated gracile 
fascicle and a more laterally situated cuneate fascicle 
(Figure 16–4).

Figure 16–3 Dorsal root ganglia and spinal nerve roots. 
The cell bodies of neurons that bring sensory information 
from the skin, muscles, and joints lie in the dorsal root ganglia, 
clusters of cells that lie adjacent to the spinal cord. The axons 
of these neurons are bifurcated into peripheral and central 
branches. The central branch enters the dorsal portion of the 
spinal cord.

Descending to 
other levels of 
the spinal cord

Ventral 
root

Information 
from skin,
muscles, 
and joints

Dorsal
root

Dorsal root
ganglion
neuron

Ascending
to brain
stem

Dorsal
columns

Schwartz, James, et al. Principles of Neural Science, Fifth Edition, McGraw-Hill Publishing, 2012. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/reading/detail.action?docID=4959346.
Created from reading on 2021-09-27 10:06:07.

C
op

yr
ig

ht
 ©

 2
01

2.
 M

cG
ra

w
-H

ill 
Pu

bl
is

hi
ng

. A
ll 

rig
ht

s 
re

se
rv

ed
.

Figure 2.2: Schematic of dorsal and ventral root of the spinal cord with afferent
and efferent pathways. From Principles of Neural Science, Fifth Edition by Kandel
et al. (2012).

The afferent pathway brings somatosensory information coming from the body to
higher centres for elaboration. This information enters in the dorsal horn of the spine
where the sensory nuclei are found. In the efferent pathway, from cortical areas to
the spinal cord, most motor fibres encounter pyramidal decussation at the junction
between medulla and the spinal cord. Here, motor nuclei, composed by the body of
motoneurons, are situated in the ventral horn: their axons project to skeletal muscles
forming columns that pass next to the spinal cord (Kandel et al., 2012).

The grey matter contains interneurons whose contribution to the development
of movement is at the centre of a growing number of studies. Traditionally, spinal
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interneurons are described in terms of evoked reflex responses, triggered by sensory
feedback and leading to stereotyped behaviours that can be modulated by motor
commands descending from cortical areas, encoding voluntary movements (Kandel
et al., 2012).

Another approach to the study of interneurons classifies local spinal circuitry in
terms of Central Pattern Generators, contributing to the development of rhythmic
behaviour. At the same time, groups of spinal interneurons are considered involved
in a modular organisation of movements, based on the evoked muscular response
following intraspinal stimulation. The neural substrate of these muscle synergies is
called motor primitive (Fetz et al., 2000; Flash & Hochner, 2005; Kandel et al., 2012).
The role of motor primitives in movement formation is described in detail below.

A small part of fibres from the medulla crosses at the level of the motor neurons
they innervate, making monosynaptic connections that are fundamental for fine hand
movements and, forming synapses with interneurons of the spinal cord, for larger
groups of muscles coordination (Kandel et al., 2012).

This ensemble of spinal internal connections and the collateral presence of axons
coming directly from the cortex give to the spinal circuitry a role of mediator. The
modulation of supraspinal commands with afferent local sensory information in the
spinal cord specifies the state of activation of the musculoskeletal system (Levine
et al., 2014; Overduin et al., 2008; Stelmach & Diggles, 1982). Not only spinal
circuitry is able to produce autonomous motor activation without the the supraspinal
intervention (Fetz et al., 2000; Giszter et al., 1993; Hart & Giszter, 2010), but it
also provides elemental integration of sensory-motor information, coordinating a local
level of motor control (Stelmach & Diggles, 1982).

The Neuromuscular Junction

The neuromuscular junction (NMJ) is the point at which the neural signal is
converted into the chemical input that triggers muscle contraction. This synaptic
junction between the motoneuron and the muscle fibre is located in the ventral root
of the spinal cord.
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The process of neuromuscular transmission consists in the release, caused by
patterns of electrical activity in the motor neuron, of neurotransmitter in the synaptic
junction that is carried by vesicles. It is the motor neuron that triggers a first
depolarisation, mediated by acetylcholine (ACh), transmitted into packets ligated by
a huge number of receptors on the muscle fibre. This process brings the membrane
potential under the threshold of about �50mV causing the end plate potential
(EPP)(Kandel et al., 2012).

In vertebrates this is followed by the opening of voltage-gated channels, situated
in the depth of the junction, leading to a much bigger flux of positive ions. This
triggers the proper muscular action potential (mAP) that, propagating along fibres,
causes contraction (Slater, 2017).

The structure of the neuromuscular junction is represented in Fig. 2.3, accompanied
by the representation of channels distribution and of the time course of the membrane
potential of the postsynaptic muscle fibre.
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Figure 2.3: Anatomy of the NMJ and generation of the muscular action potential.
(A) Diagram of the junction. Receptors for ACh in green are concentrated
at the top of the folds of the postsynaptic membrane of the muscle. Voltage
gated channels are found in the deeper part of the folds, represented in red. (B)
Fluorescence of rat NMJ with the same colour code for the two types of receptors.
(C) Generation of the mAP. The release of ACh (1) occurs in the region dense
of ACh receptors giving rise to the first depolarisation (EPP) (2). This opens
voltage-gated channels (3) allowing more positive ions to enter triggering the
mAP. From ‘The structure of human neuromuscular junctions: Some unanswered
molecular questions’ by Slater (2017).
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The Structure of the Muscle

Each motoneuron innervates a motor unit that can include many fibres. Elec-
tromyography has elucidated the structure of the smaller contractile element in the
muscle fibre called sarcomere.

I A

Sarcomere Length

Z Z

I

contraction

Figure 2.4: Structure of the sarcomere. The wider filament represents myosin
with protruding myosin heads (A), the narrower actin (I). Maximum sarcomere
length (2I +A) is limited by Z lines. The shortening of the sarcomere length
generates contraction.

The sarcomere is composed by two bands of protein: the myosin, constituting the
thicker filament, interposed between bands of actin, the thinner filament, arranged in
a comb-like structure (Huxley, 1957, see Fig. 2.4).

The bonds between the two different types of filaments are called crossbridges.
Sarcomere length is defined by the distance between two zeta lines and varies with
contraction between 1.5µm and 2.5µm. The contraction is due to the sliding motion
of the two filaments caused by the tension released by myosin heads, that are the
terminal part of the myosin filament that bonds with actin. This sliding is due
to the conformational changing that myosin encounters caused by the variation of
calcium concentration in the sarcomere following the arrival of the neural signal in

27



Chapter 2. Movement and Motor Control

the neuromuscular junction. Sarcomeres are disposed in series, composing a myofibril.
An ensemble of myofibrils disposed in parallel creates a muscle fibre. Muscle fibres
form the muscle which is linked to the insertion point in the bone by means of the
tendon, passive connective tissue (Huxley, 2004).

The shortening of the contractile element produces the contraction that can be
modelled by a force-length curve (Gordon et al., 1966). Changing the sarcomere length
and recording the maximum isometric tension, while keeping the length constant
until the maximum force is reached, it is possible to obtain the curve in Fig. 2.5. It is
found that the percentage of maximum isometric tension developed reaches a peak for
an ideal overlap. From this point it decays either when filaments overlap to the point
that crossbridges interfere with each other below l0, the resting length, or when the
filaments are pulled apart to the point that crossbridges cannot form (Winter, 2009).

Figure 2.5: Length tension curve of the muscle expressed in percentage of maximum
isometric tension with visual representation of the overlapping in the sarcomere.
Z lines represent the extension of the sarcomere. From Biomechanics and motor
control of human movement by Winter (2009).

Connective tissue surrounding the contractile element affects the length tension
curve, acting like an elastic component. The behaviour of such component is found to
be nonlinear. It exerts no tension when muscle length is l < l0. After resting length
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has been surpassed a slow initial tension is followed by a rapid increase as shown in
Fig. 2.6, where contractile and elastic forces are represented, Fc and Fp respectively,
together with the resultant characteristic Ft.

Figure 2.6: Length - force curve of the muscle considering the elastic parallel
element. The resulting Ft is given by the sum of the force of the contractile
element Fc plus the nonlinear elastic force Fp. Above the curve: electrical model
for the muscle with a contractile element in parallel with the elastic component.
From Biomechanics and motor control of human movement by Winter (2009).

The behaviour of the system can be modelled in terms of electrical components,
with an active element representing the sliding filaments contraction, the connective
tissue represented as a parallel elastic component and an optional elastic element in
series element modelling connective tissue (i.e., tendon) (components in parallel are
represented in Fig. 2.6).

The relationship between the shortening velocity and the tension developed is
represented in Fig. 2.7. The latter is found to decrease as the former increases. This
could be due to the loss in tension caused by crossbridges that need time to break
and reform and to the damping effect of fluid viscosity (Winter, 2009).

From the perspective of modelling such behaviour, the relationship between the
tension developed by the muscle and the speed at which the muscle length shortens
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Figure 2.7: Velocity - force curves of the muscle as percentage of the maximum
tension. From Biomechanics and motor control of human movement by Winter
(2009).

can be expressed using the Hill model (Hill, 1938). This is typically formalised by
the equation:

(P + a)v = b(P0 � P ), (2.3)

where P is the muscle force, v is the velocity of muscle contraction, P0 represents the
maximum isometric force and a and b are called Hill constants. Scaling a and b it is
possible to simulate the biomechanics of different muscles (see the work by Schmitt
et al. (2013) for an example of application of the model to the simulation of artificial
muscles).

Properties of the single muscle have been considered above, including how the
neural signal is converted into contraction. A motor plan, though, is composed by a
sequence of muscle activations and the degrees of freedom problem applies directly to
the mapping of neural activity to muscle activity. The required sequence, in fact, can
be implemented by many different patterns of neural activation and, at a lower level,
with many different patterns of muscles activation. The problem exists whenever, in
the motor control chain, a many-to-one mapping is necessary (Rosenbaum, 2010).
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Even considering a simple Hill model for the muscle, it would be necessary to
specify activations of agonist and antagonist muscles at each of the joints involved
in the motor task and associate to them the pattern of neural activation to recruit
muscle fibres.

Considering the number of variables at play highlighted in this review of the
properties of the neuromuscular system involved in motor control, internal models
and optimisation strategies have played an important role in modelling motor control,
significantly reducing the number of degrees of freedom (Kawato, 1999; Wolpert,
1997). These are discussed in more detail in the next sections.

At the level of the spinal cord, empirical findings have pointed out that, instead
of single muscle activations, motor encoding might be performed in terms of target
configurations of the body that, regardless of the initial configuration, are responsible
for purposeful movements (Flash & Hochner, 2005; Graziano et al., 2002). Before
this hypothesis is further explored, some of the invariant properties of voluntary
movements are reviewed.

2.2.3 Invariant Properties of Voluntary Movements

Several experimental studies considering, for instance, point-to-point reaching tasks
or drawing curvilinear lines have shown that voluntary movements share a number
of common features (Abend et al., 1982; Morasso, 1981; Plamondon et al., 1993;
Soechting & Lacquaniti, 1981; Suzuki et al., 1997). These can be summarised as
follows:

– trajectories linking two points are quasi-straight;

– tangential velocity at the hand has bell-shaped profile;

– joints angles may vary substantially among repetitions;

– curvilinear movements can be decomposed into sub-movements each of
which showing the above properties.
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Figure 2.8: Example of experimental set-up to study kinematic and dynamic
invariants of voluntary reaching movements. Adapted from ‘Trajectory formation
of the center-of-mass of the arm during reaching movements’ by Suzuki et al.
(1997).

In Fig. 2.9, an example of trajectories and velocity profiles relative to a reaching
task are plotted. In the experiment, whose set-up is represented in Fig. 2.8, the
subject was requested to move a ping-pong ball from the starting position S1 to
different target points (in Fig. 2.9, only target T1 and T3 are presented).

Experiments on restrained and unrestrained hand drawing movements have proved
to follow some linear or power law, describing the invariant relationship between
voluntary movements features. For instance, the relationship between the length of
a reaching movement and its duration follows the so-called Fitts’ law (Fitts, 1954),
that can be written as:

MT = a+ b log2

✓
2D

W

◆
, (2.4)

where MT is the average movement duration, D is the distance from the starting
point, W is the width of the target along the axis of motion. In terms of regression,
parameters a and b represent an initial delay and an acceleration term, respectively.
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Figure 2.9: Trajectories and velocity profiles in two reaching tasks from S1 to
T1 and to T3. (A-B): trajectory of the hand (1), of the centre of mass of the
distal (2) and proximal (3) arm segment and of the entire arm (4); arrows indicate
the direction of movement and triangles the peak velocity time. (C-D): time-
course of the angular velocity at the shoulder (5), elbow (6) and distal arm (7),
flexion and extension are directed counterclockwise (CCW) and clockwise (CW),
respectively; below, tangential velocity associated to the trajectories (1-4) in the
top panels (A-B) showing the bell-shaped profile. From ‘Trajectory formation of
the center-of-mass of the arm during reaching movements’ by Suzuki et al. (1997).
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As regards curvilinear trajectories, the two-thirds power law relates the instantan-
eous velocity of the movement and the radius of curvature associated with the hand
trajectory. This law is also referred to as the Lacquaniti’s law and can be written as
follows (Lacquaniti et al., 1983):

v(t) / R(t)
2
3 , (2.5)

where v is the velocity tangential to the trajectory and R is its radius of curvature.

These findings seem to support the idea that control commands are planned in the
space of the hand based on kinematic regularities and that there exists some control
process that translates the kinematic requirements of the movement into dynamic
activations compatible to the desired goal (Lacquaniti et al., 1983).

Conversely, other studies have pointed out that some part of the motion must be
planned in the space of the joints. For example, other reaching experiments have
shown that acceleration at the elbow and shoulder are linearly related to each other
during the phase of deceleration of the movement (Soechting & Lacquaniti, 1981).
This would suggest that some control is exerted in terms of joints excursion during
the task, based on dynamic regularities.

Both accounts are at the core of the optimisation-based approach to solve the
degrees of freedom problem and find appropriate motor activations for trajectory
formation. These computational theories have been extensively tested, confirming
a variety of predictions and motor invariants. Two of the main accounts are the
minimum jerk model, as regards kinematic control, and the minimum torque-change
model, as regards dynamic control. While the nature of the controlled variables is
still debated, integration of these approaches has also been attempted (Kawato, 1999;
Wolpert, 1997).

Instead of speculating from invariants which variables are more likely ‘used’ by
the CNS for motor planning, the uncontrolled manifold hypothesis (UCM) offers a
practical solution that could be easily applied to experimental data collected on
voluntary movements. The idea behind this account is to investigate which control
variables, arbitrarily defined, have less variance during a task (Scholz & Schöner,
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1999).

It is useful then, according to the UCM, to hypothesise a set of relevant variables
and to consider a configuration space for the task object of study. In a reaching task
the space could be the one spanned by the joint angles involved. The control variables
of choice could be functions of the same angles. The joint space can be divided, then,
into two orthogonal subspaces for any set of control variables. The first subspace
contains all the configurations of the joints that do not affect the control variables set,
that is the uncontrolled manifold. The second, orthogonal to the first, is the space of
joints configurations that affect the chosen control variables, that is the controlled
manifold.

If, for the current choice of control variables and the given task, the variance of
the uncontrolled subspace is greater than the variance of the controlled one then,
according to this theory, the hypothesis on the control variables is acceptable. This
means that that most of the variability in the selected feature space (i.e., the joints
space) leaves the control variables unaffected (Latash, 2012; Scholz & Schöner, 1999).
It must be remarked that the suitability of a set of variables to represent a defined
motor task doesn’t imply that said set is actually used by biological systems for motor
planning.
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2.3 The Degrees of Freedom Problem

If one considers the act of reaching with the arm to a target object, it is immediately
evident that there are a number of configurations that the arm can assume to perform
the same motor task. To each of these configurations, expressed in term of angles
formed by the joints, one can associate torques at the joints. These, in turn, can be
applied using several combinations of muscle activations.

As pointed out in the previous section, from a traditional perspective on cognition,
the Central Nervous System (CNS) should be the one responsible for the process of
selection among all the possible choices given by this underdetermined problem where
there are more degrees of freedom than constraints (Latash et al., 2007).

Neural  
Commands

Muscle  
Activations

Joint  
Kinematics

Hand  
Trajectory

Hand Path

Extrinsic 
Task Goals

many-to-one

one-to-many

Figure 2.10: The degrees of freedom problem at different levels of motor planning.
The one-to-many mapping represents the traditional formulation of the motor
redundancy, where at each level one configuration corresponds to many possible
options at the level above. The many-to-one mapping is the process of subsequent
reduction of the degrees of freedom, implying a selection among motor activations
equally satisfying task goals.

It was Bernstein who argued first that the degrees of freedom problem is handled
by motor control strategies that required a circular flux of information (Rosenbaum,
2010). These strategies had to be hierarchically organised so that at the top level
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there must be a representation of the motor outcome of the task, at the intermediate
level the integration of sensory-motor information and at the bottom level the
biomechanical properties of the movement. The two lower levels represent in his
vision the coordination of movement that he defines as the process that overcomes the
motor redundancy turning the motor apparatus in a system that can be controlled
(Bongaardt & Meljer, 2000).

Intuitively, he also hypothesised that motor coordination could be understood in
terms of a motor field that is the space in which the movement takes shape, encoded
in a global nonlinear topology and not in a specific metric such as spatial details or
torques. Control is achieved in relationship to a task or a goal, using this essential
representation that is emerging from neural organisation rather than from processes
related to single neurons. In a similar way, he thought that motor synergies are
controlled at the level of the link between muscles and joints. There previous motor
experience is also stored (Bongaardt & Meljer, 2000).

This theoretical approach is still valid and the main concept are taken into
account in the proposed architecture, that encodes the same principles in terms of
representation, sensory-motor integration and role of the spinal cord in motor control.

Motor Redundancy

In mathematical terms, the degrees of freedom of a system are the number of
independent variables of the system itself. Solving the degrees of freedom problem
means finding the criteria by which the number of independent variables of the system
are reduced in a way that is appropriate for the selected task. The redundancy
of the biomechanical system concerns the kinematics and the kinetics of it. The
first represents the variety of positions that can be assumed in time by the system
compatible with the task. The second concerns the forces exerted in order to reach
this configuration, each of which implies a different pattern of muscle activation.

As mentioned above, some accounts propose that the CNS uses a cost function
that has to be optimised to solve this problem. Namely, an efficiency criterion is used
to solve the redundancy. It is intuitive that some motor strategies are preferred to
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others because they minimise or maximise some variable. For example, efficiency is the
reason why direct path are preferred when doing movements and final configuration
of the limbs are usually in the middle of the range of motion in order to allow for
quicker response to secondary or unexpected tasks (Rosenbaum, 2010).

There is also the tendency for human movements to have minimum jerk, which
is the mean squared rate of the variation of acceleration during the task, meaning
that movements from one point to another tend to be as smooth as possible (Flash
& Hogan, 1985). Other authors have considered, for example, the minimum torque
change (Uno et al., 1989) or more complex cost functions (Todorov, 2004). There
is no evidence though that any of these functions is actually used at some level to
create motor strategies.

Another account addressing the reduction of degrees of freedom as the solution
to the redundancy of the motor system assumes the existence of internal models of
the motor system. These are divided into inverse internal models and feedforward
internal models (Wolpert, 1997).

Inverse internal models allow for the computation of motor commands from the
kinematic description of the trajectory of the limb that satisfies the task. They are
based on an internal reverse representation of associated instances of movements and
motor commands and have been traditionally used to produce coordinated movements
by control theory and robotics. The level of generalisation of this inverse function can
be hypothesised optimal, so that the whole space of motor representation is mapped.
Alternatively, it can be assumed that generalisation is limited to the experienced
trajectories, obtaining a local mapping. Models based on neural networks, for instance,
show an intermediate level of generalisation (Bekey & Goldberg, 1993; Kawato, 1999).

Feedforward models anticipate the outcome of the action, so that the motor system
can compensate for sensory reafference and feedback delays. In predictive control,
forward models are used to generate an internal feedback on the outcome of the
motor plan, receiving a copy of the motor commands. This is usually implemented
introducing in the system an adaptive observer (see Section 3.4.1 for an example of
application of this concept to cognitive robotics). Forward models can also provide
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error estimates for motor learning (Miall & Wolpert, 1996; Wolpert, 1997).

Empirical evidence suggests the existence of neural circuitry that could support
both forward and inverse internal models as the result of motor learning in the
cerebellum (Kawato, 1999; Miall & Wolpert, 1996). A discussion on the connectionist
account and examples of models for motor control that use mappings as internal
models or adaptive observers to compensate for delays is presented in Chapter 3.

The main opposition to these approaches is that there is evidence of variable
means in tasks performance. The phenomenon that Bernstein described as ‘repetition
without repetition’ means that there is always some variability in the performance
of a motor task even following extensive practice (Latash, 2012). This approach to
motor coordination as a top-down mapping problem, structured hierarchically and
abstractly addressed by the CNS as represented in Fig. 2.10, reflects the methodology
typical of cognitivism (Haugeland, 1978).

Motor Abundance

There is an alternative view that considers the degrees of freedom problem not
a problem, but more of a feature of the motor system to produce efficient, but not
identical, movements in a way that is evolutionary advantageous. This concept is
summarised as the principle of motor abundance. This perspective considers the
abundance of degrees of freedom as an asset to produce stable but flexible motor
behaviours. This positive redundancy creates the condition for an adaptive modulation
of the motor output so that the motor system is able to better handle secondary
tasks and unexpected perturbations (Latash et al., 2007).

In the model proposed in this thesis, the degrees of freedom problem is not
addressed in terms of activation of muscle groups, but in terms of how patterns of
muscles can be encoded at a neural level in the spinal cord to produces the forces
necessary to perform purposeful movements at the joints of a robotic interface. The
general perspective is the one assumed by embodied cognition, namely that motor
control is distributed. The object of this thesis is adding another layer to the existing
cortical models, representing the role of the spinal cord in motor control.
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Internal representations of the motor systems and of patterns of activation might
significantly contribute to motor planning. It can be speculated that the development
of purposeful movements could emerge from a combination of these learned internal
models with online sensory-motor integration at a cortical level. The possibility to
reunite these two perspectives is further discussed in Chapter 3, where embodied
cognition is discussed in more detail.

2.3.1 Muscles Synergies

A perspective based on the idea of motor abundance that explains purposeful
movement formation lays its foundation on the concept of synergy. A muscle synergy
is defined as a group of muscles whose co-activation allows for a reduction in the
degrees of freedom of the system in function of the performed task, in a way that
proves to be both stable and flexible (Giszter, 2015; Latash et al., 2007). The
concept of muscle synergy stems from studies on the spinal circuitry in deafferented
animals, showing that consistent patterns of muscle activation of the limbs arise when
stimulating the spinal cord directly.

The first studies on patterns of muscle activation used spinal microstimulation
in spinalised frog. If the brainstem and the spinal cord are surgically separated in the
frog, it is found that residual motor skills are significantly present and coordinated
synergic movements are still possible (Bizzi et al., 1991; Giszter et al., 1993).

The experimental set-up of this type of studies is shown in Fig. 2.11. Defined a
workspace made of 9-16 points, reaction forces are recorded keeping fixed the ankle
of the frog at each point, while stimulating through implanted electrodes in the grey
matter of the spine. This measure of force spread on the workspace can be divided in
two components:

F = Fr + Fa, (2.6)

where Fr is the resting force, measured prior to the onset of the stimulation and due
to the viscoelastic properties of the muscles of the frog; Fa, the active force, represents
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Figure 2.11: Experimental set up to evaluate the resting and active force field
in the spinalised frog using micro-stimulation at the level of the spine. (A):
representation of the workspace with the force recording points. (B): recorded
force vectors at the workspace locations. (C): interpolation grid and recorded force
vectors. (D) Interpolated field. From ‘Computations underlying the execution of
movement: a biological perspective.’ by Bizzi et al. (1991)

the force elicited by muscular activation due to stimulation (Bizzi et al., 1991).

Keeping unchanged the site of stimulation, the total force field F changes across the
workspace, presenting two main characteristics: convergence and a single equilibrium
point. The equilibrium point (x0, y0) is the point in which both Cartesian components
of the vector F = (Fx, Fy) are equal to zero. In other words, it is the place towards
which the limb would move if unconstrained and in which it would remain in steady
state, since the total acting force null (Bizzi et al., 1991).

Subsequent studies have found that, modulating the stimulation, the force field
changes over time and, as a consequence, the associate equilibrium point changes
position too (Giszter et al., 1993). This sequence of positions describes a trajectory
that goes from the initial resting position to a new position, corresponding to the
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peak value of the stimulation, and back to the original position when stimulation
ceases.

The interpretation given to these findings is that the trajectory spanned by the
equilibrium point is the virtual position that the limb would reach in time if it wasn’t
constrained by the clamp. In Fig. 2.12 an example of the evolution of the force field
during the stimulation is depicted together with the so-called virtual trajectory.

Figure 2.12: Evolution of the total force field F during increasing spinal stimulation.
The equilibrium point (black dot) moves describing a trajectory in time represented
in the interpolation grid on the right. From ‘Convergent force fields organized in
the frog’s spinal cord.’ by Giszter et al. (1993).

Most importantly, separating the active force field from the total field, it was found
that recorded force fields could be sorted in a few classes each of which originating
from a portion of the spinal cord. Moreover, analysing the magnitude of the active
force fields it was found that, although it changes over time, the direction of the force
vectors is almost invariant and the equilibrium point is fixed (Giszter et al., 1993).
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2.3.2 The Motor Primitives Summation Hypothesis

After these initial experiments on frogs, the idea that the CNS controls the
redundancy of the system using a fixed combination of muscles, a muscle synergy,
has been tested further. A growing amount of empirical evidence, including studies
that use electromyographic (EMG) recordings in vertebrates together with techniques
for components extraction, supports now the existence of the so-called synergies (see
the review by Tresch and Jarc (2009) on the methods and by Flash and Hochner
(2005) on primitives in vertebrates and invertebrates).

These findings have suggested a control strategy: suppose that efferent motor
commands assign an equilibrium point, this is enough to produce a pattern of muscle
activation that is selected among a group of sets stored in the spinal cord. At this
point, the posture is maintained by the limb until descending signals specify another
equilibrium associated with a set of muscle synergies (Giszter et al., 1993).

This approach overcomes the need to specify all the controls for the redundant
system, in terms of single muscle activation. A spatial mapping of some motor
patterns within the spinal cord, referred to as a motor primitive, is identified as
the modular element from which more complex motor behaviour can be performed
(Giszter, 2015).

A first model for motor control based on this idea was proposed by Mussa-Ivaldi
et al. (1994), who introduced and tested the motor summation hypothesis. According
to the authors, the resultant active force field Fac, elicited by costimulation of two
spinal sites 1 and 2 and measured using a set-up like the one presented in Fig. 2.11,
can be modelled using the following linear relationship:

Fac(x, y, t) ' s[Fa1(x, y, t) + Fa2(x, y, t)], (2.7)

where Fa1,2 are the measured active force fields recorded from the single stimulation
points and s is a real scaling coefficient. Experiments on the frogs confirmed his
hypothesis.

It was also confirmed that supraspinal modulation of spinal reflex can generate
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a vast motor repertoire, selecting a combination of primitives that corresponds to
the vectorial summation of associated force fields. The resultant equilibrium position
of the limb during the costimulation, in fact, is found in an intermediate location
between the equilibrium points of the component fields. This means that, considering
for instance two linear fields FA(x) = sa(x � xA) and FB(x) = sb(x � xB), with
equilibrium points xA, xB and sa, sb constants, the equilibrium point according to
Eq. (2.7) is given by

xE = (sa + sb)
�1(saxA + sbxB), (2.8)

that is the weighted sum of xA and xB (Mussa-Ivaldi et al., 1994).

From this simple movement formation paradigm, motor primitives have been at
the core of the development of models for motor control that address the degrees of
freedom problem in terms of modularity. To this purpose, they have been defined
in a number of different ways. From the kinematic perspective, motor primitives
are modelled in terms of bell-shaped velocity modules or segmentation units of the
behaviour (stroke or kinematic primitive). From the kinetic point of view, they
are described with the traditional formulation in terms of force fields or muscle
time-varying patterns as presented above and used in the following. According to the
underlying implementation, it is possible to define them in terms of robotic controllers
(multi-joint control units) or neural substrate (premotor drives) (Flash & Hochner,
2005).

As regards the neural encoding of these elemental movements, the neural basis
that could be associated to them is still an object of debate. Recent studies on spinal
interneurons seem to indicate the existence of local neural circuitry that could account
for spinal motor primitives (Hart & Giszter, 2010; Levine et al., 2014).

To present an example of motor summation using behavioural data, in Fig. 2.13
summation of two time-varying synergies extracted from EMG measurements in
in-vivo frogs is presented (D’Avella et al., 2003). In this study, each synergy is given
by the concurrent activation of three muscles (see Fig. 2.13 a). In order to generate a
pattern of activation, each synergy can be scaled and translated in time (see Fig. 2.13
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b). Obtained muscles profiles composing the synergy are then summed to obtain the
activation pattern (see Fig. 2.13 c). A set of synergies can be used in this way to
generate different patterns as resultant linear combination.

The model proposed by D’Avella et al. (2003) is able to explain most of the data
on frog kicking collected from intact animals using only three time-varying synergies
combined. The reduction in dimensionality of the space of all the possible synergies
cannot arise simply from the constraints imposed by the task, given the intrinsic
redundancy of the controlled system. As a consequence, the authors assume that the
development of these patterns of muscle activation forms not just to satisfy elemental
biomechanical functions, but also to be optimised with learning, leading to a greater
level of generalisation. This means that the same set of synergies could be able to
satisfy multiple motor tasks (D’Avella et al., 2003; Giszter & Hart, 2013).

Figure 2.13: Motor summation with extracted EMG primitives. (a): represent-
ation of two synergies W1 and W2. Rows: three different muscles involved in
the synergy m1,2,3 with activation encoded in colour and averaged time course
across muscles represented in the box below. (b): muscles activation of W1 scaled
by constant c1 and delayed by t1, dashed (full) lines represent W1 after (before)
scaling and shifting. (c): two examples of synergies summation, using modulated
W1 (magenta) and W2 (green). c1,2 are encoded in the width of the boxes below;
t1,2 in the position of their left corner. From ‘Combinations of muscle synergies
in the construction of a natural motor behavior’ by D’Avella et al. (2003).

It has been argued that the motor summation hypothesis could be somewhat
limiting the motor repertoire of the system. Nonetheless, reviewed models that
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hypothesise the synergy-based modularity account for a separate motor path that
can suppress, or modulate, spinal activation when necessary (i.e., whenever precision
requires single muscle strategies). The physiological structure of the neuromuscular
system supports this combined control strategy, with the modulation carried out by
the corticospinal tract (Mussa-Ivaldi et al., 1994; Tresch & Jarc, 2009).

Another important observation is that this approach to the degrees of freedom
problem could be considered in agreement with the uncontrolled manifold theory.
Motor primitives could be seen as a smaller subspace of controlled variables in the
space of the variables that are relevant for the task (Latash, 2012).

From an embodied perspective, some authors have suggested that synergies could
actually not be responsible at all of a simplification in terms of variables to control.
On the contrary, promoting the idea of motor abundance, the central nervous system
could allow for a redundant representation of the system and of the environment
that is capable of probabilistically anticipate the outcome of their interaction. The
emergence of muscle synergies in this sense could arise as the result of reciprocal
influence between the musculoskeletal system and the environment (Tresch & Jarc,
2009).

In conclusion, micro-stimulation of the premotor area of the spinal cord and more
recent experiments on synergic muscle activation could account for the existence of
some elemental motor representation, that is identified as a motor primitive (Hart &
Giszter, 2010). A combination of a limited number of motor primitives can account
for a greater number of movements, according to the motor primitives summation
hypothesis. The activation of motor primitives is regulated and weighted by neural
signals, including afferent inputs and descending motor commands (Mussa-Ivaldi
et al., 1994). Both, in fact, have access to spinal premotor circuits where a certain
level of integration can actually happen, as anticipated in Section 2.2.2, discussing
the physiology of the spinal cord (Overduin et al., 2008). A review on the existing
models for motor primitives can be found in the work by Giszter and Hart, 2013.
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2.4 Conclusions

In this chapter the core themes of motor control are presented in an integrated
perspective that includes physiological findings and existing hypothesis and models
relative to voluntary movements and their properties.

The role of the different parts of the motor system is explored with particular
attention to the motor cortex, the spinal cord, the neuromuscular junction and the
development of contractile force in the muscle. Invariant properties of voluntary
movements are reviewed.

This overview of the physiological system clarifies the number of controlled
variables to be considered when modelling voluntary movement formation, often
addressed in terms of optimisation criteria and hierarchical organisation of the motor
system itself. The degrees of freedom problem, presented as the traditional motor
redundancy problem, could be considered instead in terms of motor abundance,
contributing to the distinctive adaptability of biological systems.

From this perspective, the concept of muscle synergy is introduced, presenting
relevant bio-physiological experiments. The possibility to model a large motor
repertoire using a small number of motor primitives is summarised by the hypothesis
of motor primitives summation.

The proposed model for spinal motor control is largely inspired by this modularity
(Aim 1), since the representation offered by motor primitives naturally matches
the one offered by dynamic fields, presented as part of the embodied approach to
understand motor control in Chapter 3.
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Neural Fields for Embodied Motor
Control

3.1 Introduction

From a philosophical perspective, the cognitivist approach that characterise some
of the explored theories of movement formation has its foundation in the Cartesian
dualism: the dichotomy between mind and body. Cognition, being separated from
the body, is given by the stream of subsequent abstractions that start with the
representation of the sensory input coming from the environment to the body, ending
in the brain where information elaboration takes place. This perspective lends itself
to be modelled in terms of algorithms based on abstract representations (Haugeland,
1978; von Neumann, 1958).

In this perspective, the brain is portrayed similar to a computer and the study of
motor control reduces to finding an algorithm that solves the redundancy problem.
Motor commands are the output sent top-down, specifying activations and timing
of actions. The physiology of the motor system, reviewed in the previous chapter,
supports a more distributed and modular development of motor control.

In 1991, in his paper ‘Intelligence without representation’, Brooks brilliantly
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points out with an allegory the limitations of the computer brain and the need for an
integrated approach to understand complex phenomena such as cognition (Brooks,
1991):

Suppose it is the 1890s. Artificial flight is the glamor subject in science, engineering,
and venture capital circles. A bunch of AF researchers are miraculously transported
by a time machine to the 1980s for a few hours. They spend the whole time in the
passenger cabin of a commercial passenger Boeing 747 on a medium duration flight.
Returned to the 1890s they feel vigorated, knowing that AF is possible on a grand
scale. They immediately set to work duplicating what they have seen. They make
great progress in designing pitched seats, double pane windows, and know that if only
they can figure out those weird "plastics" they will have their grail within their grasp.
Meanwhile [...] They have come to agree that the project is too big to be worked on as
a single entity and that they will need to become specialists in different areas.[...]On
their observation flight none of the original group managed to get a glimpse of the
driver’s seat, but they have done some hard thinking and think they have established
the major constraints on what should be there and how it should work. The pilot, as
he will be called, sits in a seat above a glass floor so that he can see the ground below
so he will know where to land. There are some side mirrors so he can watch behind
for other approaching airplanes. His controls consist of a foot pedal to control speed
(just as in these newfangled automobiles that are starting to appear), and a steering
wheel to turn left and right. In addition, the wheel stem can be pushed forward and
back to make the airplane go up and down. A clever arrangement of pipes measures
airspeed of the airplane and displays it on a dial. What more could one want? Oh yes.
There’s a rather nice setup of louvers in the windows so that the driver can get fresh
air without getting the full blast of the wind in his face.

A new perspective on motor control actually emerges in a number of studies in
different disciplines that share a common vision: cognition is rooted in the interac-
tion between the system that acts, the body or agent, and the environment, both
participating actively in the experience of it.

In this chapter this perspective is introduced, leading to a description of the neural
processes of motor control using models belonging to the Dynamic Field Theory
(DFT), that are used to implement the neural controllers of the architecture proposed
for spinal motor control (Aim 2).
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In Section 3.2, a definition of embodiment is attempted, analysing claims that
characterise this approach: modelling motor control in this perspective means finding
an embodied representation for its core problems.

In Section 3.3 a number of relevant features of Dynamic Field Theory (DFT)
are presented, encompassing the underlying neural processing and the qualitative
construction of the Dynamic Neural Field equation. The representation of elements of
cognition is introduced in terms of peaks of activation. This mathematical framework
has proved ideal to model both the degree of flexibility and the robustness that go
beyond the achievements of technical systems and are typical of living organisms.

In Section 3.4 the focus is on DFT principles applied to perceptual-motor integ-
ration, sequencing and timing, learning and, most importantly, solving the degrees
of freedom problem in light of architectures that go towards the now trending bio-
inspired robotics. This outlines the knowledge gap that the proposed model aims to
fill.
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3.2 Embodied Cognition

Defining embodied cognition is a challenging task, considering that the concept of
embodiment is relatively new and that it has been developed in different fields, more
as collection of perspectives that challenge traditional cognitivism than a structured
discipline with own methods and goals (Shapiro, 2012).

According to cognitivism, cognition is the result of a computational process of
progressive abstraction from the sensorial input. The subject receives this information
passively and of this creates the first representation, then subsequent transformations
(modelled by algorithms) produce some output representation. These representations
can be processes, like perceiving or motor commands, or objects, like memories or
perceptions. Symbolic structures, in both cases, independent from the features of the
perceiver and of the environment, are the archetypes of cognition (Shapiro, 2012). A
representation of this type of approach is illustrated in Fig. 3.1.
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Figure 3.1: Cognition, according to a cognitivist perspective, can be represented
as a sequence of abstraction from sensory input coming from the environment
(sense), to a perceptual representation followed by information processing that
gives motor plans (think) performed by the body to produce the behaviour (act).
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In his review Embodied Cognition, Shapiro considers the first instance relative to
embodied cognition ascribable to Gibson’s work on visual perception and the school
of ecological psychology. The experience of cognition, in this framework, is described
in terms of the affordances that available information within the environment can
specify to an active agent. Two main concepts emerge:

– the agent is active, meaning that it has a body able to interact with the
environment;

– the environment provides affordances, meaning intuitive ways to interact
with it, that are peculiar to the body of the agent and its perceptual and
motor availability.

In other words, the focus moves from a passive sensing of the environment by the
agent, to the emergence of perception as result of the interaction between agent and
environment (Shapiro, 2012).

The Embodied Cognition Manifesto

The embodied perspective appears in a number of studies in different disciplines.
Along the lines of ‘Six views of embodied cognition’ by M. Wilson (2002), a list
of claims that emerges from these studies can help defining the core concepts of
embodiment. These can be summed up as follows (M. Wilson, 2002):

– cognition is situated, perception and action are intrinsically linked to
cognition that cannot take place if not immersed into an environment;

– cognition is for action, since the primary function of the mind is to produce
appropriate motor behaviour, cognitive processes cannot be understood
apart from their ultimate goal;

– offline cognition is body based, since cognition has developed for action,
when decoupled from the environment mental activity uses the same
mechanisms available for sensory-motor integration and motor control;
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– cognition is time-pressured and so mental processes must take into account
interaction with the environment in the appropriate time frame;

– cognitive work is off-loaded onto the environment, meaning that the
environment is an instrument to compensate for limited processing abilities
of the brain;

– the environment is part of the cognitive system, in the sense that it is
impossible to draw a line between the mind and the environment given
their continuous exchange of information.

By definition, situatedness is the theoretical approach regarding the mind as
enmeshed with environmental, social and cultural factors from the functional and
ontological perspective. According to this approach, there is no dualism between mind
and world and the idea that mind is an interior separated entity that senses passively
and produces outputs after representational evaluations is rejected (Costello, 2014).
Since cognition arises from the interaction through the body with the environment, the
properties of the body shape the products of cognition, defining a new methodological
perspective on how cognition should be modelled (Shapiro, 2012; M. Wilson, 2002).

Intuitively, it’s clear that cognitive processes have evolved, at least at the beginning,
to guarantee the survival of the agent in the external environment. To cite Wolpert:
‘The reason for brains is not think or feel but control movement’ (Wolpert, 2011).
It is sufficient to have a look at the evolution of intelligence in biological species
to understand that most of the evolutionary time was spent developing the ability
to move and survive within the environment. From this perspective it is easy to
hypothesise that the basis for the development of cognition as it is known, inclusive of
problem solving skills, language, expert knowledge and so on, has the same substrate
(Brooks, 1991).

The claim that cognition has developed to address motor goals could be questioned
considering that the same evolution has allowed for cognitive processes that are
decoupled from an immediate interaction with the environment and happen off-line,
for example planning and remembering (M. Wilson, 2002). Nonetheless, the fact
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that cognition has developed in a motor-oriented fashion seems to be confirmed by
experimental and cellular studies too.

Studies on visual perception, for example, have shown that some visual inputs
can have a priming effect on motor areas without any ongoing motor task. When
the agent is not directly interacting with the environment, cognition can be thought
as ‘for action’ in a more sophisticated manner. It can be advantageous to memorise
objects properties (visual input) in terms of affordances (motor pre-activation) so as
to be able to recall them, if necessary, at some point in the future (M. Wilson, 2002).

The discovery of mirror neurons has contributed to strengthen the claim that
cognition has a sensory-motor substrate (Shapiro, 2012). Mirror neurons are types of
neurons discovered in the premotor cortex of the monkey that have bimodal discharge
pattern: they result activated when actions are performed by the individual and when
the individual observes the same actions performed by another individual (Rizzolatti,
2005).

The functional role of such neurons is still being debated but they have been
linked with action and intention understanding, imitative behaviours, development of
empathy and language among individuals. It has been pointed out that the function
of mirror neurons might be common to all these processes. This function could be
creating the neural substrate to connect motor and sensory system diffusely in the
brain, collecting and distributing signals that generate internal simulations of motor
behaviour, based on patterns of connectivity that can be learned (Damasio, 2008).

In the same way, cognition involved in more abstract tasks, such as mental imagery
or episodic memory, although happening off-line, could use sensory-motor pathways
to build such representations. These could emerge from internal simulations that
use the same pathways as the one used to interact with the environment, this time
with the purpose to perform abstract reasoning. Interestingly, models for mental
concept formation, use the idea of a perceptual symbol, that is the re-activation of
sensory-motor areas that were associated during the perceptual experience, suggesting
that concepts could emerge from simulations involving cognitive primitives that have
a sensory-motor foundation (Barsalou, 1999).
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Figure 3.2: Representation of an embodied approach to robotics. Cognition
emerges as the superimposition of simple embodied actions, modules that perform
task -specific sensory-motor integration, accounting for the perceptual and motor
features of the agent and their interaction with the environment. Illustration
inspired by the work by Brooks (1991).

Situatedness in time of cognition has been one of the major challenges in traditional
artificial intelligence and robotics. A hierarchical approach can limit the performance
in real environment since the computation of internal models and the one-way path
to subsequent abstractions lack the immediate sensory enmeshment that grants
humans to react promptly to changes and unexpectedness. The focus on real-time
responsiveness has led to the development of ‘behaviour-based robotics’ and models
that use overlapping layers to build cognitive depth, each of which has sensory-motor
instances as the one represented in Fig. 3.2 (Brooks, 1991; M. Wilson, 2002).

Brook’s Creatures are a radical example of architectures that do not require
algorithms acting on abstract representation. These are based on the superimposition
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of horizontal architectures that represent single activities (i.e., motor tasks) each of
which has direct connections to sensing and action. Layers can be interconnected with
each other, but their activity keeps running in parallel. For example: one activity
of the creature is to avoid obstacles, a second layer is added to make the creature
explore the environment reaching distant visible spots. Both layers have access to
the sensory information and the second layer passes motor commands to the first
that is going to divert its trajectory whenever a new obstacle is encountered without
being aware of the goal of the second. In the same way, the second is not aware of the
presence of obstacles. The system, in fact, works without some shared representation
of goals or objects to avoid (Brooks, 1991).

Although simple behaviours could be explained in terms of small sensory-motor
circuits superimposed (spinal reflexes, for instance), explaining human cognition as
a whole might not be achievable by simply superimposing a layer for each activity
(Brooks, 1991; Shapiro, 2012).

The active role exerted by the environment is the concept at the core of the extended
cognition, according to which the environment is actually part of the cognitive system
itself (Shapiro, 2012). The environment might contribute to higher cognitive processes
storing information. It would be not necessary in this case to load the working memory
of the system with representations of all the features of the environment because they
are simply provided online by sensory-motor integration (Brooks, 1991, ‘the World is
its own model’).

To conclude, although some of the claims could be oversimplifying the variety of
processes that are grouped under the term cognition, the new perspective offered by
embodied cognition could help improve our understanding of motor control and guide
the development of better robotics that are more physiologically inspired. The future
development of this multi-disciplinary account could hold space to integrate some
aspects of the more traditional approach to cognition, in order to create a unified
theory that is able to account for its higher and more abstract expressions (Shapiro,
2012).

56



Chapter 3. Neural Fields for Embodied Motor Control

3.3 Dynamic Field Theory

As Cognitive Sciences have regarded the mind as a processor that elaborates
information abstractly, in the same way artificial intelligence has shared the same
approach, developing in terms of models for symbolic processing. The claims of em-
bodied cognition affected this field bringing the attention to sensory-motor processing
rather than to centralised computation of inputs and outputs (M. Wilson, 2002).

Considering mind, body and environment as coupled dynamical systems, math-
ematical tools relative to such systems and based on coupled differential equations
have found application in Cognitive Sciences. The Dynamic Field Theory (DFT) has
provided a well-suited theoretical formalism for embodiment, representing sensory-
motor integration and higher cognitive functions in a way that links directly to the
principles underlying neural transmission (Schöner, 2007).

The DFT framework has been widely used to model perceptual systems according
to the embodied cognition principles discussed above. Applications include models
for cognitive development, motor planning, autonomous robotic control, models for
visuospatial cognition and visual working memory (Spencer et al., 2009).

Neural dynamics are used to model units of cognition that are coupled in real-time
to sensory-motor systems and are able to integrate processes over different timescales
and to show behavioural flexibility. The computational element that makes possible
the emergence of cognitive functions from models for neural dynamics is the Dynamic
Neural Field (DNF) (Schöner, 2007). This is a mathematical structure spanning over
two or more dimensions that is able to retain stable states of activation.

The stability of attractor dynamics is the key to address two crucial problems
encountered when cognitive processes are modelled: the problem of jumpy cognition
and the problem of representation. According to the embodied account, cognition
emerges from continuous sensorimotor integration. While the position assumed by
the hand in a reaching task develops continuously through space and time, motor
plans in contrast can jump from one to another according to the requirements of the
current task. An example of jumpy cognition could be when a sudden shift in the
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target position forces the agent to change direction. Another one could be the shift
from one thought to the other. When modelling cognition, it must be considered that
continuous sensorimotor processes coexist with cognitive representations that can
jump from one state to another, but still remaining embodied (Spencer et al., 2009).

This leads to the second problem, that is finding the appropriate representation
to account for jumpy cognition and continuous sensory-motor processes. In other
words, the abstract, symbolic representation of elements of cognition at the core of
traditional artificial intelligence must be replaced with a different modality that is
capable of interfacing cognitive systems with continuous sensorimotor processing. An
example of this could be represented by the process of recalling the position of an
object while the position of the observer is changing over time. Elements of cognition
can be encoded by prototypes (e.g., left, right, top, bottom), whereas the position
of the agent and the sensory afference develops continuously, resulting in jumpy
cognitive representation. Movements of the agent cause the target to be first at a
location labelled by ‘top left’, for instance, then ‘bottom right’ (Spencer et al., 2009).

The core concepts of DFT that satisfy both these aspects, giving an embodied
representation of cognition anchored in sensorimotor processing, can be summed up
as follows:

– a stable attractor, or peak of activation, is the representation of an emergent
behaviour ;

– bifurcations, or instabilities, of the system dynamics model behavioural
flexibility;

– knowledge from previous experience can be learned and facilitate the
formation of stable attractors.

Stable states in the dynamic system guarantee appropriate cognitive task rep-
resentations that take into account the variation (and availability) of sensory input,
providing successful motor output. At the same time, sensory or motivational input
can move the system beyond a bifurcation point. Loss of stability allows for new
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behaviours to emerge in the form of a new stable attractor. The possibility to retain
information in time is fundamental for learning and adaptation.

Attractor dynamics can account for the elements of motor control outlined in
Chapter 2, as regards both representation of sensory-motor features and appropriate
control. An example of such dynamic is presented in Fig. 3.3, where a simple selection
behaviour from a bimodal input is implemented with a two-dimensional neural field.
The following section addresses how these features emerge from models for neural
transmission and how this theoretical approach can model not just selection but
several elements of cognition.
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Figure 3.3: Dynamic neural field selecting between two inputs. From the bottom:
bimodal input to the field; first step of simulation shows one of the inputs growing
to a stable peak and one destabilising to the resting state; the selected input
persists in a self-sustained activation that is able to retain information.
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3.3.1 Introduction to Neural Field Dynamics

A multi-scale approach has been adopted through the years in the field of Compu-
tational Neuroscience due to the variety of neural activity features that can be studied
using mathematical models: from the biochemical properties of the neuron and their
role in axonal propagation, to complex behaviour emerging from networks of millions
of interconnected neural cells. Models based on neural networks or more realistic
descriptions of neurons and their connections have proved great to understand how
neural transmission operates but limited capability to explain behaviours (Spencer
et al., 2009).

Historically, the origin of dynamic neural fields can be found in the first models
for mass of cells with neuron-like properties with random connection. Beurle in
1956, considering this ensemble of neurons, studied how simple forms of activity such
as wave propagation, can emerge without interconnections between elements to be
specified in advance (Beurle, 1956). Subsequently, Wilson and Cowan, studying the
conductive properties of the axon, introduced inhibitory and excitatory populations
of neurons and modelled neuron’s refractory period (H. R. Wilson & Cowan, 1972).

Although it might present variations among layers, as shown in Fig. 3.4, the
structure of cortical pyramidal neurons is made by the following parts:

– the soma, that is the cell body containing the nucleus,

– the dendritic tree (or basal dendrites), that is a tree-like structure conveying
the input from other neurons into the soma;

– the axon, that is an elongated branch presenting ramifications (apical
dendrites) emanating from the soma and conveying the electrical output
of the neuron, the action potential.

Synapses are the place in which electrical activity from one neuron, the presynaptic
neuron, is transmitted to the dendritic tree of the postsynaptic neuron. This electrical
flow into the postsynaptic neuron is summed throughout the dendritic tree and, if
this sum is enough to cross its intrinsic threshold, then a new action potential is
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Figure 3.4: The structure of pyramidal neurons in different cortical layers. From
‘Pyramidal neurons: Dendritic structure and synaptic integration’ by Spruston
(2008).

triggered. Integration of synaptic input is at the heart of the computational function
of pyramidal neurons (Spruston, 2008).

As introduced in Chapter 2, studies on the firing pattens of neurons in the motor
cortex during pointing tasks have highlighted that the direction of movement can be
modelled using a population vector (Georgopoulos, 1997).

Each neuron can be associated to a tuning curve where the highest firing rate
is reached for the preferred direction and the discharge rate decreases continuously
moving away from it. Further experiments confirmed that resultant activation of a
population of neurons can actually encode relevant sensory-motor features (Spencer
et al., 2009).

Intuitively, this field of sensitivity for the single neuron and the concept of
population encoding leads to the concept of neural field as a model to represent not
the single cell firing but the tuning curve of the population it belongs to, spanning
across the possible values of some salient feature with continuity (Sandamirskaya
et al., 2013).

A neural field can be defined by a nonlinear differential equation that includes
the following terms:

⌧ u̇(x, t) = �u(x, t) + synaptic interaction + input + resting level, (3.1)
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in which u(x, t) represents the dynamic of a mean field variable varying with time
constant ⌧ . The other terms on the right-hand side are the synaptic input coming
from the rest of the field with appropriate synaptic weights, an external input (e.g.,
sensory input) and the resting level that, like the resting potential of neural cells, is
the value to which the field relaxes in absence of sustained activation (Schöner, 2007).

A formal simplified model of the type of Eq. (3.1) can be derived considering the
synaptic current in conductance based model of the structure of the neuron (Bressloff,
2012). In a network composed by N coupled neurons with membrane potential Vi(t)

and synaptic input ui(t), the membrane potential varies according to the equation:

C
dVi

dt
= �Icon,i(Vi, . . . ) + ui(t), i = 1, . . . , N (3.2)

with the generic ionic current Icon,i defined as a function of the conductance and
the reversal potential of the ionic species. Assigning the index j to the presynaptic
neuron and i to the postsynaptic one, the firing times of the former can be expressed
as T

m
j ,m 2 Z, defined as the instants in which membrane potential Vj(t) crosses a

threshold potential Vh:

T
m
j = inf{t, t > T

(m�1)
j |Vj(t) = Vh, V

0
j (t) > 0}

where V
0
j = dVj/dt.

The net synaptic current entering the i-th neuron is given by the sum of the
presynaptic action potentials, temporally filtered by the dendritic tree of the postsyn-
aptic neuron. This processing can be expressed using a function �ij(t) so that the
current assumes the form

P
m�ij(t� T

m
j ) (Bressloff, 2012). If linear summation is

assumed for the system, ui(t) can be written as follows

ui(t) =
NX

j=1

X

m

�ij(t� T
m
j ) (3.3)

Using the properties of the Dirac function, and writing the output spike train of the
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j-th neuron as
aj(t) =

X

m2Z

�(t� T
m
j ),

the equation of the input current can be written as:

ui(t) =
NX

j=1

Z t

�1
�ij(t� t

0)aj(t
0)dt0. (3.4)

Considering this network of spiking neurons, it is possible to partition it in
homogeneous populations. In each population neurons are considered as firing
asynchronously. It follows that the synaptic input ui(t) represents the mean field
current, that is the resultant short term temporal averaging. The output spike train
can be replaced by an instantaneous firing rate function f(uj(t)) (Bressloff, 2012).
Equation (3.4) becomes:

ui(t) =

Z t

�1

NX

j=1

�ijf(uj(t
0))dt0. (3.5)

Assuming that the population of neurons is distributed along one dimension with
spacing d, that synapses between the n� th and m� th population only depend on
the discrete location of the population, and taking the limit for d ! 0, it is possible
to derive the following integral representation for a continuous state variable from
Eq. (3.5) (Bressloff, 2012):

u(x, t) =

Z 1

�1

Z t

�1
�(x, x0

, t� t
0)f(u(x0

, t
0))dt0dx0

. (3.6)

In Eq. (3.6), the term on the right-hand side represents the synaptic filtering.
The function � takes into account the distribution in space of the dendritic tree.
The function f models the threshold characteristic of neurons, allowing only supra-
threshold contribution to be considered. Since most neurons do not fire below some
threshold h and fire up to a maximum rate limited by the refractory period, typically
this function is assumed to be sigmoidal:
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f(u(x, t)) =
1

1 + e��(u(x,t)�h)
, (3.7)

where � models the steepness.

For analytical convenience, in DFT the output function is usually modelled with
a piecewise linear approximation (Coombes & Schmidt, 2010) or, considering � ! 1,
with the Heaviside function (see Methods, Chapter 4). Sigmoidal and Heaviside
synaptic filtering functions are plotted in Fig. 3.5.

-10 -5 0 5 10
0

0.5

1

Figure 3.5: Example of nonlinear threshold functions.

The integral kernel can be conveniently decomposed in a temporal kernel, identical
for pre- and postsynaptic neurons, and a weighting function w that is usually referred
to as the synaptic footprint dependent on the position on the field:

�(x, x0
, t) = w(x, x0)�(t) �(t) = e

�t/⌧
H(t). (3.8)

The mathematical formulation of neural fields, as it is used in Dynamic Field
Theory, builds from the analysis carried out by Amari on pattern formation in
continuous models for neural activity (Amari, 1977). Also known as the Amari
equation, the differential form of Eq. (3.6) can be written as:

⌧ u̇(x, t) = �u(x, t) +

Z 1

�1
w(x, x0)f(u(x0

, t))dx0 + S(x, t) + hrest, (3.9)

where the second term on the right-hand side represents the synaptic interaction of
Eq. (3.1). The external input is S(x, t) and hrest is the resting potential. Detailed
derivation of this formulation and references for the assumptions made can be found
in the work by Bressloff (2012).
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Within this framework synaptic depression, dendritic filtering, axonal propagation
delays and adaptive threshold dynamics can be modelled. The neural field in Eq. (3.9)
supports a number of patterns and localised solution. Besides being the constitutive
element of Dynamic Field Theory, whose application are explored in the following,
neural fields have been used to model a variety of neurobiological phenomena in-
volving cortical activity (Coombes et al., 2014; Liley et al., 1999, for instance), wave
propagation in cortical slices (Bressloff et al., 2003) and EEG rhythms (Bojak et al.,
2004).

In the analysis carried out by Amari, the synaptic footprint models the so-called
lateral inhibition, that is based on a simplified model of the cortex that represents
the connection within the field as excitatory in the short range and inhibitory on the
long range (Pinto & Ermentrout, 2001). This representation of synaptic connections
is usually modelled as dependant on the Euclidean distance between positions on the
neural field so that w(x, x0) = w(|x� x

0
|).

The typical kernel used can be written as a function of two couples of parameters
modelling strength (Aex,in) and range (�ex,in) of excitatory and inhibitory connectivity:

w(x� x
0) = Aexe

� (x�x0)2

2�2
ex � Aine

� (x�x0)2

2�2
in . (3.10)

A representation of this kernel, which is commonly referred to as Mexican hat function,
is given in Fig. 3.6.
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Figure 3.6: Example of Mexican Hat function.

This distribution is convenient for the representation of cognitive functions since
a kernel shaped as such allows for the explicit construction of localised solutions
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and the study of their stability (Amari, 1977). At the same time, a continuous field
variable allows for the study of stability and bifurcations of relevant solutions using
traditional methods for nonlinear systems (Coombes & Owen, 2004, see Chapter 4).

3.3.2 From Peaks of Activation to Cognition

The fundamental concept behind Dynamic Field Theory (DFT) is that the
representation of basic elements of cognition, that are also called elemental behaviours
(EB), corresponds to stable peaks of activation on a Dynamic Neural Field (DNF)
(Sandamirskaya, 2013).

The mathematical formalism of DNF and the study of stability is presented in
detail in Chapter 4. Consider here instead the DNF qualitatively, as a variable
describing the activation of a neural population u(x, t) over the dimension x following
the dynamic described by Eq. (3.9) with a resting level hrest representing the quiescent
state of the field and some external input to drive it S(x, t).

It is intuitive from the descriptive formulation in Eq. (3.1) that in absence of
synaptic interaction the attractor solution, u(x, t) = resting level+ input, would only
track the input. As shown in the example in Fig. 3.3, it is the synaptic interaction
that stabilises local patterns of activation. The synaptic kernel of the type defined
in Eq. (3.10) allows for sustained peaks of activation to form (Amari, 1977; Spencer
et al., 2009).

The distribution of synaptic weights modelling lateral inhibition, together with the
presence of a nonlinear output function, gives the characteristic threshold behaviour
making sure that only the parts of the field that are sufficiently active (i.e., where
input S(x, t) is sufficiently strong) can generate sustained activity (Schöner, 2007).

As anticipated, self-stabilised peaks guarantee stable representation of sensory
motor information, filtering noise and unwanted perturbations. They can also track
gradual changes in the input or enter a self-sustained state retaining a certain
representation in time suitable to model working memory processes. On the other
hand, instabilities determine the emergence flexibility. Trespassing critical input
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values (bifurcation points) can alter the dynamic of the system that will relax into a
new attractor state or to the inactive state (Spencer et al., 2009).

It is possible to identify four types of instability, supported by the Amari equation,
that constitute the elemental instances of cognition in the dynamic field framework
(Sandamirskaya, 2013; Schöner, 2007):

– the detection instability, whenever the DNF switches from a quiescent
state to a retained and self-stabilised activation;

– the selection instability, when the input to the DNF drives the field above
threshold at several locations and lateral inhibition allows self-stabilised
activation at a single preferred one, selected among the others;

– the working memory instability, when sufficiently strong lateral inhibition
allows the field to retain a stable self-sustaining peak of activation that
persists even after the input has been removed and that requires an
external inhibiting input to bring the field back to the resting state;

– the reverse detection instability or forgetting instability, when a peak of
activation ceases to exist and the field goes back to a quiescent state due
to an external inhibitory input or a decrease in an external excitatory
input.

Figure 3.7 gives a visual representation of the dynamics listed above.

Triggering appropriate instabilities makes DNF architectures capable of flexibility
and adaptability. The type of peak solutions that can emerge depends not only on
the input that the field receives, but also on the balance of excitation and inhibition
typical of the synaptic footprint, by the resting level of the neural field and by the
value of the threshold of the nonlinear function (Amari, 1977; Spencer et al., 2009).

Characterisation of DNF models and instability selection methods that were used
to design the architecture in the proposed model are presented in detail in Section 4.2
and 4.3. In the following section, the core problems of motor control presented in
Chapter 2 are explored using the principles of DFT.
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Figure 3.7: Elemental behaviours in DFT. 2D plots represent the evolution in
time of a one-dimensional neural field u(x), together with shape and amplitude
of the input during simulation. Colormap shows activation above threshold in
red and resting level in dark blue. (A): the detection instability. (B): the reverse
detection instability. (C): the selection instability (note that inputs a,b,c are all
above the threshold h). (D): the working memory instability.
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3.4 Sensory-Motor Coupling, Autonomy and

Learning

The dimensions spanned by the Dynamic Neural Fields (DNF) can be associated
with features of perception or movement and encode goals and intentions. The
corresponding level of activation specifies the presence of information relative to the
features that the field represents.

The emergence of stable peaks not only represents the emergence of the elemental
behaviour (EB), but it can also lead to other detection instabilities in coupled fields.
Connecting dynamic fields with each other, in fact, allows for the development of
architectures in which elemental behaviour can influence each other. It is possible to
couple neural fields of different dimension, create mappings of sensory information
onto motor features and develop autonomous motor plans and learning strategies
(Sandamirskaya et al., 2013).

DNF architectures can be used to guide embodied agents that are system that
interact physically or virtually with the environment. An embodied agent needs to
solve the problem relative to the multimodal representation of a number of parameters
affecting its behaviour in terms of both sensory and motor variables. In other words,
integration of sensory input to motor commands and, ultimately, the degrees of
freedom problem linked to a specific motor task must be solved.

Sensory-Motor Coupling

The representation of salient sensory-motor features can be achieved using multi-
dimensional DNFs that are responsive to several behavioural parameters. Consider
a two-dimensional neural field representing two features of a target objects, namely
hue and location. Peaks of activation can represent the elaboration of visual stimuli
leading to target detection that can subsequently trigger a motor response on coupled
fields (Sandamirskaya, 2013).

In the representation of the field in Fig. 3.8, a neural field spanning the colour-
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position space receives visual input from some visual sensor. Every object in the
visual field causes a small peak of activation that is sub-threshold, in the sense that
alone it does not allow a self-sustained peak to emerge.

Specification of the target colour can pre-shape the field, creating a ridge of
activation corresponding to the desired target colour. The pre-shape facilitates the
emergence of a sustained peak corresponding to the object of the desired colour. This
supra-threshold activation is the emergence of the EB, namely a target detection. In
fact, along the other dimension of the field is univocally specified the position of the
target. This detection instability can then trigger a motor response appropriate for
the task (Sandamirskaya et al., 2013).

Figure 3.8: Example of target detection using a two-dimensional neural field
mapping colour and position. From ‘Using Dynamic Field Theory to extend the
embodiment stance toward higher cognition’ by Sandamirskaya et al. (2013).

A localised bump solution as the one shown in Fig. 3.8 represents elementary
cognitive functions (in the example, the emergence of the attractor answers a ques-
tion of the type ‘where is the blue object?’), creating symbolical and categorical
representation from low level sensory-motor inputs.

Sensory-motor representations or instances can translate into appropriate motor
activations. Coupling between fields allows not only for mapping of relevant features
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but also for perceptual representations and working memory (Spencer et al., 2009).

DNFs with different dimension can interact with each other by means of a coupling
matrix, also referred to as mapping function. The general equation of two coupled
fields is simply:

⌧ u̇1(x, t) = �u1(x, t) +

Z
f(u1(x

0
, t))w(x� x

0)dx0

+ S1(x, t) + hrest,

⌧ u̇2(y, t) = �u2(y, t) +

Z
f(u2(y

0
, t))w(y � y

0)dy0

+Wc(x, y)f(u1(x, t))

+ S2(y, t) + hrest,

(3.11)

where u1 and u2 are two neural fields defined over two feature spaces x and y that
can have different dimensionality. Wc(x, y) is a function that maps the dimensions of
x onto the dimension of y (Sandamirskaya, 2013). S1 and S2 are external inputs, w
is the synaptic footprint and hrest is the resting potential.

The position of the activity peak on the DNF carries the information relative to
motor features that one wants to map onto a control variable for the motor dynamics
of an agent (e.g., position, velocity or force of the end effector). This is usually
computed in DFT using a structure called neural node, that is defined as follows:

⌧ u̇�(t) = �u�

Z
f(u(x, t))dx+

Z
�(x)f(u(x, t))dx, (3.12)

where u(x, t) is a DNF representing possible values of the motor variable and u� is
the input to the part of the system that performs motor tasks, i.e. the behaving agent
(Sandamirskaya, 2013). A typical choice is �(x) = cx, but this term can be subject
to learning. An interpretation of neural nodes from a physiological perspective is
proposed in Chapter 5 and discussed in Chapter 6, in light of the role that nodes play
in the proposed architecture for spinal motor control.
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Autonomy

Providing appropriate timing for actions is part of the tasks for which motor
control is responsible (Rosenbaum, 2010). In this sense, development of systems
that encode the time pressured feature of cognition means giving to the simulated
sensory-motor process autonomy. This characteristic contributes to flexibility of
behaviours since the duration of action is typically a consequence of the motor plan
development and not assumed a priori. Duration of movements might also change in
response to unannounced disturbances or more compelling inputs. Finally, plans that
require sequences of movements require also that the system autonomously detects
the end of one task to begin the next.

In the Dynamic Field Theory (DFT), some proposed models for autonomy consider
a coupled representation in terms of attractor-dynamics representing intentionality
and a condition of satisfaction (Sandamirskaya et al., 2013).

The first encodes one (or several) possible intentions of the agent, that could be
motor or perceptual, and drives the motor system accordingly towards the goal within
the environment. The second encodes the condition that must be satisfied to consider
the task completed. When this condition is met the loop is closed by the suppression
of the peak representing the intention. A model for this process can be written as
follows (Rudolph et al., 2015; Sandamirskaya, 2013):

⌧ u̇int(x, t) = �uint(x, t) +

Z
f(uint(x

0
, t))w(x� x

0)dx0

� c1

Z
f(uCoS(y, t))dy + S1(x, t) + hrest,

⌧ u̇CoS(y, t) = �uCoS(y, t) +

Z
f(uCoS(y

0
, t))w(y � y

0)dy0

+ c2Wc(x, y)f(uint(x, t)) + S2(y, t) + hrest,

(3.13)

where uint represent the intention DNF, uCoS represents the Condition of Satisfaction
(CoS) DNF. Wc establishes the coupling between them and it can be subject to

73



Chapter 3. Neural Fields for Embodied Motor Control

learning (see below). The coefficients c1 and c2 modulate the effect of the interaction
between the fields. The first weights the negative term on the right-hand side,
modelling the inhibition exerted by the CoS on the intention field; the second weights
the pre-activation of the CoS field by the intention. S1 and S2 are external inputs,
w is the synaptic footprint and hrest is the resting potential, according to the usual
notation.

The external input S1(x, t), that represent a sensory input indicating task initiation
(e.g., target detection) or motivation, activates the intention uint-DNF. Resultant
activity is passed through neural mapping to the CoS-DNF that becomes selectively
sensible or pre-activated.

The input S2 at this point will trigger the emergence of a stable attractor in
uCoS only when the condition for termination of the task is met, adding up to the
pre-activation brought by the intention. The selection instability of the CoS inhibits
the intention DNF determining a reverse selection instability in the latter.

A new intention can become active at this point and the cycle can start again,
creating an autonomous mechanism that determines the duration of the motor task and
allows for the development of a sequence of tasks if multiple intentions are activated
in sequence (Sandamirskaya & Schöner, 2010). For examples of architectures built
using this coupling see the work by Sandamirskaya et al. (2013).

Learning

The learning problem relative to motor control regards how motor skills are
learned, how motor performance can be improved and how this knowledge is stored,
meaning what kind of memory representation underlies the process (Rosenbaum,
2010).

Dynamic Neural Fields allow for an embodied representation of motor learning in
the sense that the trace of previous activation encoding sensory-motor processes can
be stored modifying the topology of an overlapping field, that can be interpreted as a
memory representation.
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This preshape takes the name of memory trace and it is modelled as an additional
layer that keeps a trace of previous above threshold activation on the perceptual
neural field (Schöner, 2007). It usually has a slower time constant than the field from
which it receives input and might include some homeostatic mechanisms that, with
an even slower time constant, allow the preshape to decay in time. The memory trace
follows an equation of the type (Sandamirskaya, 2013):

⌧lṖ (x, t) =�build
⇣
� P (x, t) + f(u(x, t))

⌘
f(u(x, t))+

� �decayP (x, t)
�
1� f(u(x, t))

�
,

(3.14)

where P (x, t) is the strength of the preshape and ⌧l/�build and ⌧l/�decay are the rates
at which the memory trace builds up and decays.

The strength will increase where the field u(x, t) forms peaks of activation above
the threshold and decrease elsewhere. P (x, t) is simply added to the dynamic of the
Amari equation in Eq. (3.6). This accumulation and decay of the memory trace can
be linked to models for category formation and long-term memory (Spencer et al.,
2009).

Other examples of learning include (Sandamirskaya, 2013):

– mappings and associations, that are used to learn coupling rules between
fields with higher dimensionality with a Hebbian-like learning rule of the
type

⌧Ẇc(x, y, t) =✏(t)
�
�Wc(x, y, t)+

+f(u1(x, t))⇥ f(u2(y, t))
�
,

(3.15)

where the coupling function Wc(x, y, t) after learning will have an attractor
at the intersection between active parts of the fields u1 and u2;

– the adaptation gain learning rule, typically necessary to set the coupling
gain � between the space of features spanned by the dynamic neural field
and the variable that controls some motor output, described by

⌧ �̇(x, t) = ✏(t)f(u(x, t)). (3.16)
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✏(t) here denotes a learning window or some reward mechanism and the operator (⇥)
denotes the sum of the expansion of the output of u1 along the dimensions of u2 and
vice versa. The first listed learning rule can be used to learn the mapping of coupled
neural fields in Eq. (3.11); the second to adapt the gain function to the behaviour of
the agent in Eq. (3.12).

3.4.1 Cognitive Robotics

Cognitive robotics complete the perspective on Dynamic Field Theory (DFT) and
motor control, linking neural fields architectures with sensors and robotic actuators
that interact with the real (or simulated) environment. It has been pointed out
that traditional robotic systems, based on control engineering, often fail to perform
adequately as soon as the conditions of the environment in which they operate slightly
change. They lack the time-pressured and situated response that biological systems
provide effortlessly (Brooks, 1991; Pfeifer et al., 2007; Shapiro, 2012).

So far, some constitutive elements of motor control and embodied cognition have
been explored in the framework of the DFT. It was shown how dynamic neural fields
can account for sensory-motor coupling, autonomy and learning, all aspects that an
autonomous agent requires.

The last core problem to be addressed regards the solution of the degrees of
freedom (DoF) problem that is ultimately linked to the physical properties of the
agent and to the environment in which it operates. To contextualise the model
proposed in this thesis, two relevant examples of architecture that attempt to address
this problem are reviewed.

The DoF Problem: Using Mapping Learning

The architecture proposed by Rudolph et al. (2015) extends sensory-motor mapping
models for saccades movements toward a target object (see, for example, the work by
Sandamirskaya and Storck (2014)) with a body-centred target representation that
controls the movement of the arm down the line.
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Figure 3.9: DNF architecture for looking and reaching. Adapted from ‘Learning
to reach after learning to look: A study of autonomy in learning sensorimotor
transformations’ by Rudolph et al. (2015), see text for a description of the model.

The hardware set-up includes a pan-tilt camera and a robotic arm. The DNF
architecture is represented in Fig. 3.9. The first mapping associates the orientation
of the camera (input from motors: head) to the visual field (input from camera) in
the the gaze-direction space, represented by the dynamic neural field ugaze(pan, tilt).

The additional mapping connects the gaze-direction space to the proprioceptive
space, represented by uhand(xhand, yhand) receiving inputs from the arm (motors:arm).
The coupling between the two DNFs follows a learning rule similar to the one in
Eq. (3.15). Simulation of the model starts with a learning phase during which the
hand is randomly moved to map the workspace. At the end of the learning phase, the
mapping is able to transform the position of the target in robot-centred coordinates.

The control of the biomechanics of the robotic arm is left to a model based on
attractor dynamics: an attractor force component drives the end-effector towards
the target and a repeller force component drives it away from eventual obstacles.

77



Chapter 3. Neural Fields for Embodied Motor Control

Joint torques are computed with traditional inverse kinematics methods (see Methods
Section 4.4 for the inverse kinematic problem).

The autonomy and timing of the system is regulated by two architectures labelled
under the name Behavioral organization in Fig. 3.9. This block includes interconnected
intentions and conditions of satisfaction defined in Eq. (3.13). The first architecture
encodes the timing for guided learning (grey pathway), following the sequence first-
move-then-look and signalling the end of a learning session. The second (yellow
pathway) guides the sequence first-look-then-move implementing the reaching task
and signals task completion (detailed explanation of both architectures can be found in
‘Learning to reach after learning to look: A study of autonomy in learning sensorimotor
transformations’ by Rudolph et al. (2015)).

Reaching experiments show that the learned mapping can account for human
reaching and looking variability and every task, from target selection to movement
performance and completion detection, can be carried out autonomously. Nonetheless,
mapping is dependent both on the learning process and on the learning environment;
a full mapping would require different scenes for learning where the target is moved
around (Rudolph et al., 2015).

The degrees of freedom problem is solved at a cortical level, in a way that is
comparable to neural networks models for trajectory formation (Bekey & Goldberg,
1993), showing some degree of generalisation. The concept of inverse internal model of
the motor system can be then represented in a way that is grounded in sensorimotor
integration, compatible with the embodied framework of DFT (see Section 2.3 for
a discussion on internal models). Although this architecture presents an embodied
solution to the representation of the target, mapping the visual space in the space of
motor features, motor activations are still computed using traditional methods. The
DoF problem at a lower level, in fact, is still addressed using the traditional robotic
controls, lacking a physiological counterpart (i.e., the equivalent of the spinal level).

The proposed model for motor control, introduced in the following chapters, can
be thought as an intermediate layer between architectures like the one presented above
and models for movement generation by muscle synergies. Using the model by Rudolph
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et al. (2015), for instance, to find the correct mapping necessary for a reaching task
gives the cortical motor activations. These can be used in the proposed architecture
to compute the forces at the joints in combination with motor primitives encoded in
the spinal cord and sensory feedback. This creates a direct bridge between existing
models, that solve the DoF problem in terms of motor planning, and biomechanical
models, that associate motor primitives with patterns of muscles recruitment such as
the one presented in Section 2.3.2

The DoF Problem: Implementing an Adaptive Observer

In the model presented by Fard et al. (2015), there is an explicit attempt to build
a control system for arm reaching tasks that is biologically motivated. The authors
propose a mixed approach in which a DNF architecture is placed side by side to a
closed loop controller: an adaptive observer.

The concept of adaptive observer is borrowed from control theory in engineering
and represents a dynamic system that estimates the current state of the plant
system, to which it runs in parallel, based on the monitoring of sensory feedback
and the efferent copy of motor commands. Using this information such systems
provide robustness whenever sensory input is uncertain and they can compensate for
transduction delays in sensory afference (Wolpert, 1997).

Using this adaptive internal model, the architecture represented in Fig. 3.10 is
able to generalise accurate arm movements from a small learning set and accounts
for realistic delays and absence of visual input (Fard et al., 2015).

The architecture includes a DNF encoding the position of the end effector, the
end-effector map, and one for the location of the target in the visual field, the target-
map. Convolution of the two maps gives the hand centred target map or HCT map,
that specifies orientation and distance between the map and the target, in end effector
coordinates.

Motor features are mapped in terms of velocity of the end-effector in the velocity
map. This receives a broadened input from the HCT map together with a pre-shaped
Gaussian activation at the centre of the map. This central activation represents the
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Figure 3.10: DNF architecture adapted from ‘Modeling human target reaching
with an adaptive observer implemented with dynamic neural fields’ by Fard et al.
(2015).

resting condition (i.e., zero velocity condition). The resultant peak in the velocity
map gives a measure of the speed of the movement and is taken as the centre of
mass of the field (Fard et al., 2015). A formal definition of this concept is given in
Section 5.3 and a physiological interpretation of the centre of mass of a neural field is
proposed in Chapter 5 and discussed in Chapter 6.

Autonomy of the system does not build on the typical intention-CoS architecture
in Eq. (3.13). At the beginning of the movement the attractor in the velocity map
is close to the centre (due to the Gaussian pre-activation); as the input from HCT
arrives, it creates a second peak of activity: the resultant peak moves away from the
centre of the velocity map causing an increase in velocity. As the distance between
target and hand effector decreases during the task, the peak returns to the centre
signalling the end of the reaching movement (Fard et al., 2015).
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This organisation provides a different approach to autonomy that uses the dynamic
of peak formation and interactions between peak solutions, showing that autonomy
can be achieved in different ways using the principles of Dynamic Field Theory.
Remarkably, this mechanism also gives to the velocity profile of the trajectories of
the end effector the typical bell shape. This supports those account that consider the
resultant velocity profile as a consequence of motor planning (Fard et al., 2015).

The computation of the next position of the end effector is based on the prediction
given by the adaptive observer and then the usual inverse dynamics have to be
computed. The prediction is based on learning from a training set and using path
integration, that is implementing a Hebbian-like rule on the synaptic footprint of
the end-effector map (Stringer et al., 2002). This process makes the synaptic kernel
asymmetric. Convolution is then sufficient to trigger a movement of the peak towards
the desired direction regardless of its starting position. This gives the predicted
location. Once again, a type of internal model, feedforward in this case, is represented
in an embodied framework in DFT.

Three strategies are proposed to generalise from the training set to all possible
directions of movements:

– numerically rotate the asymmetric kernel in the desired direction;

– taking the asymmetric kernel of the closest learned position;

– using a population decoding scheme and interpolate between the two
closest kernels among learned directions.

The most interesting result of this study is that testing these three options it is
found that a rudimentary population decoding implemented on a few learned kernels
is enough to give good movement predictions in directions that do not belong to the
training set, as shown in Fig. 3.11 (Fard et al., 2015). This means that movements
across the workspace can be generalised from a limited set, this is reminiscent of the
concept of motor primitives explored in Chapter 2.

The reviewed architecture by Fard et al. (2015) shows that it is possible to model
features of cortical motor control that give autonomy to the development of the
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motor plan and compensate for delays and occluded sensory input, adding up to
those introduced by Rudolph et al. (2015). This study also confirms that the use of
dynamic neural fields to build models for cognition that are embodied is compatible
with the concept of internal model, as long as the process of learning is grounded in
sensorimotor integration.

Building from this review, the aim of the proposed architecture can be clarified
once again. Considering that the computation of the forces at the joints is left
to the computation of the inverse dynamics in both examples, it is impossible to
reunite accounts for cortical motor control with models for motor control based on
synergic muscles activations. The interface point between them is the concept of
motor primitive, that represents the neural correlate at the level of the spinal cord of
coordinate muscles recruitment. For this reason, the proposed model represents the
spinal cord using the properties of dynamic fields, adding to the existing accounts
another layer of sensorimotor integration that directly provides the forces at the joints
using motor summation.

Anticipating the results obtained from simulations, the model for spinal motor
control presented here is able to simulate reflex-like autonomy, and to produce straight
trajectories computing directly the forward dynamics. This can be achieved using
the forces at the joints resulting from sensorimotor integration in terms of a force
field spanning the workspace. Interestingly, the unimodal velocity profiles found are
not bell-shaped, confirming the hypothesis that this feature is the result of cortical
processing, as in the model by Fard et al. (2015).

The concept of motor primitive, represented in DFT in the proposed architecture,
can be linked in future developments with models that connect motor primitives
to patterns of muscles activations, as mentioned above, proving that modelling
motor control in the spinal cord was the missing piece to create a unified account to
understand motor control, from cortical processes to muscles recruitment.
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Figure 3.11: Comparison of three strategies of generalisation after path integration
learning. Columns indicate the type of algorithm used to generalise, rows the
direction spacing during training session. Blue dots indicate starting point of
each of the nine trajectories; red dots the final position; black dashed circles
represent the target zone of each destination. From ‘Modeling human target
reaching with an adaptive observer implemented with dynamic neural fields’ by
Fard et al. (2015).
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Bio-inspired Robotics

In the first example, the DoF problem was dealt with using two mapping processes
that lead to an explicit representation of the end effector and of the target in the
same reference coordinates (Rudolph et al., 2015). Although this process is indeed
autonomous, involves learning, and can explain to some extent how the central
nervous system is involved in motor planning, motor activations are still calculated
using Control Theory. The quest for task specific motor activations that give the
correct forces at the joints, emerging from sensorimotor integration as it happens in
the spinal cord, is not directly addressed.

The second shows how it is possible to approach problems related to motor
planning using different strategies obtaining a similar result in terms of sensory-motor
representation and autonomy. The role to convert motor planning into motor output
is assigned this time to a predictive model that uses DFT methods and proves better
at generalising (Fard et al., 2015; Rudolph et al., 2015). The concept of adaptive
observer, borrowed from traditional Control Theory, is actually implemented in a
more physiological manner, proving again that at a cortical level the concept of
internal model can be reinvented using dynamic representations that are embodied.
Nonetheless, it produces an estimate representation of the position that cannot be
connected directly to motor activations or to models for the musculoskeletal system.

In summary, both architectures represent well cortical processes of motor control,
but they reach to the point where some abstract representation, that does not share
the same embodied features of the rest of the architecture, is assumed to compute
the inverse dynamics and give the forces necessary for the movement to take place.
The model developed in this thesis aims at filling this gap, modelling the motor in
the spinal cord inspired by physiological findings and experimental results.

This is supported by the current research trend in robotics that draw increasingly
inspiration from biology, aspiring at increasing levels of adaptivity and robustness
that seems to be better addressed by the systems that are embodied. The trend
seems to be going towards self-organisation and behavioural emergence, leaving the
traditional top-down control on the side, at least to some extent (Pfeifer et al., 2007).

84



Chapter 3. Neural Fields for Embodied Motor Control

In this perspective, what seems to lack to these autonomous agents is an adequate
representation of motor activations in an embodied sense. From this review on
motor control, that includes the physiological perspective and the embodied approach
to modelling offered by the DFT, emerges that the biological concept of motor
primitive discussed in Section 2.3 is the natural match to the required representation.
This creates the opportunity to link DFT representations to a biologically based
biomechanical model in the proposed architecture for spinal motor control.

In the following chapter, the methods to develop a model that aims at reconciling
physiologically inspired controllers to physiologically inspired representations of motor
features are introduced. A further comparison between the model presented in
Chapter 5 and existing architectures is discussed in Chapter 6.
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3.5 Conclusions

In this chapter, the embodied approach to cognition is introduced first from a
general perspective and subsequently in terms of its implications in in the study of
motor control and other higher cognitive functions.

The focus is then moved to a modelling approach that can account for this coupling
between the agent’s body and the environment, giving a suitable representation of
basic behaviours and motor features in the embodied sense, based on the properties of
neural tissue. Dynamic Field Theory complies with these requirements, with a growing
body of architectures modelling several aspects of cognition: from sensory-motor
integration, to motor learning and planning.

Of particular relevance is the possibility to represent salient features of the motor
plan onto multi-dimensional structures that are able to retain topological states of
activation in time, allowing at the same time for the development of autonomous
processes where learning from previous experience can be integrated.

Two examples of architectures that try to address the degrees of freedom problem
at a cortical level in this framework are discussed. This clarifies the need for a
representation of motor activations compatible with the embodied account and more
physiologically plausible (Aim 2).

From these premises, the idea to develop a model for spinal motor control using
a dynamic field representation of motor primitives emerged. In the next chapter,
relevant methods for the development of the proposed model are introduced to study
stability and, equally importantly, instability in the DFT framework and in robotic
modelling.
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Methods

4.1 Introduction

As introduced in Chapter 2, understanding motor control means understanding
the processes underlying movement and stability. This perspective is mirrored by the
Dynamic Field Theory that, in the embodied stance outlined in Chapter 3, defines
the emergence of cognition as a shift in the stability of attractor dynamics. Stability
and flexibility are also desirable features for robotic applications.

In this chapter, mathematical methods to study the stability of solutions of
the Dynamic Neural Field (DNF) equation are explored together with a general
introduction on stability of robotic controllers. Understanding the dynamics of neural
fields and of the robotic interface is the starting point for the design and simulation
of the proposed model for motor control (Aims 2 and 4).

In Section 4.2, methods to study the stability of solutions for the Amari equation
are presented. First, an intuitive argument is outlined to prove the existence of
different solution patterns and to better understand the role played by the synaptic
footprint and other parameters in shaping the dynamics of the system. Subsequently,
a general method for the analysis of stability, that reduces the problem to the
computation of the zeros of a linear operator, is adapted to the case of negligible
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space dependant delays. The obtained Evans functions for the self-sustaining and the
self-stabilising peak solutions give the parameters necessary for simulations and for
the development of a control strategy to trigger instability.

In Section 4.3, methods for the study of stability of solutions in two-dimensional
neural fields are reviewed. In particular, the conditions to simulate stable self-
sustaining peaks are presented analysing both radial and azimuthal perturbations.
This type of solution is used in the proposed model to represent motor primitives. The
conditions necessary for the construction of travelling peak solutions are presented,
aiming at expanding the repertoire of elemental behaviour in DFT with the drifting
instability (Aim 3).

In Section 4.4 kinematics and dynamics of the manipulator model used as robotic
interface for the DNF model are described followed by an overview of robotic control
theory. Traditional feedback and feedforward mechanisms are presented to discuss
stability of control laws and to introduce the difference between joint and workspace
control design. The latter approach is selected to build the proposed physiologically
based control law for the robotic arm, based on considerations regarding the invari-
ant properties of voluntary movement trajectories and empirical findings on motor
primitives.
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4.2 Stability of Neural Field Solutions

The study of dynamical systems allows to describe qualitatively the dynamics
that a system can model in terms of equilibria (or attractors) using a topological
representation, namely the phase plane. It is possible to describe how a system can
shift from an attractor dynamic to another outlining a diagram in which such changes
are represented in terms of trajectories linking critical points called bifurcations
(Sejnowski & Poggio, 2007).

To understand how parameters tuning impacts the dynamics of the system, and
how it is possible to control the emergence and disappearance of elemental behaviours
in the DFT sense (see Chapter 3), the analysis of the field equation is presented
starting from the description given by Amari.

The Amari Argument

The fundamental equation based on which neural fields models used in DFT have
been developed is the Amari equation, already presented in Eq. (3.9) and re-written
here as follows:

1

↵

@u(x, t)

@t
= �u(x, t) +

Z 1

�1
w(x� x

0)f(u(x0
, t))dx0 + hrest. (4.1)

This equation describes the evolution of the mean field u(x, t) over time as the result
of a spatial convolution between a weighting function w(x) and the synaptic firing
rate function f(u(x, t)), with time constant ⌧ = 1/↵ and hrest resting potential of the
field.

Amari studied the emergence of non-homogeneous patterns within a homogenous
field, starting from this single layer, one-dimensional field equation where delays in
time are considered negligible. The output function is modelled as the Heaviside
function
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f(u) =

8
><

>:

0 u  0

1 u > 0
,

and the synaptic footprint w(x), introduced in Eq. (3.10) and illustrated in Fig. 3.6,
models proximal excitatory and distal inhibitory connections and is assumed sym-
metrical, w(x) = w(�x) (Amari, 1977).

The study of equilibrium solutions, with these premises and in absence of input,
shows the existence of the resting solution or ;�solution, that is the condition in
which no region of the field is above threshold; the 1�solution, that is the equilibrium
for which the whole field is excited; a localised excitation solution, called a�solution,
that is when only part of the field of finite length a is above threshold (Amari, 1977).

In his work ‘Dynamics of pattern formation in lateral inhibition type neural fields’,
Amari proves that the existence of different types of solution can be determined
simply using the integral of the connection function w(x), defined as follows

W (x) =

Z x

0

w(x0)dx0
, (4.2)

and the quantities

Wm =max
x>0

W (x),

W1 = lim
x!1

W (x),

compared with hrest. Results can be summarised as follows:

– the ;� solution exists if and only if hrest < 0;

– the 1� solution exists if and only if 2W1 > �hrest;

– the a� solution exists if and only if W (a) + hrest = 0 with hrest < 0 and
a > 0;

– spatially periodic patterns of excitation exist when 0 < hrest < �2W1

with W1 < 0.
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Proof of these results is given in the appendix of the mentioned study (Amari,
1977). Here, the focus is on the study of stability of the a�solution, also referred to
as peak of activation, bump or pulse.

Considering a general solution u(x, t), since f(u) is non-zero only within the
excited region, it is useful to defined this active region as a function of the two points
at zero crossing x1(t) and x2(t) (Amari, 1977):

R[u(x, t)] =
�
x1(t), x2(t)

 
.

At the boundary it holds that u(x1,2, t) = 0. From Eq. (4.1), defined the region of
activation, it follows that:

1

↵

@u(x1,2, t)

@t
=

Z x2

x1

w(x� x
0)dx0 + hrest =

=W (x2 � x1) + hrest.

(4.3)

Defining

c1 =
@u(x1, t)

@x
and � c2 =

@u(x2, t)

@x
,

and Taylor expanding the condition at the boundaries u(x1,2 + dx1,2, t+ dt) = 0, for
x1,2(t+ dt) = x1,2 + dx1,2, it is found:

@u(x, t)

@x

����
x=x1,2

dx1,2 +
@u(x1,2, t)

@t
dt = 0.

It is possible, then, to calculate the gradient at the boundary as follows:

dx1

dt
=

�@u

@t

�
@u

@x
= �

↵

c1
[W (x2 � x1) + hrest]

dx2

dt
=
↵

c2
[W (x2 � x1) + hrest]

(4.4)

The dynamic of the system can be reduced to the sole change at the boundaries,
defining a(t) = x1(t)� x2(t) and writing the equation describing the variation of the
amplitude of the peak solution as follows (Amari, 1977):

91



Chapter 4. Methods

da

dt
= ↵

 
1

c1
+

1

c2

!
[W (a) + hrest]. (4.5)

The condition of existence of the peak solution of length a is then simply:

W (a) + hrest = 0 (4.6)

and the condition for stability can be written as:

dW (a)

da
< 0. (4.7)
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Figure 4.1: Plot of the integral of the synaptic footprint W (a) and the values Wmax

and W1, together with the condition of existence of peak solutions W (a) + h = 0.
For h1 = �0.1 and h2 = �0.2 two solutions are found, one stable (black dot) and
one unstable (grey square). For h = hb the two branches of solution merge into one;
above hb there are no a-solutions. Parameters: [Aex, Ain,�ex,�in] = [1.5, 1, 2,

p
2].

From the representation in Fig. 4.1, it is easy to see that according to the shape
of the synaptic function w the field equation will admit two, one or no localised peak
solutions. It is also clear that if Eq. (4.6) has two solutions, a1 and a2, using the
condition in Eq. (4.7), for two generic solutions a1 < a2, the smallest bump solution
is always unstable. Both branches of solution encounter a fold bifurcation at the
critical value hb = �Wmax. This visually clarifies how it is possible to design a neural
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field that admits stable localised peak solutions, namely selecting the appropriate
synaptic footprint and resting level from Eq. (4.6).

This simple but effective approach developed by Amari, that considers the evolution
of the boundary instead of the behaviour of the global field to study the existence
and stability of solutions, has been developed further and is used in the following to
determine shape and stability of travelling spots in two-dimensional fields (Bressloff
& Coombes, 2013; Coombes et al., 2012).

For the development of the proposed model, consider the output function as the
Heaviside function defined with a general threshold h:

f(u) =

8
><

>:

0 u  h

1 u > h

. (4.8)

A secondary coupled field is also introduced, called the adaptation field, to add a
more realistic inhibitory dynamic (Bressloff, 2012). Studies on travelling pulses in
neural field models use simple linear forms of adaptation (Pinto & Ermentrout, 2001).
The effective interaction kernel of the two coupled fields has the Mexican hat shape
of the Amari argument, for an appropriate choice of exponential synaptic kernels
(Coombes & Owen, 2004).

Adding the dynamic of the adaptation field it is found:

1

↵

@u(x, t)

@t
= �u(x, t) +

Z 1

�1
w(x� x

0)f(u(x0
, t))dx0

� g

Z 1

�1
wa(x� x

0)a(x, t) + hrest

1

�

@a(x, t)

@t
= �a(x, t) + f(u(x, t)),

(4.9)

where g > 0 modulates the effect of adaptation on the main field and 1/� is the
time constant of the adaptation field and wa is the associated synaptic footprint.
Equation (4.9) defines the mathematical model for the neural controllers of the
proposed architecture.
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4.2.1 Evans Functions for the Study of Stability

In order to understand the behaviour of solution classes, a convenient approach is
the one that reduces to the study of bifurcations of a linearised operator, that is the
Evans function corresponding to the solution. This method proved to be well suited
to select the desired behaviour for the neural field controllers of the proposed model
and to assign parameters accordingly for numerical simulations. The rationale behind
this approach can be presented using a general travelling pulse solution; results for a
standing bump can be simply obtained considering c = 0.

Understanding the conditions that determine the dynamics of the system is
crucial to design desired elemental behaviour for cognitive architectures in the DFT
account. With the hypothesis of Heaviside firing rate the linear operator associated
with the solutions of interest has the form of an analytic function with complex
values, whose zeros represent the eigenvalues of the system (Bressloff, 2012). Using
this representation of the stability of solutions, the desired type of attractor for
the embodied system and the desired type of instability can be selected, setting
parameters appropriately.

The four steps analysis that follows has been obtained following the procedure
in the study by Coombes and Owen (2004). The methodological contribution that
is given here consist in calculating the Evans functions for the solutions of interest
considering space-dependent delays negligible. The fact that the method developed
here is a particular application of a more general approach contributes to creating a
unified methodology where more physiological detail can be added at any point. For
a review on methods for neural fields with finite conduction velocity see the work by
Coombes et al. (2003).

1.Write the Solution in Integral Form

The first step is to find an expression for a travelling pulse solution in the integral
form. Consider the neural field with adaptation in Eq. (4.9) in a useful compact
notation (Bressloff, 2012):

94



Chapter 4. Methods

Qu(x, t) = (w ⌦ f ⇤ u)(x, t)� g(wa ⌦ a)(x, t)

Qaa(x, t) = f ⇤ u(x, t)
(4.10)

where Q and Qa are the two linear operators defined according to Eq. (4.9), associated
with the respective Green’s function ⌘(t) and ⌘a(t), with ⌘(t), ⌘a(t) = 0 for t < 0;
w and wa are the synaptic footprints. The notation (⌦) describes convolution in
space and (f ⇤ u)(x, t) = f(u(x, t)) represents the result of the output function in
Eq. (4.8) applied to the field variable u(x, t). In the following it is assumed hrest=0
for simplicity.

The integral form of the model, as formulated in the study by Coombes et al.
(2014) with the usual condition w(x) = w(|x|) and wa(x) = wa(|x|), is rewritten here
considering negligible space-dependant delays:

u(x, t) =

"Z 1

�1
dx

0
w(x0)

Z 1

0

ds⌘(s)+

�g

Z 1

�1
dx

0
wa(x

0)

Z 1

0

ds⌘b(s)

#
f

⇣
u
�
x� x

0
, t� s

�⌘

(4.11)

where ⌘b = ⌘� ⌘a and (�) represents convolution in time between the synaptic filters.
In compact notation Eq. (4.11) becomes:

u = [⌘ � w ⌦�g⌘b � wa⌦] f ⇤ u. (4.12)

Considering a general travelling peak solution, the integral solution U(⇠, t) is
obtained simply substituting the variable ⇠ = x� ct in Eq. (4.11), giving:
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U(⇠, t) =

"Z 1

�1
dx

0
w(x0)

Z 1

0

ds⌘(s)+

�g

Z 1

�1
dx

0
wa(x

0)

Z 1

0

ds⌘b(s)

#
f

⇣
U
�
⇠ � x

0 + cs, t� s
�⌘

.

(4.13)

2. Linearise Around the Solution

The second step consists in the linearisation of the general solution U(⇠, t) around
a stationary travelling pulse. Following the methodology proposed in the review by
Coombes and Owen (2004), it can be written U(⇠, t) = q(⇠) + u(⇠, t). For the case
with negligible delays considered here, the stationary solution q(⇠) is:

q(⇠) =

"Z 1

�1
dx

0
w(x0)

Z 1

0

ds⌘(s)+

�g

Z 1

�1
dx

0
wa(x

0)

Z 1

0

ds⌘b(s)

#
f

⇣
q
�
⇠ � x

0 + cs
�⌘

.

(4.14)

Taylor expanding Eq. (4.13) around q(⇠) in Eq. (4.14), the expression for the
perturbation of the solution is found to be:

u(⇠, t) =

"Z 1

�1
dx

0
w(x0)

Z 1

0

ds⌘(s)

�g

Z 1

�1
dx

0
wa(x

0)

Z 1

0

ds⌘b(s)

#
·

· ḟ

⇣
q
�
⇠ � x

0 + cs
�⌘

u
�
⇠ � x

0 + cs, t� s
�

(4.15)
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where ḟ(u(x, t)) = @f(u(x, t))/@t.

Considering those solutions that are bounded and smooth on R for each t, the
solution has the form u(⇠, t) = u(⇠)e�t; substituting and changing variables (⇠ � x

0 +

cs ! ⇣, ⇣ ! s) leads to the eigenvalue equation in the form u = Lu� gJ u (Coombes
& Owen, 2004). Here the equation obtained with the hypothesis of infinite conduction
velocity is found to be:

u(⇠) =

"Z 1

�1
dx

0
w(x0)

Z 1

⇠�x0

ds

c
⌘

✓
�
⇠

c
+

x
0

c
+

s

c

◆

� g

Z 1

�1
dx

0
wa(x

0)

Z 1

⇠�x0

ds

c
⌘b

✓
�
⇠

c
+

x
0

c
+

s

c

◆#
·

· ḟ(q(s))e
��

⇣
� ⇠

c+
x0
c + s

c

⌘

u(s). (4.16)

Having found the linear operator associated with the travelling peak solution, it is
possible to further simplify the last equation defining z = q(s) and changing variables
accordingly (Coombes & Owen, 2004):

s = q
�1(z) and ds ! d(q�1(z)) =

dz

|q̇(q�1(z))|
.

Substituting, it is found:

u(⇠) =

2

4
Z 1

�1
dx

0
w(x0)

Z q(1)

q(⇠�x0)

dz

c
⌘

 
q
�1(z)

c
�
⇠

c
+

x
0

c

!

�g

Z 1

�1
dx

0
wa(x

0)

Z q(1)

q(⇠�x0)

dz

c
⌘b

 
q
�1(z)

c
�
⇠

c
+

x
0

c

!3

5 ·

·
�(z � h)

|q̇(q�1(z))|
e
��

⇣
q�1(z)

c � ⇠
c+

x0
c

⌘

u(q�1(z)). (4.17)
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Remembering the properties of the Heaviside function, the eigenvalue equation
with the hypothesis made on the delays is obtained:

u(⇠) =
1

c|q̇�1(h)|

2

4
Z 1

�1
dx

0
w(x0)⌘

 
q
�1(h)

c
�
⇠

c
+

x
0

c

!

�g

Z 1

�1
dx

0
wa(x

0)⌘b

 
q
�1(h)

c
�
⇠

c
+

x
0

c

!3

5 ·

· e
��

⇣
q�1(h)

c � ⇠
c+

x0
c

⌘

u(q�1(h)). (4.18)

3. Apply Boundary Conditions

For the travelling pulse solution q
�1(h) = 0 and q

�1(h) = � (Amari, 1977;
Coombes & Owen, 2004). The third step consist in using these conditions, obtaining
from Eq. (4.17) the following system:

Lu(⇠) =A(⇠,�)u(0) +B(⇠,�)u(�), (4.19)

J u(⇠) =C(⇠,�)u(0) +D(⇠,�)u(�), (4.20)

where the operators L and J for the case of negligible space-dependant delays are:

A(⇠,�) =
1

c|q̇(0)|

Z 1

⇠

dx
0
w(x0)⌘

✓
�
⇠

c
+

x
0

c

◆
e
�� (x0�⇠)

c
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1
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Z 1
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c
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c

C(⇠,�) =
1

c|q̇(0)|
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⇠
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0
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(4.21)
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4. Impose Self-Consistency

In order for Eqs. (4.19) and (4.20) to be self-consistent, it must be verified that:

2

4u(0)

u(�)

3

5 = A(�)

2

4u(0)

u(�)

3

5 (4.22)

where

A(�) =

2

4 A(0,�)� gC(0,�) B(0,�)� gD(0,�)

A(�,�)� gC(�,�) B(�,�)� gD(�,�)

3

5 . (4.23)

Finally, it is found
E(�) = det(A(�)� I) (4.24)

where E(�) is the Evans function associated with a travelling solution of the type in
Eq. (4.13) (Coombes & Owen, 2004).

In order to study the stability, or the condition to trigger instability, for the
desired elemental behaviour, the Evans function associated with the peak solution
can be numerically computed from Eq. (4.24). The plot of the zero level of the real
and imaginary part of E(�) for � = ⌫ + j! gives the isolated eigenvalues as the point
of intersection.

4.2.2 Stability of Self-Sustaining Peak Solutions

Self-sustained peaks are used in the DFT to model working memory processes
or motor output that requires the persistence of information even when the input is
removed. This type of solution is used in the proposed model to encode descending
activation signals that select motor primitives. For this reason, a representation that
is stable until the motor task is achieved is necessary.

Applying the methodology presented above to a stable peak solution, parameters
for controllers can be set and a condition on the threshold to trigger reverse detection
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instability (for instance, to reset the controller when the task is over) is outlined.

For a stationary standing peak solution, as the one presented in Fig. 4.2, it is
c = 0 and

Qu = u, Qa = a.

Considering a peak of width �, the solution to the field equation takes the form:

q(⇠) =

Z �

0

wb(⇠ � x
0)dx0

, (4.25)

where wb = w(x)� gwa(x) is the resultant synaptic kernel (Coombes & Owen, 2004).

In order to compute the Evans function, q̇(⇠) is obtained from Eq. (4.25):

q̇(⇠) = wb(⇠)� wb(⇠ ��), (4.26)

and |q̇(0)| = |q̇(�)|.
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Figure 4.2: Example of self-sustaining peak solution at four simulation time steps.

Another simplification occurs in the evaluation of the Evans function since, for
c = 0, both synaptic footprints can be considered flat compared to the terms including
the filtering functions ⌘(y/c)e��y/c and ⌘b(y/c)e��y/c (Coombes & Owen, 2004), so
that Eqs. (4.21) become:
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A(⇠,�) =
1

|q̇(0)|
w(⇠)⌘̂(�i�) B(⇠,�) =A(�� ⇠,�)

C(⇠,�) =
1

|q̇(0)|
wa(⇠)⌘̂b(�i�), D(⇠,�) =C(�� ⇠,�),

(4.27)

where the Fourier transforms of ⌘ and ⌘a are introduced, with the general definition
of transform given by

F̂(k) =

Z 1

�1
F(⇣)e�ikx

d⇣. (4.28)

For the controllers implemented in Chapter 5, synaptic filters and footprint are
chosen as follows:

⌘(t) = ↵e
�↵t

, ⌘a(t) = e
�t
, w(x) = Aexe

�|x|
, wa = Aine

�|x|/�a/2�a,

where Aex and Ain model the excitatory and inhibitory amplitude of lateral inhibi-
tion. The resultant footprint wb consequently has the Mexican hat shape defined in
Eq. (3.10), considering �ex = 1 and �in = �a (Coombes & Owen, 2004). For simplicity,
in the following it is considered Aex = Ain = 1/2.

The solution q(⇠) for the standing peak can be written as follows (Pinto &
Ermentrout, 2001):

q(⇠) =
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(4.29)

Using the condition on the threshold h at the boundary, it is possible to find the
condition of existence of the self-sustained peak solution � = �(h):

1

2

⇣
1� e

��
⌘
�

g

2

⇣
1� e

��/�a

⌘
= h. (4.30)
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Figure 4.3: Plot of � = �(h) for a self-sustaining peak solution. Parameters:
[Aex, Ain,�a, g,↵]= [0.5, 0.5, 2, 1, 0.5].

Just like in the discussion presented by Amari (1977), the solution to this equation
describes two branches, one wider and one narrower, showed in Fig. 4.3.

From this plot it is possible to set the parameters for neural controllers that show
working memory instability. Moving the threshold above the bifurcation value, the
field returns to the resting state. This method is used in Chapter 5 where an adaptive
threshold mechanism triggers instability.

Evaluation of E(�) from Eq. (4.24) using Eq. (4.27) gives the contour plots in
Fig. 4.4 for one-dimensional neural controller used to represent motor primitives
selection signals. It is found that solutions taken from the lower branch are unstable,
confirming Amari’s results, presented in Section 4.2. In order to simulate self-
sustaining peaks it is necessary to stimulate the field with inputs that are sufficient
to select the wider solution.
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Figure 4.4: Plot of the zero-contour of the real and imaginary part of the Evans
function associated with a self-sustaining peak solution for � = ⌫ + i!. Left:
solution taken from the lower branch. Right: solution taken from the upper
branch. Parameters: [Aex, Ain,�a, g,↵, h]= [0.5, 0.5, 2, 1, 0.5, 0.1]
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4.2.3 Stability of Self-Stabilising Peak Solutions

Without the nonlinear adaptation self-sustaining peak solutions are always un-
stable. In fact, it is found that there is always a positive eigenvalue associate with
them (Coombes & Owen, 2004). Nonetheless, if a nonhomogeneous input I(x) with
appropriate amplitude is introduced, the pinning of a stationary bump solution, a
self-stabilising peak of activation, is observed. If the input is removed the field goes
back to the resting potential.

This type of dynamics can be used to model detection and reverse instability:
self-stabilising solutions can track sensory-motor features, providing the emergence
of peaks only when an over-threshold input is detected and returning to the resting
state when the input is not strong enough. In the proposed model, this type of neural
controller allows for an autonomous development of the motor plan at the level of
the spine (see in Chapter 5, the task monitoring block).

The model with linear adaptation is taken from the study by Bressloff et al. (2003)
and has the simplified form:

1

↵

@u(x, t)

@t
=� u(x, t) +

Z 1

�1
w(x� x

0)f(u(x, t))dx0
� ga(x, t) + I(x)

1

�

@a(x, t)

@t
=� a(x, t) + u(x, t)

. (4.31)

In order to find the condition in which a self-stabilising peak solution emerges,
consider a general travelling pulse solution satisfying Eq. (4.31):

q(⇠) =

Z 1

0

⌘(s) (⇠ + cs)ds� g

Z 1

0

⌘b(s)q(⇠ + cs)ds, (4.32)

where  (x, t) = Qu(x, t) when g = 0 (i.e., without adaptation) (Bressloff, 2012).

To obtain a closed expression for q(⇠), the Fourier transform in Eq. (4.32) is
computed:

q̂(k) = ⌘̂c(k) ̂(k) (4.33)

where
⌘̂c(k) =

⌘̂(k)

1 + g⌘̂b(k)
. (4.34)
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Anti-transforming, it is found

q(⇠) =

Z 1

0

⌘c(z) (⇠ + cz)dz (4.35)

where
⌘c(t) =

1

2⇡

Z 1

�1
⌘̂c(k)e

ikt
dk (4.36)

with the condition ⌘c(t) = 0 for t < 0 (Bressloff et al., 2003).

Proceeding like in the previous sections, a linear operator associated with the
system in Eq. (4.31) for the self-stabilised pulse with the form Jcu(⇠) = Ac(⇠,�)u(0)+

Bc(⇠,�)u(�) can be found (Coombes & Owen, 2004). Here the operator is derived
for negligible spatial delays and it is found that:

Ac(⇠,�) =
1
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e
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(4.37)

Following the analysis in the study by Bressloff et al. (2003), the input function
is defined as I(x) = Ie

�x2/2�2 , a Gaussian function with centre in zero, standard
deviation � and amplitude I. The standing pulse solution, then, satisfies the condition
at the boundary:

q(��/2) = q(�/2) = h. (4.38)

For the choice of synaptic filtering functions used to build a controller for autonomy
in Chapter 5

⌘(t) = ↵e
�↵t

, ⌘a(t) = e
��t

, (4.39)

the explicit self-stabilising solution is:

q(⇠) = ⌘̂c(0)

"Z �/2

��/2

w(⇠ � x
0)dx0 + I(⇠)

#
(4.40)
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where ⌘̂c(0) = 1/(1 + g) (Bressloff et al., 2003). It follows that:

|q̇(��/2)| = |q̇(�/2)| = [w(�)� w(0) + |İ(±�/2)|]/(1 + g). (4.41)

To find the relationship between the amplitude of the input I and pulse width
�, that gives the behavioural switching between detection/reverse instability for the
desired controller, it is sufficient to apply the conditions at the boundary of the peak
in Eq. (4.38) to Eq. (4.40) (Bressloff et al., 2003). The condition of existence of a
self-sustaining pulse solution is then found to be:

(1 + g)h =

"
I

✓
�

2

◆
+

1� e
��

2

#
. (4.42)

In the threshold range h(1 + g) > 0.5, two solution branches are found again, one
for a narrower self-stabilising solution and one for a wider one. For the choice � > g

the phase portrait shows a bifurcation. For a complete overview of solution branches
see the original study by Bressloff et al. (2003).

In Fig. 4.5, the two branches are plotted. It is possible to see that for I < Isn

such field equation does not support standing pulses, giving the condition to control
the desired elemental behaviour.

The solution presents again two branches. To study their stability, the Evans func-
tions are obtained using the four steps outlined above. It is possible to simplify, since
c = 0, and consider again w(x0) relatively flat compared to the term ⌘c(x0

/c)e��x0/c
/c

in Eq. (4.37). A result similar to the one in the study by Coombes and Owen (2004)
is found again, here obtained without modelling space dependant delays:

Ac(⇠,�) =
1

|q̇(�/2)|
⌘̂c(�i�)w(⇠ +�/2), Bc(⇠,�) =Ac(⇠ ��,�). (4.43)

Applying self-consistency it is found:
2

4u(��/2)

u(�/2)

3

5 = Ac(�)

2

4u(��/2)

u(�/2)

3

5 (4.44)

106



Chapter 4. Methods

0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

4

Figure 4.5: Bifurcation of the two branch solution for a neural field model
with linear adaptation. Black dots represent stable solutions, grey squares un-
stable solutions, grey stars bifurcation points. Parameters: [Aex, Ain,�a, g,↵, h]=

[0.5, 0, 1, 1, 1, 0.5].

where

Ac(�) =

2

4Ac(��/2,�) Bc(��/2,�)

Ac(�/2,�) Bc(�/2,�)

3

5 . (4.45)

Computing Eq. (4.24) and plotting the real and imaginary part level zero as
before, in Fig. 4.6 the Evans functions are shown for a self-stabilising peak solution.
It is found again that the upper branch is stable. Using these results, it is possible to
design a neural controller that retains a peak of activation as long as the amplitude
of the input is big enough, selecting a solution from the upper branch.
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Figure 4.6: Plot of the zero-contour of the real and imaginary part of the Evans
function associated with a self-sustaining peak solution for � = ⌫ + i!. Left:
solution taken from the lower branch for I = 0.8; right: solution taken from the
upper branch for I = 2. Parameters: [Aex, Ain,�a, g,↵, h]= [0.5, 0, 1, 1, 1, 0.5]
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4.3 Dynamic Neural Fields in 2D

Two-dimensional fields are the building blocks used to model cortical cognitive
processes in the Dynamic Field Theory (DFT) framework, as introduced in Chapter 3.
In two dimensions, the study of solutions of the neural field equation has also found
relevant applications in models of propagation of cortical activity (Bojak et al., 2004;
Deco et al., 2008; Pinotsis et al., 2014).

In the proposed model for spinal motor control, the structure of two-dimensional
Dynamic Neural Field (DNF) is considered ideal to map motor primitives (see
Chapter 2 for the representation of motor primitives as planar force fields). These
are represented in DFT using the working-memory instability that produces self-
sustained peak solutions that are well suited to encode reliable input for motor agents
(Sandamirskaya et al., 2013; Spencer et al., 2009).

The extension to two dimensions of the Amari equation and the investigation
of stability has already been developed in the case of negligible space delays using
Evans functions (Bressloff, 2012). The possibility to introduce another type of
elemental behaviour, the drifting instability, leading to the emergence of travelling
peaks solutions, requires the use of methods addressing not only radial but also
azimuthal stability. These methods applied to both classes of solutions, self-sustained
and drifting, are reviewed in the present section, completing the methodology used
to develop the neural controllers for the proposed model presented in Chapter 5.

4.3.1 The Amari equation in 2D

The Amari equation for a two-dimensional neural field can be written using polar
coordinates as follows:

1

↵

@u(r, t)

@t
= �u(r, t) +

Z

R2

w(|r� r
0
|)f(u(r0, t))dr0 (4.46)
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where r = (r,�) and r
0 = (r0,�0). The variable u(r, t) represents the local activity

of the field, ⌧ = 1/↵ is the time constant, w(r, t) is the synaptic footprint and
f(u(r, t)) = H(u(r, t) � h) is the Heaviside function with threshold h (Bressloff,
2012).

To model two-dimensional neural fields representing motor primitives and showing
working memory instability, the condition of existence of the self-sustained solution
is looked for. The type of solution to Eq. (4.46) of interest is a circular symmetric
solution of radius � satisfying u(r, t) = q(r) and q(�) = h, with q(r) > h for r < �

and q(r) < h for r > �, limr!1 q(r) = 0. Such solution, shown in Fig. 4.7, can be
written as

q(r) =

Z 2⇡

0

Z �

0

w(|r � r
0
|)r0dr0d�. (4.47)

Figure 4.7: Radially symmetrical solution peak, or bump or spot, for the neural field
equation in two dimensions with Mexican hat footprint. Parameters: [A,�, h,↵]=

[0.25, 2, 0.12, 1].

In order to evaluate the integral in Eq. (4.47) and find a solution for the field

110



Chapter 4. Methods

equation with the usual Mexican hat synaptic footprint, the procedure in the study
by Bressloff (2012) is followed, leading to the construction of an explicit solution of
the type:

q(r) = 2⇡�

Z 1

0

ŵ(⇢)J0(⇢r)J1(⇢�)d⇢, (4.48)

where J⌫ is the Bessel function of the first kind and order ⌫ = 0, 1 and ŵ is the
Fourier transform of the synaptic footprint.

To make the computation of the solution easier (Bressloff, 2012; Bressloff &
Coombes, 2013), it is possible to write the synaptic footprint using a function that is
qualitatively similar to the Mexican hat of the type w(r) = (2⇡)�1(e�r

� Ae
�r/�):

w(r) =
2

3⇡
(K0(r)�K0(2r)� A(K0(r/�)�K0(2r/�))). (4.49)

where K0 is the modified Bessel function of the second kind and order zero and
coefficients for lateral inhibition are (Aex, Ain, �ex, �in)= [1, A, 1, �]. It is possible to
use the Hankel transform of K0(sr), that has the polynomial form H(⇢, s) = (⇢2+s

2)�1,
to write the transform of w in Eq. (4.49):

ŵ(⇢) =
2

3⇡

�
H(⇢, 1)�H(⇢, 2)� A

�
H(⇢, 1/�)�H(⇢, 2/�)

��
. (4.50)

Substituting Eq. (4.50) in Eq. (4.48) gives the expression for the radially symmetric
peak solution:

q(r) =
4�

3

�
W(�, r, 1)�W(�, r, 2)� A

�
W(�, r, 1/�)�W(�, r, 2/�)

�
, (4.51)

where W(�, r, s) is defined using the following identity
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W(�, r, s) =

Z 1

0

1

⇢2 + s2
J0(⇢r)J1(⇢�)d⇢ =

=

8
>><

>>:

1

s
I1(s�)K0(sr), r > �

1

s2�
�

1

s
I0(sr)K1(s�), r < �

(4.52)

and I⌫ is the Bessel function of the first kind and order ⌫ = 0, 1 (Bressloff & Coombes,
2013).

The condition for the existence of the radially symmetric peak is obtained applying
the condition at the boundary U(�) = h, giving:

h =
4�

3

✓
I1(�)K0(�)�

1

2
I1(2�)K0(2�)

�A�

✓
I1(�/�)K0(�/�)�

1

2
I1(2�/�)K0(2�/�)

◆!
.

(4.53)

Equation (4.53) can be used to control the onset of the working memory instability,
moving the threshold to the left of the bifurcation point, as shown in the � = �(h)

plot in Fig. 4.8. The controller can present a reverse detection instability increasing
the threshold beyond the bifurcation point. This adaptive threshold mechanism is
implemented in the proposed model to control the emergence of the motor plan at
the level of the spine during the development of the task (see Chapter 5, the spinal
memory block).

The condition on the threshold in Eq. (4.53) is necessary to the existence of the
peak solution in Eq. (4.47), but not sufficient. In fact, it should be checked that
threshold h is not crossed elsewhere. Proof that q(r) is monotonically decreasing in r
for a general monotonic synaptic weight function can be found in the study by Folias
and Bressloff (2004), although with this kernel self-sustaining pulses in absence of
input are always unstable, similarly to what was found in one dimension.
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Figure 4.8: Plot of � = �(h) for a two-dimensional neural field with Mexican hat
synaptic footprint. Dashed grey line: lower branch, unstable to radially symmetric
perturbations. Full black line: upper branch, stable to radially symmetric perturb-
ations. The occurrence of azimuthal instabilities with Dm symmetry is depicted
with different markers (see legend box). Parameters: [A,�, h,↵]= [0.25, 2, 0.12, 1].
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4.3.2 Stability of Self-Sustaining Solutions in 2D

In the one-dimensional case the lower solution branch is always unstable, this
result is confirmed for two-dimensional neural field following similar lines. On the
contrary, the upper branch can encounter different types of bifurcations, leading to
splitting and rotational instabilities (Owen et al., 2007). Those perturbations that can
destabilise radially stable peak solution are called azimuthal. In this section, the focus
is on finding the criteria to assign the correct parameters for self-sustaining peaks of
activation used to model motor features so that they are radially and azimuthally
stable.

Following the method in the study by Bressloff and Coombes (2013), a perturbation
of the solution is written as u(r, t) = q(r) + u(r)e�t. Substituting this into Eq. (4.46),
and expanding to the first order gives the eigenvalue equation:

(�+ 1)u(r) =

Z

R2

w(|r� r
0
|)ḟ(q(r0))u(r)dr0, (4.54)

where it is set ↵ = 1 to simplify notation.

The eigenvalue problem reduces to a simpler one in a similar fashion to the
one-dimensional case. Rewriting Eq. (4.54) for the azimuthal perturbation u(�,�):

(�+ 1)u(�,�) =
�

|q̇(�)|

Z 2⇡

0

w

 
2� sin

✓
�� �

0

2

◆!
u(�,�

0)d�0
, (4.55)

and considering in terms of Fourier eigenmodes u(�,�) = um(�) = cme
im� + c̄me

�im�,
leads to the expression (Bressloff & Coombes, 2013):

Em(�) = (�+ 1)� µm = 0 (4.56)

where

µm =
�

|q̇(�)|

Z 2⇡

0

w(2�sin(�/2))e�im�
d�. (4.57)
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The functions Em(�) are a family of Evans functions for the two-dimensional peak
solution (Owen et al., 2007). It is found again that �m is an eigenvalue for Eq. (4.46)
if and only if Em(�m) = 0. It is possible to prove that the eigenvalue associated with
the m-th mode �m is always real (Bressloff & Coombes, 2013).

Perturbations at the boundaries can be studied using the decomposition in terms
of eigenmodes, simply taking p(�,�, t) = [cmein� + cme

�in�]e�t. A perturbation of
order n has Dn symmetry. For instance, the n = 0 eigenmode represents uniform
radially symmetric modifications of the boundary of the peak; the n = 1 represents
perturbations of the spot along a symmetry axis; n=2 represents perturbations of
the boundary that have two rotational and reflectional symmetry axes and so on
(Bressloff & Coombes, 2013).

It is possible to find an expression for �m that can be computed numerically, using
again the Bessel functions:

�m = �1 +

R1
0 ŵ(⇢)Jn(⇢r)Jn(⇢�)⇢d⇢R1
0 ŵ(⇢)J1(⇢r)J1(⇢�)⇢d⇢

. (4.58)

A 2D peak solution is linearly stable if �m < 0 for all m, m 6= 1 (i.e, �1 = 0).
To find the point at which bifurcations occur, it is possible to impose �m = 0 in
Eq. (4.58), giving:

1 = µm =

P4
i=1 AiKm(↵i�)Im(↵i�)
PN

i=1 AiK1(↵i�)I1(↵i�)
(4.59)

where, for w defined in Eq. (4.49), (A1, A2, A3, A4; ↵1,↵2,↵3,↵4) = [1,�1,�A,A;

1, 2, 1/�, 2/�], A, � > 0 (Bressloff & Coombes, 2013).

The calculation of the second of the points given by Eq. (4.59) (D2 in Fig. 4.8)
gives the criterion for the selection of the threshold value that guarantees stable
peaks in two-dimensional neural fields, fixed the parameters relative to the synaptic
footprint A and �. This type of stability is required to represent the set of motor
primitives (see Chapter 5 the spinal memory block).

Considering the upper branch solution in Fig. 4.8, decreasing the threshold leads
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to bifurcations that break rotational symmetry reflecting the order m of the eigenvalue
that is dominant. A numerical simulation of the shapes assumed by the destabilised
peak solution is shown in Fig. 4.9 for illustrative purpose.

Splitting and rotational instabilities due to angular perturbations are further
discussed in the study by Owen et al. (2007), where the emergence of multi-bump
solutions and labyrinthine patterns is analysed. These patterns could be of interest
for the future developments of elemental behaviour (EB) in the DFT, encoding more
complex motor patterns.

In the present study, it was decided to include, as an additional EB, a stable peak
solution that can travel on the space of features spanned by the neural field. In the
next section the condition to trigger this type of instability are presented.
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Figure 4.9: Examples of Dm�symmetry solutions for instabilities with dominant
modes m from 0 to 5. In black: solutions after bifurcation point; in grey: radially
symmetrical stable solution. Parameters: [A,�, hstable,↵]= [0.25, 2, 0.12, 1]; crit-
ical threshold for the m-th mode hm = [0.1439, n/a, 0.0941, 0.0720, 0.0564, 0.0456].
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4.3.3 Adaptation and Drifting Instability

Modelling adaptation separately in two-dimensional neural fields leads to a second-
ary bifurcation that includes the formation of rotating waves and, for strong enough
adaptation weight g, of the travelling peak solution of interest (Owen et al., 2007).
Here, methods to investigate the emergence of the drifting instability are reviewed,
following the study on boundary perturbations by Coombes et al. (2012). Numerical
methods to build travelling peaks (or travelling spots) are developed in Chapter 5
and their role in DNFs architectures is discussed in Chapter 6.

The field with linear adaptation in two dimensions is defined by:

1

↵

@u(r, t)

@t
= �u(r, t) +

Z

R2

w(|r� r
0
|)f(u(r0, t))dr0 � ga(r, t)

@a(r, t)

@t
= �a(r, t) + u(r, t).

(4.60)

It is possible to construct a radially symmetrical solution of radius �, following
a similar procedure to the one presented in the previous section, and then find the
condition for its propagation. For compactness, it is introduced the following function

 (r) =

Z 2⇡

0

Z �

0

w(|r � r
0
|)r0dr0d� =

=
4�

3
(W(�, r, 1)�W(�, r, 2)� A(W(�, r, 1/�)�W(�, r, 2/�))),

(4.61)

where W(�, r, s) is defined in Eq. (4.52).

A radially symmetrical solution for the field with adaptation in Eq. (4.60) is
simply a scaled version of Eq. (4.47) (Coombes et al., 2012):

q(r) =
1

(1 + g)
 (r). (4.62)

The necessary condition for existence can be found substituting h ! h(1 + g) in
Eq. (4.53), giving:
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h(1 + g) =
4�

3

✓
I1(�)K0(�)�

1

2
I1(2�)K0(2�)+

�A�

✓
I1(�/�)K0(�/�)�

1

2
I1(2�/�)K0(2�/�)

◆!

⌘ F (�),

(4.63)

Solving F
0(�c) = 0 gives the critical value of the radius of the bump � = �c,

corresponding to a fold bifurcation. In the phase plane (h,�) existence of solutions
is limited by h < F (�c)/(1 + g). This gives the condition to simulate self-sustaining
peak solutions in a two-dimensional neural field with adaptation. Plots of the curves
� = �(h) and � = �(g) are shown in Fig. 4.10.
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Figure 4.10: Bifurcation plots for a two-dimensional neural field with adaptation.
Solution radius � is plotted as a function of threshold h (left) and adaptation
gain g (right). Grey squares: lower branch, unstable. Black dots: upper branch,
for details on stability of this branch see text. Parameters: [A,�,↵]= [0.25, 2, 1].

Following the analysis carried out in the study by Coombes et al. (2012), travelling
peaks are describes as emerging from the dynamic of the field as drifting instabilities

118



Chapter 4. Methods

occurring as a consequence of variations in ↵, with speed and direction defined by
the vector c, c = |c|.

To represent a travelling spot solution, the field in Eq. (4.46) can be written in a
co-moving framework ⇠ = x+ ct. The equation of the field becomes:

1

↵
c ·r⇠u =� u+ � ga

c ·r⇠a =� a+ u.

(4.64)

From Eq. (4.64), the authors consider a weak distortion of the circular wave,
defining a moving framework ⇠ = (⇠1, ⇠2) and rewriting the travelling solution as
follows (Coombes et al., 2012):

u(⇠1, ⇠2) =
1

c

Z ⇠1

�1
dy⌘

�
(⇠1 � y)/c

�
 

✓q
y2 + ⇠

2
2

◆
, (4.65)

where the usual Green’s functions notation is used.

It can be noted that the boundary condition u(⇠)|⇠=r = h holds only for a radially
symmetrical bump (i.e., ⇠21 + ⇠

2
2 = �2), and can therefore be met only if c = 0. The

travelling solution in Eq. (4.65), in fact, depends on the general shifting direction ✓
by the coordinate ⇠1.

To construct the Evans function associated with the travelling solution, it is
sufficient to find the eigenvalues �m associated with perturbations of the radius of
the pulse of the type ��(✓, t) = ✏e

�mt cos(m✓), � and ✏ small.

For this particular case, it is found that (Coombes et al., 2012):

Em(�) =
1

⌘̂(�)
� (1 + g)µm, (4.66)

Taking w as in Eq. (4.49), the expression of µm is the same given in Eq. (4.59), with
the same parameters and the transform of the synaptic filtering function

⌘̂(�) =
↵(1 + �)

(�+ �+)(�+ ��)
, (4.67)
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with

�± =
1 + ↵±

p
(1 + ↵)2 � 4↵(1 + g)

2
. (4.68)

The mode of interest to simulate a traveling peak solution is m = 1, for which
µm = 1. The associated eigenvalues, given by the solutions of ⌘̂(�) = 1/(1 + g), are
� = 0 and � = ↵g � 1. The mode becomes unstable for the critical value g � 1/↵, as
illustrated in Fig. 4.11, where the real and imaginary part zero contours are plotted,
showing the crossing of the eigenvalue to the right-hand side of the plane (Coombes
& Owen, 2004).

It can be noted that, for m = 0, Eq. (4.66) gives

µ0 =
1 + ↵

↵(1 + g)
(4.69)

so that for the same value g � 1/↵ a breathing instability can emerge with frequency
! =

p
↵g � 1 (Coombes & Owen, 2004).
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Figure 4.11: Plot of the zero contours of the real and imaginary part of the Evans
function (� = ⌫ + i!) associated with the bifurcation of a radially symmetric
solution with respect to mode m = 1. Left: stable solution. Right: solution after
bifurcation for g > 1/↵. Parameters: [A,�, g, h]= [0.25, 2, 0.55, 0.12/(1 + g)].

Simulating a drifting instability as a new element of cognition in DFT, the
coexistence of a breather dynamic beyond the same bifurcation point must be taken
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into account. Numerical construction of travelling spots, using the condition in
Eq. (4.63) and choosing the adaptation gain above the critical value, is carried out in
Section 5.4.3.
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4.4 Robotic Control Dynamics

In the architecture for motor control proposed in this thesis, a control law for a
robotic manipulator is designed drawing inspiration from the spatial organisation of
circuitry of the spinal cord (Bizzi et al., 1992; Giszter et al., 1993; Mussa-Ivaldi et al.,
1994) and from the concept of motor primitive introduced in Chapter 2.

To test the neural controllers developed for spinal motor control using Dynamic
Neural Fields, a planar model of a two revolute joint actuator is used. In this
last section of the Methods, the equations used to model the robotic interface are
presented. Relevant concepts regarding robotic controls are reviewed: these are used
in Chapter 5 to motivate the design and to assess the stability of the proposed control
law, the spinal attractor model.

4.4.1 Kinematics and Dynamics of a 2-R Manipulator

A robotic manipulator is an ensemble of n rigid bodies called links connected by
contact at a point called joint that can be revolute or prismatic. Revolute joints
(R) allow for relative rotation between links; prismatic joints (P) allow for relative
translation. For each joint axis, the coordinate called joint coordinate or joint variable
describes the relative position of two links connected by a joint (Murray et al., 2017).

Each prismatic or revolute joint provides one degree of freedom to the robotic
manipulator which typically possesses six degrees of freedom (DoF). A manipulator
that has more than six degrees of freedom is called kinematically redundant. The
term manipulator is used interchangeably with robot, although the manipulator is
specifically the structural body made of links and joints, whereas the robot itself is
composed by the manipulator and the control system that guides it (Murray et al.,
2017).

The link that is grounded is called link 0. The distal part of the kinematic chain
made by n links is referred to as end effector. This part is the one that performs the
task for which the robot has been programmed. The space that the end effector can
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reach is called workspace, which is subject to the geometry of the manipulator and
the joint constraints.

Links and joints form the kinematic chain of the robot and the study of their
displacement (change in position and/or orientation) in time of is called kinematics.
Describing kinematically a manipulator is essential to write the system of equations
that describe the dynamics of the system. These take into account the movement of
the manipulator related to the torques applied at the joints. The equations of motion
of the manipulator are used to design control strategies and to program the robot for
the destination of use. This process goes under the name of robot control (Murray
et al., 2017).

Kinematics

The two revolute joints (2-R) planar manipulator illustrated in Fig. 4.12 is used
to perform simulations of voluntary movements using the proposed model for spinal
motor control. The robot is composed by two rigid elements of length l1 and l2 linked
to three joints:

– the joint (0) that allows the link l1 to rotate on the plane;

– the joint (1) that connects segments l1 and l2 allowing relative rotation;

– the joint (2) that has zero DoF and represents the end effector of the
manipulator.

The origin of a set of Cartesian axes is fixed in correspondence with joint (0).
The joint variables of this system are the angles that describe the rotation of the
links around the joint axes perpendicular to the plane: ✓1 and ✓2.

Kinematic analysis of the robotic chain is formalised into two problems that are
called the forward kinematic problem and the inverse kinematic problem. Solution to
the forward kinematic problem consists in finding the position of the end effector,
known the values of the joint variables. This can be written, for a set of coordinates
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Figure 4.12: The planar manipulator with two revolute joints.

representing the position of the end effector (xE, yE) and a general n-link manipulator,
as a function of the angles associated with each revolute joint (Murray et al., 2017):

(xE, yE) = fforward(✓1, ✓2, . . . , ✓n). (4.70)

Solution to the inverse kinematics consists in finding the configuration in terms of
joint variables for which the end effector will reach the required target position in the
workspace:

(✓1, ✓2, . . . , ✓n) = finverse(xE, yE). (4.71)

For the two-link manipulator of choice, the position of the end effector (xE, yE)

can be written as a function of the angles ✓1 and ✓2 as follows:

xE =x1 + l2 cos(✓1 + ✓2),

yE =y1 + l2 sin(✓1 + ✓2),
(4.72)
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where (x1, y1) are the coordinates defining the position of joint (1)

x1 =l1 cos ✓1,

y1 =l1 sin ✓1.
(4.73)

Equations (4.72) represent the forward kinematic description of the robot of choice
and they are used to compute the position of the end effector during simulations
(Jazar, 2007). Variations in time of the end effector coordinates produce the trajectory

T (t) = (xE(t), yE(t)). (4.74)

Dynamics

The movement of the robotic chain in time can be studied writing the equations
of motion of the system of interest. This step allows for simulations of motion and
for the design and control of the robotic system; i.e., to program the manipulator to
perform the desired trajectory. In a similar way, it is possible to identify the so-called
forward dynamic problem and the inverse dynamic problem (Murray et al., 2017).

Direct dynamics evaluation consists in predicting the motion of the manipulator
for a given initial state , T (0) and under some known torques ⌧ active at the joints:

T (t) = fforward

�
⌧ , T (0)

�
. (4.75)

This is equivalent to simulating the system behaviour for some torques applied at the
joints.

Inverse dynamics aims at finding the activations, forces or torques, that give as a
result a desired trajectory, specified by a kinematic set of positions, velocities and
accelerations:

⌧ = finverse

�
T (t)

�
. (4.76)

This immediately translates into finding appropriate control signals so that the end
effector moves in the desired way. It is found again, in terms of robotic controls, the
degrees of freedom problem (see Chapter 2 for the DoF problem).
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The Lagrange formulation can be used to describe the motion of a robotic manip-
ulator. The Lagrange equation of motion for a generic manipulator with n links is
(Jazar, 2007):

M(✓)✓̈ +C(✓, ✓̇)✓̇ +G(✓) = ⌧ (4.77)

where ✓ is the vector of the joint state variables and ⌧ is the vector of external torques
at the joints. Eq. (4.77) has three terms:

– the inertial term takes into account the inertial forces and M(✓) is the
n⇥ n inertia matrix for the manipulator;

– the velocity coupling term represents velocity coupling between links and
C(✓, ✓̇)✓̇, also represented by the notation H(✓, ✓̇), is referred to as the
velocity coupling vector ;

– the gravitational term represents the gravitational force acting on the
manipulator and G(✓) is the gravitational force vector.

For a detailed derivation of the Lagrange equation from the Lagrangean applied to a
multi-link robot see the book by Jazar (2007).

Consider again the manipulator used here in Fig. 4.12, with links of length l1

and l2, mass m1 and m2, centre of mass lc1 and lc2 and moment of inertia I1 and I2

respectively. Since it is of interest the performance of reaching tasks where the robot
is restrained to the plane, resultant gravitational forces acting on it are considered
zero and Eq. (4.77) simplifies as follows:

M(✓)✓̈ +C(✓, ✓̇)✓̇ = ⌧ . (4.78)

In the case of study, the state variables and the required torques at the joints are
represented by 2⇥ 2 vectors:

✓ =

2

4✓1
✓2

3

5 ,
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and

⌧ =

2

4⌧1
⌧2

3

5 ,

The inertia matrix and the velocity coupling matrix are given by

M(✓) =

2

4d11 d12

d21 d22

3

5 , C(✓, ✓̇) = ch

2

4 ✓̇2 ✓̇1 + ✓̇2

�✓̇1 0

3

5 , (4.79)

where ch = �m2l1lc2 sin(✓2) and the inertia matrix coefficients are

d11 = m1l
2
c1 +m2(l

2
1 + l

2
c2 + 2l1lc2 cos ✓2) + I1 + I2,

d12 = m2(l
2
c2 + 2l1lc2 cos ✓2) + I2,

d22 = m2l
2
c2 + I2,

d12 = d21.

(4.80)

Equation (4.78) represents the description of the dynamics of the system. Solution
to this equation and to the direct kinematics in Eq. (4.72) give the trajectory in time
of the end effector. Determining the appropriate torques for the desired motor task
is also a core problem of robotic control design. A schematic representation of the
forward and inverse problems is presented in Fig. 4.13.

From the perspective of human motor control, strategies to address the DoF
problem are discussed using the traditional and the embodied approach in Chapter 2
and in Chapter 3, respectively.

In contrast to the reviewed architecture in the DFT framework in Section 3.4.1,
the model proposed in Chapter 5 does not require the solution of the inverse dynamics
in Eq. (4.76). The desired behaviour is achieved building a control law physiologically
inspired to guide the manipulator. It is necessary to consider principles of control
dynamics, introduced in the following section, to understand the proposed design and
to address the stability of the proposed control law.
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Figure 4.13: Representation of the forward and inverse problem, giving the
equivalent of the degrees of freedom problem in robotic control theory.

4.4.2 Design and Stability of Robotic Controls

To determine the trajectory of the end effector in Cartesian space, it is necessary
to transform it in joint space, solving the inverse kinematics in Eq. (4.71). Directly
solving the inverse dynamic in Eq. (4.76) gives the appropriate motor commands to
guide a robotic manipulator.

Supposing to have solved this problem and to have a trajectory T (t) and the
associated kinematics expressed by ✓d(t), strategies from traditional control theory
allow for the torque update during simulations and error compensation using the
online position of the joints, in order to get the end effector to perform the desired
trajectory with a certain robustness against perturbations (Jazar, 2007).

In this section, elements of robotic controls are reviewed. In the following, they
are used to formalise the physiologically inspired control law for the model of the
spinal cord. The information encoded using neural fields and the concept of motor
summation, in fact, have to be translated into the torques (or the forces) at the
joints directly, resulting in a robotic system that is stable. This is tested performing
reaching tasks without recurring to the solution of its inverse dynamics satisfying the
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fourth aim (see Chapter 1 for the list of aims).

Firstly, the introduction of feedback dynamics to stabilise the controller is motiv-
ated, considering the poor performances of open loop controls and briefly discussing
the implications of Lyapounov and asymptotic stability. Subsequently, attractor
dynamic controllers are presented. The final formulation of the spinal attractor model,
in fact, includes two terms that can be rewritten as a function of the error signal
(i.e., current position� set point) resembling a proportional and derivative controller.
This gives the criteria by which parameters of the control law can be set to have the
desired stability for the proposed model.

Lastly, the desired trajectory can be achieved considering robotic controls designed
in joint space (joint space control) or, avoiding the direct solution of inverse kinematics,
directly in workspace coordinates (workspace control) (Murray et al., 2017). The
reason behind the development of the model using the latter is clarified, considering the
difference of the simulated trajectories. It is shown that the space in which the control
law is designed affects one of the most important invariants when considering reaching
tasks: using a control law developed in workspace coordinates grants trajectories
that are straight (see Section 2.2.3 for relevant invariants of voluntary movements).
Furthermore, using the Lagrange equations in the same space for simulations avoids
the computation of the inverse kinematics.

Open loop and feedback control

Given the manipulator dynamics as described in Eq. (4.78), consider the desired
joint trajectory ✓d(t) to be tracked by the end effector. Consider the initial conditions
✓(0) = ✓d(0) and ✓̇(0) = ✓̇d(0), appropriate control torques are simply:

⌧ = M(✓d)✓̈d +C(✓d, ✓̇d)✓̇d. (4.81)

It follows that ✓(t) = ✓d(t) for all t � 0. This type of control does not use the
current state of the system to update input torques and, for this reason, it is an
example of open-loop control. Open loop control does not allow for error correction
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and thus it is not very robust (Murray et al., 2017). Selected a configuration near the
desired one at the beginning, the trajectory of the robot will not necessarily follow
it at all times, since the system cannot compensate for noise, delays or adjust the
trajectory based on information on the current position online (Murray et al., 2017;
Wolpert, 1997).

Open loop control cannot account for online sensory-motor integration, that is one
of the prerequisites to model voluntary movements in the embodied account. In order
to have the manipulator trajectory converging to the desired one using some level of
sensory-motor integration, one can introduce an appropriate feedback mechanism in
our control system (e.g., a visual input).

Allowing initial conditions to be corrected by the dynamic of the system requires
adding a feedback mechanism to Eq. (4.81). The resultant control law, refined using
the current position and velocity of the manipulator at time t, can be written as
follows:

⌧ = M(✓)(✓̈d �K⌫ ė�Kpe) +C(✓, ✓̇)✓̇, (4.82)

where e = ✓ � ✓d, K⌫ and Kp are constant gain matrices and both the current
position of the end effector and of the target goal are considered.

Equation (4.82) goes by the name of computed torque control law (Murray et al.,
2017). Since the inertia matrix is always positive definite, the dynamic of the error
signal e simply follows:

ë+K⌫ ė+Kpe = 0 (4.83)

which is a linear differential equation that gives to the system the desired stability. In
fact, for an appropriate choice of K⌫ and Kb, it is easy to prove that error e tends to
0 exponentially for t ! 1. In this sense, this is an example of feedback linearisation
(Murray et al., 2017). Once feedback is introduced in the model, it is possible to
analyse its stability using linear control tools applied to the dynamics of the feedback
signal. Ideally, if the trajectory to follow consist in a single target point, the system
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in closed loop should have a stable attractor at this point, asymptotically.

An alternative approach consists in the design of a controller that uses a linearised
system around an operating point, in an attractor dynamic fashion. It is possible to
prove that, when linearisation of a nonlinear system exists, the study of stability of
the linearised system determines the local stability of the nonlinear system according
to Lyapunov’s methods (Murray et al., 2017). Since stability of the linearised system
implies local stability of the full system, it is often possible to give proof of global
stability using Lyapunov’s methods for this type of controllers (Murray et al., 2017).
A relevant example is the Proportional and Derivative (PD) control law that has the
form:

⌧ = �K⌫ ė�Kpe, (4.84)

K⌫ and Kp are positive definite matrices and e = ✓� ✓d is the error signal, as before.
It can be proved that this type of controller gives setpoint stabilisation asymptotically
(Murray et al., 2017).

The model proposed to simulate the development of a motor plan at the level
of the spine uses sensory feedback that guarantees convergence to the equilibrium
point set using a combination of motor primitives and efferent activation signals. The
result is a stable attractor dynamic for the same feedback linearisation principle (see
Chapter 5). Elements of bifurcation theory applied to nonlinear systems that use
such methods go beyond the purpose of this section; for a comprehensive discussion
see the book by Kuznetsov (1996).

Workspace control

Until now, the control problem has been addressed considering a configuration of
the end effector as a function of time and solving the inverse kinematic so as to find
the desired joint angles for the desired trajectory.

In the proposed architecture for motor control, control dynamics of the end effector
are designed in workspace coordinates. This choice was made considering that most
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of the empirical findings on pointing and reaching tasks describe typical features of
voluntary movement in terms of features of the end effector trajectory, for example
straightness and bell-shaped velocity profiles (see Chapter 2 for a review of properties
of voluntary movements). In support of this choice, empirical studies have found that
clustering of voluntary movements analysed in workspace coordinates (i.e., Cartesian)
are successfully represented by a small number of motor primitives (Miranda et al.,
2018, see Chapter 6).

The set used to parameterise the workspace is the one introduced in Eq. (4.72)
that can be compactly written as follows:

x =

2

4xE

yE

3

5 .

The Jacobian matrix associated with the configuration of the manipulator in Fig. 4.12
is a function of joint variables ✓ and can be written from Eq. (4.72) as follows:

J(✓) =

2

4�l1 sin(✓1)� l2 sin(✓1 + ✓2) �l2 sin(✓1 + ✓2)

l1 cos(✓1) + l2 cos(✓1 + ✓2) l2 cos(✓1 + ✓2)

3

5 . (4.85)

Using the relationships

✓̇ = J
�1

ẋ and ✓̈ = J
�1

ẍ+
d

dt

�
J
�1
�
ẋ, (4.86)

The dynamics of the manipulator in workspace coordinates are given by (Murray
et al., 2017):

fM(✓)ẍ+ eC(✓, ✓̇)ẋ = F (4.87)

where fM and eC are called the effective parameters of the system and they are given
by the following transformations:

fM =J
�T

MJ
�1
,

eC =J
�T

✓
CJ

�1 +M
d

dt
(J�1)

◆
,

F =J
�T⌧ .

(4.88)
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Using Eqs. (4.88) it is possible to eliminate ✓ from Eq. (4.87) so that an expression
identical to the Lagrange formulation in Eq. (4.78) is found again, transformed in
workspace coordinates. Results on the stability of the previous control laws in open
loop, feedback and the proportional derivative control, can be immediately extended
to workspace coordinates (Asada & Slotine, 1991). The computed torque law in
Eq. (4.82) becomes for instance:

F = fM(x)(ẍd �K⌫ ė�Kpe) +C(x, ẋ)ẋ, (4.89)

where xd is the desired trajectory in workspace coordinates and error is defined as
e = x� xd. Linear stability depends on the dynamics of the error signal that can be
expressed as in Eq. (4.83). In a similar fashion, the PD control law can be written as
follows:

F = �K⌫ ė�Kpe. (4.90)

The difference between joint and workspace control is easy to understand using the
following example. Consider the computed torque control in Eq. (4.82), for instance,
and apply it to the planar manipulator defined in Eq. (4.72) in both spaces, (✓1, ✓2)
and (xE, yE). Joint control gives straight trajectories in joint space ✓ and curved
trajectories in workspace coordinates x, as shown in Fig. 4.14 where trajectories in
both spaces are presented.

Workspace control produces straight trajectories in the workspace coordinates x

and curved ones in the joint space ✓, as shown in Fig. 4.15 (Murray et al., 2017).
Using workspace control is then ideal for the present study, where the aim is to create
and test physiologically inspired controllers that produce trajectories with human-like
features.
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Figure 4.14: Joint space control using the computed torque control law for a 2-R
planar manipulator. Top left: resultant trajectory in joint space (square = initial
position, circle = target); bottom left: joints variables time course. Top right:
same trajectory in Cartesian coordinates; bottom right: workspace coordinates
time course.

134



Chapter 4. Methods

0 10 20
0

0.2

0.4

0.6

0.8

0 0.5 1

0

0.2

0.4

0.6

0.8

1

Workspace Control
Cartesian Coordinates

0 10 20
-1

0

1

2

3

-1 -0.5 0 0.5
2

2.5

3

3.5

Workspace Control
Joint Coordinates

Figure 4.15: Workspace control using the computed torque control law for a 2-R
planar manipulator. Top left: resultant trajectory of the end effector in joint
space (square = initial position, circle = target); bottom left: joints variables
time course. Top right: same trajectory in Cartesian coordinates; bottom right:
workspace coordinates time course.
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4.5 Conclusions

In this chapter a unified methodology to perform bifurcation analysis for the
neural field equation is introduced together with the mathematical formulation of the
robotic interface, used for simulations, and elements of robotic controls.

From the initial study on stability of solutions to the neural field equation carried
out by Amari, methods that use an associated linear operator to find the bifurcation
points have been developed. Here this approach is derived for a one-dimensional
neural field in the case of negligible space dependant delays. The appropriate selection
of parameters for neural controllers allows for self-sustaining and self-stabilising peaks
used to model activations and autonomy in the proposed model (Aim 2).

Methods for the study of stability of self-sustaining peak solutions in two-
dimensional neural fields are reviewed for the construction of a DNFs representation
of motor primitives (Aim 2). This study of stability represents a powerful tool to
develop neural controllers in DFT and it could also expand the repertoire of elemental
behaviours. For this reason, the study of drifting instability is presented (Aim 3).

The planar manipulator used to test the behaviours of DNFs architecture is
described (Aim 4) together with the robotic formulation of the degrees of freedom
problem. Considerations on robotic stability are reviewed, using an example of
feedforward and feedback control techniques. A description of the motor task in
terms of invariant properties of voluntary movements and empirical findings on motor
primitives justifies the selection of workspace control design (Aim 1).

In the following chapter, the neural controllers outlined here are linked together
to give the proposed model for spinal motor control. The study of stability gives the
criteria to model selection, working memory and reverse instability and to simulate a
new elemental behaviour. A novel control law, developed in workspace coordinates
and based on motor primitives summation in DFT, replaces the computation of
inverse dynamics and kinematics.
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A Physiologically Based Model for
Spinal Motor Control

5.1 Introduction

The main goal of the proposed approach is to create a new framework for
modelling motor control where physiological mechanisms can be easily introduced, in
the attempt to find better solutions for the ultimate problem of motor redundancy.
Despite the existence of architectures that model autonomy, sensory-motor integration
and learning with a good level of embodiment, this problem is often left to traditional
control theory (see Chapter 3).

Furthermore, this kind of approach cannot be used to infer physiological processes
involving the musculoskeletal system and its interaction with the environment, from
which, ultimately, movement emerges. A better understanding of how the abundance
of solutions that biological systems offer to motor problems could contribute to
improved robotic solutions in return. In fact, traditional control strategies have shown
limited adaptability in unconstrained environments (i.e., every environment except
the one they were built for; Brooks, 1991; Pfeifer et al., 2007).

In the proposed framework, the redundancy problem is addressed at the level of
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the spinal cord by designing a simple model for motor primitives summation in a DFT-
based architecture, tested using a planar manipulator performing reaching tasks. The
proposed model, inspired by the empirical finding of spinal force fields (see Chapter 2),
gives a mathematical representation of the concept of motor primitive. Each primitive
describes a field converging to a fixed point that can be easily represented with
the attractor dynamic offered by neural fields. A combination of spinal attractors,
selected by signals that can be modelled using existing neural fields for cortical
motor planning and motor learning (as the one presented in Section 3.4.1), gives the
DNF representation of the resultant motor plan at the spinal level, in a way that is
compatible with models of muscle synergies (like the one presented in Section 2.3).

In Section 5.2 the concept of motor primitive is formalised mathematically, in-
troducing the attractor dynamic applied to a point mass to exemplify the motor
primitives summation concept. The model is then extended to the 2-R link ma-
nipulator described in Chapter 4, giving the final control law representative of the
proposed model, called the spinal attractor model (SAM).

In Section 5.3 the neural field architecture that models motor control is presented
in its parts: one encoding the principle of motor summation and one regulating the
development of the motor plan in the spinal cord, using an adaptive threshold to guide
elemental behaviours. Mathematical implementation of these processes is outlined
considering the study of stability presented in Chapter 4.

In Section 5.4, numerical implementation of the model is presented together with
simulations of a reaching behaviour. A method to build travelling peak solutions is
tested in a simulation environment to extend the repertoire of elementary behaviour
representable with dynamical fields.
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5.2 Proposed Model for Trajectory Formation

In the present section, a novel approach to model movement generation at the
level of the spine is introduced. The idea for the development of this models was
inspired by the concept of motor primitive (Tresch & Jarc, 2009) and associated
spinal force fields (Bizzi et al., 1991; Giszter et al., 1993; Mussa-Ivaldi et al., 1994),
explored in Chapter 2. The physiological counterpart of the proposed model is the
theory of movement formation by synergic activation of muscles (Alessandro et al.,
2013; D’Avella et al., 2003).

The goal here is to give a mathematical representation of this process of summation
of motor patterns to produce movement. The concept of attractor dynamics, matching
the DFT rationale, gives the appropriate mathematical representation for the spinal
attractor model (SAM).

Introducing SAM: one-dimensional attractor

Consider the simplified one-dimensional system represented in Fig. 5.1 A, consisting
of a mass m moving along the x coordinate axis under a force F , with a damping
factor �. The system can be described by the following differential equation:

ẍ = �
�

m
ẋ+

F (x)

m
(5.1)

with �,m > 0.

Define on the workspace (the x axis) P points x
M1 , x

M2 , . . . , x
MP that will be

called attractors of the system in Eq. (5.1), described by the energy function of a
linear spring obeying Hooke’s law (Shukla & Anchal, 2006):

Ek(x) =
1

2
(x� x

Mk)2, k = 1, 2, . . . , P. (5.2)

The force F acting on the point mass can be written as a linear combination of
the force exerted by each attractor modelled by Eq. (5.2):
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F (x) = �

PX

k=1

sk(x� x
Mk) (5.3)

where coefficients sk, acting like the spring elastic constants, are referred to as
activations associated to the attractor xMk

.

For instance, consider M = 2 and set an attractor in x
M1 = 0 and a second

attractor in x
M2 = 1, as shown in Fig. 5.1 B. If the vector of activation is s = [1, 0],

starting from the position x0, the point mass will move until it reaches the active
attractor x

M1 in 0, regardless of the position of other attractors. For the choice of
activations s = [0, 1], the point mass will reach the second attractor in 1.

Using this two-attractor repertoire the point mass can be moved in between. Using
a different combination of activations, for example s = [0.5, 0.5], the dynamic of the
system includes the intermediate point 0.5 to the list of equilibrium positions, as
shown in Fig. 5.1 C. If multiple attractors are active at the same time, then, the
point mass moves towards the resultant position of equilibrium that is given by the
equation:

xE =

PP
k=1 skx

Mk

PP
k=1 sk

(5.4)

A simulation of these attractor dynamics is shown in Fig. 5.1 D where position x

and velocity v for the point mass are plotted. The eigenvalues associated with this
model have the general form:

�1,2 =
1

2

0

B@�
�

m
±

vuut �2

m2
�

4

m

PX

j=1

sk

1

CA (5.5)

and the attractors created by summation defined in Eq. (5.4) are stable equilibria as
long as sk � 0; stable nodes if the condition

P
sk  �

2
/4m holds (Kuznetsov, 1996).
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Figure 5.1: One-dimensional attractor dynamic. A point mass m with starting
position x0 = �0.1 (A) moves towards the equilibrium point x = xE (C) as
the result of the force imposed by two attractors xM1 and xM2 , with energy Ek

(k = 1, 2). The resultant energy function is E = s1E1 + s2E2 (B). Kinematics of
the point mass are shown in D.
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Introducing SAM: two-dimensional attractor

Consider now to extend the workspace to two dimensions, defining x = (x1, x2)

and considering to apply a force F(x) to a point mass m with damping coefficient
� = [�1, �2].

The energy field Ek associated with an attractor xMk = [xMk
1 , x

Mk
2 ] this time has

the form given by the Hooke’s law (Shukla & Anchal, 2006):

Ek =
1

2
(x� x

Mk)
T
(x� x

Mk), (5.6)

so that the resultant energy is:

E =
PX

k=1

skEk. (5.7)

Force can be expressed as its two components on the workspace axes F = [F1, F2]:

Fi = �
@E

@xi
= �sk

⇣
xi � x

Mk
i

⌘
i = 1, 2. (5.8)

The resulting system is described by the following equations:

ẍ1 =�
�1

m
ẋ1 �

1

m

PX

k=1

sk(x1 � x
Mk
1 ),

ẍ2 =�
�2

m
ẋ2 �

1

m

PX

k=1

sk(x2 � x
Mk
2 ),

(5.9)

and the general equilibrium, given by a linear combination of attractors, can be
written as follows:

x
E
i =

PP
k=1 skx

Mk
iPP

k=1 sk

, i = 1, 2. (5.10)

The stability of the equilibrium point is given by the associated eigenvalues:
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�1,2 =
1

2

0

B@�
�1

m
±

vuut �
2
1

m2
�

4

m

PX

k=1

sk

1

CA ,

�3,4 =
1

2

0

B@�
�2

m
±

vuut �
2
2

m2
�

4

m

PX

k=1

sk

1

CA .

(5.11)

Equilibria are stable foci if and only if
P

sj  max(�1, �2)2/4m, and sk � 0 (Kuznet-
sov, 1996). An example of the dynamic of the system with two attractors is shown in
Fig. 5.2.

Extending the attractor construction method presented here for a point mass, a
new control law modelling movement formation is defined below for the dynamic of
the planar 2-R manipulator, based on the hypothesis of motor primitives summation.
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Figure 5.2: Attractor dynamic for a point of mass m (grey circle) in two dimensions.
First row: contour plots of the energy function level-set (darker grey approaching
minimum) and initial and final position of the mass. Second row: kinematics of
the mass. The equilibrium point reaches the first attractor in xE = xM1 = [1, 1]

(0 ! 1), then moves to the second in xE = xM2 = [0, 1] (1 ! 2) and to a point
in between in x = [1, 0] (2 ! 3), changing activations from s0!1 = [1, 0], to
s1!2 = [0, 1] and s1!2 = [0.5, 0.5].
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5.2.1 S.A.M.: The Spinal Attractor Model

Consider the structure of the spinal cord, topologically organised as shown in
Fig. 2.2. Direct stimulation of the premotor part, or descending motor commands
resulting from cortical sensorimotor integration carried by the efferent pathway, can
elicit the activation of a mapped group of muscles. Guided by Fig. 5.3, imagine
representing this type of mapping onto layers of two-dimensional structures that can
be selected using an input signal called activation (Fig. 5.3 A) and then summed to
form a pattern of activation (Fig. 5.3 B).

The integration of this pattern with the sensory feedback, topologically carried in
the dorsal horn of the spine, leads to the emergence of a representative force field
(Fig. 5.3 C) that, in a similar fashion to what was found in empirical studies (Bizzi
et al., 1991; Giszter et al., 1993), models the guiding force that the limb requires to
move towards the desired position, the latter defined as the point in the field in which
forces are null.

The position of the end effector of the link is carried by the afferent pathway and
used locally in the spinal cord (i.e., as in spinal reflexes) or sent to the cortex for
further elaboration of sensory input (e.g., proprioceptive, visual or multimodal) or for
sensorimotor integration (e.g., updated target position in workspace coordinates) and
then sent down to the spinal cord via the efferent pathway. The possibility to account
for local spinal processes and to connect the proposed model to architectures that
model cortical sensorimotor integration is represented in Fig. 5.3 by the dashed line.
For simulation purpose, the connection of the afferent and efferent pathway creates a
local feedback loop that is used to test the architecture in reaching tasks.

This process that describes a mechanism of selection of motor activations resulting
in the computation of forces at the joint of the robotic model, inspired directly by
the structure of the spine and by empirical findings on muscle activations, is defined
here as the spinal attractor model.
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Figure 5.3: The Spinal Attractor Model (SAM). (A): motor primitives are rep-
resented as planar structures that receive activation signals from the efferent
pathway (i.e., motor commands). (B): activated motor primitives are summed
with appropriate weights to form a representation of the motor plan. (C): sensory
motor integration at the level of the spine gives the resultant force field that
represents the forces necessary at the joint to complete the motor task. The
dashed path indicates concurring local and cortical sensorimotor processes (see
text for a detailed description).
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Movement formation is based on the combination of a limited number of learned
motor synergies, namely the motor primitives, and appropriate selection signals that
allow to generalise to a greater motor repertoire. Here, the degrees of freedom is
addressed in terms of neural activations in the spinal cord encoding forces at the joints.
As experimental results suggest, motor primitives represent the neural correlates of
muscles synergies (D’Avella et al., 2003; Mussa-Ivaldi et al., 1994, see Fig. 2.13 in
Section 2.3.1), thus the control law formalised below opens the way to the development
of a modelling account that can be used to simulate motor control from the cortical
level to single muscles activations.

Considering Eq. (4.87), describing the dynamics of the manipulator in workspace
coordinates of the end effector x, the acting force F is defined as the sum of two
terms:

F = FSAM,l + FSAM,d (5.12)

where

FSAM,l(x) = �

PX

k=1

sk(x� x
Mk) (5.13)

represents the resultant force field exerted by P motor primitives. Equation (5.13)
models the principle of summation presented in Eq. (2.7), considering s  0 in the
formulation proposed by Mussa-Ivaldi et al. (1994).

The second component is simply a weighted derivative term, obtained from
Eq. (5.13), necessary to obtain a stable control law for the manipulator defined as
follows:

FSAM,D(ẋ) = �

PX

k=1

sk(ẋ� ẋ
Mk). (5.14)

with sk = gSAM,dsk.

The resultant control law that defines the spinal attractor model (SAM) is expressed
by the following equation:
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(spinal attractor model) FSAM(x) = �

PX

k=1

sk(x� x
Mk)�

PX

k=1

sk(ẋ� ẋ
Mk). (5.15)

The introduced local (or spinal, in the physiological reference) feedback in the
control law models sensory-motor integration, so that Eq. 5.15 gives the equivalent
of the recorded force fields in the spinal cord, dependent on the position of the end
effector and converging towards a single point. This resultant set point for the motor
system given by the combination of motor primitives mirrors the force field equilibrium
found in empirical studies (see Section 2.3.1) and modelled by Mussa-Ivaldi et al.
(1994) in Eq. (2.8):

xEP =

PP
k=1 skx

Mk

PP
k=1 sk

(5.16)

Equation (5.16) describes the point in the force field in which the end effector is at
equilibrium (i.e., stops moving).

To investigate the stability of the new control law defined by Eq. (5.15), necessary
to perform successful reaching task simulations, one can define the error signal between
the position of the end effector and the resultant equilibrium point e = x� xEP. It
is possible, then, to rewrite the SAM control law as

FSAM(x) = �

PX

k=1

ske�

PX

k=1

skė.

Remembering the discussion on robotic control theory in Chapter 4, it is possible
to notice that the SAM model can be thought as version of a PD controller defined
in Eq. (4.90). Results on Lyapunov stability can then be extended directly to
the proposed model, that will produce stable dynamics if sk � 0 for all k and
gSAM,d  2

p
2, considering

P
k sk = 1.

The computation of joint forces using the spinal attractor model requires a
local representation of descending activation commands, a locally stored mapping of
primitives and updated information on the position of the end-effector as represented
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in Fig. 5.3. In the following, a DNFs architecture is described that matches the
representation of motor primitives and motor activations given by the spinal attractor
model.
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5.3 Neural Fields Control Design for S.A.M.

In this section the implementation of neural controllers is presented for the
spinal attractor model (SAM). The proposed architecture aims at linking the DFT
framework, broadly used to model features belonging to motor control (Johnson et al.,
2008; Sandamirskaya et al., 2013; Schöner, 2007), to the physiologically based model
for movement formation, using the versatility typical of neural fields to represent
sensory-motor variables in a planar space.

Planar dynamic neural fields seemed to be the natural match for the spinal
attractor model, since both the emerging force field and the representation of the
motor primitives have an attractor-like dynamic, developing onto a two-dimensional
mapping.

The proposed architecture for motor control accounts for the following motor
control components: sensory-motor integration, autonomy and a strategy to produce
motor activation that does not require the solution of the inverse dynamics. Motor
learning (e.g., to cluster motor primitives) is not developed here and goes beyond
the purpose of this study; nonetheless, links to existing accounts are suggested and
further discussed in Chapter 6.

The representation of motor control introduced in Fig. 1.1 in Chapter 1 is mirrored
by the architecture presented in Fig. 5.4. Although a block representation is convenient,
the circular stream of information carrying afferent and efferent content represents the
embodied nature of this architecture and the possibility to link other layers through
the afferent and efferent pathway, to/from the CNS.

5.3.1 Model Overview

As introduced in Chapter 2, motor control must provide the following functions:
autonomy, sensory-motor integrations, a solution to the redundancy of the system,
that is selecting appropriate motor activations, and some learning mechanism. Here
these features are represented by the following components:
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spinal attractor model
(SAM)

efferent
pathway

afferent
pathway

task monitoring
(tm-DNF)

perceptual mapping end-effector 
position

spinal memory block

motor primitives
DNFs

(m-DNFs)

activations
DNFs

(a-DNFs)

neural node

synaptic node
modulation signals

robot
model

forces

forward dynamics

learning signals

Figure 5.4: Overview of the proposed model for motor control. See text for a
description of blocks and connections.

– the task monitoring, responsible for the autonomous development of the
motor plan;

– the spinal memory block, composed of the motor primitives block and the
activations block, representing the working memory of the system from
which emerges the sensory-motor representation of the ongoing motor
plan;

– the spinal attractor model, responsible for the encoding of appropriate
motor activations for the robotic interface.

A reaching behaviour is used as reference to present the workflow of the proposed
architecture.
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Consider a task initiated by the detection of a visual input appearing within the
environment or some motivational cue. External stimuli together with proprioceptive
signals, adequately elaborated by some perceptual dynamic fields, can be represented
in terms of a perceptual mapping, signalling the position of a target in hand-centred
coordinates (see, for instance, the architecture in the study by Rudolph et al. (2015),
presented in Chapter 3). This event of target detection triggers the onset of a motor
plan.

The target detection signal arrives through the efferent branch to the task monit-
oring (tm-DNF), a one-dimensional neural field that receives an input proportional
to the distance between the target and the current position of the end effector, the
latter arriving from the afferent branch. If the distance is not zero, the field allows for
self-stabilising peak solutions. The beginning of the task is represented by a detection
instability, signalling the onset of the action to linked modules.

The activity of the tm-DNF is encoded by a neural node (black circle in Fig. 5.4)
that is linked to the resting potential of the neural fields composing the spinal memory
block. The state of this node is active when the task monitoring signals the presence of
an ongoing motor plan. In this case, controlled dynamic fields can present a working
memory instability and retain information for the duration of the task.

The spinal memory block is composed by two types of DNF architectures: the
activation DNF (a-DNF) and the motor primitive DNF (m-DNF). The first represents
the information relative to the motor selection process, for instance emerging from a
sensorimotor coupled neural structure that includes learning from previous experience.
Activation signals select and weight appropriately a number of motor primitives
that, stored in the spinal memory block and learned at a developmental stage, are
represented for the duration of the task by self-sustained peaks of activation in
two-dimensional neural fields, the m-DNFs.

The spinal memory block retains the representations of salient motor features
for the proposed motor control model. This guarantees robustness throughout the
task since here are represented the motor commands that guide the behaviour. The
encoding of the motor representation is carried out by synaptic nodes (black crossed
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circle in Fig. 5.4). These convert the spatial DNF representation into motor variables
giving the position of the peak on the field. Information coming from synaptic nodes,
together with perceptual input, is brought to the spinal attractor model (SAM), where
the resultant force field is evaluated integrating sensory information and active motor
primitives.

The SAM block gives the online computation of the forces required by the robot
model block to move purposefully. The robot used is the 2-R planar model in Fig. 4.12.
The position of the end effector is computed solving the forward dynamics and is sent
back as part of the afferent pathway, carrying proprioceptive and sensory information
back into the modules of the architecture so that the motor task can be updated.

The end of the motor task is signalled by reverse detection instability in the
tm-DNF, that sees the amplitude of its input progressively decrease together with
the distance from the target, until the bifurcation point is encountered. Beyond that
point, target has been reached and the self-sustaining peak representation collapses
into the resting state solution. The task monitoring is now ready again to keep track
of the development of another movement or another part of the motor sequence.

As a consequence of task completion, the representation of motor plans is no more
necessary. The activity of the neural node linked to the tm-DNF moves to an inactive
state and guides the spinal memory block towards the forgetting instability. At this
point the system is ready to receive a new set of instructions.

In Fig. 5.4, purple looped connections represent learning; grey dotted arrows other
kind of modulations such as performance monitoring, attentional enhancement or
more refined motor strategies, involving the direct activation of single muscles for
instance. Mechanisms relative to these connections are outlined in Chapter 2. Here
they are represented for completeness, anticipating a discussion on the possibility to
link this architecture to other DFT models (see Section 3.4 for relevant examples)
and future developments (see Chapter 6).
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5.3.2 Mathematical Implementation

In this section the mathematical implementation of each block is presented,
considering the methods developed in Chapter 4. In Fig. 5.5, the proposed model is
presented highlighting the neural and biomechanical variables that come into play,
described by the following equations.

!!"#

efferent
pathway

afferent
pathway"$%

(tm-DNF)

"&!

(m-DNFs)
"'!

(a-DNFs)

Φ

$ = &()*+,*-(!!"#)

()./, *./)

+0	, $#"

()., *.)

()., *.)

()., *.)

.1

Figure 5.5: Developed components of the proposed architecture for motor control:
detailed representation of the neural and motor variables.

Task Monitoring Block

The task monitoring block tracks the progress of the ongoing task. Considering a
reaching task, this module signals the onset of movement pre-activating the modules
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that represent motor features. When the target has been reached, it signals the end
of the task and waits for new motor commands.

This behaviour is achieved using detection and forgetting instabilities, supported
by models of self-stabilising peaks. The model used here is the one discussed in
Section 4.2.3: it is a one-dimensional neural field with adaptation and exponential
weighting function, encountering a saddle-node bifurcation as input amplitude I is
reduced (Bressloff et al., 2003).

The input amplitude is proportional to the distance between the end effector
x = (xE, yE) and target position xEP. Introducing a new notation for the one-
dimensional neural field, this DNF is described by the variable utm with associated
adaptation atmand dynamics derived from Eq. (4.31) that follow:

1

↵tm

@utm(x, t)

@t
= �utm(x, t) +

Z 1

�1
wtm(x� x

0)f(utm(x
0
, t))dx0+

� gtmatm(x, t) + Itm(x)

1

�tm

@atm(x, t)

@t
= �atm(x, t) + utm(x, t),

(5.17)

where the synaptic footprint is given by wtm(x) = Atme
�|x|, with Atm modelling

the amplitude of synaptic excitation; gtm is the adaptation gain and f(utm) =

H(utm � htm); ↵tm and �tm model the decay to resting potential in absence of input.

The input function is defined as

Itm(x, t) = I(x(t))e�x2/2�2
tm . (5.18)

The amplitude I encodes the distance from target:

I(x(t)) = Isn +

��x(t)� xEP

��
��x(0)� xEP

�� , (5.19)

where I  Isn gives the condition for the forgetting instability, that is when the
target has been reached x(t) = xEP; it is assumed that in order for the motor plan to
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exist x(0) 6= xEP.

The analysis of bifurcations of the field in Eq. (5.17), presented in Fig. 4.5 with
associated Evans functions in Fig. 4.6, allows for the construction of a neural controller
that supports a self-stabilising peak solution, using the parameters listed in Table 5.1.

Task Monitoring: Self-Stabilising Peak
inverse time constant ↵tm 8
adaptation inverse time constant �tm 0.03
synaptic footprint amplitude Atm 0.5
synaptic footprint dispersion �tm 1
synaptic depression gain gtm 1
threshold htm 0.5
bifurcation input amplitude Isn 0.77
input dispersion �tm 1

Table 5.1: List of parameters used to simulate a self-stabilising peak
solution for the task monitoring module.

The Spinal Memory Block

The spinal memory block models the current representation of the ongoing motor
plans. It receives the efferent commands for spinal primitives selection sk as the input
of the a-DNF block, and keeps an updated representation of the motor primitives,
represented by x

Mk in the spinal attractor model. These are encoded with attractor
dynamics in the m-DNF.

The activation block is composed by P one-dimensional neural fields usk , with
adaptation ask , supporting self-sustaining peak solutions as presented in Section 4.2.2.
The equation for the neural field representing the k-th activation is written as follows:
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1

↵s

@usk(x, t)

@t
= �usk(x, t) +

Z 1

�1
ws(x� x

0
, t)f(usk(x

0
, t))dx0+

� gs

Z 1

�1
ws,a(x� x

0
, t)ask(x

0
, t)dx0 + Isk(x, t) + h�

1

�s

@ask(x, t)

@t
= �ask(x, t) + f(usk(x, t)),

(5.20)

where ws(x) = Ase
�|x| and ws,a(x) = Ase

�|x|/�s/�s so that the resultant synaptic
footprint has the Mexican hat shape. As and �s model long range inhibition according
to the lateral inhibition hypothesis; gs is the adaptation gain and f(usk) = H(usk�hs);
↵s and �s model the decay to resting potential in absence of input.

The input function Isk(x, t) carries the information on primitives selection encoded
by stable attractors in terms of position on the x axis. The control variable h�

implements an adaptive threshold used to shift between the inactive (h� = hrest < 0)
and self-sustaining state (h� = 0), controlled by a neural node mapping the output
of the task monitoring (see below).

Analysis of bifurcations of the activation field in Eq. (5.20), presented in Fig. 4.3
with associated Evans functions in Fig. 4.4, allows for the construction of neural
controllers that can retain persistent self-sustained representations of activation, using
the parameters listed in Table 5.2.

The motor primitive block is composed by P two-dimensional neural fields uMk

with adaptation aMk
, described by the model in Section 4.3.3. The equations that

give the neural substrate for the representation of the kth motor primitive is:

1

↵M

@uMk
(r, t)

@t
= �uMk

(r, t) +

Z

R2

wM

⇣��r� r
0��
⌘
f(uMk

(r0, t))dr0+

� gMaMk
(r, t) + IMk

(r, t) + h�

1

�M

@aMk
(r, t)

@t
= �aMk

(r, t) + uMk
(r, t)

(5.21)
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a-DNFs: Self-Sustaining Solution
inverse time constant ↵s 1
adaptation inverse time constant �s 1
synaptic footprint amplitude As 0.5
synaptic footprint dispersion �s 2
synaptic depression gain gs 0.5
threshold hs 0.27
inactivation threshold hrest -0.1

Table 5.2: List of parameters used to simulate self-stabilising peak
solutions in 1D a-DNFs.

where wM(r) = (2⇡)�1(e�r
� AMe

�r/�M ). AM and �M model long range inhibition
according to the lateral inhibition hypothesis; gM is the adaptation gain and f(uMk

) =

H(uMk
� hM); ↵M and �M model the decay to resting potential in absence of input.

The input function IMk
(r, t) indicates a general efferent input encoding the equi-

librium point of the kth motor primitive. For the mechanism of movement formation
suggested here, the same result could be achieved using a pre-shape where the activa-
tion pattern is stored after learning (see Section 3.4 for the definition of the memory
trace and learning). A visual representation of a stack of motor primitives represented
by DNFs is illustrated in Fig. 5.3 A.

The control variable h� is used to shift between the inactive (h� = hrest < 0) and
self-sustaining state (h� = 0) is the same way as in the a-DNFs (see below).

Analysis of bifurcations of the motor primitive field in Eq. (5.21), presented in
Fig. 4.10, and the evaluation of the critical points using Eqs. (4.59) and (4.66) allow
for the construction of neural controllers that can retain persistent self-sustained
representations in two dimensions using the parameters listed in Table 5.3.
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m-DNFs: Self-Sustaining Solution
inverse time constant ↵M 1
adaptation inverse time constant �M 1
synaptic footprint amplitude AM 0.5
synaptic footprint dispersion �M 2
synaptic depression gain gM 0.1
threshold hM 0.025
inactivation threshold hrest -0.1

Table 5.3: List of parameters used to simulate self-stabilising peak
solutions in 2D m-DNFs.

The Adaptive Threshold h�

To encode some motor output associated with neural field dynamics, it is useful the
concept of a neural node. A neural node is a zero-dimensional neural field described
by an activation variable �(t) with dynamic here defined by:

⌧
d�

dt
= ��+

Z

Rn

f(u(x, t))dx, x 2 Rn
, n = 1, 2 (5.22)

where u(x, t) could be the state variable of a one or two-dimensional neural field,
f(u(x, t)) is the Heaviside function with threshold h and ⌧ is the relaxation constant.
Similar output rate variables are used in the DFT to represent CoS nodes, as
introduced in Section 3.4.

In the proposed model, a neural node is used to control the activation of blocks
down the line, based on the sensorimotor representation in the task monitoring. The
dynamic described above, in fact, is responsible for the activation of neural fields
belonging to the spinal memory block, guided by the task monitoring block. This is
implemented using a neural node �tm linked to utm driving the resting level h� of
the controlled DNFs in Eqs. (5.20) and (5.21) as follows:

⌧�
d�tm

dt
= ��tm +

Z 1

�1
f(utm(x, t))dx, (5.23)
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h� = hrest(1� f(�tm(t))), (5.24)

where hrest < 0, ⌧� is the time constant of the dynamic of the node, f(utm) =

H(utm � htm) and f(�tm) = H(�tm � ✏). The process is illustrated in Fig. 5.6.

At the beginning of the reaching task (see Fig. 5.6 A), the self-stabilising peak in
the task monitoring utm causes an increase in the activity of the neural node �tm. As
soon as �tm > ✏, the adaptive threshold shifts to the value h� = 0. The choice of
parameters for the spinal memory block allows for the emergence of self-sustaining
peaks in the motor primitive and activation DNFs for this value of the resting level.
The representation of the motor plan is active and the SAM model can compute the
forward dynamics (see below).

When the target has been reached, the task monitoring peak solution destabilises
(see Fig. 5.6 B). The activity in the neural node decreases until �tm < ✏. At this point,
the threshold shifts to the inactivation value h� = hrest < 0. This value, beyond the
bifurcation point for both type of fields, causes a reverse detection instability in the
a-DNFs and in the m-DNFs, bringing usk and uMk

to the resting state.

The monitoring block is then responsible for the activation of all the motor
representations necessary to carry out the motor task, and for their reverse detection
instability when the task is completed. This control process is implemented using
a neural node linked to the resting level of the fields in the controlled blocks. Note
that hrest must be negative in order to force a ;�solution (i.e., no localised solution
exists; see Section 4.2) and that this procedure is equivalent to increasing the output
function threshold h of the controlled fields; i.e., hs,M = �h�.

The shifting of the resting potential of the field (and not of the neural threshold)
is inspired by empirical findings. It is found that pre-activation of some neural pools
involved in working memory processes occurs as a consequence of an increase in the
baseline potential, here modelled by h� (D’Esposito, 2007; Spencer et al., 2009).
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Figure 5.6: The adaptive threshold during a reaching task. (A): target detection
activates the task monitoring utm, the activity of the �tm node increases so that
h� = 0 allows for a stable motor representation in the spinal memory block
(usk ,uMk). (B): task completion triggers reverse detection instability in the tm-
DNF; the activity of the �tm node decays to zero. When �tm < ✏, h� = hrest and
the DNFs in the spinal block destabilise. Red (blue) arrows represent detection
(reverse) instability; t represents the timeframe considered for plots.
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Computing Dynamics with SAM

The combination of persistent bump solutions weighted by activations, according
to the spinal attractor model, represents the principle of motor summation, explored
in Section 2.3.1. This principle can be modelled using the DNF representation follows:

uE(r, t) =
PX

k=1

skuMk
(r, t). (5.25)

Equation (5.25) is the equivalent in the model for the spinal circuitry from which
force fields can be recorded and is the representation in the Dynamic Field Theory
account of the spinal attractor model (note that the derivative term in Eq. (5.25) is
necessary to stabilise the dynamic of the manipulator model of choice). An example
of motor primitives summation with the DNFs representation is given in Fig. 5.3 B.

The SAM block implements the spinal attractor model control law and gives the
forces to guide the robotic model used to test the architecture, in this case, the 2-R
planar model described in Section 4.4, with control law introduced in Section 5.2.1.

Attractor dynamics in the DNFs of the spinal memory block encode the SAM
model in terms of motor features representation. The transduction of the peaks of
activation into motor variables guides the robotic interface. This can be done using
neural nodes as defined in Eq. (3.12) in Chapter 3 (Sandamirskaya, 2013).

Alternatively, some authors have borrowed from physics the concept of centre of
mass, defining the position on the field corresponding to the highest activation as
follows (Fard et al., 2015):

xMAX(t) =

R
R[u(x,t)] u(x, t)xdxR
R[u(x,t)] u(x, t)dx

. (5.26)

where the part of the field considered is the one active above threshold R[u(x, t)],
defined Section 4.2. This is somehow reminiscent of the first method, encoding mapped
features into rate variables using nodes (Sandamirskaya, 2013), but considering the
process instantaneous.
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Developing the model, it was noted that if one defines

w
u(x, t) = x/

 Z

R[u(x,t)]

u(x, t)dx

!
, (5.27)

Eq. (5.26) can be rearranged as follows:

xMAX(t) =

Z

R[u(x,t)]

w
u(x, t)u(x, t)dx. (5.28)

Considering that the integral of the field variable for localised solution is limited
and can be reasonably assumed constant, it follows that wu(x, t) = wu(x) = kx.
One can argue that this formulation can be interpreted as the integration of the
field activation weighted by an activity-normalised synaptic footprint, that is the
representation of a broad and instantaneous synapse transforming a neural input into
a motor activation variable.

From this perspective, this model resembles the mechanism of the neuromuscular
junction, where neural electric signal is converted into a biochemical signal that drives
sarcomere recruitment (see Chapter 2). For this reason, Eq. (5.26) defines what is
called in the following a synaptic node. This interpretation is further discussed in
Chapter 6.

The synaptic node is used to extract from the field representation the values of
activation needed to compute the spinal attractor model. In a similar fashion one can
extend this concept associating some motor activation variables to two-dimensional
neural fields:

xMAX(t) =

Z

R[u(r,t)]

w
u
x(x, t)u(r, t)dr

yMAX(t) =

Z

R[u(r,t)]

w
u
y (y, t)u(r, t)dr,

(5.29)

where the weighting functions are defined as:

w
u
x(x, t) =

xR
R[u(r,t)] u(r, t)dr

, w
u
y (y, t) =

yR
R[u(r,t)] u(r, t)dr

,
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with (x, y) = (r cos ✓, r sin ✓).

Using synaptic nodes, defined by Eqs. (5.28) and (5.29), linked to both blocks
composing the spinal memory block, it is possible to extract the values of the motor
features. In particular, each activation sk and each spinal attractor position x

Mk is
given by a synaptic node associated with the fields usk and uMk

respectively:

sk(t) =

Z

R[usk ]

w
us(x, t)usk(x, t)dx

x
Mk(t) =

Z

R[uMk
]

2

4w
uM
x (r, t)

w
uM
y (r, t)

3

5 uMk
(r, t)dr.

(5.30)

The SAM block receives activations and spinal attractors, described in Eq. (5.30),
and gives the forces necessary to move the joints, computed using Eq. (5.15). This
results in a force field with an equilibrium point in which the force vector is zero, like
the one plotted in Fig. 5.3 C.

For simplicity, this point is taken as the target point of the task; nonetheless,
considering a series of signals sk(t) varying in time, such an equilibrium point could
shift on the workspace modelling a more complex behaviour. Further considerations
on the representation of motor primitives in the dynamic field framework and on how
this could account for a greater motor repertoire are discussed in Chapter 6.

The robotic model block computes the new position of the end effector solving the
Lagrange equation associated with the robot using the spinal attractor model forces:

fM(x)ẍ+ eC(x, ẋ)ẋ = �

PX

k=1

sk

⇣
x� x

Mk

⌘
�

PX

k=1

sk (ẋ) , (5.31)

where it is considered ẋ
Mk = 0 as a consequence of the jumpy representation of motor

attractors offered by the adaptive threshold guided by the task monitoring. The
result of the forward dynamic x = (xE, yE) is brought back to the task monitoring
that determines if the current target has been reached.
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5.4 Simulations and Results

The proposed architecture is implemented using Matlab (MATLAB, 2021). In the
first part of this section, numerical methods for the model presented in Section 5.3
are discussed. In the second part, results of the simulation of a reaching task are
presented and a method to construct travelling peaks is outlined, adding up to the
repertoire of elemental behaviours in DFT. Relevant scripts and functions are attached
in Appendix A.

5.4.1 Numerical Methods

Firstly, the space of features spanned by neural fields is discretised in a finite
number of grid points. For a one-dimensional neural fields of finite length L, the
number of points selected is N = 2n, with n 2 Z, so that the spacing unit is
�x = L/N . It follows that xi = i�x, i = �

N
2 , . . . ,

N
2 � 1. The discretised in space

version of Eq. (4.1) becomes:

1

↵

@ui(t)

@t
= �ui(t)+

L

2N

N/2�2X

p=�N/2

⇥
wi,pf(up(t)) + wi,p+1f(up+1(t))

⇤
+Ii(t)+hrest, (5.32)

where ui = u(xi, t) represents the value of the discrete state variable at the i-th
grid-point at time t; wi,j = w(xi � xp) is the connection weight between presynaptic
grid point location p and postsynaptic grid point location i in the grid space; Ii is
a generic discrete input function. Integration in space is approximated using the
trapezoidal rule (Glasgow, 2014).

Secondly, a discretisation in time is performed so that t = k�t, for �t small and
k 2 Z. Application of the Euler method leads to Algorithm 1, describing numerical
integration of the field equation, where u[k] and I[k] represent N ⇥ 1 vectors and T

is the duration of the simulation.

Lastly, to improve the performance of Algorithm 1, convolution can be performed
using the Fast Fourier Transform (FFT) (Frigo & Johnson, 2014) as described by
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Algorithm 1 Euler Method for 1D Neural Field Equation
for k = 1 : T do

for i = 1 : N do
ui[k + 1] = (1� ↵�t)ui[k]+

+↵�t

n
�x
2

PN/2�2
p=�N/2

h
wi,pf

�
up[k]

�
+ wi,p+1f

�
up+1[k]

�i
+

+ Ii[k] + hrest

o

end for
end for

Algorithm 2 1D Neural Field Equation: Fast Fourier Transform for Convolution
cW = ↵t(W )

for k = 1 : T do
u[k + 1] = (1� ↵�t)u[k]+

+↵�t

n
�x


i↵t

⇣
cW. ? ↵t(f(u[k]))

⌘�
+ Ii[k] + hrest

o

end for

Algorithm 2, where W is the N ⇥ 1 synaptic weight vector and cW is its 1D Fast
Fourier Transform, computed once at the beginning of the simulation; (.?) is the
product element by element.

Some Matlab built-in functions are used: ↵t for direct Fourier transform and
i↵t for inverse transform. Frequencies are re-centred using the built-in function
↵tshift, necessary in Matlab environment (MATLAB, 2021). Toroidal conditions are
implicitly applied, since FFT implements circular convolution. Integration in time of
one-dimensional neural field in Eqs. (5.17) and (5.20) are computed using Algorithms
1 and 2 adapted for the field and the adaptation variable (see Appendix A.1 for the
complete algorithm).

In a similar fashion, two-dimensional neural fields are defined over a N ⇥ N

discretised space, with spacing units �x = �y = L/N , so that xi = i�x and
yi = j�y, for i, j = �

N
2 , . . . ,

N
2 � 1. The discretised in space version of Eq. (4.46) is

then:

166



Chapter 5. A Physiologically Based Model for Spinal Motor Control

1

↵

@ui,j(t)

@t
=� ui,j(t)+

+
L
2

4N2

N/2�2X

p,l=�N/2

⇥
wij,plf(up,l(t)) + wij,(p+1)(l+1)f(u(p+1),(l+1)(t))

⇤
+

+ Ii,j(t) + hrest,

(5.33)

where ui,j = u(xi, yj, t) represents the value of the discrete state variable at the
grid-point (i, j), at time t; wij,pl = w(xi�xp, yj �yl) is the connection weight between
presynaptic grid point location (i, j) and postsynaptic grid point location (p, l); Ii,j
is a generic discrete input function; integration in space is approximated using the
trapezoidal rule (Glasgow, 2014).

Using time discretisation and the Euler method to integrate the neural field
equation gives Algorithm 3. The convolution in two dimensions using the FFT
algorithm (Frigo & Johnson, 2014) leads to Algorithm 4, where u[k] and I[k] represent
N ⇥N matrices, W is the N ⇥N synaptic weight matrix and cW is its 2D FFT.

Algorithm 3 Euler Method for 2D Neural Field Equation
for k = 1 ! T do

for i = 1 ! N do
for j = 1 ! N do

ui,j[k + 1] = (1� ↵�t)ui,j[k] + ↵�t

n
�x�y

4
PN/2�2

p,l=�N/2

h
wij,plf

�
up,l[k]

�
+ wij,(p+1)(l+1)f

�
u(p+1),(l+1)[k]

�i
+

+ Ii,j[k] + hrest

o

end for
end for

end for

Matlab’s two-dimensional FFT functions used are ↵t2 for direct transform and
i↵t2 for the inverse transform. Re-centering of zero frequencies requires the use of
↵tshift in Matlab environment (MATLAB, 2021). Toroidal conditions are implicitly
applied, since FFT implements circular convolution. Numerical integration in time of
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Algorithm 4 2D Neural Field Equation: Fast Fourier Transform for Convolution
cW = ↵t(W )

for k = 1 ! T do
u[k + 1] = (1� ↵�t)u[k]+

+↵�t

n
�x�y


i↵t2

⇣
cW. ? ↵t2(f(u[k]))

⌘�
+ Ii,j[k] + hrest

o

end for

two-dimensional neural fields in Eq. (5.21) uses Algorithms 3 and 4 adapted for the
field and the adaptation variable (see Appendix A.1 for the complete algorithm).

The neural node in Eq. (5.24) is integrated using the Euler method. Synaptic
nodes of Eqs. (5.28) and (5.29) are approximated with the Riemann sum (McLeod,
1979, see Appendix A.1.1).

Forward dynamics are calculated integrating Eq. (5.31) using Matlab Runge-Kutta
solver function ode45 (Shampine & Reichelt, 1997), presented in Algorithm 5. Each
time step of the solver computation is considered one time-step in simulation time.

Algorithm 5 ODE Solver for Forward Dynamics
h
x[k], ẋ[k]

i
= ode45

n
function handle (Eq. (5.31)),

h
t[k], t[k + 1]

i
,x[k � 1]

o

For the trajectory T [k] = x[k] = (xE[k], yE[k]) the measure of straightness is
computed using the straightness index (Batschelet, 1981):

S =

PT
i=1 d[k]

dS
, (5.34)

where d[k] is the distance between two consecutive points of the trajectory and dS is
the length of the straight line connecting the first point of the trajectory to the last:

d[k] =
��T [k + 1]� T [k]

��,

dS =
��T [T ]� T [1]

��.

Straightness S is maximum (i.e. S = 1) when the trajectory is the straight line.

168



Chapter 5. A Physiologically Based Model for Spinal Motor Control

5.4.2 Simulating a Reaching Task

Algorithm 6 outlines the workflow used to simulate a reaching task. Parameters
for the type of solutions of choice are loaded using the function setparams (step 1).
The function synapticfoot specifies the exponential or Mexican hat shape of the
synaptic footprint for each field (step 2).

Algorithm 6 Simulation: Reaching Task
1: loading parameters for neural fields models: setparams(solution type)
2: computing synaptic footprints: synapticfoot(x,A, �)
3: initialising state variables
4: Fourier Transform synaptic footprint for convolution: W ! cW
5: for k=1:tspan-1 do
6: compute the transform of the output of DNFs variables: f(u, h) ! cFU

7: perform convolution using transforms: cW. ? cFU

8: update neural node and field variables (Euler Method)
9: if �[k] > ✏ then . the motor task is taking place

10: extract motor output for SAM: synapticnode(x, u, h)
11: simulate forward dynamics: ode45(@twolink,sk,xMk , . . . ) ! x

12: end if
13: update task monitoring input
14: end for

At the beginning of the simulation all fields are inactive and the task monitoring
receives the position of the end effector and the position of the target in workspace
coordinates (step 3). The synaptic footprints, by virtue of the properties of circular
convolution, can be transformed once thanks to the FFT method for convolution
(step 4).

Integration of the equations of the model (steps 5-6), using transforms for convo-
lution (step 7), allows activations and motor primitives to be represented by stable
peaks of activation, gated by the task monitoring node � (step 8) associated to utm.
If the latter has signalled the onset of the task by means of a self-sustained peak,
then the condition to evaluate motor output is met (step 9).
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Synaptic nodes evaluate the information carried by a-DNFs and m-DNFs, using
the function synapticnode, and drive the robotic set-up, setting the attractor
dynamic for the control law used to solve the forward dynamics (step 10). Note that
alternatively the resultant field of activation could be computed using Eq. (5.25).
Possible uses of this representation of the resultant motor plan are discussed as further
developments in Chapter 6.

Simulation of the dynamics, described in the function file twolink, gives x that
contains the kinematics relative to the position and velocity of the end effector
of the robot (step 11). The former is used to update the input amplitude of the
task monitoring, awaiting task completion (steps 12-14). When the target has been
reached, the neural node becomes inactive (�[k] < ✏) (step 9), the spinal memory
block is brought back to inactivation, lowering the resting state level. No motor
commands are available and the robot keeps the last position (steps 13-14).

The behaviour of the task monitoring, responsible for the autonomous development
of the task, and of the associated node is represented in Fig. 5.7, where it is possible
to observe the detection instability when the target is presented and the forgetting
instability after target has been reached. Some modulation of the input value at zero
distance, for instance a smaller value I(xEP )  Isn or a different threshold ✏, could
be used to model different level of precision required for the reaching movement.

In Fig. 5.8 trajectories on the plane (xE, yE) are illustrated, together with related
neural fields activity for three reaching tasks, using the same two motor primitives
M1 and M2 and changing activation signals. In the first (reaching task A), activation
selection is s1,2 = [1, 0] so that the resultant motor plan is the first motor primitive
with equilibrium point in (xE, yE) = [20, 20] on the workspace. The second reaching
task (reaching task B) uses s1,2 = [0, 1], so that this time the active primitive is
the second with equilibrium point in (xE, yE) = [20, 30]. The third task (reaching
task C) shows the simultaneous activation of M1 and M2, with selection signal
s1,2 = 0.5[1, 1]. The resultant activation, given by motor summation, has equilibrium
point in (xE, yE) = [20, 25].

In Fig. 5.9, simulation C of Fig. 5.8 is presented in more detail, including the
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Figure 5.7: Task Monitoring Block. Left: time course of the task monitoring
activation showing a self stabilising solution at the beginning of the motor task.
As the distance between the target and end effector decreases the stable bump
destabilises and disappears signalling task completion. Right: the activation of
the associated neural node � and the adaptive threshold h�.

time course of the coordinates of the robot links, associated velocity profiles and
an example of resultant force field. It is possible to observe that the target point is
successfully reached and that trajectories are quasi-straight with S = 1.005, calculated
by Eq. (5.34). Velocity profiles present a peak but do not have the bell-shaped time
course: considerations on how to model this finding on voluntary movements are
further addressed in Chapter 6.
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Figure 5.8: Results of three reaching tasks (A-C). First row: activation DNFs plot
representing the selection signal. Second row: result of motor primitive selection.
Third row: trajectories resultant from simulation of the forward dynamics. See
text for further details.
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Figure 5.9: Example of resultant force field (left plot) for the reaching simulation
C in Fig. 5.8 and kinematics of the end effector (right plots). In the resultant
force field plot (black field vectors), the simulated trajectory (grey line), starting
from the initial position (grey square) reaches the end position (black cross) in
the target zone (black wide circle around the target, inner grey dot).
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Code for the reaching simulation and functions in Algorithm 6 are provided in
Appendix A.1. The parameter used for simulation are listed in Table 5.1 for the
task monitoring, in Table 5.2 for the activation DNFs and in Table 5.3 for the motor
primitives. Other parameters include the specifications for the robotic manipulator,
reported in Table 5.4 and parameters relative to the numerical simulation, listed in
Table 5.5.

Robotic Manipulator Parameters
mass of segment (0)-(1) m1 1.74
mass of segment (1)-(2) m2 0.942
length of segment (0)-(1) l1 30
length of segment (1)-(2) l2 23.2
derivative SAM gain gSAM,d 2.4

Table 5.4: List of parameters for the 2-R planar robot. Mass and
length of segments are taken from anthropomorphic tables (Winter,
2009), for height= 160 cm and weight= 60 kg.

Simulation Parameters
number of grid points N ⇥N 1024⇥1024

neural fields grid spacing �x, �y 0.0781

Euler time step dt 0.1

simulation time T 100

threshold for neural node ✏ 1e� 10

time constant for neural node ⌧� 0.25

Table 5.5: List of parameters for the reaching task simulations.
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5.4.3 The Drifting Instability

The development of the architecture outlined above, together with the extensive
application of the Evans function method to study the stability of solutions in the
Dynamic Field Theory, leads to the consideration that control design can be further
extended to other types of instabilities, which might be suitable to model processes
of the brain. For example, one could argue that the on-off representation of sensory-
motor coupling during the development of a motor plan is not very plausible. A
representation including propagation over the feature space could actually be more
biologically representative.

Travelling waves moving onto a one-dimensional space of features have already
been used to model aspects of cognition. The movement of peaks of activation, in fact,
can be used to represent extrapolatory perception and to predict the position of visual
targets that are moving, even when occluding objects partly suspend sensory feedback.
This is the result of combined sensorimotor integration and priming mechanisms that,
increasing the baseline potential, allow for the emergence of a drifting solution. The
shifting representation in this case behaves like an embodied internal model of the
moving object (Erlhagen, 2003).

In two dimensions, the architecture by Fard et al. (2015) presented in Section 3.4.1
represents a possible application of traveling pulses on a planar features space that
have a direct impact on movement invariants, determining the shape of the velocity
profile as a consequence of a skewed synaptic footprint. In this section a strategy to
design traveling peak solutions in two dimensions that leaves unaltered the connections
of the field is presented.

In order to obtain a travelling spot, the first thing to determine is the type of
perturbation necessary to destabilise a radially symmetric stable solution towards
one preferred direction. Numerical simulations show that breathing and shifting
instabilities can coexist, confirming the theoretical analysis reported in Section 4.3.3
(Coombes & Owen, 2004).

It was expected that pure breathing-like dynamics would arise simply as a con-
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sequence of a choice of parameters beyond the bifurcation point and for radially
symmetric perturbations, centred with respect to the initial standing peak solution.
This was confirmed numerically and an example of such breathing behaviour is
presented in Fig. 5.10.
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Figure 5.10: Breather-like behaviour from a m = 0 perturbation of a standing
pulse solution. Top: 2D planar plot of the breather at four sample times shown
as grey dots in the bottom panel. Bottom: evolution of the radius of the pulse in
time (grey solid line). Parameters: [A,�, h, g,↵] = [0.25, 2, 0.12/(1+ g), 0.7, 3] and
[�0,�1] = [10.15, 1.1]. Numerical simulation parameters are listed in Table 5.7.

Perturbations centred at the boundary of the radial peak solution produce a
shifting of the bump solution. Remembering that �s is the radius of the unperturbed
standing peak solution, a perturbation of this type is defined as follows:

Ip(r, t) =

8
><

>:

ape
�(r�rp)2/2�p t  tp

0 t > tp

, (5.35)

where rp = (�s,�p) and ap, �p, �p and tp are the amplitude, the angular position, the
dispersion and the duration in time of the Gaussian-shaped perturbation, respectively.

Simulation of the field equation in two dimensions in Eq. (4.60), with the input
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perturbation defined in Eq. (5.35), is plotted in Fig. 5.11. The value �p, as expected,
defines the direction of motion of the spot. A perturbation with angular position
�p and amplitude ap < 0 is equivalent to a perturbation at the boundary in �p � ⇡

with ap > 0 in terms of direction of motion of the peak solution. Parameters for the
drifting instability and for numerical simulation are listed in Tables 5.6 and 5.7.

Although some damped breathing oscillations are observed at the beginning of the
simulation, travelling behaviour prevails for perturbation that are narrow and with
sufficient amplitude. The duration of the perturbation must be kept small enough to
avoid formation of multi-bump solutions. A higher value of g is used in comparison
to the simulation of the breather in Fig. 5.10, clearly beyond the bifurcation point.

Figure 5.11: Travelling spot emerging from a m = 1 perturbation of a standing
pulse solution. Top left: representation of the level set h of a standing solution
and two equivalent perturbations for a desired direction of motion defined by
�p = 0�. Top right: 2D planar plot of the travelling pulse at four sample times
(grey dots in the bottom panel). Bottom: evolution of the radius of the pulse
(grey line) and speed (black line) in time.

A discussion on the shape of travelling spots can be done for small c drifting
instabilities arising at the bifurcation (gc = 1/↵), proving that contraction of their
shape occurs in the direction of propagation, whereas a widening is observable
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orthogonally, both phenomena increasing with c (Coombes & Owen, 2004). These
findings are illustrated in Fig. 5.12 where different velocities for the traveling peak
are simulated increasing g.

It can be also observed that moving further from the critical value gc = 1/↵, the
breathing behaviour increases in frequency, as anticipated in the study by Coombes
et al. (2012) and for greater values of adaptation gain, g >> gc, the solution collapses
and the field returns to the ; - solution, confirming the results of the analysis reported
in Fig. (4.10).

The use of traveling solutions in the presented architecture is left to further
developments. Considerations on the use of drifting instabilities in the DFT framework
are discussed in Chapter 6. Code for simulation of traveling peaks is provided in
Appendix A.2.

Figure 5.12: Contour plot of the travelling spot for c = 0, 1, 2. Colormap shows
active zones above threshold in red and resting state in dark blue; the direction
of motion is represented by the white arrow. Parameters are the same listed in
Table 5.6, except for ↵ = [3, 3.5] for c = [1, 2] respectively.
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Traveling Peak Solution
inverse time constant ↵ 3

adaptation inverse time constant � 0.5

synaptic footprint amplitude A 0.25

synaptic footprint dispersion � 2

synaptic depression gain g 0.5

threshold h 0.0774

perturbation amplitude ap 2

perturbation dispersion �p 0.25

perturbation duration tp 0.1

Table 5.6: List of parameters used to simulate a traveling peak solution
in a 2D neural field with adaptation and perturbation at the boundary.

Simulation Parameters
number of grid points N ⇥N 1024 ⇥

1024

neural fields grid spacing dx, dy 0.0586

Euler time step dt 0.1

simulation time tspan 400

Table 5.7: List of parameters used for numerical simulation of a
traveling peak solution.
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5.5 Conclusions

In this chapter the two components of the proposed architecture for motor control
are presented: a physiologically inspired model for movement formation in the spinal
cord and an associated DNFs architecture for spinal motor control.

The first, formalised by the spinal attractor model, is defined in terms of a control
law based on a two-dimensional representation of elemental motor activations: the
motor primitives.

The second consists in a DNFs architecture for the spinal attractor model, that
includes models for autonomy, sensory-motor integration and working memory. The
equations describing each motor control task are presented and two types of nodes
connecting them are introduced: the neural node, guiding an adaptive threshold, and
the synaptic node transforming neural activity into motor activation for the SAM.

Numerical methods to simulate the proposed architecture are given, with particular
attention to methods for convolution that use Fast Fourier Transforms. Simulations
of reaching tasks with resultant trajectories and DNF activations are presented. A
method, developed in parallel, for the construction of drifting instabilities is described
together with an example of simulation of a traveling peak solution.
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Discussion

6.1 Introduction

In this last chapter, the results of the simulation of the proposed model for spinal
motor control are discussed, considering the biomechanical and neural background
knowledge presented in Chapters 2 and 3.

In Section 6.2, a critical perspective is offered on the contributions of this thesis
listed below, in accordance with the aims outlined in Chapter 1. Physiological
components of motor control modelled by the architecture presented in Chapter 5 are
discussed, together with behavioural findings accounted for by the spinal attractor
model. Limitations of the proposed model are explored.

In Section 6.3, further developments of the model are considered, including possible
simulation scenarios as well as the impact on related fields.

List of Contributions:

1. The development of a coherent account for movement formation,
based on a mathematical representation of spinal motor primitives
and motor summation in the DFT framework, overcoming the need
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for inverse dynamics computation.

2. The development of a model for sensory-motor integration and
autonomy in the spinal cord using DNFs;

3. The integration of existing methods for motor variables mapping into
a unique account that is connected to the physiology of the motor
system;

4. The development of a general methodology for the design of DNFs
controllers, providing mathematical tools for stability analysis, numer-
ical methods for simulation and introducing the drifting instability
as a new elemental behaviour.
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6.2 A Coherent Framework for Embodied Motor

Control

Understanding motor control is at the core of the research of a several disciplines,
including branches of physiology, neuroscience, biomechanics and robotics. The
aim is always common: understanding coordination. This means understanding
and simulating processes that go from microscopic, as could be the dynamics of
calcium in muscles contractions, to macroscopic, as could be the development of
anthropomorphic robotics, as discussed in Chapters 2 and 3.

Behind this coordination problem, there are concurring neural processes, deeply
rooted in the particular interaction that the musculoskeletal system can afford within
the environment. A number of models have been proposed to explain empirical
findings. These include muscle force development patterns, kinematic and dynamic
properties of voluntary movements, the topological organisation of the spine and
of cortical regions involved in motor planning (see Section 2.2 for a review of these
findings).

Reverse engineering strategies have been broadly used whenever confronting the
challenges posed by the degrees of freedom problem. Traditional approaches to
motor control are based on optimisation strategies and internal models, sharing
the same perspective of a hierarchical organisation of motor control. According to
these accounts, muscle activation selection is based on the minimisation of some cost
function or on learned representations of the motor system that are able to anticipate
the motor outcome, producing the correct muscles activation (see Section 2.3).

Analytical functions and robotic controls, despite accounting for some motor
invariants and producing appropriate motor responses for the tasks they are built for,
do not have a biological counterpart so that they are not well suited to infer or study
the underlying processes. Robotic applications also show poor adaptivity whenever
tested in new environments (see Section 3.4.1).

Despite the common neural substrate, models that use neural networks present
a similar problem. Since motor redundancy is solved using learning algorithms, it
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is represented as an output mapping that cannot be easily interpreted in terms of
interactions between the neural and muscular substrate, both concurring to purposeful
movement formation. In the same way, the need for tuning to adjust parameters
affects the behaviour of the network with high sensitivity. This prevents from having
a univocal physiological meaning assigned to them and from the possibility to use
single parameters to model different cognitive behaviour.

The methodology described in this thesis, on the contrary, allows for a clear
visualisation of the effects of parameters on the type of behaviour displayed by the
fields. This gives the flexibility to obtain the desired type of attractors associating its
emergence with parameters that have physiological relevance in the process. A clear
example is the priming effect, modelled using an adaptive threshold, that allows for
the emergence of working memory instabilities, leaving unaltered those parameters
not concurring to the physiological process of interest.

Neural networks models tend to be successful in determining activation weights
and clustering, addressing the trajectory generation problem (Bekey & Goldberg,
1993). Nonetheless the type of learning they implement is ultimately linked to an
optimisation algorithm, too abstract for a biological interpretation and not able to
generalise in a way that is comparable with biological systems.

The stance taken in this thesis supports the main criticism to these analytical
approaches to motor redundancy, supported by a growing number of studies (Giszter
& Hart, 2013; Graziano et al., 2002; Latash, 2012; Miranda et al., 2018). Cost
functions, optimisation algorithms and internal models based on robotic controls and
neural networks lack a physiological counterpart, representing input/output mapping
functions that are often not only task specific, but highly dependent on parameters
tuning and on the training set.

As discussed in this thesis, the DoF problem can be represented in terms of a
sequence of reduction in the number of unconstrained variables of the musculoskeletal
system for a given task. Alternatively, the abundance of configuration that satisfy a
motor task can be considered as an asset. Rethinking the DoF problem in terms of a
distributed mechanism responsible for the high adaptivity of biological system means
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considering the problem from a new perspective. Motor control is then represented
by those strategies that can be advantageously used for successful interactions with
the environment, in terms of continuous sensorimotor integration. In this perspect-
ive, motor invariants emerge as a consequence of these processes and they are not
considered anymore as criteria to reduce the number of independent variables of the
system.

This view is supported by the embodied cognition ansatz that, representing a
general opposition to the one directional top-down organisation of motor control,
supports models that redistributes motor control (as in the architectures composed by
embodied layers by Brooks (1991)). The solution to the DoF, in this account, emerges
from multiple levels of sensory-motor integration: from cortical motor planning, to
motor activation selection in the spinal cord (see Chapter 3). The general goal
of understanding coordination translates into investigating how motor control is
coordinated at every level, from the cortex to the spinal cord.

It can be hypothesised that some internal models might be reconciled to the
embodied perspective, if one considers learning motor strategies in terms of sensory-
motor mapping and not sequences of abstractions and functions. It has been pointed
out already that refined motor control, as the one performed during voluntary
movements in human, and other form of higher cognition cannot be simply reduced
to reflex-like models (Shapiro, 2012).

Available models proposed in the DFT account already consider adequately
sensorimotor integration and strategies for learning and timing. Furthermore, recent
developments considered in Section 3.4, give an embodied substrate to elements of
robotics control such as mapping, as seen in the architecture by Rudolph et al. (2015),
and the adaptive observers developed by Fard et al. (2015). Both examples show how
internal models can be included in the embodied framework using dynamic neural
fields and how these can address the problem of motor activations selection at a
higher level (i.e., the sk signals in the proposed model).

The introduction of drifting peak solutions, already used to model perceptual
extrapolation and predictive representations of visual inputs (Erlhagen, 2003), further
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supports the possibility to develop model for cognition in DFT that include internal
models emerging from sensorimotor integration and motor learning (see Section 6.3
below).

Although such models are very well suited to explain higher cognitive functions
(e.g., motor planning, motor learning and visual and proprioceptive mapping), existing
cognitive robotics models fail to address in the same embodied and biologically
motivated manner the final stage of motor control. This consists in the computation
of the forces at the joint, solving the degrees of freedom problem at the level of the
spinal cord, where muscles are recruited. The use of strategies to compute the inverse
dynamic problem (see Section 4.4) associated with the robotic interface, or models
based on attractor dynamics, conceptually does not match the embodiment typical
of the rest of the reviewed DNFs architectures. Furthermore, it limits the possibility
to use such models to investigate the last stage of movement formation, involving
the way in which muscles are recruited and organically activated to interact with the
environment.

The neural fields architecture proposed here and the spinal attractor model aim
at filling this gap, proposing a model for spinal movement formation that does not
require the solution of the inverse dynamics of the motor system to compute the
forces at the joints. The major challenge encountered modelling motor control, in this
sense, was avoiding the development of another task-specific control architecture with
limited capability to generalise and to increase our knowledge regarding physiological
structures involved in motor control.

The proposed model contributes to the understanding of motor control adding
the local processes carried out in the spinal cord. Considering empirical evidence
regarding sensorimotor integration at this level, the architecture was developed
in a way that is compatible with cognitive models in DFT. Controllers offer a
representation of cortical motor plans, that could be encoded by cortical DNFs in
further developments, as activations neural fields, and local memorised patterns of
muscle activation, namely the motor primitives, encoded as two-dimensional attractors
in dynamic fields spanning over the workspace. These motor features integrated with
sensory signals are used for the computation of the forward dynamics and sent in
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feedback to a monitoring field that can represent spinal reflexes, allowing for the
architecture to run autonomously. An adaptive threshold stabilises the representation
of motor features and the subsequent synaptic encoding, inspired by the neuromuscular
junction, makes them available for the computation of the resultant force field, using
the spinal attractor model control law.

This approach successfully leads to the emergence of some motor invariants, such
as straight trajectories generalised to the whole workspace, and unimodal velocity
profiles. The last result supports the idea that a more bell-shaped profile cannot be
motivated by musculoskeletal properties but emerges from either cortical strategies
or motor learning, the latter leading to more refined motor primitives.

This novel account is inspired by empirical findings and for this reason can easily be
connected to models that use the summation hypothesis, associating motor primitives
to direct muscles recruitment, that is the lower level of the DoF problem. Simulations
of the sole spinal motor control model already confirm that a small number of muscles
synergies, encoded by motor primitives as attractors of the field equation and selected
by cortical activations, can account for a greater motor repertoire. Namely, two motor
primitives are enough to generalise reaching tasks to the whole planar workspace.

In summary, the model described in Chapter 5 gives the forces in terms of
a force field emerging from sensorimotor integration, representing the empirical
correlate of force fields recorded in the spinal cord. It also represents the linking
element between cognitive robotics that model cortical processes and motor learning.
The spinal attractor model and the spinal controllers developed in this work can
significantly contribute creating a unified, fully embodied framework to study motor
control. Within this account, the construction of internal representations grounded
on sensorimotor processes can be directly linked to existing biomechanical models
that explain muscles synergic recruitment, addressing the degrees of freedom problem
in full.

Future developments include a mapping of activations sk carried out by cortical
neural fields and the association of the motor primitives Mk used in the control law
with models that map muscle activations onto them. The simulation of architectures
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of this type, that include a model for the spinal cord like the one proposed in this
thesis, can contribute shading light onto debated topics regarding motor control,
testing inferences and developing experimental studies to confirm them whenever
possible.

The clear definition of a methodology for the design of neural controllers and the
proposed simulation framework for the field equation complete the account to explore
motor control using DFT and robotic models. In the following, contributions in terms
of simulation results and methodological advances are discussed in detail.

6.2.1 Contribution 1. The spinal attractor model for direct

movement formation

The creative approach to modelling the coordination of motor control at the level
of the spine stems from a review of the bio-physiological findings on motor control.
Translation of such findings in terms of the available tools in the Dynamic Field
Theory is the peculiarity of the proposed model.

From the first studies on deafferented and intact animals, suggesting a modular
and topological organisation of synergic muscle patterns in the spinal tract, to recent
study on vertebrates including EMG recording and clustering of muscle synergies,
the concept of motor primitive emerged as an elemental motor behaviour, a movemes
(i.e., the motor version of the element of speech, phonemes ; Del Vecchio et al., 2003;
Flash and Hochner, 2005). The fundamental hypothesis is that a combination of such
primitives can be used to model a broader movement repertoire (Kargo et al., 2010,
see Section 2.3.2).

In the DFT, the neural processing associated to motor control is represented by
the concept of elemental behaviour (EB), that is the emergence of a peak of activation
over two-dimensional neural fields (or their reverse transition to a homogeneous resting
state). An embodied account requires the cognitive and motor instances of the agent
to be coupled (Spencer et al., 2009), sharing the same representational substrate.
From this consideration, the idea to represent motor primitives as attractors of neural
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fields was developed.

The proposed model for motor control described in Chapter 5 is based on the
hypothesis of motor primitives summation, giving a dynamic field representation of
motor activation selection that is intrinsically embodied. The resulting framework
for movement formation is compatible with existing DNFs architectures for higher
cognition that, using the spinal attractor model, would not require the solution to the
inverse problem to compute joint activations. This gives the main contribution of
this thesis and fulfils the first of the aims of this project (see Chapter 1 for the list of
aims).

Given the representation of motor primitives in the sense of DFT, introduced
in Section 5.3, it is possible to obtain a resultant motor plan, provided appropriate
activation signals. The location of the centre of mass of the resultant motor plan
sets the equilibrium point for the attractor dynamic. Equation (5.31) defines the
direct method to compute the dynamics of the system, by means of sensory-motor
integration in the spinal cord giving a resultant force field dependant on the position
of the end effector. The derivative term is added to stabilise the control law for the
planar robot used for testing.

The spinal memory block encodes activations and motor primitives as self-sustained
peaks for the duration of the task. These motor representations are encoded by
synaptic nodes and passed to the SAM block that gives the forces necessary for
successful reaching tasks, generalising the behaviour to any point in the workspace
from a minimum number of two attractor-like motor primitives, as presented in
Fig. 5.8.

The emerging motor plan, defined by Eq. (5.25), gives the model correlate of
the recorded force fields, plotted along with the trajectory and the kinematics of a
reaching task in Fig. 5.9. Results show that the model can account for the typical
straightness of human reaching (Morasso, 1981), fulfilling the fourth aim of this
project (see Chapter 1).

The proposed architecture, including the task monitoring model for timing that is
discussed in detail below, offers a unified perspective on motor control. The possibility
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to connected it to other existing architectures gives a unified embodied framework
to understand the development of voluntary movements. From visual elaboration to
muscle activations, this coherent approach to select appropriate motor activations
completes the behavioural loop.

This account supports a growing number of studies on voluntary movements in
vertebrates, indicating that the redundancy of the motor system is resourcefully used
to compose the motor task by means of an ensemble of motor primitives, scaled and
appropriately delayed. The architecture developed in Chapter 5 supports and models
the following empirical findings on spinal circuitry and motor primitives:

– Motor primitives are movemes (Del Vecchio et al., 2003), invariant ele-
mental units of motor activation (Overduin et al., 2008).

– The neural correlate of motor primitives is represented by interneuron
circuitry in the spinal premotor area (Flash & Hochner, 2005; Hart &
Giszter, 2010). It makes sense then to represent them with dynamic fields
with a defined topological organisation as in the spinal memory block
(note that this does not necessarily mean physical contiguity).

– Supraspinal modulation regulates the recruitment of motor primitives,
as represented in the model by self-sustaining peaks encoding activation
signals (Giszter & Hart, 2013; Hart & Giszter, 2010; Mussa-Ivaldi et al.,
1994). A set of scaling signals (i.e., motor activations) is associated with
the invariant nature of motor primitives in the spinal cord (Overduin et al.,
2008).

– Despite the highly nonlinear nature of the structures at play, neural
and muscular, motor primitives summation hypothesis can account for
a broader movement repertoire. As shown by the simulations with two
active attractors, empirical findings on synchronous stimulation of multiple
spinal sites are confirmed by the SAM model (Flash & Hochner, 2005;
Giszter & Hart, 2013; Mussa-Ivaldi et al., 1994, among the others).
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– Measured spinal force fields are the result of sensory-motor coupling,
depending on the position of the end effector and on efferent motor
commands encoding the target position (Mussa-Ivaldi et al., 1994). As
such, they are emerging in the proposed model from the combination of the
motor primitives and the afferent signal from the manipulator, reconciling
control theory and bio-inspired models by the definition of the control law
in Eq. (5.15).

– In recent studies, complex upper limb movement are accounted for using
a model of motor primitives with bell-shaped velocity profile, crucially
represented in workspace Cartesian coordinates (Miranda et al., 2018).
This result supports the design of the proposed control law, initially
motivated by the invariant features of planar reaching (i.e., quasi-straight
trajectories).

– Studies on mice have identified a population of interneurons called Motor
Synergy Encoder (MSE) that seem to provide the neural substrate for the
development of motor plans (Levine et al., 2014). From spinal integration
of local proprioceptive input and central corticospinal signals, multiple
motor pools are activated, mirroring the architecture in Fig. 5.4 and
supporting the representation of motor pools in the spinal cord using
neural fields.

Limitations

It could be argued that the representation of the resultant motor plan using
neural fields is ‘just’ a representation, supported by physiological findings but not so
important in terms of the simulation of motor behaviour, carried out using output
motor variables guiding the SAM model.

It must be considered, though, that to the purpose of this thesis, this step
represents the opportunity to reunite a vast repertoire of models that use motor
primitives to a solid body of neural controllers represented by dynamic fields, broadly
used to simulate processes of cognition.
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This representation of motor primitives summation, described by Eq. (5.25), allows
for the simulation of voluntary movements using a repertoire of motor primitives.
This group of motor primitives could be extracted form empirical data, for instance,
sharing the same planar representation, or it could be obtained from a DNFs fitting
of behavioural data. The motor plan in terms of dynamic field could also offer the
substrate for further local sensory-motor integration. Future developments, including
the ones foreshadowed here, are discussed in Section 6.3.

Invariants of voluntary movements are only partly accounted for by this model.
In particular, velocity profiles are not bell shaped and simulations of curvilinear
movements should be implemented to test the two-thirds power law. Nonetheless,
the main goal of the proposed architecture is bridging existing DNFs models for
cognition and theoretical models for motor control based on motor primitives, giving
an embodied representation of cognition and motor features. For this reason, the
topological representation of motor primitives might seem oversimplified. Yet, results
presented in Section 5.4.2 show that such a simple representation is already able to
model generalised purposeful reaching with straight trajectories.

Testing the model using a cluster of motor primitives from empirical data (D’Avella
et al., 2003; Miranda et al., 2018), or alternatively implementing learning and
clustering using a robotic interface (Fard et al., 2015, reviewed in Section 3.4.1) could
lead to more plausible kinematics. For example, velocity-based motor primitives used
to model three-dimensional reaching tasks in the study by Miranda et al. (2018) give
as a result movements that follow the two-thirds power law (Lacquaniti et al., 1983)),
and show, by construction, bell-shaped velocity profiles.

Although several models have been proposed through the years to account for
this feature of voluntary movements (Plamondon et al., 1993), there is not agreement
wether this emerges from intrinsic properties of the motor system (Abend et al., 1982;
Suzuki et al., 1997), from motor primitive features (Kurt A. & Reza, 2000; Miranda
et al., 2018), or from planning in cortical areas of the brain (Fard et al., 2015; Flash
& Hogan, 1985). For instance, recent studies have failed to associate features of the
kinematics to cortical rhythms linked to motor control (Tatti et al., 2019). Indeed,
hypotheses could be tested within this framework.
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Discussing intrinsic limitations of an approach to motor control mediated by motor
primitives goes beyond the purpose of this study, that does not aim at determining if
or to what extent motor primitives are actually used to perform human voluntary
movements. General limitations to this approach are discussed in the reviews by
Giszter (2015) and Tresch and Jarc (2009) and, for completeness, summarised as
follows:

– assuming movement formation based on motor synergies could limit the
behavioural adaptivity, what is more, evidence of single muscle based
control leads to the conclusion that other strategies must be accounted
for in other to properly explain human motor capabilities;

– it is possible that a set of motor primitives does exist in human at an
early stage of development, but it is unclear the impact of developmental
modifications and the possibility to re-use parts of such patterns to develop
new types of affordances, such as the ones offered by technology;

– interspecies extension of the behavioural results that concern interneurons
circuitry underlying motor primitive activations should be considered
carefully and further investigation on the matter is required.

As regards the first critique to this hypothesis, it must be noted that most of the
recent studies on motor primitives include more refined control strategies that can
override the simple primitive summation whenever needed (Alessandro et al., 2013;
Giszter & Hart, 2013; Overduin et al., 2008). In the presented model they are not
implemented but a representation is given in Fig. 5.4 in terms of general modulation
signals, to be considered in further developments.

As regards the second, a simulated environment to study motor control, like the
one proposed here, could be ideal to study evolution of motor primitives mediated by
learning.
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6.2.2 Contribution 2. Task monitoring: a model for

autonomous spinal response

The architecture presented in Chapter 5 is intended to model the local organisation
of motor patterns to produce appropriate motor selection at the level of the spine
(i.e., joint forces or muscle synergic activation). Considering empirical findings on the
role exerted by interneurons in mediating motor formation and reflex pathways, a
model for a local monitoring in the spinal cord seemed necessary.

Using the coupling of two-dimensional fields, as found in the models presented by
Rudolph et al. (2015), Sandamirskaya (2013) and Sandamirskaya and Schöner (2010)
for instance, seemed to be overcomplicated. A simplified method is implemented in
the proposed model for the spinal tract to provide appropriate timing to the motor
output using a detection/reverse instability dynamic in a one-dimensional neural
field.

Despite the fact that in DFT dynamic fields are usually shaped two-dimensional,
it must be remembered that the neural derivation of the field equation, and the
parallelism between 2D neural fields and the planar arrangement of cortical slices
is not the relevant from the modelling perspective considered (i.e., modelling the
spinal cord). The planar layout used is usually motivated by mapping reasons to
represent visuospatial features (see Section 3.3) or, like in the present model, to encode
some invariant attractor-like structure that requires a representation in workspace
coordinates: the motor primitives.

A one-dimensional field and an associated neural node seemed sufficient, in this
case, to regulate the motor task timing and results from simulation confirm that this
model accounts for movement autonomous development, as presented in Fig. 5.7.

The distance between the end-effector and the target produces a stable peak
representation during the task, that destabilises after the motor goal has been
achieved. This information could arrive from cortical sensory-motor representation of
salient task features, for instance. There exists behavioural evidence that the scaling
of motor primitives could be based on movement amplitude (Overduin et al., 2008).
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It is possible then to speculate that such information is available from sensory-motor
integration. A DNFs architecture implementing mapping between fields that gives a
measure of distance from target could be the one by Fard et al. (2015), introduced in
Chapter 3.

At the same time, an equivalent physiological mechanism that this model could
account for is the spinal reflex. Local spinal circuitry is able to provide rapid
autonomous movement development, without waiting for visual and proprioceptive
integration sent from higher centres (Fetz et al., 2000; Kandel et al., 2012). In this
case, activations signals sk might actually originate directly from local sensory-motor
integration, and the measure of distance could be replaced by proprioceptive input.

In this framework, the task-monitoring represents a mechanism for autonomous
local sensory-motor integration, that can be modulated by cortical signals as in the
proposed simulation of a reaching task, resembling the function of some interneuron
circuits in the spinal cord (Levine et al., 2014).

Limitations and Alternatives

Limitations of the model proposed for the task monitoring are associated with
the function it was built for, that is providing local monitoring to a motor task. This
model can track one single behaviour. If, for example, an avoidance behaviour needs
to be modelled in parallel, another monitoring block would be necessary to track
it. The former task monitoring for reaching would be able in parallel to track the
reaching, but not to model both processes at the same time.

More complex sequencing and timing would require neural fields coupling to be
modelled, mirroring the engagement of cortical centres in motor planning, involving
the cerebellum for instance (Johansson et al., 2016).
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6.2.3 Contribution 3. Synaptic nodes as a model for the

neuro- muscular junction

Connecting DNFs blocks with each other and with the robotic interface is a critical
process: the emergent behaviour of the architecture arises from such interconnections
and stably linking neural fields representation to output motor variables is an indis-
pensable requirement. The latter translates into finding the position of the peak of
activation on the field, providing other DNFs or the robotic interface with the correct
input from the features space spanned by the neural field (Sandamirskaya, 2013).

This problem could seem trivial mathematically speaking, considering that it is easy
to numerically find the position of the peak of a unimodal distribution. Nonetheless,
using an algorithm-based approach does not match the embodied account, nor the
physiologically inspired approach to model cognition. The methodology to find the
location of the peak of the localised solution had to present some level of synaptic
integration. For this reason, the idea to use the position as a mapping function
seemed more appropriate (see Eq. (5.27)).

Interestingly, a similar strategy is used by Fard et al. (2015) and, considering the
process at steady state and the appropriate choice of �, the same formulation is found
from Eq. (3.12), used to model neural nodes introduced in Section 3.4.

The study of the physiological properties of the connection between the neural and
muscular junction, presented in Section 2.2.2, leads to the speculation that synaptic
nodes could be representative of the neuromuscular junction, in the sense of the
DFT. The process described in Eq. (5.26) could represent the resultant summation
in time of the release of neurotransmitter in the synaptic junction, based on the
active neural distribution. The release of quanta of neurotransmitter matches the
normalised description of weights with respect to the measure of neural activation on
the whole field in Eq. (5.27).

In the proposed framework, the position of the attractors for the SAM control law
can be thought as the resultant muscle activation from selected motor primitives that
produces a certain amount of force at the joints. In the biological parallelism, quanta
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determine if and to what extent contractile elements are recruited. This process
reflects particularly well the association of synaptic nodes to encoded activations sk

that determine the weight of each motor primitive.

In conclusion, recent studies on interneuron populations in the spinal cord (Levine
et al., 2014) support the synaptic node representation as a suitable mathematical
model for local polysynaptic interactions. Together with the task monitoring function,
the proposed spinal controllers can account for local signal integration and local
motor pools recruitment.

Limitations

It is obvious that synaptic nodes are not suitable to model complex biochemical
chain reactions responsible for the transduction of neural activation patterns into
muscular ones.

The purpose of the above speculation is to reunite the representation of neural
processes and cognition in the dynamic field theory with a unified method for the
encoding of motor output features. This could prove useful, for instance, for the
study of motor control using more sophisticated muscle models.

At the same time, the development of genetic studies on the functions exerted by
interneurons could shed light on the presence of multiple concurring processes that
might require more sophisticated modelling solutions than the one presented here
(e.g., including a dynamic process or time delays).
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6.2.4 Contribution 4. A unified methodology to design and

simulate controllers in the DFT account

The choice of DNFs to implement neural controllers is supported by a growing
number of studies in which they have a prominent role in modelling motor control, as
introduced in Chapter 3.

This is due to the intrinsic embodied approach offered by the input-output coupling,
the representational stability offered by the working memory behaviour providing
robust motor outputs, and the underlying reference to neural processes from which
such models can be derived. Finally, the possibility to implement DNFs models on
integrated chip using their equivalence with winner-takes-all (WTA) architectures,
makes DFTs the ideal substrate for hardware embodied controllers for cognitive
robotics (Sandamirskaya, 2013).

Developing the proposed architecture, it was noted that the use of DNFs for
cognition seems to be growing apart from the study of stability of the field equation.
The design of these models is moving towards a block-based design of controllers
that represent a limited number of instabilities, usually on a two-dimensional features
space.

This is indeed advantageous in terms of favouring modularity, so that architectures
can be easily interfaced or compared. On the other hand, from the perspective of
extending our knowledge about the physiological substrate, having a clear under-
standing of how different dynamics emerge from the field equation is crucial. In fact,
understanding the role played by parameters determining stability can be used not
only to model physiological findings, but also to extend the repertoire of elemental
behaviours.

Considering that one of the aims of this project was to design appropriate con-
trollers for a biomechanical model for motor control (see Chapter 1), the research on
analytical and numerical methods for the dynamic field equation led to a methodology
that could be well suited to design more physiologically based controllers.

The construction of the Evans functions associated with the desired solution is not
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new, per se. The main application of this method is mathematically advantageous
for the study of the field equation including delays. In this thesis, the method is
adapted and applied to the construction of self-stabilising, self-sustaining and drifting
peak solutions (see Chapter 4). Having identified a type of solution of interest, it is
easy within this framework to study the evolution of the system and highlight critical
parameters that can alter the topology of the space of features spanned by the neural
field.

The choice of different control strategies that trigger instabilities as elemental
behaviours can then be motivated by the biological findings that one wants to model.
New elements developed using this process included in the architecture presented in
Chapter 5 are:

– the adaptive threshold controlling the spinal memory block, derived from
the study of stability of the field equation and, at the same time, linked
to the process of neural population pre-activation (D’Esposito, 2007);

– the task monitoring block, designed so that stability/instability is caused
by input amplitude and linked to sensory-motor integration of local and
cortical signals in the spinal cord (Levine et al., 2014; Overduin et al.,
2008);

– spinal memory blocks, designed to show persistent neural activity using a
working memory instability and creating the equivalent neural representa-
tion of motor primitives (Giszter, 2015).

Of course, the proposed design solutions for these processes are not unique. A
number of different options can be used to model cognition. In the reviewed studies
it has been shown, for instance, that sensory-motor coupling and mapping output
functions can be performed using different strategies (see Section 3.4).

In the same way, spinal autonomy could have been designed using some distance
mapping over the feature space. A sigmoidal memory trace with a negative left bound
could destabilise a traveling peak solution at the zero-crossing point (this option was
actually tested, but the pinning self-sustaining peak was preferred).
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It is clear that, using the field equation, different dynamics can be tested for a
given cognitive process and, at the same time, the same cognitive process can be
modelled with alternative approaches. Maintaining this embodied block modularity
is a desirable feature, contributing to the creation of an extended framework for the
study of motor control. At the same time, a clear methodology to design controllers
allows for more flexibility in testing the solutions that better match physiological
processes and biomechanical or robotic constraints.

To the best of our knowledge, explicit description of numerical methods in Matlab
environment is not available in literature and these are presented here, in Section 5.4.1,
completing the design tools necessary to develop flexible controllers in the DFT.
Relevant numerical methods for dynamic field equations can be found in the work by
Hutt and Rougier (2014) and Lima and Buckwar (2015), confirming the fact that
only a limited number of studies on numerical solutions of field equations is available.
Explicit mention of the FFT methods applied to the field equation can be found in
the studies by Coombes et al. (2012) and Fard et al. (2015).

It is suggested that a clear methodology to design and simulate controllers, as the
one presented in this thesis, can provide the tools for a more flexible development of
DNFs architecture and facilitate links to physiological findings. Ideally, the existence
of a standard framework for design and simulation could be significantly helpful in
linking architectures that model different aspects of motor control.

The possibility to use new classes of solutions, representative of new elements of
cognition in the sense of DFT, can be achieved using such methods and is one of the
aims of the project. In order to address it, drifting instabilities are presented and
methods for their construction are outlined in Sections 4.3.3 and 5.4.3.

The initial goal was to integrate pulse propagation as a cognitive function within
the model for spinal motor control, as stated by the third of the aims in Chapter 1.
The use of traveling pulses to represent neural processes is more physiologically
plausible. Considering recent studies on impulse propagation, this type of dynamic
could also play a role at the level of the neuromuscular junction, converting and
amplifying pulse propagation directly into the muscle fibre (Barz et al., 2013).
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At this stage of development of the architecture, the degree of physiological detail
of neural propagation is limited and so is the biomechanical detail of the robotic
interface. Most of the effort was aimed at determining a strategy to address the
degrees of freedom problem emerging from a coherent representation of cognitive and
motor features.

For this reason, it seemed sufficient to represent cognition using a detection/-
forgetting instability type of dynamic and working memory instabilities to model
persistent neural activity (Major & Tank, 2004). A more physiological representation
that takes into account propagation phenomena in the proposed architecture is left
to further developments.
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6.3 Future Developments

In light of the discussion on the contributions given by thesis, it is possible to
outline possible future developments involving the proposed architecture. These
are presented here in order of complexity: from extended simulations that use
the architecture described in Chapter 5 as it is, to experiments including links to
other DNF architectures, more detailed biomechanical models and datasets of motor
primitives. Lastly, the impact of this approach to the study of motor control on
related fields is discussed, from neuroscience to robotics.

Short-Term Developments

The proposed model for motor control at the spinal cord level could be further
tested in a number of simulated tasks. Simulations of curvilinear movements, detailed
as a sequence of activations specifying motor primitive recruitment sk(t), could be used
to fit behavioural invariants modelled by power laws (see Section 2.2.3). Preliminary
simulations seem to support a shorter movement latency for closer targets.

The spinal attractor model, formalised in Section 5.2, uses the concept of attractor
dynamic in a physiological embedding given by the concept of motor primitives
summation and spinal signal processing. In this framework, it is possible to extend
the tasks supported by the architecture adding obstacle avoidance, simply by creating
a repeller dynamic in the same fashion as the attractor one.

This could be done considering a force term in the control law that represents
repellers, finding a model similar in formulation to the one by Bicho and Schoner
(1997), but based on an encoding in terms of motor primitives. This would offer
an alternative approach to the architectures proposed by Rudolph et al. (2015) and
Sandamirskaya and Schöner (2010).

An alternative approach to obstacle avoidance, mentioned already in Section 6.2.2,
could be inspired by the activity-layer structure proposed by Brooks (1991). An
overlapping layer for avoidance could be identical to the one presented in Fig. 5.4,
including a task monitoring for obstacle avoidance and a spinal memory block to
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activate a stable representation of the obstacles.

At this point, a coupled convolution of the ongoing motor plan and of the obstacle
DNFs representation could deviate trajectory appropriately. Equation (3.15) gives
an example of mapping learning for coupled neural fields that could be used. As
soon as the task monitoring for obstacle avoidance signals the end of the avoidant
behaviour, the system goes back to target reaching, supervised by the task monitoring
for reaching.

Introducing the traveling peak solution as a representation of an elemental be-
haviour could allow for a more flexible and physiologically based representation
of cognitive processes in the DFT. Drifting instabilities could be used in the pro-
posed architecture to model task switching, without the need for a new motor plan
representation.

Consider again the sudden appearance of an obstacle. An alternative to the
convolution approach outlined above could be destabilising the resultant motor plan
into a traveling peak using the adaptation gain g (or equivalently ↵), so as to shift
temporarily the motor representation. Once the obstacle has been avoided, the motor
plan could drift back to the initial position. Tuning the adaptation gain would give
again the stable initial representation so that the reaching task can continue.

Traveling peaks could also be used to model cortical motor sequencing, representing
with the motion a sequence of spinal activations or more complex motor patterns
where two or more elemental motor plans are used in sequence.

Long-Term Developments

The development of the proposed model for spinal motor control has been accom-
panied throughout by the intention to create an embodied block structure that can
be easily interfaced with existing dynamic field models for cognition and more refined
biomechanical models.

In Chapter 1, the broader goal of the project is presented in terms of understanding
coordination, from perceptual input to motor output. In order to achieve this goal in
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full, connecting the proposed architecture to higher levels of sensory-motor integration
is essential. Neural and synaptic nodes, in this sense, provide two simple connecting
structures that can be used to create links among architectures.

Connecting the present model to architectures implementing visuospatial mapping
would provide a set-up to simulate hand-eye coordination (see, for instance, the work
by Johnson et al. (2008) and Sandamirskaya and Storck (2014) for models of visual
cognition in the DFT). At the same time, adding detail to the robotic interface could
provide useful insight on the role exerted by cortical efferent and local afferent signals,
combined at the level of the spine. A simple way to do so could be, for example,
implementing a learning and clustering algorithm like the one presented by Fard et al.
(2015), including a flexor/extensor muscle model at the elbow. This would provide
an in silico batch of motor primitives to test coordination with.

It is expected that the connection to models of the cortex will improve velocity
profiles for reaching movements and provide the correct framework to investigate the
origin of voluntary movement invariants (see Section 2.2.3 for a review of invariants
and muscle properties and Section 6.2.1 for relevant limitations of the proposed
model).

A further step towards a unified approach could be represented by linking dynamic
systems and behavioural datasets. This means being able to generate voluntary
movements using different types of motor primitives (i.e., kinematic or dynamic) and
the possibility to test results across species, at least in a simulated environment (see
Section 2.3.1 for a review on empirical findings on motor primitives).

Future Implications for Related Disciplines

Understanding motor control is a complex problem at the core of a number of fields
that use specific methods and modelling techniques matching the level of complexity
of the processes object of study. Motor control can be described in terms of processes
that go from microscopic to macroscopic, from biochemical reactions to complex
patterns of muscle activation, developmentally shaped by the interactions between
body and environment. These complementary processes shape voluntary movements
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as they are (Rosenbaum, 2010).

The contributions of this thesis support the development of coherent models
for the investigation of those processes that are hardly observable in vivo, due to
physiological or ethical constraints, or due to their intrinsic distributed and embodied
nature. The modularity of the DFT, together with the possibility to convert field
representations, either from biomechanical models or empirical data, into motor
activations potentially allows for the investigation of all the aspects of the motor
system. Results from simulations could in turn be used to develop new experiments
in vivo to test hypothesis and assumptions.

In the embodied approach to cognition, it would be interesting to see if the
principle of summation of sensory motor representations, here presented and tested
to model spinal circuitry involved in motor control, could be extended to more
abstract cognitive functions. An example could be the perceptual theory of knowledge
proposed by Barsalou (1999): perceptual symbols could be modelled as cognitive
motor primitives, grounded on a sensory motor representation.

Gaining a better understanding of motor control processes from the perspective
offered by neuroscience and biomechanics opens the way to exploring new strategies
for better (or, at least, alternative) robotics, even when the model is developed in
principle to investigate underlying physiological processes (Fard et al., 2015).

Behind this consideration lies the assumption that a greater understanding of
the cognitive and behavioural processes that guarantee adaptability, reactivity and
learning for motor control in humans, can be used to build a new generation of
robotics that show levels of engagement with the environment typical of living beings
(Clark, 1997). This trend is explored in the review by Pfeifer et al. (2007).

Robotic setups using motor primitive extraction from EMG signals like the one by
Artemiadis and Kyriakopoulos (2010) could indeed benefit from the proposed direct
approach that does not require the computation of the inverse dynamics. Finally, a
better understanding of movement formation could be relevant for the development
of better prosthetics guided by electromyographic signals and neuro-rehabilitation
protocolls (Zecca et al., 2017).
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6.4 Conclusions

In this last chapter, the four main contributions given by this thesis are discussed
considering relevant models for the degrees of freedom problem and physiological
findings on the neuromusculoskeletal system.

The first consists in the development of the last missing piece for a fully embodied
framework to model and simulate motor control using dynamic field controllers,
avoiding the solution of the inverse dynamic problem. The proposed model fills this
gap using physiologically inspired controllers that support relevant empirical studies.

The second and the third contributions regard the development of a model for
two processes mediated by interneurons in the spinal cord. The first represents
local autonomous or centrally mediated timing for movement development in the
task monitoring block ; the second modelling signal processing in the neuromuscular
junction, transforming the neural fields features mapping into motor activations using
synaptic nodes.

The last contribution is represented by the methodology used to study the stability
of neural fields, necessary to build controllers biologically inspired and associated
numerical methods for simulation. The outlined procedure can be used to include
additional elemental behaviour to the DFT, such as the drifting instability, selected
to simulate travelling peaks of activity.

Suggested future developments span from simulations that extend the behavi-
oural repertoire of the architecture as it is, to a complete framework for hand-eye
coordination that links the proposed model for spinal motor control to other existing
architecture for visuospatial and motor primitives mapping.

Considering the variety of behavioural findings accounted for and the simulation
possibilities given by the modularity of DNFs architectures, the proposed model
successfully represents the intention to outline a framework for a multidisciplinary
approach for the study of motor control.

The hope is to encourage a coherent progress, guided by a shared language among
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relevant fields, aiming at understanding cognition and voluntary movement formation.
A multifaceted problem like this one can be better addressed with coordinated
multidisciplinary efforts.
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Appendix A

Appendix: Matlab Code Scripts and
Functions

A.1 Code for a Reaching Task

The code below for the reaching simulation displays the same numbering as in
Algorithm 6.

%%%%%%% REACHING TASK SIMULATION WITH 2 SPINAL ATTRACTORS. %%%%%%%

% 1) Setting Parameters

tspan=100; % simulation time

dt=0.1; % time step

N=2^10; % N x N gridpoints

L=80; % size of the space of features

t=0:dt:(tspan−1)*dt; % t

x=(−N/2:N/2−1)/N*L; %x

y=(−N/2:N/2−1)/N*L; %y

dx=x(2)−x(1); dy=dx; % grid spacing

[X,Y]=meshgrid(x,y);

R=sqrt(X.^2+Y.^2);
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hrest=−0.1; % resting potential for inactive fields

epsilon=1e−10; % tollerance for the neural node

alpha_phi=6; % neural node inverse of time constant

% tm−DNF
[a_tm,s_tm,g_tm,h_tm,alpha_tm,beta_tm]=setparam('pinning');

% ACTIVATION BLOCK − 1D NF params

[a_s1,s_s1,g_s1,h_s1,alpha_s1,beta_s1]=setparam('stable_1D');

[a_s2,s_s2,g_s2,h_s2,alpha_s2,beta_s2]=setparam('stable_1D');

% MOTOR PRIMITIVES BLOCK − 2D NF params

[a_m1,s_m1,g_m1,h_m1,alpha_m1,beta_m1]=setparam('stable_2D');

[a_m2,s_m2,g_m2,h_m2,alpha_m2,beta_m2]=setparam('stable_2D');

% 2R PLANAR LINK

H=160; W=60;

m1=0.029*W; m2=0.0157*W;

l1=(0.818−0.630)*H; l2=(0.630−0.485)*H;

% SPINAL ATTRACTOR MODEL S

S=[1 1]; % activations s_k (both attractors active example)

S=S/sum(abs(S)); % normalising activations

xM=[20 20; 20 30]; % spinal attractors in workspace coordinates

xEP=S*xM/(sum(S)); % target point

gsam=2.4*eye(2); % gain for the derivative term

%2) Computing Synaptic footprints

W0_tm=synapticfoot(x,a_tm,s_tm); % tm−DNF
W_s1=synapticfoot(x,a_s1,1); % w for a−DNFs
W_s2=synapticfoot(x,a_s2,1);

Wa_s1=synapticfoot(x,a_s1,s_s1); % w_a for a−DNFs
Wa_s2=synapticfoot(x,a_s2,s_s2);

W_m1=synapticfoot(R,a_m1,s_m1); % w for a−DNFs
W_m2=synapticfoot(R,a_m2,s_m2);
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%3) Initialising State Variables and Inputs

% u fields %Inputs

U_tm=zeros(N,tspan); I_tm=zeros(N,tspan);

U_s1=zeros(N,tspan); I_s1=zeros(N,tspan);

U_s2=zeros(N,tspan); I_s2=zeros(N,tspan);

U_m1=zeros(N,N,tspan); I_m1=zeros(N,N,tspan);

U_m2=zeros(N,N,tspan); I_m2=zeros(N,N,tspan);

% a fields

A_tm=zeros(N,tspan);

A_s1=zeros(N,tspan);

A_s2=zeros(N,tspan);

A_m1=zeros(N,N,tspan);

A_m2=zeros(N,N,tspan);

phi=zeros(1,tspan); % neural node

hphi=zeros(1,tspan); % adaptive threshold

% Initial Conditions

I=4; s_in=2; % params for gaussian input

I_s1(:,1)=I*exp(−abs(x−S(1))/(s_in));
I_s2(:,1)=I*exp(−abs(x−S(2))/(s_in));
I_m1(:,:,1)=I*(exp(−sqrt((X−xM(1,1)).^2+(Y−xM(1,2)).^2)/s_in));
I_m2(:,:,1)=I*(exp(−sqrt((X−xM(2,1)).^2+(Y−xM(2,2)).^2)/s_in));
phi(1)=0; % inactive phi node before task onset

% Initialising Robot Model

yout=[10 15 0 0]; % initial position in workspace coordinates

d=zeros(1,tspan); % distance from target vector

d(1)=sqrt((xEP(1)−yout(1))^2+(xEP(2)−yout(1))^2); % initial distance

v=1; % time indexing for ode solver

time(v)=0; % stores time from ode solver

out=zeros(tspan,4); % stores forward dynamics

out(v,:)=yout';

v=v+1;

% tm−DNF input
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sigma=1; % dispersion of the input function

Ifun=exp(−((x).^2)/(2*(sigma^2))); % input's shape

Isn=0.7692; % bifurcation value for tm−DNF
I_tm(:,1)=(Isn+(d(1)/d(1)))*Ifun; % tm−DNF input in Eq.(5.19)

%4) Fourier Transforming Synaptic Footprints

Wf_tm=fft(W0_tm);

Wf_s1=fft(W_s1); Wfa_s1=fft(Wa_s1);

Wf_s2=Wf_s1; Wfa_s2=Wfa_s1;

Wf_m1=fft2(W_m1);

Wf_m2=Wf_m1;

%5) SIMULATION LOOP

for k=1:(tspan)−1
%6) Transform Output Funcitions f=(U<=h).

fU_tm=f(U_tm(:,k),h_tm);

fU_s1=f(U_s1(:,k),h_s1); fA_s1=f(A_s1(:,k),h_s1);

fU_s2=f(U_s2(:,k),h_s2); fA_s2=f(A_s2(:,k),h_s2);

fU_a1=f(U_m1(:,:,k),h_m1);

fU_a2=f(U_m2(:,:,k),h_m2);

%7) Perform Convolution

B_tm=fftshift(ifft((Wf_tm'.*(fft(fU_tm)))))*dx;

B_s1=fftshift(ifft((Wf_s1'.*(fft(fU_s1)))))*dx;

B_s2=fftshift(ifft((Wf_s2'.*(fft(fU_s2)))))*dx;

H_s1=fftshift(ifft((Wfa_s1'.*(fft(fA_s1)))))*dx;

H_s2=fftshift(ifft((Wfa_s2'.*(fft(fA_s2)))))*dx;

B_m1=fftshift(ifft2((Wf_m1.*(fft2(fU_a1)))))*dx*dy;

B_m2=fftshift(ifft2((Wf_m2.*(fft2(fU_a2)))))*dx*dy;

%8a) Update Neural Node

phi(k+1)=phi(k)*(1−dt*alpha_phi)+sum(fU_tm)*dx*dt*alpha_phi;
hphi(k+1)=hrest*(1−f(phi(k),epsilon));
%8b) Update Field Variables

% task monitoring

U_tm(:,k+1)=(1−dt*alpha_tm)*U_tm(:,k)+(B_tm−g_tm*A_tm(:,k)...
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+I_tm(:,k))*dt*alpha_tm;

A_tm(:,k+1)=(1−dt*beta_tm)*A_tm(:,k)+U_tm(:,k)*dt*beta_tm;
% a−DNFs
U_s1(:,k+1)=(1−dt*alpha_s1)*U_s1(:,k)+(B_s1 − g_s1*H_s1+...

I_s1(:,k)+hphi(k))*dt*alpha_s1;

U_s2(:,k+1)=(1−dt*alpha_s2)*U_s2(:,k)+(B_s2 − g_s2*H_s2+...

I_s2(:,k)+hphi(k))*dt*alpha_s2;

A_s1(:,k+1)=(1−dt*beta_s1)*A_s1(:,k)+fU_s1*dt*beta_s1;
A_s2(:,k+1)=(1−dt*beta_s2)*A_s2(:,k)+fU_s2*dt*beta_s2;
% m−DNFs
U_m1(:,:,k+1)=(1−dt*alpha_m1)*U_m1(:,:,k)+(B_m1−g_m1*A_m1(:,:,k)+

...

hphi(k)+I_m1(:,:,k))*dt*alpha_m1;

U_m2(:,:,k+1)=(1−dt*alpha_m2)*U_m2(:,:,k)+(B_m2−g_m2*A_m2(:,:,k)+
...

hphi(k)+I_m2(:,:,k))*dt*alpha_m2;

A_m1(:,:,k+1)=(1−dt*beta_m1)*A_m1(:,:,k)+U_m1(:,:,k)*dt*beta_m1;
A_m2(:,:,k+1)=(1−dt*beta_m2)*A_m2(:,:,k)+U_m2(:,:,k)*dt*beta_m2;
%9) Condition on the Neural Node

if phi(k)>epsilon % if true the motor task is taking place

%10) Extracting Motor Output for SAM

Mk(1,1:2)=synapticnode(X,U_m1(:,:,k),h_m1);

Mk(2,3:4)=synapticnode(X,U_m2(:,:,k),h_m1);

sk(1)=synapticnode(x',U_s1(:,k),h_s1);

sk(2)=synapticnode(x',U_s2(:,k),h_s1);

sk=sk*eye(2);

% target point for SAM

xEPs=sk*Mk/(sum(sk));

%11) Simulating Forward Dynamics

[tout,yout]=ode45(@(t,xxdot)twolink(t,xxdot,H,W,gsam,sk,Mk),

...

[t(k) t(k+1)],yout(end,:)');
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% updating distance from target

d(k+1)=sqrt((yout(end,1)−xEPs(1)).^2+...
(yout(end,2)−xEPs(2)).^2);

% % % % % storing data % % % % % %

time(v)=tout(end);

out(v,:)=yout(end,:);

v=v+1;

else %12) no motor plan available

d(k+1)=d(k); %the robot does not move

time(v)=time(v−1);
out(v,1:2)=out(v−1,1:2);

v=v+1;

end

%13) Updating input to tm−DNF
I_tm(:,k+1)=(Isn+(d(k+1)/d(1)))*Ifun;

end

A.1.1 Function Files

setparam.m

function [A, s, g, h, alpha,beta ] = setparam( string )

% SETS PARAMETERS FOR THE TYPE OF SOLUTION

% string = desired field dynamics

if isequal(string,'stable_1D')

A=0.5; s=2; h=0.27; g=0.5; alpha=1; beta=1;

end

if isequal(string,'stable_2D')

A=0.5; s=2; h=0.025; g=0.1; alpha=1; beta=1;

end

if isequal(string,'pinning')

A=0.5; s=1; h=0.5; g=1; alpha=8; beta=0.03;
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end

end

synapticfoot.m

function [ w ] = synapticfoot( x,A,s )

% synaptic footprint function for 1D and 2D NF

if (size(x,1))==1

% 1D DNF − exponential footprint

w=A*exp(−abs(x/s))/s;
else

% 2D DNF − Mexican hat function

w=(2*pi)^(−1)*(exp(−x)−A*exp(−x/s));
end

end

synapticnode.m

function [ C ] = synapticnode(x, U,h)

% finds the position of the peak of activation in 1D and 2D DNFs

% U=DNF; h=output function's threshold

U=U.*(U>h); % selecting the active part of the field

if (size(x,2))==1 % 1D

C=(sum(x.*U))./((sum(U)));

else % 2D

y=x';

C(1,:)=sum(sum(x.*U))./(sum(sum(U)));

C(2,:)=sum(sum(y.*U))./(sum(sum(U)));

end

end
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twolink.m

function xdxdd=twolink(t,xxdot,H,W,gsam,s,xA)

% Models the 2−R planar robot dynamics using SAM model

% x = (x_E,y_E) coordinates q = (theta1, theta2)

x=xxdot(1:2);

xdot=xxdot(3:4);

% Robot Parameters

m1=0.029*W; m2=0.0157*W;

l1=(0.818−0.630)*H; l2=(0.630−0.485)*H;

I1=m1*l1^2/12; I2=m2*l2^2/12;

lc1=l1/2; lc2=l2/2;

% Joint Angles

r2=(x(1)^2+x(2)^2);

alpha=acos((l1^2+l2^2−r2)/(2*l1*l2));
beta=acos((r2+l1^2−l2^2)/(2*l1*sqrt(r2)));
q(1)=atan(x(2)/x(1))−beta;
q(2)=pi−alpha;
Jinv=jacobianmat_inv(q,l1,l2); % inverse of the Jacobian in Eq.(4.87)

% angular vel

qdot(1:2)=Jinv*xdot;

dJinv=jacobianmat_invdot(q,qdot,l1,l2);% t−derivative of Jinv

% D(q)

d11=m1*lc1^2+m2*(l1^2+lc2^2+2*l1*lc2*cos(q(2)))+I1+I2;

d12=m2*(lc2^2+l1*lc2*cos(q(2)))+I2;

d22=m2*lc2^2+I2;

Dq=[d11 d12;d12 d22];

% C(q)

h=−m2*l1*lc2*sin(q(2));
c121=h; c112=−h;
c211=h; c221=h;

Cq=[c121*qdot(2) c221*qdot(2)+c211*qdot(1);
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c112*qdot(1) 0];

% D, C in workspace coordinates

D=Jinv'*Dq*Jinv;

C=Jinv'*Cq*Jinv+D*dJinv;

% SPINAL ATTRACTOR MODEL

F_SAM_L=−s*([x(1)−xA(:,1) x(2)−xA(:,2)]); % linear

F_SAM_D=−gsam; %derivative

% forward dynamics

xdd=D\(F_SAM_L'+(F_SAM_D−C)*xdot);
xdxdd=[xdot;xdd];

end
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A.2 Code for a Traveling Peak Solution

%%%%% TRAVELLING SPOT SIMULATION %%%%%

% Setting Parameters

A=1/4; sigma=2; %lateral inhibition

alpha=3; beta=1; %time constants

g=0.55; %adaptation gain

h=0.12/(1+g); %output function threshold

% time and space

timelim=10;

xlim=30; ylim=30;

k=10; n=2^k; m=2^k; %grid points

dx=2*xlim/n; dy=dx; %grid spacing

x=−xlim:dx:xlim−dx;
y=−ylim:dy:ylim−dy;
dt=0.1; %time step

t=0:dt:timelim;

tspan=length(t);

[X,Y]=meshgrid(x,y);

R=sqrt(X.^2+Y.^2);

PHI=atan(Y./X);

% synaptic footprint

w_bessel=(2/(3*pi))*(besselk(0,R)−besselk(0,2*R)−...
A*(besselk(0,R/sigma)−besselk(0,2*R/sigma)));

w_bessel(0.5*n+1,0.5*n+1)=w(0.5*n+1,0.5*n+1); % removing NaN

w=w_bessel;

% analytical solution

RFUN=@(r,A,sigma,g,h) (4/3)*r.*((besselk(0,r)*besseli(1,r))−...
(besselk(0,2*r)*besseli(1,2*r)/2)−...
A*((besselk(0,r/sigma)*besseli(1,r/sigma)*sigma)−...
(besselk(0,2*r/sigma)*besseli(1,2*r/sigma)*(sigma/2))))−(h*(1+g));
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deltas=fzero(@(r) RFUN(r,A,sigma,g,h),4); % solver for Eq.(4.63)

funI1=@(delta,r,s) ((1/s)*besseli(1,s*delta)*besselk(0,s*r));

funI2=@(delta,r,s) (1/((s^2)*delta))−...
(1/s)*besseli(0,s*r)*besselk(1,s*delta);

R1=double(R>deltas);

R1(R1==0)=0.1;

R(m/2+1,n/2+1)=0.001; % avoids NaN

R2=double(R<=deltas);

Q1=(4*deltas/3)*... % solution in Eq.(4.62)

(funI1(deltas,R1.*R,1)−funI1(deltas,R1.*R,2)...
−A*(funI1(deltas,R1.*R,1/sigma)−...
funI1(deltas,R1.*R,2/sigma))).*(R>deltas);

Q2=(4*deltas/3)*...

(funI2(deltas,R2.*R,1)−funI2(deltas,R2.*R,2)...
−A*(funI2(deltas,R2.*R,1/sigma)−...
funI2(deltas,R2.*R,2/sigma))).*(R2);

Q=(Q1+Q2)/(1+g);

% Initialising State Variables

u=zeros(m,n,tspan);

a=zeros(m,n,tspan);

u(:,:,1)=Q; % stable initial solution

phi_p=pi; % direction of motion

t_p=ceil(1/dt); % perturbation time

a_p=2; % perturbation amplitude

% Building the Boundary Perturbation

I=zeros(m,n,tspan);

R12=((X−deltas*cos(phi_p)).^2+(Y−deltas*sin(phi_p)).^2)/(2*(0.25)^2);
I0=2*exp(−R12)/sqrt(2*pi*0.25^2); % perturbation's shape

I(:,:,1:t_p)=repmat(I0,[1 1 t_p]);

%Simulation

W=(fft2(w)); % transforming synaptic footprint

for i=1:tspan−1
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FU=fft2((u(:,:,i)>=h)); % transforming output function

B=fftshift(ifft2(W.*FU))*dx*dy; % convolution

% simulating field dynamics

u(:,:,i+1)=u(:,:,i)*(1−dt*alpha)...
+B*dt*alpha−g*a(:,:,i)*dt*alpha+I(:,:,i)*dt*alpha;

a(:,:,i+1)=a(:,:,i)*(1−dt*beta)+u(:,:,i)*dt*beta;
end
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