
Multi-fluid modelling of idealized

convection

Daniel Shipley

Department of Meteorology

University of Reading

A thesis presented for the degree of

Doctor of Philosophy

September 2021



ii



Version number: 1.20



iv



v

For Jean, Don, Joe, and Pam.



vi



Declaration

I confirm that this is my own work, and that the use of all material from other

sources has been properly and fully acknowledged.

Daniel Shipley

vii



viii Declaration



Acknowledgements

This thesis is the culmination of four years of hard work: there were times that

I doubted whether I’d ever finish, moments of hair-pulling frustration (and abject

horror1), and long periods of anxiety that I’d never get the damn thing written

down. However, there were also myriad moments of joy; elation at understanding

something new, at discovering something — however small — that nobody has ever

seen before; and a continually deepening love affair with fluid dynamics. While it

may have been a turbulent time, the ups were at least as strong as the downs. I

am convinced that my four-years-younger self would be proud of both the work I’ve

done, and the researcher I’ve become.

Of course, a huge number of people helped ensure I got to this point. First and

foremost, thanks must go to my supervisors, Hilary Weller and Peter Clark. It is

often said that a PhD is an “apprenticeship in research”, and their wisdom and

support has been instrumental in guiding me towards independence as a researcher.

Thank you for treating me like a colleague; it has been an absolute pleasure working

on these fascinating problems with you. Thanks also to Tom Webb, who was on my

supervisory team for the first two years, and helped immensely with my writing.

Being part of the vibrant research community of the ParaCon project was hugely

helpful. Thank you for all of your feedback, useful and interesting discussions on

all things convection, in particular to Will McIntyre, John Thuburn, and Georgios

Efstathiou. I hope I get to work with you more closely in the future!

My monitoring committee had something of a revolving cast: Bob Plant steered

the ship admirably, and Giles Harrison, Clare Watt, and Remi Tailleux crewed it

with him. Thanks in particular to Giles for his wisdom and understanding during

the difficult early part of my PhD, without which I may not have continued. To

Clare for her enthusiasm, wit, and the fresh outside perspective she brought. To

Remi for stepping in at short notice for the last MC, and reassuring me I was on

the right track! And to Bob, thanks for being immensely supportive throughout my

PhD, for providing balance, and for indulging my nattering — I have always enjoyed

speaking to you about my work and about convection more generally.

1Ask me about the time I accidentally executed sudo rm -rf /* instead of rm -rf */ on the
drive containing all of my simulation data. . .

ix



x Acknowledgements

Thanks again to Bob, and also to Tapio Schneider, for examining my thesis. I

thoroughly enjoyed the viva: it was a huge honour to speak to you both in depth

about my work, and your insights and the discussion they generated both broadened

my perspective and sharpened this final version of my thesis. Thank you both for

also actually bothering to check all of the maths!

And now to the less tangible, but no less important, influences. The Reading

University Meteorology department is an incredibly friendly place to work; I have

really missed impromptu coffee room chats since the start of the pandemic. To the

denizens of 2U08: thank you for putting up with all my shenanigans, especially my

paper plane obsession (sorry Sally!). And to the Shenanigans themselves, Beth &

Dom: thanks for making music with me, and sharing some of the happiest and most

ridiculous moments of the last few years. I promise to never sleep on a roof again.

Outside of the Met department, I have been incredibly lucky to have a great

many close friends and family who have kept me sane throughout the PhD. Firstly,

my deep gratitude to Jonathan, whose Monday night calls have been a highlight

every week these last couple of years. (For me, at least; my apologies for being

“unfailingly long-form”.) Tom Babb, too, has been the greatest of friends. Thank

you for indulging my mathematical whimsies; but more than that, for being there

to pick up the pieces when I needed you. I can’t thank you enough.

Thanks to my family, who have been supportive of my decision to stay at univer-

sity for so bloody long, despite my failure to be able explain to them what I do. In

particular, thank you to my extended set of parents, Mam, Dad, Geoff, and Gill; to

my sister Kate (for keeping me grounded) and step-siblings Jade and Daniel; to my

wonderful mad aunties, Sam and Lynn, thank you for all of your generous advice;

and to my Grandma Jean for her kindness and unfailing optimism (sorry I haven’t

been on the telly yet). To my other grandparents, sadly no longer with us: I hope

you’re proud. And to Don in particular: thank you for always testing the bounds of

my knowledge, pushing me to learn more. Your relentless enthusiasm for learning

was infectious, and continues to inspire me.

Lastly, and most importantly, my thanks to Kaja — moim ulubionym cz lowiekiem

— who has been an unwavering source of joy, laughter, wisdom, silliness, and sup-

port.

[incomprehensible dinosaur noises]

I love you. Thank you for everything.



Abstract

Atmospheric convection is hugely important for weather and climate prediction, but

parametrizations of the process in weather and climate models often behave poorly.

Traditional parametrization assumptions break down at resolutions comparable to

the dominant energy-containing structures. Lack of understanding of this convec-

tive “grey zone” is one of the biggest barriers to improving our representation of

convection.

The grey zone is a concept that applies to any turbulent flow — dry or moist.

Therefore this thesis focuses on the simplest convection problem: Rayleigh-Bénard

convection (RBC). It is shown that RBC possesses remarkably similar grey zone

behaviour to that observed in numerical weather prediction models.

In convection, large portions of the turbulent fluxes are carried by coherent

structures. This motivates the split into “convection” and “environment” underly-

ing traditional mass flux schemes, which can be generalized via conditional filtering.

Introducing explicit discontinuous fluid relabelling terms leads to a multi-fluid equa-

tion set that is more complete than those currently published. New expressions for

resolved relabelling terms are derived, and an argument is presented linking pressure

differences between fluids to an isotropic stress introduced by relabelling.

To show the validity of the multi-fluid approach, a 1D, time-dependent model

of RBC is developed. The model has one rising and one falling fluid, and assumes

that this split captures all subfilter variability. A scaling argument for the pressure

differences between fluids reduces the free parameters to two O(1) constants. Af-

ter determining these constants, correct scalings of the domain-averaged heat and

momentum fluxes are predicted over six decades of buoyancy forcing. Thus even a

simple two-fluid model can capture the essentials of convection.

In 2D, the same model formulation improves initiation of convection across the

grey zone, and reduces sensitivity of heat and momentum fluxes to grid spacing,

compared to a single-fluid model with constant viscosity. It is shown that the clo-

sures successful in a single column do not provide sufficient constraint to maintain

the correct sign of vertical velocity in the grey zone. The need for better under-

standing of the relabelling terms and their resolution-dependence emerges as the

key barrier to progress.
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A Note on Notation

The turbulence modelling community already suffers from an abundance of sub-

and superscripts; multi-fluid modelling only adds to the cacophony. As well as the

proliferation of indices, there is a direct conflict between uses of the Latin subscript

notation ((. . . )i): in most of physics, including turbulence theory, ϕi is shorthand

for the spatial component of the vector ϕ in the direction of the ith basis vector;

while in multi-fluid (or multi-phase) modelling, ϕi customarily denotes the value of

ϕ in the ith fluid partition. Although my preferred notation uses Greek subscripts

(from the beginning of the alphabet) to denote fluid partitions, keeping the Latin

subscripts free for spatial components, it made no sense to make this departure

from the literature when very few expressions in the thesis required spatial index

notation. I therefore follow the multi-fluid literature in labelling fluid partitions by

Latin subscripts, beginning with i. Where possible, tensor expressions are presented

in Gibbs vector notation to avoid the need for more subscripts. However, when index

notation is required for clarity, I use Greek letters from the middle of the alphabet

(i.e. beginning µ) and employ the Einstein summation convention.

There will still be lots of subscripts and superscripts; probably too many, but I

haven’t come up with a nicer way to do it yet.

Note in particular the use of ∼,≈,',= to denote different strengths of equality.

This usage largely follows that of Tennekes and Lumley (1972).

Unfamiliar to non-mathematicians may also be the use of := and =: for defini-

tions; I find this clearer than the alternative triple-equality ≡ (more commonly used

in physics textbooks).
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xx A Note on Notation

Notation Description
ϕ A generic flow variable, assumed ϕ(x, t)
〈ϕ〉g Spatial filter of variable ϕ with respect to the kernel g

ϕr Resolved part of variable ϕ
ϕs Subfilter part of variable ϕ
Ii Indicator function of partition i
ϕr
i Resolved part of variable ϕ in partition i

ϕs
i Subfilter part of variable ϕ in partition i

s(a, b) Generalized centred second moment of variables a, b
si(a, b) Generalized partitioned centred second moment of variables a, b in

partition i
a A scalar
a A vector (components aµ)
a A tensor (components aµν)
Id d-dimensional identity tensor
R The real numbers
∈ Set inclusion, i.e. a ∈ S means “a is a member of the set S”
O “Big Oh” asymptotic order notation.
∼ Used for approximate numerical values that are correct to within an

order-1 constant (i.e. equality within a factor & 1
5

but . 5)
≈ Used for approximate numerical values that are stated to a precision

of approximately 30% or to mark any approximations made in an
equation where the order of approximation is not stated.

' Used for approximate numerical values that are correct to at least
the stated precision.
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Chapter 1

Background

Atmospheric convection is one of the most important components of the global atmo-

spheric circulation, providing significant contributions to global energy, momentum,

and moisture transport, as well as strongly coupling to larger scale features such as

monsoons and the Madden-Julian Oscillation. Deep convection is responsible for

some of the highest-impact weather events both in mid-latitudes and the tropics.

However, convection is consistently one of the weakest aspects of numerical weather

prediction (e.g. Holloway et al. 2013; Stein et al. 2015) and climate (e.g. Stephens

et al. 2010; Stevens and Bony 2013; Sherwood et al. 2014) models, in spite of great

efforts to improve its representation (Yano et al. 2018).

Modelling of convection tends to rely on dynamical or thermodynamical balances

which only (approximately) apply on large spatiotemporal scales (Plant and Yano

2016a, chapter 4). For example, the mass flux paradigm of Arakawa and Schubert

(1974), which conceptually underlies most closures employed in operational numer-

ical weather prediction (NWP) and climate models, relies on a horizontally homo-

geneous quasi-equilibrium between convection and large-scale forcing. Balances of

this type assume that the resolution1, ∆r, is much coarser than the largest dynam-

ical scales of the convection, `L, perhaps ∼ 1 km for shallow cumulus, and at least

∼ 10 km for deep. This is known in the turbulence community as the “Reynolds

averaging” or RANS (“Reynolds-averaged Navier-Stokes”) regime. Since current

and near-future NWP resolutions are ∼ 1 km, these scale separation assumptions

clearly cannot be expected to be valid.

However, the smallest dynamically relevant scales of (coherent) convection are

`S ∼ 10–100 m. Thus, in order to have a truly “convection-resolving” model, the

spatial resolution must be ∼ 10–100 m; this is the large eddy simulation (LES)

regime, often used for “truth” datasets in atmospheric modelling. In this regime the

1By “resolution”, we mean “the smallest distance over which we can identify separate objects”;
anyone who has taken a course in optics knows that this notion is surprisingly difficult to define
rigorously. However, we may note that strictly ∆r ≥ ∆f (the filter scale) for a continuous model,
and ∆r > 2∆x (the grid spacing) for a discrete one.

1



2 1. Background

largest, energy-containing structures of the turbulent flow are explicitly resolved, so

resolution is not wasted on the relatively unimportant smaller-scale flow. However,

these unresolved scales cannot be entirely neglected: they must provide the correct

fluxes of energy, enstrophy, and tracers (generally dissipative, but backscatter is

also usually important for the most accurate modelling). In order for usual LES

closures to apply, the filter scale ∆f must lie within the inertial subrange of the

energy spectrum of the flow (Mason 1994) — again requiring a separation of scales

between the filter and the dominant energy-containing length scales. In practice,

this means that the resolved part of the flow must still be a fully-developed tur-

bulent flow, i.e. Re & 103, implying a minimum resolution of ≈ 10 m for shallow

cumulus (via the relation η/L ∼ Re3/4; see section 1.2.1). This is far beyond the

reach of weather and climate models for the foreseeable future. Running without

a convective parametrization at so-called “convection-permitting” resolutions often

produces better results than with a convective parametrization, but results do not

clearly converge with increasing resolution (Stein et al. 2015), and there are still

significant problems — for instance convection developing at incorrect scales, and

with unrealistically intense pockets of highly-localized precipitation (Honnert et al.

2011; Lean et al. 2008; Stein et al. 2015).

We have stumbled upon the “grey-zone” problem: we are forced to consider con-

vection on scales that are too small for traditional convective closure assumptions

to work (∆r < `L), but are yet too large for traditional LES approaches to be valid

(∆r > `S). Any attempt to understand or model convection at these intermediate

scales must move beyond these assumptions. Part of the problem is the unhelp-

ful distinction between “convection” and “turbulence” in the atmospheric science

community; “turbulence” appears to be used to refer to small-scale, largely homo-

geneous and isotropic turbulence, often characterised simply by increased mixing.

Strongly inhomogeneous, anisotropic features (convective plumes, thermals, clouds)

are excluded by this view. But there is no good reason for this exclusion: the coher-

ent structures of convection are turbulence. Moreover, even at LES scales, closures

must take into account the effects of buoyancy forcing — and what is convection if

not the buoyancy-forced part of a fluid flow?

One way of relaxing the traditional convective closure assumptions, yet retaining

the useful conceptual partitioning of a fluid flow into “updraft” and “environment”

parts from the mass flux approach, is to return to the Navier-Stokes equations and

apply a conditional filter to them (see Thuburn et al. 2018, for the method applied

to the compressible Euler equations). This results in a fully 3D and prognostic

equation set for each fluid partition, where the partitions are coupled by exchanges

of mass, momentum, energy etc., as well as by the pressure field. Closures for

these exchanges are the analogue of parametrizing entrainment and detrainment in
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a traditional convection scheme2. Thus, within this framework the convection is

fundamentally a part of the dynamics: there is no separate “convection scheme”

which is called by the dynamical core. This approach is similar to those used in

the modelling of multi-phase engineering flows (e.g. Brennen 2005; Städtke 2007),

and has historically been investigated for application to intermittent turbulent flows

(Dopazo 1977).

The overarching framework provided by Thuburn et al. (2018) is agnostic as

to how to best partition the fluids to represent turbulent convection, but the con-

ceptual idea is to use the partitioning to directly represent the dominant coherent

overturning structures. This contrasts with the traditional turbulence approach of

representing variability via centred moments of the flow variables — i.e. the mean

of each flow variable, then the covariances between all pairs of flow variables, then

the third central moment which defines the skewness of the distribution, and so

on. We will use the term “multi-moment” to describe this traditional approach,

to complement the term “multi-fluid”. The most common closures used in atmo-

spheric modelling are first-order (e.g. downgradient eddy diffusion closures) but

some second-order statistics — particularly the turbulent kinetic energy (TKE) —

are also often used. With a finite number of degrees of freedom available to represent

the flow, it is possible that the multi-fluid representation may present a better low-

order description of flows where strongly anisotropic coherent structures are a key

part of the flow, particularly where third- and higher-order statistics are important.

The overturning structures of convection are coherent and strongly anisotropic, and

distributions of variables — particularly vertical velocity — exhibit high skewness,

suggesting that a multi-fluid representation could be useful.

This thesis aims to investigate the usefulness of a multi-fluid model for parametriz-

ing atmospheric convection by considering its application to the simplest convective

system: dry Rayleigh-Bénard convection (RBC). First studied experimentally by

Henri Bénard at the turn of the 20th century (Bénard 1900, 1901), the problem was

given a theoretical treatment by Lord Rayleigh in 1916 (Lord Rayleigh 1916) and has

been well-studied in the applied mathematics and engineering turbulence commu-

nities in the century since, providing a rich library of experimental, numerical, and

theoretical results to draw upon (see Ahlers et al. 2009; Chillà and Schumacher 2012

for reviews). Most of the challenges of atmospheric grey zones are present within

RBC, but the problem is simpler and more symmetric, providing greater constraints

on possible parametrizations and hopefully clarifying the underlying physics. Al-

though used by B. Zhou et al. (2014) as a qualitative analogy for the grey zone of

the dry convective boundary layer (CBL), the grey zone of RBC has not previously

2Closures are also required for subfilter fluxes, analogous to those which arise in any spatially
filtered equation set.
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been quantitatively explored.

This introductory chapter aims to provide the relevant background for under-

standing the problem of parametrizing atmospheric convection, as well as its im-

portance. Section 1.1 briefly overviews the fundamentals of convection, venturing

definitions of convection and buoyancy and introducing some of the notation and

conventions for the rest of the thesis. The section concludes with an exploration of

the instabilities which give rise to convection. Section 1.2 presents a view of convec-

tion from the vantage point of turbulence theory, discussing the degrees of freedom

required to simulate a turbulent flow accurately, as well as the turbulence closure

problem and both statistical and LES frameworks for turbulence modelling. Fram-

ing the discussion in this way shows that the problem of the “grey zone(s)” arises

naturally for any turbulent process. This is followed by a critical overview of tradi-

tional convection parametrizations, showing where and why they break down; the

grey zone emerges as the fundamental barrier to progress. Some current attempts

to improve convection representation are discussed. The final section sketches the

approach this thesis takes taken to tackling this problem; however, detailed intro-

ductions to (and critiques of) the relevant techniques and literature will be given in

their relevant chapters.

1.1 Convection overture

1.1.1 What is convection?

There are at least three common uses for the word “convection” within fluid dynam-

ics; the most general sense is as a synonym for “advection”, which is the transport

of properties within a fluid by the motion of the fluid itself. This usage is common

within the engineering and applied mathematics communities of fluid dynamicists.

The second sense is for any fluid motion caused by the effects of body forces on

inhomogeneous material properties of the fluid. When the body force is gravity,

and the material property is density, we call the force the “buoyancy force”. This

includes the third, more restrictive, definition seen in meteorology, which we adopt

in this thesis (see §1.1 of Emanuel 1994):

Definition 1 (Convection). Convection is motion of a fluid directly caused by insta-

bility due to gravity acting on variations of density. The “vertical” direction, which

will customarily be denoted ẑ or k, is defined by the direction of the gravitational

vector, g: ẑ := − g
|g| .

Convection in this narrow sense3 still encompasses a fantastically broad array of

3Note that this third, most restrictive sense, is historically how the term was first defined
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phenomena, from smoke plumes and cumulus clouds in the Earth’s atmosphere, to

the convection cells in the mantle driving plate tectonics, to convection in the outer

core of the Earth (and in outer layers of stars) driving magnetic fields. Convection

driven by salt concentrations (as well as temperature) is one of the major driving

forces behind the ocean circulation. In the words of the late Charlie Doering, “on

length scales bigger than us, the buoyancy force is probably the most important force

in nature: it is the way that nature chooses to move stuff around” (Doering 2021).

The focus of this thesis is squarely on atmospheric convection, but it is worth noting

the incredible wealth of phenomena convection encompasses — and therefore that

a better understanding of atmospheric convection may lead to insights applicable

much more widely.

1.1.2 Buoyancy

In this section we will define buoyancy mathematically, before looking at some of its

general effects on fluids. The discussion is similar to that in Section 1.2 of Emanuel

(1994). The compressible Navier-Stokes equation for a Newtonian fluid forced by

gravity is (Batchelor 1967, p.164; Landau and Lifshitz 1987, p.45):

∂ρu

∂t
+∇ · (ρu⊗ u) = −∇p− ρg +∇ ·

(
2µe +

(
ζ − 2µ

d

)
(∇ · u) Id

)
(1.1)

⇐⇒ ρ
Du

Dt
= −∇p− ρg +∇ ·

(
2µe +

(
ζ − 2µ

d

)
(∇ · u) Id

)
. (1.2)

Here ρ is the fluid’s density, u its velocity, p its thermodynamic pressure, e :=

∇u+(∇u)T its rate-of-strain tensor, µ its shear viscosity, and ζ its volume viscosity4.

All of these are assumed functions of d spatial dimensions and time. Id is the

d–dimensional identity tensor. The momentum equations arising in atmospheric

fluid dynamics are all versions of this equation, subject to various approximations,

changes of reference frame, and potentially the additions of other body forces besides

gravity.

Gravity introduces a preferred direction, meaning that it makes sense to split

motion into its components parallel and perpendicular to the gravitational field. If

the fluid is at rest, the vertical component of the momentum equation reduces to:

∂pr

∂z
= −ρrg (g := |g|), (1.3)

(pp.77-78; 81 of Prout 1834), though the author also uses the less restrictive second sense later in
the book when discussing the origin of the global atmospheric circulation (p.276), and the Latin
etymology of the term — “convectio, a carrying or conveying” (p.78) — lends itself well to the
first, most general interpretation.

4The volume viscosity (also called the bulk viscosity, and less frequently the second coefficient
of viscosity) quantifies the fluid’s irreversible resistance to isotropic compression or expansion.



6 1. Background

defining reference “hydrostatic” density and pressure profiles, which are functions of

z only. Subtracting these reference hydrostatic contributions from the full pressure

gradient and gravitational accelerations gives:

∂p− pr

∂z
= − (ρ− ρr) g. (1.4)

Dividing through by density shows that once this reference state has been subtracted,

the gravity only affects the flow via the buoyancy, defined by:

b := −g (ρ− ρr)

ρ
. (1.5)

i.e. the relative gravitational acceleration experienced by a parcel of fluid with den-

sity different to the hydrostatic reference. This leads us to extend the idea of a

hydrostatic reference state: in general, any reference state obeying equation (1.3)

may be subtracted from the full flow to give a representation in terms of the per-

turbation pressure, and the buoyancy.

If the perturbations from the reference state are small, it is helpful to write

p = pr + εp′, ρ = ρr + ερ′, (1.6)

with dimensionless constant ε ∈ R>0 chosen such that ρr/ρ
′ and pr/p

′ are O(1).

The vertical pressure gradient and gravity terms of (1.2) can then be written as

(dividing through by the density):

1

ρ

∂pr + εp′

∂z
+ g =

1

ρr

(
1 + ε ρ

′

ρr

) ∂pr + εp′

∂z
+ g

=
1

ρr

(
1− ερ

′

ρr

+O
(
ε2
))(∂pr

∂z
+ ε

∂p′

∂z

)
+ g

(
for

∣∣∣∣ερ′ρr

∣∣∣∣ < 1

)
=

1

ρr

∂pr

∂z
+ g − ε

(
ρ′

ρr

1

ρr

∂pr

∂z
− 1

ρr

∂p′

∂z

)
+O(ε2). (1.7)

Using equation (1.3) to replace (1/ρr) ∂pr/∂z by −g, we see that the O(1) term

cancels. Thus the leading approximation to the pressure gradient and gravitational

terms is O(ε), which will be a good approximation so long as ε� 1:

−1

ρ

∂pr + εp′

∂z
− g = −gερ

′

ρr

− 1

ρr

∂εp′

∂z
. (1.8)

This leads us to a more useful expression for the buoyancy:

b = −g (ρ− ρr)

ρr

, (1.9)



1. Background 7

i.e. the reference state may be used in the denominator. Note that this expression

is inherently a linearization: for larger density perturbations the higher-order terms

must be retained, and for very large density perturbations ερ′/ρr ≥ 1 the Taylor

expansion of (1+ερ′/ρr)
−1 diverges. Within this approximation, which is very good

within the lower atmosphere, the buoyancy force defined with the reference state

in the denominator captures all of the gravitational influence on the momentum

equation.

1.1.3 Instability

Convection as defined in Def. 1 requires instability, so we need to ask “what density

differences will cause instability?” before we can ask “what sort of motion will

result?”. Assuming an inviscid fluid (i.e both µ = 0 and ζ = 0) we can derive

necessary conditions for instability based on a linear stability analysis for a parcel

isentropically displaced from some reference height. This is what is usually termed

“static stability” in meteorology. Consider the infinitesimal, isentropic displacement

of an initially resting fluid parcel from a height z, with density ρ(z) = ρr(z), to a

height z+δz. Neglecting viscous forces and the perturbation pressure gradient term

(i.e. assuming the perturbation pressure gradient is approximately constant with

height), the vertical component of the momentum equation for the parcel is:

D

Dt

(
Dδz

Dt

)
=
−g
ρr

[ρ(z + δz)− ρr(z + δz)] . (1.10)

The density of the parcel is not necessarily conserved in the isentropic perturbation;

however, by definition, the potential density is (being the density the fluid parcel

would have if isentropically brought to a reference pressure). Let ρθ denote the

potential density. Following Vallis (2017, §2.9.2), we let the reference pressure be

the pressure at z + δz, giving ρ(z + δz) = ρθ(z + δz), and ρr(z + δz) = ρθ,r(z + δz)5.

Since the potential density of the parcel is conserved, ρθ(z + δz) = ρθ(z); and

since the parcel’s density was initially equal to the environmental reference density,

ρθ(z) = ρθ,r(z). Therefore ρ(z + δz) = ρθ,r(z), and the vertical momentum equation

becomes:

D

Dt

(
Dδz

Dt

)
=
−g
ρr

[ρθ,r(z)− ρθ,r(z + δz)] (1.11)

=⇒ d2δz

dt2
≈ −

[
− g

ρθ,r

(
∂ρθ,r
∂z

)]
δz. (1.12)

5This is not just for convenience; in general, for a multi-component fluid (e.g. the salty ocean,
or the moist atmosphere), ρθ is a nonlinear, multi-valued function of the other thermodynamic
variables. Therefore it must be referenced locally for the linear stability analysis to hold.
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This is a harmonic oscillator equation with frequency N =
√
− (g/ρθ,r) ∂ρθ,r/∂z ,

usually called the “buoyancy frequency” or “Brunt-Väisälä frequency”. Clearly if

N2 > 0 the solutions for the displacement δz are oscillatory, while if N2 < 0 the so-

lutions are exponentially increasing or decaying. Therefore, neglecting perturbation

pressure gradient forces and viscosity, a sufficient condition for static instability is

N2 < 0, or, equivalently, ∂ρθ,r/∂z > 0. Similar arguments can be found in many

texts on geophysical fluid dynamics (for instance Salmon 1998, §§15-16; Vallis 2017,

§§2.9.1-2.9.2).

Casting the discussion in terms of isentropic perturbations allows the final ex-

pression above to be applied, with the correct approximations, to both dry and

moist atmospheric convection (Emanuel 1994; as well as to the ocean, Vallis 2017).

For dry air (approximated as an ideal gas), note that the equation of state relat-

ing the potential density, the potential temperature, and the reference pressure, is

simply the ideal gas law evaluated at the reference pressure, pR = ρθRθ, giving

N2 = (g/θh) ∂θh/∂z . For unsaturated moist air, θ may be replaced by the virtual

potential temperature. In more complex fluids (such as moist saturated air), there

will often be multiple competing effects governing the static stability. This can be

seen by writing the potential density as a function of the other thermodynamic vari-

ables; here we shall choose entropy η, pressure p, and C, a variable representing

composition:

dρθ =

(
∂ρθ
∂η

)
p,C

dη +

(
∂ρθ
∂p

)
η,C

dp+

(
∂ρθ
∂C

)
η,p

dC. (1.13)

Even neglecting pressure perturbations (consistent with the linear stability analy-

sis), there must be contributions to the potential density gradient from both changes

in the environmental entropy profile, and changes in the environmental concentra-

tion profile. These details are explicitly worked out for moist saturated air in, for

instance, Emanuel (1994, §6.2).

In a real fluid, the pressure gradient force does vary with height, and viscosity is

not necessarily negligible. This complicates the linear stability analysis, to the extent

that it is not necessarily solvable for arbitrary boundary conditions. However we may

generally see that the effect of viscosity is to suppress the convective instability, since

the viscous term dissipates kinetic energy. Therefore in a viscous fluid the sufficient

condition for instability is generally stronger than for an inviscid fluid. For the simple

case of Rayleigh-Bénard convection of a Boussinesq fluid confined between two flat

horizontal plates, each held at fixed buoyancy (which will be reviewed extensively

in Chapter 2), this can be seen explicitly: the background buoyancy profile must be

steeper than a (calculable) critical buoyancy profile, ∂bref/∂z > (∂bref/∂z )c. This

critical background buoyancy profile is a function of the distance between the plates,
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and the viscosity and thermal diffusivity of the fluid. Because the Reynolds number

in atmospheric flows tends to be very large, this correction to the stability criterion

matters little unless one is directly considering the effects of enhanced turbulent

mixing on stability with respect to a turbulent reference state (e.g. Thuburn et al.

2019).

Since fluid dynamics is nonlinear, we also need to seek the necessary conditions

for convection to occur. Linear stability analysis is fit to tell us sufficient condi-

tions for instability, and, since the unstable solutions to the linearized perturbation

equations grow exponentially, necessary conditions for stability. To find necessary

conditions for instability, we need to find sufficient conditions for stability, i.e. we

need to find the requirements for any finite-amplitude perturbation to decay. In the

nonlinear analysis, there is no restriction on the size of these perturbations (i.e. they

need not be small). This process can be quite involved; one successful method for

establishing nonlinear stability is known as the “method of energy” (Doering and

Gibbon 1995; Straughan 2004), where one finds sufficient conditions such that the

kinetic energy of the perturbations will eventually decay to zero.

In general, the linear and nonlinear stability criteria will not match, meaning

that we must also consider finite-amplitude instabilities. This is well-known to at-

mospheric scientists and meteorologists under the name of “conditional instability”

(Emanuel 1994, §6.3): a parcel of air may be stable to an infinitesimal displacement

(“statically stable”), but unstable to a sufficiently large one. Conditional instability

is due to the presence of water in the atmosphere6, which undergoes first-order phase

transitions between its vapour, liquid, and solid phases. Such phase changes are as-

sociated with a discontinuous change in entropy at constant temperature (Blundell

and Blundell 2009, chapter 28; Callen 1985, §9.2) — or “latent heat” — introducing

an extra source of buoyancy. This complicates the convection problem: while basic

results of linear and nonlinear stability are well-established for dry Rayleigh-Bénard

convection, neither are established for any of the various extensions to moist convec-

tion (Bretherton 1987, 1988; Pauluis and Schumacher 2010; Schumacher and Pauluis

2010; Weidauer et al. 2010; Weidauer and Schumacher 2012; Vallis et al. 2019).

Conditional instability is immensely important for atmospheric moist convection:

deep convection almost always occurs due to conditional instability in a statically-

stable environment. There are various methods for estimating conditional instability

in the atmosphere, which generally estimate the potential energy available to convec-

tive instability by following the ascent of some idealized fluid parcel. However, the

general nonlinear stability criteria for moist atmospheric convection are not known.

6Of course, water is not special: methane plays this role on Jupiter’s moon Titan (Hayes et al.
2018).
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1.2 Turbulence and the Parametrization Problem

Convection in geophysical contexts is invariably turbulent. In the atmospheric con-

text this follows obviously from noting that a typical Reynolds number for convection

is very large: in the dry CBL, for instance, typical updraft velocities are ∼ 1 m s−1,

the boundary layer depth is ∼ 103 m, and the viscosity of air ∼ 10−5 m2 s−1, giving

Re ∼ 108. Heuristically, a fluid flow will be turbulent if its Reynolds number is suffi-

ciently large (& 103), so by this practical definition, atmospheric convection must be

a turbulent flow. But mentioning turbulence within the context of atmospheric con-

vection can cause controversy and misunderstanding, so for the avoidance of doubt

we will discuss and define the term now.

Turbulence does not have a broadly-accepted mathematical or even verbal def-

inition (Tennekes and Lumley 1972, §1.1; Doering and Gibbon 1995, §3.1; Salmon

1998, p.207; Lesieur 2008, §1.1; Vallis 2017, p.413). Authors tend to describe the

characteristics of a turbulent flow, rather than venturing a definition; as Vallis notes,

“it is hard to disentangle a definition from a property”. All of the above authors

agree that a turbulent flow must possess some of the following properties7:

1. Unpredictability (also “randomness”, “irregularity”, “lack of bounded sensi-

tivity”);

2. Nonlinearity: these flows are dominated by the nonlinear term in the Navier-

Stokes equation, giving rise to interactions between, and generation of, multi-

ple scales;

3. A large range of spatial and temporal scales (a consequence of strong nonlin-

earity, implying a large Reynolds number);

4. Enhanced mixing (globally): turbulent flows mix tracers and active fluid prop-

erties far more efficiently than molecular processes alone, though there can be

local regions of up-gradient transport;

5. Inherently vortical (irrotational flows cannot be turbulent).

Atmospheric convection exhibits all of these characteristics: atmospheric convec-

tion is a turbulent flow, and consequently when we try to understand, model, or

parametrize atmospheric convection, we are wrestling directly with turbulence. The

distinction between “convection” and “turbulence” is therefore artificial, and we

will not make it in this thesis: we take the view that atmospheric convection is

atmospheric turbulence generated by unstable distributions of buoyancy.

7Some authors (e.g. Tennekes and Lumley 1972) add the stipulation that turbulence must be
three-dimensional; in our view this is unhelpful, as certain two-dimensional flows can exhibit all
of the other characteristics of turbulence (though the nature of the propagation of energy through
scale space is admittedly fundamentally different).
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In particular, for the remainder of the thesis, the word turbulence will be taken

to mean the following:

Definition 2 (Turbulence). A turbulent flow is a fluid flow which exhibits (a)

spatial and temporal unpredictability, and (b) a wide range of spatial and temporal

scales. Turbulence describes such a flow.

Turbulent flows often exhibit what are called “coherent structures” within the other-

wise random, uncorrelated three-dimensional vorticity fluctuations; that is, emergent

structures within the flow which are coherent over length scales large compared to

the dissipation length scale of the flow (Hussain 1986). The overturning circulations

of convection, both dry and moist, are striking examples of these phenomena.

Viewing convection through the lens of turbulence is a powerful tool for unpicking

many of the issues which arise when trying to understand and model it; that is

the goal of the remainder of this section. We note that there are (at least) two

main strands of research in turbulent flow; one could broadly be described as the

“understanding” of the flow, and the other is the “simulation” of the flow. Of course,

the two strands overlap.

1.2.1 Length scales; direct numerical simulation; requirement

for parametrization

One way in which turbulent flows differ from laminar flows is the presence of a wide

range of length and time scales within the flow, all of which are relevant to the dy-

namics. How many scales? Following Kolmogorov (1941) (hereafter “K41”; reviewed

beautifully with emphasis on symmetry principles in Frisch 1995, chapters 6-7), we

assume that a turbulent flow possesses a scale, `0, which is the characteristic scale

of energy input (usually set by the initial or boundary conditions). Despite the

dominance of the nonlinear term on large scales ∼ `0, the viscous term term will

become important on small enough scales; therefore we introduce the second length

scale η, called the “Kolmogorov length” or “dissipation length”, defined as the scale

for which inertial and viscous accelerations become equally important. In the region

of scale-space between these two scales, direct interaction with `0 will be negligible

sufficiently far from `0, and so direct energy input is negligible. Further, on scales

sufficiently larger than η, direct energy dissipation by viscosity will be negligible.

This region of scale space, where `0 � ` � η, is termed the “inertial subrange”

(ISR) (because the viscous terms, and external forcing terms, are negligible, and so

the dynamics are dominated by the remaining, inertial, terms).

Under the assumption of a statistically stationary state, the rate of energy input

at the large scale `0 must be equal to the rate of dissipation by viscosity at the small
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scale η. The rate of energy input from scale `0 to smaller scales is ∼ u2
0/t0, where

u0 is the characteristic velocity of fluctuations with length scale ∼ `0, and t0 is the

characteristic time scale of such fluctuations, known as the “eddy turnover time” —

that is, fluctuations at the integral scale `0 disperse their kinetic energy to smaller

scales in a characteristic time t0. The eddy turnover time itself may be related to

the characteristic velocity and length scales of an eddy of size ` by t` ∼ `/u`, giving

an energy flux at the energy input scale `0 of u3
0/`0. This must be equal to the rate

of dissipation by viscosity at the scale η:

ε ∼ u3
0

`0

. (1.14)

Note that this only assumes statistical stationarity (and, implicitly, finite dissipation

rate as ν → 0, and local isotropy and homogeneity; see Frisch 1995, p.103), and not

(yet) the localness of interactions in scale space. This is effectively just a restatement

of the requirement that, in a statistically stationary state, the production of energy

must be balanced by its dissipation, plus a very simple and widely applicable scaling

argument for the dependence of the flux of energy at the outer length scale `0 (which

is equal to the rate of production of energy) on the outer velocity and length scales

— since for an incompressible fluid with negligible viscosity at scale `0, these are

the only parameters on which the flow can depend.

At some scale η, the viscous terms become equally as important as the nonlinear

terms. This means that the Reynolds number at a scale η must be O(1):

1 ∼ Re(η) =
uηη

ν
. (1.15)

To estimate the velocity, we need to assume that equation (1.14) is valid for all

of the intermediate scales `0 > ` > η in the inertial range; this is equivalent to

assuming that the velocity field is scale-invariant (or “self-similar”) for scales `� `0

(see Frisch 1995 §§6.1, 6.3.2, 7.3). Replacing `0 → η, u0 → uη in equation (1.14)

then gives uη ∼ ε1/3η1/3; substituting this in the expression for Re(η):

ε1/3η4/3 · η
ν

∼ 1 =⇒ η ∼
(
ν3

ε

)1/4

. (1.16)

Rearranging equation (1.14) for the outer length scale `0 allows us to relate the

largest and smallest length scales in the flow:

`0

η
∼
(
`0u0

ν

)3/4

= Re(`0)3/4. (1.17)

This states that the ratio between the largest and smallest dynamically relevant
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length scales in the flow scales strongly with the Reynolds number. Using the

estimates of u0 ∼ 1 m s−1, `0 ∼ 103 m, and ν ∼ 10−5 m2 s−1 from the CBL example

at the beginning of Section 1.2, the smallest dynamically relevant scale for the CBL

is ∼ 1 mm (the same estimate is given in Cullen and Brown 2009). Resolutions this

fine are unlikely to ever be possible.

Seen another way: to accurately numerically simulate all of these scales on a

uniform grid, there must be ∼ Re3/4 grid points in each dimension for each integral

length scale. To simulate accurately in time, the time-step must also be approx-

imately proportional to the grid spacing (because the flow is inertially-dominated

until the very smallest scale), and we must simulate for at least one eddy turnover

time. This means that the computational power required to simulate a turbulent

flow accurately for a fixed length of time grows very strongly with the Reynolds

number: in d spatial dimensions, the total number of operations, N , scales as

N ∼ Re3(d+1)/4 = Re3 if d = 3, or Re9/4 if d = 2 (Frisch 1995; Moin and Ma-

hesh 1998; Davidson 2009; Wyngaard 2010). This is what we must do if we wish to

simulate all of the scales of a turbulent flow accurately, with no approximation; such

a simulation is called a “direct numerical simulation” (DNS; an excellent review is

provided by Moin and Mahesh 1998, while a wonderful non-technical overview is

given by Patterson and Orszag 1973).

Direct simulations are simply not possible for geophysical flows in general, nor

for atmospheric convection in particular: for the dry CBL flow discussed at the

beginning of this section, Re ≥ 108, implying at least N ∼ 1024 operations would be

required to simulate a single eddy turnover time (on the order of 10− 15 minutes).

The world’s fastest supercomputers can currently perform ∼ 1018 operations per

second8, meaning that even the fastest supercomputer would need & 106 s ≈ 11 days

to directly simulate a single large eddy scale for a single eddy turnover time.

This must be a lower bound, as we have assumed only one operation per grid

point per time-step, which is clearly an underestimate since the Navier-Stokes equa-

tions are a coupled system of partial differential equations, requiring ∼ 10–100

operations per grid point per time step. Therefore the lower bound is quite loose,

and would in reality be larger by at least a factor of 10. Since many eddy turnover

times and, preferably, many eddy turnover scales are required for even idealized

studies, this is clearly not yet viable even as a research tool, let alone for real-time

8A ranking of the world’s fastest computers has been compiled in June and November of each
year since 1993 by the TOP500 Project. The fastest computer on the latest (November 2022) list is
“Frontier”, hosted at the Oak Ridge Leadership Computing Facility in the USA, which performed
1.1× 1018 floating-point operations per second in the project’s standard benchmark (The TOP500
Project 2022). Several supercomputers operated by meteorological agencies are in the top 100,
including one of the UK Met Office’s HPE machines (ranked 82nd at 7 × 1015 operations per
second).
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forecasting of the weather!

To be able to be used to forecast the weather, such a simulation must run faster

than real time; as an upper bound, this would require the simulation wall clock

time for a single turnover time to be equal to the turnover time: Tsim = t0. For

u0 ∼ 1 m s−1, `0 ∼ 103 m, t0 ∼ 1000 s. We would also require simulation over a much

larger area than a single large eddy scale; assuming we would like a regional forecast

only over a 1000×1000×10 km cuboid over the British Isles gives us a volume of V ∼
107`3

0. (In choosing the British Isles as our example, we have effectively described

the problem faced by the operational forecasters at the UK Met Office.) Assuming

N ∼ 1018 operations per second, the largest Reynolds number that can be simulated

in real time is then given by (V/`3
0) Re3

max . N × Tsim =⇒ Remax . 1014/3 ≈
50, 000 � 108. Again, this upper bound is quite loose: accounting for more than

one operation per grid point per time-step, communication time between different

computational nodes, data input and output, post-processing, and data assimilation,

would all lower the bound. These slow-downs are inherent to simulation of the

Navier-Stokes equations for forecasting purposes, and will never fully disappear.

So, the possibility of directly numerically simulating the weather in real time is

a fantasy, and will be for a very long time. This problem is even greater if we wish

to directly simulate the entire atmosphere, and greater still if we wish to directly

simulate the climate — DNS on these scales is unlikely to ever be possible. We

are forced to somehow reduce the number of degrees of freedom in order to make a

simulation possible (the resulting system will be called a “reduced order” or “low

order” model of the underlying flow). It is also desirable to reduce the number

of degrees of freedom, or at least analyse them separately, in order to build an

understanding of how the different scales in a turbulent flow interact with each

other. The most common way to do this is by applying some sort of averaging or

filtering operation to the governing equations:

Definition 3 (Linear filtering operation). Given flow variables ϕ, ψ, and constant

α ∈ R, we define a linear filtering operation, denoted by angle brackets, 〈. . .〉,
as a formal operation which satisfies the following properties (Germano 1992):〈

∂ϕ

∂x

〉
=
∂ 〈ϕ〉
∂x

,

〈
∂ϕ

∂t

〉
=
∂ 〈ϕ〉
∂t

(commutation with partial derivatives)

(1.18)

〈αϕ+ ψ〉 = α 〈ϕ〉+ 〈ψ〉 (linearity). (1.19)

Any flow variable can then be decomposed into its filtered (or “resolved”) and resid-

ual (or “subfilter”) parts:
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Definition 4 (“Resolved” and “subfilter” variables: incompressible case). For a

variable ϕ, and filtering operation 〈. . . 〉, we define the resolved part of ϕ by:

ϕr := 〈ϕ〉 . (1.20)

Similarly, we define the subfilter part of ϕ by:

ϕs := ϕ− ϕr. (1.21)

Clearly then ϕ = ϕr + ϕs. For now we will not worry about the exact nature of the

filter; we merely note that it is generally the goal of turbulence study (theoretical,

numerical, observational, and experimental) to understand and/or predict the effects

of the subfilter flow on the resolved flow.

As a first step, we will simply apply a linear filter to the governing Navier-Stokes

equation (assumed, for simplicity, to be incompressible, with homogeneous reference

density ρr, and homogeneous kinematic viscosity ν):

∂ 〈u〉
∂t

+∇ · (〈u⊗ u〉) = −∇
〈
p

ρr

〉
+
〈
bk̂
〉

+ ν∇2〈u〉.

Defining the pressure potential by P := p/ρr , and assuming the gravitational vector

to be constant and therefore commute with the filtering, this becomes:

∂ 〈u〉
∂t

+∇ · 〈u〉 ⊗ 〈u〉 = −∇ 〈P 〉+ 〈b〉 k̂ + ν∇2〈u〉 −∇ · (〈u⊗ u〉 − 〈u〉 ⊗ 〈u〉) .

(1.22)

This is the momentum equation for the filtered velocity field, which looks exactly

like the unfiltered momentum equation except for the presence of the extra term

〈u⊗ u〉 − 〈u〉 ⊗ 〈u〉. This term is usually called the “subfilter momentum flux”

or “subfilter stress”. To tidy up the appearance of later equations, we will follow

Germano (1992) and define the “subfilter flux” operator:

Definition 5 (Generalized second centred moment/“subfilter flux”). For any two

flow variables ϕ, ψ, and a linear filtering operation, 〈. . .〉, we define the generalized

second centred moment s(ϕ, ψ) by:

s(ϕ, ψ) := 〈ϕψ〉 − 〈ϕ〉 〈ψ〉 . (1.23)

Note that this operator, s, is linear in both of its arguments: s(a1 + a2, b1 + b2) =

s(a1, b1) + s(a1, b2) + s(a2, b1) + s(a2, b2) (Germano 1992). It is the extension of the

covariance (or, second centered moment about the mean) to a general linear filtering

operation. Where one of the variables is the fluid velocity, s(u, ψ) then represents
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the subfilter flux of the quantity ψ; hence we may sometimes refer to this operator

as the “subfilter flux” operator.

With this definition, the filtered Navier-Stokes equation becomes:

∂ 〈u〉
∂t

+∇ · 〈u〉 ⊗ 〈u〉 = −∇ 〈P 〉+ 〈b〉 k̂ + ν∇2〈u〉 −∇ · s(u,u). (1.24)

Immediately we are presented with the “turbulence closure problem”: filter-

ing introduces terms of the form s(u,u), so there are now more unknowns than

equations. We can derive an evolution equation for s(u,u), but this will involve

terms like 〈u⊗ u⊗ u〉, which are also not known. Systems of equations with more

(independent) unknowns than (independent) equations are said to be “unclosed”;

thus additional equations, or relations between the known variables and the new

variables introduced by filtering, must be added in order to “close” the equation

set. The task of finding/guessing/deriving these relations is known as the turbu-

lence closure problem. Note that the problematic term would not have arisen if the

Navier-Stokes equation were linear: nonlinearity is the cause of the closure prob-

lem. Therefore nonlinearity both causes turbulence, forcing us to need to reduce

the number of degrees of freedom in order to make sense of the flow, and causes the

closure problem, which makes that reduction nontrivial.

Terms like s(u,u) capture the effects of the nonlinear interactions in the unfil-

tered flow on the filtered flow. This can be seen more clearly by splitting the velocity

field into its filtered (or “resolved”) and residual (or “subfilter”) parts:

u = 〈u〉+ (u− 〈u〉) = ur + us (1.25)

=⇒ s(u,u) = (ur ⊗ ur)r − ur ⊗ ur + (ur ⊗ us + us ⊗ ur)r + (us ⊗ us)r (1.26)

= s (ur,ur) + [s (ur,us) + s (us,ur)] + s (us,us) . (1.27)

The first term (called the Leonard term; Leonard 1974) represents purely filtered

stresses, while the middle two terms (the cross, or Clark, terms) capture nonlinear

interactions between the filtered and subfilter momenta, and the final term (named

the Reynolds term after Reynolds 1895) represents the purely subfilter stresses.

So, how do we close the equation set? Well, the unknown terms (generally s(ϕ, ψ)

for flow variables ϕ, ψ) must be replaced by a representation in terms of only filtered

variables: s(ϕ, ψ) → f({χr
α}), where {χr

α} denotes the set of all filtered variables.

To do this we need to decide what the filter is representing, and therefore what

assumptions and deductions we can make about the unknown terms.
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1.2.2 The statistical (or RANS) approach

The traditional way of thinking about turbulence modelling is the “Reynolds aver-

aging” approach, introduced by Reynolds (1895). A Reynolds averaging operator

is a linear filtering operator9, 〈. . .〉R, which satisfies also the following “Reynolds

condition”:

〈ϕ 〈ψ〉R〉R = 〈ϕ〉R 〈ψ〉R (1.28)

=⇒ 〈〈ϕ〉R〉R = 〈ϕ〉R , 〈〈ϕ〉R − ϕ〉R = 0, (1.29)

that is, the Reynolds averaging operator projects the flow onto a sub-space of the

solution phase space which is invariant under whatever group action the operator

is averaging along. As a specific example, if the average is a time average, the

corresponding Reynolds operator projects onto a time-invariant — or “stationary”

— sub-space (and so, Reynolds average flows constructed based on time averages

cannot have time dependence — see e.g. Tennekes and Lumley 1972, p.28). Similar

must be true if the average is a spatial average: the corresponding Reynolds operator

then projects onto a spatially-invariant — or “homogeneous” — sub-space, meaning

that the spatially Reynolds-averaged flow cannot have any spatial dependence. An

important corollary of this definition is that the Leonard term and Clark terms of

Equation 1.27 are identically zero — i.e. only the Reynolds term is nonzero.

Reynolds used both spatial and temporal averages in his original paper (Reynolds

1895, respectively equation (4) and the first non-numbered equation after (8A)), but

explicitly assumed the Reynolds conditions above, which are not generally true for

such averages. Therefore in a modern theoretical context a statistical ensemble av-

erage is usually understood: that is, an average over a large number of independent

realizations of the flow. For ensemble averages, the Reynolds properties are auto-

matically satisfied. In practice, ensemble averages which actually converge are rarely

used; numerical simulations of turbulence are too computationally expensive to run

enough for the ensemble average to converge, and the use of ensembles of inde-

pendent flows with identical initial conditions is clearly impossible for atmospheric

observations. Instead time- and/or spatial averages are used, which tend towards

the ensemble average given suitably large times/length scales (and assumptions of

ergodicity; see Wyngaard 2010, § 2.3)10.

9Note that the operator need not necessarily commute with space and time translations, and
therefore space/time partial derivatives, though Reynolds operators in fluid dynamics are usually
assumed to commute with either Eulerian or Lagrangian translations.

10Note that an ensemble average does not, in general, mean a smooth parametrized flow when
applied in a spatially inhomogeneous framework — for instance an urban area. The RANS flow
may well have discontinuities, so further spatial filtering may be necessary, leading to dispersive
fluxes.
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Clearly the Reynolds averaging (often abbreviated to RANS: “Reynolds-averaged

Navier-Stokes”) approach cannot apply literally to modelling of the atmosphere:

the problem is neither homogeneous, nor stationary, and we have only one Earth.

However, under assumptions of approximate stationarity or homogeneity over large

enough length and time scales for the problem at hand, approximate RANS methods

can be applied. Such arguments are central to our understanding of the atmospheric

boundary layer, and are very often used in its parametrization (Garratt 1994; Stull

1988, Wyngaard 2010, Part II). However, RANS arguments can only be applied on

large enough space and time scales — for smaller scales, those on which we humans

live day-to-day, for which we would like to predict the weather, they cannot even

approximately be applied without leading to errors.

1.2.3 The LES approach

An alternative approach to the modelling of turbulence is that of “large eddy sim-

ulation”, which does what the name suggests: LES aims to explicitly represent the

large, energy-containing scales of a turbulent flow, and focus computational (and/or

analytical) efforts on these, while modelling the effects of the smaller-scale motions

which contain less energy. This partition of the flow into large-scale and small-scale

parts is performed by a spatial filtering operation:

Definition 6 (Spatial filter). For a flow variable ϕ(x, t) we define the operation of

spatial filtering by:

〈ϕ〉g :=

∫
Rd
g(x− x′; δ)ϕ(x′, t) ddx′, (1.30)

where g(x− x′; δ) is a filter kernel satisfying the normalization condition:∫
Rd
g(x− x′; δ) ddx′ = 1. (1.31)

〈. . .〉g is read as “filtering with respect to the kernel g”. We also require that the

filter kernel guarantees the following properties (Berselli et al. 2006):

lim
|δ|→0

〈ϕ〉 = ϕ, (1.32)

‖〈ϕ〉‖ ≤ C‖ϕ‖ (uniformly in |δ|), (1.33)

which can be interpreted simply as requiring that it is “well-behaved”.

All such filters are linear by the definition in equation (1.19); in the absence

of boundaries, and for filter widths δ which do not depend on space or time, such
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filters also commute with space and time derivatives, equation (1.18). So long as the

filter kernel has a strong decay in wavenumber space above some wavenumber kc —

which is true for the commonly-used spectral cutoff and Gaussian filter kernels11 —

this filtering can be seen to split the flow into “large scale” variations with k . kc,

represented by ϕr, and “small scale” variations with k & kc, represented by ϕs.

Within the cascade picture provided by Richardson (qualitatively; see Richard-

son 1922, p. 66) and Kolmogorov (quantitatively; see Kolmogorov 1941), so long

as the filter scale is smaller than the scale(s) of energy injection, the closure prob-

lem translates to trying to model the effects of the less-energetic small scales on

the much more energetic large scales, which seems hopeful even if not necessarily

mathematically well-posed.

This also bears a direct relevance to the situation in atmospheric modelling: we

use the smallest grid spacing that the available computational resources allow, in

order to resolve as much of the flow as possible. However, the real flow still varies

considerably on length scales comparable to a model grid box (∆x); as such, it must

be filtered in order to produce a field which varies smoothly and slowly on scales

∼ ∆x. We are then tasked with coming up with a good representation of the in-

teractions between the large- and small-scale flows, such that the final model well

approximates reality. In its simplest form, this is done all the time in atmospheric

models: artificial diffusion is added to stabilize the numerical integration, acting

effectively as a crude subfilter model. From this point of view, effectively all numer-

ical atmospheric modelling can be viewed as LES: Cullen and Brown (2009) argue

that all numerical models of the atmosphere, from high resolution research models

through to long-term climate projections, are effectively large eddy simulations of

some form or other. This may be true in the sense that Reynolds averaging never

strictly applies on any scale of the atmosphere, but it clearly is not true if we under-

stand LES in the narrower sense that the filter scale must be in the inertial subrange

of the process you are modelling the subfilter-scale effects of.

It is in this narrower sense that LES is usually understood (Mason 1994), be-

cause in practice the assumptions used to build subfilter models for LES tend to

rely on results valid only in the inertial subrange of the flow. This allows the var-

ious well-established12 results of K41 to be used to interpret terms in the budgets

11As the name implies, the spectral cutoff filter sharply splits the flow into a part with wavenum-
bers strictly> kc and a part with wavenumbers strictly < kc; for other filters there is some overlap.
For example, for the Gaussian filter (which is its own Fourier transform, and can therefore be
considered an eigenfunction of the Fourier transform operator), the overlap region in frequency
space, though technically infinite, is mostly confined to a region ∼ 1/|δ|.

12Decades of both experimental and numerical results support the basic validity of K41 (i.e.
universality of the energy spectrum, with E(k) ∝ k−5/3) for 3D flows, far enough removed from
boundaries, at high enough Reynolds number; see for instance Figure 2.4 of McComb (1990). In
addition, the standard K41 results have now been derived asymptotically in the limit of infinite
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for subfilter quantities, and in some cases even to perform explicit calculations.

For instance, many (most?) LES closures assume that, for a filter scale situated

well within the inertial subrange of the flow, the main effect of the subfilter mo-

tions is dissipative — allowing their effects to be modelled by an eddy viscosity,

i.e. s(u,u) → νt
(
∇ur + (∇ur)T

)
. Lilly (1962) derived a closure by assuming that

transport terms (i.e. terms which can be written inside a divergence) in the evolution

equation for the subfilter stress s(u,u) are locally negligible, that the production

terms due to tilting — i.e. reorientation of the stress tensor — are also negligible,

and that the destruction of the subfilter stress by pressure is simply proportional to

the stress itself divided by some timescale. Then the subfilter stress is proportional

to the resolved strain, with proportionality factor (“eddy viscosity”) given by a char-

acteristic turbulent velocity scale (the square root of the turbulent kinetic energy)

and a characteristic mixing length. Lilly (1966) used Smagorinsky (1963)’s formu-

lation to close the eddy viscosity, and then calculated the remaining dimensionless

constant by requiring that the filter scale be within an inertial subrange obeying the

K41 theory.

Smagorinsky-Lilly subfilter schemes have been very widely used in LES, partic-

ularly in the atmospheric sciences (potentially with extensions to better account

for buoyancy; Mason and Brown 1999). Significantly more complex models do ex-

ist, for instance based on assumed probability distributions (e.g. the eddy-damped

quasi-normal Markovian model; Mason 1994), wave number asymptotics (e.g. the

“Rational LES” model; Berselli et al. 2006, chapter 7), or on some assumptions of

scale similarity (e.g. the dynamic LES first proposed by Germano et al. 1991 in the

Smagorinsky-Lilly context; see Berselli et al. 2006, chapter 8 for an overview of more

recent attempts). In practice, it has been found that, if the LES is well-converged

(i.e. if the filter scale really is well-within the inertial subrange), there is little sen-

sitivity to the specific subfilter model used (e.g. Mason and Brown 1994) — but

this cannot be expected for larger filter scales where self-similarity does not apply.

This is because all of these attempts either explicitly or implicitly work only when

the filter scale is greatly separated from the energy-injection scale: ∆f � `0. This

is emphatically not the case in current weather and climate modelling, and hence

traditional LES approaches cannot be expected to work at these scales. In partic-

ular, we would expect to see greater importance of the Leonard and cross terms at

intermediate scales — the localness of interactions in scale space cannot be assumed

outside of the inertial subrange.

Reynolds number directly from the Navier-Stokes equations, assuming only the finiteness of the
kinetic dissipation as ν → 0 (Lundgren 2003).
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1.2.4 The grey zone; why traditional approaches do not work

here

In the preceding two subsections we have outlined two broad approaches to the

modelling of turbulent flow: the Reynolds-averaging approach, and the large-eddy

simulation approach. Within the context of spatial filtering, for a RANS approach to

be valid, we require the filter scale ∆f � `L, the largest length scale in the flow; while

in the LES limit, we require instead ∆f � `0, the smallest energy injection scale in

the flow. In between these two limits there is a range of scales for which we have

not yet developed adequate parametrization techniques: scales on which neither the

assumptions underlying statistical equilibrium approaches, nor the assumptions un-

derlying LES, are valid. This vast gulf is called the “grey zone” or “terra incognita”

(Wyngaard 2004) in the convection and boundary layer parametrization literatures.

In section 3 of Cullen and Brown (2009), the authors present convection as a

specific example of a process that is currently completely statistically parametrized

(i.e. using RANS-like arguments) in climate models, but would require grid lengths

O(1 m) in order to be fully resolved. Thus new parametrization techniques which

are different from both statistical closures and traditional LES techniques must be

developed.

Based on the arguments in the preceding sections, what sort of problems do we

expect to encounter in the grey zone with inadequate parametrizations? Firstly,

there is the possibility of double-counting: a RANS-based parametrization assumes

all vertical fluxes are subfilter, but now some of these will be resolved. A standard

LES closure might be too dissipative, since the Leonard and cross terms, and pro-

cesses nonlocal in both scale and physical space are likely to be more important in

the grey zone.

Another problem in the grey zone relates directly to the length scales of con-

vection. B. Zhou et al. (2014) argued (based on Rayleigh-Bénard convection) that

if a grid is too coarse to resolve the critical wavelength of a convection problem,

structure will instead form at the grid scale if the subfilter feedback is not correctly

accounted for. Beare (2014) noted a related problem, in that if the dissipation length

scale of the flow (a multiple of the grid spacing) becomes similar to the dominant

energy containing length scale, structures tend to develop on scales which are too

large.

There are two more fundamental barriers to progress in the grey zone, however.

Firstly, traditional atmospheric (RANS-based) parametrizations of atmospheric pro-

cesses rely on assumptions of horizontal homogeneity, statistical stationarity, or

(more often) both. This makes the parametrizations intrinsically 1D and time-

independent. Clearly both assumptions must be relaxed in the grey zone, but that
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fundamentally changes the nature of the parametrizations — atmospheric RANS-

based schemes carry no information about the horizontal fluxes or memory terms

which are required to relax the assumptions. A second fundamental problem is that

grey zone schemes must in principle be stochastic; this will be discussed further in

Section 1.3.2.

In the next section we will examine the formulation of traditional convection

parametrizations, showing them to rely fundamentally on assumptions which are

not valid at grey zone resolutions. We will then look at what actually goes wrong

in convection parametrizations run at grey zone resolutions.

1.3 Parametrization of atmospheric convection

The general problem of convection parametrization is to estimate the contribution

to the subfilter flux s(u, ϕ) from convection in the evolution equation for a flow

variable ϕ:

∂ 〈ϕ〉
∂t

+∇ · (〈u〉 〈ϕ〉) = −∇ · s(u, ϕ) + 〈Sϕ〉 , (1.34)

where Sϕ denotes sources and sinks of ϕ. For simplicity and conceptual clarity, we

again consider the flow to be incompressible, such that we need not worry about

the density. This foreshadows the introduction of the Boussinesq approximation in

Chapter 2, which is the framework we shall work within for the remainder of the

thesis.

1.3.1 Traditional parametrizations

The original reason convection schemes were required was in order to stabilize nu-

merical models (Manabe et al. 1965). Unstable profiles of potential temperature

close to the surface of the Earth led to convection occurring at the grid scale, which

is unrealistic and caused numerical instabilities. (The simplest “parametrization”

of any subfilter flux is simply to assume it can be neglected; clearly this was not the

case for those early global models.) Therefore some sort of representation of sub-

filter convective processes was required. The simplest thing to do is to notice that

convection acts to remove instability; therefore (Manabe et al. 1965) parametrized

the effect of moist convection on the resolved motions as a relaxation of tempera-

ture and humidity variables to ensure a neutrally buoyant, saturated profile.Other

early ideas to tame the convective instability were put forward by tropical cyclone

modellers, using large-scale moisture convergence to parametrize cumulus heating

(e.g. Charney and Eliassen 1964; Kuo 1965). A few years later, Ooyama (1971) and
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Arakawa and Schubert (1974) introduced the mass flux approach which remains

the basis for most operational convection schemes, as well as framing much of the

conceptual thinking around convection parametrization.

From a suitably general perspective, all three classes of traditional schemes —

adjustment, moisture convergence, and mass flux — can be seen as one type of

closure, as they rely on similar assumptions. In particular, all three approaches rely

fundamentally on an approximate equilibrium between large-scale forcing and small-

scale convection, an idea which came to be known as “convective quasi-equilibrium”.

Therefore in this section we will investigate the mass flux–type formulation in detail,

since this is the most widely used; at the end of the explanation, we will sketch how

the other two types of scheme fit within the same framework.

Structure of traditional mass flux schemes

Mass flux-type parametrizations begin with a partitioning of the flow into con-

vection and its environment; indeed, many researchers strongly associate the term

“mass flux” with this conceptual partition. To do so, variables are decomposed

into their values within convective elements, denoted by a subscript c, and within

the environment, denoted by a subscript e. Filtering a variable ϕ then returns

〈ϕ〉 = σc 〈ϕ〉c + σe 〈ϕ〉e, where σc and σe are the fraction of the filter volume oc-

cupied respectively by convection and environment13. Traditionally the filter is an

area average, and so σc is the convective area fraction. Applying this decomposition

to the subfilter flux s(u, ϕ), we find:

s(u, ϕ) := 〈uϕ〉 − 〈u〉 〈ϕ〉

= σc 〈uϕ〉c + σe 〈uϕ〉e − (σc 〈u〉c + σe 〈u〉e) (σc 〈ϕ〉c + σe 〈ϕ〉e)

= σc 〈uϕ〉c − σ
2
c 〈u〉c 〈ϕ〉c + σe 〈uϕ〉e − σ

2
e 〈u〉e 〈ϕ〉e

− σcσe (〈u〉c 〈ϕ〉e + 〈u〉e 〈ϕ〉c) .

The first four terms on the right hand side almost look like subfilter fluxes within

the convection and environment partitions; such a term would look like sc(u, ϕ) :=

〈uϕ〉c−〈u〉c 〈ϕ〉c for the subfilter flux of ϕ within the convective elements. Inspired

by this, we can use that σc = 1 − σe (and vice versa) to rewrite the second and

13The convective part of this is sometimes further split into contributions from lots of different
convective elements, σc 〈χ〉c =

∑
i σc,i 〈χ〉c,i; this introduces only minor differences to the present

derivation. If decomposed in this way, the resulting scheme is usually called “spectral” after
Arakawa and Schubert (1974).
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fourth terms on the right hand side in a more useful way:

s(u, ϕ) = σc 〈uϕ〉c − σc 〈u〉c 〈ϕ〉c + σe 〈uϕ〉e − σe 〈u〉e 〈ϕ〉e
+ σcσe (〈u〉c 〈ϕ〉c + 〈u〉e 〈ϕ〉e − 〈u〉c 〈ϕ〉e − 〈u〉e 〈ϕ〉c)

= sc(u, ϕ) + se(u, ϕ) + σcσe (〈u〉c − 〈u〉e) (〈ϕ〉c − 〈ϕ〉e) . (1.35)

This exact relation states that the subfilter flux of ϕ may be decomposed into con-

tributions from the subfilter flux within the convective elements (the first term),

the subfilter flux within their environment (the second term), and the resolved flux

due to the difference between the filtered flow variables within the convection and

the environment (the third term). The form suggests the identification of the final

term with coherent structures, and the first two terms with internal variability. To

our knowledge, this relation first appeared in Siebesma and Cuijpers (1995, their

Equation 4.1) to define convective coherent structures (“organized turbulence”) and

their environment14.

We take the view that this decomposition of the subfilter flux is the fundamental

starting point for mass flux-type convection parametrizations. This is true both

for the original pioneering formulations, as well as more modern developments. We

shall now take the time to examine the traditional formulations in some detail.

The original mass flux formulations introduced by Arakawa and Schubert (1974)

and Ooyama (1971) make use of a few fundamental assumptions about how convec-

tion operates:

1. Convection is assumed to be in a horizontally homogeneous quasi-equilibrium

with the large-scale forcing (called the “convective quasi-equilibrium” [CQE]

assumption). The equilibrium can be interpreted as thermodynamical or dy-

namical; see Yano and Plant (2012) for a discussion. Horizontal homogeneity is

required such that area averages tend to ensemble averages for very large area;

thus we are firmly in the Reynolds-averaging regime. Note that this means

that closures based on this assumption (or similar RANS-regime assumptions)

are fundamentally one-dimensional.

2. It is assumed that the subfilter variability within the convective components,

and within the environment, is negligible. This is known to most as the “top

hat” assumption, but has also been termed the “segmentally constant approx-

imation” by Yano (2014), where convective elements and the environment are

14Siebesma and Cuijpers (1995) present the result for a Reynolds operator acting in the hori-
zontal direction only. Our result is a straightforward generalization to an arbitrary linear filtering
operator; it is intriguing that it takes precisely the same form, which appears to be an extension
of Germano (1992)’s “averaging invariance”. See Appendix B.3 for a proof of the general case of
n partitions.
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denoted “segments”.

3. It is assumed that the area taken up by convection, σc, is very small compared

to the area not taken up by convection, σe (called the “small/vanishing area

fraction” assumption).

Before discussing the validity of these assumptions, let us see where they take us.

From horizontal homogeneity, only the vertical part of∇·s(u, ϕ) = ∂s(w,ϕ)/∂z

is nonzero, so we need only consider s(w,ϕ) in the following. Using (1.35), the

vertical part of the subfilter flux of variable ϕ is:

s(w,ϕ) = sc(w,ϕ) + se(w,ϕ) + σcσe (〈w〉c − 〈w〉e) (〈ϕ〉c − 〈ϕ〉e) (1.36)

Using Assumption 2, we neglect the internal variability, dropping the first two

terms on the right hand side. Additionally, horizontal homogeneity means that the

total filtered vertical velocity must be zero (a consequence of the continuity equation

and the no-normal flow condition at the surface): 〈w〉 = σc 〈w〉c + σe 〈w〉e = 0.

Therefore the environmental vertical velocity may everywhere be replaced by 〈w〉e =

− σc
(1−σc)

〈w〉c = −(σc +O(σ2
c )) 〈w〉c:

s(w,ϕ) ≈ σc 〈w〉c (〈ϕ〉c − 〈ϕ〉) +O(σ2
c ), (1.37)

so long as |〈ϕ〉c − 〈ϕ〉|/|〈ϕ〉| > O(σc) (i.e. we expect there to be appreciable differ-

ences between the average value of a variable, and its average value within convective

elements). Invoking Assumption 3 (σc � 1) now allows the O(σ2
c ) terms to be ne-

glected.

Defining the convective “mass flux” through unit area by Mc := σc 〈w〉c (standard

formulations include the density, but this is not necessary within our Boussinesq

context; this means that our “mass flux” is actually the “mass flux through unit

area per unit mass”), the final expression for the convective contribution to the

subfilter flux becomes:

s(w,ϕ) ≈Mc (〈ϕ〉c − 〈ϕ〉) , (1.38)

correct to order σc given our assumptions of horizontal homogeneity and negligible

variability within either the convection or environment. This reduces the evolution

equation for 〈ϕ〉 to:

∂ 〈ϕ〉
∂t

+∇ · (〈u〉 〈ϕ〉) = − ∂

∂z
(Mc(〈ϕ〉c − 〈ϕ〉)) + 〈Sϕ〉 . (1.39)
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Therefore, within the (traditional) mass flux approximation, the closures required

are a) finding the form of Mc(z), and b) finding the values of variables within the

clouds, 〈ϕ〉c. The former is usually done by first considering the evolution equation

for the volume fraction of convection, σc
15:

∂σc

∂t
+
∂Mc

∂z
= E −D, (1.40)

where E denotes sources of area fraction, and is called “entrainment”; while D

denotes sinks of area fraction, and is called “detrainment”. The use of these terms

hints at the historical development of cumulus parametrization by analogy with

entraining plumes, a frequent topic of study in early- to mid-20th century fluid

dynamics (reviewed in, for instance, Emanuel 1994, chapter 2; Kaye 2008).

Environmental variables can be recovered from:

〈ϕ〉 = σc 〈ϕ〉c + σe 〈ϕ〉e (1.41)

=⇒ 〈ϕ〉e =
(〈ϕ〉 − σc 〈ϕ〉c)

(1− σc)
(1.42)

= 〈ϕ〉+O(σc), (1.43)

so we may replace 〈ϕ〉c → 〈ϕ〉 to leading order. This allows the corresponding

budget equation for variable ϕ within the convecting area to be written as:

∂σc 〈ϕ〉c
∂t

+
∂Mc 〈ϕ〉c

∂z
= E 〈ϕ〉 −D 〈ϕ〉c + σc 〈Sϕ〉c , (1.44)

where 〈ϕ〉e has been replaced by 〈ϕ〉 in the entrainment term. The relatively simple

form of the entrainment and detrainment terms on the right hand side is a direct

consequence of Assumption 2, that there is negligible variability within either con-

vecting or environmental areas. The non-conservative source term is written as

σc 〈Sϕ〉c so that 〈Sϕ〉 = σc 〈Sϕ〉c + σe 〈Sϕ〉e.
The time derivative of the area fraction of convection may be neglected due to the

quasi-equilibrium assumption. This can be seen by scaling the two terms on the left

hand side: ∂Mc/∂z ∼ σW/H, where σ is a characteristic convective area fraction,

W is a characteristic convective velocity scale, and H is the characteristic height of

a cloud; ∂σc/∂t ∼ σ/T . Since the convection is assumed to be in quasi-equilibrium

with the large scale forcing, the convective timescale must be much less than the

time-scale of change in the forcing: TW = H/W � T . This means there must be

a separation of time scales between the convection and the large-scale forcing in

15Similar equations are effectively plucked out of thin air in Arakawa and Schubert (1974) (their
eqs. 10 and 43-50), though they may be derived by considerations of indicator functions for the
various flow partitions, as will be shown extensively in Chapter 3.
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order for quasi-equilibrium to hold. Assuming this is true, we now have a diagnostic

equation for the mass flux:

∂Mc

∂z
= E −D (1.45)

1

Mc

∂Mc

∂z
= ε− δ, (1.46)

where in the second line we have divided through by Mc to give the commonly-used

formulation in terms of fractional entrainment and detrainment rates, respectively

ε := E/Mc, δ := D/Mc.

At this point a separation of variables is usually performed16, writing

Mc = Mc,0(t)m(z). (1.47)

Here Mc,0(t) depends entirely on the large-scale forcing and sets the amplitude of

convection, while the dimensionless functionm(z) specifies the shape of the mass flux

profile. Equation (1.46) may thus be used to determine the shape of the mass flux

profile by specifying the fractional entrainment and detrainment rates. A separate

closure must be provided for Mc,0(t) (which is often termed “the closure” in mass

flux convection parametrization). Traditionally Mc,0(t) is chosen to be the mass flux

at cloud base, and is therefore usually called the “cloud-base mass flux”. Note that

it is only in providing the magnitude of the mass flux that the time-dependence of

the large-scale forcing can enter directly.

Assuming 〈Sϕ〉 may be neglected — which occurs either when ϕ is genuinely

conserved (this is a good reason to formulate the model in terms of cloud-conserved

variables), or when the non-conservative term acts on much slower timescales than

the convection — then equation (1.44) reduces to:

∂Mc 〈ϕ〉c
∂z

= E 〈ϕ〉 −D 〈ϕ〉c . (1.48)

E and D are known from parametrizing equation (1.46), which also specifies Mc,

while 〈ϕ〉 is one of the primitive filter-scale variables and therefore known. Thus in

the absence of convective-scale forcing, parametrizing the mass flux equation (1.46)

entirely determines all of the unknowns. This shows the power of the mass flux ap-

proach (assuming the validity of its underlying assumptions): once it is parametrized,

all of the other unknowns can be determined.

Using the diagnostic relations for Mc and 〈ϕ〉c, we can simplify the equation for

16It is worth noting that this separation is not always valid (Yano 2014, §7.7); it is a form of
the so-called “entrainment hypothesis” introduced by Ooyama (1971), and effectively assumes that
the entrainment and detrainment rates are not directly dependent on the slowly-varying large-scale
forcing.
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〈ϕ〉:

∂ 〈ϕ〉
∂t

+∇ · (〈u〉 〈ϕ〉) = −∂Mc 〈ϕ〉c
∂z

+Mc
∂ 〈ϕ〉
∂z

+ 〈ϕ〉 ∂Mc

∂z
+ 〈Sϕ〉

= D 〈ϕ〉c − E 〈ϕ〉 − σc 〈Sϕ〉c +Mc
∂ 〈ϕ〉
∂z

+ 〈ϕ〉 (E −D) + 〈Sϕ〉

= D(〈ϕ〉c − 〈ϕ〉) +Mc
∂ 〈ϕ〉
∂z

+ 〈Sϕ〉 − σc 〈Sϕ〉c . (1.49)

Assuming 〈Sϕ〉 and 〈Sϕ〉c are the same order, the dependence on the non-conservative

source within the cloud is negligible, and the equation set is now closed.

Convection parametrization within the traditional mass flux framework thus con-

sists of the following three steps:

1. Determine whether convection is likely. If it is likely, then the convective part

of the subfilter flux must be accounted for (this is called “triggering” of the

convection scheme, but is really just a diagnosis of convective instability).

2. Provide the shape of the vertical profile of the mass flux, m(z). This is usually

done indirectly by specifying the entrainment and detrainment. The vertical

profile is often called the “cloud model”.

3. Provide the magnitude of the mass flux, Mc,0(t), usually at the cloud base

(dependent on the large-scale forcing). This is often called the “closure”.

Examples of traditional schemes

Before giving a brief overview of some traditional mass flux schemes, let us remark

that both closures and triggering mechanisms are very often based on some form of

the potential energy available to convection, which is some measure of the nonlinear

instability (c.f. Section 1.1.3). This includes the “cloud work function” introduced

by Arakawa and Schubert (1974), as well as various forms of estimated convective

available potential energy (CAPE), which is usually easier to calculate.

• The Gregory and Rowntree scheme (Gregory and Rowntree 1990) is a bulk

mass flux scheme. It is used (in modified form) in the regional and global

NWP and climate configurations of the Met Office Unified Model (MetUM).

Entrainment and detrainment closures considered are for an ensemble of en-

training plume models, summed over to give a bulk scheme. The mass flux

closure is local : “the initial convective mass flux [is] proportional to the par-

cel’s initial buoyancy on ascent”. The authors say “This approach is different

from the assumption that a quasi-equilibrium exists” (p.1489); while this is

true of the closure for the cloud-base mass flux, quasi-equilibrium is still re-

quired to derive the stationary, homogeneous mass flux equations in the first
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place, so the scheme still implicitly depends on CQE. Originally, function was

also local and buoyancy-based: is a parcel at some vertical level with excess

buoyancy greater than a critical threshold, still excessively buoyant by more

than a second (lower) critical threshold at the next vertical level? However, the

currently operational MetUM scheme uses a trigger function based on CAPE

estimated via parcel ascent.

• The Kain and Fritsch scheme (Fritsch and Chappell 1980; Kain and Fritsch

1990, 1993) is a mass flux scheme which includes heating from cloud, a “two-

way exchange of mass between clouds and their environment”. Entrainment

and detrainment closures are provided by a plume model based on “buoy-

ancy sorting” (detrainment of air parcels which become negatively buoyant

due to the mixing of convecting and environmental air). The trigger function

is a step function on the(grid-scale) vertical velocity above some threshold

vertical velocitycalculated via a parcel ascent. The cloud base mass flux is

closed via an estimated CAPE.This parametrization is available (in modified

form) in the Weather Research and Forecasting model (WRF) developed by

the United States National Center for Atmospheric Research (NCAR) and Na-

tional Oceangraphic and Atmospheric Administration (NOAA). A very similar

trigger function is used in the European Centre for Medium Range Weather

Forecasts’ (ECMWF) operational Integrated Forecast System (IFS); however

the cloud model and closure in the IFS are based on Tiedtke (1989) with

subsequent modifications (“IFS Documentation CY47R3 - Part IV Physical

processes” 2021, Chapter 6).

• In the Kuo scheme (Kuo 1965), a “moisture convergence” scheme, convective

heating is assumed to be proportional to large scale moisture convergence.

Entrainment and detrainment are not considered; moisture convergence is used

as the “closure”, and a profile of the heating which is the equivalent of the

“mass flux profile” m(z). This scheme is often criticized for assuming that

convection consumes moisture rather than potential energy; it can lead to

unrealistic feedbacks because of this (Emanuel 1994).

• The Betts and Miller scheme (Betts 1986; Betts and Miller 1986) is a convective

adjustment scheme. The trigger function is based on the instability of a parcel

ascent in the current atmospheric profile. If so, profiles of temperature and

moisture are adjusted to reference profiles over some timescale which must

be specified.These reference profiles perform a conceptually similar role to the

heating profile in a moisture convergence scheme, and to the mass flux profile

in a mass flux scheme. The adjustment timescale then provides the “closure”

for the scheme. A modified version of the Betts-Miller scheme is still in use as
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part of NOAA’s North American Mesoscale model (based on WRF).

Thus adjustment, moisture convergence, and mass flux closures can all be re-

garded as versions of the same idea: assume convection is in horizontally-homogeneous

quasi-equilibrium with a large-scale forcing. (Conceptual differences between the

three families of schemes arise in the nature of the assumed quasi-equilibrium.)

Then follow the same three steps as for a mass flux scheme, but modify steps 2

and 3 to: “provide the vertical profile of heating/moistening/mass flux”, and “pro-

vide the closure (cloud-base mass flux, convection/relaxation time scale, large-scale

moisture convergence etc.)”.

Validity of mass flux assumptions

Having presented a sketch of the derivation of the traditional (bulk) mass flux for-

mulation, we are in a position to see why it has been so widely used, and also why it

has been so hard to move beyond. First and foremost, the entire edifice of mass flux

relies on the assumptions of horizontally-homogeneous quasi-equilibrium (requiring

a temporal scale-separation between the forcing and the convection). These are what

allow such a simple formulation to drop out, a formulation where all that matters is

the mass flux profile. But this explicitly prohibits horizontal and temporal variation

of the convective response on scales smaller/faster than that dictated by variation

of the large-scale forcing. This means that convective memory, horizontal transport

of convection, and net vertical mass flux, are all directly prohibited in a traditional

mass flux formulation, by the overarching quasi-equilibrium assumption.

On large spatial and temporal scales, quasi-equilibrium is approximately main-

tained in the tropics (Emanuel 1994; Vallis 2017) (though this is not accepted by

all researchers: there are some who entirely question the validity of CQE, see § 5

of Yano and Plant 2012). On much smaller scales, commensurate with the grid

spacings of current climate (∼ 25 km) and weather (∼ 1 km) models, there is no

doubt that convective quasi-equilibrium does not hold, no matter how it is inter-

preted. Further, on these scales the convective area fraction is not vanishingly small

— given that a single deep convective cloud can be kilometres across. Therefore

the two most powerful assumptions underlying the mass flux framework must be

relaxed.

The third assumption, the so-called “top hat” or “segmentally-constant” ap-

proximation, is also not generally a good assumption (Young 1988; Siebesma and

Cuijpers 1995; Wang and Stevens 2000; Gu et al. 2020). These studies mostly focus

on the use of the “top hat” assumption within bulk mass flux schemes for esti-

mating traditional turbulence statistics (i.e. momentum and scalar variances and

covariances), finding that bulk “top hat” representations tend to under-estimate
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fluxes, variances and covariances. In particular, “all the variance and covariances

are dominated by the environmental subplume variability terms” (Wang and Stevens

2000), and “[t]he bulk mass flux approximation based on traditional cloud sampling

significantly underestimates the vertical fluxes” (Gu et al. 2020).

To some extent, the second and third assumptions may be relaxed while retaining

most of the structure of the mass flux formulation. However, losing the assumption

of a horizontally-homogeneous quasi-equilibrium breaks most of the derivation pre-

sented in this section, and means the mass flux loses its primacy: the convective area

fraction, and the convective and environmental values of flow variables, must now be

retained. This is a much harder problem: there are far more terms to parametrize,

and the equations become prognostic (and, in general, three-dimensional), increas-

ing their analytical and computational complexity. In addition, the separation of

convective scale variables into a time-dependent part governed by the large-scale

forcing (the “closure”), and a height-dependent part governed by fractional entrain-

ment and detrainment (the “cloud model”), is no longer possible. This means that

many of the traditional tools of convection parametrization are not easily applicable.

Splitting the flow into convecting and non-convecting parts is not itself reliant on

these assumptions, though, and is effectively just a recognition that turbulent con-

vection produces coherent structures (the plumes/thermals/clouds) which behave

qualitatively differently to the relatively well-mixed, incoherent environment. Con-

sidering the coherent structures directly, rather than implicitly via their impact on

the distributional moments of the flow variables, may provide a better low-order de-

scription of the convective flow. This approach to coherent structures in turbulence

was advocated by Hussain (1983), who constructed “phase averages” to describe

separately the coherent, incoherent, and non-turbulent parts of a fluid flow in a

RANS context. The conceptual similarity to the mass flux convection-environment

decomposition is striking. Fully prognostic and three-dimensional equation sets for

arbitrarily many partitions have been derived (Yano 2014; Thuburn et al. 2018),

which are the basis for the multi-fluid approach to convection modelling to be ex-

plored in this thesis.

1.3.2 Beyond bulk mass flux

Problems with traditional schemes at grey zone resolutions

Various problems occur when running traditional schemes at grey zone resolutions,

but a statement which applies to all observed problems is that in the grey zone,

the convection produced by the model directly depends on the grid spacing of the

model. A (non-exhaustive) summary of observed problems is:
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• Convection occurs at the wrong length scales, i.e. inter-cloud spacing and

cloud size can be too large (e.g. Lean et al. 2008).

• “Grid point storms” can form, where single model grid cells produce unre-

alistically intense convection and thus precipitation, surrounded by clear sky

(e.g. Deng and Stauffer 2006).

• The timing of the onset of convection in the diurnal cycle is incorrect (multi-

day studies), and initiation of convection is delayed in single-day and idealized

studies (e.g. Petch et al. 2002).

• The convective response is highly intermittent between model time-steps (e.g. Whitall

2017).

• The convection scheme couples poorly to the large-scale circulation, with

effects such as producing incorrect tropical wavemodes, and an unrealistic

Madden-Julian oscillation (MJO). See, for instance, Holloway et al. (2013),

who found that a realistic MJO was observed in the MetUM only when the

mass flux convection scheme was turned off, and the boundary layer scheme

was replaced. See also Chapter 15 of Plant and Yano (2016b) for a discussion

of the required modifications to the ECMWF mass flux convection scheme in

order to generate the correct tropical wavemodes and a realistic MJO.

Note that the term “convection-permitting” is sometimes used instead of “grey zone”

to describe the resolution of models which partially resolve convection (e.g. Plant

and Yano 2016b). We prefer the term “grey zone” as this both suggests that there

is not a sharp distinction between grey zone resolutions and resolutions at which

traditional LES or RANS arguments apply, and is not specific to convection. The

latter is important since grey zones should be found in all turbulent systems.

“Explicit” convection

Due to these problems with traditional schemes, enormous computational power is

spent on achieving resolutions ∼ 1 km at which convection is “resolved” (Satoh

et al. 2019). The limited area numerical weather prediction models now commonly

run at such resolutions are often described as having “no convection scheme” or

“explicit convection”. In practice what this means is that the models are run with

no mass flux–like RANS-based convective closure, but there is always still a subfilter

turbulence model, often based on the Smagorinsky-Lilly eddy viscosity model previ-

ously described. These models contain corrections due to buoyancy, so in our wider

view of atmospheric convection as “atmospheric turbulence generated by unstable

distributions of buoyancy”, these eddy diffusivity schemes are still parametrizing

convection.
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Although simulations at grey zone resolutions tend to produce better results

when run with so-called “explicit convection” than with a traditional mass flux-

type scheme, numerous systematic errors remain (Lean et al. 2008, Clark et al.

2016). Further, results do not necessarily improve with increasing resolution: Stein

et al. (2015) found that the Met Office Unified Model, run with so-called explicit

convection, did not converge as the horizontal grid spacing was decreased from

1.5 km to 100 m. This is because as the grid spacing decreases, more modes of

turbulence can be excited at the grid scale, so the overall representation does not

necessarily improve, unless the modelling of subfilter variability also changes with

resolution to account for the differences in the realizable flow.

Therefore high-resolution schemes need to be modified for the grey zone. For in-

stance, Hanley et al. (2019) found improvements due to implementation of parametriza-

tions of the Leonard term in the MetUM. This is linked to the importance of tilt-

ing terms in the grey zone, as local gradients cannot be assumed small anymore.

There are thus two broad approaches to the grey zone parametrization problem:

modifications to LES-type closures to make them applicable for larger filter scales,

and modifications to RANS-type closures to make them applicable to smaller filter

scales. In order for the two approaches to have any hope of meeting in the middle

they should be placed within one unifying framework.

In addition to the problems with modifying LES-like parametrizations for suit-

ability in the grey zone, there are several other issues with the idea that “convection-

permitting” models make convection parametrization obsolete. Firstly, these∼ 1 km

resolutions are not yet suitable for long-term climate projection, for which even deep

convective parametrization is still required. Secondly, given the inherent limits to

the predictability of turbulent flow, it may be more prescient to spend computational

power on better parametrizations (and more ensemble members) rather than just

resolution, in order to better represent both mean behaviour and variability. Finally,

even when the motions are resolved, there are still fundamental questions which re-

main unanswered. Tropical cyclones have been resolved by models for decades, yet

understanding their genesis and intensification is still an active area of research.

Likewise, direct numerical simulations of highly turbulent Rayleigh-Bénard convec-

tion are now routinely performed, yet many fundamental processes remain only

partially understood (such as the mechanism(s) of formation of large-scale struc-

ture).

Extensions to mass flux

Since mass flux is by far the dominant approach to parametrizing convection, a

wealth of different extensions and generalizations to mass flux have been proposed in
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response to the problems noted in the previous section. A non-exhaustive list follows

below, sorted by the ways in which the traditional approach has been modified.

• Non-vanishing convective area fraction

Arakawa and Wu (2013) proposed a so-called “unified parametrization” in-

tended to work across a wide range of filter scales, where the convective area

fraction is not assumed to be small. All of the other standard mass flux

assumptions are retained. Within this generalization, they showed that the

dependence of the vertical turbulent fluxes on the convective area fraction is

quadratic (as, indeed, we did in the previous Section). Additionally assuming

an adjustment-based closure (of either CAPE or cloud work function), they

derived a cubic equation for the convective area fraction. The quadratic depen-

dence of the vertical fluxes on the convective area fraction has been included

in some operational schemes (such as the US National Centres for Environ-

mental Prediction’s Global Forecast System, Han et al. 2017). However, as

far as we are aware, the cubic determination of the area fraction has not been

used operationally; Han et al. (2017) note that it produces unrealistically small

convective area fraction at high resolutions. This could be due to inconsistent

relaxation of assumptions; in particular, it is not at all obvious that it is con-

sistent to retain the CQE and “top hat” assumptions at very high resolutions,

which are what lead to the cubic closure for the area fraction.

• Time-dependence of convective response

Pan and Randall (1998) proposed a mass flux scheme with a cloud-base mass

flux closure based on a prognostic cloud work function. This avoids some

problems associated with triggering, such as extreme temporal intermittency.

However, the parametrization still assumes horizontal homogeneity over very

large areas, so is not suitable for grey zone.

Gerard and Geleyn (2005), on the other hand, explicitly attempt to extend

mass flux deep convection parametrization to the grey zone. They generalize

the traditional framework by relaxing both the assumptions of CQE and small

area fraction, presenting a bulk mass flux scheme with prognostic updraft

vertical velocity and convective area fraction. The prognostic updraft vertical

velocity equation is similar to expressions appearing in models of entraining

plumes (e.g. Simpson and Wiggert 1969), while the prognostic area fraction

equation is justified based on moisture convergence arguments. Horizontal

transports, though vitally important in the grey zone, are not considered.

• Net mass transport

Malardel and Bechtold (2019) relax what they describe as the assumption

“that all of the compensating environmental flow occurs in the grid column,
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i.e. the convective and environmental mass fluxes cancel each other in term of

mass transport”. This is achieved by essentially re-defining the vertical veloc-

ity in the dynamical core (of the ECMWF IFS) to not include the convective

part, allowing net mass transport by convection (in principle) both horizontally

and vertically. They find these changes make little difference in reforecasts at

moderately high horizontal resolutions up to 5 km. This is perhaps unsur-

prising since the coupling of the convection with the continuity equation is

minimal, as the convection parametrization itself remains a diagnostic bulk

mass flux scheme with no representation of horizontal transports.

We would argue that “all of the compensating environmental flow occurs

in the grid column” is not actually an assumption of the traditional mass flux

formulation; instead, the impossibility of net mass transport is a consequence

of the assumption of horizontal homogeneity of both the large scale forcing

and the convective response. Therefore it is potentially inconsistent to relax

the assumption of horizontal homogeneity in one place (i.e. the continuity

equation, to allow net mass transport) while retaining it elsewhere (i.e. still

neglecting horizontal convective fluxes in the mass flux parametrization).

• Eddy diffusivity-mass flux (EDMF)

In an attempt to unify modelling of the convective boundary layer with parametriza-

tion of deep convection, Teixeira and Siebesma (2000) proposed modifying

the traditional mass flux formulation by modelling internal variability within

the environment via a downgradient closure, consistent with assuming that

turbulence in the environment is largely homogeneous and dissipative. This

approach is similar to standard CBL parametrizations that split the total con-

tribution to the turbulent flux into a local, downgradient contribution, and

a nonlocal, counter-gradient contribution (first proposed by Deardorff 1966).

Since the downgradient diffusion is a representation of variability within the

environment, EDMF may be seen as one way of relaxing the “top-hat” as-

sumption.

Subsequent work by Soares et al. (2004) and Siebesma et al. (2007) pre-

sented and evaluated an EDMF scheme suitable for the dry CBL, which was

shown to compare favourably to traditional direct parametrization of the non-

local flux, particularly for entrainment at the top of the boundary layer. A

modified version of EDMF is used to parametrize the unstable boundary layer

in the operational ECMWF IFS (“IFS Documentation CY47R3 - Part IV

Physical processes” 2021).

Despite these successes, standard EDMF is a RANS-based scheme suffering

from the same problems as noted for traditional mass flux schemes in the grey
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zone.

• Assumed distribution closures

A common approach in turbulence theory and modelling has been to assume

(joint) PDFs and calculate the consequences for the observable quantities of in-

terest, i.e. variances, covariances, and fluxes. This has been extended (Lappen

and Randall 2001) to cumulus parametrization by partitioning the flow into

convective and non-convective parts (inspired by the mass flux paradigm), as-

suming distributions for each partition, and then calculating the consequences

of this for the fluxes and (generally prognostic) budgets of various second- and

third-order moments by integrating over the assumed distributions. Assuming

a PDF ensures that all of the calculated moments are consistent with each

other.

The specification of distributions may generally be used to relax the “top

hat” assumption: the “top hat” assumption is equivalent to assuming that the

PDFs of variables in each partition are all Dirac delta distributions. While

the original “ADHOC” parametrization of Lappen and Randall (2001) did as-

sume Dirac delta distributions, later approaches have used more complicated

PDFs, such as Larson et al. (2012) who assume a multi-variate Gaussian for

the convective partition, and a multi-variate Gaussian for the environmen-

tal partition. Larson et al. (2012) found improved results over conventional

mass flux parametrizations, including better scaling with resolution; however

the approach is very computationally expensive, and suffers from the need to

determine many free parameters.

• Extended EDMF and multi-fluid modelling

With the exception of assumed distribution closures, the above approaches

have all attempted to generalize the traditional mass flux formulation in at

most one or two ways. In recent years, the extended EDMF (Cohen et al.

2020; J. He et al. 2020; Tan et al. 2018) and multi-fluid modelling (Thuburn

et al. 2018; Thuburn and Vallis 2018; Thuburn et al. 2019; Weller and McIntyre

2019; McIntyre et al. 2020; Weller et al. 2020; Shipley et al. 2022) communities

have presented more significant generalizations of the mass flux framework,

capable in principle of simulation of multiple convective components at all

length scales from planetary down to LES. The most general equation set

currently published was derived by Thuburn et al. (2018), though the Yano

(2014) equation set is similar. This is a unified framework for convection across

all scales, and is the approach that this thesis will take to tackling the grey

zone of convection. We will therefore discuss these extensions at length in the

introduction to Chapter 3.
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Traditional turbulence approach

One approach which really is completely removed from the mass flux paradigm is

that taken by Alan Grant (Grant 2006a,b; Grant and Lock 2004). In this series

of papers (reviewed by Grant in chapter 24 of Plant and Yano 2016b) a similarity

theory for (shallow) cumulus convection is developed based on analysis of budgets

of turbulent kinetic energy. This similarity theory provides answers to some long-

standing questions in moist convection parametrization, including candidate expla-

nations for why updraughts occupy only a small area fraction, and what determines

the updraught vertical velocity.

In Grant (2006a,b), the similarity theory and LES data are used to develop

scalings for the closures required in mass flux parametrizations17, such as the en-

trainment rate and cloud base mass flux. He also presents an alternative closure,

derived under different assumptions, closer to nonlocal parametrizations used for

the dry convective boundary layer. Both first-order closures are shown to give

reasonable diagnostic agreement with the LES. Grant (2006a) also shows how the

mass flux approximation may be used to suggest closures for the terms appearing

in the budgets of turbulent kinetic energy and turbulent scalar transport. In ad-

dition, entrainment and detrainment closures can be derived from the turbulent

flux budgets without detailed consideration of entraining plume models. This lat-

ter flux-gradient relationship illustrates that alternatives to the mass flux paradigm

are perfectly possible, and that the (shallow) cumulus parametrization problem can

be directly linked to the parametrization of dry convection. Further, situating the

analysis within one overarching theory — in this case, that of Reynolds-averaged

turbulence — allows the assumptions underlying different results to be made clear,

as well as the relationships between those different results. Finally, the turbulence

approach allowed answers to be found to questions which had long eluded the mass

flux parametrization community.

The similarity approach, and the homogeneity and stationarity assumed when

analysing the TKE budget, are not directly applicable locally to grey zone parametriza-

tions. However, the approach does give some constraints on what grey-zone budgets

should look like when averaged over a larger area, and therefore could be helpful

for constraining parametrizations. Moreover, the idea to use turbulence theory to

illuminate and provide closures for mass flux theory can be extended to the grey

zone. That is, extensions of the mass flux approach which rely on fewer assumptions

(such as the multi-fluid approach which will be the focus of this thesis) could be

related to budgets for variances, covariances etc. in traditional turbulence theory,

17Note that an environmental eddy diffusivity was required to be introduced for consistency of
the mass flux approximation with the scalar flux budget diagnosed from LES, making the scheme
technically an EDMF scheme rather than pure mass flux.
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in order to suggest possible closures. Both traditional RANS analyses, giving global

budgets, and local LES and scale-space budgets, could and should be used. There

is no reason why the powerful tools of the turbulence community should not be

brought to bear on convection.

Stochastic parametrization

Within the spatial filtering framework we should in general expect a stochastic com-

ponent to all parametrizations: though a single turbulent flow gives rise to a given

set of resolved-scale fields at a given time, {ϕαr}, that set of resolved-scale fields is

compatible with multiple subfilter flow realizations. Therefore the modelling of the

subfilter-scale flow, and its impacts on the resolved scales, should draw from a dis-

tribution of possible subfilter-scale realizations. In the limit of infinite separation of

scales (also sometimes termed a “spectral gap”) between the dominant resolved-scale

and subfilter-scale processes, the distribution collapses to a delta function, admitting

a deterministic parametrization of the subfilter-scale effects. As emphasized earlier,

assumptions of scale separation are implicit in, for instance, deterministic quasi-

equilibrium mass flux convection parametrizations, or LES closures based on a local

inertial subrange equilibrium between production and dissipation of TKE. In the

absence of a well-defined scale separation — i.e. in the grey zone — the distribution

of subfilter-scale realizations must be taken into account; in general this accounting

should be stochastic. See, for instance, Section 6 of Lucarini et al. (2014) for this

perspective applied generally to the parametrization problem in climate dynamics.

However, one cannot simply introduce an arbitrary stochastic component to

a physical model and expect improved results, particularly if the model is hoped

to be physically realistic and/or scale-aware. In this vein, Berner et al. (2017)

argues that stochastic parametrizations should be introduced more carefully, and

preferably more rigorously. As one example, white noise is often added to give a

crude random element to a simulation; however, the stochastic backscatter only

becomes white noise in the limit of infinite scale separation between the large and

small scales. Additionally, Berner et al. (2017) note that “the merit of stochastic

parameterization goes far beyond providing uncertainty estimations for weather and

climate predictions but may be also needed for better representing the mean state”.

Within the mass flux paradigm, some success has been found by incorporating

these ideas of stochastic fluctuations around equilibrium into parametrizations. The

prototypical example is given by the stochastic deep convection parametrization of

Plant and Craig (2008), who assumed that CQE is valid on large scales, but that

the actual model resolution may be somewhat smaller, such that fluctuations about

this equilibrium are observed in the filter-scale variables. For instance, one might
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envisage a large ensemble of ∼ 103 clouds in quasi-equilibrium with a large scale

forcing; however, a typical filter volume may contain only ∼ 10 of those clouds.

Their scheme thus computes the equilibrium statistics of the convective ensemble

over a large area (potentially many filter volumes), then draws randomly from this

distribution to determine the mass flux and (via the Kain 2004 plume model) other

convective-scale properties within each filter volume. The scheme was extended

to shallow convection by Sakradzija et al. (2015), which required the inclusion of

memory effects. Both schemes are successful in producing a scale-aware response

across a wide variety of model resolutions.

However, both schemes rely on the assumption of a macroscopic convective equi-

librium for their closure, meaning that they cannot account for non-equilibrium

stochastic effects, as required for simulating, for example, the correct initiation of

convection in the diurnal cycle. In addition, both schemes use models for the indi-

vidual convective elements that are not themselves scale-aware. For example, the

plume model of the Kain (2004) mass flux parametrization suffers from all of the

usual objections to RANS-type schemes, especially as the filter scale approaches the

size of the plumes themselves.

Other approaches

Arakawa et al. (2011) introduce two possible routes to building successful grey

zone parametrizations. Their “route 1” is what this thesis would term a “scale-

aware” grey zone parametrization, while their “route 2”, the so-called “multiscale

modelling framework”, consists of embedding high-resolution (though usually 2D)

models within the grid boxes of a coarser resolution model. Also known as su-

perparametrization (Randall 2013), this has the potential to improve model per-

formance by explicitly representing some of the small-scale motions. However, the

ability of this approach to actually shed light on the fundamental physics of con-

vection is limited, in our view, and therefore the approach will not be discussed

further. Convolutional neural networks have also been used in recent years to di-

rectly parametrize convection (Gentine et al. 2018; Rasp et al. 2018); again, this is

something of a black box approach, so it will not be discussed.

Machine learning methods are a possibly very useful extra addition to the the-

orist/modeller’s toolkit, however: nonlinear Bayesian regression techniques can be

used to do systematically what we already try to do by eye, in finding relationships

between unknown terms diagnosed from data, and resolved variables. As an ex-

plicit example, an alternative to convolutional neural networks, which would allow

for finding closed-form parametrizations of unknown terms, is the relevance vector

machine (RVM) approach (Tipping 2001). Given a data set of the desired subfilter



40 1. Background

term diagnosed from a high-resolution simulation, and a library of resolved variables

upon which the specified subfilter term is conjectured to depend, a sparse Bayesian

regression is used to discover which combination of resolved variables best repro-

duces the subfilter term. This results in a directly interpretable parametrization

which can then be analysed for physical consistency.

The RVM method has been used to “discover” the Navier-Stokes and Burg-

ers equations from noisy simulation data (Rudy et al. 2017; Zhang and Lin 2018).

Sparse Bayesian regression methods have also recently been used to suggest closed-

form equations for eddy Reynolds stresses and buoyancy fluxes in ocean mesoscale

eddy parametrization (Zanna and Bolton 2020), and to suggest closures for Reynolds

stresses in two-phase Reynolds-averaged modelling of disperse multi-phase flow, in-

cluding partitioning of TKE between the phases (Beetham et al. 2021). Due to the

complexity of the flow, the wealth of high-resolution simulation data, and the dif-

ference of the unknown terms compared to those traditionally considered either in

turbulence modelling or convection closure, grey zone convection parametrization is

an interesting candidate for “data-driven” closure discovery. Sound physical reason-

ing is still required by the modeller in order to select reasonable basis functions, and

to interpret and validate the resulting closures. Data-driven methods could thus be

a useful supplement to the analytical and heuristic methods already used to suggest

possible closures.

1.4 Summary and outlook

In this chapter we have presented an introduction to the atmospheric convection

parametrization problem, stressing the need for parametrizations for the foresee-

able future. In addition, there are still fundamental physical questions which re-

quire answers: what governs the length scales of moist convection, i.e. cloud size

and inter-cloud spacings? Even in the context of dry convection, the mechanisms

governing the organization of the large-scale circulation (and therefore setting the

inter-plume spacing) in fully developed turbulent convection are not known. We

have stressed the point of view of convection as a turbulent flow, and of convection

modelling as needing to be understood in a spatial filtering context; but also the

strong anisotropies and important large-scale circulation make convection very dif-

ferent to traditional turbulence problems. This perspective leads to the grey zone

parametrization problem as a natural and inevitable consequence, and a fundamen-

tal barrier to progress until it is better understood.

Since moist convection is such a difficult problem, with feedbacks to many pro-

cesses, both smaller and larger in scale, it makes sense to isolate the grey zone



1. Background 41

problem for further understanding. That is the approach we will take in this thesis.

The simplest fluid dynamical convection problem is that of Rayleigh-Bénard con-

vection (RBC), which will be the arena of study for the rest of the thesis. Chapter 2

will introduce Rayleigh-Bénard convection in detail, presenting a suite of direct nu-

merical simulations and motivating RBC as an ideal testbed for developing ideas

about convection parametrization: it is fully nonlinear and turbulent, with similar

boundary conditions and phenomenology to the (dry) convective boundary layer. It

is also simpler, more constrained by symmetry, and has been studied quantitatively

for longer, providing a wealth of experimental, numerical, and theoretical results to

draw from and compare to when constructing parametrizations.

The problems of mass flux notwithstanding, the basic idea of partitioning the

flow into its coherent structures and well-mixed environment is a good and under-

developed one. In Chapter 3, we will present an overview of one relatively new

convection parametrization approach: the multi-fluid method. After deriving the

multi-fluid Boussinesq equations, we will present various new results which should

be useful for the development of future multi-fluid parametrizations. We will also

investigate the consequences of the new terms arising from conditional filtering as

far as possible without introducing a specific set of fluid partition definitions.

In Chapter 4, a two-fluid single-column model of Rayleigh-Bénard convection

is developed and tested. We introduce specific fluid definitions based on the sign

of vertical velocity. We will show that, even with very simple closures, a two-fluid

model can accurately reproduce the horizontally-averaged DNS results over several

decades of buoyancy forcing. In Chapter 5, we will evaluate the performance of the

single-column model formulation across the grey zone of 2D RBC, suggesting routes

to improve the closures for building a scale-aware, grey zone multi-fluid parametriza-

tion.
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Chapter 2

Rayleigh-Bénard convection at grey-zone

resolutions

Note that abridged versions of Sections 2.1 and 2.2 of this Chapter form the basis

of Section 2 of Shipley et al. (2022).

In Chapter 1, we showed that the grey zone is a significant barrier to progress in

understanding and modelling atmospheric convection. We also argued that the con-

cept of a grey zone of resolutions is common to the dynamics of all turbulent fluids,

and is not restricted to moist convection. Therefore to gain a better understanding

of the convective grey zone, a good starting point is to explore the grey zone of

the simplest relevant convecting system. Thuburn et al. (2019) describe the dry

convective boundary layer as “the simplest relevant problem” for atmospheric con-

vection parametrization, yet the same essential dynamics of convection are captured

in Rayleigh-Bénard convection (RBC).

RBC is the simplest fluid dynamical model of convection which retains enough

complexity to produce buoyancy-driven turbulence. Despite its simplicity, it still

generates a buoyancy-driven flow, the nature of which depends on the imposed forc-

ing, and which becomes turbulent for large enough forcings. First (quantitatively)

studied experimentally by Bénard (1900, 1901), the problem was given a theoreti-

cal treatment by Lord Rayleigh (1916) which has been the basis of over a century

of investigation1. Lord Rayleigh (1916) studied the motion of a Boussinesq fluid

confined between two perfectly conducting horizontal planes of infinite extent, each

held at a constant uniform temperature. For mathematical tractability he considered

stress-free velocity boundary conditions at the plates; the no-slip case was tackled

by Jeffreys (1926, 1928). The canonical text covering stability and the onset of con-

1In fact, the effects of surface tension were important in Bénard’s original experiments, though
they were neglected by Lord Rayleigh’s analysis; the stability problem including surface tension
was not treated theoretically until Pearson (1958).

43
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vection is Chandrasekhar (1961); recent reviews covering fully turbulent convection

are Ahlers et al. (2009) and Chillà and Schumacher (2012).

RBC has a long history as a simple model of atmospheric convection. For ex-

ample, Lorenz’s seminal discovery of deterministic chaos occurred in analysis of

a simplified version of RBC (Lorenz 1963), specifically chosen as an analytically-

tractable idealization of numerical weather prediction. Emanuel (1994, chapter 3)

also explores RBC in depth as an introduction to global convection, noting that

“convection in geophysical fluids almost always originates from buoyancy sources

distributed over areas that are large compared to the depth of the convecting layer”.

This is a key distinction, as many other meteorological test cases such as the con-

sideration of plumes and thermals (Emanuel 1994, chapter 2), or the rising bubble

of Bryan and Fritsch (2002) are fundamentally local. RBC is certainly no more of a

simplification than the dry plumes/thermals/rising bubbles which form the basis of

many entrainment and detrainment closures. However, direct crossover between re-

search in the fields of RBC and atmospheric convection has been surprisingly scarce;

Vallis et al. (2019) note in their introduction that “progress in the theory of atmo-

spheric convection has, with a few exceptions, proceeded largely independently of

[RBC]”. Moist extensions of the model have been considered to gain insight into

moist convection, though far less work has been performed on moist versions of the

problem than on the dry case (Bretherton 1987, 1988; Pauluis and Schumacher 2010;

Vallis et al. 2019; Weidauer and Schumacher 2012). Therefore for the remainder of

this thesis we shall focus exclusively on dry RBC.

In this chapter our goal is to quantitatively explore the grey zone of Rayleigh-

Bénard convection. We begin with an introduction to the theoretical background

of the problem, covering nondimensionalization of the governing equations, classical

results of linear and nonlinear stability, exact integral results for the kinetic and

thermal dissipation rates, and the construction of scaling theories. This is followed

by a discussion of the relevance of RBC to atmospheric convection, especially the dry

convective boundary layer, with reference to the current state-of-the-art in Rayleigh-

Bénard convection, along with current research directions.

We then describe a suite of direct numerical simulations (DNS) of 2D dry RBC

across a range of forcings from fully diffusive to fully turbulent, verifying the simu-

lations against known theoretical, experimental, and numerical results in the RBC

literature. These simulations form the reference truth for the main investigation

of the chapter: we explore the grey zone of RBC by performing simulations at

fixed Rayleigh number for a range of horizontal resolutions from DNS through to so

coarse that all convection ceases. We compare the grey zone behaviour of RBC to

the known grey zone behaviour of atmospheric convective systems, finding RBC to

be a very useful analogue.
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2.1 Background

2.1.1 Overview of Rayleigh-Bénard convection (RBC)

Figure 2.1: Diagram of the Rayleigh-Bénard problem. The boundary conditions
imposed at the top and bottom plates are fixed buoyancy and no-slip velocity.
Colours are a proxy for buoyancy, with a linear gradient from bottom to top.

Figure 2.1 illustrates the Rayleigh-Bénard problem. A Boussinesq fluid is con-

fined between two smooth, flat, horizontal planes, a fixed distance H apart. Each

of these is held at a fixed buoyancy, ± ∆B/2, with no-slip, no-normal flow velocity

boundary conditions. For both analytical and numerical simplicity we choose the

lateral boundaries to be periodic in all fields ϕ, with periodicities Lx, Ly. Summaris-

ing, the boundary conditions are:

b(x, y, t; z = 0) =
∆B

2
, b(x, y, t; z = H) = −∆B

2
, (2.1)

u(x, y, t;z = 0, H) = 0. (2.2)

ϕ(y, z, t;x) = ϕ(y, z, t;x+ Lx), ϕ(x, z, t; y) = ϕ(x, z, t; y + Ly). (2.3)

The motion of the fluid is described by the following Boussinesq equations of motion:

Du

Dt
= bk−∇P + ν∇2u, (2.4)

Db

Dt
= κ∇2b, (2.5)

∇ · u = 0. (2.6)

Here u denotes the velocity field of the fluid; b := g(ρref − ρ)/ρref its buoyancy2;

P := p/ρref its pressure potential; ν its kinematic viscosity; κ its buoyancy dif-

fusivity; and k is a unit vector antiparallel to gravity, defining the vertical (z)

2For our desired application to atmospheric convection, (ρref − ρ)/ρref ≈ (θ − θref)/θref , where
θ is the potential temperature, though much previous work on Rayleigh-Bénard convection (RBC)
is performed in terms of temperature, using the approximation (ρref − ρ)/ρref ≈ (T − Tref)/Tref .
The equation set retains the same form.
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direction. All variables are defined relative to a resting, uniformly constant-density,

hydrostatically-balanced pressure reference state. For an asymptotic derivation of

the equation set, see for instance pp. 101-103 of Vallis (2017), or Bois (1991) and

Klein (2009) for more rigour3.

Note that the governing equations (2.4)–(2.6) are invariant under the discrete

symmetry transformation b → −b, dz → −dz; however the boundary conditions

(2.1)–(2.2) fix the constant for the z transformation to z → H − z. This symmetry

can be viewed as reflection of the system about the plane z = H/2, coupled with

reversing the direction of gravity.

The familiar nondimensionalized form of the Boussinesq equations used in mod-

elling RBC is arrived at by performing an isotropic rescaling of the equation set:

(x, t,u, b, P )→ (Xx̂, T t̂, U û, Bb̂, P P̂ ), (2.7)

followed by choosing relationships between the scaling parameters. We are interested

in flows where advection is important, so it makes sense to scale the velocity as:

U = X/T (equal importance of Eulerian and advective time dependence). (2.8)

The mass continuity equation, Equation (2.6), can tell us nothing about an isotropic

scaling. However, looking at the buoyancy equation, Equation (2.5), and requiring

both sides to be O(1) — i.e. diffusion of buoyancy is important — gives the following

diffusive scaling of time:

Tκ := X2/κ (diffusion of buoyancy is important for T ∼ O(1)). (2.9)

Together with Equation (2.8) this implies a diffusive velocity scale Uκ := κ/x. It

remains only to scale the pressure; we choose:

P = κν/X2 (viscous scaling of pressure, P ∼ Uν/X). (2.10)

Nondimensionalizing the Boussinesq equations (2.4)-(2.6) with our chosen scalings

shows that two dimensionless parameters4 govern the flow (the boundary conditions

are given for completeness):

Dû

Dt̂
= Pr

(
Ra b̂k− ∇̂P̂ + ∇̂

2
û
)
, (2.11)

3There exists some disagreement over the correct form for the energy equation in a fully formal
asymptotic derivation of the Boussinesq equations; see Kǐs and Herwig (2010) for an overview.

4That there must only be two is a consequence of the Buckingham “Pi theorem” (Vaschy 1892;
Buckingham 1914; Curtis et al. 1982), which is really just the rank-nullity theorem of linear algebra
applied in the context of dimensional analysis.
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Db̂

Dt̂
= ∇̂

2
b̂, (2.12)

∇̂ · û = 0, (2.13)

b̂(ẑ = 0) =
1

2
, b̂(ẑ = 1) = −1

2
, (2.14)

û(ẑ = 0, 1) = 0, (2.15)

where we have defined the following dimensionless parameters:

Ra :=
∆B ·H3

κ ν
, Pr :=

ν

κ
, (2.16)

using the boundary conditions to suggest the identifications X ≡ H, B ≡ ∆B.

The Rayleigh number, Ra, is the ratio of buoyancy forcing (∆B) to viscous

diffusion (κν/H3 ); and the Prandtl number, Pr, is the ratio of the diffusion of

momentum (ν) to the diffusion of buoyancy (κ). The former can thus be seen as

measure of the applied forcing in RBC, whereas the latter is an intrinsic property

of the fluid. This nondimensionalization shows that any two RBC systems with the

same Ra and Pr support the same solutions, i.e. are dynamically similar5.

Other possibilities for the scaling of T and P exist, even in the viscous regime;

however, unless a limit Pr → 0 or ∞ is envisaged, the choice is principally an

aesthetic one: would factors of Pr be preferred to appear in the momentum, or

the buoyancy equation? Note that (2.8) is equivalent to choosing the Strouhal

number, Sr = 1 (for flow variables O(1)); (2.9) with (2.8) is equivalent to setting

the Peclet number, Pe = 1; together these force Re−1 = Pr := ν/κ. Thus the

nondimensionalization we have chosen is suitable for considerations of instability so

long as Pr = O(1), which it always is for atmospheric flows.

For consideration of the convective solutions, a nondimensionalization based on

the buoyancy forcing is more useful. This “free fall” or “free convective” scaling

gives velocity and time scales UB :=
√

∆B H, TB :=
√
H/∆B, and is ubiquitous in

the CBL literature (where UB is denoted w∗, see, e.g., Garratt 1994). Such a scaling

also gives an a priori estimate for the Reynolds number6, Re ∝ Ra1/2 Pr−1/2. This

approximate Re(Ra) scaling is observed for the regimes applicable to this thesis.

Nondimensionalizing the governing equations by this free-convective scaling yields

5A third parameter, the aspect ratio of the domain, Γ := L/H, enters via the lateral boundary
conditions; however, the dependence upon the aspect ratio is generally weak so long as Γ > 1 —
see Ahlers et al. 2009, section 3E; also Johnston and Doering (2009); Bailon-Cuba et al. (2010);
Q. Zhou et al. (2012) — and the dependence is weaker for periodic boundaries than for rigid
boundaries.

6The a priori scaling for the Nusselt number that this predicts, Nu ∝ Ra1/2 — the so-called
“ultimate scaling” — is steeper than (unambiguously) observed to date in experimental or numer-
ical dry RBC, because the non-turbulent surface layers next to the boundaries prevent a thermal
shortcut.
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a qualitatively different equation set, since the choice of scaling specifies a different

distinguished limit, but the equations still only depend on Ra and Pr. The equation

set with this nondimensionalization, and a dynamic scaling of the pressure P ∼ U2
B,

still depends only on Ra and Pr (as it must):

Dû

Dt̂
= b̂k− ∇̂P̂ +

√
Pr

Ra
∇̂

2
û, (2.17)

Db̂

Dt̂
=

1√
Ra Pr

∇̂
2
b̂, (2.18)

∇̂ · û = 0, (2.19)

though clearly the nondimensionalization applies to a different asymptotic limit of

the equations. Replacing Ra1/2 Pr−1/2 → Re, the momentum equation becomes the

familiar nondimensionalized form of the Navier-Stokes momentum equation suitable

for high-Re flow — that is, the form of the equation set useful for considering

turbulence.

The equation set (2.11)-(2.15) has a unique stationary zero-flow solution (unique

because if u = 0, the equations become a set of two coupled linear partial differential

equations, for which existence and uniqueness theorems exist and apply), with a

linear buoyancy gradient between the plates and a quadratic pressure profile:

u = 0, b =
1

2
(1− 2z), P = P0 +

z

2
(1− z). (2.20)

This solution is both linearly and nonlinearly unstable to perturbations if and only

if the Rayleigh number exceeds a critical value, Rac = O(103); importantly, the

stability does not depend on the Prandtl number (see, for instance, Chandrasekhar

1961; Joseph 1966; Lindsay and Straughan 1990). Below Rac, solutions are purely

diffusive; above Rac, a circulation develops which increases the heat transport. The

circulation that develops can either be steady, periodic, quasi-periodic, or turbulent,

depending on the governing parameters (Ra,Pr), and on the dimensionality of the

domain. The precise values of Rac and the wavelength of the most unstable mode, λc,

depend on the velocity boundary conditions at the top and bottom boundaries, but

not on the dimensionality of the domain. Intuitively, Rac must be greater for no-slip

boundary conditions than for free-slip or mixed velocity boundary conditions. No-

slip is the correct ground boundary condition on the velocity for the real atmosphere;

although free-slip at the upper boundary might be closer to the truth, we wished

to keep the boundary conditions symmetric for simplicity. For our chosen no-slip

conditions, Rac ' 1708, and the wavelength of the most unstable mode is λc '
2.02H (Chandrasekhar 1961, table 3). The most unstable mode is unique (Jeng and

Hassard 1999).
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The domain- and time-averaged dimensionless buoyancy flux is given by the

Nusselt number:

Nu :=
〈
k ·
(
ûb̂− ∇̂b̂

)〉
V,t

=

〈
ŵb̂− ∂b̂

∂ẑ

〉
A,t

, (2.21)

which is the ratio of the actual buoyancy flux to the buoyancy flux of the purely

diffusive solution. Averaging the buoyancy equation (2.12) over a horizontal plane

and over time (denoted 〈. . . 〉A,t) shows that the Nusselt number is independent of

height in a statistically stationary flow.

Exact results for the domain- and time-averaged kinetic and thermal dissipation

rates, εu and εb, are given by (Chandrasekhar 1961, appendix 1; Shraiman and

Siggia 1990; Siggia 1994):

εu := 〈∇u :∇u〉V,t = Ra(Nu−1), (2.22)

εb := 〈∇b · ∇b〉V,t = Nu . (2.23)

See Appendix A of this thesis for a derivation. Here the “double dot product”

denotes the complete contraction of two rank-two tensors, following the conven-

tion A : B :=
∑

a,bAabB
ab. These results use the diffusive nondimensionaliza-

tion of the governing equations, Equation (2.11)-(2.13); if the free-convective scal-

ing is used instead, Equation (2.17)–Equation (2.19), the result for the dimen-

sionless kinetic dissipation rate, equation (2.22) changes accordingly: εu(free) =

εu(diffusive)/(Ra ·Pr). Thus the vertical buoyancy flux is the only quantity that

characterizes the stationary-state global energetic response of the system to the ap-

plied forcing (Ra,Pr)7. The statistically steady-state Rayleigh-Bénard problem can

then be framed as asking the question: if we apply a buoyancy forcing Ra to a

Boussinesq fluid characterized by Pr, what is the resulting Nu?

Scaling theories for Nu as a function of Ra and Pr are therefore some of the most

sought-after results in RBC. That is, for Ra > Rac, relations of the form

Nu = CNu Raα1 Prβ1 , (2.24)

are sought. The “classical” scaling argument for RBC is attributed to Malkus

(1954)8; this was re-interpreted by Howard (1964), who argued that in a turbu-

7It is worth noting that these results (2.22)-(2.23) are quite general; in particular they do not
rely on the plates being smooth and flat, and they apply equally well also to the cases of stress-free
velocity or constant buoyancy flux boundary conditions.

8Willem Malkus, rather than Joanne Malkus; the two were married from 1948-1964 (Fleming
2020). Joanne is more well-known to the atmospheric convection community; of particular im-
portance to this thesis is her work on the hot tower/“undiluted chimney” hypothesis which was
the precursor to the mass flux paradigm (Riehl and Malkus 1958), as well as — under the sur-
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lent state the boundary layers would be marginally stable, leading to Nu ∝ Ra1/3

uniformly in Pr. Malkus discussed in his own work the likelihood that the bound-

ary layers would become turbulent at high enough Ra. Considerations of turbu-

lence in this asymptotically-high Ra regime led Kraichnan (1962) to the scaling law

Nu ∝ Ra1/2 Pr−1/4 (plus logarithmic corrections) for 0.15 < Pr ≤ 1; this is known

as the “ultimate” scaling. Interestingly, the same scaling law is arrived at if one

assumes that the (physical) heat flux is independent of the molecular transport co-

efficients (Spiegel 1963), as one would expect for an asymptotically high Reynolds

number flow. We note that this scaling law really is “ultimate” in the sense that it

is the (currently known) upper bound on the high-Ra scaling of the Nusselt num-

ber9: Nu ≤ C Ra1/2. This theorem is initially due to Howard (1963); a wonderful

overview of the background field methods used to improve the bounds in more recent

decades is provided by Doering and Gibbon (1995). The exponent in the bound is

the same for both no-slip and free-slip velocity boundary conditions, and for both

constant-value and constant-flux thermal boundary conditions (Fantuzzi 2018).

Experimental and numerical data were broadly consistent with the classical scal-

ing until the late 1980s, when Nu ∝ Ra2/7 began to be observed in experiments

(Heslot et al. 1987; Castaing et al. 1989) and later in numerical simulations (Kerr

1996). Castaing et al. (1989) and Shraiman and Siggia (1990) provided partially

phenomenological arguments for the newly-observed scaling (sometimes known as

the “hard turbulence” scaling), based on the exact relationships for the kinetic

and thermal dissipation rates, relaxing the requirement that the thermal boundary

layer depth be the only small length scale in the problem (assumed by Malkus and

Kraichnan), and making various assumptions about the relationships between the

remaining scales in the problem (for instance assuming εu ∝ U3/H is valid within

the boundary layers). This “hard turbulence” scaling is commonly observed between

104 . Ra . 1010 for O(1) Pr.

A unifying scaling theory was proposed by Grossmann and Lohse (2000, 2001,

2002, 2003, 2004), attempting to encompass all prior scaling laws within one over-

arching framework. This scaling theory again begins with the exact results for the

kinetic and thermal dissipation rates, but splits each into contributions from the

boundary layers/plumes10 and the bulk. Different scaling regimes follow, depend-

name Simpson — being one of the earliest to apply ideas from the engineering study of entraining
plumes/thermals to the representation of atmospheric convection (Simpson and Wiggert 1969).
However, perhaps her greatest legacy was pioneering the view that clouds are an active and im-
portant dynamical component of the atmosphere, rather than merely a response to the dynamics
(Fleming 2020; Houze 2010).

9In 2D (with free-slip boundaries), the bound is rigorously known to be lower: Nu ≤ C Ra5/12

(Ding and Wen 2020; Whitehead and Doering 2011).
10Initially the contribution of plumes was neglected, but experimental results showed their in-

fluence to be important and so they were later incorporated (Grossmann and Lohse 2004).
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ing on whether each dissipation rate is dominated by contributions from the bulk or

plumes, and whether the thermal boundary layer or kinetic boundary layer is thicker

(which depends on Pr). The Grossmann-Lohse theory encompasses the earlier “clas-

sical” and “ultimate” scaling laws, predicting a transition to the “ultimate” regime

around Ra ∼ 1014. It is worth noting that the theory never predicts a pure 2/7 power

law for the Nu−Ra scaling; however the authors show (Grossmann and Lohse 2000)

that the combination of 1/4 (predicted for low Ra) and 1/3 (predicted for high, but

not asymptotically-high, Ra) power laws with experimentally-determined prefactors

mimics a 2/7 power law over up to 10 decades.

There is good agreement between the Grossmann-Lohse theory and numerical

and experimental results until at least Ra = 1011 for Pr = O(1) (Ahlers et al. 2009;

Chillà and Schumacher 2012). Above Ra = 1012 there is uncertainty as to whether

the “classical” (1/3) regime continues to hold, or whether it is replaced by the

“ultimate” regime; some studies have claimed to find the ultimate scaling (X. He et

al. 2012; Zhu et al. 2018) only for their data to later be shown to be consistent with

the classical scaling (Doering et al. 2019; Doering 2020). The highest-Ra simulations

to date are consistent with the classical scaling up to Ra ∼ 1015 (Iyer et al. 2020),

although these experiments were conducted in a very small-aspect ratio domain,

AR = L/H = 1/10, where the lateral boundaries are likely to have a greater effect

on the solution (X. He et al. 2020).

2.1.2 The relevance of RBC to atmospheric flows

While RBC is a valuable test problem in its own right, it is worth considering similar-

ities with and differences from atmospheric flows, in particular the dry atmospheric

convective boundary layer (CBL).

Besides the complexities of moisture, the dry RBC problem differs from even dry

atmospheric convection in a few important ways. Firstly, the Boussinesq approx-

imation is of questionable validity even on the scale of the atmospheric boundary

layer; in practice however, it has long been used in the LES community with ex-

cellent results (e.g. Sullivan and Patton 2011). Furthermore, the Boussinesq form

has been used to facilitate analysis; experiments using a non-Boussinesq (fully com-

pressible) version of the same code show little qualitative or quantitative differences

from their Boussinesq counterparts. We also note that, although NWP models are

increasingly moving towards using fully compressible equation sets in their dynami-

cal cores (Davies et al. 2003), numerical studies of deep convection have found that

numerical schemes and subgrid models make bigger differences to the solutions than

compressibility vs. pseudo-incompressibility (Kurowski et al. 2014).

Secondly, the lower boundary in the CBL is neither smooth, nor uniformly
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heated. Recent results show that neither nonuniform heating (Bakhuis et al. 2018)

nor rough boundaries (Toppaladoddi et al. 2021; Zhu et al. 2019) drastically change

the dynamics of RBC, though the latter does tend to increase the heat flux towards

the so-called “ultimate regime”, equivalent to the free-convective regime which dom-

inates discussion of scaling in the atmospheric convective boundary layer. Numerical

simulations of a CBL-like problem with a smooth lower boundary show scaling laws

and profiles of variables consistent those observed in the lower half of RBC (Mellado

2012), suggesting that the primary difference between the two problems is due to

smooth boundaries delaying the onset of turbulence in the surface layer of RBC to

much higher Rayleigh numbers.

Thirdly, the fixed buoyancy boundary conditions are quite different to CBL

conditions, where the lower boundary is closer to (and is often modelled as) a fixed

buoyancy flux, and there is no fixed upper boundary for the convection (instead

there is a stable atmospheric layer). In practice, solutions of RBC with fixed flux

vs. fixed value boundary conditions are similar, especially in 2D (Johnston and

Doering 2009; Verzicco and Sreenivasan 2008), as are LES simulations of the CBL.

It is thus only the upper boundary that introduces a major difference between RBC

and the CBL. Even in that case there has been recent progress on studying modified

Rayleigh-Bénard convection with the compensating heat flux provided by radiation

in a layer of finite thickness (Doering 2019; Lepot et al. 2018), which the first authors

note “spontaneously achieves the ‘ultimate’ regime of thermal convection”.

The above differences in boundary conditions between RBC and the CBL hint

at a further difference: the symmetry of the upper and lower boundaries in RBC

furnishes the equation set with the discrete symmetry z → H − z, b → −b. There-

fore the time-mean, horizontal-mean solution must be invariant under this discrete

transformation. This forces the ratio of vertically-integrated updraft to downdraft

fraction to be 1, whereas in the CBL and atmospheric convection more generally,

the ratio deviates from 1 due to the lack of symmetry. More importantly, the sym-

metry means that downdrafts are as strong as updrafts in RBC, and the large-scale

circulation is correspondingly stronger. However, despite these differences, quantita-

tive comparison of DNS of a dry CBL-like problem with predictions of RBC theory

shows that several important statistics, such as the scaling of the Nusselt number

with Rayleigh number, agree between the two systems (Mellado 2012).

We thus consider the classical Rayleigh-Bénard problem to be sufficiently close

to atmospheric convection to provide a useful arena for exploring the grey zone,

and a testbed for investigating the behaviour of a multi-fluid model of turbulent

convection. There remains the question of the applicable parameter regime, to be

discussed in the next subsection.
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2.1.3 An analogy between constant-viscosity RBC and large-

eddy simulation of higher-Ra RBC

The Prandtl number of air in normal atmospheric conditions is virtually constant at

around 0.7; taking typical values of the other parameters gives approximate Rayleigh

numbers of ∼ 1016 for the CBL (U ∼ 1 m s−1, L ∼ 103 m, ν ∼ 10−5 m2 s−1), ∼ 1018

for shallow cumulus convection (U ∼ 3m s−1, L ∼ 3 × 103m), and ∼ 1021 for deep

cumulus convection (U ∼ 10m s−1, L ∼ 104m). These are highly turbulent. By

the resolution arguments in Section 1.2.1 of Chapter 1, a DNS of this problem is

computationally impossible in 3D with current computing power and would be a

challenge even in 2D.

As noted in that earlier section, the atmospheric science community address

this problem using large-eddy simulation. Generally the sub-filter contribution to

turbulent fluxes is presumed to be predominantly dissipative, and is therefore often

represented by an eddy viscosity. We noted that in practice the formulation of

eddy viscosity proposed by Smagorinsky (1963) is frequently used in atmospheric

modelling, and has been found to give good results provided the filter scale actually

is well within the inertial sub-range.

Mason (1994) shows that acceptable results are obtained from a simulation of

the CBL in which a constant viscosity is used at each vertical level based upon the

horizontal average of the Smagorinsky value. Since eddy length scales are restricted

close to the surface and the inversion, we might expect that the height-dependence

is largely restricted to these regions11 — i.e. in the bulk of the flow, a constant value

of viscosity should suffice. This is effectively a statement of the Reynolds number

independence of the flow: in a well-developed turbulent flow far from boundaries,

the flow should not depend directly on the molecular viscosity. Therefore replacing

the viscosity with an artificial larger viscosity — implying a larger Kolmogorov

microscale, effectively the filter scale associated with the re-normalized viscosity —

should not appreciably affect the larger scales, as the TKE dissipation rate remains

the same so long as the new η remains in the ISR.

The same argument is what allows experiments with scale models in wind tunnels

to be applied to real-world flows. Furthermore, a similar argument is made by

Mellado et al. (2018) in a study of stratocumulus convection: they simulate the

stratocumulus-capped boundary layer using the anelastic equations with artificially

high viscosity, finding the results of their Re ≥ 5000 simulations to be in good

agreement with the LES ensemble of Stevens et al. (2005). Though they describe

11In LES, the collapse in turbulence length scales as boundary layers (or inner layers) are ap-
proached is handled via so-called wall functions. A DNS would however not be “direct” if these
were applied, and so instead the grid is graded to give greater resolution as the walls are approached
— see Section 2.2.
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their high viscosity runs as DNS, we would argue that it is more accurate to describe

their simulations as a form of LES. Both LES, and using DNS of a higher-viscosity

problem to gain insight about a higher-Re flow, rely on the proposed Reynolds

number independence of high-Re flows.

We can estimate the value of the eddy viscosity by using the results of Sec-

tion 1.2.1. Low-pass filtering the flow with a filter of characteristic scale ∆f and

following the arguments of Lilly (1962) (see Section 1.2.3) allows us to replace the

molecular viscosity by a turbulent viscosity, ν → νt, such that the dissipation rate

of TKE remains the same: ν
∥∥∇u + (∇u)T

∥∥2
= νt

∥∥∇ur + (∇ur)T
∥∥2

= ε. For

the eddy viscosity hypothesis to be valid, the Reynolds number at the filter scale

must be Ref ∼ 1, giving a scaling for the renormalized viscosity as νt ∼ Uf∆f,

where Uf is the characteristic velocity at the filter scale. Since the filter scale is

assumed to be in the inertial subrange of the flow, the dissipation can be scaled as

ε ∼ U3
f /∆f =⇒ Uf ∼ ε1/3∆

1/3
f . Therefore a crude estimate of the required eddy

viscosity is

νt ∼ ε1/3∆
4/3
f . (2.25)

To give a simple example, let us return to the example of the CBL. A typical

depth is H ∼ 1000 m, and a typical convective velocity scale is UB ∼ 1 m s−1,

giving ∆B ' 4× 10−3 m s−2. Then Re = UH/ν ∼ 108 and Ra ∼ 1016. The ‘outer’

mixing length is often taken to be L ∼ 0.1H, giving ε ∼ U3
B/L ∼ 10−2 m2 s−3.

Choosing a filter scale such that the effective dissipation scale is ηf = 1 m, the

eddy viscosity is νt ∼ ε1/3∆
4/3
f ∼ 0.2 m2 s−1 and the effective Reynolds number

of the resolved flow is reduced to Re ≈ UH/νt ∼ 5000 (comparing well with the

results of Mellado et al. 2018). We would still expect this flow to be turbulent and

approaching the Reynolds number-independent regime (e.g. Davidson 2009; Pope

2000); this hypothesis is supported by the results of Mellado et al. (2018) in the

context of convection.

Further support for the Reynolds number similarity comes from LES stud-

ies: Sullivan and Patton (2011) show that “the majority of the low-order moment

statistics (means, variances, and fluxes) become grid independent when the ratio

zi/(CS∆g) > 310”. Their zi is the depth of the inversion (our H), CS ≈ 0.2 is the

Smagorinsky constant, and ∆g ∝ ∆f the grid spacing. (CS can be interpreted as

the proportionality constant between the grid spacing and the implied filter width.)

For our case, this result implies ∆f < zi/(310CS) ≈ 16 m. Hence our notional 1 m

resolution should be very well-converged LES.

Therefore we may interpret our relatively low-Ra simulations as reasonable ap-

proximations to LES of much higher-Ra flows relevant to the atmosphere, so long
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as Re & 5000 =⇒ Ra & 108.

Emran and Schumacher (2015) have demonstrated the same principle for weakly-

turbulent Rayleigh-Bénard convection in 3D. They performed DNS of turbulent 3D

RBC at Ra up to 5×105, observing large-scale patterns in the time-averaged temper-

ature and velocity fields. The appearance of these large-scale patterns was explained

by computing the effective turbulent diffusivity and viscosity in a manner similar to

that outlined above, showing that DNS of a flow at the effective turbulent Ra (much

lower than the true Ra) and Pr would produce a flow with the observed large-scale,

slowly-varying patterns. This suggests that our analogy between constant-viscosity

RBC and LES of higher-Ra RBC may tentatively extend to even lower Rayleigh

numbers in 3D.

A slight note of caution may arise from consideration of the boundary condi-

tions, as the turbulence length scale collapses as one approaches the boundary and

buoyancy effects on turbulence become more dominant. (The same concerns apply

to LES). With a fixed heat-flux boundary condition, the concern is less as the sur-

face exchange serves merely to transport the given surface flux into the fluid where

large eddies can start to transport it. In practice, our results are similar for fixed

temperature and fixed heat flux boundary conditions, suggesting that, so long as

the thermal boundary-layer is adequately resolved the solutions remain applicable

to higher Re.

2.2 2D direct numerical simulation of RBC

To provide a reference “truth” for later sections in the thesis, results from two di-

mensional direct numerical simulations of Rayleigh-Bénard convection over a wide

range of Ra are presented. These simulations also serve to illustrate the phenomenol-

ogy of RBC, and to indirectly validate the numerical methods via comparison with

reference results.

While the restriction to two dimensions may seem like too great a simplifica-

tion, global and large-scale results of Rayleigh-Bénard convection in two and three

dimensions are remarkably similar so long as the Prandtl number is not too small.

The classical results regarding the critical Rayleigh number, critical wavelength,

and onset of convection are unaffected (see Chandrasekhar 1961, chapter 2; though

not explicitly stated, the stability analysis does not depend on the dimensionality

of the domain). After the onset of convection, for O(1) Pr and greater, the scal-

ings of global parameters such as the Nusselt and Reynolds numbers, as well as

the boundary layer depths, are virtually the same in 2D as in 3D (although the

magnitudes differ slightly) — see Schmalzl et al. (2004). van der Poel et al. (2013)
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compare 2D results to 3D cylindrical RBC with no-slip sidewalls and small aspect

ratio ≈ 1, finding that Pr & 10 for good agreement between 2D and 3D results.

However, the discrepancies between 2D and 3D results should be smaller for larger

aspect ratio domains, for less constraining lateral boundary conditions (free-slip or

periodic), and for cuboidal rather than cyclindrical cells, as demonstrated by the

results of Schmalzl et al. (2004). Many theoretical analyses of the problem have

either included two dimensions as a special case, or actually assumed only two di-

mensions, the successful Grossmann and Lohse (2000) scaling theory for the Nusselt

and Rayleigh numbers being a prime example of the latter. Therefore we choose

to perform 2D simulations, given the similarity between 2D and 3D results and the

vastly reduced computational requirements for 2D calculations. It is worth noting,

however, that for intermediate Rayleigh numbers 104 . Ra . 107, the nature of

the solution in 2D and 3D is phenomenologically different. For Pr ' 1, 3D solu-

tions exhibit a chaotic time-dependence, whereas 2D solutions in the same regime

exhibit laminar rolls with at most small periodic time dependence (Deardorff and

Willis 1965; DeLuca et al. 1990; Siggia 1994). Therefore in this thesis we restrict

our attention to the global properties of the solutions that are less dependent on the

dimensionality of the domain.

Our simulation suite runs from fully diffusive (Ra ' 102) to well into the tur-

bulent regime (Ra ' 1010); by the arguments of the previous section, the the flows

in the highest two decades of Ra should be approaching Reynolds-number indepen-

dence. Rayleigh numbers have been chosen such that there is at least one simulation

per decade of Ra, with extra simulations run in the vicinity of Rac. The Prandtl

number is fixed to be Pr = 0.707, the value for dry air at STP (“standard tem-

perature and pressure”, i.e. 273.15 K and 105 Pa). Reviews of RBC suggest that

qualitative results remain similar so long as the asymptotic range of Pr is the same,

i.e. Pr = O(1) rather than Pr→ 0 or∞ (Ahlers et al. 2009; Chillà and Schumacher

2012). In particular, the scaling exponent Nu ∝ Raα is not strongly Prandtl-number

dependent.

Choice of resolution

• By “resolution”, ∆r , we mean the smallest length scale at which it is possible

to distinguish features of the flow.

• By “filter scale”, ∆f , we mean the length scale(s) associated with any filter

applied to the flow, whether to the solutions or to the governing equations. If a

filter is applied to the flow, we will use the terms “filter scale” and “resolution”

interchangeably.

• By “grid scale” (alternatively, “grid length” or “grid spacing”), ∆g, we mean
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the actual distance between points (or cell centres) within a discretized model.

This grid scale is always smaller than the features it can resolve, and therefore

the implied filter scale. For instance, a Smagorinsky LES with a Smagorinsky

coefficient of CS ≈ 0.2 implies that ∆r ∼ ∆f ≈ 5∆g (though the exact pro-

portionality factor is dependent on the numerics; see Mason and Brown 1999

for a detailed discussion).

A direct numerical simulation of a fluid must “resolve” all dynamically relevant scales

of the fluid flow in order to justify the assumption that no small-scale processes need

to be parametrized. But there are various metrics by which we can test whether a

flow is “resolved”. To fully resolve a turbulent flow, the grid spacing must resolve at

least a decade into the viscous subrange (Kerr 1985); this is very computationally

expensive. However, to get almost all of the statistics right, the requirements are less

extreme: the grid spacing must be of the same order as the Kolmogorov dissipation

length, η := H(Pr2 /εu)1/4 (see, for instance, Davidson 2009, p. 395). Grötzbach

(1983) showed that a grid spacing . 2η gives sufficiently accurate turbulence statis-

tics for simulating convection. Within fully-developed turbulence in the bulk of the

fluid the exact result for the global kinetic energy dissipation rate, (2.22), may be

used to estimate the smallest dynamically relevant scale:

η

H
=

(
Pr2

(Nu−1) Ra

) 1
4

. (2.26)

For “ultimate” scalings of Nu ∼ Ra1/2 Pr1/2 and Re ∼ Ra1/2 Pr−1/2, this gives

η/H ∼ Re−3/4, in agreement with the expression given in Chapter 1 for homo-

geneous isotropic turbulence, equation (1.17).

Towards the boundaries, the kinetic and thermal boundary layers must be re-

solved — dissipation is typically higher in these regions, reducing the smallest dy-

namically relevant length scale. Shishkina et al. (2010) estimated local dissipation

lengths based on dissipation rates defined within the boundary layers, using these

to estimate the minimum number of points Nu, Nb required within each boundary

layer (thickness δu, δb) in order to adequately resolve the flow. This estimate is

for 106 < Ra < 1010, so for Ra ≤ 106 we use the values of Nu, Nb estimated for

Ra = 106. Note that this extra resolution is only required in the vertical direction.

At any point in the flow the smallest of {η, δb/Nb, δu/Nu} must be resolved.

Collecting the results of Grötzbach (1983) and Shishkina et al. (2010), the grid

spacing is required to satisfy ∆xη < 2η,∆xb < δb
/

0.35 Ra0.15 ,∆xu < δu
/

0.31 Ra0.15

to be adequate to resolve each respective scale.

To make use of the resolution requirements, the boundary layer thicknesses must

be estimated. Since the centre of the domain will be statistically well-mixed (i.e.
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we expect ∂ 〈b〉A,t
/
∂z ≈ 0) after the onset of convection, we must have δb/H ∼

1/(2 Nu).This result follows from considering the stationary-state horizontally-averaged

buoyancy equation in the vicinity of the boundaries; we have

∂ 〈wb〉A,t
∂z

= κ
∂2 〈b〉A,t
∂z2

. (2.27)

Heuristically, we expect the left hand side to be small close to the wall due to the

no normal flow boundary condition. Therefore in the buoyancy boundary layer

κ ∂2 〈b〉/∂z2 ≈ 0, implying ∂ 〈b〉/∂z ≈ constant. The boundary conditions are

〈b〉 = ±∆B/2 at z = 0, H, and 〈b〉 = 0 at z = δb, H − δb. Together with the result

∂ 〈b〉/∂z |z=0,H = −Nu ·∆B/H, this gives δb/H = 1/(2 Nu).

For the parameter regimes of this study, Nu ∼ Ra2/7 and so δb/H ∼ Ra−2/7

(Ahlers et al. 2009; Castaing et al. 1989; Shraiman and Siggia 1990). Prandtl-Blasius

boundary layer theory suggests that the kinetic boundary layer thickness should

scale as δu/H ∼ Ra−1/4, and δu < δb is expected over the entire Rayleigh number

range here considered (Ahlers et al. 2009, figure 3). To estimate the prefactors, an

over-resolved simulation with ∆x/H = ∆z/H = 0.01 was run at Ra = 105, finding

δu ' 0.56 Ra−1/4, δb ' 2.8 Ra−2/7; these prefactors do indeed ensure that δu < δb for

the Rayleigh number regime of the study.

For each Ra we construct an orthogonal, rectangular grid such that the grid

spacing is always smaller than the smallest of the length scales {∆xη,∆xb,∆xu}.
This grid consists of, in the z-direction: a uniform grid with spacing ∆z(0) = ∆xu for

0 ≤ |z − zboundary| ≤ δu; a uniform grid with spacing ∆z(1) : ∆xu < ∆z(1) < ∆xb for

δu < |z − zboundary| ≤ δb; a nonuniform grid expanding linearly from ∆z(1) → ∆z(2)

over the range δb < |z − zboundary| ≤ 2δb; a uniform grid with spacing ∆z(2) = 2η

for 2δb < z < H − 2δb. In the horizontal direction, grid spacing is uniformly equal

to 2η throughout the domain. Time steps are chosen so that restrictions on both

the advective and diffusive Courant numbers are satisfied. Details of the grid and

time-step for each simulation are given in Table 2.1.

In principle, we could directly check that the resolution is sufficient post-hoc by

refining the grid and re-computing all of the statistics; if they do not change as the

resolution increases, then the lower resolution “fully resolves” the flow. In practice,

for this thesis we note that the grid spacings of our simulations are comparable to

those in similar DNS of 2D RBC (e.g. Johnston and Doering 2009).

Numerical method

All simulations referenced in this chapter, unless otherwise specified, were performed

with boussinesqFoam. The code has been developed as part of AtmosFOAM,
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Ra Ttot/4TB ∆t/4TB ∆zc/H = ∆x/H ∆zw/H η/H δu/H

102 25 6.393× 10−5 0.04 0.04 N/A N/A
103 25 1.599× 10−3 0.04 0.04 N/A N/A

1.6× 103 51 6.393× 10−4 0.02 0.02 N/A N/A
1.7× 103 51 6.393× 10−4 0.02 0.02 N/A N/A
1.8× 103 127 6.393× 10−4 0.02 0.02 N/A N/A
2× 103 38 7.992× 10−4 0.02 0.02 1.410× 10−1 8.459× 10−2

104 25 1.598× 10−3 0.02 0.01 7.494× 10−2 5.656× 10−2

5× 104 25 1.998× 10−3 0.02 0.01 4.240× 10−2 3.783× 10−2

105 38 1.598× 10−3 0.02 0.01 3.346× 10−2 3.181× 10−2

5× 105 25 9.990× 10−4 0.02 7.067× 10−3 1.951× 10−2 2.127× 10−2

106 25 9.990× 10−4 0.02 5.963× 10−3 1.551× 10−2 1.789× 10−2

5× 106 38 9.990× 10−4 1.797× 10−2 2.990× 10−3 9.151× 10−3 1.196× 10−2

107 60 5.115× 10−4 1.454× 10−2 2.515× 10−3 7.300× 10−3 1.006× 10−2

2× 107 51 3.996× 10−4 1.165× 10−2 2.114× 10−3 5.827× 10−3 8.459× 10−3

108 38 3.197× 10−4 6.729× 10−4 1.130× 10−3 3.459× 10−3 5.657× 10−3

109 22 (45) 1.279× 10−4 4.543× 10−4 4.544× 10−4 1.645× 10−3 3.181× 10−3

1010 20 (76) 7.992× 10−5 1.563× 10−3 1.789× 10−4 7.832× 10−4 1.789× 10−3

Table 2.1: Details of 2D DNS of RBC (Section 2.2). The first column gives
the Rayleigh number for each simulation. The second column gives the total
simulation time, nondimensionalized by the (approximate) eddy turnover time,
Te ≈ 4TB = 4

√
H/∆B. The Ra = 109 and 1010 simulations were spun up on

a coarser grid (the Ra = 108 grid), then after reaching equilibrium the grid was
refined. The simulation time on the finer grid is given, followed by, in parentheses,
the total simulation time on both grids for that Rayleigh number. The third
column gives the time-step size nondimensionalized by Te. The fourth column
gives the vertical grid spacing of the uniform layer in the centre of the domain,
which is equal to the uniform horizontal grid spacing. The fifth column gives
the vertical grid spacing of the uniform layer adjacent to the upper and lower
boundaries. The sixth and seventh columns give the physical length scales used
to estimate the required resolution, the (bulk) Kolmogorov dissipation length η/H
(equation (2.26)) and the kinetic boundary layer thickness, δu/H ' 0.56 Ra−1/4.
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an open-source library for atmospheric computational fluid dynamics, itself based

on the OpenFOAM CFD package. AtmosFOAM is freely available on GitHub at

github.com/AtmosFOAM/AtmosFOAM as part of the AtmosFOAM project. Ver-

sion 7 of OpenFOAM was used throughout this thesis (The OpenFOAM Foundation

2019).

In boussinesqFoam, the equation set (2.11)-(2.13) is solved in advective form.

Advective form was chosen in order for the algorithm to be as close as possible to a

single-fluid version of the multi-fluid Boussinesq code described in 4.3. The solver is

otherwise similar to the flux-form compressible solver exnerFoam described in detail

in Weller and Shahrokhi (2014).

Term Discretization/solution method

advection (b) Total variation-diminishing with van Leer limiter
advection (u) 2nd-order linear upwind

∇ 2nd order Gauss linear
∇2 2nd order Gauss linear

interpolation 2nd order linear (i.e. central differencing)
pressure (P ) GAMG with DIC smoother; rel. tol. 10−2; abs. tol. 10−6

time-stepping Crank-Nicolson with off-centring coefficient 0.55

Table 2.2: Details of the spatial and temporal discretizations used in the direct
numerical simulations, as well as details of the implicit pressure solver.

The spatial discretization uses Arakawa C-grid staggering in the horizontal and

Lorenz staggering in the vertical. Temporal discretization is Crank-Nicolson with

off-centring coefficient set equal to 0.55; therefore the time-stepping is almost second-

order.

Prognostic variables are the buoyancy, b, at cell centres, and the volume flux,

φ := u · Sf , at cell faces, where Sf is the outward-pointing area vector of face f .

Advection of b is total variation-diminishing (with a van Leer limiter) to preserve

boundedness, while advection of φ is linear upwind. The viscous and diffusive terms

are discretized using Gaussian integration with 2nd-order linear interpolation. Thus

the spatial discretization is (almost) second-order accurate.

The only diagnostic variable is the pressure, P , at cell centres. A Poisson equa-

tion is solved implicitly for P , which maintains a divergence-free velocity field (i.e.

it ensures Equation (2.13) is satisfied). The solution is then iterated to convergence.

The generalized Geometric-Algebraic MultiGrid (GAMG) method (with diagonal

incomplete-Cholesky smoothing) is used for the implicit pressure solves, with a rel-

ative tolerance of ≤ 10−2 and an absolute tolerance of 10−6. An introduction to

https://github.com/AtmosFOAM/AtmosFOAM
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algebraic multigrid methods may be found in chapter 13 of Saad (2003), while a de-

scription of the OpenFOAM implementation of GAMG is given in Behrens (2009).

Two outer iterations (for the whole of the above method) and two inner iterations

(for the implicit pressure solves) are performed per time-step.

Spatial and temporal discretizations of the various terms in Equation (2.11)-

(2.13), as well as details of the pressure solver, are summarized in Table 2.2.

Calculation of Nu, Re, δb

The Nusselt number, Reynolds number, and boundary layer depths are calculated

as follows:

Nu: The most direct way of calculating Nu is to integrate the (dimensionless) heat

flux over the entire domain, then take a time average: Nu = 〈wb− ∂b/∂z 〉V,t.
However, if the flow is statistically stationary, then the time-averaged horizon-

tally averaged (dimensionless) heat flux is independent of height, so calculat-

ing the time-averaged vertical buoyancy gradient averaged over the top and

bottom boundaries gives a second estimate, Nuw := 〈− ∂b/∂z 〉A,t;z=0,H . The

equivalence of these two expressions for Nu provides an extra check for the

statistical steadiness of the numerical solutions. Another check for statistical

stationarity is provided via the kinetic and thermal dissipation rates (calcu-

lated using equations (2.22)-(2.23)). Thus for a statistically stationary state,

convergence of Nu = Nuw = εb = 1 + εu/Ra is required.

Re: The calculation of a Reynolds number based on the definition Re := UL/ν

requires the choice of a velocity scale and a length scale. For RBC, the only

length scale we can reasonably choose for a bulk Reynolds number must be

the domain height H, as this is the only external length scale in the problem.

However, what is a reasonable representative velocity scale, U? Several pos-

sible choices are suggested in Ahlers et al. (2009) and Kerr (1996); we shall

consider velocity scales based on the turning points of the velocity variance

profile:

U1 :=
√

mean(var(u)x,t); U2 :=
√

max(var(u)x,t); U3 :=
√

max(var(w)x,t)

(2.28)

An a priori estimate of Re can be found by assuming free-convective scaling,

U = UB :=
√

∆B H, implying Re =
√

∆B H3/ν2 = Ra1/2 Pr−1/2.

δb: If the flow is statistically stationary, the buoyancy will be well-mixed in the

interior of the domain, so the time-averaged buoyancy profile must be approx-

imately constant outside of the boundary layers, and approximately linear
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within due to the fixed buoyancy boundary conditions. Thus one measure of

the thermal boundary layer thickness is

δ
(1)
b := − ∆B

2
d〈b〉x,t

dz
|wall

. (2.29)

Following Kerr (1996), we also estimate the thermal boundary layer thickness

from the locations of the maxima of the buoyancy variance profile:

δ
(2)
b := |z(max(var(b)x,t))− z(wall)|. (2.30)

Both the upper and lower boundary layer thicknesses should be the same.

The above time averages are calculated over at least 5 eddy turnover times (Te ≈
4 TB). Time-averages are also calculated over twice and three times this minimum

averaging time, and all simulations show convergence between the averages taken

over these three different times. The total simulation time for each Rayleigh number

is given in Table 2.1.

2.2.1 Phenomenology of RBC

Direct numerical simulations of 2D, dry, Boussinesq Rayleigh-Bénard convection

were performed for the range 102 ≤ Ra ≤ 1010 for a fluid with Prandtl number

0.707 (the value for dry air at standard temperature and pressure). For each Ra, the

fluid was initialized from the hydrostatically-balanced resting state (2.20), with small

random perturbations to the buoyancy field |δbpert| ≤ 0.01∆B drawn from a uniform

distribution. The aspect ratio of the domain was set equal to the critical wavelength:

Γ = Lx/Lz = λc/H ' 2.02. Each simulation was run until a statistically-steady

equilibrium was reached, determined by the convergence of the time-mean values

of Nu,Re, δb, and the equivalence of the four methods of estimating Nu. We also

ran simulations at a much larger aspect ratio of Γ = 10 for 102 ≤ Ra ≤ 108,

finding the same results for Nu,Ra, δb, and no change in the qualitative nature of

the solution; therefore all results reported are from the Γ = λc simulations unless

otherwise stated.

Since Nu ≈ Nuw ≈ εb ≈ 1 + εu/Ra for all simulations (not shown), verifying

statistical steadiness, only Nu is discussed hereafter. All three methods of estimating

the Reynolds number also produce very similar results (Figure 2.3b), and the free-

convective scaling (with proportionality factor ' 0.4) gives good agreement with the

observed scaling, especially for Ra & 106.

Figure 2.2 shows single-time snapshots of the 2D buoyancy field in fully devel-

oped RBC at various Rayleigh numbers. The solutions show several characteristic
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(a) Ra ' 105 (b) Ra ' 108

(c) Ra ' 1010 (d) Ra ' 1010 (zoom)

Figure 2.2: Snapshots of buoyancy fields in 2D Rayleigh-Bénard convection at
varying Rayleigh number. In (a), the flow is convective but steady; in (b), the flow
is turbulent, but only just, with Re ' 5000; in (c), the flow is highly turbulent
and exhibits many small scale features; (d) is the same flow as (c) but zoomed
in to show small-scale features close to the lower boundary layer, and also to
demonstrate the resolution.

regimes. For Ra < Rac, diffusion damps out any motion and the solution is entirely

diffusive (not shown). As Ra increases above Racrit the solution exhibits first steady

convection (a), then transitional turbulence (b), and finally fully-developed convec-

tive turbulence (c-d). This broad phenomenology is valid in both 2D and 3D, so

for the remainder of the thesis we restrict to 2D. Reproducing this phenomenology

serves both to demonstrate the usefulness of RBC as a model of convection, and to

validate the chosen numerical method.

The scalings of Nu,Re, and δb are shown in Figure 2.3, along with snapshots

of buoyancy fields from representative simulations in each phenomenological regime

in figure 2.2. A transition from diffusive to convective behaviour is observed in

both the Nusselt (figure 2.3a) and Reynolds (figure 2.3b) numbers at Ra ≈ 1700,

in agreement with the prediction Rac ' 1708. In addition, this circulation develops

with approximately the correct horizontal length scale: the most commonly observed

number of convective rolls is 5 in our aspect number 10 domain, implying a critical

wavelength λc ≈ 2, in good agreement with the theoretical prediction λc ' 2.02. A

transition to turbulence follows between 107 . Ra . 108, as expected given that
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(a) (b)

(c)

Figure 2.3: Validation of 2D Rayleigh-Bénard direct numerical simulations, show-
ing scaling with applied buoyancy forcing, Ra, of: (a) heat transport (Nu); (b)
momentum transport (Re); and (c) thermal boundary layer thickness (δb). In
(a)-(c), the black crosses joined by a dotted line denote our main results. In
(a) and (b), the solid black vertical line marks the theoretical critical Rayleigh
number, Rac ' 1708. In (a) the solid blue line follows the theoretical Nu ∝ Ra2/7

scaling; the orange dash-dotted line follows the best fit line of Kerr (1996),
Nu = 0.186 Ra0.276 (3D); the green dashed line follows the best fit of Johnston
and Doering (2009), Nu = 0.138 Ra0.285 (2D), valid above Ra ' 107. In (a) the
red pluses show Nusselt numbers calculated from simulations run with a fully
compressible Navier-Stokes solver. In (b) the three dotted lines show Reynolds
numbers calculated from the alternative definitions in Equation (2.28); the theo-
retical scaling, Re ∝ Ra1/2, is shown as a solid blue line. In c), the orange crosses
joined by a dashed line show boundary layer thicknesses estimated from 1/2 Nu
(Equation (2.29)); the solid blue line shows the theoretical scaling, δb ∝ Ra−2/7.

Re ≈ 2000 for Ra ≈ 2 × 107. This can be seen in the qualitative nature of the

flow: figure 2.2a is steady, representative of all flows with Rac . Ra . 107; while

above Ra & 2×107 the flow is intermittent and exhibits patterns on multiple scales,

characteristic of turbulence, as seen in Figs. 2.2b-d.

The Nusselt number obeys a power law close to Ra2/7, and the Reynolds number

a power law close to Ra1/2, from shortly after the onset of convection to the highest

Rayleigh number considered. These are the expected exponents within this param-
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(a) (b)

(c) (d)

(e)

Figure 2.4: Time-averaged, vertically-integrated horizontal spectra of velocity
(a,b) and buoyancy (c,d,e) at Ra = 108 (left column) and Ra = 1010 (right
column). Solid blue lines plot the spectra; the orange dotted lines are ∝ k−5/3;
the green dot-dashed lines are ∝ k−3; and the red dashed lines are ∝ k−9/2. The
simulations in (a-d) used a grid spacing in the bulk ≈ 2η, while the simulation
in (e) used a grid spacing ≈ η. Spectra are averaged over ≈ 5Te, and integrated
vertically outside of the boundary layers.

eter regime (Ahlers et al. 2009; Chillà and Schumacher 2012). Both methods of

calculating δb give similar results for all Ra, and for Ra & 105 the agreement is very

close, showing that the interior of the domain is well-mixed outside of the boundary

layers for Ra & 105. The three different possibilities for the velocity scale in the
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(a) (b)

(c) (d)

(e) (f)

Figure 2.5: Time-averaged, vertically-integrated horizontal spectra of thermal
(left column) and kinetic (right column) dissipation rates at Ra = 108 (a,b),
109 (c,d), and 1010 (e,f). Spectra are averaged over ≈ 5Te, and integrated verti-
cally outside of the boundary layers.

Reynolds number calculation give similar results. A reduction in the prefactor of

the power law for Nu is observed between 107 < Ra < 108, which coincides with the

onset of turbulence. A similar transition is seen in the results of Johnston and Do-

ering (2009) for finite-difference DNS of 2D dry RBC with Pr = 1. Above Ra ≈ 107

they observe a power law relationship between Ra and Nu of Nu = 0.138 Ra0.285,

which our data are in excellent agreement with. Least-squares best-fits to our data
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(a) (b)

Figure 2.6: Time-averaged, vertically-integrated horizontal spectra of (a) vertical
and (b) horizontal turbulent kinetic energy in RBC at Ra = 1010. Solid blue
lines plot the spectra; the orange dotted lines are ∝ k−5/3; the green dot-dashed
lines are ∝ k−3; and the red dashed lines are ∝ k−9/2. Spectra are averaged over
≈ 5Te, and integrated vertically outside of the boundary layers.

below Ra = 2× 107 give Nu = 0.268Ra0.253,Re = 0.238Ra0.536, while best-fits above

Ra = 2× 107 give Nu = 0.174 Ra0.274,Re = 0.473 Ra0.501.

We also ran some simulations with a fully compressible Navier-Stokes solver, with

a buoyancy equation in terms of dry potential temperature. We used a reference

potential temperature of 300 K and a temperature drop between the planes of 60 K,

giving ∆θ/θr = 0.2, meaning that for these simulations the Oberbeck-Boussinesq

approximation is of questionable validity. Nusselt numbers determined from simula-

tions with that solver (subject to the same resolution and convergence requirements

as the Boussinesq solver) are shown in Figure 2.3; results are almost identical for

Ra . 5× 106, although for Ra & 107 the Navier-Stokes simulations do not produce

the drop in prefactor observed in the Boussinesq simulations. This shows that the

Boussinesq equations are more than adequate to simulate RBC.

Figure 2.4 shows time-averaged horizontal spectra of the velocity (a,b) and buoy-

ancy (c,d,e) at Ra = 108 (left column) and Ra = 1010 (right column). The spectra

were vertically integrated outside of the boundary layers (i.e. between 2δb and

H − 2δb, and averaged over ≈ 5Te. Figs. (a-d) have a resolution ≈ 2η outside of the

boundary layers, while (e) has a grid spacing in the bulk ≈ η. Since the buoyancy

spectra (d, e) are identical for wavenumbers greater than the Nyquist wavenumber

of the lower-resolution simulation (d), the coarser resolution requirement is clearly

adequate; the finer resolution simply serves to resolve further into the dynamically-

unimportant dissipation range.

Both Ra = 108 and Ra = 1010 spectra are qualitatively similar, exhibiting power-

law scaling with similar exponents. This is clearest in the case of the buoyancy

spectra, where scaling approximately ∝ k−5/3 is clearly visible in Figure 2.4(d, e)
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(Ra = 1010) for about a decade of wavenumbers, suggesting the presence of fully-

developed turbulence. This is followed by a clear drop off around k ≈ 50 to ∝ k−9/2

for approximately another decade; this is the viscous subrange. For Ra = 108 similar

behaviour is observed, although the crossover in scalings is less clear, and occurs at

a lower wavenumber ≈ 20, as expected given the relatively low Reynolds number

(i.e. the Reynolds number is too small for a well-separated inertial subrange to

develop). The similarity of the spectra before the viscous drop-off suggests that the

highest Rayleigh numbers considered in our DNS suite are approaching a Reynolds

number-independent regime. This can be seen more clearly in Figure 2.5, which

shows the time-averaged, vertically-integrated horizontal spectra of the thermal (left

column) and kinetic (right column) dissipation rates in fully developed convection

at Ra = 108 (a,b), 109 (c,d), and 1010 (e,f). As the Rayleigh number increases,

the spectrum remains similar for wavenumbers below the dissipation length. This

is especially true for Ra = 109 and 1010, whose spectra are very similar for k . 30.

Since k = 2π/λ, this suggests that structures larger than ≈ 0.1H should be similar

between the two flows.

The scaling of the TKE spectra is more ambiguous, appearing to consist of a

short Kolmogorov inertial range ∝ k−5/3 (π . k . 10 in Figure 2.4b), followed by a

Kraichnan k−3 spectrum (10 . k . 50 in Figure 2.4b), before the viscous drop off.

The scalings are observed in the same range of wavenumbers as the unambiguous

∝ k−5/3 scaling of the buoyancy power spectral density, i.e. π . k . 50. Figure 2.6

shows the spectra of the vertical (a) and horizontal (b) components of the TKE; the

dual scaling is clearest in the spectrum of the vertical TKE, while the horizontal

spectrum appears to exhibit only the k−3 scaling. Such scalings are expected for

2D turbulence forced at some wavenumber kF with an inverse energy cascade at

low wavenumbers k < kF and a forward enstrophy cascade at high wavenumbers

k > kF (Kraichnan 1967). However similar scalings have been observed in fully

three-dimensional RBC; for instance, Kerr (1996) observed in their TKE spectra

(their Figure 5e):

a low-wavenumber kinetic energy spectrum of k−5/3 and a high wavenum-

ber spectrum of k−3 are given, very reminiscent of theoretical predictions

in two-dimensional turbulence of a backwards energy cascade and a for-

wards enstrophy cascade, with injection of energy and enstrophy at the

transition wavenumber.

Although Kerr noted the buoyant plumes (which are predominantly sheet-like, i.e.

quasi-2D, in 3D RBC) as a possible forcing mechanism for this turbulence, no un-

ambiguous peaks were found in the buoyancy flux or kinetic or buoyancy dissipation

spectra.
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To our knowledge, little further research has been performed on the possibility

of an inverse cascade in RBC, forced by the buoyant plumes (although evidence

of an inverse cascade has been discovered independently by other researchers, for

instance Togni et al. 2015). However, within atmospheric convection the paradigm

of “anarchy turbulence” has been advanced (Zilitinkevich 1973; Zilitinkevich et al.

1998, 2021), where buoyancy-driven turbulence is responsible for an inverse cascade

in the vertical, while mechanical (i.e. shear-driven) turbulence performs a forward

cascade. That is, buoyant plumes form at small scales and merge together to form

ever-larger scales, generating a circulation on much larger scales than the initial

energy injection length scale. This paradigm is clearly qualitatively seen in high-Ra

RBC (e.g. Figure 2.2b-d) as well as in LES of the atmospheric boundary layer (for

instance, Figure 8 of Bopape et al. 2020). Within RBC, further research is needed to

investigate the possible inverse cascade and, if it exists, its length scales of forcing.

Clearly the boundary layer depth sets the initial size for plumes, but what sets

the length scale once they merge to form a coherent circulation? This meta-plume

size appears broadly consistent between our Ra ∼ 108 and 1010 simulations, as can

be seen qualitatively in the buoyancy fields (respectively Figure 2.2b,c). Assuming

the meta-plume size is the energy-injection wavenumber, we can also quantitatively

see its consistency between the Ra = 108 and 1010 simulations in the wavenumber

of the transition between the k−5/3 and k−3 scalings in the TKE, which occurs at

k ≈ 10–20 for both (respectively Figs. 2.4a,b), while the buoyancy boundary layer

depth decreases by a factor of ≈ 4 (Figure 2.3c).

Regardless of the exact reason for the shape of the spectrum, the fact that the

spectra show similar scalings in both two and three dimensions is another reason to

consider 2D RBC as a useful testbed for modelling convection, given the reduced

computational requirements.

2.2.2 Demonstration of the analogy between constant viscosity

RBC and LES of higher-Ra RBC

In Section 2.1.3, we motivated the study of constant-viscosity Rayleigh-Bénard con-

vection at (relatively) low Rayleigh numbers as relevant to the modelling of the real

atmosphere because, although the true atmosphere is highly turbulent, an artifi-

cially high viscosity is almost always introduced for either numerical stability, or to

directly simulate turbulence. We also noted that Mason (1994) found acceptable

agreement between simulations using horizontally-averaged values of eddy diffusivi-

ties from a Smagorinsky LES, and postulated that removing the vertical dependence

may still give reasonable results.



70 2. Rayleigh-Bénard convection at grey-zone resolutions

(a)

(b)

(c)

Figure 2.7: Buoyancy (colour) and velocity (arrows) in fully-developed RBC for
three different simulations: (a) Smagorinsky LES of RBC with molecular Ra '
5.6× 109,Pr = 0.707, using CS = 0.2 and Prt = 0.86; (b) constant-viscosity RBC
with Ra ' 2.3× 107, Pr = 0.86, based on the maximum νt/ν ' 17 found within
the boundary layers in the LES; (c) constant-viscosity RBC with Ra ' 2.2×108,
Pr = 0.86, based on the maximum νt/ν ' 5.6 found outside of the boundary
layers in the LES. Both buoyancy and the velocity vectors have the same scale
in all three figures.
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To demonstrate this correspondence, we performed a simulation of turbulent

RBC using a Smagorinsky LES model, and compared the results to simulations

with constant viscosity and diffusivity. The LES used the standard OpenFOAM

implementation of the Smagorinsky eddy viscosity scheme, with CS = 0.2, and

simulated RBC with molecular Ra = 5.6 × 109,Pr = 0.707 in an aspect ratio 10

domain on a uniform grid with ∆x = ∆y = 0.01H. By the Grötzbach (1983)

criterion of ∆x < 2η, this grid should be sufficient to resolve turbulent RBC with

an effective Ra ≈ 3 × 107 and Re ≈ 2000. This resolution criterion only applies in

the bulk of the domain; since a grid spacing of ∆x = ∆y = 0.01H guarantees that

the first cell-centre lies in the log-layer for a simulated Ra & 2 × 107 (i.e. z+ =

z/(ν/
√
τwall) > 30), standard logarithmic wall functions were used to handle the

collapsing turbulence length scale towards the boundaries. The turbulent Prandtl

number was taken to be constant at Prt = 0.86.

After running this large-eddy simulation we diagnosed the maximum values of

the turbulent viscosity within the boundary layers, and in the bulk of the domain.

The maximum turbulent viscosity observed in the boundary layers was νt/ν ' 17,

while the maximum observed in the bulk of the domain was νt/ν ' 5.6. We then

ran two constant viscosity simulations with the same Prandtl number as the LES

using the same grid, one with ν → 17ν (corresponding to Ra ' 2.3× 107), and the

other with ν → 5.6ν (corresponding to Ra ' 2.2× 108).

Example snapshots of the instantaneous buoyancy fields12 in fully-developed con-

vection are shown in Figure 2.7. The LES field (a) looks qualitatively similar to the

constant-viscosity Ra = 108 flow shown in Figure 2.2b: it is turbulent and inter-

mittent, exhibiting structures on multiple scales and recirculation in the regions of

plume separation. The constant-viscosity simulations (b,c) are both qualitatively

similar to the LES, especially the lower-viscosity simulation (c). In particular, note

the similar overturning structures in all three simulations, especially the similar

plume widths, and the similar velocity magnitudes across all three simulations: away

from the boundaries, the LES is effectively just simulating a lower-Rayleigh number

flow. This heuristically demonstrates the correspondence between constant-viscosity

simulation, and LES of higher-Reynolds number flow, for 2D RBC.

12Note that these simulations were performed with a compressible Navier-Stokes solver, so the
buoyancy fields shown in Figure 2.7 are derived from the prognostic dry potential temperature via
b = (g/θr)(θ− θr), with g = 9.81 m s−2 and θr = 300 K. However the difference in results between
constant-viscosity simulations using the compressible Navier-Stokes and Boussinesq equations was
shown to be small, even for quite large relative potential temperature differences ∆θ/θr ≈ 0.2 for
which the Boussinesq approximation is of questionable validity.
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2.3 Exploration of the grey zone of 2D dry RBC

We argued in the Introduction that there is no reasonable hope of ever being able

to numerically simulate all dynamically relevant scales of convection, and so we

must parametrize some of the inaccessible scales. For filter scales much greater

than the length scales of the dominant energy-containing structures of the flow,

`L, Reynolds-averaging ideas apply; this is the regime of applicability of traditional

convection and boundary layer parametrization schemes, which are fundamentally

one dimensional. For filter scales much less than `L, the techniques of large-eddy

simulation are applicable. However, current model grid spacings imply filter scales

in between these two limits; this is the grey zone.

It is not currently well-understood how to parametrize subfilter terms for filter

scales in the grey zone. In order to better understand the grey zone, we present an

analysis of the grey zone of 2D dry RBC.

To investigate the grey zone of RBC, we performed numerical simulations at

Pr = 0.707 and Ra = 105, 108 over a range of horizontal grid spacings. To ensure

that the boundary layers remain adequately resolved, the vertical grid spacing was

fixed to be the same as the DNS for all simulations (see Table 2.1). If the boundary

layers are not well-resolved, some sort of wall function must be employed to ensure

the correct heat and momentum transport at the walls. This is usually employed in

LES of the atmosphere, where surface layer similarity theories are used to provide

near-wall profiles of flow variables. For our purposes, this would add another layer

of complexity, and potentially ambiguity, to the model, and so we chose instead to

retain the graded grid close to the walls. Time steps were also kept identical to the

DNS.

The horizontal grid spacing was increased sequentially from the DNS grid spac-

ing to ∆x = 100H; see Tables 2.3, 2.4 for details of the grid spacings used at,

respectively, Ra = 105, 108. By definition, at DNS resolution all convection must be

resolved. At the coarsest grid spacing, ≈ 50 complete overturning circulations would

fit within a single horizontal cell width (and 100–250 in the implied filter volume,

∆f ∼ ∆r > 2∆g), meaning convection at this resolution should be fully subfilter.

Therefore this range of grid spacings spans the grey zone.

This leads to some cells with very high aspect ratio; motivation for this approach

comes from the fact that operational atmospheric models rarely have equal aspect

ratio cells, typically having finer grid spacing in the vertical than the horizontal (due

to the strongly stratified nature of geophysical flows). For instance, the Met Office

UKV operational NWP model has a horizontal grid spacing of 1500 m, but the

vertical levels are separated by a spacing of only ∼ 10–100 m in the lowest kilometre

of the atmosphere, giving a cell aspect ratio of up to ∼ 100. Vertical and horizontal
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∆x/H AR Ttot/Te Nu(25Te) Re(25Te) Nu(eqm.) Re(eqm.)

0.01 10 38 5.01 113 5.01 113
0.02 10 38 5.01 113 5.01 113
0.025 10 38 5.01 114 5.01 114
0.0625 10 38 4.98 115 4.98 115
0.15625 10 38 4.82 118 4.82 118

0.4 10 125 3.83 96.3 4.05 95.5
0.90909 10 100 3.99 89.2 4.11 88.9

1.0 10 250 5.95 110 6.11 111
1.1111 10 100 3.79 83.8 3.86 82.9

0.4 100 100 3.83 96.3 4.08 95.0
0.5 100 125 3.82 87.2 3.83 87.4

0.625 100 100 3.46 81.1 3.74 80.1
0.8 100 100 3.53 81.8 5.17 99.9

0.90909 100 125 3.99 89.2 4.11 89.0
0.97087 100 100 4.93 100 4.92 99.9

1.0 100 250 4.24 89.0 5.26 103
1.0309 100 100 4.85 99.2 4.84 99.0
1.1111 100 125 3.79 83.8 3.86 82.9
1.25 100 125 3.10 66.6 6.12 112

1.5625 100 250 2.80 37.2 4.05 86.4
2.0 100 250 3.41 51.0 6.15 112
2.5 100 250 2.06 25.1 5.45 96.6

3.125 100 250 3.01 51.0 5.48 105
3.5714 100 250 1.54 9.82 6.06 112

4.0 100 250 1.00 2.20× 10−4 3.81 75.7
5.0 100 250 1.00 3.44× 10−6 5.76 109

5.5556 100 250 1.00 0.356 3.07 43.0
6.25 100 250 1.00 5.39× 10−3 5.36 106
4.0 1000 250 1.00 1.60× 10−3 6.02 111
5.0 1000 250 1.00 1.74× 10−4 5.76 109

5.5556 1000 250 1.00 1.22× 10−3 5.98 111
6.25 1000 250 1.00 5.39× 10−3 5.37 107

Table 2.3: Details of horizontal grid spacing, domain aspect ratio, and simula-
tion time for single-fluid grey zone simulations at Ra = 105. Times are nondi-
mensionalized by the (approximate) eddy turnover time, Te. Except for the
highest-resolution simulation, vertical grid spacings are identical to those used
in the DNS; see Table 2.1 for details. The highest-resolution simulation has a
uniform isotropic grid spacing ∆x = ∆z = 0.01H; this is the over-resolved simu-
lation which was used to estimate the prefactors for the boundary layer scalings
when estimating the DNS resolution requirements in Section 2.2. The final four
columns give the Nusselt and Reynolds numbers (averaged over 5Te) for the sim-
ulations, first at t = 25Te, and secondly at the final equilibrium (or at t = 250Te

if no resolved convective equilibrium was reached by this time). Nusselt numbers
are volume-averaged (Equation (2.21)), and the velocity scale for the Reynolds
number is taken to be U3 (Equation 2.28). Continued on next page.
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∆x/H AR Ttot/Te Nu(25Te) Re(25Te) Nu(eqm.) Re(eqm.)

12.5 1000 250 1.00 0.0123 3.86 55.6
20 1000 250 1.00 2.37× 10−7 1.00 3.51× 10−4

25 1000 250 1.00 2.14× 10−9 1.00 9.42× 10−5

40 1000 250 1.00 4.15× 10−7 1.00 3.59× 10−7

62.5 1000 250 1.00 1.73× 10−4 1.00 2.98× 10−7

100 1000 250 1.00 4.33× 10−9 1.00 2.67× 10−9

100 104 250 1.00 1.51× 10−7 1.00 2.32× 10−7

Table 2.3 continued. Details of horizontal grid spacing, domain aspect ratio, and
simulation time for single-fluid grey zone simulations at Ra = 105. See caption
of Table 2.3 for full description.

∆x/H AR Ttot/Te Nu(25Te) Re(25Te) Nu(eqm.) Re(eqm.)

6.9156× 10−3 10 32 25.1 4760 25.3 4750
0.015625 10 32 24.7 4620 25.3 4590

0.025 10 38 24.5 4530 24.4 4470
0.0625 10 38 24.6 4630 24.1 4800
0.15625 10 51 22.2 3500 22.4 3600

0.4 10 51 21.5 2040 22.6 2330
0.90909 10 125 16.0 1260 17.1 1010

1.0 10 125 16.2 1280 18.9 1340
1.1111 10 125 18.6 1540 19.1 1550

2.0 102 125 14.6 1210 25.0 1750
2.5 102 125 18.8 1140 21.1 1530

3.125 102 125 15.0 1080 18.0 1310
3.5714 102 125 12.0 876 15.9 1090

4.0 102 125 12.3 809 18.1 1340
5.0 102 125 12.4 629 21.7 1420
6.25 102 125 14.3 228 21.0 1400
20 103 125 1.00 0.127 5.70 194
25 103 125 1.00 0.0748 5.60 160
40 103 125 1.00 0.0202 1.10 6.40

62.5 103 125 1.00 0.0081 1.00 0.0319
100 103 125 1.00 0.0016 1.00 0.00113
100 104 125 1.00 0.0022 1.00 0.00232

Table 2.4: Details of horizontal grid spacing, domain aspect ratio, and simulation
time for single-fluid grey zone simulations at Ra = 108. Times are nondimension-
alized by the (approximate) eddy turnover time, Te. The final four columns give
the Nusselt and Reynolds numbers (averaged over 5Te) for the simulations, first
at t = 25Te, and secondly at the final equilibrium (or at t = 125Te if no resolved
convective equilibrium was reached by this time). Nusselt numbers are volume-
averaged (Equation (2.21)), and the velocity scale for the Reynolds number is
taken to be U3 (Equation 2.28). Vertical grid spacings are identical to those used
in the DNS; see Table (2.1) for details.

grid spacings in such models are also often varied independently of each other — in

particular, refinements of horizontal grid spacings are often made independently of
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refinements in the vertical.

Figure 2.8 shows the Nusselt number (a,b), Reynolds number (c,d), and time

to initiation of convection (e,f) as functions of grid spacing. The Nusselt numbers

are volume-averaged (Equation 2.21), while the Reynolds numbers use the velocity

scale U3 (Equation 2.28); both are time-averaged over 5Te. Time to initiation of

convection is defined as the first time at which the instantaneous value of Nu > 1.1.

At both Ra = 105 and Ra = 108, the simulations can be divided into three

broad categories. Firstly, for ∆x/λc . δb, all of the global parameters remain

virtually unchanged compared to the reference DNS; this is the “high resolution

limit”. Secondly, for ∆x/λc & 10 (at Ra = 105), ∆x/λc & 30 (at Ra = 108), no

convection develops after a long integration time13, 250Te for Ra = 105, 125Te for

Ra = 108. This is the “fully subfilter” limit. The wide range of scales in between,

δb . ∆x . 10λc, is the grey zone of constant viscosity RBC. As δb depends on

Ra, a practical definition of the grey zone adopted for the rest of this thesis is

10−1 . ∆x/λc . 10.

At the high resolution end of this grey zone, heat and momentum transports

decrease monotonically with increasing grid spacing at both Ra = 105 (Figs. 2.8a,c)

and 108 (Figs. 2.8b,d). Convection initiates marginally earlier in the Ra = 108

simulations compared with the DNS for grid spacings 0.03 . ∆x/λc . 0.09, however

by ∆x/λc ' 0.2 the initiation time is ≈ 10% later than the DNS for both Rayleigh

numbers. Similar behaviour has been observed in studies of resolution requirements

for cloud resolving models: Petch et al. (2002) performed simulations of both shallow

(precipitating and non-precipitating) and deep cumulus convection, finding that in

all cases grid spacings . 0.25H (where their H is the sub-cloud layer depth) were

required to avoid significant delays to convection initiation.

For grid spacings & 0.4H, the behaviour of the Nusselt and Reynolds numbers

ceases to be monotonic with increasing grid spacing. This is the hard grey zone,

where the grid spacing is comparable to the most energetic mode, `L ≈ λc. (Al-

though `L does vary with Ra, and between 2D and 3D convection, it is always of

order λc.) Here we see a strong dependence of both Nu and Re on the exact grid

spacing, with the Nusselt number sometimes overpredicted compared to the refer-

ence DNS.We therefore further divide the grey zone into a “hard” and a “soft” grey

zone. For this thesis, a practical definition of the “hard” grey zone is the range

10−1λc . ∆x . λc, while the “soft” grey zone spans the remainder of the grey zone:

λc . ∆x . 10λc.

13Note that the ratio between the diffusive and convective timescales is Tκ/TB = Ra1/2 Pr1/2,
so for Ra = 105 a full diffusive timescale was simulated, while for Ra = 108, only ≈ 1/16th of
a diffusive timescale was simulated. However for high-Rayleigh number RBC (Ra � Rac), the
characteristic time for the growth of perturbations is ∝ TB .
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In this range of grid spacings, multiple equilibria were also observed. Figure 2.9

shows a time series of instantaneous values of Nu in RBC with Ra = 105; a) shows

the time series from the DNS, while b) shows the time series from a run with

∆x/λc ≈ 1. The DNS spins up to an equilibrium, with decaying periodic oscillations

about the central equilibrium value. The coarse grid simulation spins up to an

initial equilibrium (though convection initiation is delayed, as noted earlier), but

this equilibrium turns out to be unstable, as after ≈ 10Te there is a sharp increase

in Nu towards a second, higher-Nu equilibrium.

To qualitatively understand these behaviours, Figs. 2.10 and 2.11 show example

buoyancy fields in fully-developed RBC at Ra = 105 and 108 respectively, for a range

of horizontal grid spacings. In both figures a) is from the reference DNS, while b)-d)

are grey zone simulations with grid spacings of ∆x/λc ' 0.2, 0.45, 1 respectively.

At Ra = 105, the circulation is still crudely resolved at ∆x/λc ' 0.2 (Fig-

ure 2.10b), although the buoyancy field is more diffuse and the plumes wider than

in the DNS — this is expected as ∆x > δb. This helps to explain the monotonically-

decreasing Nu and Re in the range 0.05 . ∆x/λc . 0.3: as the circulation is re-

solved more and more poorly, the buoyancy gradients become ever weaker, leading

to weaker velocities and thus weaker advective heat transport.

At ∆x/λc ' 0.45 (Figure 2.10c), the details of the circulation are not resolved at

all, and the convective instability projects directly onto the grid scale, as predicted

by the analysis of B. Zhou et al. (2014). Since our simulations use a constant

viscosity at all grid spacings, the effective Rayleigh number remains the same at

all ∆x, but the effective critical Rayleigh number increases due to the true critical

wavelength being unresolvable, λc < 2∆x. This means that a convective circulation

still develops, but is forced to occur at the grid scale. This results in artificially

large velocities and Nusselt numbers, reminiscent of the phenomenon of grid point

storms observed in NWP when running without a mass-flux convection scheme (e.g.

Deng and Stauffer 2006).

Because the effective Rayleigh number remains the same, a circulation still de-

velops even at very coarse grid spacings ∆x � λc if Ra is sufficiently greater

than Rac. We can see why by analysing the marginal stability curve for RBC

at large wavelengths. The marginal stability curve for free-slip RBC is given by

Rac(a) = (1 + a2)3π4/a2 , where a = 2/(λ/H) is the horizontal wavenumber of a

small perturbation to the resting reference solution (2.20) (Chandrasekhar 1961).

For large wavelengths, λ/H � 1, this reduces to Rac ≈ λ2π4/4H2 . If the horizontal

resolution is very coarse, the smallest resolvable wavelength is λeff
c = 2∆x > λc,

making the effective critical Rayleigh number equal to Raeff
c = π4(∆x/H)2. (The

analysis is similar for no-slip boundary conditions, but the algebra is messier; the

Rac ∝ ∆x2 result remains the same, with some proportionality constant O(100).)
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This result means that for Ra = 105, the effective critical Rayleigh number only

exceeds Ra for grid spacings ∆x ≈ 10
√

10H ≈ 30H, which is what we observe in

our simulations — see Figure 2.8, and the listed Reynolds numbers at 25 and 250Te

in Table 2.3. For Ra = 108, however, we could not expect the simulations to become

subcritical due to the grid spacing until grid spacings ∆x ≈ 1000H; simulations

with such coarse grids were not performed, as they would be of limited applicability

to atmospheric modelling, and are not expected to give rise to any new behaviour.

Therefore the results for the Nusselt and Reynolds numbers after 25Te are also

shown in Figs. 2.8a)-d). Note that 25Te equates to approximately 8 hours if we use

the values for ∆B and H appropriate to the CBL; this is long enough for simula-

tions of the cumulus-capped marine boundary layer to spin up to an approximate

equilibrium (Siebesma et al. 2003). The results and their interpretation remain sim-

ilar to the long-integration time results for ∆x/λc . 0.5 for both Rayleigh numbers

considered; however for ∆x/λc & 1 (Ra = 105), ∆x/λc & 2 (Ra = 108) the severe

delays to convection initiation significantly affect the circulation developed by 25Te.

For both cases, no convection develops by 25Te for ∆x/λc & 10.

At Ra = 108, the same behaviour is exhibited for very coarse grid spacings

∆x & λc as was observed at Ra = 105 (Figure 2.11d): the critical wavelength

cannot be resolved, but the the effective Rayleigh number is still greater than the

effective critical Rayleigh number, and so convection develops at the grid scale with

λeff
c = 2∆x. However for smaller grid spacings within the grey zone, an interesting

behaviour is observed: for δb . ∆x . H, a full convective circulation develops, but

with the wrong inter-plume spacing, λ > λc. Furthermore, this wavelength depends

on the grid spacing, with λ(∆x1) > λ(∆x2) for ∆x1 > ∆x2 (Figs. 2.11b,c). This

is very similar to behaviour found in grey zone studies of the CBL (Beare 2014)

and in NWP (Lean et al. 2008), where models with insufficient resolution develop

reasonable-looking convective circulations, simply on the wrong length scales. This

is despite the fact that the models tend to have ∆x significantly less than the

expected inter-plume/inter-cloud spacing, so they “should” be able to resolve the

correct smaller scale.

It has been postulated (B. Zhou et al. 2014) that this resolution-dependence of

the outer length scale (inter-cloud or inter-plume spacing) is related to anisotropic

mixing in the eddy diffusivity closures for the turbulent fluxes. It can be shown

(Ray 1965; P. Clark, pers. comm.) that the marginal linear stability curve in RBC

with anisotropic mixing is given by:

Ra =
π4(γνa

2 + 1)(γκa
2 + 1)(a2 + 1)

a2
, (2.31)

where γν := νx/νz , γκ := κx/κz are diffusion anisotropy coefficients, and a is the



78 2. Rayleigh-Bénard convection at grey-zone resolutions

horizontal wavenumber of the perturbation to the basic state. This expression re-

duces to the standard RBC stability criterion when γν = γκ = 1. The critical

Rayleigh number is the minimum of this curve with respect to a, given by setting

∂ Ra/∂a = 0. After a little algebra the following 6th-order polynomial results:

2γνγκ(a
2)3 + (γνγκ + γν + γκ)(a

2)2 − 1 = 0. (2.32)

The general case γν 6= γκ is difficult to analyse by hand, but if γν = γκ =: γ (which

we would expect in the context of Smagorinsky-type eddy diffusivity closures), the

single positive real root may be written:

a =
1

2

√√
1 +

8

γ
− 1 (2.33)

This is a strictly decreasing function of γ (for γ > 0), meaning that the critical

wavelength, λc ∝ 1/a, is a strictly increasing function of the anisotropy parameter

γ.

To better interpret this expression, it is instructive to consider the cases γ > 1

and γ < 1 separately. If γ > 1, horizontal mixing is stronger than vertical mix-

ing, which is expected from the extension of an LES-like filter scale-dependent pure

eddy diffusivity scheme to the grey zone of resolutions. In the simplest case of a

Smagorinsky scheme, γ is effectively the square of the ratio of horizontal to vertical

grid spacings. As the anisotropy increases, i.e. the horizontal mixing/grid spacing

increases relative to the vertical, the critical wavelength also increases. Quantita-

tively, for large γ, we have a = 1
/
γ1/2 − 1

/
γ3/2 + 7

/
(2γ5/2) +O(γ−7/2); the leading

term approximates (2.33) to within 10% for γ & 8, giving λ/H → 2
√
γ as γ → ∞

(the two-term truncation is accurate to within 1% for γ & 17). If instead γ < 1,

vertical mixing is stronger than horizontal mixing, which is the case in most non-

grey zone parametrizations of the CBL to account for the strong nonlocal mixing

due to the unresolved convective circulation. In this case, the critical wavelength

is expected to decrease as the ratio of vertical to horizontal mixing (i.e. 1/γ) in-

creases. Quantitatively, for small γ, we have a = 1
/

(21/4γ1/4) − γ1/4
/

(4 · 23/4) +

γ3/4
/

(64 · 21/4) + O(γ5/4), giving λ/H → 25/4γ1/4 as 1/γ → ∞; the leading term

is accurate to within 10% for 1/γ & 3. While there are limits to approximating

the nonlocal vertical convective mixing by a simple eddy diffusivity, the analogy

is sufficient to show that the critical wavelength of the convection that develops is

directly dependent on the parametrization of the mixing. In particular, enhanced

horizontal mixing is expected to widen the convective overturning circulation, while

enhanced vertical mixing is expected to narrow it.

However, since we use the same viscosity at all grid spacings, this argument
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does not appear to explain our grey zone results, especially since the ratio of plume

width (∆x) to the inter-plume spacing (λ) remains remarkably constant at ≈ 10

throughout the range of grid spacings where λ > λc and λ 6= 2∆x is observed.

If the behaviour were due to numerical diffusion, we would not expect to observe

the transition to direct grid projection at ∆x & λc/2, as this projection implies

the effective critical wavelength is still λeff
c ≈ 2. Transitional behaviour is observed

around ∆x = λc/2, as seen in Figure 2.11c), where a circulation with λ ≈ 10H is

produced, although there are also strong variations visible at the grid scale.

2.4 Discussion & conclusions

In this Chapter, we have considered the simple case of Rayleigh-Bénard convection

as an analogue of atmospheric convection. We have reproduced a wide range of

established results for RBC to verify our numerical implementation, in particular

reproducing the expected scalings of the Nusselt and Reynolds numbers with the

Rayleigh number. We have then studied what happens when the problem is sys-

tematically under-resolved, including quantitative analyses of the global parameters

Re and Nu, as well as convection initiation, as functions of grid spacing. This was

followed by a qualitative investigation of some example simulations throughout the

grey zone.

Simulations at both Ra = 105 and 108 exhibit delayed initiation of convection

when resolution is insufficient, as frequently observed in partially-resolved simula-

tions of atmospheric convection. At coarse enough grid spacings the solution reverts

to the diffusive regime with no motion — the filter implied by the grid has effectively

reduced the Rayleigh number enough to render the problem sub-critical. However at

intermediate grid spacings we find that the solution exhibits interesting dependence

on the grid spacing, including strong projection of the convection pattern onto the

grid. This is reminiscent of grid-point storms in numerical weather prediction.

At Ra = 108, further interesting behaviour is seen at horizontal grid spacings

intermediate between the width of thermal plumes and the depth of the domain:

the size of the circulation that develops increases with increasing grid spacing, a

behaviour which is also observed in NWP and in partially-resolved simulations of

the convective boundary layer.

We therefore conclude that, even in two dimensions, the simple case of Rayleigh-

Bénard convection is a promising testbed for grey-zone convection parametrizations.

These results will be the reference for later investigations into two-fluid parametriza-

tion of the grey-zone convective regime.

Future work should investigate the sensitivity of these results to the numerical
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model used for the simulations, as well as perform analysis of higher-order statistics

(for instance, variances and covariances) in comparison to spatially filtered refer-

ence solutions. Further, for a true weather prediction, we need to predict coherent

structures in the correct locations in space and time; turning again to Lorenz (1963),

The short-range weather forecaster, however, is forced willy-nilly to pre-

dict the details of the large-scale turbulent eddies—the cyclones and

anticyclones—which continually arrange themselves into new patterns.

Thus there are occasions when more than the statistics of irregular flow

are of very real concern.

Reproducing the correct statistics is merely the first step in building a transient

parametrization.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.8: Nusselt numbers (a,b), Reynolds numbers (c,d), and time to initiation
of convection (e,f) as functions of grid spacing for simulations of RBC at Ra = 105

(left column) and Ra = 108 (right column). Grid spacings are nondimensionalized
by the critical wavelength, λc ' 2.02H. Nusselt numbers are volume-averaged
(Equation (2.21)), the velocity scale for the Reynolds number is taken to be U3

(Equation 2.28), and time to initiation is defined as the first time for which the
instantaneous value of Nu > 1.1. The blue dotted lines plot the values of Nu
and Re (averaged over 5Te) after an equilibrium has been reached, or after 250Te

(Ra = 105) or 125Te (Ra = 108), whichever is arrived at first. The solid translu-
cent orange lines plot the values of Nu and Re after 25Te. Different marker styles
correspond to different domain aspect ratios. The vertical lines mark out length
scales of interest: the solid black line marks the critical wavelength, ∆x/λc = 1;
thin densely-dotted black lines mark a factor of two either side, ∆x/λc = 0.5, 2;
the dashed black line towards the left of each plot marks the thermal boundary
layer depth, a proxy for the thermal plume width.
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(a) (b)

Figure 2.9: Comparison of Nusselt number time series for simulations run at
different horizontal grid spacings. In (a), the simulation is the over-resolved
simulation with ∆x∆z = 0.01H uniformly; in (b), the horizontal grid spacing is
∆x = 2H ≈ λc.
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(a) ∆x = 0.02H ' 0.01λc

(b) ∆x = 0.4H ' 0.2λc

(c) ∆x ' 0.91H ' 0.45λc

(d) ∆x = 2H ' λc

Figure 2.10: Buoyancy fields in fully-developed RBC at Ra = 105 at a range of
horizontal grid spacings.
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(a) ∆x = 6.9× 10−3H ' 3.4× 10−3λc

(b) ∆x = 0.4H ' 0.2λc

(c) ∆x ' 0.91H ' 0.45λc

(d) ∆x = 2H ' λc

Figure 2.11: Buoyancy fields in fully-developed RBC at Ra = 108 at a range of
horizontal grid spacings.



Chapter 3

Multi-fluid modelling for atmospheric

convection

3.1 Introduction

We noted in Chapter 1 that traditional convection parametrization approaches make

use of a conceptual split of the atmosphere into clouds (or updrafts) and their envi-

ronment. Conceptually similar splits are used in scaling theories for Rayleigh-Bénard

convection, where the convecting fluid is partitioned into filamentary plumes (anal-

ogous to updrafts and downdrafts) where the buoyancy flux and thermal dissipation

is locally very strong, and their incoherent turbulent environment which occupies

most of the volume (Chillà and Schumacher 2012). The properties of the fluid in

these different regions are very different, which makes the partitioning useful. Sim-

ilar ideas have been used to derive dynamical equations for intermittent turbulent

flows (Dopazo 1977; McComb 1990 §§11.2, 11.5), where the flow is partitioned into

turbulent and non-turbulent regions and then volume averaged. So-called “phase

averaging” has also been proposed to conditionally split a turbulent flow into turbu-

lent and non-turbulent parts, and then to split the turbulent part into its coherent

and incoherent parts (Hussain 1983).

The resulting equations are very similar to equations governing “multi-phase”

flows1 — for instance flows containing both liquid and gas, or several species of

liquid and gas. These flows are commonly studied in engineering (Brennen 2005;

Städtke 2007).

Within the context of intermittent turbulent flows, conditional averaging was

once thought of as a promising way forward (McComb 1990, p.413):

Attempts to reduce the arbitrariness of decisions about the turbulent–

non-turbulent interface, by working from the equation of motion in order

1We say “multi-phase” as this is an umbrella term used for many flows, some of which contain
multiple species of liquid, gas, or plasma, but not necessarily multiple phases of matter.
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to obtain a conservation equation for the intermittency function (Libby

1976) or conditionally averaged transport equations (Dopazo 1977), are

undoubtedly the right way forward. While at present this subject is in

its infancy, in the future we can expect to see it develop as an important

aspect of the usual closure problem.

Alas, conditional averaging as a theoretical tool for turbulence research never did

catch on in the way McComb hoped — especially interesting since all of his references

on conditional averaging are pre-1980, more than 10 years before the publication of

the book, suggesting that the field was already dormant.

A “multi-fluid” or “conditional filtering” approach has been proposed (Thuburn

et al. 2018) for modelling atmospheric convection in the grey zone, based on con-

ditional averaging ideas for intermittent turbulent fluids (Dopazo 1977). A similar

equation set was derived by Yano (2014). Multi-fluid modelling borrows conceptu-

ally from the widely-used traditional mass-flux approach, envisaging a partition of

the convective system into “updraft” and “environment”, but applies this system-

atically to the governing fluid dynamical equations. This yields fully prognostic and

3D equations for each “fluid”, and does not rely on the assumptions of traditional

approaches which break down at high resolutions. In particular, neither quasi-

equilibrium nor small updraft fraction are assumed in the derivation. The equations

are coupled by terms representing the exchange of mass, momentum, energy, and

tracers. In this framework convection is fundamentally a part of the dynamics —

there is no separate “convection scheme” which is called by the dynamical core.

The skewness of (joint) probability distribution functions of variables in convec-

tive flows is well known to be important (Larson et al. 2002; Zhu and Zuidema 2009)

and is often poorly treated in first or second-order turbulence closures; one approach

to modelling this variability is assuming bi-Gaussian joint probability distributions

in PDF-based convective closures (Fitch 2019; Larson et al. 2012). Each Gaussian

can be thought of as a different component of the fluid. A potential advantage of the

multi-fluid approach is that even the simplest possible multi-fluid model, a two fluid

model, intrinsically captures information about odd-order moments. It is therefore

possible that the multi-fluid method can provide a better low-order approximation

for flows with bimodal distributions, or large skewness.

Closures for the unknown terms must be provided in order to complete the multi-

fluid equation set. Previous work has largely used closures borrowed from mass flux-

type parametrizations. For instance, Thuburn et al. (2019) presented a two-fluid

single-column model of the dry CBL based on the Thuburn et al. (2019) equation

set, which used a modified form of the entraining-plume based closure of Cheinet

(2003) for entrainment, and a detrainment closure formed from a combination of the
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eddy-diffusivity mass-flux (EDMF) closure of Siebesma et al. (2007), who prescribed

a mass flux profile, and a buoyancy-sorting based closure that Rio et al. (2010)

proposed based on LES results. They found that the obtained solutions were largely

similar to those using diagnostic EDMF closures, to be expected given the similarity

of their closures to EDMF closures, the 1D nature of the scheme, and the smallness

of the eddy turnover time compared to time-scales of boundary layer development

reducing the impact of prognostic vs. diagnostic parametrization.

Tan et al. (2018) presented a less-general equation set based on the ideas of

Yano (2014), explicitly assuming an anelastic equation set and neglecting horizontal

subfilter variability. Conceptually the authors regard this as an extension to the

EDMF framework to make it prognostic, and allow for non-vanishing convective

area fraction. They use entrainment and detrainment rates which are modifications

of expressions proposed by Gregory (2001) based on linking the entrainment rate to

the buoyant generation of (vertical) TKE, obtaining results which are similar to a

diagnostic EDMF closure for a shallow-cumulus test case.

Both Tan et al. (2018) and Thuburn et al. (2019) use equation sets which assume

the pressure in all partitions is identical. This is known to lead to an ill-posed

equation set in the inviscid case with no transfers between fluid partitions (Gidaspow

et al. 1973); Thuburn et al. (2019) related this ill-posedness to a Kelvin-Helmholtz–

like instability. To stabilize the equations, Thuburn et al. (2019) proposed using

diffusion of vertical velocity, which directly damps the Kelvin-Helmholtz instability.

This is effectively the introduction of an eddy diffusivity; Tan et al. (2018) use an

eddy diffusivity from the outset.

Other methods have been proposed to mollify the multi-fluid instability. Notably,

McIntyre (2020) showed that parametrizing the mass transfers between fluids via the

convergence within a fluid partition is sufficient to stabilize the equation set. This

was used by Weller et al. (2020) in a two-fluid single-column model of both the Bryan

and Fritsch (2002) dry rising bubble, and a 2D CBL-like problem. The authors also

used a parametrization for the pressure differences between fluid partitions based

on the divergence within a partition; this was inspired by similar parametrizations

used in some engineering multi-phase flows, for instance Baer and Nunziato (1986).

These transfer parametrizations gave good predictions of the profiles of buoyancy,

vertical velocity, and volume fraction compared to those diagnosed from horizontally-

averaged reference simulations.

The principal difference between multi-phase modelling, which is well-developed

for studying engineering flows, and multi-fluid modelling for turbulence, which is

relatively under-developed, is that in the former it is usually obvious what the

different phases are. In the context of general multi-fluid modelling, we are free to

choose what each fluid represents, which vastly changes the burden of modelling.
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The overarching purpose of this chapter is to say as much as possible about multi-

fluid modelling without introducing a specific fluid partition. We begin by deriving

the multi-fluid Boussinesq equations, which will be central to our investigation of

multi-fluid modelling of convection for the remainder of the thesis. The derivation

proceeds in a similar way to the derivation in Thuburn et al. (2018), but we retain

the fluid relabelling and viscous terms from the outset. After a brief discussion of

the terms requiring parametrization, we take a close look at the fluid relabelling (or

“transfer”) terms, deriving several exact integral expressions for them. These aid

in the interpretation of the transfer terms, as well as providing a method for their

calculation from reference data for arbitrary fluid partitions.These expressions are

compared with similar expressions derived earlier; the more general nature of the

expressions presented here is emphasized. We also sketch some ideas for how these

terms could be used to provide physically-based heuristic, or formal asymptotic,

derivations of conditionally-filtered transfer terms.

Armed with the exact integral results for expressions involving the indicator

function, we return to a more complete discussion of all the terms requiring clo-

sure in the multi-fluid Boussinesq system. We show that retaining fluid relabelling

terms from the outset allows for the conditionally-filtered transfer terms to arise

naturally, and further that the suggested definition of transferred fluid properties

in Thuburn et al. (2018) has some deficiencies and should be generalized. We also

show that for any stress tensor linearly and isotropically related to the rate-of-strain

tensor, an additional isotropic stress arises in the multi-fluid equations. Since such

stress tensors are not only present in the Navier-Stokes equations, but also often

used as low-order approximations of turbulent stress tensors, this result is of wide-

ranging importance in multi-fluid modelling of turbulent flows. By analogy with

compressible fluids, we propose that the nonzero divergence within a fluid parti-

tion should give rise to a further isotropic stress which can be used to parametrize

(part of) the pressure differences between the fluid partitions. The energetic conse-

quences of the conditionally-filtered stress terms are discussed, showing again that

the nonzero divergence within fluid partitions has important consequences. Finally,

we demonstrate the usefulness of some of the results by application to a simple

problem: explicit conditional filtering of the first normal mode of Rayleigh-Bénard

convection.
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3.2 Derivation of the multi-fluid Boussinesq equation

set

In this section a derivation of the multi-fluid Boussinesq equations is presented.

This derivation differs from both Weller et al. (2020) and Thuburn et al. (2018)

in explicitly including diffusive terms and relabelling terms from the outset. As

in Chapter 2, we choose the Boussinesq equation set as this is the simplest fluid

dynamical equation set which permits buoyant convection. The simplicity makes

many of the points regarding closure clearer in section 3.4; however all of these

points are still relevant in the case of fully compressible equations2.

Our starting point is the viscous Boussinesq equation set introduced in Chapter 2:

Du

Dt
= bk̂−∇P + ν∇2u, (2.4)

Db

Dt
= κ∇2b, (2.5)

∇ · u = 0. (2.6)

Here u is the velocity field, b is the buoyancy field, P is the pressure field, ν is the

fluid’s kinematic viscosity, and κ its buoyancy diffusivity. We envisage solving this

equation set in the space-time domain D × [0, T ], where D ⊆ Rd, T ∈ R>0.

Indicator functions are used to label different regions of the flow (2.4)-(2.6) based

on some set of conditions, indexed by i, 0 ≤ i < n:

Ii(x, t) :=

1 if condition i true at location(x, t)

0 if condition i false at location(x, t)
(3.1)

In practice, these conditions should be based on physically motivated arguments —

for instance, some definition of “updraft” or “coherent structure” — but for now

the derivation is left general. The labels are mutually exclusive, that is, only one

label can be nonzero for a particular fluid parcel at a given time:∑
i

Ii(x, t) = 1 ∀x, t ∈ D × [0, T ]. (3.2)

A fluid parcel will be relabelled if the parcel no longer satisfies the condition defining

the label. Thus the indicator functions satisfy Lagrangian conservation, except at

the interfaces where Ii jumps from 1 to 0 (or vice versa):

DIi
Dt

= S+
i − S−i , (3.3)

2Conditional filtering of compressible equation sets is discussed in Appendix B.
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where S+
i ,S−i ∈ R≥0 formally denote sources and sinks of the indicator function Ii.

This will be made more precise in section 3.3.

Here our derivation differs from those in e.g. Weller et al. (2020) and Thuburn

et al. (2018) in that we choose to retain source and sink terms on the right-hand

side of equation (3.3) (the relabelling of fluid from one partition to another). This

clarifies the origin of transfer terms in the spatially-filtered equations, foregoing the

need to justify their re-introduction at a later stage in the derivation. Since the

transfer terms are crucial to the multi-fluid method — the analogue of entrainment

and detrainment in traditional convection models — it is important to be clear

about where they arise.

Governing equations for each region of the fluid are found by multiplying each

of equations (2.4)-(2.6) by Ii, then adding u× (3.3) to equation (2.4), and b× (3.3)

to equation (2.5). Assuming that the usual product rule holds for Ii,
3 this gives:

∂Iiu

∂t
+∇ · (Iiu⊗ u) = Iibk̂− Ii∇P + Iiν∇2u + u

(
S+
i − S−i

)
, (3.4)

∂Iib

∂t
+∇ · Iiub = Iiκ∇2b+ b

(
S+
i − S−i

)
, (3.5)

∇ · Iiu− u · ∇Ii = 0. (3.6)

To be of any use for the modelling of unresolved scales, some sort of average or filter

must be applied to this equation set. As in Chapter 1, we denote the operation

of filtering by angle brackets, 〈. . .〉, and assume that the application of the filter is

linear, constant-preserving, and commutes with space and time partial derivatives

(see equations (1.18)-(1.19)). Boundary effects can be included in the same way as

for usual single-fluid modelling (Fureby and Tabor 1997); we will not discuss such

effects here. For the desired application to atmospheric convection, filtering only

in the horizontal removes the boundary non-commutation issues for the top and

bottom boundaries.

Before filtering the governing equations, let us make some definitions that will

tidy up the resulting expressions:

Definition 7 (Resolved fluid fraction). For an indicator function Ii and filtering

operation 〈. . . 〉g, we define the resolved fluid fraction in partition i by:

σi := 〈Ii〉g . (3.7)

Recall that, in Chapter 1, we defined the resolved part of a variable ϕ by: ϕr :=

〈ϕ〉g (Definition 4). Having introduced the indicator function Ii, this definition

3This is true when treating Ii as a generalized step function, which is enough for our purposes
since the domain occupied by partition i is assumed non-pathological — see section 3.3.
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naturally extends to conditionally filtered variables:

Definition 8 (“Resolved” variables (multi-fluid)). Given a variable ϕ, a filtering

operation 〈. . . 〉g, and an indicator function Ii, we define the resolved part of ϕ

in partition i by:

ϕr
i :=
〈Iiϕ〉g
σi

. (3.8)

Note that this means ϕr
i is undefined wherever σi = 0.

In Chapter 1, we also defined the subfilter flux s(ϕ, ψ) := 〈ϕψ〉g − 〈ϕ〉g 〈ψ〉g
(Definition 5). Anticipating the similarity of the conditionally-filtered subfilter flux

terms to the single-fluid subfilter fluxes suggests also the following definition for

brevity of notation:

Definition 9 (Generalized second centred moment/“subfilter flux” (multi-fluid)).

Given any two flow variables ϕ, ψ, and a conditional filtering operation (. . . )r
i, we

define the subfilter flux in partition i, si(ϕ, ψ) by:

si(ϕ, ψ) := (ϕψ)r
i − ϕ

r
iψ

r
i . (3.9)

This multi-fluid extension retains linearity in both its arguments4. Note that the

sum of the within-partition fluxes is not equal to the unconditioned subfilter flux:∑
i σisi(ϕ, ψ) = (ϕψ)r −

∑
i σiϕ

r
iψ

r
i 6= s(ϕ, ψ). This is the difference between multi-

fluid and multi-moment representations of the subfilter flow.

Since
∑

i Ii = 1, we therefore have∑
i

σi = 1,
∑
i

σiϕ
r
i = ϕr. (3.10)

In addition, if the filter is positive semidefinite, these definitions ensure σi ∈ [0, 1]∀x, t.
In order to avoid dealing with negative fluid “fractions”, we will therefore assume

in the foregoing that the filter kernel is positive semidefinite. This may seem like a

small restriction, but it actually rules out the commonly-used spectral cutoff filter.

Here σi(x, t) is the fraction of fluid fulfilling condition i in the vicinity of a point

(x, t), where the “vicinity” is defined by the filter scale. For a 3D filter, this vicin-

ity will be a volume, but for a 2D filter would instead be an area. For shorthand

throughout the remainder of the thesis we will refer to σi merely as the “fluid frac-

tion”. The associated velocity field and buoyancy field of fluid fulfilling condition i

in the vicinity of (x, t) are denoted ur
i, b

r
i. Filtering the governing equations (3.4)-

(3.6), along with the indicator function evolution equation (3.3), gives prognostic

4So long as the wavefront sets of no pair of ϕ,ψ, Ii overlap. This poses issues for the definition of
subfilter fluxes directly containing indicator functions, e.g. si(Ii, ϕ); these issues are surmountable,
but beyond the scope of this Chapter.
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equations for each of the conditionally resolved variables:

∂σi
∂t

+∇ · (σiur
i) = (S+

i )
r − (S−i )

r
, (3.11)

∂σiu
r
i

∂t
+∇ · (σiur

i ⊗ ur
i) = σib

r
ik̂− (∇P )r

i + ν(∇2u)
r

i + (uS+
i )

r − (uS−i )
r

−∇ · σisi(u,u),
(3.12)

∂σib
r
i

∂t
+∇ · (σiur

ib
r
i) = κ(∇2b)

r

i + (bS+
i )

r − (bS−i )
r −∇ · σisi(u, b), (3.13)

∇ · σiur
i = (u · ∇Ii)r. (3.14)

As with ordinary single-fluid modelling, the operation of filtering introduces

many unknown terms. Evolution equations for the unknown terms can be derived,

but they contain further unknown terms, and so on ad infinitum. Thus, at any finite

order, the filtered equation set is not closed, in the sense that there are more un-

knowns than independent equations. So, in order to close the multi-fluid Boussinesq

equations, we must postulate expressions for the following terms in relation to the

resolved variables:

• Transfer terms: (S±i )
r
, (uS±i )

r
, (bS±i )

r
;

• Pressure gradient: (∇P )r
i;

• Viscous & diffusive terms: (∇2u)
r

i, (∇2b)
r

i;

• Subfilter fluxes: ∇ · σisi(u,u), ∇ · σisi(u, b).

While the transfer terms are the most obvious different from an ordinary filtered

equation set (c.f. Equation (1.24)), the subfilter fluxes are the only terms that have

a direct analogue in ordinary single-fluid modelling. Further, although the form of

the subfilter fluxes looks the same, the applicable modelling assumptions may be

very different.

There are a few things we can immediately say about this equation set before

manipulating any of the unknown terms or introducing any closure assumptions.

Firstly, (3.14) shows that even though the mean flow,
∑

i σiu
r
i = ur, is non-divergent,

the resolved velocity field within each partition i is divergent. This divergence is

exactly the filtered advection of the indicator function associated with that partition

— that is, “divergence” within fluid partition i arises entirely due to the transport

of the label field Ii by the whole flow field u. It is thus intricately linked with

the transfer terms
〈
S±i
〉
, in that parametrizing both

〈
S±i
〉

and 〈u · ∇Ii〉 would

overconstrain the model. This point becomes obvious when treating the indicator

function evolution equation more rigorously, as we will see in Section 3.3.

Secondly, though there are lots of unknown terms requiring parametrization,

many of those terms are subject to sum constraints : their sum over all fluid partitions
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must match the corresponding term in the unconditionally-filtered equation set.

Summing each of these equations over all partitions i yields the filtered Boussinesq

equation set, i.e. the result of applying the filter 〈. . .〉 directly to (2.4)-(2.6). First

note that, by their definition in (3.3),
∑

i(S
+
i − S−i ) = 0. Then:

∂ur

∂t
+∇ · (ur ⊗ ur) = brk̂−∇P r + ν∇2ur −∇ ·

(∑
i

σisi(u,u)

)

−∇ ·
(∑

i

σi [u
r
i − ur]⊗ [ur

i − ur]

)
,

(3.15)

∂br

∂t
+∇ · (urbr) = κ∇2br −∇ ·

(∑
i

σisi(u, b)

)

−∇ ·
(∑

i

σi [u
r
i − ur] [br

i − br]

)
,

(3.16)

∇ · ur = 0. (3.17)

Here we have used the exact relation

s(a, b) =
∑
i

σisi(a, b) +
∑
i

σi (a
r
i − ar) (br

i − br) (3.18)

=⇒
∑
i

σia
r
ib

r
i − arbr = s(a, b)−

∑
i

σisi(a, b) =
∑
i

σi (a
r
i − ar) (br

i − br)

to express the residual between the sum over all partitions of the within-partition

resolved fluxes, e.g.
∑

i σiu
r
i ⊗ ur

i, and the single-fluid resolved fluxes, e.g. ur ⊗ ur,

in a more meaningful way; see Appendix B.3 for a proof of equation (3.18). This

expresses the total single-fluid subfilter fluxes, s(u,u), s(u, b), as the sum of two

contributions: firstly, the sum of subfilter fluxes within each partition; and secondly,

the sum of the exact resolved fluxes due to the difference between the conditionally-

resolved flow variables and the unconditionally resolved variables. That is, the

first term represents intra-partition variability, while the second represents inter-

partition variability. This form therefore facilitates comparison between multi-fluid

and single-fluid turbulence models.

We can now read off the sum constraints for the unknown terms:∑
i

(
[S+
i ]

r − [S−i ]
r)

= 0 (3.19)∑
i

(
[uS+

i ]
r − [uS−i ]

r)
= 0 (3.20)∑

i

(
[bS+

i ]
r − [bS−i ]

r)
= 0 (3.21)
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∑
i

(∇P )r
i =∇P r (3.22)∑

i

(∇2b)
r

i =∇2br (3.23)∑
i

(∇2u)
r

i =∇2ur (3.24)∑
i

σi = 1 (3.25)∑
i

∇ · (σiur
i) = 0. (3.26)

The only terms which are not constrained are the subfilter fluxes of momentum and

buoyancy; this should not surprise us, since it is the ability of a multi-fluid model to

provide a fundamentally different representation of the subfilter flow which makes

it an intriguing candidate for turbulence modelling. For instance, note that for a

horizontally-averaged Boussinesq flow, ∇ · ur = 0 implies ∂wr/∂z = 0; presuming

impermeable boundaries, this implies ur = wrk̂ = 0. Therefore in a single-fluid

model, there can be no contribution to the turbulent momentum or buoyancy fluxes

from the resolved velocity. However, in a multi-fluid model, ∇ · ur
i 6= 0 allows a

circulation to exist even in a horizontally-averaged flow, leading to a part of the tur-

bulent momentum and buoyancy fluxes being captured by the resolved partitioned

variables. This idea has been exploited by Efstathiou et al. (2020) to find “optimal”

partitions for a flow into two fluids, based on maximizing the amount of turbulent

tracer flux that is transported by the resolved two-fluid velocity fields.

To summarize, in this section we have presented a derivation of the multi-fluid

Boussinesq equations, which are the basis for the multi-fluid parametrizations to be

developed in the remaining chapters of this thesis.

3.3 Indicator function evolution equation

Because they are so central to multi-fluid modelling, we wish to study the sources

and sinks of the indicator function in more detail. To do this, we need to be able

to make sense of derivatives of the indicator function; but indicator functions are

discontinuous by definition, so their derivatives in the usual sense do not exist. The

general theory which makes sense of derivatives of discontinuous functions is the the-

ory of distributions5: “the space of distributions is essentially the smallest extension

5Distributions (also known as “generalized functions”) were introduced piecemeal in the early-
to mid-20th century by various mathematicians, as well as used informally by physicists (such as
Paul Dirac’s infamous “δ-function”, but certain earlier work can also be interpreted as heuristically
using distributions, for instance Green’s functions and some relations in Fourier analysis). The
most complete contributions were the pioneering work of Laurent Schwartz, whose 1951 monograph
Théorie des distributions (Schwartz 1951) was the first major work on distributions. An excellent
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of the space of continuous functions where differentiation is always well defined”

(Hörmander 2003, p. 1). This is what allows us to make precise the statement

that “source terms [for the Lagrangian labels Ii] would necessarily have a δ-function

structure” (Thuburn et al. 2018), enabling the derivation of formal expressions for

sources and sinks of the indicator function that may, at the very least, be useful in

analysing reference simulations.

Therefore let us recast the definition of the indicator function into more useful

language. The indicator function Ii, Equation (3.1), defines a (time-dependent)

subset of the solution domain, Di(t) ⊂ D:

Ii(x, t) :=

1 x ∈ Di(t)

0 x /∈ Di(t)
, Di ∩Dj = ∅ ∀i, j. (3.27)

Let us assume that Di is a countable union of disjoint, connected, measurable subsets

of D,
⋃
αDi,α = Di, Di,α ∩ Di,β = ∅, each with piecewise smooth boundary (such

that we may use the divergence theorem). The indicator function Ii is then the sum

of the indicators for each of these subsets, i.e. Ii := Ix∈Di =
∑

α Ix∈Di,α .

In practice, we will always be interested in spatiotemporally-filtered variables and

equations; filtering of this sort was defined via integration against a filter kernel in

Equation (1.30). Let us therefore consider the integral of some function f(x, t) times

the material derivative of the indicator function; for convenience, we will consider

the domain of integration to be Rd to avoid the consideration of boundary terms.

When f represents a filter kernel, we will assume for simplicity that its width is

uniform in both space and time. (Boundary terms can be handled by the addition

of another indicator function, this time used to indicate the whole domain D ⊆ Rd;

non-uniform filter kernels can also be considered. Both add non-commutation terms

between the operations of filtering and taking partial derivatives; see Fureby and

Tabor 1997.) Then:∫
Rd
f

DIi
Dt

dV =

∫
Rd
f
∂Ii
∂t

dV +

∫
Rd
fu · ∇Ii dV (3.28)

=

∫
Rd
fV∂Di · n̂∂Diδ(x ∈ ∂Di) dV +

∫
Rd
fu · ∇Ii dV (3.29)

= −
∫
Rd
fV∂Di · ∇Ii dV +

∫
Rd
fu · ∇Ii dV (3.30)

= −
∫
Rd

(V∂Di − u)f · ∇Ii dV (3.31)

=

∮
∂Di

(V∂Di − u)f · n̂∂Di d(∂Di). (3.32)

modern resource on the theory of distributions is Hörmander (2003).
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In the second equality we have used ∂Ii/∂t = V∂Di · n̂∂Diδ(x ∈ ∂Di), where V∂Di is

the velocity of the boundary of the domain Di, and n̂∂Di is the outward unit normal

at the boundary. This follows from ∂Ii/∂t = ∂x/∂t |∂Di · n̂∂Diδ(x ∈ ∂Di), using the

chain rule for distributions; we then note that ∂x/∂t |∂Di defines the velocity of the

interface, V∂Di := ∂x/∂t |∂Di .
In the third (and again in the fifth) equality we have used the relation that the

gradient of the indicator of a domain Di is a “surface delta function”:

∇Ii = −n̂∂Diδ(x ∈ ∂Di), (3.33)

where

∫
Rd
f(x)δ(x ∈ ∂Di) dV =

∮
∂Di

f(xi) d(∂Di). (3.34)

This relation is often heuristically used or implied in literature on conditional fil-

tering, for instance in Dopazo (1977) where to make sense of the source terms an

integral is taken over a control volume (subsequently taken to 0) in the neighbour-

hood of the interface, or in §4 of Fureby and Tabor (1997) where the relationship is

stated but not proven. However, the relationship is derived and the surface delta

function formally defined (in the context of particle physics) in Lange (2012). Ar-

guing heuristically, the relationship makes sense since the indicator of a domain is

constant both inside and outside the domain, but discontinuous at the boundary.

Therefore we expect that the derivative should point along the inward normal to

the boundary, and only be nonzero at the boundary.

All that equation (3.31) really says is that changes in indicator function on a

material parcel (must) result in a movement of the interface ∂Di relative to the

parcel. We can identify a relative velocity associated with this movement, v∂Di :=

V∂Di−u, and hence express the changes in indicator function in the form of advection

by that relative velocity. This relation also means that the total derivative following

the interface is identically zero,∫
Rd

(
∂Ii
∂t

+ V∂Di · ∇Ii
)
f dV = 0. (3.35)

Using the notation for spatial filtering introduced in Definition 6, and interpret-

ing f as a filter kernel, equation (3.31) may be re-written as:〈
DIi
Dt

〉
g

= 〈(u−V∂Di) · ∇Ii〉g . (3.36)

To make more sense of this we must be able to express the left hand side in terms of

the filtered indicator function, 〈Ii〉g. Note that the distributional derivative of the
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product of a function and a distribution obeys the usual product rule, i.e.

∂(fG) = f(∂G) + (∂f)G (3.37)

for f a function and G a distribution. Then we can write〈
DIi
Dt

〉
g

=

〈
∂Ii
∂t

〉
g

+ 〈u · ∇Ii〉g (3.38)

=

〈
∂Ii
∂t

〉
g

+ 〈∇ · (Iiu)〉g (3.39)

=
∂σi
∂t

+∇ · σiur
i, (3.40)

since ∇ · u = 0. Equating the final expression with equation (3.36) gives the fluid

fraction conservation equation:

∂σi
∂t

+∇ · σiur
i = 〈(u−V∂Di) · ∇Ii〉g . (3.41)

For a compressible medium, the conservation equation for the resolved mass fraction

in fluid i, σiρ
r
i, takes exactly the same form, but with the resolved velocity defined

as density-weighted — see the Appendix B for details of how to extend the above

derivation to compressible media. Note that comparison with (3.11) gives the formal

identification

(S+
i )

r − (S−i )
r

= 〈(u−V∂Di) · ∇Ii〉g . (3.42)

Aside. Before moving on, let us use the definitions of the resolved variables to

clean up our expression for the total derivative of the indicator function following

the interface:

∂σi
∂t

+ (V∂Di)
r · ∇σi = − [(V∂Di · ∇Ii)

r − (V∂Di)
r · ∇σi] . (3.43)

This is a form of the filtered indicator function evolution equation that is often used

in modelling of multi-phase systems; all modelling reduces to modelling of the motion

of the interface between partitions. As a specific example, if the right hand side is

set to zero (trivially true if the interface is stationary), the evolution equation for

the Holm and Kupershmidt (1984) model results.

With some effort, the expression on the right hand side of Equation (3.41) can

be split up into sources and sinks, and then again into exchanges between every

pair of fluids (neglecting interactions of three or more fluids); for details, see the
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Appendix B. The result is:

∂σi
∂t

+∇ · σiur
i =

∑
j 6=i

(σjSji − σiSij) , (3.44)

where

σiSij :=

∫
∂Dij

g H(−v∂Dij · n̂∂Dij)
(
−v∂Dij · n̂∂Dij

)
d(∂Di) (3.45)

=

∫
∂Dji

g H(v∂Dji · n̂∂Dji)
(
v∂Dji · n̂∂Dji

)
d(∂Dj), (3.46)

σjSji :=

∫
∂Dji

g H(−v∂Dji · n̂∂Dji)
(
−v∂Dji · n̂∂Dji

)
d(∂Dj) (3.47)

=

∫
∂Dij

g H(v∂Dij · n̂∂Dij)
(
v∂Dij · n̂∂Dij

)
d(∂Di), (3.48)

with
∑

j σiSij = (S−i )
r
,
∑

j σjSji = (S+
i )

r
(within the two-fluid interaction approxi-

mation). Here ∂Dij denotes the part of the boundary of Di which is in contact only

with Dj and no other partitions; n̂∂Dij is the outward-pointing unit normal at the

boundary ∂Dij (i.e. it points from domain Di into domain Dj; v∂Dij is the velocity

of the boundary relative to a fluid parcel; and H(x) is the Heaviside step function.

Thus σiSij is the rate of fluid fraction transferred from fluid i into fluid j. We make

the distinction here between “relabelling terms” and “transfer terms”: “relabelling”

describes the source and sink terms for the fluid parcel labels in the unfiltered flow,

whereas “transfer terms” describes the source and sink terms for the fluid fractions

of the conditionally-filtered flow. This conceptual distinction merits thinking of the

conditionally-filtered partitions as separate, but interacting, fluids, with different

physical properties.

Equation (3.44) makes precise the ad-hoc introduction of transfer terms of this

form in Thuburn et al. (2018) (for compressible fluids) and Weller et al. (2020) (for

a multi-fluid Boussinesq system); we have defined the transfers as fluid fraction-

weighted to match the conventions in these papers. It also provides an explicit link

between these transfer terms — often called “entrainment” and “detrainment” —

and the motion of the interface between partitions. This is a generalization and

unification of results from various areas of fluid mechanics.

In prior work on mass flux convection parametrization, for instance, Siebesma

(1998) derived the relation (their equation (42), in our notation):

(S+
i )

r − (S−i )
r

= − 1

A

∫
∂Di

(u−V∂Di) · n̂∂Di d` (3.49)

without explicitly introducing indicator functions for the subdomains indexed by
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i. Yano (2014) and Tan et al. (2018) derived similar relations6 using essentially

the same argument as Siebesma (1998). Comparison with (3.42) shows that our

result is equivalent if the filter kernel is a horizontal average kernel, i.e. if g(x,x′) =

(1/A)δ(z − z′), then∫
g(x,x′)f(x′) dV =

∫
A

dx′ dy′
∫

dz′
1

A
δ(z − z′)f(x′, y′, z′) (3.50)

=
1

A

∫
A

f(x′, y′, z) dx′ dy′ (3.51)

and so

〈(u−V∂Di) · ∇Ii〉g =

∫
D

g(x,x′)(u−V∂Di) · ∇Ii dD (3.52)

=
1

A

∫
A

(u−V∂Di) · ∇Ii dx dy (3.53)

= − 1

A

∫
`

(u−V∂Di) · n̂∂Di d`. (3.54)

Here ` := ∂Di ∩ {x|z = const.} is the intersection of the partition boundary ∂Di

with a plane of fixed z.

This shows that the expressions for entrainment and detrainment in earlier work

on mass-flux convection parametrization are special cases of the more general frame-

work presented here. The generalization is not of purely formal interest: for appli-

cations to the grey zone, filters of finite width must be considered. Performing the

derivation in the way above, including explicitly introducing indicator functions for

the subdomains, is the only way this author can conceive to correctly account for

finite filter width in a conditional averaging context. That the expressions retain

near identical form is another demonstration of the so-called “averaging invariance”

of the Navier-Stokes equations (Germano 1992).

Siebesma (1998), Yano (2014), and Tan et al. (2018) all proceed to split the

expression on the right hand side of (3.49) into entrainment and detrainment based

on the sign of (u−V∂Di) · n̂∂Di . This has been used by e.g. de Rooy et al. (2013) to

compute entrainment and detrainment terms from LES reference. The generaliza-

tion (3.48) to give explicit integral expressions for mass sources and sinks between

6Discrepancies in the final expressions (e.g. compare equation (40) of Siebesma 1998 with
equation (4.9) of Yano 2014 and equation (A6) of Tan et al. 2018) may be reconciled by accounting
for differences in the definitions of the normal vectors, interface velocities, and the line elements to
be integrated over at the partition boundary. Explicitly, in this Chapter and in Siebesma (1998),
the velocities entering the expressions are full 3D velocities, and the normal vector is the actual
outward-pointing normal of domain Di. Neither of these is necessarily horizontal, as Siebesma
notes. However, the normal vector entering the expressions in Yano (2014) and Tan et al. (2018) is
the normal to the curve defined by the intersection of the boundary of Di with a horizontal plane,
which is horizontal; this requires the introduction of “effective”/“apparent” horizontal velocities
which take into account the fact that really the boundary is not necessarily vertical.
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each pair of partitions is new, as far as we are aware, but fairly trivial.

The developments presented in the remainder of this section, however, are en-

tirely new, and rely crucially on the explicit introduction of the indicator function.

These results differ in spirit from earlier presentations in the cumulus parametriza-

tion literature as they aim to provide a starting point for theoretical investigations

about entrainment and detrainment, rather than serving purely as calculational

tools, or for completeness of description.

Returning to equation (3.32), another useful relation follows if we allow the

indicator function to be written as a Heaviside step function on a single7 real-valued

differentiable function ψi : D → R. This is always possible for subdomains which

satisfy the conditions already assumed, but an explicit example would be e.g. ψ0 =

w,ψ1 = −w, corresponding to a two-fluid partition based on the sign of the vertical

velocity; this partition will be used extensively in later chapters of this thesis. Then

Ii(x, t) = H(ψi) =⇒ ∂Ii = δ(ψi)∂ψi, (3.55)

where by ∂H(ψi) the distributional derivative of H(ψi) is understood. This allows

us to write∫
Rd

V∂Di · n̂∂Diδ(x ∈ ∂Di) dV =

∫
Rd

∂Ii
∂t

dV =

∫
Rd
δ(ψi)

∂ψi
∂t

dV (3.56)

=

∫
Rd

δ(ψi)|∇ψi|
|∇ψi|

∂ψi
∂t

dV (3.57)

=

∫
Rd

δ(x ∈ ∂Di)

|∇ψi|
∂ψi
∂t

dV (3.58)

=⇒ V∂Di · n̂∂Di =
∂ψi
∂t

|∇ψi|
, (3.59)

where in the second equality we have used that δ(x ∈ ∂Di) = δ(ψi)|∇ψi|, and made

use of the fact that for x ∈ ∂Di, |∇ψi| 6= 0. This is an exact expression for the

(relevant part of) the velocity of the partition interface, which may be substituted

wherever V∂Di · n̂∂Di appears. For instance, the transfer term Sij becomes:

σiSij =

∫
∂Dij

g H

(
∂ψi
∂t

|∇ψi|
− u · n̂∂Dij

)(
∂ψi
∂t

|∇ψi|
− u · n̂∂Dij

)
d(∂Di). (3.60)

If ψi is calculable based on flow variables, this removes the need for object tracking

algorithms in order to calculate the transfer terms, since all of the terms in the

7This can be extended to indicator functions that are countable products of such step func-
tions, though some care must be taken to define these products in order to correctly account for
potential overlap of singularities in the distributions. While relatively straightforward, the details
are technical and beyond the scope of this thesis.
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integral are known at any single time.This could be useful as the determination

of the interface velocity numerically from reference data is a difficult problem (see

Section 3.6 of de Rooy et al. 2013).

An alternative use for writing the indicator function in terms of a step function

on a single real variable is more theoretical. All we need do is write

DIi
Dt

=
DH(ψi)

Dt
= δ(ψi)

Dψi
Dt

(3.61)

=⇒
∑
j 6=i

(σjSji − σiSij) =

∮
∂Di

g
1

|∇ψi|
Dψi
Dt

d(∂Di). (3.62)

This may seem obvious, but expressing the transfer terms this way is attractive for

theoretical work: if ψi is a physical field, then we can derive an equation for Dψi/Dt .

Then equation (3.62) is amenable to formal asymptotic analysis, or physically-

based scale analysis, in terms of what is known about the source and sink terms

for Dψi/Dt . Those source and sink terms can then be mapped on to the earlier

definitions of Sij.

As a concrete example, consider partitioning turbulent Rayleigh-Bénard convec-

tion into two fluids based on the sign of the buoyancy, b. Let fluid 0 be negatively

buoyant, and fluid 1 be positively buoyant. Then the fluid fraction transfers are:

σ1S10 − σ0S01 =

∮
∂D0

g
1

|∇b|
Db

Dt
d(∂D0) (3.63)

=

∮
∂D0

g
1

|∇b|κ∇
2b d(∂D0). (3.64)

Therefore the only places where fluid is transferred based on buoyancy are where

the diffusion term is important. This easily decomposes into positive contributions

from locations where ∇2b > 0, and negative contributions where ∇2b < 0:

σ1S10 =

∮
∂D0

g
1

|∇b|H(∇2b)κ∇2b d(∂D0), (3.65)

σ0S01 = −
∮
∂D0

g
1

|∇b|H(−∇2b)κ∇2b d(∂D0). (3.66)

Splitting the underlying flow into thermal plumes (including the boundary layers)

with characteristic buoyancy scale ∆B over a characteristic length of δ, and a homo-

geneous turbulent bulk with characteristic buoyancy scale ∆B over a characteristic

length of H, we can scale the contributions to the integrand:

κ
∇2b

|∇b| ∼
κ

δ
=

κ

H
· Nu (plumes), κ

∇2b

|∇b| ∼ κ

H
(bulk). (3.67)
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For turbulent convection, Nu � 1, so contributions from the plumes dominate the

transfer terms. Gradients parallel to the plumes will be much smaller in magnitude

than gradients perpendicular to the plumes. Defining a Cartesian co-ordinate system

orientated following a plume, such that at each location z̃ points normal to the

plume, this allows us to write

|∇b| ≈
∣∣∣∣∂b∂z̃

∣∣∣∣, ∇2b ≈ ∂2b

∂z̃2
. (3.68)

By their nature as thermal plumes, i.e. regions where buoyancy magnitude is

greater than the surroundings (recall for instance Figure 2.2), ∂b/∂z̃ < 0, so we

may replace |∂b/∂z̃ | → − ∂b/∂z̃ . Further, we know that at the wall, − ∂b/∂z =

Nu ∆B/H . Expanding in a power series in z̃, we can write:

−∂b
∂z

∣∣
z=0
≈ Nu

∆B

H

(
1− a1

z̃

δ
+O

(
z̃2

δ2

))
(3.69)

which should be approximately valid for thermal plumes in the interior, since they

are merely detached thermal boundary layers. The constant a1 > 0 depends on the

shape of the buoyancy profile in the plume. (There will also be a modulating factor

depending on the lifetime of the plumes, since their buoyancy will diffuse as the

plumes advect.) Collecting results, we have:

κ
∇2b

|∇b| ≈ κ
∂2b/∂z̃2

Nu(∆B/H) (1− a1z̃/δ +O(z̃2/δ2))

≈ κH

∆B
· 1

Nu

∂2b

∂z̃2

(
1 + a1

z̃

δ
+O

(
z̃2

δ2

))
≈ κH

∆B
· 1

Nu
· ∆B

δ2

∂2b̂

∂ ˆ̃z2

(
1 + a1

ˆ̃z +O
(

ˆ̃z2
))

≈ κH

∆B
· 2δ

H
· ∆B

δ2

∂2b̂

∂ ˆ̃z2

(
1 + a1

ˆ̃z +O
(

ˆ̃z2
))

≈ 2κ

δ

∂2b̂

∂ ˆ̃z2

(
1 + a1

ˆ̃z
)
. (3.70)

In going from the first line to the second line we Taylor expanded (1− a1z̃/δ +O(z̃2/δ2))
−1

;

in going from the second to the third we introduced nondimensionalized variables

b̂ := b/∆B, ˆ̃z := z̃/δ; from the third to the fourth, we used 1/Nu = 2δ/H; and in

the final line we truncated the Taylor expansion at first order.

Let us now assume that the vertical dependence of the filter kernel is a delta

function; then we can further split the plumes into parts where z̃ · z ≈ 1, and parts

where z̃·z ≈ 0 — i.e. parts where the edge of the plume is approximately horizontal,

and parts where the edges are approximately vertical. The integral for the positive
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transfer term can then be split into (defining x̂ := x/H, ẑ := z/H):

σ1S10 ≈
2κH

δ
· 1

H

∫
∂Di‖x

g(x̂− x̂′; ∆)
∂2b̂

∂ ˆ̃z2

(
1 + a1

ˆ̃z
)

dx̂

+
2κH

δ

∫
∂Di⊥x

g(x̂− x̂′; ∆)δ(ẑ − ẑ′)∂
2b̂

∂ ˆ̃z2

(
1 + a1

ˆ̃z
)

dẑ

+ plume separation regions.

(3.71)

Restoring dimensions, the first integral is approximately equal to (2κδ/(∆B H))(1+

a1 z̃/δ ) ∂2br/∂z2 , but is only applicable close to the top and bottom boundaries. The

second is approximately
∑

xα∈∂Di(2κδ/(∆B H)) g(x−xα; ∆)(1+a1 z̃/δ ) ∂2b/∂x2 ,where

the sum is over points on distinct disconnected regions of the boundary, and is

applicable sufficiently far from the top and bottom boundaries. The first expres-

sion is written entirely in terms of resolved variables, if we allow δ = H/(2 Nu) =

−∆B/(2 ∂br/∂z |z=0); all that remains is the setting of the closure constant a1. The

second integral is more problematic, and still requires closure arguments which will

depend quite strongly on the filter scale. And we have yet to develop arguments for

the plume separation regions.

We have no doubt that with more effort, more complete and more elegant closures

could be argued; however, the above hopefully serves to illustrate that explicitly

considering derivatives of the indicator function can be useful for the development

of theories for the transfer terms.We see the intersection of these new results and

classical entraining plume-based entrainment studies as an interesting area of future

cross-fertilization. Expressions like (3.42) have to date only been used in a diagnostic

context, to calculate entrainment and detrainment from idealized simulations (e.g.

de Rooy et al. 2013). However, explicitly considering the indicator functions allows

writing the entrainment and detrainment terms as (3.62), allowing for process-based

theoretical considerations. Comparison of these two expressions for different possible

definitions of cloud/coherent structure has the potential to, at the very least, shed

light on some of major discrepancies between different formulations of entrainment

and detrainment rates (again, see the excellent review by de Rooy et al. 2013).

Further, for the desired unified modelling of all types of atmospheric convection,

(3.62) can provide physics-based justifications for potentially different formulations

of entrainment and detrainment, given the potentially different (local) definitions of

coherent structure required in different regimes.

It would also likely be instructive to directly compare the dynamical relabelling

expression (3.62) with the theoretical entraining plume studies upon which almost

all mass flux entrainment and detrainment closures are based. Theoretical work on

this problem can be traced back (at least) to Taylor (1945), Morton et al. (1956),
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and Turner (1962); the first numerical cloud model based on plume theory followed

shortly after in Simpson and Wiggert (1969)8. These classical references consider

dry, axisymmetric, steady-state plumes in stationary, neutral environments. Savre

and Herzog (2019) is an important step forward in plume theory to account for

processes which are important in atmospheric moist convection that have previously

been neglected; however they still consider a steady-state, axisymmetric, Reynolds-

averaged plume. Entraining plume considerations form the backbone of most mass

flux entrainment and detrainment parametrizations, and it would therefore be very

useful to compare these entrainment and detrainment expressions with dynamical

expressions in the general multi-fluid framework. This could be especially useful

for consideration of memory terms, which are necessarily absent from steady-state

plume theory. It would also be very useful to directly compare the predictions of

steady, axisymmetric plume theory with even the equilibrium response of a system

like RBC, where the large-scale circulation is crucial to the plume dynamics, and

even in 3D the structures tend to be quasi-two-dimensional and sheet-like.

One potential criticism of considering explicit indicator functions in the deriva-

tions of expressions like (3.62) is that it (potentially unnecessarily) introduces an

element of human choice into the modelling. Firstly, we believe that this human

choice is implicit in any direct modelling of coherent structures, there being no uni-

versal, objective definition of “coherent structures”, and it does no harm to make

that choice explicit. This should make it easier to avoid problems arising due to un-

stated assumptions, which are likely to differentiate more strongly between choices

of condition in the grey zone, non-steady state regime.

Perhaps more fundamentally, however, explicitly introducing indicator functions

allows one to express uncertainty as to the exact nature of the partitioning by

considering the indicator to be the indicator of a “fuzzy set” (Zadeh 1965). Such

an indicator function can take any value in the unit interval, rather than just zero

or 1, and hence expresses a degree of membership of a set. One way this could be

useful in our application is to inherently express uncertainty as to the exact value

of a threshold for distinguishing membership of a partition, or complementarily to

express uncertainty as to the exact location of the boundary. The simplest way to

implement this would be to convolve the indicator functions with a smooth mollifying

function of finite, specified width (this need not have any relation to the width of

the spatial filter); indeed, this is one way of making the expressions in this section

suitable for numerical computation. Crucially, this would turn the surface integrals

over the domain boundaries into volume integrals.

In summary, in this section we have used some results from the theory of distri-

8Note that the first author here, Joanne Simpson, is the same groundbreaking scientist who
pioneered the hot tower hypothesis under the surname Malkus.
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butions to make precise statements about the fluid relabelling or “transfer” terms

arising in multi-fluid modelling. These link two conceptual ways of thinking about

the transfers — tracking the motion of the interface between partitions, and the

macroscopic “entrainment” and “detrainment” point of view which relates directly

to traditional convection parametrization approaches in meteorology. Additionally,

we provided exact integral results which express quantitatively how these two ap-

proaches relate, giving expressions which allow for the computation of transfer terms

from reference data. Finally, we suggested a potential route for using the expressions

for deriving closures for transfer terms in multi-fluid models.

3.4 Terms requiring closure

To recap, the terms of (3.12)-(3.13) which require closing are:

• Transfer terms: (S±i )
r
, (uS±i )

r
, (bS±i )

r
;

• Pressure gradient: (∇P )r
i;

• Viscous & diffusive terms: (∇2u)
r

i, (∇2b)
r

i;

• Subfilter fluxes: ∇ · si(u,u), ∇ · σis(u, b).

We shall now discuss each of these in turn. It is useful to express the unknowns in

terms of resolved variables as much as possible. The physical interpretation of the

remaining unknown terms can then be discussed.

In the subsequent analysis, boundary terms and terms arising from spatiotem-

poral variations in the filter kernel g(ε) are neglected.

3.4.1 Exchange terms

In the preceding section, we split sources and sinks of the indicator function into

their contributions from all two-partition interactions, and labelled these “fluid frac-

tion transfer terms”. Recall that similar terms arise in the momentum and buoyancy

equations, representing the transfers of momentum and buoyancy which occur when

mass is transferred. To avoid repetition, in this section we shall manipulate expres-

sions for a general variable ϕ, which may be b or u. The earlier split of sources

and sinks of fluid fraction (3.48) straightforwardly extends to transfers of any fluid

property ϕ:

(ϕS+
i )

r − (ϕS−i )
r

=
∑
j 6=i

(∫
∂Dij

gϕH(−v∂Dij · n̂∂Dij)(−v∂Dij · n̂∂Dij) d(∂Di)

−
∫
∂Dij

gϕH(v∂Dij · n̂∂Dij)(v∂Dij · n̂∂Dij) d(∂Di)

)
.

(3.72)
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Rather than modelling these transfers of ϕ directly, separately from the fluid fraction

transfer terms Sij, it makes sense to define transferred values of ϕ. This shifts

the burden of modelling: instead of modelling a separate exchange term for each

prognostic equation, we choose to model the mass exchanges Sij, and what properties

are exchanged along with these mass transfers, bT
ij and uT

ij.

The definition of transferred properties, ϕT
ij, which matches those used in Thuburn

et al. (2018) is:

σiϕ
T
ijSij := 〈ϕSij〉

⇐⇒

ϕT
ij 〈Sij〉 = 〈ϕSij〉 .

However, really the transfer 〈ϕSij〉 can only be matched to the transfer 〈Sij〉 on

each piecewise-continuous subset of the boundary of partition i. The reason this

matters is that very different processes can contribute to the relabelling of fluid

parcels; for instance, for fluid partitions based on the sign of vertical velocity, there

are buoyancy-based transfers, viscous transfers, and pressure gradient transfers. For

Rayleigh-Bénard convection, the analysis of Togni et al. (2015) suggests that the vis-

cous transfers should be most important in the boundary layers, pressure transfers

to be the most important in regions of plume separation and impingement, and com-

bined buoyancy and viscous transfers to be required in the fluid interior. However,

for turbulent convection, regions of recirculation develop in the plume separation

regions where multiple types of transfer occur in quite close proximity. A bulk defi-

nition of mass transfers, and transferred fluid properties, misses this subtlety. The

buoyancy and horizontal momentum of fluid parcels is very different for those differ-

ent transfers, and therefore different transferred values of buoyancy and horizontal

momentum should be associated with the different sources of relabelling.

Possible alternative definitions are messy to write down explicitly, but involve

either associating a ϕT
ij with each piecewise-continuous part of the boundary ∂Dij,

or with each different process which contributes to the transfers. The latter is easiest

to define via the version of the indicator function evolution equation which writes

the indicator in terms of step functions, for then the processes contributing to the

relabelling are transparent.
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3.4.2 Diffusive terms

The diffusion term in the buoyancy equation can be rewritten using the product

rule:

κσi(∇2b)
r

i = κ (∇ ·∇σibr
i − (∇ · b∇Ii)r − (∇Ii · ∇b)r) (3.73)

= κσi∇2br
i + κ∇ · (br

i∇σi) + κ∇σi · ∇br
i − κ(∇ · b∇Ii)r − κ(∇Ii · ∇b)r.

(3.74)

The last two terms require parametrization, but sum to zero over all partitions

and therefore may be neglected without adding a spurious source or sink to the

mean buoyancy equation. The last term is the filtered buoyancy gradient along the

outward-pointing normal at the boundary of domain Di:

−κ(∇Ii · ∇b)r = −κ
∫
Rd
g(ε)∇Ii · ∇b dV (3.75)

= κ

∫
∂Di

g(ε)n̂∂Di · ∇b d(∂Di), (3.76)

while the second to last term is the divergence of the filtered buoyancy times the

outward pointing normal vector at the boundary of domain Di:

−κ(∇ · b∇Ii)r = κ∇ ·
∫
∂Di

g(ε)bn̂∂Di d(∂Di) (3.77)

= κ

∫
∂Di

g(ε)n̂∂Di · ∇b d(∂Di) + κ

∫
∂Di

g(ε)b∇ · n̂∂Di d(∂Di).

(3.78)

The last term here includes the divergence of the surface normal, ∇ · n̂∂Di , which

is equal to the sum of the principal curvatures of the surface ∂Di. If the interface

is a real interface between two phases, this can be related to the pressure jump

across the interface and surface tension effects via the Young-Laplace equation. It

is unclear whether a similar relation should be used when there is no real interface,

as for the desired application to modelling convection. However, if the interface is

expected to be definitely concave, or definitely convex, that tells us the sign the term

must take, and therefore whether it acts as a buoyancy source or sink. For instance,

buoyancy contours in classical entraining plume solutions tend to be mostly convex,

so ∇ · n̂ > 0 on the boundary of a buoyancy-based partition, making the term a

source of buoyancy.

Here we see again that directly considering the “δ-function structure” of deriva-

tives of the indicator function actually produces expressions which are both physi-

cally interpretable, and calculable.
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3.4.3 Stress

Viscous terms

More care is required with the viscous terms due to their tensorial nature. Before

considering the viscous terms it is worth remembering that we generally wish to

express tensors as symmetric tensors in fluid dynamics, since a nonzero antisym-

metric part implies that there is a net torque locally on fluid elements (Gilbert

et al. 2014). In incompressible fluid dynamics, this is often forgotten because

∇ · (∇u + (∇u)T) = ∇ · (∇u)T = ∇2u when ∇ · u = 09. Since ∇ · ur
i 6= 0

in a multi-fluid system, it is instructive to re-insert the symmetric part. We also

note that any tensor can be split into its isotropic and deviatoric parts; this is

worth mentioning because, although the pressure is the only isotropic stress in the

incompressible Navier-Stokes equations, other isotropic stresses will arise when con-

ditionally filtering the equations. This is already apparent when unconditionally

spatially filtering the equation set; the Reynolds stress has a nonzero isotropic part:

the turbulent kinetic energy(!). This requires some more notation:

Definition 10 (Tensor decompositions). For any rank 2 tensor A, we define:

1. the symmetric part of A:

symm(A) :=
1

2

(
A + AT

)
; (3.79)

2. the antisymmetric part of A:

asymm(A) :=
1

2

(
A− AT

)
; (3.80)

3. the isotropic part of A:

iso(A) :=
1

d
tr(A)Id; (3.81)

4. the deviatoric part of A:

dev(A) := A− iso(A). (3.82)

Note that all of the defined operations are linear, i.e. f(cA + B) = cf(A) + f(B)

for constant c, tensors A,B, and f(·) ∈ {symm(·), asymm(·), iso(·),dev(·)}. For

reference, in other texts asymm(A) is sometimes called the “rotational part”, iso(A)

is sometimes called the “hydrostatic part”, and dev(A) is sometimes called the

“anisotropic part”.

An immediate corollary is A = symm(A) + asymm(A) = iso(A) + dev(A). We

9Here we use the convention [∇u]µν = ∂uµ/∂xν .
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further note that asymm(iso(A)) = 0 for any A. These definitions are co-ordinate

independent, meaning that the decomposition into symmetric and antisymmetric

parts, or into isotropic and deviatoric parts, is independent of reference frame.

With that in mind, we use the product rule to rewrite the viscous term in equa-

tion (3.12):

νσi(∇2u)
r

i = ν(∇ · 2 symm[∇Iiu])r − ν(∇ · 2 symm[u⊗∇Ii])r

− ν(∇Ii · 2 symm[∇u])r

= ν∇ · 2 symm(∇σiur
i)− ν∇ · 2 symm[u⊗∇Ii]r

− ν(∇Ii · 2 symm[∇u])r.

(3.83)

It is worth noting here that symm(u⊗∇Ii)r = symm(∇σiur
i) − (symm∇u)r

i, i.e.

the difference between the conditionally-filtered strain rate tensor, and the strain

rate tensor for the conditionally-filtered velocity field. Analogously to the expres-

sion for the diffusive terms, Equation (3.74), the second and third terms in the

final expression above sum to zero over all fluids and therefore could be neglected

without introducing a spurious source or sink to the mean momentum equation.

The isotropic part of symm(∇u) is zero, since ∇ · u = 0, and the isotropic parts

of symm(∇σiur
i) and symm[u⊗∇Ii]r are both equal to ∇ · σiur

i. Thus all the

isotropic parts cancel and we can write:

νσi(∇2u)
r

i = ν∇ · dev{2 symm(∇σiur
i)} − ν∇ · dev{2 symm[u⊗∇Ii]r}

− ν(∇Ii · 2 dev{symm[∇u]})r.
(3.84)

This means we can expand the first term on the right-hand side without worrying

about cancellations of its isotropic part with isotropic parts of the other two terms:

∇ · dev{2 symm(∇σiur
i)} =∇ · σidev{2 symm(∇ur

i)}

+∇ · dev{2 symm(ur
i ⊗∇σi)}

= σi∇ · dev{2 symm(∇ur
i)}

+∇σi · dev{2 symm(∇ur
i)}

+∇ · dev{2 symm(ur
i ⊗∇σi)}

= σi∇ ·
{
∇ur

i + (∇ur
i)

T − 2

d
(∇ · ur

i)Id

}
+∇σi · dev{2 symm(∇ur

i)}

+∇ · dev{2 symm(ur
i ⊗∇σi)}
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= σi∇2ur
i +

(
d− 2

d

)
σi∇(∇ · ur

i)

+∇σi · dev{2 symm(∇ur
i)}

+∇ · dev{2 symm(ur
i ⊗∇σi)}.

(3.85)

The final line uses that∇·(f Id) ≡∇f for any scalar function f , as well as∇·∇A ≡
∇(∇ ·A), ∇ · [∇A]T ≡ ∇2A for any vector function A. Substituting this back

into equation (3.84) for the full viscous term gives:

νσi(∇2u)
r

i = νσi∇2ur
i +

(
d− 2

d

)
νσi∇(∇ · ur

i)

+ ν∇σi · dev{2 symm(∇ur
i)} − ν(∇Ii · dev2 symm[∇u])r

+ ν∇ · dev{2 symm(ur
i ⊗∇σi)} − ν∇ · dev{2 symm[u⊗∇Ii]r}

= σiν∇2ur
i +

(
d− 2

d

)
σi∇(ν∇ · ur

i)

− [(∇Ii · 2ν dev{symm[∇u]})r −∇σi · dev{2ν symm(∇ur
i)}]

− [∇ · dev{2ν symm[u⊗∇Ii]r} −∇ · dev{2ν symm(ur
i ⊗∇σi)}] .

(3.86)

Written in this way, each term is explicitly Galilean invariant. The unknown terms

have been grouped with their corresponding expressions involving resolved variables,

analogous to the construction of the Reynolds stress tensor in traditional turbulence

modelling.

The first term on the right hand side is the usual form of diffusion added in multi-

fluid models (e.g. Thuburn et al. 2019; Weller et al. 2020). The third and fourth

terms require closure; both arise directly from spatial variations in Ii (represent-

ing momentum transfer across the interface, which we will discuss further shortly).

However, the second term is an additionalmomentum stress which depends only

on resolved variables within fluid partition i. This term is missed when diffusion

is added post-hoc, as when the underlying equation set is assumed to be inviscid

(which is the case in Thuburn et al. 2018).For d > 2 the interpretation of this term

is clear10: it is a resistance to compression or expansion of the fluid. This is easiest

to see if we restrict to flow along one dimension; thus consider the acceleration of a

fluid parcel along the x̂ direction due to∇(∇ · u). We have Du/Dt ∝ ∂(∇ · u)/∂x .

Assume that the divergence is increasing along the x direction; this accelerates the

fluid parcel in the x direction, which increases ∇ · u behind the fluid parcel and

decreases ∇ · u in front of it, acting to smooth out differences in the divergence.

10Note that d here is the dimension of the underlying fluid. Therefore we need not consider the
pathological case d = 1; the case d = 2 is simple because the term vanishes.
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A term identical in form arises in compressible fluid dynamics. As a bulk viscous

stress, this term not only has consequences for the momentum budget, but also

introduces a positive-semidefinite sink of energy — see Section 3.4.4. This is an

important consequence of the fact that conditionally filtering a fluid introduces a

source of divergence within each partition due to relabelling of fluid at the interface,

even when the underlying fluid is divergence free.

With the exception of terms involving the spatial variation of ν, the above deriva-

tion holds for the conditional filtering of any stress tensor which linearly and isotrop-

ically depends on the rate-of-strain tensor. Notably, this includes a lot of turbulence

models: any turbulence model using so-called “down-gradient diffusion” to model

the Reynolds stress tensor. This includes the Smagorinsky model widely used in LES

reference simulations of the atmosphere — so the extra bulk viscous term should be

included when developing multi-fluid models of convection.

We now take a closer look at the interpretation of the unknown terms in Equa-

tion (3.86). Recalling the relation between the gradient of the indicator and the

surface delta function, Equation (3.34), we have for the first term:

−(∇Ii · 2ν dev{symm[∇u]})r =

∫
Rd
g δ(x ∈ ∂Di)n∂Di · 2ν dev{symm[∇u]} dV

=

∫
∂Di

g n∂Di · 2ν symm[∇u] d(∂Di). (3.87)

The integrand is the projection of the rate-of-strain tensor onto the boundary of

partition i, i.e. the resolved viscous momentum flux through the interface. If there

is shear at the interface, this term accounts for its contribution to the momentum

budget. It is exactly cancelled by the corresponding term at the boundary of other

partitions (because, for a point x ∈ ∂Di∩∂Dj, n∂Di = −n∂Dj). For the second term

we have:

−∇ · dev{2ν symm[u⊗∇Ii]r} (3.88)

=∇ · dev

{
2ν symm

(∫
Rd
g u⊗ n∂Diδ(x ∈ ∂Di) dV

)}
=∇ · dev

{
2ν symm

(∫
∂Di

g u⊗ n∂Di d(∂Di)

)}
. (3.89)

Dopazo (1977) arrives at a similar expression (their equation (17), which is defined in

a Reynolds-averaging context, and includes the isotropic part), which they describe

as “an additional viscous force of the turbulent on the non-turbulent region”, going

on to say that “[t]he physical meaning [of this expression] as well as a different

mathematical way to recover it may be clearly seen in Landau and Lifshitz (1987,

p. 74) and Batchelor (1970) in connexion with the viscosity of suspensions.” That
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the integrand represents an additional viscous force is obvious, given how it arises.

However, its interpretation beyond that is tricky; in this author’s opinion, neither

resource quoted by Dopazo gives a clear explanation of what this term represents.

It perhaps helps to remember that dev symm(u⊗∇Ii)r = dev symm∇(σiu
r
i) −

dev symmσi(∇u)r
i, i.e. the difference between the resolved rate of shear in partition

i, and the rate of shear computed using resolved variables. For a control volume

entirely within the domain Di this difference is zero, so the difference must arise

purely from the boundaries between fluid partitions.

Beyond that, explicit geometric interpretation is useful, which requires more

breaking down:

−∇ · dev{2ν symm[u⊗∇Ii]r} =

∫
∂Di

g 2ν

[
(u · ∇)n∂Di + (n∂Di · ∇)u

+ u(∇ · n∂Di)−
2

d
∇(u · n∂Di)

]
d(∂Di).

(3.90)

Now we can interpret all of the terms geometrically. The first term, (u · ∇)n∂Di ,

is the gradient of the normal vector in the direction of the velocity field. Since

the gradient of the normal is in the tangent plane of the interface, this projects the

velocity vector onto the tangent plane of the interface. The second term, (n∂Di ·∇)u,

is the gradient of the velocity vector in the direction of the surface normal. The

third term includes the divergence of the surface normal, which appeared in our

expressions for the diffusive terms. Again, this can be interpreted in terms of the

curvature of the interface, and related to any relevant surface tension effects. The

final term is the gradient of the normal component of the velocity vector. Clearly

all of these terms depend on the detailed dynamics of the interface.

The resources quoted by Dopazo (1977) do give interesting methods for ap-

proximating the volume-averaged contribution of this term for the case of dilute

suspensions of particles. Clearly this is not directly relevant to the modelling of

atmospheric convection, but similar techniques may be useful for studying the lim-

iting behaviour of these terms for idealized convective flows in the fully-parametrized

limit.

Pressure terms

The pressure gradient term 〈Ii∇P 〉 can be rewritten as:

σi∇P r
i =∇ 〈IiP 〉g − 〈P∇Ii〉g (3.91)

=∇(σiP
r
i )− 〈P∇Ii〉g (3.92)
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= σi∇P r +∇(σipi) + [P r∇σi − (P∇Ii)r] , (3.93)

where σipi := σiP
r
i −σiP r = (IiP )r− (Ii)

r(P )r, and P r =
∑

i σiP
r
i by definition. The

total pressure P r is the pressure which satisfies the divergence-free constraint for

the total velocity field ur :=
∑

i σiu
r
i. The deviation pressures pi are the difference

between the resolved pressure in each fluid and the total resolved pressure, and so

their fluid fraction-weighted sum over all fluids is zero.

The term −(P∇Ii)r is the resolved pressure gradient force acting at the interface

between partitions. This can be seen by noting that ∇Ii = −δ(x ∈ ∂Di)n̂∂Di , i.e.

a unit vector pointing inwards from the domain boundary of fluid i, and existing

only at that boundary. This boundary is a 2D surface, so −P∇Ii is exactly the

pressure force pushing outwards from the domain of fluid i, and −(P∇Ii)r is just

the resolved part of this. We choose to decompose the pressure gradient term in

this way so that the term in square brackets gives zero contribution when summed

over all fluids. This term represents the difference between resolved pressure drag

due to the mean pressure and resolved fluid fraction, and the actual filtered pressure

drag at the interface between partitions. Since it sums to zero over all partitions, we

may neglect it without introducing a spurious contribution to the total momentum

equation.

Combined stress tensor

We have shown that careful treatment of the conditionally filtered viscous term gives

rise to a resolved bulk viscous stress: a term depending on the divergence of the

resolved velocity field within a fluid. In this section, we wish to recast the above

treatment in terms of a general stress tensor ς, and then argue that applying the

Newton-Stokes conditions to the stress tensor within each fluid partition suggests

that (part of) the pressure differences between the partitions can be accounted for

with an additional bulk viscous stress.

We denote the full stress tensor by ς; in general continuum mechanics this is

called the “Cauchy stress tensor”, usually denoted by σ. We use the alternate

lowercase sigma in order to avoid confusion with the fluid fraction σi. For a fluid,

it is customary to split the stress tensor into its equilibrium and non-equilibrium

parts, ςe and ςn. The non-equilibrium part is often written τ , and we will use

that notation from here. The equilibrium (or hydrostatic) part is the stress which

would exist for the fluid at rest, and is therefore determined by the thermodynamic

pressure field (see §3.4 of Batchelor 1967, or §§15, 49 of Landau and Lifshitz 1987).

The non-equilibrium part can be further decomposed into its isotropic, symmetric
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deviatoric, and antisymmetric parts:

ς = −P Id + τ (3.94)

= −P Id +
1

d
tr(τ ) + dev symm(τ ) + asymm(τ ). (3.95)

These respectively represent the response of a material fluid element to isotropic

compression/expansion, shear, and net torque. The additional resistance to isotropic

compression/expansion is also a pressure, in the sense that the pressure is the normal

force on a surface element — which is precisely the full isotropic part of the stress

tensor, not just the equilibrium part. If the non-equilibrium part of the stress has

no isotropic part, which is true for an incompressible Newtonian fluid, then there is

no difference between these two senses of the pressure.

Why does this matter? First let us recover the stress tensor for our Boussinesq

fluid11. We assume that no net torque acts on an infinitesimal fluid element, so the

non-equilibrium part of the stress tensor must be symmetric: asymm(τ ) = 0. We

then note that the only difference between the stresses felt by a fluid at rest and

a fluid in motion is the presence of the velocity field; therefore the non-equilibrium

part of the stress must only be related to the velocity field. It cannot be directly

related to the velocity because this would break Galileian invariance; the next-

simplest choice is that it is related to the gradient of the velocity, the rate-of-strain

tensor: symm(τ ) ∼ symm(∇u). (This construction can be thought of as expanding

ς as a Taylor series in ∇u.) We then suppose that the fluid is Newtonian: the

non-equilibrium part of the momentum stress tensor is linearly and isotropically

related to the rate-of-strain tensor (these are sometimes called the “Newton-Stokes

conditions”). “Linear” means that the proportionality factor between the two must

be a tensor; “isotropic” requires this tensor to be isotropic. At this point we briefly

switch to index notation for clarity. The most general tensor relationship between

two rank two tensors is provided by an arbitrary rank four tensor, Γµνρλ; we require

this rank four tensor to be isotropic:

[τ ]µν = Γµνρλ
1

2
(∂ρuλ + ∂λuρ) . (3.96)

Because τ is supposed symmetric, Γµνρλ = Γνµρλ. The only isotropic rank four

tensor is constructed of products of the rank-two identity tensor:

Γµνρλ = aδµρδνλ + bδµλδνρ + cδµνδρλ

= 2aδµρδνλ + cδµνδρλ, (3.97)

11This section closely follows derivations which can be found elsewhere; for instance, §§3.3-3.4
of Batchelor (1967).
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for scalars a, c. Substituting this into Equation (3.96) gives:

τ = 2a
1

2
symm(∇u) + c(∇ · u)Id. (3.98)

Since ∇ · u = 0 for a Boussinesq fluid, ∇ · τ =∇ ·
(
a(∇u + (∇u)T)

)
= a∇2u (for

constant a). Identifying a→ ν, this is the correct expression for the stress tensor.

Why bother with all of this? Well, in a multi-fluid system, we do not know the

correct expression for the conditionally-filtered stress tensor. All we can write is:

〈Ii∇ · ς〉 =∇ · (σiςr
i)− 〈∇Ii · ς〉 . (3.99)

Conditionally filtering ς (using (3.95) with τ given by (3.98)) gives:

σiς
r
i = 〈−IiP Id〉+ 2ν symm(〈Ii∇u〉) (3.100)

= σi (−P r
i Id + 2ν symm(∇ur

i))− 2ν symm (ur
i ⊗∇σi − (u⊗∇Ii)r) .

(3.101)

But what if we presumed that, to first order, the stress within each fluid is Newto-

nian? Then the conditionally-filtered stress would be:

ςr
i = −P r

(e)iId + ci(∇ · ur
i)Id + 2ai symm(∇ur

i), (3.102)

plus higher order terms. Comparing with Equation (3.101) shows that, for the

partitioned stress to be fully Newtonian, either 2ν symm (ur
i ⊗∇σi − (u⊗∇Ii)r) =

0, or 2ν symm (ur
i ⊗∇σi − (u⊗∇Ii)r) ∝ 2ν σisymm(∇ur

i). But even if the stress

is not fully Newtonian, unless symm (ur
i ⊗∇σi − (u⊗∇Ii)r) is very large, there is

clearly an important Newtonian part.

This tells us that, in a multi-fluid system, the divergence due to relabelling of

fluid contributes an isotropic stress, with associated bulk viscosity ci. But how do

we relate P r
(e)i, the “equilibrium” pressure in fluid i, to the full resolved pressure

P r
i ? Part of this equilibrium pressure must arise from P r, the pressure satisfying

the only explicit continuity constraint. Beyond that, some of the difference will be

thermodynamic, i.e. due to the different buoyancy fields in each partition. But

some of it must be kinematic: the different partitions have different velocity fields

also. Assuming that this kinematic difference between P r
i and P r

(e)i is, to first order,

just the difference between P r
i and P r, this suggests that pi = −ci∇ · ur

i. What we

are arguing is: all fluids in a multi-fluid system have separate pressures P r
i ; these

deviate from the common pressure experienced by all fluids, Pc, at any location

due to the presence of different velocity fields, ur
i. We assume that the difference

between the pressures is, to first order, linearly dependent on the gradient of the



116 3. Multi-fluid modelling for atmospheric convection

difference between the velocity field in the partition and the mean velocity:

P r
i − Pc = Γ′ : ∇

(
ur
i −
∑
i

σiu
r
i

)
+ higher order & nonlinear terms. (3.103)

Here the bold colon notation means the complete contraction of two rank-2 ten-

sors, i.e. A : B := AabB
ab for any two rank 2 tensors A,B. Since the pressure is

isotropic, the expression on the right hand side must also be isotropic, requiring the

proportionality tensor Γ′ to be proportional to the identity tensor Γ′ ∝ Id. Thus

P r
i −Pc = −γi∇·ur

i to first order, as the mean velocity is divergence-free. Note that

γi need not be the same in each fluid partition, nor is it required to be homogeneous.

By definition, σipi must sum to zero over all fluids, but in order for the bulk

viscous contribution to satisfy this constraint, a correction term must be added:

pi = −γi∇ · ur
i +
∑
j

(σjγj∇ · uj). (3.104)

This correction suggests that the “common pressure experienced by all fluids” is

Pc = P r +
∑

i(σiγi∇ · ui), though the correction will only be large if the resolved

advection of σi is large. The derivation of P r
i − Pc ∝∇ · ur

i still holds.

To summarize, the correct application of the Newton-Stokes conditions directly

suggests that the difference between the equilibrium pressure and the dynamic pres-

sure in each fluid partition is given by a bulk viscous stress. This gives us a

parametrization for the leading-order kinematic differences in pressure between the

fluid partitions, as a so-called “bulk viscous pressure”. It should be noted that such

isotropic stresses do not conserve filter scale energy. This should be obvious since

they arise due to the viscous stress, not the filtering of the pressure gradient term.

It is usually argued that this “bulk viscous pressure” is negligible in the sorts of

weakly compressible flow encountered in the geosciences, or else, if non-negligible in

magnitude, that it may be subsumed entirely into the definition of the (dynamical)

pressure with at most second-order inconsistencies (Papalexandris 2020). However,

in the case of a multi-fluid system neither of these arguments hold. Firstly, there

is no reason to believe that the divergences within each partition will be small,

since they arise due to advection of the label functions, which are not necessarily

negligible. Secondly, the divergences will be different in each partition, so cannot

simply be subsumed into the definition of the pressure. Thus the bulk viscous

contribution to the pressure difference between fluid partitions should be a generic

feature of multi-fluid modelling, even for flows where the underlying fluid is assumed

divergence-free.

Since the divergence within a partition is dependent on the advection of the
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indicator labels, the accuracy of the bulk viscous pressure is expected to depend

directly on the accuracy of the transfer term formulation.

3.4.4 Energetics

Thuburn and Vallis (2018) discussed the energetics of the conditionally-filtered Eu-

ler equations; the energetics of the Boussinesq system are similar, except for the

treatment of the viscous terms, which do not appear in the Euler equations.

The contribution of the viscous terms to the kinetic energy of the resolved flow

in partition i is:

ur
i · 〈Ii∇ · τ 〉 = ur

i · {∇ · (σiτ r
i)− 〈∇Ii · τ 〉} (3.105)

=∇ · (σiur
i · τ r

i)− σiτ r
i :∇ur

i − ur
i · 〈∇Ii · τ 〉 (3.106)

=∇ · (σiur
i · τ r

i)− σiiso[τ r
i] :∇ur

i − σidev symm[τ r
i] :∇ur

i

− σidev asymm[τ r
i] :∇ur

i − ur
i · 〈∇Ii · τ 〉

. (3.107)

Decomposing the viscous stress tensor in this way allows us to maximize the amount

of the dissipation rate which can be directly expressed in terms of resolved variables.

For our incompressible Newtonian fluid, τ = ν(∇u)T, iso[τ r
i] = 0, asymm[τ r

i] = 0,

and dev symm[σiτ
r
i] = symm[σiτ

r
i] = νσi2 symm[∇ur

i] − 2ν symm[〈u⊗∇Ii〉 −
ur
i ⊗∇σi]. This simplifies the kinetic energy term to:

ur
i · 〈Ii∇ · τ 〉 =∇ · (σiur

i · τ r
i)− νσi2 symm[∇ur

i] :∇ur
i

− 2ν symm[〈u⊗∇Ii〉 − ur
i ⊗∇σi] :∇ur

i − ur
i · 〈∇Ii · τ 〉

=∇ · (σiur
i · τ r

i)− νσi2 ‖symm[∇ur
i]‖

2

− 2ν symm[〈u⊗∇Ii〉 − ur
i ⊗∇σi] :∇ur

i

− ur
i · 〈∇Ii · τ 〉

(3.108)

If a viscous term of the form νσi∇2ur
i had been used instead, as is done when

the viscous terms are added post-hoc (Tan et al. 2018; Thuburn et al. 2019; Weller

et al. 2020), the dissipation rate would be different; we would instead have:

ur
i · σiν∇ · (∇ur

i)
T =∇ ·

(
σiu

r
i · (∇ur

i)
T
)
− νσi(∇ur

i)
T :∇ur

i − ν (ur
i ⊗∇σi) :∇ur

i

=∇ ·
(
σiu

r
i · (∇ur

i)
T
)
− νσi‖symm[∇ur

i]‖
2 + νσi‖asymm[∇ur

i]‖
2

− ν (ur
i ⊗∇σi) :∇ur

i.

(3.109)

Clearly ‖symm[∇ur
i]‖

2 − ‖asymm[∇ur
i]‖

2 ≤ 2 ‖symm[∇ur
i]‖

2 in general, so the

viscous dissipation rate calculated entirely in terms of resolved variables is therefore
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incorrect if the symmetrization of the stress tensor is not properly accounted for12.

The reason is because not having a symmetric stress tensor implies that there may be

net torques on fluid elements — this can both add and subtract kinetic energy from

the flow, meaning that the “dissipation” is no longer even negative semi-definite!

Thus there is a direct energetic consequence to missing this term from the momentum

equation. This is important: getting the correct dissipation is crucial in turbulence

models, since the dissipation rate is used to set the turbulence length scales.

The contribution to the kinetic energy of the resolved flow from the pressure

gradient terms is:

−ur
i · 〈Ii∇P 〉 = −∇ · (σiur

iP
r
i ) + σiP

r
i∇ · ur

i + ur
i · 〈P∇Ii〉 . (3.110)

The first term is a transport term; the final term is the work done against the

resolved pressure drag by the resolved velocity. The middle term is a pressure work

term, caused by the non-zero divergence of the conditionally filtered velocity fields.

In form, this term is exactly like that which appears in compressible fluid dynamics.

The difference here is that the underlying fluid is incompressible, and so instead of

appearing as source terms in a budget for the internal energy, the term appears as

a source in the subfilter kinetic energy equation, i.e. in the transport equation for

the quantity 1/σi ((u · u)r
i − ur

i · ur
i):

−〈Ii∇ · (Pu)〉+ ur
i · 〈Ii∇P 〉 = −∇ · 〈IiPu〉+ 〈Pu · ∇Ii〉+∇ · (σiur

iP
r
i )

− σiP r
i∇ · ur

i − ur
i · 〈P∇Ii〉

= −∇ · (σi[〈(Pu)〉i − P
r
i u

r
i])− σiP r

i∇ · ur
i

+ [〈u · P∇Ii〉 − ur
i · 〈P∇Ii〉] .

(3.111)

This subtlety is easily missed when working with the fully compressible equations,

since in that case the divergence within a fluid partition is a sum of the contributions

from the advection of the indicator function and the real divergence of the underlying

fluid.

If we model the pressure differences between partitions by a bulk viscous stress,

the contribution to the within-partition kinetic energy is:

σipi∇ · ur
i = −σi(γi∇ · ur

i −
∑
j

γjσj∇ · uj)∇ · ur
i (3.112)

= −σiγi(∇ · ur
i)

2 + σi∇ · ur
i

∑
j

γjσj∇ · uj. (3.113)

12It is possible to show the same result without explicitly requiring the within-partition stress
tensors to be symmetric; however, we believe that directly accounting for the symmetry makes the
calculation clearer and its physical interpretation more transparent.
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The first term is a definite dissipation, however the second term could take either

sign. Summing over all fluids however allows us to write the contribution of the bulk

viscous pressure term to the kinetic energy summed over all fluids,
∑

i u
r
i · ur

i:

∑
i

σipi∇ · ur
i = −

∑
i

σiγi(∇ · ur
i)

2 +

(∑
i

σi∇ · ur
i

)(∑
j

γjσj∇ · uj

)
. (3.114)

By the Cauchy-Schwartz inequality, the first term may be rewritten as:∑
i

σiγi(∇ · ur
i)

2 =
∑
j

σj
∑
i

σiγi(∇ · ur
i)

2 (3.115)

≥

(∑
i

σi
√
γi∇ · ur

i

)2

. (3.116)

If the bulk viscosities are the same in all fluids, γi = γ ∀i, then
∑

i σipi∇ · ur
i ≤ 0,

showing that the bulk viscous pressure parametrization acts as a sink of the within-

partition kinetic energy summed over all fluids — and therefore as a source of

subfilter kinetic energy.

3.4.5 Subfilter fluxes

The “subfilter flux” terms ∇ · σi((u⊗ u)r
i − ur

i ⊗ ur
i) and ∇ · σi((ub)r

i − ur
ibi) are

analogous to similar terms which arise in single-fluid modelling of turbulence. It

is important to note two differences, however; firstly, (u⊗ u)r
i and (ub)r

i contain

contributions from all partitions, not just partition i. Secondly, the sum of the

fluxes over all partitions is not equal to the corresponding flux from the filtered

single-fluid equations, due to the difference between
∑

i σiu
r
i ⊗ ur

i and ur ⊗ ur. The

ramifications of this for modelling the fluxes are beyond the scope of this chapter.

However, if one wishes to parametrize the subfilter momentum flux by anal-

ogy with viscous stress, as is very often done in both LES and RANS turbulence

modelling with a so-called “downgradient” closure, the correct way to do so is by

assuming that the subfilter momentum flux is linearly and isotropically related to

the strain tensor 2 symm(∇ur
i). Since the individual fluid partitions are not diver-

gence free, careful application of this choice must also introduce an extra isotropic

stress, as discussed in the previous sections.

3.5 Boundary conditions

The boundary conditions must also be filtered in order to provide a complete equa-

tion set. Periodic conditions are not affected by the conditional filtering, they simply
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pass through to the filtered fields. Other boundary conditions are affected by a) the

usual problems of the finite extent of spatial filters close to a boundary (Fureby

and Tabor 1997), and b) Neumann boundary conditions are additionally affected by

non-commutation of spatial derivatives with multiplication by the indicator func-

tions.

The former effect, (a), would in general require the replacement of boundary con-

ditions by so-called “wall functions” (standard practice in LES) which are dependent

on the grid spacing in the vicinity of the boundary. For instance, in the case of ve-

locity boundary conditions, the correct form for the boundary condition depends

on whether the closest grid point to the boundary lies in the viscous sublayer, the

buffer layer, or the log-layer.

This problem can be partially negated by using an anisotropic filter, with char-

acteristic width much smaller in the direction perpendicular to the boundary than

in the direction parallel. Such anisotropic filters are generally implied in modelling

of the atmosphere.

The second effect is relevant regardless of filter scale. For a Neumann boundary

condition of the form

n̂ · ∇ϕ = χ, (3.117)

where n̂ is a unit vector field normal to the boundary, multiplication by an indicator

function Ii gives:

Iin̂ · ∇ϕ = Iiχ (3.118)

=⇒ n̂ · ∇(Iiϕ)− ϕn̂ · ∇Ii = Iiχ, (3.119)

where the product rule has been used in going from the first line to the second.

Neglecting the non-commutation of a spatial filter with the spatial derivative, and

assuming that n̂ varies slowly on the filter scale, the conditionally filtered Neumann

boundary condition is:

n̂ · ∇ϕi +
1

σi

[
ϕin̂ · ∇σi − ϕn̂ · ∇Ii

]
= χi. (3.120)

The terms in square brackets are not in general zero, and rely on the boundary

conditions for σi and Ii. To determine both of these conditions, knowledge of the

behaviour of the indicator function in the vicinity of the boundary is required. This

behaviour will depend on asymptotics of whatever variables define the indicator,

and will therefore in general be different for different choices of indicator function.
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Clearly the above expression simplifies to

n̂ · ∇ϕi = χi (3.121)

if either ϕ = 0 or n̂ · ∇Ii = 0 on the boundary.

An exact integral expression for −ϕn̂ · ∇Ii follows from the results of Section 3.3:

−ϕn̂ · ∇Ii =

∫
∂Di∩∂D

g(ε)ϕn̂ · n̂∂Di d(∂Di ∩ ∂D), (3.122)

where ∂Di ∩ ∂D is the intersection of the physical boundary of the domain, ∂D,

with the boundary of fluid partition i, ∂Di. Clearly this is only generally zero if

those two boundaries either do not intersect, or are orthogonal wherever they do

intersect.

The boundary conditions for the fluid fractions themselves depend on the limit

of Ii as the boundary is approached. No more can be said without specifying what

the Ii represent, which is beyond the scope of this chapter.

3.6 Conditional horizontal averaging of the first nor-

mal mode of Rayleigh-Bénard convection

To make the preceding analysis more concrete, we shall explicitly conditionally filter

a simple flow. Consider the problem of Rayleigh-Bénard convection between two

free boundaries; after subtracting a horizontally homogeneous, time-independent,

zero-flow reference state (see Section 2.1), the first normal mode solutions for the

buoyancy, b, and vertical velocity, w, are (Chandrasekhar 1961, p. 23):

b = B cos

(
πx√
2H

)
sin
(πz
H

)
, (3.123)

w = W cos

(
πx√
2H

)
sin
(πz
H

)
, (3.124)

where H is the depth of the domain, and B,W ∈ R>0 are constants. The flow is

periodic in x, with period 2
√

2H (for the most unstable mode). The same analysis

can be performed for the case of no-slip boundaries; nothing significant changes, as

the horizontal dependence of the solution is still sinusoidal, simply with a different

wavelength for the most unstable mode. However, the vertical dependence is more

cumbersome; see p. 39 of Chandrasekhar (1961).

The divergence of the momentum equation gives

∇2P =
∂b

∂z
, (3.125)
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giving the corresponding expression for the pressure:

P = Π cos

(
πx√
2H

)
cos
(πz
H

)
, (3.126)

with Π = −B 2H/3π . From the mass continuity equation we find

u = −
√

2W sin

(
πx√
2H

)
cos
(πz
H

)
(3.127)

for the horizontal velocity. It is easily confirmed that this is a solution to the

Boussinesq equations (2.4)-(2.6) on the domain {x, z, t} ∈ D = [0, 2
√

2H]× [0, H]×
[0,∞), with periodic boundaries in the x direction and stress-free boundaries in the

z-direction, once a stationary hydrostatically balanced solution dependent only on

z has been factored out.

Let us now partition the flow into rising and falling parts: by inspection of w(x, z)

we find

w > 0 in the region −
√

2H

2
< x <

√
2H

2
, (3.128)

w < 0 in the region

√
2H

2
< x <

3
√

2H

2
, (3.129)

so the indicator function does not depend on z. Let us conditionally average in

the horizontal. From equations (3.11)–(3.14), the full conditionally horizontally

averaged two-fluid 2D Boussinesq equation set is (making the replacements ϕr
i → ϕi,

S+
i

r → σjSji, and replacing (. . . )r → (. . . )):

∂σi
∂t

+
∂

∂z
(σiwi) = σjSji − σiSij, (3.130)

∂σiwi
∂t

+
∂

∂z

(
σiw

2
i

)
= σibi − σi

∂P

∂z
− ∂

∂z
(σipi)−

[
P
∂σi
∂z
−
(
P
∂Ii
∂z

)]
+ ν

∂2

∂z2
(σiwi)

− ν ∂
∂z

(
w
∂Ii
∂z

)
− ν

{
∂Ii
∂x

∂w

∂x
+
∂Ii
∂z

∂w

∂z

}
+ σjw

T
jiSji − σiwT

ijSij −
∂

∂z
(σisi(w,w)) ,

(3.131)

∂σibi
∂t

+
∂

∂z
(σiwibi) = κ

∂2

∂z2
(σibi)− κ

∂

∂z

(
b
∂Ii
∂z

)
− κ

{
∂Ii
∂x

∂b

∂x
+
∂Ii
∂z

∂b

∂z

}
+ σjb

T
jiSji − σibT

ijSij −
∂

∂z
(σisi(b, w)) ,

(3.132)

∑
i

∂

∂z
(σiwi) = 0. (3.133)
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Clearly the fluid fraction in each partition is equal to 1/2 everywhere,

σw>0 = σw<0 = 1
2
. (3.134)

For the pressure, we get:

Pw>0(z) =
1

σw>0

1

2
√

2H

∫ H√
2

− H√
2

Π cos

(
πx√
2H

)
cos
(πz
H

)
dx

=
2Π

π
cos
(πz
H

)
, (3.135)

Pw<0(z) = −2Π

π
cos
(πz
H

)
. (3.136)

The mean pressure, i.e. the un-conditioned horizontally-averaged pressure, is zero.

For the vertical velocity, we get:

ww>0(z) =
2W

π
sin
(πz
H

)
, ww<0(z) = −2W

π
sin
(πz
H

)
(3.137)

=⇒ dww>0

dz
=

2W

H
cos
(πz
H

)
,

dww<0

dz
= −2W

H
cos
(πz
H

)
. (3.138)

Therefore the difference between the pressure in each partition and the mean pres-

sure is equal to minus the divergence of the velocity field in that partition, multiplied

by a constant. The constant is given by

γ =
Pw>0

− dww>0/dz

=
2

3π

BH2

W
. (3.139)

Assuming a free convective scaling, B = ∆B,W =
√

∆B H, this gives

γ

ν
=

2

3π

√
∆B H3

κν
Pr−1/2

=
2

3π
Ra1/2 Pr−1/2 . (3.140)

This result is exactly the expected scaling of γ(Ra,Pr) (see Section 4.2.2), with the

width of the plumes, δ, set to scale with H: δ ∼ H. This is the only possible scaling

δ can take in this simple example.

Now we horizontally average the advection of the indicator function:

1

2
√

2H

∫ 2
√

2H

0

u · ∇Iw>0 dx = − 1

2
√

2H

∫ 2
√

2H

0

u · n̂∂Dw>0δ(x ∈ ∂Dw>0) dx
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= − 1

2
√

2H

∫ 2
√

2H

0

(u · n̂∂Dw>0)
[
δ(x−

√
2H
2

) + δ(x− 3
√

2H
2

)
]

dx

= − 1

2
√

2H

(
u(
√

2H
2

)− u(3
√

2H
2

)
)

=
W

H
cos
(πz
H

)
(3.141)

=
d(σw>0ww>0)

dz
(3.142)

= σw>0
dww>0

dz
, (3.143)

so the filtered advection of the indicator function gives rise to a divergence within

the conditionally-filtered velocity field, precisely as expected.

We can also use the results of section 3 to directly calculate the exchange terms

between the two fluids. For the fluid fraction transfer rate, Sij, we can use (3.60)

with a horizontal-average kernel to get:

σw<0S<> =
1

2
√

2H

∫
∂D<>

H(−u · n̂∂D<>)× (−u · n̂∂D<>) d(x ∩ ∂Dw<0)

=
W

H
H(z − H

2
)(− cos

(
πz
H

)
), (3.144)

and σw>0S>< =
W

H
H(H

2
− z)(cos

(
πz
H

)
). (3.145)

Here <> is shorthand for w < 0→ w > 0. This expression matches exactly with the

previous result for the advection of the indicator function Iw>0, as expected given

that ∂σi/∂t = 0 for this problem, and so 〈u · ∇Ii〉 = σjSji − σiSij.
From (3.60) with the function g equal to a horizontal average kernel times b or

w it follows that

bTij = 0, wTij = 0. (3.146)

This is clear from inspection since ∂D0 is made up of w = 0 surfaces, which coincide

with b = 0 surfaces. Note that since we subtracted the reference solution from the

normal mode solutions, the actual transferred buoyancy is equal to the reference

buoyancy, bR := (∆B/2)(1− (2z)/H).

The analysis of this simple normal mode solution shows that the pressure dif-

ferences between the fluid partitions can be important; that for this simple flow, it

can be shown explicitly that the pressure differences are proportional to a constant

times the divergence of the fluid flow within a partition; and that the divergence is

exactly equal to the filtered advection of the indicator function.

This section also demonstrated the use of several of the exact results concerning

gradients of the indicator function, showing that they are useful calculational tools.
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3.7 Discussion and conclusions

In this chapter we have:

• provided a derivation of a multi-fluid Boussinesq equation set, which will be

the focus of work for the remainder of this thesis, taking particular care with

viscous and relabelling terms;

• used the results for derivatives of the indicator function to provide integral

expressions for many of the unknown subfilter terms requiring closure, aiding

in their interpretation;

• (semi-)rigorously treated the material derivative of the indicator function in

terms of the theory of distributions, leading to useful expressions for exchange

terms between the fluids, and also unifying and extending previous work on

conditionally-averaged/filtered fluid dynamics (Dopazo 1977; Thuburn et al.

2018; Yano 2014);

• shown that a careful treatment of the viscous terms introduces a new isotropic

viscous stress dependent entirely on resolved variables (missed in previous

studies);

• argued that the above results suggest modelling pressure differences between

the partitions as bulk viscous stresses — even in flows where the underlying

fluid is incompressible;

• discussed the energetic consequences of this model, showing it to be consistent;

• directly calculated the conditionally filtered flow for a very simple problem,

showing explicitly that a divergent conditionally-filtered flow appears from a

divergence-free underlying flow; directly shown that the pressure differences

between the fluid partitions are a) large, and b) exactly equal to a constant

times the divergence within the fluid partition; shown that this constant scales

consistently with the scaling argument to be presented in Section 4.2.2.
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Chapter 4

Two-fluid modelling of Rayleigh-Bénard

convection in a single column

Note that the work in this Chapter has been published in Shipley et al. (2022).

4.1 Introduction

Multi-fluid modelling has recently been proposed as an approach to representing

convection in the grey zone (Tan et al. 2018; Thuburn et al. 2018; Yano 2014); simi-

lar equation sets are used for the modelling of multi-phase flows in engineering (e.g.

Städtke 2007). In the convection context, this takes inspiration from traditional

mass-flux parametrizations in splitting the fluid into multiple components, which

may represent updrafts, environment, downdrafts etc.. The split is applied directly

to the governing equations, which are then spatially filtered, allowing a fully 3D

and time-dependent framework to be derived (Thuburn et al. 2018; Chapter 3 of

this thesis). Neither quasi-equilibrium nor small updraft fraction are assumed in the

derivation. Each “fluid” evolves according to its own prognostic equations, interact-

ing with other fluids via the pressure gradient, and terms involving the exchange of

mass, momentum, energy, and tracers. These exchange terms are the analogue of

entrainment, detrainment, and cloud-base mass-flux in traditional models, and must

be parametrized. Convection is inherently a part of the dynamics in this framework:

there is no separate convection scheme which is called by the dynamical core.

In order to build a multi-fluid model of atmospheric convection, the multi-fluid

equation set must be closed. The form of these closures directly depends on the

definition of the fluid partitions (Chapter 3; see also de Rooy et al. 2013). For

example, the single-column two-fluid model of Thuburn et al. (2019) contains en-

trainment and detrainment closures designed to capture coherent structures in the

convective boundary layer, whereas the closures in Cohen et al. (2020) are designed

to model a second fluid in the cloud layer only. Perturbation pressure closures for

127



128 4. Two-fluid modelling of Rayleigh-Bénard convection in a single column

the latter approach were suggested in J. He et al. (2020). Entrainment and detrain-

ment closures based on velocity divergence, and a bulk viscous parametrization for

the perturbation pressure, were proposed and tested in Weller et al. (2020), but the

test cases used forevaluation were non-turbulent, unlike the real atmosphere. All of

these multi-fluid models have been single-column, and used standard atmospheric

test cases (e.g. dry rising bubble, dry convective boundary layer, oceanic and conti-

nental shallow cumulus, diurnal deep convection) for verification. While prior work

shows the considerable promise of the multi-fluid method, little work has been done

testing the response of a specific multi-fluid scheme to a variety of forcings, or sug-

gested how the closure constants should scale with that forcing. Such investigation

could lead to more consistent results compared to tuning a model to a handful of

test cases.

One motivation for multi-fluid modelling is that, given that it reduces to mass

flux under certain additional assumptions, we can draw on the wealth of previous

work on closures for mass flux schemes. Indeed, this has been the starting point for

most multi-fluid models to date (Tan et al. 2018; Thuburn et al. 2019), especially for

entrainment and detrainment. As this work progresses it will be important to dis-

cover which features can carry over from the homogeneous equilibrium setting, and

which must be replaced. A very important difference between the two approaches,

however, is that the multi-fluid approach includes both time-dependence and hori-

zontal fluxes, which must be inserted ad-hoc in traditional mass flux schemes. There-

fore despite the decades of research on mass flux approaches, it can tell us little about

how to model the horizontal fluxes and memory terms which are so vital in the grey

zone.

To gain a better understanding of the multi-fluid equations, and how some of

the new closure terms affect the solution, we present a single-column model of dry

Rayleigh-Bénard convection with one rising and one falling fluid. RBC is the sim-

plest relevant convection problem: the equations and boundary conditions are as

simple as possible while still allowing for a fully turbulent convective solution. RBC

has been extensively studied, and a wealth of experimental, numerical, and theo-

retical results make it a well-constrained starting point (Ahlers et al. 2009; Chan-

drasekhar 1961; Chillà and Schumacher 2012). In particular, the scaling of bulk

buoyancy (Nu) and momentum (Re) transport with the applied buoyancy forcing

(Ra) is well understood over at least ten decades. For a more detailed overview of

RBC, refer back to Chapter 2.

Any two-fluid parametrization of RBC should therefore aim to capture these bulk

features of RBC, in particular the described scaling behaviour of Nu and Re with

Ra. It is important to understand the response of the model in a fully-parametrized

equilibrium setting before moving to the grey zone. This will help pin down the
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physics of a multi-fluid model of convection, free of the complexities — especially

microphysics and phase changes — of the real atmosphere.Although single-column,

this model retains full time dependence, and places no restrictions on the magnitude

of the area fraction, distinguishing it from a traditional mass flux closure.

The chapter begins with a review of the multi-fluid Boussinesq equation set de-

rived in Chapter 3. Closures for one rising and one falling fluid which attempt to

capture the large-scale overturning circulation are presented in Section 4.2.1, and a

scaling argument is presented for the magnitude of the pressure differences between

the fluids in Section 4.2.2. The numerical method is then described in Section 4.3.

In Section 4.4, results of the two-fluid single-column model (Section 4.2.1) are com-

pared with horizontally-averaged results from the DNS (Chapter 2, Section 2.2) over

a range of buoyancy forcing spanning eight decades (102 ≤ Ra ≤ 1010), and the sen-

sitivity of the model to its two dimensionless closure constants is investigated. The

chapter concludes with a summary of its results and their relevance to convection

parametrizations, and a discussion of avenues for future research.

4.2 Multi-fluid equation set and closure choices

As a first step towards building a multi-fluid parametrization of convective turbu-

lence, we motivate and present a two-fluid single-column model of dry Rayleigh-

Bénard convection. The full viscous multi-fluid Boussinesq equation set is (derived

in Chapter 3):

∂σi
∂t

+∇ · (σiui) = S+
i − S−i , (3.11)

∂σiui
∂t

+∇ · (σiui ⊗ ui) = σibik− σi∇P −∇(σipi)−
[
P∇σi − P∇Ii

]
+ ν∇2σiui − ν∇ · (u⊗∇Ii)T − ν∇Ii · (∇u)T

+ uS+
i − uS−i −∇ · (σisi(u,u)),

(3.12)

∂σibi
∂t

+∇ · (σiuibi) = κ∇2σibi − κ∇Ii · ∇b− κ∇ · b∇Ii

+ bS+
i − bS−i −∇ · (σisi(u, b)),

(3.13)

∑
i

∇ · (σiui) = 0. (3.26)∑
i

σi = 1. (3.25)

Here an overbar denotes a spatial filter (Germano 1992); i ∈ {0, 1, . . . , n} indexes the

fluid partitions; Ii is an indicator function for fluid i; σi := Ii is the fraction of fluid i

contained within a characteristic filter volume; ui := Iiu
/
σi and bi := Iib

/
σi are the
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velocity and buoyancy fields of fluid i; pi := IiP
/
σi −P is the difference between the

conditionally-filtered pressure in fluid i and the unconditionally filtered pressure P ;

S±i ,uS±i , bS±i are respectively sources and sinks of fluid fraction, momentum, and

buoyancy in fluid i arising from the relabelling of fluid. The unconditionally-filtered

pressure, P , ensures the incompressibility of the mean flow, equation (3.26).

Equations (3.11)-(3.25) are derived by conditionally spatially filtering the Boussi-

nesq equations (2.4)-(2.6) in the manner set out by Thuburn et al. (2018); however,

here viscous terms and sources and sinks of fluid fraction are retained from the out-

set. The only terms neglected here are those arising from possible non-commutation

of the spatial filter with the partial derivatives. For a full derivation and discussion

of the terms requiring closure, see Chapter 3.

The multi-fluid analogues of the exact integral relations (2.23)-(2.22) are much

more complex, and will not be used in this chapter. However, it is worth noting

that averaging Equation (3.13) over a horizontal area and over time, then assuming

a stationary state, gives:

∇ · 〈σiuibi − κ∇(σib
r
i) + κ(b∇Ii)r + σisi(u, b)〉A,t

= −〈κ(∇Ii · ∇b)r〉A,t +
〈
(bS+

i )
r − (bS−i )

r〉
A,t

(4.1)

=⇒ ∂

∂z
〈σiuibi − κ∇(σib

r
i) + κ(b∇Ii)r + σisi(u, b)〉A,t

= −〈κ(∇Ii · ∇b)r〉A,t +
〈
(bS+

i )
r − (bS−i )

r〉
A,t
.

(4.2)

Therefore the analogue of the Nusselt number in multi-fluid RBC must include two

extra contributions, one due to the subfilter flux of buoyancy (which would exist in

a similar form in spatially filtered RBC), and the other purely due to the conditional

filtering. (This assumes that the buoyancy transfers may not be written inside a

divergence.) Of course, this within-partition Nusselt number will not generally be

independent of height due to the relabelling of fluid and the non-conservative part

of the subfilter viscous term. However, the Nusselt number of the total flow (i.e.

summed over all partitions) remains independent of height. This has the important

consequence that parametrizations of κ(∇Ii · ∇b)r and ∇ · κ(b∇Ii)r must sum to

zero over all partitions, and parametrizations of the second term must remain flux

divergences, otherwise the exact constraint on the Nusselt number will be violated.

It is obvious from their form that these constraints should apply; this is merely

an example of an explicit consequence arising from not respecting exact constraints

when building parametrizations.

4.2.1 Closures

The terms in equations (3.11)-(3.13) that require closure can be split into:
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• pi, the difference between the conditionally-filtered pressure in fluid i and the

unconditionally filtered pressure;

• P∇σi−P∇Ii, −ν∇·(u⊗∇Ii)T−ν∇Ii · (∇u)T, and−κ∇Ii · ∇b−κ∇·b∇Ii,
which arise from conditionally-filtering the pressure gradient, viscous diffusion,

and buoyancy diffusion terms;

• −∇·
(
Iiu⊗ u− σiui ⊗ ui

)
, and −∇·

(
Iiub− σiuibi

)
, which are often termed

“subfilter fluxes” and are akin to the Reynolds stress and subfilter buoyancy

flux, respectively, in normal higher-order modelling of turbulence;

• S±i ,uS±i , bS±i , which arise from filtering the re-labelling of fluid parcels.

The physical interpretations of these terms were discussed in Section 3.4. Here we

present closures that attempt to model the dominant coherent overturning structures

of RBC (seen in the DNS, Figure 2.2).

For this study, differences between conditionally-filtered and unconditionally-

filtered pressures are parametrized as pi =
(∑

j σjγi∇ · uj
)
− γi∇ · ui, where γi

is a volume (or “bulk”) viscosity. This form was derived in Chapter 3 by analogy

with the “bulk viscous pressure” which arises in compressible fluid dynamics (see

e.g. Batchelor 1967).We also showed in Chapter 3 that this form is exactly correct for

the first normal mode of free-slip RBC. This parametrization has successfully been

used by Weller et al. (2020), where it was argued that such a form is plausible since,

in the underlying Boussinesq flow, the pressure is simply a Lagrange multiplier to

enforce the divergence-free condition.Parametrizing the pressure differences in this

way then serves to restrict the divergences within each partition from becoming too

large.

Residual terms arising from conditionally-filtering the pressure gradient and dif-

fusion terms are closed via a mean-field approximation:

• P∇σi − P∇Ii → P∇σi − P∇σi = 0;

• −ν∇ · (u⊗∇Ii)T − ν∇Ii · (∇u)T → −ν∇ · (u⊗∇σi)T − ν∇σi · (∇u)T;

• −κ∇Ii · ∇b− κ∇ · b∇Ii → −κ∇σi · ∇b− κ∇ · b∇σi.

These choices retain the correct sum over all fluids for the entire pressure, viscous,

and diffusive terms, respectively. They also cause the fluid fractions to behave

passively in the case of two identical fluids, and in the absence of transfers: the

Eulerian derivatives for ui and bi do not depend on σi if the two fluids have the

same ui and bi.

We assume that the internal subfilter fluxes of momentum and buoyancy within

each partition are negligible, i.e. si(u,u) ≈ 0, si(u, b) ≈ 0. Via the decompo-

sition of subfilter fluxes into contributions from coherent structures and internal
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variability, equation (3.18), this implies assuming that the multi-fluid split cap-

tures all of the subfilter variability in the full momentum and buoyancy fluxes1,

i.e.|
∑

i σi(ui − u)⊗ (ui − u)| � |
∑

i σisi(u,u)|,
∣∣∑

i σi(ui − u)(bi − b)
∣∣� |∑i σisi(u, b)|.

While this will never be exactly true — some further representation of internal sub-

filter variability is likely to be required — it is instructive to see how well a multi-

fluid model with no extra subfilter modelling can perform when simulating a fully

turbulent flow. In the single column context this requires the vertical grid to ad-

equately resolve the boundary layers, as in the DNS, to avoid the introduction of

wall functions.

To proceed further, we must decide what the labels Ii represent. The simplest

choice is to restrict to two fluids; the symmetries of the Rayleigh-Bénard problem

suggest choosing one falling and the other rising: let i = 0 denote fluid with w ≤ 0,

and i = 1 denote fluid with w > 0 (as in Weller et al. 2020). Then fluid 1 represents

“updrafts” while fluid 0 represents “downdrafts”. This choice of definitions for the

two fluids, coupled with the discrete symmetry of the unfiltered equations under

the simultaneous transformations z → H − z, b → −b, forces
∫
D σi dV = 1

2
. This

constraint can be used as a “sanity check” for both the initial conditions and the

transfer terms S±i . The discrete symmetry of the fluids under exchange also forces

γi = γj if γ is not a function of z.

Specializing to two fluids allows the sources of fluid fraction i to be written as

S+
i = σjSji, where σjSji is the rate of transfer of fluid fraction from j to i; similarly,

the sinks may be written as S−i = σiSij. We choose to model the exchanges of

momentum and buoyancy from fluid i to j as a characteristic value, uTij or bTij, times

the rate of transfer of fluid fraction from i to j, σiSij. This aligns with the modelling

approach taken in other recent works on multi-fluid modelling (McIntyre et al. 2020;

Thuburn et al. 2019, 2018; Weller and McIntyre 2019; Weller et al. 2020).

Partitioning the flow based on the sign of w forces wTij = 0. For a single-column

model, it remains only to specify the form of the fluid fraction transfer rate, Sij,

and the transferred buoyancy, bTij (for a 2D or 3D model, the horizontal components

of the transferred velocity would also need to be specified). For the fluid fraction

transfer rate we choose

Sij = max(−∇ · ui, 0), (4.3)

which in 1D is similar to dynamical entrainment (Houghton and Cramer 1951),

and follows the successful implementation of the same divergence-based transfer in

1Note that the converse is not necessarily true, i.e.
∑
i σisi(a, b) = 0 ; si(a, b) = 0 for any i.

Therefore there may well be flows where a multi-fluid split dominates the subfilter fluxes, yet the
partitioned subfilter fluxes si(a, b) are not small and need to be retained.
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Weller et al. (2020). This aims to capture the large-scale overturning circulation,

and is exactly correct for the first normal mode of RBC with stress-free boundaries

(shown in Chapter 3). McIntyre (2020, chapter 2) also shows that this choice of

transfer rate removes the problematic Kelvin-Helmholtz–like instability for a two-

fluid Boussinesq system (Thuburn et al. 2019).

The transferred buoyancy must depend on the distribution of buoyancy within

each fluid, and on the detailed dynamics of the relabelling. In the absence of this

information, we choose a simple model:

bTij = bi + (−1)iC|bi|, (4.4)

with some dimensionless constant C ≥ 0. That is, the buoyancy of fluid parcels

relabelled from i to j is modelled as the mean buoyancy within the fluid i plus or

minus some constant times the magnitude of the buoyancy, to crudely approximate

the subfilter buoyancy variability. The signs are chosen to model the fact that the

fluid transferred from the falling (0) to the rising (1) fluid is expected to be more

buoyant than the average falling fluid parcel for that height, while the reverse should

be true for transfers from the rising (1) to the falling (0) fluid. This is a similar

formulation to that used by Thuburn et al. (2019), though in theirs the transferred

value depends on both the initial and destination fluids, rather than just the initial

fluid.

Making these closure assumptions reduces the equation set to:

∂σi
∂t

+∇ · (σiui) = σjSji − σiSij, (4.5)

∂σiui
∂t

+∇ · (σiui ⊗ ui) = σibik− σi∇P −∇(σipi)

+ ν∇2σiui − ν∇ · (u⊗∇σi)T − ν∇σi · (∇u)T

+ σju
T
jiSji − σiuTijSij,

(4.6)

∂σibi
∂t

+∇ · (σiuibi) = κ∇2σibi − κ∇σi · ∇b− κ∇ · b∇σi

+ σjb
T
jiSji − σibTijSij,

(4.7)

with i, j ∈ {0, 1}, and the specific parametrization choices:

Sij = max(−∇ · ui, 0), (4.8)

wTij = 0, (4.9)

bTij = bi + (−1)iC|bi| (4.10)

pi =

(∑
j

σjγ∇ · uj

)
− γ∇ · ui. (4.11)
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The equations are given in vector form because of the desire to eventually create

a 3D grey-zone convection parametrization; to that end the subsequent numerical

method is also three-dimensional. Note, however, that in the form (4.5)-(4.11), the

horizontal components of the transferred velocity still require closure.

Boundary conditions

As noted in Section 3.5, the boundary conditions for multi-fluid equations are non-

trivial. Conditionally filtering the boundary conditions for RBC gives ui(z =

0, H) = 0, bi(z = 0, H) = ± ∆B/2. The Neumann boundary condition for the

unconditionally filtered pressure (required for the numerical solution, which solves

elliptic equations for the pressures) is hydrostatic, dP
/

dz = b(z = 0, H). Boundary

conditions on the perturbation pressures are chosen to be zero-gradient, dpi/dz = 0.

Because the σi equation is a transport equation with no diffusion, boundary

values of σi are not in the domain of dependence of its solution. The asymptotic

boundary behaviour of σi is thus entirely dependent on the asymptotic behaviour

of the transfer terms as the boundaries are approached. Boundary values of σi

are however required for the momentum and buoyancy equations, which do contain

second derivatives of σi. These boundary values should be set by extrapolated values

of σi from the interior of the domain. However, for this study we choose zero-gradient

conditions for σi for better numerical behaviour. Heuristically this means that we

are imposing no creation of fluid in either partition at the boundary.

4.2.2 Scaling of pressure differences between fluids

In single-column form, equations (4.5)-(4.11) contain two free parameters: γ and

C. C is dimensionless and should be O(1), but γ has the dimensions of (bulk)

viscosity and does not have an obvious magnitude. In this section we present a

scaling argument for γ with the external dimensionless control parameters Ra,Pr,

thus reducing the model to the choice of two dimensionless constants which should

both be O(1).

In convection, a distinction is often made between filamentary plumes and a well-

mixed environment; this distinction is clearly seen in the example RBC buoyancy

fields of Figure 2.2, and is the basis of the conceptual “updraft”-“environment”

partition. We assume that such a plume has a length ∼ H, a width δ (to be

determined), and the along-plume flow scales with the large-scale circulation U ∼
UB =

√
∆B H. Orienting a local Cartesian co-ordinate system such that x̂ points

parallel to the plume and ẑ points normal to it, the scaled continuity equation gives:

U

H

∂ũ

∂x̃
= −W

δ

∂w̃

∂z̃
=⇒ W ∼ U

δ

H
. (4.12)
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Splitting the buoyancy equation similarly into its plume-parallel and -normal parts

gives: (
∂b̃

∂t̃
+
∂ũb̃

∂x̃
+
∂w̃b̃

∂z̃

)
=
κTb
δ2

(
δ2

H2

∂2b̃

∂x̃2
+
∂2b̃

∂z̃2

)
. (4.13)

Note the buoyancy scaling cancels here. The simplest choice of the time scale isthe

diffusive scaling Tb = δ2/κ , which makes the coefficient of the final term on the right-

hand side one, consistent with filamentary plumes being diffusion-limited in well-

developed turbulent flows. Scaling the plume-parallel momentum equation witha

viscous time scale Tm := δ2/ν = Tb/Pr, buoyancy with ∆B and pressure with

P ∼ U2 (Bernoulli scaling), leads to:

∂ũ

∂t̃
+
∂ũũ

∂x̃
+
∂ũw̃

∂z̃
= Re

δ2

H2

(
−∂p̃
∂x̃

+ b̃ ĝ · x̂
)

+

(
δ2

H2

∂2ũ

∂x̃2
+
∂2ũ

∂z̃2

)
, (4.14)

where Re = UH/ν = Pr−1/2 Ra1/2. The pressure gradient and buoyancy terms are

assumed to drive the flow, and so Re δ2/H2 = O(1) and:

δ

H
= Re−1/2 . (4.15)

Applying the same scalings to the plume-perpendicular momentum equation, we find

that the across-plume pressure contrast — i.e. the difference in pressure between

the plume and the bulk — must scale as Pz = Pδ/H = ∆Bδ.2

These results are the standard Prandtl-Blasius results with δ the boundary-layer

depth, consistent with the presumption that plumes in RBC are simply detached

from the boundary layers. This is a standard assumption for the kinetic boundary

layer depth in scaling analysis of RBC, for example in the successful theory of

Grossmann and Lohse (2000) for the Nusselt and Reynolds number scalings. The

Re ∝ Ra1/2 result is also expected for RBC in the parameter regimes under study

in this chapter (Ahlers et al. 2009, table 2).

From these results we find that the advection time, H/U , is equal to the mo-

mentum diffusion time Tm = δ2/ν (and, to an O(1) factor of the Prandtl number,

the buoyancy diffusion time Tb), meaning that advection stretches the plume at the

same rate at which diffusion broadens it.

We wish to parametrize the difference between the conditionally-filtered pressure

in partition i, and the unconditionally-filtered pressure, as a bulk viscous stress:

pi = −γ(∇ · ui −
∑

j σj∇ · uj), equation (4.11). Assuming that the multi-fluid

2Note that this argument only applies where ĝ ·x̂ = O(1), which is expected to be in the vicinity
of the boundaries, including the plume recirculation regions. Therefore we might expect a more
careful argument to be required to get the scaling of Pz correct in the interior of the flow.
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split is dominated by a plume vs. bulk contrast, then ui scales with the velocity

of the plumes,
√

∆B H, and the divergence within each fluid should then scale

as ∇ · ui = (U/H)∇̃ · ũi (so long as the filter width is & H). Collecting the

nondimensionalized expressions for the pressure and the bulk viscous stress gives:

γ
U

H
∇̃ · ũi = ∆B δ

∂p̃

∂z̃

=⇒ γ

ν
= O(1)× ∆BH

νU
δ = O(1)× U2H

νU

δ

H
= O(1)× Re

1
2

=⇒ γ

ν
= γ̂0 Ra1/4 Pr−1/4, (4.16)

introducing the O(1), dimensionless constant γ̂0.

This scaling law for γ(Ra,Pr) reduces the model for the pressure perturbation

to the specification of an O(1) constant, γ̂0. Although γ̂0 must be determined

empirically, this determination need only be performed at one Rayleigh number.

Since Pr = 0.707 is constant throughout our experiments, we choose to subsume the

factor of Pr−1/4 ' 1.09 into the definition of γ̂0 from now on.

4.3 Numerical method

The two-fluid Boussinesq equation set (4.7)-(4.11) is solved in advective form using

the finite volume solver multiFluidBoussinesqFoam; this is part of the Atmos-

FOAM library of CFD codes for atmospheric fluid dynamics, based onVersion 7 of

the OpenFOAM open-source CFD library (The OpenFOAM Foundation 2019). The

code for the solver is available on GitHub at http://www.github.com/AtmosFOAM

/AtmosFOAM-multiFluid; code required to set up, run, and analyse the simulations

may be found at http://www.github.com/AtmosFOAM/danRun. The method is

similar to that detailed in section 3 of Weller et al. (2020); an overview, and choices

specific to this chapter, are presented below.

The spatial discretization uses Arakawa C-grid staggering in the horizontal and

Lorenz staggering in the vertical. Temporal discretization is Crank-Nicolson with

off-centring coefficient α = 0.55.

Prognostic variables are bi and σi at cell centres, and the volume flux φi := ui ·Sf
at cell faces, where Sf is the outward-pointing area vector of face f . Advection

of bi and σi is total variation-diminishing (with a van Leer limiter) to preserve

boundedness.Advection of φi uses linear-upwind (Shaw et al. 2017) which corrects

first-order upwind using linear approximations to the velocity gradient. The terms

involving Laplacians calculate the Gauss divergence of two-point gradients (Weller

and Shahrokhi 2014). Both of these discretizations are second-order accurate on a

uniform grid.

http://www.github.com/AtmosFOAM/AtmosFOAM-multiFluid
http://www.github.com/AtmosFOAM/AtmosFOAM-multiFluid
http://www.github.com/AtmosFOAM/danRun
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Diagnostic variables are the pressures P and pi at cell centres. Solutions for

both P and pi are implicit but not simultaneous: first a Poisson equation is solved

for P , which maintains a divergence-free mean velocity field (i.e. it ensures Equa-

tion (3.26) is satisfied), followed by a Helmholtz equation for each pi. These solutions

are then iterated to convergence. The generalized Geometric-Algebraic MultiGrid

(GAMG) method is used for the implicit pressure solves, with an absolute toler-

ance of 10−6.Preliminary tests suggest that the multi-fluid elliptic problems are not

significantly more stiff than the single-fluid problems.

Spatial discretizations and the iterative pressure solvers use standard Open-

FOAM operators, detailed in the OpenFOAM User Guide (The OpenFOAM Foun-

dation 2019).

The transfer terms Sij are handled explicitly, while the momentum and buoyancy

transfers are implicit and operator-split, as in Weller et al. (2020).This handling of

the transfer terms guarantees boundedness and conservation of energy and momen-

tum (McIntyre et al. 2020).

Two outer iterations (for the whole of the above method) and two inner iterations

(for the implicit pressure solves) are performed per time-step.

With the exception of the transfer terms (which are specifically defined for a two-

fluid system), the described numerical method is suitable for an arbitrary number

of fluid partitions, in up to three spatial dimensions.

Computational cost

Compared to the single-fluid Boussinesq solver, the two-fluid solver detailed above

is slightly more than twice as computationally expensive at a given resolution; this

makes sense, since the two-fluid algorithm solves two copies of the Boussinesq equa-

tions, plus extra terms coupling those equations, as well as two extra equations for

the conservation of fluid fraction. Since this is a development code to explore the

properties and behaviour of multi-fluid models of convection, modularity is prized

over computational efficiency, so the code has not been optimized.

We may however remark that a comparison of the computational cost of two-

fluid code against a single-fluid code with no parametrization of subfilter scales

on the same grid is unhelpful. If the flow is fully resolved, there is no need for

parametrization of any kind, and so the extra fluids are superfluous. If the flow

is fully subfilter – i.e. a single-column model – a single-fluid code cannot produce

any flow, due to the divergence constraint, and so all heat (and moisture) transport

must be by diffusion and by representation of the subfilter flow. This subfilter

representation is traditionally performed via a mass flux-type scheme in atmospheric

convection problems. Multi-fluid modelling is envisaged as a unified framework for
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representing convection from the fully-parametrized to the fully-resolved limit, and

at all scales in between. This means that a two-fluid scheme may potentially be

much cheaper than a single-fluid scheme in the grey zone: consider a two-fluid

scheme which performs as well as a single-fluid scheme which requires twice the

(horizontal) resolution. Despite computing a second fluid, a crude estimate suggests

that the two-fluid scheme would be approximately 4 times cheaper to run.

4.4 Two-fluid single-column model results

For 102 ≤ Ra ≤ 1010, single-column two-fluid simulations were run with the same

vertical resolution as the reference DNS (see Table 2.1) for various values of γ̂0 and

C. The qualitative nature of the solutions is described in section 4.4.1, followed by

an analysis of sensitivity to the choice of γ̂0 and C in section 4.4.2. In section 4.4.3

the global buoyancy and momentum transport, Nu and Re, is examined as a function

of the buoyancy forcing Ra.

For all simulations, the initial state was constructed from a resting hydrostatically-

balanced solution with a linear buoyancy profile and uniform σi = 0.5 in both fluids.

Small non-zero velocities equal to ±10−3 UB were added to ensure correct labeling,

and random perturbations of magnitude |δb| ≤ 0.0008 ∆B drawn from a uniform

distribution were added to the initial linear profile to seed instability3. Simulations

were run until a steady state was reached (9–12 Te); the steady-state profiles of

buoyancy, pressure, vertical velocity, and fluid fraction, were then compared with

the corresponding statistically steady-state time-mean conditionally horizontally av-

eraged DNS profiles. Resolutions, time-step size, and total simulation run time for

each simulation are given in Table 4.1.

The single column model spins up to equilibrium in a remarkably similar manner

to the horizontally-averaged DNS; this is demonstrated in Figure 4.1, which shows

the Nusselt number vs. time for both DNS and single-column simulations at Ra =

105 and 108. For these simulations, γ̂0 = 1.861, and C = 0.5, 0 for Ra = 105, 108,

respectively (see section 4.4.3). At each Ra, convection initiates at a similar time

(≈ 2Te) in both the single-column and DNS flows, seen in the sharp increase in Nu

above the purely diffusive value of 1. This initial convective surge causes a strong

peak in the Nusselt number (slightly overestimated by the single-column model),

before the system gradually settles down towards equilibrium with decaying Nusselt

number under- and overshoots. The under- and overshoots appear stochastic for the

3This value was chosen in order to approximate the same initial available potential energy in
both the DNS and the single-column simulations. However, the (linear) growth rate of instabilities
in a single fluid is not dependent on the size of the initial perturbation, and so the exact magnitude
of the initial perturbations does not matter so long as it is small.
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Ra Ttot/4TB ∆t/4TB

102 19 1.998× 10−4

103 63 3.197× 10−4

2× 103 38 2.557× 10−4

104 19 1.279× 10−3

105 19 1.279× 10−3

106 19 7.992× 10−4

107 19 3.197× 10−4

2× 107 19 5.115× 10−4

108 19 3.197× 10−4

109 19 1.598× 10−4

1010 19 5.115× 10−5

Table 4.1: Details of time-step size and total simulation time for the two-fluid
single-column results (section 4.4). Resolutions are the same as the vertical reso-
lution of the DNS, explained in section 2.2 and given in Table 2.1. All two-fluid
single-column simulations at a given Ra required similar time-steps regardless
of γ̂0 and C, therefore only the values for γ̂0 = 1.861, C = 0.5 (Ra ≤ 107),
γ̂0 = 1.861, C = 0 (Ra > 107) are given.

DNS, whereas they are periodic for the single-column model; that the single-column

model appears less chaotic than the DNS is unsurprising.

The same steady state was reached when initializing from other initial conditions

(e.g. initializing from the DNS reference profiles), provided the identities of the

fluids were initialized correctly and the initial column-integrated fraction of fluid in

each fluid was equal to 0.5. This suggests that the steady state is robust. Similar

qualitative spin-up behaviour is also observed with different values of γ̂0 and C.

Thus, for the remainder of the chapter we consider only the steady state, and not

the spin-up.Given the convergence of time averages over 5, 10, and 15Te shown in

Figure 4.1, for the remainder of this chapter all figures and quoted statistics are

from steady-state simulations averaged over 10Te (unless otherwise stated).

We begin our study of the two-fluid single-column model steady-state by looking

at the qualitative behaviour of the equilibrium profiles in different Rayleigh number

regimes. We then investigate the sensitivity of those profiles to the two closure

constants, C and γ̂0. Finally we examine the scaling of the global parameters Nu

and Re with Ra produced by the model.

4.4.1 Phenomenology

For each of the characteristic Rayleigh numbers Ra = 105, 108, 1010 (as in Figure 2.2),

we present and discuss an example two-fluid single column simulation.In this section

the value of γ̂0 was chosen to give a good qualitative fit to the conditionally horizon-

tally averaged DNS buoyancy, pressure, and vertical velocity profiles at Ra = 105.
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(a) DNS, Ra = 105 (b) DNS, Ra = 108

(c) Single-column, Ra = 105 (d) Single-column, Ra = 108

Figure 4.1: Nondimensionalized vertical heat flux vs. time for (a,b) DNS and (c,d)
single-column models. In each subfigure, the blue curve shows the instantaneous
nondimensionalized vertical buoyancy flux, H × (wb− κ ∂b∂z )

/
κ∆B , while the or-

ange, green, and red curves show Nusselt numbers (domain- and time-averaged
nondimensionalized buoyancy flux) for different averaging times. In each plot,
Nu = 1 is shown as a black dotted line. In (c) and (d) γ/ν = 1.861×Ra1/4, with
C = 0.5 for (c) and C = 0 for (d) (see Figure 4.8a).

To avoid possible confusion, this value of γ̂0 was retained for the simulations at

Ra = 108, 1010. The value of C is varied between the turbulent and non-turbulent

simulations. The discussion for each of these examples qualitatively applies to all

simulations within the characteristic Rayleigh number regime.

Laminar (Ra = 105)

At Ra = 105, the DNS exhibits laminar convective rolls (see Figure 2.2a). This

solution is qualitatively characteristic of the flow for all laminar Ra, Rac < Ra . 107.

Steady state results of a two-fluid single-column model governed by equations (4.5)-

(4.11) with γ̂0 ' 0.75, C = 0.5 are shown in Figure 4.2. The mean buoyancy (a) and

pressure (b) profiles match closely between the DNS and the single column model; in

particular the model correctly predicts a well-mixed buoyancy in the fluid interior,

with a sharp buoyancy gradient close to the top and bottom boundaries. The shape
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of the pressure profile is also correct, though the maxima are slightly too high close

to the boundaries.

Good agreement is also seen between the DNS and two-fluid single column model

for the individual fluid buoyancy profiles: the overall shape is correct, though the

profiles are too far apart in the middle of the domain, leading to surplus buoyancy

transport for a given velocity profile. Experiments varying C (see section 4.4.2)

demonstrated C > 0 was required to reproduce a buoyancy overshoot at the top

(bottom) of the rising (falling) fluid. By overshoot, we mean the part of the buoyancy

profile at the interface between the bulk and the buoyancy boundary layer where

dbi/dz changes sign. These overshoots can be seen in the 2D buoyancy field of the

DNS flow of Figure 2.2a and are a general feature of O(1) Prandtl number laminar

RBC. (For Pr > 1, the overshoots become so strong that they begin to be seen even

in the mean buoyancy profile; such profiles can be seen in e.g. Figure 4b of Schmalzl

et al. 2004.) The value C = 0.6 gives the best shape for bi(z) for Ra = 105, but

C ' 0.5 works for all laminar Ra.

The individual fluid velocity profiles are roughly the correct shape; the slight

asymmetry in the location of the maxima in each fluid in the DNS is due to the

gradient of the volume fraction profile in the DNS (i.e. forcing the correct gradient

of σi reproduces the asymmetry in the vertical velocity profiles).

The pressure profiles within each fluid are captured by the scheme, suggesting

that to leading order pi ∝ −γ∇ · ui is an appropriate model of the pressure differ-

ences. The model is particularly good close to the boundaries, but the fluids are

better mixed in the interior of the domain in the DNS, causing the pressure differ-

ences there to be smaller than predicted by the single column model. This could

possibly be remedied by using a z-dependent γ parametrization,either directly or

through dependence on other properties of the flow such as the TKE, which would

fit well with the discussion of LES in section 2.1.3.

The two-fluid model keeps area fractions, σi(z), close to 0.5. This is expected

as the divergence-based transfer is known to keep σi(z) roughly constant (Weller

et al. 2020). In contrast, the area fractions diagnosed from the DNS diverge from

0.5 either side of the centre (where symmetry demands equal fractions), reaching a

maximum close to the boundaries approaching 0.3 and 0.7.

Transition to turbulence (Ra = 108)

Between 107 < Ra . 5 × 108, the DNS solutions transition from laminar flow to

fully developed turbulence. The buoyancy field of Figure 2.2b is characteristic of

this transitional regime. Besides the solutions becoming intermittent and transient

rather than (quasi-)periodic, the plume separation from the boundary layer funda-
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(a) Buoyancy, b (b) Pressure, P

(c) Vertical velocity, w (d) Fluid fraction, σw>0

Figure 4.2: Two-fluid single-column model of Ra = 105 RBC governed by equa-
tions (4.5)-(4.11) and (4.16), with closure constants γ̂0 ' 0.75, C = 0.5. Con-
ditionally horizontally- and time-averaged profiles from the DNS are shown for
reference. Nu = 7.1, reference NuDNS = 5.0.

mentally changes: above Ra ≈ 107, regions of recirculation develop at the base of

the plumes.

Results of a two-fluid single-column model with γ̂0 ' 0.75, C = 0 are compared

with those from the horizontally-averaged DNS in Figure 4.3. Better prediction

of the pressure differences between the fluids near the boundaries is achieved by

increasing γ̂0 by a factor of ≈ 1.5; however this degrades the agreement of the mean

pressure profile with the DNS profile, and significantly decreases the magnitude

of the vertical velocity profiles.Conversely, better prediction of the mean pressure

profile is achieved by decreasing γ̂0 by a factor of approximately 2/3, though this

reduces the agreement in the vicinity of the boundaries. This again suggests that γ

should be a function of z(i.e. it should depend on the distance from the boundaries).

We can better understand the relationship between the mean pressure profile and

the within-partition velocity profiles by considering the steady-state horizontally-

averaged vertical momentum equation. The mean vertical velocity must be zero due

to continuity. For Ra� Rac, the viscous terms are negligible outside of the kinetic
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boundary layers, and the mean buoyancy is also approximately zero outside of the

thermal boundary layers. Thus in the bulk of the fluid the equation reduces to a

balance between the pressure gradient and the turbulent momentum stress:

∂P

∂z
≈ −∂s(w,w)

∂z
. (4.17)

Therefore away from the boundaries, the pressure (up to an arbitrary constant) is

entirely determined by the turbulent momentum stress. Using the exact decompo-

sition (3.18) we can rewrite this in terms of the within-partition vertical velocities

as (choosing the arbitrary constant to be zero):

−P =
∑
i

σi (wi − w)2 +
∑
i

σisi(w,w) (4.18)

= σ0w
2
0 + σ1w

2
1 + σ0s0(w,w) + σ1s1(w,w). (4.19)

Thus in our two fluid system, differences between the simulated mean pressure pro-

file and the DNS profile arise either from incorrectly capturing the within-partition

vertical velocity profiles, or from neglecting the internal variability within each par-

tition, si(w,w).

As can be seen in Figure 4.3c, the agreement between the simulated vertical

velocity profiles and the DNS profiles is good, showing that at least part of the

discrepancy between the simulated and DNS mean pressure profiles must be due to

neglecting the internal variability. However, in the very centre of the domain, the

vertical velocity profiles are significantly sharper in the DNS than in our simulations;

if the two-fluid simulations captured this effect, it would significantly deepen the

central pressure minimum, as seen in the DNS.

We can also see that a näıve eddy viscosity parametrization of the neglected inter-

nal variability cannot directly explain the discrepancy. Since σ0 ≈ σ1, b0 ≈ b1, w0 ≈
−w1 in the bulk of the domain, we would expect σ0νt,0 ∂w0/∂z ≈ −σ1νt,1 ∂w1/∂z .

Thus a simple downgradient parametrization of the residual turbulent momentum

flux cancels out in the mean momentum equation in the bulk of the domain. How-

ever, it is certainly possible that even a simple downgradient closure could signifi-

cantly change the dynamics in the vicinity of the boundaries such that the indirect

effect propagates to the velocity profiles in the bulk.

Apart from the pressure profiles, comparisons with the DNS reference profiles are

mostly the same as for the laminar case, except that the additional mixing caused

by the recirculation regions at the base of the plumes modifies the profiles in the

near-boundary regions. This has the most obvious effect on the buoyancy profiles

within each fluid, which no longer overshoot, and on the volume fraction profile,
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which is no longer monotonic. The lack of overshoots is reproduced by transferring

the mean buoyancy, C = 0, a suitable model for well-mixed turbulent flow. The

detailed differences to the profiles caused by these recirculation regions are however

not reproduced by this simple parametrization: better representation of the mass

exchanges Sij is required. The recirculation is counter to the large-scale circulation,

and hence is not captured either by our arguments for the scaling of γ, or by the

divergence-based mass transfer.

(a) Buoyancy, b (b) Pressure, P

(c) Vertical velocity, w (d) Fluid fraction, σw>0

Figure 4.3: Two-fluid single-column model of Ra = 108 RBC governed by equa-
tions (4.5)-(4.11) and (4.16), with closure constants γ̂0 ' 0.75, C = 0. Con-
ditionally horizontally- and time-averaged profiles from the DNS are shown for
reference. Nu = 36.9; reference NuDNS = 27.9.

Fully developed turbulence (Ra = 1010)

Above Ra ≈ 5 × 108, the DNS flow is fully turbulent, exhibiting structures on

many scales from the domain depth down to the exceptionally thin boundary layers,

shown in Figs. 2.2c-d for Ra = 1010. The recirculations at plume base first exhibited

in the transitional regime divide into multiple small plumes which organize into a

larger-scale circulation. The bulk of the domain is statistically well-mixed.
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Results from a two-fluid single-column model with γ̂0 ' 0.75, C = 0 are shown in

Figure 4.4. Qualitative agreement with the buoyancy and vertical velocity profiles

is still good, but the mean pressure profile predicted by the model now has too little

curvature in the centre of the domain.Better agreement with the mean pressure in

the centre of the domain is achieved with γ̂0 decreased by approximately a factor of

2/3, while the best agreement between DNS and two-fluid model for both the mean

pressure profile and the within-partition profiles close to the boundaries is found for

γ̂0 larger by approximately a factor of 2. As with the Ra = 108 simulation, these

discrepancies are closely linked to errors in the vertical velocity profiles.

Again, the complex mixing of the turbulent flow has strong effects on the volume

fraction profile, causing the volume fraction of rising (falling) fluid to be less than 0.5

close to the lower (upper) boundary. These larger discrepancies between the DNS

and the two-fluid model model are possibly because the w = 0 interface is now very

complex. Figure 4.5 shows the w = 0 interface superimposed on the DNS buoyancy

fields at Ra = 108 and Ra = 1010. Although the dominant rising/falling two-fluid

split is still into columns of falling and rising air with an approximately vertical

interface even in the higher Ra case, the simple split is increasingly complicated by

the complex vortical motions in the bulk of the fluid, and especially close to the

base of the plumes. The intricate dynamics of these interfaces are not accounted for

by our single-column model.

While there are quantitative discrepancies, for all three Rayleigh numbers the

overall agreement between horizontally-averaged DNS and the two-fluid single-column

model is good. Approximately the correct profiles are captured even in the highly

turbulent regime of Ra = 1010. The model performs remarkably well given it has

no representation of sub-filter variability beyond the two-fluid split, showing that

the model captures the essential coherent overturning structures of Rayleigh-Bénard

convection in all three characteristic regimes.

4.4.2 Sensitivity to γ̂0 and C

In this section, the sensitivity of the model to the dimensionless closure parameters

γ̂0 and C is investigated. The effects of changing γ̂0 and C are similar at all Rayleigh

numbers, so for brevity only Ra = 105 is presented.

Sensitivity to γ̂0

Figure 4.6 shows the effect on the two-fluid single-column steady-state of varying γ̂0

from 10−1 . γ̂0 . 101, along with examples in the asymptotically-large and -small

γ̂0 regimes. The experiments were performed with C = 0.5 at fixed Ra = 105, but

the results are similar for all Ra.
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(a) Buoyancy, b/∆B (b) Pressure, P/(∆B H)

(c) Vertical velocity, w/
√

∆B H (d) Fluid fraction, σw>0

Figure 4.4: Two-fluid single-column model of Ra = 1010 RBC governed by equa-
tions (4.5)-(4.11) and (4.16), with closure constants γ̂0 ' 0.75, C = 0. Con-
ditionally horizontally- and time-averaged profiles from the DNS are shown for
reference. Nu = 130; reference NuDNS = 94.5.

The best qualitative match between the single-column and DNS profiles is found

when γ̂0 ' 0.75, as discussed earlier, while the correct heat flux is predicted at

γ̂0 ' 1.861. These values are both O(1), as expected. Agreement with the reference

profiles degrades sharply as γ̂0 moves away from this range.

Increasing γ̂0 increases the buoyancy difference between the fluids, and damps

the vertical velocities — which makes sense since in 1D this parametrization of pi

is similar to diffusion of the vertical velocity within a fluid, even though the sum

correction means no extra viscous term is added to the mean momentum budget.

This effect is already clear at γ̂0 = 2, where the vertical velocities are only ≈ 2/3

of those in the DNS, and the pressure profile is much shallower, though still with

the correct number of turning points. By γ̂0 = 10, the pressure profile loses the

minimum in the centre of the domain, and the vertical velocities are almost zero.

At asymptotically large γ̂0, the system becomes subcritical and the solution is purely

diffusive.

Decreasing γ̂0 rapidly increases the pressure gradient, and deepens the minimum
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(a)

(b)

Figure 4.5: Snapshots of DNS buoyancy fields with overlaid vertical velocity
contours at Ra = 108 (a) and Ra = 1010 (b). Dashed contours denote w > 0,
dotted w < 0, and the solid contour denotes w = 0. Contours above and below
w = 0 are spaced at intervals of UB/4.

of the mean pressure in the centre of the domain. This drastically increases the

vertical velocities — by γ̂0 = 10−1, the maximum vertical velocities are over three

times those of the DNS, and over twice those of the simulations with γ̂0 = 0.75

discussed in detail earlier. Decreasing γ̂0 further only slightly changes these results,

as seen for the asymptotically-small case of γ̂0 = ×10−5.

Sensitivity to C

Figure 4.7 shows the steady-state effect of varying C from 0 (mean buoyancy is

transferred: bTij = bi) to 1 (zero buoyancy is transferred over most of the domain:
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bTij = 0 wherever bi = |bi|). Transfers with C > 1 amount to transferring buoyancies

with magnitude greater than ∆B close to the boundaries, which causes the solution

to become unstable at C ≈ 1.3.

The main effect of increasing C is to generate the aforementioned overshoots in

the within-fluid buoyancy profiles; this also steepens the pressure gradient, deepens

the central pressure minimum, and increases the magnitude of the vertical velocities

in each fluid. These effects are small compared to the order-of-magnitude effects

associated with varying γ̂0: for example, the maximum velocity increases monoton-

ically from 0.3 to 0.45 as C increases from 0 to 1. These effects are qualitatively

similar at all Ra, but for Ra & 107, the individual fluid buoyancy profiles no longer

exhibit overshoots, so C = 0 provides a better fit with the DNS buoyancy profiles.

4.4.3 Scaling of Nusselt number with Rayleigh number

To investigate the performance of the two-fluid single column model more systemati-

cally, the scaling of the Nusselt number for single-column models across the Rayleigh

number range 102 ≤ Ra ≤ 1010 is compared with the DNS results. The scaling

γ/ν ∝ Ra1/4 (section 4.2.2) is evaluated, along with two choices of the transferred

buoyancy, C = 0 and C = 0.5. For each transferred buoyancy, the dimensionless

proportionality factor γ̂0 was fixed by finding the value which gave the correct Nus-

selt number at Ra = 105. Fixing this constant at different Rayleigh numbers changes

the prefactor of the Nu(Ra) scaling, but does not change the scaling itself.

Figure 4.8a shows Nu against Ra for the different values of C and scalings for

γ. The DNS results are shown for comparison, along with results from the single

column model run with both tunable parameters set to zero, C = γ̂0 = 0. All models

with γ̂0 > 0 perform significantly better than the model with γ̂0 = 0, which becomes

supercritical for Ra < 103 and follows a Nu(Ra) scaling with exponent everywhere

> 0.33.

Models with γ/ν ∝ Ra1/4 show exceptional agreement with the DNS heat fluxes

for Ra ≥ 104, giving Nu ∼ Ra2/7 with both C = 0 (upwards-pointing triangles)

and C = 0.5 (downward-pointing triangles). This shows that the Nusselt number

scaling exponent depends on γ/ν but not on C; this makes sense since C is a crude

parametrization for how the flow produces a given heat flux, and should not affect

the scaling of the heat flux itself. Below Ra = 104, models with different values of

C and γ̂0 produce slightly different behaviour: the C = 0, γ̂0 = 1.108 simulations

become convective at Ra < 103, inconsistent with the known Rac ' 1708. While

the C = 0.5, γ̂0 = 1.861 simulations are still diffusive at Ra = 103, the heat flux

at Ra = 2 × 103 is roughly 30% too high, suggesting either a critical Rayleigh

number < 1708, or incorrect scaling of Nu with Ra close to the onset of convection.
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(a) Buoyancy, b/∆B

(b) Pressure, P/(∆B H)

(c) Vertical velocity, w/
√

∆B H

Figure 4.6: Two-fluid single-column model of Ra = 105 RBC governed by equations (4.5)-(4.11) and (4.16), with C = 0.5, showing
sensitivity to γ̂0 (defined in Equation (4.16)) over the range 10−1 ≤ γ̂0 ≤ 101. Profiles in the limit of asymptotically large (105) and
small (10−5) γ̂0 are also shown for reference. γ̂0 = O(1) is expected based on the scale analysis of section 4.2.2. Small values of γ̂0

(. O(10−1)) are shown in the first two columns, values of order 1 in the centre three columns, and large magnitudes (& O(10)) in
the final two columns. Grey shaded regions in plots in the first two columns highlight areas which are not in the domain of plots to
their right.
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Figure 4.7: Two-fluid single-column model of Ra = 105 RBC governed by equations (4.5)-(4.11) and (4.16), with γ̂0 ' 0.75, showing
sensitivity to the transferred buoyancy parameter C (defined in Equation (4.10)) over the range 0 ≤ C ≤ 1.3. C = 0.5 corresponds
to the profiles in Figure 4.2. For C & 1.3, the solution becomes unstable. Results for small values of C (= 0, 0.1) are shown in the
left column; for values around the central value of 0.5 in the middle column; and for large values (≥ 1) in the right column (see text
for interpretation). Grey shaded regions in plots in the right column highlight areas which are not in the domain of plots in the left
and centre columns.
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These discrepancies suggest that the scaling used for γ/ν is not quite correct in the

low Ra regime; unsurprising since the scaling argument assumed Re � 1. For the

intended application to highly turbulent atmospheric convection, however, this does

not present a severe problem.

The single-column model does not naturally capture the drop in the prefactor of

the Nusselt number scaling which occurs as the flow transitions to turbulence around

Ra ∼ 107. The drop in the Nusselt number scaling prefactor may not be a robust

feature of the convective flow, so it is far more important to get the scaling exponent

correct. Such drops in the scaling prefactor are found in other RBC experiments

(see Johnston and Doering 2009 for a 2D numerical example; Roche et al. 2004 for

a 3D experimental example), but appear to be dependent on the nature of the flow

configuration, rather than global in nature like the scaling exponent. However, this

drop can be accurately reproduced by using C = 0.5 for Ra ≤ 107 and C = 0 for

Ra > 107, retaining the value of γ̂0 ' 1.861. With this parametrization, the Nusselt

number is correctly predicted to within 5% across six decades of buoyancy forcing,

104 ≤ Ra ≤ 1010, and approximately the correct transitional behaviour is found

for Ra < 104. This could be diagnostically incorporated into the parametrization

by, for instance, reducing C to 0 whenever the vertical velocity maximum gives a

turbulent Re & 2× 103.

The Reynolds number in the single-column simulations was estimated from the

maximum magnitude of the vertical velocity in each partition; this should scale with

the large-scale circulation, so makes sense for a bulk Reynolds number.We can see

more rigorously why this should match the RMS velocity scales used to estimate the

bulk Reynolds number of the single-fluid flow by considering again the decomposition

of the flow into coherent structures and internal variability:

wRMS :=
√
s(w,w) =

√∑
i

σisi(w,w) +
∑
i

σi(wi − w)2 (4.20)

≈
√
σ0w2

0 + σ1w2
1 ≈ |w0| ≈ |w1| (4.21)

in the centre of the domain. That is, neglecting the internal variability, the within-

partition velocities describe the vertical velocity variance, and so the maximum of√
σ0w2

0 + σ1w2
1 (≈ |w0| due to symmetry once bulk well-mixed) should be a good

estimator of the bulk Reynolds number. Using this estimate, the scaling behaviour

of the Reynolds number is also well-captured (Figure 4.8b), in particular giving the

same scaling exponent as the DNS. Notably, the change in C required to capture

the correct behaviour of Nu does not cause a corresponding kink in the Reynolds

number scaling. This suggests that C really is just a crude measure of the flow

state. Future work would hope to capture these flow states dynamically through
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representing the sub-filter scale variability of the variables within each fluid.

4.5 Summary and conclusions

In this chapter we have shown that the simple two-fluid single column model (4.5)-

(4.11) can qualitatively reproduce horizontal-mean DNS buoyancy, vertical velocity,

and pressure profiles in all three characteristic regimes of Rayleigh-Bénard convec-

tion. A scaling argument for the pressure differences between the fluids allows the

model to predict the correct power-law scalings of Nu ∼ Ra2/7and Re ∼ Ra1/2, and

after measuring a dimensionless constant at one Rayleigh number the magnitude of

Nu can be predicted to within 5% over 6 decades of Ra. The closure set is minimal,

requiring only two constants to be set; and not finely-tuned, as both closure con-

stants may be varied significantly from their central values without destroying the

solution. Intriguingly, the model also captures approximately the correct spin-up

behaviour, and approximately the correct critical Rayleigh number, despite being

designed as an equilibrium parametrization for the high-Rayleigh number regime.

Understanding the reasons for this will form the basis of future work.

Although we use a similar equation set and identical fluid definitions to Weller

et al. (2020), this is the first such study to model a fully turbulent regime with these

fluid definitions. It is also the first multi-fluid convection study to considerably vary

the applied forcing, testing the robustness of the parametrization.

This demonstrates the essential validity of the multi-fluid concept: the model

directly captures the dominant overturning circulation of convection, present even

in the fully turbulent regime, by allowing for a circulation even in a single column.

It is important to note that this performance is achieved without even a minimal

treatment of fluxes due to variability within each fluid (i.e. conventional ‘turbulent’

or ‘subfilter’ fluxes) apart from the fixed viscosity and Prandtl number of the fluid.

With the current model the mean buoyancy profile (and therefore the Nusselt

number), the vertical velocity maxima in each fluid (and therefore the implied

Reynolds number), and the pressure profile, cannot all simultaneously have the

correct magnitude. It is unclear whether this is due to neglected subfilter variability

(in the form of exchanged buoyancy or neglected subfilter stresses, for example),

or due to inadequate representation of the fluid fraction transfers. A more accu-

rate and flexible representation of these transfers is essential to progressing beyond

single-column modelling.

A limitation of this study is that our reference simulations are 2D, whereas

real-world convection is 3D. For this reason we have limited our analysis to global

properties of the solutions, such as scalings of Nu and Re with Ra, which do not
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depend on dimension. We have also attempted to formulate our closures in a way

which does not directly depend on the dimensionality of the simulated domain; given

that there is no representation of turbulence in our model beyond the partition into

two fluids, the differences between 2D and 3D cascades do not directly enter our

model.

For the intended application to atmospheric convection, 3D convective turbu-

lence must be considered. This will marginally alter the magnitudes of the Nusselt

and Rayleigh numbers (the Nu prefactor is larger in 3D, while the Re prefactor is

smaller), though the scaling with Ra and the shapes of the mean profiles are ex-

pected to be the same. However the qualitative nature of the flow will be different;

pronounced, long-lived small-scale vortices would not exist in the 3D case due to

vortex stretching, and the solution is expected to be far more intermittent. Due to

the different cascades in 2D and 3D, the required closures at grey zone resolutions

similar to the plume widths could also be quite different.
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(a) Nusselt number vs. Rayleigh number over the range 102 ≤ Ra ≤ 1010 for two-fluid single
column models with various values of γ̂0 and C. Setup of the two-fluid single-column model is
described in Section 4.2. The crosses joined by a solid blue curve show the reference DNS results
(as 2.3a), while the closed circles joined by a dashed purple curve show the results of running
the single column model with C = 0 (mass exchanges transfer the mean buoyancy) and γ = 0
(no pressure differences between the fluids). Three further dashed curves (orange with with open
circles; green with upward-pointing triangles; red with downward-pointing triangles) show the

results for γ = νγ̂0 Ra1/4 with different values of γ̂0; all give scalings of Nu ∼ Ra2/7. Single-column
Nusselt numbers are calculated from the buoyancy gradient at the boundaries, and checked against
the column-integrated buoyancy flux.

(b) Reynolds number vs. Rayleigh number for 102 ≤ Ra ≤ 1010. The crosses joined by a solid
blue curve show the reference DNS results (as 2.3b), while the open circles joined by a dashed
orange curve show results from a two fluid single column model (described in Section Setup of the

two-fluid single-column model is described in Section 4.2.), with γ/ν = 1.861 Ra1/4 and C = 0.5
for Ra ≤ 107, C = 0 for Ra > 107; these constants give the best fit for Nu as a function of Ra
(Figure 4.8a). Both curves exhibit scalings of Re ∼ Ra1/2 for Ra & 104. Single-column Reynolds
numbers are calculated using the maxima of the individual fluid vertical velocity profiles for the
velocity scale.

Figure 4.8



Chapter 5

Beyond single-column: Two-fluid modelling

in the grey zone of RBC

5.1 Introduction

In this chapter we explore the multi-fluid approach to modelling Rayleigh-Bénard

convection at grey zone resolutions. Chapter 2 presented simulations of RBC at

varying horizontal resolution using the single-fluid Boussinesq equations. In this

chapter we will present simulations of RBC using the two-fluid model developed in

Chapter 4, analysing its performance from fully-subfilter convection, through the

grey zone, to the resolved limit. We consider where the model performs better (and

worse) than a single-fluid model with no parametrization, and crucially we look for

signs as to whether — and if so, why — the multi-fluid approach may tame the grey

zone.

5.2 Performance of two-fluid model formulation in

2D

5.2.1 Review of the grey zone

In Chapter 2, the grey zone of Rayleigh-Bénard convection was investigated by

simulating convection at varying horizontal resolutions and comparing the results

of these simulations to DNS. We also argued that these simulations may be taken

as a crude proxy for atmospheric models with so-called “explicit convection”. For

a given energy injection length scale (i.e. the length scale of the peak in the power

spectrum), `, we defined the (2D) grey zone to range from 10−1` . ∆x . 10`, where

∆x is the grid spacing; for our purposes ` is taken to be the critical wavelength,

` ≈ λc ≈ 2H.We also defined the “hard” grey zone to be the range 10−1` . ∆x . `,

and the “soft” grey zone to be ` . ∆x . 10`. A summary of the problems with the

155
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single-fluid grey zone simulations is:

• Incorrect (local) length scales: Convection projects onto the grid scale,

even when ∆x is smaller than the width of convective plumes.

• Incorrect (global) time scales: Initiation of convection is delayed, partic-

ularly in the soft grey zone.

• Strong dependence on initial conditions: Direct numerical simulations

show a negligible difference between initialization with purely random pertur-

bations to the buoyancy field, versus a sinusoidal perturbation to force the

most unstable mode, after roughly 10Te. Some grey zone simulations show

strong sensitivity to the initialization at times over 100Te (though the final

statistically stationary equilibrium solution is not dependent on the initial

conditions).

• Multiple equilibria: Many grey zone simulations reach what appears to be

a stationary state after & 10Te, followed by a jump to another steady state at

much later times (i.e. at least 10Te after the initial “equilibrium” was reached).

This jump to a different equilibrium is often associated with a “period-halving”

– the dominant length scale of the simulated convection collapses from L to

L/2. If L/2 is still greater than ∆x, further jumps to other equilibria may

occur until the dominant simulated length scale is equal to the horizontal grid

spacing.

• Different dynamical states: If the grid spacing ∆x is not sufficiently

small to resolve the inner turbulence length scale `t — i.e. the boundary

layer/coherent structure thickness — then the simulation will be laminar

rather than intermittent/turbulent.

• Incorrect global response: Grey zone simulations will produce the wrong

global heat and momentum transports.

As noted in Chapter 1, analytical and numerical modelling of the atmosphere (as

well as many observations) takes place within the grey zone of atmospheric convec-

tion, meaning that an understanding of the grey zone must be developed in order

to understand and correctly predict convection and its effects on the length and

time scales that humans are interested in. Traditional convection parametrizations

are fundamentally one-dimensional (so-called “single-column models”), relying on

assumptions which are only valid over large length and time scales and under as-

sumptions of horizontal homogeneity and the existence of a time scale separation

between large-scale forcing and the convection. Horizontal transports cannot be

neglected in the grey zone, however, and the assumptions of many clouds within a
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grid volume and scale separation between forcing and convective response cannot

be made.

Therefore there are many attempts to modify traditional convection parametriza-

tions to work in the grey zone, or else the mass-flux schemes are removed and con-

vection is handled explicitly via the dynamical core and a Smagorinsky-type eddy

diffusivity closure (to simulate the enhanced mixing due to turbulence). Though this

“explicit” convection often works better than traditional mass flux-type parametriza-

tions at grey zone resolutions, systematic errors remain and results do not necessarily

converge as grid spacing decreases (Clark et al. 2016; Lean et al. 2008; Stein et al.

2015). Because convection is marked out from other atmospheric turbulence by the

importance of nonlocal fluxes, modifications to eddy diffusivity-type closures (usu-

ally local and down-gradient) are required in order to accurately model convection.

Within the context of Rayleigh-Bénard convection, the simplest single-column

downgradient (isotropic) eddy diffusivity closure simply renormalizes the buoyancy

diffusivity such that the Nusselt number of the horizontally-averaged flow matches

the Nusselt number of the DNS: κ→ κt : κt/κ = Nu =
〈
wb− κ ∂b

∂z

〉
V,t

/
(κ∆B/H) ,

which works because in a single-column 〈w〉A = 0. This first-order closure gives

the wrong profiles of buoyancy and pressure, however — higher-order thinking is

required to represent the shapes of the profiles correctly in a single column.

For the reasons outlined in the introduction and Chapter 3, multi-fluid modelling

is a promising framework for overcoming these problems, compared to modifying

existing convection schemes for use in the grey zone. But one cannot expect an

arbitrary multi-fluid scheme to work in the convective grey zone purely because

it is a multi-fluid scheme. Therefore in this section we analyse the performance

of closures used in the simple two-fluid single-column model of RBC developed in

Chapter 4 when applied across the grey zone of RBC.

5.2.2 Two-fluid model formulation

In Chapter 4 we developed a two-fluid model for Rayleigh-Bénard convection based

on one rising and one falling fluid. No further accounting for subfilter fluxes was

made beyond the partition into two fluids. The closures were designed to capture

the dominant coherent overturning structures of RBC. As emphasized in Chapter 4,

the form of the equation set and closures only explicitly assumes a single column in

the specification of the transferred momentum, since no closure for the horizontal

components of the transferred momentum is required in a single-column. We repeat

the equation set and chosen closures here, before discussing their applicability to

the grey zone, and adding the remaining closure required for 2D simulation.
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∑
i

∇ · (σiui) = 0. (3.26)∑
i

σi = 1 (3.25)

∂σi
∂t

+∇ · (σiui) = σjSji − σiSij, (4.5)

∂σiui
∂t

+∇ · (σiui ⊗ ui) = σibik̂− σi∇P −∇(σipi)

+ ν∇2σiui − ν∇ · (u⊗∇σi)T − ν∇σi · (∇u)T

+ σju
T
jiSji − σiuTijSij,

(4.6)

∂σibi
∂t

+∇ · (σiuibi) = κ∇2σibi − κ∇σi · ∇b− κ∇ · b∇σi

+ σjb
T
jiSji − σibTijSij,

(4.7)

with i, j ∈ {0, 1}, and the specific parametrization choices:

Sij = max(−∇ · ui, 0), (4.8)

wTij = 0, (4.9)

bTij = bi + (−1)iC|bi| (4.10)

pi =

(∑
j

σjγ∇ · uj

)
− γ∇ · ui, (4.11)

γ

ν
= γ̂0 Ra1/4 Pr−1/4 . (4.16)

The only additional closure required to complete the equation set in 2D is a closure

for the exchanged horizontal momenta; we choose:

uTij = ui, (5.1)

i.e. the mean horizontal velocity within a partition is transferred. This has the

correct high-resolution limit, as well as the correct fully-parametrized limit, and is

the closure explicitly chosen in the derivation of the extended EDMF equations in

Tan et al. (2018). We may note in addition that in RBC the horizontal velocity is

approximately symmetrically distributed on either side of the w = 0 interface, so

this may even be a reasonable assumption for the transfers within the grey zone of

RBC.

Although this is the same equation set as in a single column, there are some

crucial differences which manifest when applying it to a 2D problem rather than

1D. Perhaps most importantly, the divergence constraint no longer forces the mean
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velocity to be zero — that is, there can (indeed, must) be resolved horizontal and

vertical velocities in 2D or 3D. This amounts to stating that there will in general

be net mass transports in both the horizontal and vertical. Specifically, in 1D the

divergence-free mean velocity constraint, Equation (3.26) requires ∂w/∂z = 0 =⇒
∂σ0w0/∂z = − ∂σ1w1/∂z , i.e. the mass fluxes have to cancel. Coupled with the

no-normal flow boundary conditions, this forces w = 0 =⇒ σ0w0 = −σ1w1. In 2D,

the horizontal divergence no longer disappears, so there can and in general will be

net mass transport in both the horizontal and vertical.

Before simulating anything, there are a few remarks we can make about the suit-

ability of this model formulation for the grey zone of RBC. Firstly, the overarching

multi-fluid framework developed in Chapter 3 is in principle suitable for any filter

scale and any fluid dynamical problem. It is expected to be of most use when coher-

ent structures play an important role in the dynamics of the flow, which is clearly

the case for RBC. However the partition we have chosen is unlikely to be optimal; as

shown in Figure 4.5 of Chapter 4, partitioning the turbulent DNS flow based on the

sign of w gives only a first approximation to the coherent structures. Because this

partition is not optimal, the variability within the partitions will be relatively more

important for a good description of the flow than if a better partition were chosen.

Therefore the assumptions that si(u,u) ≈ 0, si(u, b) ≈ 0 are likely to be problem-

atic, especially within the grey zone. Further, as already noted, the chosen closures

for the transfer terms are fundamentally incompatible with the chosen partition in

high-resolution limit.

5.2.3 Simulation setup and experiment design

Having noted these potential incompatibilities, we will nevertheless examine the

performance of the two-fluid model with the single-column closures in the grey zone

of 2D RBC. In Chapter 2, we explored the grey zone of RBC by systematically

decreasing the horizontal resolution of numerical simulations from DNS resolution

(∆x ∼ ηK) to such coarse resolution that no circulations develop (∆x ∼ 100 H).

We shall now repeat these simulations with the two-fluid model governed by equa-

tions (3.26)-(3.25), (4.5)-(4.7), with the closures (4.8)-(4.11), (4.16), and (5.1).

We present simulations at Ra = 105,Pr = 0.707. The two closure constants are

set equal to the values which gave the correct Nusselt number in the single-column

simulations of Chapter 4 at Ra = 105: C = 0.5, γ̂0 = 1.861.

The numerical method is identical to that detailed in Section 4.3 of Chapter 4.

The conditions at the top and bottom boundaries are also identical to the single-

column model (i.e. no normal flow, no-slip for the velocity; hydrostatic for the

mean pressure; zero gradient for the perturbation pressure; fixed buoyancy; and
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zero-gradient for the fluid fraction). The lateral boundary conditions are periodic

in all fields.

Initialization is the same as for the single-column simulations1: velocity per-

turbations equal to ±10−3UB were added to a resting velocity field, with random

perturbations of magnitude |δb| ≤ 0.0008∆B (drawn from a uniform distribution)

added to a horizontally-uniform linear buoyancy profile in hydrostatic balance with

the (also horizontally uniform) pressure field. The fluid fractions were initially uni-

formly equal to 0.5 throughout the domain. Simulations were run until a statistically

stationary, yet convective, state was reached, decided from the tendency of the Nus-

selt number over 20Te, or until t = 250Te if no convecting stationary state had

been reached. Note that the ratio between the diffusive and convective timescales

is Tκ/TB = Ra1/2 Pr1/2, so 250Te = (1000/(Ra Pr)1/2)Tκ, so for Ra . 1.4× 106 a full

diffusive timescale is simulated.

The vertical resolution of the simulations was kept the same as the vertical

resolution of the DNS, detailed in Table 2.1. The horizontal resolutions range from

DNS resolution, ∆x ≈ 2ηK, through to ∆x = 100H. Since the DNS simulations were

run at an aspect ratio (AR := L/H) of 10, the coarser-resolution simulations were

required to be run at larger aspect ratios; sensitivity to aspect ratio was checked by

running the same resolution at multiple aspect ratios, with no discernible differences.

Full details of the horizontal resolutions and simulation times are given in Table 5.1.

5.2.4 Results

In this section we present and discuss the results of the simulations described in the

previous section. The key questions are:

1. How well do the single-column closures work in 2D? (For instance, do they

cause numerical instabilities?)

2. How does the two-fluid model perform in the grey zone compared to the single-

fluid experiments of Chapter 2?

3. If there are any differences between the performance of the two-fluid and single-

fluid models in the grey zone, how and why do they arise?

First we consider global properties of the simulations over all resolutions at

Ra = 105: Nu, and the time to convection initiation (defined as the first time for

which Nu > 1.1). Figure 5.1 shows the Nusselt number at t = 25Te
2 (after which the

1It is worth noting that this initialization is demonstrably incorrect for the fully-resolved limit,
and therefore likely does not make sense either for the hard grey zone. However, this should not
matter for the fully-developed state unless the system permits multiple equilibria.

225Te corresponds to a period of ≈ 8 hours for atmospheric shallow convection, assuming
Te ≈ 20 min. These estimates derive from the same scaling parameters as used in discussions of
the atmospheric convective boundary layer in Chapters 1 and 2.
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Figure 5.1: Nusselt number in Ra ' 105 RBC at t = 25Te as a function of
horizontal grid spacing. The blue dashed line denotes results from the single-
fluid simulations described in Chapter 2; results from the two-fluid model are
represented by the orange dashed line. Different domain aspect ratios are denoted
by different markers.

Figure 5.2: Time to the initiation of convection, defined as the first time at which
Nu > 1.1. The blue dashed line denotes results from the single-fluid simulations
described in Chapter 2; results from the two-fluid model are represented by the
orange dashed line. Different domain aspect ratios are denoted by different mark-
ers.
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∆x/H AR Ttot/4TB ∆t/4TB Nu(25Te) Re(25Te) Nu(eqm.) Re(eqm.)

2.5× 10−2 10 38 1.28× 10−3 7.34 200 7.34 200
4× 10−2 10 25 1.28× 10−3 5.17 200 5.17 200
1× 10−1 10 25 1.28× 10−3 4.94 200 4.94 200
2× 10−1 10 25 1.28× 10−3 4.79 190 4.79 190
4× 10−1 10 127 1.28× 10−3 5.28 170 5.28 170

9.7× 10−1 100 25 1.28× 10−3 6.55 210 6.55 210
1 100 25 1.28× 10−3 6.14 200 6.14 200

1.03 100 25 1.28× 10−3 6.43 210 6.43 210
1.25 100 25 1.28× 10−3 6.14 200 6.14 200

1.5625 100 125 1.28× 10−3 6.34 210 6.34 240
2 100 250 1.28× 10−3 5.94 170 7.42 240

2.5 100 250 1.28× 10−3 5.02 120 7.45 250
4 100 250 1.28× 10−3 4.97 120 5.58 142
5 100 250 1.28× 10−3 4.97 120 7.35 250
10 100 250 1.28× 10−3 4.97 120 4.97 120
100 104 250 1.28× 10−3 4.97 120 4.97 120

Table 5.1: Details of horizontal grid spacing, time-step size, domain aspect ratios,
and simulation times for the two-fluid grey zone simulations at Ra = 105. Times
are nondimensionalized by the (approximate) eddy turnover time, Te ≈ 4TB =
4
√
H/∆B. Vertical resolutions are identical to those used in the DNS; see Ta-

ble 2.1 for details. The final four columns give the Nusselt and Reynolds numbers
for the simulations, first at t = 25Te, and secondly at the final equilibrium (or at
t = 250Te if no resolved convective equilibrium was reached).

DNS has reached a stable equilibrium), and Figure 5.2 shows the time to initiation,

for both single-fluid and two-fluid simulations at Ra = 105. First we note that

convection initiates at the same time for the two-fluid model across all resolutions,

suggesting that the chosen parametrizations correctly capture the initial Rayleigh-

Bénard instability. The single-fluid model takes longer to initiate convection for

larger grid spacings, as the convection requires velocities to be resolved at the grid

scale since there is no subfilter parametrization. The “correct” time to initiation in

the DNS is between 1 and 3Te, depending on the initialization used; the two-fluid

model initiates at t = 1.8Te. Similar delays to convection initiation are a common

problem with grey zone models of convection (e.g. Lean et al. 2008); therefore the

fact that our simple two-fluid model always initiates correctly regardless of horizontal

resolution is highly promising. Understanding why this is the case should be a

priority for further research.

Looking at the Nusselt number after 25Te (Figure 5.1), the two-fluid model per-

forms well for ∆x & 4H, giving the same heat flux and vertical profiles of variables

as the single-column model. However, for 4H & ∆x & 0.2H, the model overesti-

mates the heat flux at t = 25Te. As we shall see, this is due to projection onto the

grid, as with the single-fluid solver. For ∆x . 0.2H, the two-fluid model begins to
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(a) b, two-fluid (b) w, two-fluid

(c) b, single fluid (d) w, single fluid

Figure 5.3: Buoyancy (left column) and vertical velocity (right column) fields
for Ra = 105 RBC at a horizontal resolution of ∆x = 10H for: the two fluid
solver with single-column closures (a,b); and the unparametrized single-fluid
solver (c,d). The two-fluid fields are arranged top to bottom as: rising, falling,
total. Fields are shown at t ≈ 250Te. Strong grid projection is seen in the
single-fluid case, while only very faint grid projection is visible in the multi-fluid
case.

overestimate the heat flux, and by DNS resolution the domain-integrated heat flux

in the two-fluid solver is approximately 1.4 times the value for the DNS.

Before discussing the local properties of the simulations — i.e. what the 2D

fields actually look like — it is worth considering what the fields should look like at

different grid spacings. In the fully-parametrized limit (`f � H), where there are

very many complete circulations within a single horizontal filter scale, there should

be no visible variation in the horizontal. In the soft grey zone (10H . `f . 100H),

several overturning circulations are contained within a single horizontal filter length;

however, if the flow is turbulent ((or even quasi-periodic/chaotic, like Ra & 105

RBC in 3D), not enough are averaged over for all horizontal variation to vanish3.

Therefore the solution (when projected onto a grid which resolves `f ) should be

3Recalling the discussion in Section 1.3.2, this really suggests that we should extend the model
to include a stochastic component.



164 5. Beyond single-column: Two-fluid modelling in the grey zone of RBC

(a) Buoyancy, b/∆B (b) Pressure, P/(∆B ·H)

(c) Vertical velocity, w/
√

∆B ·H (d) Fluid fraction, σw>0

Figure 5.4: Horizontally-averaged profiles of buoyancy, pressure, vertical velocity,
and fluid fraction in Ra = 105 RBC simulated with the two-fluid solver at a
horizontal resolution of ∆x = 10H in a domain of aspect ratio AR = 100. Fields
are shown at t ≈ 250Te. Conditionally horizontally- and time-averaged profiles
from the DNS are shown for reference.

fairly horizontally uniform, with some aliasing onto the grid. At higher Rayleigh

numbers the true solution should be intermittent, and this intermittency should

show up in the (small) horizontal variations. In the hard grey zone (δ . `f .

10H), horizontal variations become much more apparent and important, as well as

differences between different realizations of the flow. In particular, the instability

should not simply project onto the grid scale — i.e. the critical wavelength implied

by the model solution should not simply be equal to 2∆x. In the high-resolution

limit, the solutions should converge to the DNS.

In the fully parametrized limit, the two-fluid model has the correct behaviour,

acting simply as a set of N single-column models, where N is the number of cells

in the x-direction. There is no variation in the horizontal; resolved velocities are

negligibly small, and damped. Differences of vertical profiles of variables from the

single-column case are invisible to the naked eye, and therefore are not shown.

Buoyancy and vertical velocity fields from an example simulation in the soft
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(a) (b)

Figure 5.5: Comparison of Nusselt number time series between a simulation using
the two-fluid single column closures and one run with the unparametrized single-
fluid equations (a) in the soft grey zone of RBC, ∆x = 10H; (b) in the hard
grey zone of RBC, ∆x = 2H ≈ λc. The time series of the Nusselt number in the
DNS is indistinguishable from the time-series for the two-fluid model in (a) at
this temporal resolution. NuDNS = 5.002.

grey zone (∆x = 10H) are shown in Figure 5.3 at t = 250Te. The corresponding

vertical profiles of buoyancy, pressure, vertical velocity, and fluid fraction, are shown

in Figure 5.4. At this time the Nusselt number and vertical profiles for the two-fluid

solver are identical to the single-column model. Very weak projection onto the grid

is visible in the buoyancy and vertical velocity fields (a and b), but this is after a very

long integration time — assuming Te ≈ 20 min in the atmosphere, 250Te ≈ 3.5 days.

In the single-fluid solver (Figure 5.3c-d), there is strong projection onto the grid by

this time. Figure 5.5a shows Nusselt number time series for both simulations; clearly

the two-fluid solver better captures the dynamics at this resolution; in addition to

initiating too late, the Nusselt number is slightly over-predicted by the single-fluid

solver by the end of the simulation time. However, the nature of the (admittedly

weak) grid projection and the inaccuracy of the mass transfers based on∇·ui suggest

that a parametrization like this may respond poorly to inhomogeneous forcing even

in the soft grey zone.To see why the mass transfers based on ∇ · ui are incorrect,

see Section 5.3.

Buoyancy and vertical velocity fields from an example simulation in the hard

grey zone (∆x = 2H) are shown in Figure 5.6 at t = 250Te; the corresponding

vertical profiles are shown in Figure 5.7. Although the two-fluid simulation initially

spins up to the correct Nusselt number (Figure 5.5b), with vertical profiles of buoy-

ancy, pressure, and vertical velocity similar to the single-column model, after ≈ 25Te

the grey zone instability manifests and projection onto the grid is seen in all fields.
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(a) b, two-fluid (b) w, two-fluid

(c) b, single fluid (d) w, single fluid

Figure 5.6: Buoyancy (left column) and vertical velocity (right column) fields for
Ra = 105 RBC at a horizontal grid spacing of ∆x = 2H ≈ λc for: the two fluid
solver with single-column closures (a, b); and the unparametrized single-fluid
solver (c, d). The two-fluid fields are arranged top to bottom as: rising, falling,
total. Fields are shown at t ≈ 250Te. Both simulations have reached a steady
state, where no change in the circulation or global properties Nu,Re has been
observed for > 20Te. Strong grid projection is obvious in both cases. The two
fluids no longer capture the correct sign of vertical velocity.

The Nusselt number continues to increase as the grid-scale instability cascades to

the most unstable mode, with strictly alternating columns of rising and falling air

throughout the domain. Once the grid projection becomes strong enough, the cor-

rect sign of vertical velocity is no longer maintained within each fluid, which leads

to a positive feedback, increasing the strength of the velocities within the falling and

rising columns. This means that the maximum velocities are greater in the two-fluid

model than in the single-fluid model.

The grid projection also causes the vertical profiles to deviate from the single-

column profiles (Figure 5.7). The mean buoyancy profile (a) is no longer constant in

the bulk of the domain, instead having a weak negative gradient (also observed in the

grey zone single-fluid simulations which exhibited grid projection in Chapter 2; not

shown).Similar behaviour is also observed in grey zone simulations of the convective
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(a) Buoyancy, b/∆B (b) Pressure, P/(∆B ·H)

(c) Vertical velocity, w/
√

∆B ·H (d) Fluid fraction, σw>0

Figure 5.7: Horizontally-averaged profiles of Ra = 105 RBC simulated with the
two-fluid solver at a horizontal grid spacing of ∆x = 2H ≈ λc in a domain of as-
pect ratio AR = 100. Fields are shown at t ≈ 250Te. Conditionally horizontally-
and time-averaged profiles from the DNS are shown for reference.

boundary layer, where insufficient mixing causes superadiabatic temperature profiles

to form (Efstathiou et al. 2016). The buoyancy profiles of both rising and falling fluid

lose the overshoots near the boundaries. The mean pressure profile (b) is also similar

to the single-fluid grey zone pressure profile at the same horizontal resolution: the

sign of the curvature of the pressure profile changes close to the centre of the domain,

deepening the lowest pressure due to the unrealistically high vertical velocities. The

vertical velocity profiles (c) within each fluid are also qualitatively changed: since

the fluids no longer maintain single-signed vertical velocities, the magnitudes of the

profiles decrease. This effect is starkest in the centre of the domain, where the

maxima of incorrectly-signed velocities are present within each partition, turning

the local maximum at the centre of the domain into a local minimum.

Buoyancy and vertical velocity fields from an example simulation in the weakly

resolved regime (∆x = 0.4H) are shown in Figure 5.8 at t = 125Te; the correspond-

ing vertical profiles are shown in Figure 5.9. At first glance, the two-fluid model acts

very similarly to the unparametrized single-fluid solver for grid spacings ∆x . 0.4H;
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(a) b, two-fluid (b) w, two-fluid

(c) b, single fluid (d) w, single fluid

Figure 5.8: Buoyancy (left column) and vertical velocity (right column) fields for
Ra = 105 RBC at a horizontal grid spacing of ∆x = 0.4H ≈ 0.2λc for: the two
fluid solver with single-column closures (a, b); and the unparametrized single-
fluid solver (c, d). The two-fluid fields are arranged top to bottom as: rising,
falling, total. Fields are shown at t ≈ 125Te. Both simulations have reached a
steady state, where no change in the circulation or global properties Nu,Re has
been observed for > 20Te. Some grid projection is visible in both cases. The
two fluids no longer capture the correct sign of vertical velocity, leading to larger
vertical velocity magnitudes in the two-fluid simulation.

the 2D fields and mean profiles look very similar. However, the closures do not keep

the vertical velocities single-signed within each fluid, so the solver is effectively act-

ing like two coupled single-fluid solvers with an extra momentum source from the

fluid relabelling. This means that the vertical velocity magnitudes are slightly larger

in the centre of the domain for the two-fluid solver, leading to the same problems for

the vertical velocity profile within each fluid (Figure 5.9c) as observed in the hard

grey zone simulations (Figure 5.7c).

In the fully resolved limit (Figure 5.10,5.11), these problems with the two-fluid

solver become even more apparent: the buoyancy becomes unbounded (due to the

crude closure for the transferred buoyancies being unbounded), with large regions

where |b| > ∆B/2, and maximum vertical velocities close to twice those of the single-
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(a) Buoyancy, b/∆B (b) Pressure, P/(∆B ·H)

(c) Vertical velocity, w/
√

∆B ·H (d) Fluid fraction, σw>0

Figure 5.9: Horizontally-averaged profiles of Ra = 105 RBC simulated with the
two-fluid solver at a horizontal grid spacing of ∆x = 0.4H ≈ 0.2λc in a domain of
aspect ratio AR = 10. Fields are shown at t ≈ 125Te. Conditionally horizontally-
and time-averaged profiles from the DNS are shown for reference.

fluid DNS. Sharp discontinuities are observed in the profiles of buoyancy, pressure,

and fluid fraction (Figure 5.11a,b,d), and nonzero mean vertical velocity is observed

(c). Though these features do not actually cause a numerical instability during the

period of integration, clearly they are undesirable.

The problems in the high resolution limit can be traced to incorrect limiting

behaviour of the closures. The pressure parametrization has the correct limiting

behaviour, since∇·ui → 0 as ∆x/H → 0. However, the mass transfers proportional

to ∇ · ui do not have the correct limiting behaviour. In the high-resolution limit,

we should require σi → Ii, for consistency with our earlier definitions. This requires

that all transfer terms map onto exactly what they should be in the high resolution

limit, which may be difficult to achieve in practice.

The essential problem with the single-column closures in the high-resolution limit

is that the closure for the vertical momentum transfer is correct at any resolution

for fluid partitions based on the sign of the vertical velocity, whereas the divergence-

based mass transfer tends to zero in the high-resolution limit. The result is that
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(a) b, two-fluid (b) w, two-fluid

(c) b, single fluid (d) w, single fluid

Figure 5.10: Buoyancy (left column) and vertical velocity (right column) fields for
Ra = 105 RBC at DNS resolution (∆x < 0.028H) for: the two fluid solver with
single-column closures (a, b); and the unparametrized single-fluid solver (c, d).
The two-fluid fields are arranged top to bottom as: rising, falling, total. Fields
are shown at t ≈ 38Te. Both simulations have reached a steady state, where no
change in the circulation or global properties Nu,Re has been observed for> 20Te.
The two fluids do not capture the correct sign of vertical velocity; the buoyancy
field has become unbounded (there are large regions where |b| > ∆B/2), and the
maximum vertical velocity magnitudes are much greater than in the single-fluid
DNS.

the two fluids partially decouple, allowing both signs of vertical velocity within

a single partition, but gain an extra momentum source from the residual mass

transfers. This is compounded by the buoyancy transfer – at high resolution, the

buoyancy transferred from i to j should be equal to the buoyancy in fluid i at

that location, but the single-column model transfers bTij = bi ± 0.5(−1)ibi, giving

a further source of buoyancy, and therefore also of momentum, in the two-fluid

model. Running the highest-resolution simulation with transferred buoyancy equal

to the mean (simulations not shown), bTij = bi, slightly reduces the magnitude of the

problem — maximum buoyancies within each partition drop from ≈ 3.4∆B/2 to

≈ 2.9∆B/2 — but the crux of the problem cannot be fixed without changing the
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(a) Buoyancy, b/∆B (b) Pressure, P/(∆B ·H)

(c) Vertical velocity, w/
√

∆B ·H (d) Fluid fraction, σw>0

Figure 5.11: Horizontally-averaged profiles of Ra = 105 RBC simulated with the
two-fluid solver at a horizontal grid spacing of ∆x = 0.025H in a domain of
aspect ratio AR = 10. Fields are shown at t ≈ 38Te. Conditionally horizontally-
and time-averaged profiles from the DNS are shown for reference.

mass transfers.

In summary, directly using the single-column closures for the two-fluid equa-

tions in 2D achieves limited success in the grey zone of RBC, relative to the un-

parametrized singe-fluid simulations. Better prediction of the global heat transport

is maintained for most of the range of resolutions, from fully parametrized to ap-

proaching the high resolution limit. Further, projection onto the grid is often de-

layed, and the range of resolutions over which grid projection is observed is slightly

decreased. Sensitivity to the initial conditions is greatly reduced, since in all cases

the single-column parametrizations allow convection to develop at approximately

the correct time. We note however that this comparison is somewhat unfair, as

even “explicit” convection parametrizations, often claimed to be running “with-

out a convection parametrization”, have some awareness of the grid scale (via the

Smagorinsky eddy viscosity closure, or similar closures). An LES-type closure may

therefore be expected to perform slightly better than the unparametrized single-fluid

simulations, though the results should be qualitatively the same.



172 5. Beyond single-column: Two-fluid modelling in the grey zone of RBC

(a) b/∆B (b) Nu

Figure 5.12: Buoyancy (a) and nondimensionalized vertical heat flux (b) fields
for Ra = 105 RBC at approaching-DNS resolution (∆x = 0.04H) for the two
fluid solver with single-column closures. The two-fluid fields are arranged top to
bottom as: rising, falling, total. Fields are shown at t ≈ 25Te. The two fluids do
not capture the correct sign of vertical velocity, and the two fluids have partially
decoupled.

However, grid projection still occurs for over a decade of grid spacings, dur-

ing which the model also produces incorrect global heat and momentum fluxes.

Since grid projection is also the cause of multiple equilibria, these are also present

within some two fluid simulations which exhibit grid projection. There are also

some problems which are unique to a multi-fluid model: at all grid scales smaller

than ≈ 10H = 5λc, the chosen closures do not guarantee the correct labelling

of fluids. This is most obvious in the highest-resolution limit: running a two-fluid

model with the single-column closures at the same resolution as the single-fluid DNS

yields a complete circulation in each partition. Since the transferred buoyancies and

momenta are intended for use with transfers that ensure single-signed velocity in

each partition, this eventually leads to unbounded buoyancies and a Nusselt num-

ber greater that the DNS by a factor of ≈ 1.4. The decoupling is most clearly

seen in the solution for a slightly lower resolution: Figure 5.12 shows the buoy-

ancy and nondimensionalized vertical heat flux in Ra = 105 RBC at a grid spacing

∆x = 0.04H. In both fields it can be seen that the rising and falling fluids have

separate circulations that are slightly out-of-phase with each other. When projected

onto the mean field, this gives the appearance of more plumes.

Before moving on, it is worth briefly discussing results at Ra = 108. We do not

include any figures, as the simulations behave qualitatively very similarly to those at
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Ra = 105 at all resolutions. Initiation is approximately correct, and approximately

constant, across all resolutions; the simulations exhibit slightly more intermittency

beginning at ∆x/H ≈ 10; and the single-column closures break down in the same

way at higher resolutions — the two fluids partially decouple, and eventually the

mass transfers cause the buoyancies to become unbounded. Importantly, the break-

down occurs at a grid spacing still too coarse to resolve the plumes. In the hard grey

zone, similar behaviour is observed as in the single-fluid simulations of Chapter 3:

a convective circulation develops with the incorrect length scale, λeff
c > λc.

While at first this similarity seems surprising, it may be explained by considering

the effective Reynolds number at a given filter scale. The grid spacing at which the

single-column closures entirely break down is roughly ∆x ≈ 0.05H; assuming this

is the effective Kolmogorov dissipation scale of the simulation gives an estimated

maximum Reynolds number of∼ 50, which is of the same magnitude as the Reynolds

number of the Ra = 105 DNS (≈ 100). Therefore the simulated Reynolds number

is far too low to be expected to exhibit any signs of turbulence. Given that the

only Rayleigh number dependence of the parametrization is the weak dependence

in γ, we should not expect large differences in grey zone response between the two

Rayleigh numbers.

5.3 Discussion of grey-zone applicability of single-column

closures

The closures used in the single-column formulation were unlikely to be scale-aware as

presented, as there is no dependence on filter scale built into any of the parametriza-

tions. Firstly, the parametrization for the perturbation pressure within each fluid

relied on the assumption that the filter scale was greater than the distance between

plumes; clearly this is not valid for all filter scales! This assumption was used to

scale∇·ui ∼ (U/H)∇̃ · ũi; when the filter scale is smaller than ∼ H, a more appro-

priate scaling is∇·ui ∼ (U/`f)∇̃ · ũi, where `f is the filter length scale. This follows

from considerations of 〈u · ∇Ii〉 and ur
i · ∇σi at the interface between partitions.

Following this through, one obtains instead the scaling:

γ

ν
= γ̂0

min(`f, H)

H
Ra1/4 Pr−1/4 . (5.2)

Now we come across the problem that the scaling argument assumes that the main

pressure contrast is between plume vs. bulk, but the w = 0 partition does not

capture the plumes well. Therefore for `f < H the scaling argument should break

down for this choice of partition. For partitions which better pick out the coherent
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structures, we may potentially extend the argument right down to the width of

the plumes, δ, noting that as `f → δ, γ/ν → γ̂0 Ra1/8 Pr−1/8 — i.e. the predicted

Rayleigh number dependence weakens.

A similar scale-dependence problem emerges for the closure chosen for the trans-

ferred buoyancy. As `f → 0, we require ϕTij → ϕi — i.e. as the filter scale collapses,

the transferred value is just equal to the resolved value in the vicinity of the in-

terface. This is automatically satisfied for wTij, since w = 0 at the interface and

so as `f → 0, wi → 0 at the interface. However this limit is not captured by the

chosen transferred buoyancy closure. We can expect this to cause problems in the

high resolution limit. A crude scale awareness can be incorporated by replacing

C →
(

min(`f,H)
H

)
C, such that the correct high resolution limit is obtained.

The biggest problem, however, is the chosen closure for the mass transfers,

Sij = max(−∇ · ui, 0). Though this worked well in a single-column at capturing

the dominant coherent overturning structures, an analysis of the indicator function

evolution equation, Equation 3.41, shows emphatically that the divergence-based

mass transfers are incorrect for partitions based on the sign of w:

DIi
Dt

= −V∂Di · ∇Ii + u · ∇Ii (5.3)

= −V∂Di · ∇Ii + σi∇ · ui + ui · ∇σi. (5.4)

Therefore Sij ≈ ∇ · ui requires both
∣∣V∂Di · ∇Ii

∣∣ � ∣∣u · ∇Ii∣∣ and |ui · ∇σi| �
σi∇ · ui. The first inequality requires that the location of the interface must move

slowly in comparison to the (filtered) advection of fluid across the interface, i.e.

that the location of the interface is approximately stationary. The second inequality

requires that (fluid fraction times) the divergence of fluid within a partition is much

greater than the resolved advection of the fluid fraction. Clearly neither of these

inequalities hold — either in RBC or in real-world convection — once convection is

partially resolved. However, the second inequality is not even necessarily true in the

fully parametrized limit; for horizontally conditionally averaged RBC based on the

sign of w, ui · ∇σi is not negligible close to the boundaries. Although wi tends to

zero in the viscous sublayer very close to the boundary, wi is not negligible in the

rest of the boundary layer, and ∂σi/∂z is large throughout the boundary layer.

5.4 Discussion and conclusions

We have shown that using a multi-fluid model of RBC with closures formulated

for the fully-parametrized limit — i.e. the limit in which assumptions underlying

traditional atmospheric convection parametrizations are valid — to simulate RBC
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at grey zone resolutions encounters similar problems to running a single-fluid model

with no parametrization (Chapter 2).

The formulation correctly captures convective initiation at all resolutions, from

the resolved limit to fully parametrized. The formulation works reasonably well in

the soft grey zone, although it does not capture any horizontal variability, whereas

the true solution filtered and coarse-grained onto grid spacings in this range should

show some variability (effectively due to aliasing of an incomplete number of circu-

lations onto the grid).This is precisely the argument we made in Section 1.3.2 to

motivate the introduction of stochastic terms in grey zone parametrizations. For

this reason, we envisage finding physically-consistent stochastic description of the

multi-fluid system vital to its potential success in the grey zone.

In the hard grey zone, the convective instability tends to project onto the grid

scale, unrealistically enhancing the heat and momentum transports and producing

almost decoupled falling and rising circulations. This is very similar to the observed

behaviour of an unparametrized single fluid simulation in the hard grey zone. In

the limit of high resolution, the two-fluid solver performs poorly, leading to vertical

velocities roughly twice the magnitude of the DNS, unbounded buoyancies, and

artificially enhanced vertical buoyancy transport.

The problems in the high resolution limit can be traced back to the mass trans-

fer parametrization: Sij ∝ −∇ · ui is incorrect for partitions based on the sign of

the vertical velocity. We also note that the projection onto the grid in the hard

grey zone occurs concurrently with the identities of the two fluids ceasing to be cor-

rectly defined, i.e. when horizontal inhomogeneities occur, the current parametriza-

tions can no longer maintain the correct sign of the vertical velocity. Given that

this parametrization has the incorrect high resolution limit, and was already the

source of some of the deficiencies in the single-column model of Chapter 4, better

parametrizations of the mass transfers are required in order to properly test the grey

zone behaviour of a two-fluid model of RBC.

One possible way forward would be to introduce two filter scales: the first at an

LES scale to smooth out the worst of the (largely) isotropic turbulence, then another

at a coarser scale to partition into multiple fluids; in a way this is what has been

implicitly done by e.g. Tan et al. 2018. In this vein, the discontinuous indicator

function could be generalized to be that of a “fuzzy set”, as briefly discussed in

Chapter 3. It may also be possible to restrict the possible choice of partitions by

requiring that the high-resolution closures are sufficiently well-behaved.

Improvements could also arise from a partition that better selects the coher-

ent structures, and from representation of within-fluid variability by consideration

of higher moments of the flow. In particular, DNS data may be used to diagnose

Sij, b
T
ij,u

T
ij for various filter scales and fluid definitions. Possible closures could be in-
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formed by direct analysis of the interactions between coherent structures, boundary

layers, and homogeneous, isotropic bulk (Berghout et al. 2021; Togni et al. 2015).

The analysis of the indicator function evolution equation in Section 3.3 of Chap-

ter 3 provides a route to discovering better parametrizations. For instance, when

conditionally-filtering based on the sign of the vertical velocity, the indicator function

for the rising partition may be written as I1 = H(w), where H is the Heaviside step

function. Then, using Equation (3.62), the fluid fraction transfers can be expressed

as:

σ0S01 − σ1S10 =

∫
∂D1

g(x− x′, `f )
1

|∇w|
Dw

Dt
d(∂D1) (5.5)

=

∫
∂D1

g(x− x′, `f )
1

|∇w|

(
b− ∂P

∂z
+ ν∇2w

)
d(∂D1). (5.6)

Beginning with this equation ensures that one can easily impose the correct limiting

behaviours. It is unfortunately beyond the scope of this thesis to perform further

analysis of this equation, but it is our firm belief that asymptotic analysis of results

like Equation (3.62) should form the basis of future work on finding the correct

transfer terms for multi-fluid convection parametrization.

Due to the complexity of the flow, and the difference of the unknown terms

compared to those traditionally considered either in turbulence modelling or con-

vection closure, multi-fluid modelling is an interesting candidate for “data-driven”

closure discovery. Sparse Bayesian regression methods have recently been used to

suggest closed-form equations for eddy Reynolds stresses and buoyancy fluxes in

ocean mesoscale eddy parametrization (Zanna and Bolton 2020), and to suggest

closures for Reynolds stresses in two-phase Reynolds-averaged modelling of disperse

multi-phase flow, including partitioning of TKE between the phases (Beetham et al.

2021). Sound physical reasoning is still required by the modeller in order to select

reasonable basis functions, and to interpret and validate the resulting closures. Such

methods could be used to supplement the analytical and heuristic methods already

used to suggest possible closures.

All of the above will develop fundamental understanding of the multi-fluid equa-

tions for convection. A thorough understanding of the dry convective grey zone,

and of possible multi-fluid approaches to its parametrization, will help sharpen the

questions for the much thornier problem of moist convection.
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Conclusions & outlook

Although it is an important part of the global climate system, contributing strongly

to both global budgets and local variability, on time scales from hours to centuries,

atmospheric convection is not currently well represented in NWP or climate models

(e.g. Holloway et al. 2014; Stein et al. 2015; Stevens and Bony 2013). Weather

and climate prediction at convection-resolving scales will not be possible for the

foreseeable future (nor necessarily desirable, even in the long term), so the effects of

convection on the scales that are resolved must be accounted for by a parametriza-

tion. A fundamental barrier to progress is the grey zone: a range of resolutions

where coherent convection is neither fully resolved, nor fully sub-filter, meaning

that neither traditional convective closures, nor traditional LES closures, can apply.

In this thesis, we have broadly followed two lines of investigation. Firstly, we

have attempted to understand the convective grey zone by analysing the grey zone

of the simplest convective system: Rayleigh-Bénard convection. Secondly, we have

explored the usefulness of multi-fluid modelling for parametrizing turbulent convec-

tion, at both resolutions where convection is fully subfilter, and in the grey zone.

Since it is not yet understood how best to represent convection with the multi-

fluid equations, we chose to focus again on the simplest convective system to build

understanding of how to apply the multi-fluid framework to convection modelling.

6.1 Summary of key results

Moist atmospheric convection is a complex problem, involving the dynamics of a tur-

bulent buoyancy-forced fluid over a vast range of spatiotemporal scales, coupled with

highly nonlinear first-order phase transitions, non-equilibrium microphysical pro-

cesses, internal radiative forcing, complex surface exchanges, and an ever-changing

large-scale environment which the convection responds and feeds back to. These

interwoven complexities make it an exceptionally rich phenomenon, but also ex-

ceptionally hard to model. However, the grey zone is a concept which applies to

177
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any nonlinear dynamical system. Therefore in Chapter 2 we chose to analyse the

simplest setup that exhibits turbulent convection: dry Rayleigh-Bénard convection

(RBC).

RBC consists of a Boussinesq fluid confined between two horizontal planes, each

held at a fixed buoyancy. Buoyancy acts to destabilize the flow, while diffusion of

momentum and buoyancy act to stabilize the flow. All of the dimensional parameters

of the RBC problem can be reduced to a specification of the Rayleigh number (the

ratio of buoyancy forcing to viscous diffusion) and the Prandtl number (the ratio

of viscosity to buoyancy diffusivity). The stability of the system depends only on

the Rayleigh number. The statistically stationary global response of the system, i.e.

the kinetic and thermal dissipation rates, is a function only of these dimensionless

numbers and a third dimensionless number, the Nusselt number, which is the ratio

of the total heat flux through a horizontal layer to the heat flux in a hydrostatically

balanced, no-flow reference state.

In Chapter 2 we began by running a suite of direct numerical simulations of fixed

Prandtl number 2D RBC over a wide range of Rayleigh numbers, from an order

of magnitude lower than the critical Rayleigh number through to fully developed

convective turbulence. We showed these simulations to be in good agreement with

previous theoretical, numerical, and experimental studies of RBC, allowing them to

be used as reference “truth” simulations for the remainder of the thesis.

Our investigation of the grey zone of RBC began by simulating RBC at fixed

Rayleigh and Prandtl numbers over a wide range of horizontal resolutions, from

fully resolved through to so coarse that no convection takes place. We performed

these suites of simulations at Ra = 105, which is non-turbulent, and Ra = 108,

which is turbulent. The behaviour of the simulations in the grey zone of resolutions

bears strong similarities to some of the errors observed in numerical weather pre-

diction models run with explicit convection. In the grey zone (for resolutions & H,

or grid spacings & 0.2H), the convective circulation tends to project strongly onto

the grid. This is different from the (expected) aliasing onto the grid observed when

projecting a filtered, horizontally non-uniform flow onto a grid which resolves the

filter scale. This collapsing of the convection onto the smallest available scale is

similar to the phenomenon of grid point storms observed in NWP. In both 2D RBC

and the convective NWP grey zones, the grey zone simulations have a tendency

to initiate convection later, and produce stronger heat fluxes, than the reference

truth. This is due to the projection onto the grid, noted by B. Zhou et al. (2014)

qualitatively as akin to when the grid scale in Rayleigh-Bénard convection can no

longer resolve the length scale of the most unstable convective mode. We quan-

titatively confirm this for RBC, showing that global statistics such as the Nusselt

number and Reynolds number are within 10% of their DNS values for grid spacings
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∼ 0.1λc ≈ 0.2H and smaller. This is also consistent with work on cloud-resolving

models in the meteorological literature: for instance, Petch et al. (2002) found that

grid spacings ≤ 0.25H (for H ∼ the sub-cloud layer depth) were required to pro-

vide adequate representation of fluxes from the sub-cloud layer for cloud-resolving

models of both shallow and deep convection. These results show that RBC is a use-

ful testbed for understanding the convective grey zone, which should be used more

widely in the meteorological community: although RBC is much simpler than real

atmospheric convection, it possesses similar grey zone behaviour. The simplicity, as

well as the wealth of available theoretical and experimental results, can and should

be exploited to understand the grey zone, and to develop parametrizations which

are scale aware and tame the instabilities and strong grid-projection, without the

confounding complexities of real-world convection.

In Chapter 3 we introduced the multi-fluid approach to convection parametriza-

tion. The original derivations of multi-fluid equation sets for atmospheric convection

(e.g. Thuburn et al. 2018; Yano 2014) were motivated by extending the mass flux

concept of splitting the flow into convecting and environmental parts (e.g. Arakawa

and Schubert 1974). Though the resulting equations sets bear a strong resemblance

to those used in the modelling of multi-phase engineering flows, the interpretation

and intended use of the multiple fluids are closer to the ideas of conditioned av-

eraging for intermittent turbulent flows (Dopazo 1977) and to pick out coherent

structures in turbulent flows (Hussain 1983, 1986).

Chapter 3 attempts to say as much as possible about the closures required for

the multi-fluid equation set without considering specific partitions or second (or

higher) moments. First we derived the viscous multi-fluid equation set via con-

ditional filtering, a simple extension of the work of Thuburn et al. (2018) for the

inviscid compressible Euler equations. The viscous terms are vital for RBC, and also

should be included for fluid partitions based on data from LES or observations of

the real atmosphere. Though Reynolds numbers are high enough in convection for

molecular viscosity and diffusivity to be negligible, the eddy viscosities of an LES or

diagnosed from observations are not necessarily negligible, and therefore the extra

viscous terms should be included in a multi-fluid formulation.

The remainder of Chapter 3 explored the consequences of explicitly consider-

ing the exact source and sink terms for the indicator function of a fluid partition.

First a correspondence was derived between the representation of the fluid frac-

tion exchanges in terms of entrainment and detrainment, as is used in convection

parametrizations, and in terms of the motion of the interface between fluid par-

titions, which is sometimes used in engineering multi-phase models. Though ex-

pressions relating entrainment and detrainment rates to the motion of fluid across

the boundary of a convective element have been used before, especially in studies
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attempting to diagnose cumulus entrainment and detrainment coefficients, this is

— to our knowledge — the first formal derivation applicable to the case of gen-

eral conditional spatial filtering. This apparatus is necessary for formulating the

correspondence in the grey zone.

A third possible rewriting of the exchange terms was then derived, using the rep-

resentation of an indicator function as a (product of) step functions. When the step

function is on a flow variable — for instance the vertical velocity, or the buoyancy

flux — the fluid fraction exchanges can be written in terms of the Lagrangian evo-

lution equation for that flow variable. We recommend this new insight as a possible

route to directly linking closures for the multi-fluid equations to mathematically-

founded physical insight, rather than the fairly ad-hoc way in which closures have

so far been suggested.

We then presented an in-depth discussion of all the terms requiring closure in

the viscous Boussinesq multi-fluid equations, using exact results for the derivatives

of the indicator function to provide geometric representations of the terms. A key

result showed that, because the divergence of the velocity within a fluid partition is

not generally zero (due to subfilter fluid relabelling), there is an extra contribution

to the viscous terms which has been missed in previous studies where diffusion has

been added post-hoc. We then showed that, if the within-partition stress tensors

are modelled directly, choosing them to be Newtonian introduces an additional bulk

viscous stress. As the resolved divergence is the difference between the resolved mo-

tion of fluid across the partition interface and the resolved advection of the resolved

fluid fraction, the interpretation of bulk viscous stress is that the resolved pressure

within a fluid partition must generally increase when fluid is relabelled into that

partition (at fixed fluid fraction). Therefore the bulk viscous stress is suggested as a

parametrization for (part of) the pressure difference between fluid partitions. This

pressure difference is purely a consequence of the fluid relabelling.

Finally, the utility of the results for the exchange terms was shown by explicitly

conditionally filtering the first normal mode of Rayleigh-Bénard convection.

In Chapter 4 we constructed and tested a two-fluid single-column model of

Rayleigh-Bénard convection, intended as a proof-of-principle for multi-fluid mod-

elling of turbulent convection. This began by choosing what the partitions repre-

sent1: a simple split into rising and falling fluids was chosen in order to capture the

leading-order overturning circulation. No further representation of subfilter vari-

ability was included beyond the partition into two fluids except in the exchange

1This “partition-first” approach is fundamentally different to the approach taken by others
working on mass-flux convection parametrization and its extensions (e.g. Arakawa et al. 2011;
Tan et al. 2018; Yano 2014), where an explicit partition is rarely made. This leads to a disconnect
between the theory behind the parametrizations, and the evaluation of the parametrizations against
models and observations, which requires a choice of partition.
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terms, consistent with the “top-hat” approximation usually employed in mass-flux

parametrization (Gu et al. 2020).

Simple closures for all terms were provided based on the analysis of Chapter 3

and previous work on multi-fluid convection modelling. Fluid fraction transfers were

taken to be proportional to convergence within a partition, while the transferred

vertical velocity was forced to be zero due to the fluid definitions. The transferred

buoyancy was chosen to be equal to the mean buoyancy within a partition, plus or

minus a constant times the magnitude of the mean, as a crude first approximation of

the subfilter buoyancy distribution. The pressure differences between the partitions

were modelled as a bulk viscous stress, as suggested in Chapter 3. A scaling argu-

ment for the variation of the bulk viscosity with the Rayleigh number was presented,

reducing the parametrization to the specification of two O(1) constants: C for the

transferred buoyancy, and γ̂0 for the perturbation pressure. It is worth noting that,

although single-column, the model is fully prognostic and has no limits on the fluid

fraction beyond the constraints imposed by the initialization.

We then evaluated the single-column two-fluid parametrization by comparing the

results of the single-column model to conditionally horizontally filtered DNS results.

We showed that O(1) values of the two closure constants gave good agreement

between the modelled profiles of pressure, buoyancy, and vertical velocity, and those

of the DNS. The key result of this chapter is that, after fixing the magnitude of

γ̂0 by measuring the value which gave the correct Nusselt number at one Rayleigh

number, the correct scaling of both the Nusselt and Reynolds numbers with Ra was

observed over six decades of Ra. In addition, approximately the correct transitional

behaviour was observed in the vicinity of the critical Rayleigh number, and the two-

fluid model shows similar initial transient behaviour to the horizontally-averaged

DNS while spinning up to the equilibrium state across all Rayleigh numbers.

Some deficiencies of the model were noted; for instance, although the scaling

of both Nu and Re was correct, the model could not simultaneously predict the

correct magnitudes of both. The correct magnitude of Nu corresponded to the most

accurate buoyancy profiles and the right magnitude of the pressure perturbation

close to the boundaries, while the correct magnitude of Re corresponded to the

most accurate mean pressure profile (as well as, trivially, the most accurate vertical

velocity profiles). Neither could correctly capture the pressure differences between

the fluids in the centre of the domain. This suggests that the scaling argument for

the bulk viscosity is most applicable in the transitional and boundary regions, and

that a model with a height-varying bulk viscosity may be able to correctly reproduce

the magnitudes of Nu and Re as well as their scaling with Ra.

A bigger deficiency of the two-fluid single-column model is the divergence-based

fluid fraction transfer. While this has good stability properties, and is correct for the
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first normal mode of RBC, it fails to reproduce the variation of fluid fraction with

height, especially once areas of recirculation develop in the plume separation regions

(Ra & 107). The recirculation regions change the sign of the vertical gradient of fluid

fraction close to the boundaries compared with the prediction of the single-column

model, as well as introducing kinks in the profiles of within-fluid buoyancy, vertical

velocity, and pressure.

Despite this, the two-fluid single-column model performs excellently given its

simplicity. This is the first time that a single multi-fluid parametrization has been

tested over a wide range of convective forcings, and the first time a two-fluid model

with fluids defined by the sign of vertical velocity has been used to model fully

turbulent convection. That the correct profile shapes, and the correct scalings of

the global heat and momentum transports, are produced by the model, as well

as the correct transient behaviour, suggest that even a simple two-fluid model of

convection can accurately reproduce the statistics of RBC by directly providing a

low-order description of the dominant coherent overturning circulation.

Chapter 5 presented a preliminary exploration of multi-fluid modelling in the

grey zone of RBC. To do this, we used the closures from the single-column model

of RBC developed in Chapter 4 in 2D two-fluid simulations of RBC for a range of

horizontal resolutions spanning the grey zone. The only additional closure required

was for the transferred horizontal velocity, which we chose to be equal to the mean

within-partition horizontal velocity for simplicity. Results were compared with the

single-fluid grey zone simulations of Chapter 2.

The two-fluid model with single-column closures performed well over relatively

short times (up to ∼ 25 eddy turnover times, Te, or ≈ 8 hours in the context of

the CBL) when compared to the unparametrized single-fluid results. An especially

promising result is that there was no change in the time to initiation of convection

across all resolutions for the two-fluid model, whereas the single-fluid model showed

a delay of ≈ 10% by grid spacings & 0.4H, and a delay of ≈ 100% by grid spacings

& 1.2H. This is because the two-fluid model can “resolve” convection within each

fluid at any resolution, so there is no delay associated with coarsening the resolution.

The model also performs well in the soft grey zone in terms of reproducing the

correct profiles and global mean heat and momentum transports; after ≈ 25Te, for

grid spacings & 4H, the observed Nusselt and Reynolds numbers, as well as the

horizontal-mean profiles of buoyancy, pressure, and vertical velocity, are identical to

the single-column model. At a time of ≈ 250Te, the same is true but only for grid

spacings & 10H; this is the fully parametrized regime.

For grid spacings 0.5H . ∆x . 10H, by ≈ 250Te an unrealistic resolved circula-

tion was observed in the mean fluid at the grid scale, producing artificially enhanced

heat and momentum transports, incorrect variation of fields in the horizontal, and
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incorrect vertical profiles of flow variables. This is very similar to the behaviour ob-

served in the single-fluid grey zone simulations: the convective instability projects

onto the smallest available scale, which is the grid scale. Although the two-fluid

model initially spins up to the correct horizontally-averaged profiles across all grey

zone resolutions, this does not appear to systematically delay the unrealistic grid

projection compared to the single-fluid simulations. Further, all grey zone two-fluid

simulations eventually allowed both signs of vertical velocity within a single parti-

tions, showing that the chosen exchange terms are incorrect for fluids defined by the

sign of the vertical velocity.

In the high-resolution limit, the two-fluid model does not tend to the DNS re-

sults because the closures used for the exchange terms do not possess the correct

high resolution limits. Potential modifications to the transfers of buoyancy, and to

the bulk viscous pressure, which do possess the correct high resolution limits were

suggested but not tested. Fluid fraction transfers based on divergence were shown

to be fundamentally incompatible in the high resolution limit with fluid partitions

based on the sign of the vertical velocity. This reinforces the conclusion of Chap-

ter 4 that better representations of the fluid fraction transfers are essential in order

to accurately represent the physics of convection with a multi-fluid model.

6.2 Conclusions, and questions for future research

6.2.1 The grey zone, and Rayleigh-Bénard convection as a sim-

plified model of atmospheric convection

In Chapter 2 we showed that Rayleigh-Bénard convection exhibits strikingly similar

grey zone behaviour to that observed in the dry CBL and in the sub-cloud layer of

both shallow and deep moist convection. We also showed some qualitative similar-

ities between the grey zone behaviour and observed NWP grey zone behaviour for

moist convection. This led us to conclude that RBC is a useful simple testbed for

exploring the convective grey zone, and one that has so far been under-utilized.

There are several obvious directions for future research. Firstly, the work of

Chapter 2 suggests the question: how far can the analogy between RBC and at-

mospheric convection be taken? RBC is often dismissed as irrelevant to real world

convection (e.g. Vallis et al. 2019, §1, p. 162; Thuburn and Efstathiou 2020, §1,

p. 1536). But there is no good evidence that the local dynamics of dry or unsatu-

rated convection should differ between RBC and more complex cases. In addition,

3D DNS of turbulent RBC qualitatively looks remarkably similar to 3D LES of the

dry CBL (Mellado 2012; also Peter Clark and Georgios Efstathiou, pers. comm.).

Do the dissipation rates in the plumes and the bulk scale in the same way in RBC
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and in the dry CBL? Do the plumes, bulk, and boundary layers interact in the same

manner? This latter question is of vital and direct importance to modelling of the

exchange and pressure perturbation terms in multi-fluid modelling, and of modelling

terms such as the pressure transport terms in multi-moment modelling. It would

benefit the atmospheric convection modelling community to know the quantitative

limits of these correspondences, especially in light of new results on extended RBC

with rough boundaries, or with radiative forcing.

Secondly, further studies of the grey zone of RBC are required. The analysis

of Chapter 2 almost entirely focused on global properties of the solutions, such as

the Nusselt and Reynolds numbers, time to convection initiation, and horizontal

profiles; only qualitative descriptions of local properties (such as grid projection and

implied length scales) were provided. We also only considered first-order quantities,

rather than higher-order statistics. Future work on the grey zone of RBC should

analyse in detail the higher-order statistics of RBC for filter scales from fully resolved

convection to fully-subfilter convection, comparing with numerical solutions at the

same implied resolution. Analysis of spatial and temporal correlation functions

should also be carried out, in order to determine the expected level of intermittency

for a given resolution. Analysis of the budget equations for kinetic energy and scalar

covariances at various filter scales will provide insight into how to model the subfilter

processes at different filter scales throughout the grey zone. In particular, evidence

has been found in RBC of regions of inverse scale energy transfer — i.e. transfer

of energy from small scales to large scales — associated with the plume separation

and impingement regions (Togni et al. 2015). This suggests that for some range

of filter scales, the subfilter flow could provide a net energy source for the resolved

vertical motion, associated with the formation of the coherent structures. Similar

conjectures have been made for the existence of a “reverse cascade” in atmospheric

convection (e.g. Zilitinkevich et al. 1998, 2021). Scale-by-scale analysis of turbulent

RBC in both 2D and 3D is required to verify or falsify these conjectures.

Thirdly, it is important to establish how the stability criteria for convection

depend on the grid, and how the correct implied length scales can be maintained

throughout all resolutions. B. Zhou et al. (2014) showed that, for grid spacings

> λc/2, convection must develop at the grid scale if the critical Rayleigh number

is exceeded at the grid scale, based on the standard RBC linear stability analysis.

How do subgrid models alter the stability analysis? Suppressing this instability at

the grid scale by providing better representations of subfilter transport is essential

to the representation of convection in the grey zone. This may hinge on correct

understanding of the nonlinear stability criteria; for fully-resolved RBC, the linear

and nonlinear stability criteria are identical. Do they decouple as the resolution

decreases? If so, this would potentially allow grid-scale circulations to develop even
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when the flow is linearly stable to convection. This is of even greater relevance to ex-

tensions to moist convection, where the linear and nonlinear stability criteria are not

the same, although unfortunately the general stability criteria for moist convection

are not known. A starting point would be to derive nonlinear stability criteria for

some of the simple moist extensions of RBC, for instance the precipitating model

of Vallis et al. (2019) or the non-precipitating model of Pauluis and Schumacher

(2010).

6.2.2 Multi-fluid modelling of convection

In Chapter 4, we showed that a simple two-fluid single-column model can accurately

reproduce global heat and momentum transports in RBC across 6 orders of mag-

nitude of buoyancy forcing, as well as reproducing qualitatively correct profiles of

buoyancy, pressure, and vertical velocity. In Chapter 5, we used the same closures to

simulate RBC in two dimensions at horizontal resolutions spanning from the fully-

parametrized to fully-resolved limits. The closures were found to work well in the

fully-parametrized limit, and were partially successful in the soft grey zone for times

up to ≈ 25 eddy turnover times, as well as initiating convection at the correct time

across all resolutions. However, the same grid projection was observed as in the

case of unparametrized single-fluid simulations, showing that much further work is

needed to create scale-aware multi-fluid parametrizations.

Some of the required work involves numerical considerations; for this, the con-

cluding chapter of McIntyre (2020) provides an excellent overview. We therefore

focus on the physical modelling issues.

We identified the principal weakness in the two-fluid model of Chapters 4-5 to

be the closures for the fluid fraction transfers, which are incompatible with the

chosen fluid definitions at high resolution. This raises two obvious avenues for

investigation: the first is to find fluid fraction transfers which correspond to the

chosen fluid definitions. The results of Chapter 3 will prove vital for this, both

for diagnosing transfers (including those of buoyancy and momentum) from data,

as well as providing exact integral expressions for the transfers which should be

amenable to asymptotic analysis.

The second suggested line of inquiry is to find fluid definitions which better pick

out the coherent structures of convection. Within the atmospheric convection litera-

ture the coherent structures of convection are often diagnosed via threshhold meth-

ods, for instance classifying as “updrafts” all regions with vertical velocities above

some chosen threshold. Other techniques include partitioning based on concentra-

tions of auxiliary tracer fields, either by threshold or by an optimization procedure

(Efstathiou et al. 2020). For Rayleigh-Bénard convection, on the other hand, coher-
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ent structures are often diagnosed by the heat flux or the thermal dissipation, since

exact results and scaling theories for these quantities can be used to provide thresh-

olds. Partitions based on, for instance, local heat flux criteria, should be compared

to the nonlocal optimization-based partition of Efstathiou et al. (2020), as well as

auxiliary tracer-based partitions, to see how well the different definitions correspond.

The advantage of local methods such as those used for RBC is that the material

derivative of the indicator function can be rewritten in terms of an integral over the

partition interface of the evolution equation for a flow variable (Chapter 3). The re-

sulting integral expressions could then be approximated using asymptotic methods

to provide analytically-based expressions for closures for the multi-fluid exchange

terms, as well as all other terms requiring closure in a multi-fluid model.

Expanding to other potential fluid definitions immediately suggests the question:

is the optimal fluid partition for dry convection the same as the optimal partition for

moist convection? And do the optimal partitions for shallow and deep convection

differ? If so, what local partitions are implied by different nonlocal optimal parti-

tions? And how should a multi-fluid model handle the transition between different

implied partitions?

In order to develop a multi-fluid model which works well in the grey zone of con-

vection, it will be necessary to draw on the previously suggested grey zone RBC re-

search. Especially relevant will be the scale-by-scale budgets at different filter scales;

since the multi-fluid method attempts to directly model the coherent structures of

convection, correctly capturing the energy transferred to the coherent structures

at different filter scales is vital for success. Analysis of multi-fluid second-moment

equations will also be important, to understand how best to model the subfilter

variability within partitions. The so-called top hat approximation is known to be

poor within traditional mass flux schemes; in a multi-fluid scheme, is the inclusion

of subfilter variability within the exchange terms enough, or is other accounting

of subfilter variability required (e.g. within-partition Reynolds stress and subfilter

buoyancy flux)? If representation of other subfilter variability is required, we must

ask whether the assumptions underlying traditional multi-moment modelling (for

instance, the Mellor-Yamada hierarchy introduced in Mellor and Yamada 1974) are

valid within individual partitions. Even at first-order closure level, one might not

expect isotropic closures to hold within-partition: buoyant plumes vary significantly

faster across-plume than along plume.

A more practical question is: what is the best trade-off between moments and

fluids? Both in terms of: how many fluid partitions is the optimal number, as well

as: do multi-fluid schemes perform better than multi-moment schemes for a similar

computational cost? In order to answer those questions, more work must be done

to understand the correspondence between multi-fluid and multi-moment modelling.
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Various authors have derived links between mass-flux closures and traditional turbu-

lence modelling (e.g. Grant 2006a), and complete second-order equations have been

derived within the multi-fluid framework (both by this author, and by John Thuburn

— pers. comm.). However no work to date has been done analytically linking the

standard spatially-filtered second-order equations to the multi-fluid equations. How

might this be useful? Well, given a (potentially complex) multi-fluid model of tur-

bulent convection, what are the implied closures for, for instance, the transport of

turbulent kinetic energy by pressure, one of the least well-understood terms in the

second-order turbulence equations? Even if a multi-fluid scheme proves computa-

tionally expensive, or too hard to integrate into a dynamical core, the insights from

multi-fluid modelling — which directly models the coherent structures of convection

— can be used to provide insight into how to better model higher moments in flows

where coherent structures are dynamically important. In this regard, the multi-fluid

framework should be seen as a useful research tool for the convection community in

the years ahead.

6.3 Concluding remarks

This thesis has presented multi-fluid modelling not as a radically new approach to

modelling convection, but rather as a natural outcome of viewing the traditional

mass flux approach as an attempt to recognize the importance of coherent struc-

tures in convective turbulence. A conditionally-filtered representation makes per-

fect sense as a way of providing a low-order description of a turbulent flow with

coherent structures. The natural consequence of this broader view is extending to

time-dependent, 3D flows, with non-small fluid fractions. We show that the time

dependent extension of mass flux with non-vanishing area produces interesting and

promising results even in 1D: applying the simplest version of this framework — a

two fluid model with no sub-filter variability — to horizontally-averaged Rayleigh-

Bénard convection correctly captures the global equilibrium features of convection,

providing proof-of-principle for the method. Even more promising is the fact that

the same model also captures approximately correct spin-up behaviour.

We have also shown that the grey zone is a significant challenge even in the sim-

plest convection problem, advocating the use of RBC as an arena for understanding

the grey zone without the confounding complexities of real-world convection. Sim-

ulating RBC in the grey zone with a simple two-fluid model had limited success,

due to the lack of understanding of how to parametrize the exchange terms. How-

ever, this thesis also provided theoretical results which we hope will serve as the

basis for systematically improving understanding of the terms requiring closure in a
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multi-fluid model.

Finally, we remark that while multi-fluid modelling of convection is promising

and exciting in its own right, there is also ample opportunity for cross-fertilization

between the traditional convection modelling, multi-moment modelling, and multi-

fluid modelling communities. Such cooperation has the potential to significantly

advance the understanding of convection and its representation in weather and cli-

mate models.
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Appendix A

Derivations of standard results in

Rayleigh-Bénard convection

A.1 Exact integral results

In this section we collect several exact results for the Nusselt number, Nu. We begin

by restating the Boussinesq equations from Chapter 2:

Du

Dt
= bk−∇P + ν∇2u, (2.4)

Db

Dt
= κ∇2b, (2.5)

∇ · u = 0. (2.6)

These equations are solved on a domain D ⊂ Rd possessing two non-intersecting

boundaries (labelled “top” and “bottom”) with normal vectors parallel to k, a fixed

distance H apart. The lateral boundaries satisfy dS · k = 0, where dS = n̂ dS

is the boundary surface element, and we choose the convention that the boundary

normal n̂ always points into the domain D. We work with the dimensional equations

to facilitate later comparison between different nondimensionalization choices; see

Section A.2 for a discussion of the common nondimensionalizations.

Conditions on the velocity at the top and bottom boundaries are no normal flow,

u⊥ := (u · n̂)n̂ = 0; (A.1)

along with either no slip,

u‖ := u− u⊥ = 0, (A.2)

or free-slip,

n̂ · ∇u‖ = 0. (A.3)

Here u⊥ is the velocity normal to the boundary, while u‖ is the velocity tangential
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to the boundary.

Conditions on the buoyancy are either constant buoyancy,

b(z = 0) = bB, b(z = H) = bT , (A.4)

or constant buoyancy flux,

n̂ · ∇b
∣∣
z=0,H

= −β. (A.5)

Conditions at the lateral boundaries are either a) free-slip or no slip velocity,

with adiabatic buoyancy conditions (∇b · n̂ = 0); or b) periodic in all fields.

We define the Nusselt number most generally as the ratio of the volume- and

time-averaged vertical buoyancy flux to the volume- and time-averaged purely diffu-

sive vertical buoyancy flux. From (2.5) above, the full buoyancy flux is j := ub−κ∇b;
the convective part is jc := ub, and the diffusive part is jd := −κ∇b. Thus the Nus-

selt number is defined as:

Nu :=
〈j · k〉V,T
〈jd · k〉V,T

(A.6)

=

〈
wb− κ ∂b

∂z

〉
V,T〈

−κ ∂b
∂z

〉
V,T

(A.7)

= 1 +
〈wb〉V,T〈
−κ ∂b

∂z

〉
V,T

(A.8)

= 1 +
〈wb〉V,T

−κ
(

(1/H) 〈b(z = zT)〉A,T − (1/H) 〈b(z = zB)〉A,T
) (A.9)

= 1 +
〈wb〉V,T
κ∆B/H

(A.10)

In going from the third-last to the second-last line, we have used that
∫ zT
zB

ẑ·∇b dz =

b(zT) − b(zB) (true even if x, y, z are not Cartesian coordinates). Perhaps interest-

ingly, the volume-integrated diffusive buoyancy flux is always precisely equal to what

it would be if the velocity field was uniformly zero.

To find our exact integral relations, first we volume-average the buoyancy equa-

tion (2.5): 〈
∂b

∂t

〉
V

+ 〈∇ · (ub− κ∇b)〉V = 0 (A.11)

=⇒ d

dt
〈b〉V +

1

H
〈ub− κ∇b〉∂V = 0 (divergence theorem). (A.12)

We can split the integral over the boundary into the integral over the lateral bound-

aries plus the integral over the top and bottom boundaries. Over the lateral bound-
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aries,
∫
S
(ub−κ∇b)·dS is clearly zero for either periodic boundaries or a domain with

infinite horizontal extent. For rigid insulating boundaries, u·dS = 0 and∇b·dS = 0.

Therefore for all of the usual RBC lateral boundary conditions, 〈∇ · (ub− κ∇b)〉V =

(1/H) 〈(ub− κ∇b) · n̂T〉A;z=zT
+ (1/H) 〈(ub− κ∇b) · n̂B〉A;z=zB

. For both no-slip

and free-slip boundaries, u · n̂ = 0; we also have n̂T = −n̂B = k. Collecting these

results, we have:

d

dt
〈b〉V − 〈κ∇b · k〉A;z=zT

+ 〈κ∇b · k〉A;z=zB
= 0. (A.13)

Performing a time-average, the first term drops out (because b is uniformly bounded

in time), giving:

〈κ∇b · k〉A,T ;z=zT
= 〈κ∇b · k〉A,T ;z=zB

, (A.14)

i.e. the vertical buoyancy fluxes averaged over the top and bottom boundaries are

equal to each other.

Next, we need to relate the buoyancy fluxes at the top and bottom boundaries

to the Nusselt number. In Cartesian geometry, this follows easily by noting that

〈∇ · (ub− κ∇b)〉A =
1

A

∫
∇ · (ub− κ∇b) dA

=
1

A

∫
A

∇H · (ub− κ∇b) dA

+
1

A

∫
A

∂

∂z
(ub− κ∇b) · k dA

=
1

A

∫
∂A

n̂∂A · (ub− κ∇b) d(∂A)

+
∂

∂z

1

A

∫
A

(ub− κ∇b) · k dA

=⇒ 〈∇ · (ub− κ∇b)〉A =
∂

∂z
〈(ub− κ∇b) · k〉A . (A.15)

In going from the penultimate to the final line, we have used that the integral over the

horizontal boundary is zero for any combination of RBC boundary conditions. For

periodic conditions, this is trivial. For either no-slip or free-slip boundary conditions,

n̂∂A ·u = 0 on the boundary, so the first term in the integrand is zero. For insulating

lateral boundary conditions, n̂∂A · ∇b = 0. Therefore 〈ub− κ∇b〉A,T /(κ∆B/H) =

Nu is independent of height z, allowing us to write:

− 1

∆B/H
〈∇b · k〉A,T ;z=zB

=
〈(ub− κ∇b) · k〉A,T

κ∆B/H
= Nu = 1 +

〈wb〉V,T
κ∆B/H

=⇒ − 1

∆B/H
〈∇b · k〉A,T ;z=zB

= 1 +
〈wb〉V,T
κ∆B/H

. (A.16)



194 A. Derivations of standard results in Rayleigh-Bénard convection

The setup is complete; now we can calculate the thermal and kinetic dissipation

rates. First we derive the buoyancy variance equation by multiplying equation 2.5

by the buoyancy:

∂

∂t

1

2
b2 +∇ ·

(
1

2
b2u

)
= κ∇ · (b∇b)− κ|∇b|2. (A.17)

Applying a volume average yields:

d

dt

〈
1

2
b2

〉
V

+
1

H

〈
1

2
b2u · n̂∂V

〉
∂V

= κ
1

H
〈b∇b · n̂∂V 〉∂V − κ

〈
|∇b|2

〉
V
. (A.18)

Splitting
〈

1
2
b2u · n̂∂V

〉
∂V

up into contributions from the lateral boundaries and the

vertical boundaries, we see that it must be zero. Clearly the contribution from

the lateral boundaries is zero if the conditions there are periodic. At both vertical

boundaries, as well as for rigid lateral boundaries, u · n̂∂V = 0.

Splitting 〈b∇b · n̂∂V 〉∂V similarly into its contributions from lateral and from

vertical boundaries, we see that the contribution from lateral boundaries is zero.

This is obvious for periodic conditions, and follows from n̂∂A · ∇b = 0 for rigid

insulating boundaries. The contribution from the vertical boundaries is however

nonzero:

〈b∇b · n̂∂V 〉∂V =

〈
b
∂b

∂z

〉
∂V ;z=H

−
〈
b
∂b

∂z

〉
∂V ;z=0

. (A.19)

For fixed buoyancy boundary conditions, we can insert the boundary conditions,

factor out the constant ∆B/2, and use 〈κ∇b · k〉A,T ;z=zT
= 〈κ∇b · k〉A,T ;z=zB

, to

give:

〈b∇b · n̂∂V 〉∂V = −∆B

〈
∂b

∂z

〉
∂V ;z=0

. (A.20)

If instead the boundary conditions are fixed buoyancy gradient, we can factor out

the constant ∂b/∂z |z=0 = ∂b/∂z |z=H , and use ∆B := 〈b〉∂V ;z=0 − 〈b〉∂V ;z=H , to

arrive at the same expression.

Inserting this back into the expression for the buoyancy variance and taking a

time average finally gives the desired exact integral result for the thermal dissipation:

κ
〈
|∇b|2

〉
V,T

= κ
(∆B)2

H2
Nu . (A.21)

For the kinetic dissipation, we follow essentially the same procedure. First we

take the inner product of u with the momentum equation 2.4 to derive an equation
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for the kinetic energy:

∂

∂t

1

2
|u|2 +∇ ·

(
1

2
|u|2u

)
= bu · k−∇ · (Pu) + ν∇ ·

(
u · (∇u)T

)
− ν|∇u|2.

(A.22)

Performing a volume average turns the three transport terms into surface integrals

over the boundary via the divergence theorem:

d

dt

〈
1

2
|u|2
〉
V

+
1

H

〈
1

2
|u|2u · n̂∂V

〉
∂V

= 〈bu · k〉V −
1

H
〈Pu · n̂∂V 〉∂V +

ν

H

〈
u · (∇u)T · n̂∂V

〉
∂V
− ν

〈
|∇u|2

〉
V
.

(A.23)

Clearly
〈

1
2
|u|2u · n̂∂V

〉
∂V

= 0 and 1
H
〈Pu · n̂∂V 〉∂V = 0 for any choice of velocity

boundary conditions;
〈
u · (∇u)T · n̂∂V

〉
∂V

is less obvious. To parse it, note u ·

(∇u)T · n̂∂V = u · ∂u/∂n = u‖ · ∂u‖
/
∂n , since u⊥ = 0 at any impermeable

boundary. Via the mass continuity relation, the normal stress must also be zero

at a free-slip boundary. Therefore the whole term is zero regardless of the velocity

boundary conditions.

We then take a time average; since the velocity magnitude is also uniformly

bounded in time, the tendency again vanishes, leaving a balance between the buoyant

production of kinetic energy and the dissipation:

〈bu · k〉V = ν
〈
|∇u|2

〉
V
. (A.24)

The left hand side is equal to (κ∆B/H)(Nu−1), yielding the desired exact integral

relation for the kinetic dissipation:

ν
〈
|∇u|2

〉
V,T

=
κ∆B

H
(Nu−1). (A.25)

See Table A.1 for the form of the kinetic dissipation relation under different choices

of nondimensionalization (the thermal dissipation relation always retains the same

form).

A.2 Nondimensionalizations of the Boussinesq equa-

tions for RBC

In this section we collect several commonly-used nondimensionalizations of the gov-

erning Boussinesq equations for applications to RBC. As well as presenting the
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different forms of the equations, we note how they are derived, what regimes they

are applicable to, and how the form of the exact integral results differs between

different nondimensionalizations. This should facilitate comparison of results in this

thesis with other work on RBC.

The governing Boussinesq equations are (repeated from Chapter 2):

Du

Dt
= bk−∇P + ν∇2u, (2.4)

Db

Dt
= κ∇2b, (2.5)

∇ · u = 0. (2.6)

For all of these nondimensionalizations it is assumed that the fluid is confined be-

tween two smooth, impermeable parallel boundaries held a fixed distance H apart,

that the thickness of the layer is small compared to the radius of curvature of the

boundaries, and that the horizontal extent of the layer is much greater than its

vertical extent.

All standard bulk nondimensionalizations begin by performing an isotropic rescal-

ing of the variables {x,u, t, P, b} →
{
Xx̂, T t̂, U û, P P̂ , Bb̂

}
. All of the nondimen-

sionalizations also scale time advectively, i.e. the velocity scale is U = X/T (which

is equivalent to assuming that the advective part of the time dependence is at least

as important as the Eulerian part).

The dimensional parameters entering the problem are then ν, κ,X, and B, al-

lowing the construction of two independent dimensionless parameters. These are

traditionally taken to be the Rayleigh and Prandtl numbers:

Ra :=
BX3

νκ
; (A.26)

Pr :=
ν

κ
. (A.27)

The characteristic buoyancy is set by the boundary conditions, B = ∆B, and the

characteristic length by the depth of the domain, X = H.

Thus the only differences arise in the choices for scaling the pressure, and for

scaling the time (or equivalently the velocity, since they determine each other). The

possible options are:

T = Tκ :=
H2

κ
(A.28)

T = Tν :=
H2

ν
(A.29)

T = TB :=

√
H

∆B
(A.30)
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P = U2 (A.31)

P =
Uν

H
. (A.32)

For Pr = O(1), either the diffusive or viscous scalings, with either dynamic or

viscous scaling of the pressure, make sense; all the different choices do is alter where

factors of Pr appear. However, for large or small Pr, the choices state something

fundamental about the physics involved in scaling each term.

As well as affecting the form of the governing equations, the chosen nondimen-

sionalization also affects the form of the exact expressions for the dissipation rates.

These different expressions are collected in Table A.1.

A.2.1 Infinite and infinitesimal Pr

For fluids where Pr → ∞ (such as the Earth’s mantle), it is appropriate to keep

both terms in the buoyancy equation, yet the viscosity must dominate inertia in the

momentum equation. Therefore the appropriate scalings are T = Tκ, P = (Uν)/H,

yielding

1

Pr

Dû

Dt̂
= Ra b̂k− ∇̂P̂ + ∇̂

2
û, (A.33)

Db̂

Dt̂
= ∇̂

2
b̂, (A.34)

∇̂ · û = 0. (A.35)

The viscous term must remain in the momentum equation, since we are assuming

viscosity is important; likewise we cannot neglect the the buoyancy term, since the

Prandtl number is independent of the buoyancy forcing. The pressure in this case

must scale viscously rather than dynamically (which makes sense for the desired

limit) in order to fulfil its role in satisfying the divergence constraint. This is effec-

tively scaling the momentum equation with a fast time-scale = Tκ/Pr, such that

the momentum field adjusts very quickly to changed in the buoyancy. In the limit

Pr→∞, the velocity becomes entirely diagnostic.

The opposite limit, Pr → 0, is not necessarily compatible with the Boussinesq

approximation, but is sometimes used in studies of the convection in stars. The

appropriate asymptotic limit of the equations is arrived at by scaling time viscously,

T = Tν , which makes both pressure scaling choices identical. This yields the equa-

tions:

Dû

Dt̂
=

Ra

Pr
b̂k− ∇̂P̂ + ∇̂

2
û, (A.36)
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Tκ U · ν/H 1
Pr

Dû
Dt

= Ra b̂k− ∇̂P̂ + ∇̂
2
û Db̂

Dt
= ∇̂

2
b̂

〈∣∣∣∇̂û
∣∣∣2〉

V,T

= Ra (Nu−1) Pr→∞

Tκ U2 Dû
Dt

= −∇̂P̂ Pr
(

Ra b̂k + ∇̂
2
û
)

Db̂
Dt

= ∇̂
2
b̂

〈∣∣∣∇̂û
∣∣∣2〉

V,T

= Ra (Nu−1) None implied

Tν U2 = U · ν/H Dû
Dt

= Ra
Pr
b̂k− ∇̂P̂ + ∇̂

2
û Pr Db̂

Dt
= ∇̂

2
b̂

〈∣∣∣∇̂û
∣∣∣2〉

V,T

= Ra
Pr2

(Nu−1) Pr→ 0 (after rescaling buoy-
ancy; see Section A.2.1)

TB U · ν/H 1
Pr

Dû
Dt

= b̂k− ∇̂P̂ +
√

Pr
Ra
∇̂

2
û Db̂

Dt
= 1√

Ra Pr
∇̂

2
b̂

〈∣∣∣∇̂û
∣∣∣2〉

V,T

= 1
Pr

(Nu−1) Ra→∞ (for finite Pr)

Table A.1: Comparison of different nondimensionalizations of the Boussinesq
equations for RBC. The buoyancy is always nondimensionalized by ∆B, and the
spatial dimensions are always nondimensionalized by H. The thermal dissipation

rate is not included, since it always takes the same form:

〈∣∣∣∇̂b̂∣∣∣2〉
V,T

= Nu.
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Pr
Db̂

Dt̂
= ∇̂

2
b̂, (A.37)

∇̂ · û = 0. (A.38)

To consistently take the limit Pr → 0, we must transform variables to b′ := b −
(∆B/2H )(H − 2z) (subtracting the associated hydrostatically balanced pressure

gradient from the momentum equation). The appropriate scaling for this new vari-

able includes a further factor of Pr, b̂′ = b/(Pr ∆B), since deviations from the pure

conductive buoyancy profile are suppressed at high Prandtl number; this removes

the final factor of Pr from the momentum equation:

Dû

Dt̂
= Ra b̂′k− ∇̂P̂ + ∇̂

2
û. (A.39)

The buoyancy equation in terms of b̂′ then includes an extra forcing from the vertical

velocity:

Pr
Db̂′

Dt̂
= ŵ + ∇̂

2
b̂′. (A.40)

Therefore in the limit Pr → 0 the buoyancy is given entirely diagnostically (and

nonlocally) by the inverse Laplacian of the vertical velocity. This equation set may

be derived rigorously as the low-Pr limit of the Boussinesq equations.

A.2.2 Fixed value vs. fixed flux buoyancy boundary conditions

With constant buoyancy flux boundary conditions (relevant whenever the finite con-

ductivity of the boundaries is small compared to the effective conductivity of the

potentially turbulent fluid), the control parameter is the buoyancy flux at the bound-

aries, rather than the buoyancy itself. We replace the fixed buoyancy boundary

conditions with fixed flux conditions of the form:

∂b

∂z

∣∣
z=0,H

= −β. (A.41)

This alters the nondimensionalization of the buoyancy to b = βHb̂, and the (average)

buoyancy difference between the boundaries then becomes a measurable response of

the system,

∆B = 〈b(z = 0)〉A,t − 〈b(z = H)〉A,t . (A.42)



200 A. Derivations of standard results in Rayleigh-Bénard convection

However, with the replacement ∆B → βH, all of the previous nondimensionaliza-

tions retain the same form upon the introduction of the flux Rayleigh number,

Ra∗ :=
βH4

νκ
. (A.43)

The flux Rayleigh number Ra∗ may be related to the standard Rayleigh num-

ber Ra by noting that 〈(ub− κ∇b) · k〉(A,T ;z=0) = κβ, and 〈−κk · ∇b〉(A,T ;z=0) =

(κ/H)
(
〈b(z = 0)〉A,T − 〈b(z = H)〉A,T

)
. Therefore

Nu :=
〈(ub− κ∇b) · k〉V,T
〈(−κ∇b) · k〉V,T

(A.44)

=
〈(−κ∇b) · k〉A,T ;z=0

(κ/H )
〈
−
∫ H

0
(∂b/∂z ) dz

〉
A,T

(A.45)

=
κ 〈− ∂b/∂z 〉(A,T ;z=0)

(κ/H )
(
〈b(z = 0)〉A,T − 〈b(z = H)〉A,T

) (A.46)

=
βH

∆B
=

Ra∗

Ra
(A.47)

=⇒ Ra∗ ≡ Nu Ra . (A.48)

This provides a recipe for converting between expressions written in terms of the

natural variables for the fixed flux and fixed-value buoyancy boundary conditions,

including the governing equations.



Appendix B

Additional results regarding the theory of

the multi-fluid equations

B.1 Modelling of continuous media via conditional

filtering

First let us make some general statements about multi-fluid modelling, which will

actually be applicable to the conditional filtering of any continuous medium. The

reason for beginning with this generality is to make clear that much of the develop-

ment in Chapter 3 and later in this Appendix in the context of Boussinesq flows is

actually applicable to far more general equation sets.

Consider a set of physical fields {ϕ} defined over a region Ω ⊆ Rd, and over

a time interval [0, T ]; ϕ could be a scalar, vector, or tensor field, such as density

ρ, material velocity u, or stress τ . The evolution of these fields is described by

generalized continuity equations of the form:

∂ϕ

∂t
+∇ · j = Σϕ, (B.1)

where jϕ is the flux of ϕ and Σϕ are sources/sinks of ϕ (i.e. anything which cannot

be placed inside a divergence). All of the equations of continuum mechanics and,

specifically, fluid dynamics can be cast into this form, including the averaged or

filtered equations arising in turbulence research.

As in the main text of Chapter 3, we wish to conditionally filter these equations.

Indicator functions are introduced exactly as in Section 3.3; however an extra term

arises when filtering the left hand side of (3.36) due to the nonzero divergence of

the velocity field: (
DIi
Dt

)r

=

(
∂Ii
∂t

)r

+ (u · ∇Ii)r (B.2)

201
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=

(
∂Ii
∂t

)r

+ (∇ · (Iiu))r − (Ii∇ · u)r. (B.3)

Equating with the right hand side of equation (3.36), and assuming the filtering

operation commutes with space and time partial derivatives, yields the form of the

“fluid” fraction conservation equation suitable for a general continuous medium in

which a material velocity field u can be defined:

∂σi
∂t

+∇ · σiur
i = 〈(u−V∂Di) · ∇Ii〉g + σi(∇ · u)r

i. (B.4)

The presence of∇·u in one of the terms on the right-hand side suggests that, if the

medium is compressible, we must directly consider the conditionally-filtered mass

continuity equation in order to close the fluid fraction conservation equation. This

is similar to the source term which appears when using non-Favre filtered definitions

for resolved variables in standard filtering approaches to compressible turbulence.

In practice, it turns out to be easier to combine the continuity equation with

the indicator function evolution equation, and then filter, which removes the di-

rect appearance of the resolved divergence. Let us therefore conditionally filter the

general continuity equation (B.1), again assuming uniform filter width and absent

boundaries:〈
Ii

(
∂ϕ

∂t
+∇ · j− Σϕ

)
+ ϕ

(
∂Ii
∂t

+ u · ∇Ii −
DIi
Dt

)〉
g

= 0

=⇒
〈
∂Iiϕ

∂t
+∇ · (Iij) + (ϕu− j) · ∇Ii

〉
g

=

〈
IiΣϕ + ϕ

DIi
Dt

〉
g

.

(B.5)

Using 〈ϕ DIi/Dt〉g = 〈ϕ(u−V∂Di) · ∇Ii〉g gives:

∂ 〈Iiϕ〉g
∂t

+∇ · 〈Iij〉g = 〈(j− ϕu) · ∇Ii〉g + 〈IiΣϕ〉g + 〈ϕ(u−V∂Di) · ∇Ii〉g . (B.6)

For ϕ = ρ, the flux j = ρu and the source term Σϕ = 0, simplifying the above

expression to:

∂ 〈Iiρ〉g
∂t

+∇ · 〈Iiρu〉g = 〈(ρu− ρV∂Di) · ∇Ii〉g . (B.7)

The (relative) simplicity of this expression suggests that, for a compressible medium,

the conditionally filtered mass continuity equation should be used in place of the

filtered indicator function evolution equation. This also motivates defining some “re-

solved” variables to be density-weighted if the flow is compressible, similarly to con-

siderations of compressible vs. incompressible flows when filtering unconditionally.
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We therefore make the following definitions:

Definition 11 (“Resolved” variables: compressible case). For a variable ϕ, density

ρ, and filtering operation 〈. . . 〉g, we define the (Favre-)resolved part of ϕ by:

ϕ̃r :=
〈ρϕ〉g
ρr

. (B.8)

Given an indicator function Ii, we also define the (Favre-)resolved part of ϕ in

partition i by:

ϕ̃r
i :=
〈Iiρϕ〉g
σiρr

i

. (B.9)

Note that this means ϕ̃r
i is undefined wherever σi = 0.

An immediate consequence is
∑

i σiρ
r
iϕ̃

r
i = ρrϕr.

Comments on compressible vs. incompressible flows

With these definitions, the conditionally-filtered mass continuity equation takes on

the same form as the fluid fraction evolution equation for an incompressible fluid

(repeated here for clarity):

∂σi
∂t

+∇ · σiur
i = [(u−V∂Di) · ∇Ii]

r + σi(∇ · u)r
i (B.10)

∂σiρ
r
i

∂t
+∇ · σiρr

iũ
r
i = [ρ(u−V∂Di) · ∇Ii]

r. (B.11)

The first equation states that changes in resolved fluid fraction are due to the re-

solved movement of the interface relative to fluid parcels, plus a contribution from

the compression or expansion of the underlying fluid. In the incompressible case,

∇ · u = 0 and so the resolved fluid parcel-relative movement of the interface is

the only contribution to changes in fluid fraction. The second equation states that

changes in fluid fraction-weighted resolved density at a point are entirely due to

the resolved density-weighted movement of the interface relative to fluid parcels at

that point. (This can be seen as associating a momentum density, ρv∂Di , to the

fluid parcel-relative velocity of the interface.) Thus we name (u−V∂Di) · ∇Ii and

ρ(u−V∂Di) ·∇Ii “relabelling” terms, as they serve to relabel material parcels from

one partition to another.

Back to the relabeling terms. Something interesting emerges when we recast the

fluid fraction conservation equation in advective form. First we need to define the

material derivative operator in partition i:

Definition 12 (Material derivative in partition i). Given a resolved velocity field

in partition i, ur
i, we define the material derivative operator in partition i to
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be the total derivative operator following the path of the resolved velocity field in

partition i:
Di

Dt
:=

(
∂

∂t
+ ur

i · ∇
)
. (B.12)

Now we can write the advective form of the fluid fraction conservation equation

concisely:

Diσi
Dt

= [(u−V∂Di) · ∇Ii]
r + σi(∇ · u)r

i − σi∇ · u
r
i. (B.13)

Therefore the changes of fluid fraction following a resolved fluid parcel include con-

tributions both from the resolved divergence in partition i, and from the divergence

of the resolved velocity in partition i. This highlights an important point — the

relabelling of fluid contributes to the divergence of the resolved velocity in partition

i:

∇ · σiur
i =∇ · 〈Iiu〉g (B.14)

= 〈(Ii∇ · u + u · ∇Ii)〉g (B.15)

=⇒ σi∇ · ur
i = σi(∇ · u)r

i + (u · ∇Ii)r − ur
i · ∇σi. (B.16)

Here the middle term, (u · ∇Ii)r, is due to motion of fluid across the interface

∂Di. For small filter scales, we must have ur
i · ∇σi → (u · ∇Ii)r, but there is

no reason to expect those terms to be similar at larger filter scales. Thus even

when the underlying fluid is incompressible, the resolved velocity in each partition

is not divergence-free. This will turn out to have consequences later, especially for

modelling conditionally-filtered stress tensors.

B.2 “Relabelling” and “exchange” terms

We turn now to exploring the relabelling terms, Si, in more detail. Since the fluid

fraction-weighted mass conservation equation (B.11) is identical in form to the fluid

fraction conservation equation (B.10) in the case of an incompressible underlying

fluid, it suffices to consider only the latter in what follows.

Consider the explicit integral forms of the relabelling terms from Chapter 3,

equations (3.31) and (3.32):

Si := −
∫
Rd
g(V∂Di − u)f · ∇Ii dV = 〈u−V∂Di · ∇Ii〉g (B.17)

=

∮
∂Di

g(V∂Di − u)f · n̂∂Di d(∂Di). (B.18)

As currently written, the terms are easy to make sense of conceptually but would
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be of little practical use. Further, their relation to entrainment and detrainment

terms in traditional convection modelling, or the conditional filtering framework of

Thuburn et al. (2018), is currently not obvious.

Recall that the second expression results when using the surface delta function

to transform the volume integral to one over the boundary of the indicated domain

Di. This is more useful both for computations, and for splitting the contributions

to Si into sources and sinks. To split into sources and sinks, note that if g is positive

semidefinite, the integrand gives a positive contribution to the integral wherever

v∂Di · n̂∂Di > 0, and a negative contribution wherever v∂Di · n̂∂Di < 0. This suggests

the identifications

S+
i :=

∮
∂Di

g H(v∂Di · n̂∂Di)v∂Di · n̂∂Di d(∂Di),

S−i :=

∮
∂Di

g H(−v∂Di · n̂∂Di) (−v∂Di · n̂∂Di) d(∂Di), (B.19)

where H(x) denotes the Heaviside step function and S±i ∈ R≥0 are respectively

sources and sinks of the resolved fluid fraction. We will call terms like this “fluid

fraction transfer terms”, or “transfer terms” for brevity. The expression “relabelling

terms” will be reserved for discussions of the unfiltered sources and sinks to the

indicator function. That is, H(−v∂Di · n̂∂Di)δ(x ∈ ∂Di) is a relabelling term for the

indicator function; 〈H(−v∂Di · n̂∂Di)δ(x ∈ ∂Di)〉g = S+
i is the corresponding fluid

fraction transfer term.

These sources and sinks may be further decomposed into contributions from the

boundary with each other partition, j. Assuming that there are n ∈ N>0 partitions,

we have that the boundary of domainDi may be written as the sum of the boundaries

with each other domain Dj. We define ∂Dij to be the subset of boundary ∂Di

which is in contact with domain Dj, and only domain Dj. We define ∂Dijk to be

the subset of boundary ∂Di which is contact with both domain Dj and Dk, and

only those two domains. For n fluid partitions we thus define ∂Dia1...ap to be the

subset of the boundary ∂Di which is in contact with subdomains Da1 , . . . , Dap with

p ∈ {0, n − 2}; all such subsets are mutually disjoint. The entire boundary is the

union of all these subsets, ∂Di =
⋃
a1 ∂Dia1(

⋃
a2 ∂Dia1a2(

⋃
a3 . . . (

⋃
ap ∂Dia1...ap) . . . )).

We can then decompose the integral over the entire boundary into the sum of the

integrals over all subsets of the boundary,∮
∂Di

g H(v∂Di · n̂∂Di)v∂Di · n̂∂Di d(∂Di)

=
∑
a1 6=i

(∫
∂Dia1

g H(v∂Di · n̂∂Di)v∂Di · n̂∂Di d(∂Di)

)
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+
∑
a1 6=i

∑
a2 6=i

(∫
∂Dia1a2

g H(v∂Di · n̂∂Di)v∂Di · n̂∂Di d(∂Di)

)
+ . . . (B.20)

Here the first sum is over all two-partition interactions; the second over all three-

partition interactions; and so on, up to interactions of all n partitions. However,

usually interactions between only two partitions are assumed; we certainly expect

two-partition interactions to dominate, since
⋃
a1 ∂Dia1 is almost the entire bound-

ary1. Thus we specialize to two-partition interactions, leaving only the first sum,

which suggests the definitions:

σiSij :=

∫
∂Dij

g H(−v∂Dij · n̂∂Dij)
(
−v∂Dij · n̂∂Dij

)
d(∂Di) (B.21)

=

∫
∂Dji

g H(v∂Dji · n̂∂Dji)
(
v∂Dji · n̂∂Dji

)
d(∂Dj), (B.22)

σjSji :=

∫
∂Dji

g H(−v∂Dji · n̂∂Dji)
(
−v∂Dji · n̂∂Dji

)
d(∂Dj) (B.23)

=

∫
∂Dij

g H(v∂Dij · n̂∂Dij)
(
v∂Dij · n̂∂Dij

)
d(∂Di), (B.24)

with
∑

j σiSij = S−i ,
∑

j σjSji = S+
i (within the two-partition interaction approxi-

mation). Here Sij ∈ R≥0 is the rate of fluid fraction transfer from partition i to j,

while Sji ∈ R≥0 is the rate of fluid fraction transfer from partition j to i. We choose

to define the transfer terms as weighted by volume fraction to match the convention

in earlier papers on multi-fluid modelling of convection (Thuburn et al. 2018; Weller

and McIntyre 2019; Weller et al. 2020).

Since density is positive definite, exactly the same decomposition could have been

performed for density-weighted relabelling terms to define mass transfer terms:

σiMij :=

∫
∂Dij

g H(−v∂Dij · n̂∂Dij)ρ
(
−v∂Dij · n̂∂Dij

)
d(∂Di) (B.25)

=

∫
∂Dji

g H(v∂Dji · n̂∂Dji)ρ
(
v∂Dji · n̂∂Dji

)
d(∂Dj), (B.26)

σjMji :=

∫
∂Dji

g H(−v∂Dji · n̂∂Dji)ρ
(
−v∂Dji · n̂∂Dji

)
d(∂Dj) (B.27)

=

∫
∂Dij

g H(v∂Dij · n̂∂Dij)ρ
(
v∂Dij · n̂∂Dij

)
d(∂Di), (B.28)

where the interpretation is the same as for the Sij, except now for transfers of mass.

1To see this, note that in d dimensions, the interface between two measurable sets D1 and D2

with the property D1∩D2 = ∅, ∂D1∩∂D2 6= ∅ is d−1-dimensional, whereas the interface between
more than two such sets is at most d− 2-dimensional.
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Substituting these expressions for the fluid fraction and mass transfer terms back

into the conservation equations gives:

∂σi
∂t

+∇ · σiur
i =

∑
j 6=i

(σjSji − σiSij) + σi(∇ · u)r
i, (B.29)

∂σiρ
r
i

∂t
+∇ · σiρr

iũ
r
i =

∑
j 6=i

(σjMji − σiMij) . (B.30)

This completes the derivation of equations (3.44) and (3.48).

B.3 Proof of subfilter flux decomposition for arbitrar-

ily many partitions

In Chapter 1 we introduced and proved a relation between the subfilter flux s(a, b)

and the within-partition values ar
i, b

r
i and the within-partition fluxes si(a, b) for the

special case of two partitions:

s(a, b) = σ1s1(a, b) + σ2s2(a, b) + σ1σ2 (ar
1 − ar

2) (br
1 − br

2) . (1.35)

This leads us to conjecture the following relation for an arbitrary number of parti-

tions:

s(a, b) =
∑
i

σisi(a, b) +
1

2

∑
i,j

σiσj
(
ar
i − ar

j

) (
br
i − br

j

)
, (B.31)

which is used liberally from Chapter 3 onwards.

To prove (B.31), we begin with
∑

i σisi(a, b) and work backwards:∑
i

σisi(a, b) =
∑
i

σi(ab)
r
i −
∑
i

σia
r
ib

r
i

= (ab)r − arbr +

(∑
i

σia
r
i

)(∑
j

σjb
r
j

)
−
∑
i

σi

(∑
j

σj

)
ar
ib

r
i

= s(a, b) +
∑
i,j

σiσja
r
ib

r
j −

∑
i,j

σiσja
r
ib

r
i

= s(a, b)−

(∑
i,j

σiσja
r
ib

r
i −
∑
i,j

σiσja
r
ib

r
j

)

= s(a, b)− 1

2

(∑
i,j

σiσja
r
ib

r
i −
∑
i,j

σiσja
r
ib

r
j +
∑
i,j

σiσja
r
ib

r
i −
∑
i,j

σiσja
r
ib

r
j

)
(B.32)
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= s(a, b)− 1

2

(∑
i,j

σiσja
r
ib

r
i −
∑
i,j

σiσja
r
ib

r
j +
∑
j,i

σjσia
r
jb

r
j −

∑
j,i

σjσia
r
jb

r
i

)
(B.33)

= s(a, b)− 1

2

(∑
i,j

σiσja
r
ib

r
i −
∑
i,j

σiσja
r
ib

r
j +
∑
i,j

σjσia
r
jb

r
j −

∑
i,j

σjσia
r
jb

r
i

)
(B.34)

= s(a, b)− 1

2

∑
i,j

σiσj
(
ar
ib

r
i − ar

ib
r
j − ar

jb
r
i + ar

jb
r
j

)
=⇒ s(a, b) =

∑
i

σisi(a, b) +
1

2

∑
i,j

σiσj
(
ar
i − ar

j

) (
br
i − br

j

)
, (B.35)

completing the proof of equation (B.31).

For clarity, in going from Equation (B.32) to Equation (B.33), we have relabelled

the dummy indices in the second and fourth terms inside the parentheses, and in

going from Equation (B.33) to Equation (B.34), we have swapped the summation

order in the second and fourth terms inside the parentheses2. Therefore the split

of fluxes/covariances into “organized turbulence” and “internal variability” carries

through to a general filtering operation, and to any countable number of partitions.

Note that equation (1.35) is often written in the alternative form (for instance

in Efstathiou et al. 2020):

s(a, b) = σ1s1(a, b) + σ2s2(a, b) + σ1 (ar
1 − ar) (br

1 − br) + σ2 (ar
2 − ar) (br

2 − br) .

(B.36)

This form is obtained from equation (1.35) by noting σ2(ar
1−ar

2) = (ar
1−ar) exactly,

then adding and subtracting br = σ1b
r
1 + σ2b

r
2 inside the parentheses. We can also

2The order of summation can always be swapped if the number of partitions is finite. If
the number of partitions is countably infinite, we note that

∑
i

∑
j aij

∑
j

∑
i aij if and only if∑

i

∑
j |aij| exists (this is a special case of Fubini’s theorem for infinite series).
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generalize this result to countably many partitions:

1

2

∑
i,j

σiσj
(
ar
i − ar

j

) (
br
i − br

j

)
=

1

2

{∑
i,j

σiσj
(
ar
i − ar

j

)
(br
i − br) +

∑
i,j

σiσj
(
ar
i − ar

j

) (
br − br

j

)}

=
1

2

{∑
i,j

σiσj
(
ar
i − ar

j

)
(br
i − br) +

∑
j,i

σjσi
(
ar
j − ar

i

)
(br − br

i)

}

=
1

2

{∑
i,j

σiσj
(
ar
i − ar

j

)
(br
i − br) +

∑
i,j

σiσj
(
ar
i − ar

j

)
(br
i − br)

}
=
∑
i,j

σiσj
(
ar
i − ar

j

)
(br
i − br)

=
∑
i

σi (b
r
i − br)

([∑
j

σj

]
ar
i −

[∑
j

σja
r
j

])
=
∑
i

σi (b
r
i − br) (ar

i − ar) .

In the first line we added 0 = σiσj(a
r
i − ar

j)(b
r − br) inside the summation; in going

from the first line to the second, we re-labelled the dummy indices in the second

term inside the curly braces; and in going from the second line to the third, we

swapped the order of the summation in the second term inside the curly braces.

Therefore we have proved an alternative form of equation (B.31):

s(a, b) =
∑
i

σisi(a, b) +
∑
i

σi (a
r
i − ar) (br

i − br) . (B.37)

It is worth making a few remarks on the generality of the above derivation. Note

that the only conditions the derivation makes use of are
∑

i σi = 1,
∑

i σia
r
i = ar, as

well as the formal definitions s(a, b) := abr − arbr, si(a, b) := (ab)r
i − ar

ib
r
i. Therefore

the results (B.31) and (B.37) are not restricted to conditional filtering using an

integral spatiotemporal filter and a discontinuous indicator function. The filtering

operation may be any linear filtering operation, which includes various ensemble

averages. Additionally, the indicator function used for the conditioning could well

be a “fuzzy” indicator.

It is also quite easily possible to extend to continuous partitioning, i.e. for some

continuous conditions indexed by λ, a conditionally filtered field in an infinitesimal

neighbourhood of λ would be given by σλϕ
r
λ. Then the continuous analogues of the

conditions
∑

i σi = 1 and
∑

i σiϕ
r
i = ϕr become

∫
λ
σλ dλ = 1,

∫
λ
σλϕ

r
λ dλ = ϕr, and

the derivations proceed in much the same way as for the case of countable series
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above, resulting in:

s(a, b) =

∫
λ

σλsλ(a, b) +
1

2

∫
λ,κ

σλσκ (ar
λ − ar

κ) (br
λ − br

κ) dλ dκ (B.38)

=

∫
λ

σλsλ(a, b) +

∫
λ

σλ (ar
λ − ar) (br

λ − br) dλ. (B.39)

(The conditions allowing the order of the resulting integrals to be swapped are

provided by Fubini’s theorem.)

This extension to the case of continuously-indexed partitioning makes the sub-

filter flux decomposition precise for the useful case of so-called “spectral” mass-flux

schemes, including the original paper Arakawa and Schubert (1974).



Bibliography

Ahlers, Guenter, Siegfried Grossmann, and Detlef Lohse (2009). “Heat transfer and large

scale dynamics in turbulent Rayleigh-Bénard convection”. Reviews of Modern Physics

81 (2), pp. 503–537. doi: 10.1103/RevModPhys.81.503 (cit. on pp. 3, 44, 47, 51, 56,

58, 61, 65, 128, 135).

Arakawa, Akio, J. H. Jung, and Chien-Ming Wu (2011). “Toward unification of the

multiscale modelling of the atmosphere”. Atmospheric Chemistry and Physics 11.8,

pp. 3731–3742 (cit. on pp. 39, 180).

Arakawa, Akio and Wayne Howard Schubert (1974). “Interaction of a Cumulus Cloud

Ensemble with the Large-Scale Environment, Part I”. Journal of the Atmospheric

Sciences 31, pp. 674–701 (cit. on pp. 1, 23, 24, 26, 28, 179, 210).

Arakawa, Akio and Chien-Ming Wu (2013). “A Unified Representation of Deep Moist Con-

vection in Numerical Modeling of the Atmosphere. Part I”. Journal of the Atmospheric

Sciences 70.7, pp. 1977–1992. doi: 10.1175/JAS-D-12-0330.1 (cit. on p. 34).

Baer, Melvin R. and Jace W. Nunziato (1986). “A two-phase mixture theory for the

deflagration-to-detonation transition (DDT) in reactive granular materials”. Interna-

tional Journal of Multiphase Flow 12.6, pp. 861–889. doi: https://doi.org/10.101

6/0301-9322(86)90033-9 (cit. on p. 87).

Bailon-Cuba, Jorge, Mohammad S. Emran, and Jörg Schumacher (2010). “Aspect ratio

dependence of heat transfer and large-scale flow in turbulent convection”. Journal of

Fluid Mechanics 655, pp. 152–173. doi: 10.1017/S0022112010000820 (cit. on p. 47).

Bakhuis, Dennis et al. (2018). “Mixed insulating and conducting thermal boundary condi-

tions in Rayleigh–Bénard convection”. Journal of Fluid Mechanics 835, pp. 491–511.

doi: 10.1017/jfm.2017.737 (cit. on p. 52).

Batchelor, G. K. (1967). An Introduction to Fluid Dynamics. Cambridge Mathematical

Library. Cambridge University Press (cit. on pp. 5, 113, 114, 131).

— (1970). “The stress system in a suspension of force-free particles”. Journal of Fluid

Mechanics 41.3, pp. 545–570. doi: 10.1017/S0022112070000745 (cit. on p. 111).

Beare, Robert J. (2014). “A Length Scale Defining Partially-Resolved Boundary-Layer

Turbulence Simulations”. Boundary-Layer Meteorology 151 (1), pp. 39–55. doi: 10.1

007/s10546-013-9881-3 (cit. on pp. 21, 77).

Beetham, S., R.O. Fox, and J. Capecelatro (2021). “Sparse identification of multiphase

turbulence closures for coupled fluid–particle flows”. Journal of Fluid Mechanics 914,

A11-1–23. doi: 10.1017/jfm.2021.53 (cit. on pp. 40, 176).

211

https://doi.org/10.1103/RevModPhys.81.503
https://doi.org/10.1175/JAS-D-12-0330.1
https://doi.org/https://doi.org/10.1016/0301-9322(86)90033-9
https://doi.org/https://doi.org/10.1016/0301-9322(86)90033-9
https://doi.org/10.1017/S0022112010000820
https://doi.org/10.1017/jfm.2017.737
https://doi.org/10.1017/S0022112070000745
https://doi.org/10.1007/s10546-013-9881-3
https://doi.org/10.1007/s10546-013-9881-3
https://doi.org/10.1017/jfm.2021.53


212 Bibliography

Behrens, Tim (2009). OpenFOAM’s basic solvers for linear systems of equations. Report

for course “CFD with Open Source software”. Chalmers University of Technology (cit.

on p. 61).

Bénard, Henri (1900). “Les Tourbillons cellulaires dans une nappe liquide”. Revue Général
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Grötzbach, Günther (1983). “Spatial resolution requirements for direct numerical simu-

lation of the Rayleigh-Bénard convection”. Journal of Computational Physics 49.2,

pp. 241–264. doi: https://doi.org/10.1016/0021- 9991(83)90125- 0 (cit. on

pp. 57, 71).

https://doi.org/10.1063/1.857955
https://doi.org/10.1093/qjmam/hbu004
https://doi.org/https://doi.org/10.1002/qj.49712757104
https://doi.org/10.1175/1520-0493(1990)118<1483:AMFCSW>2.0.CO;2
https://doi.org/10.1175/1520-0493(1990)118<1483:AMFCSW>2.0.CO;2
https://doi.org/10.1103/PhysRevE.66.016305
https://doi.org/10.1103/PhysRevE.66.016305
https://doi.org/10.1017/S0022112003004270
https://doi.org/10.1063/1.1807751
https://doi.org/https://doi.org/10.1016/0021-9991(83)90125-0


Bibliography 217

Gu, Jian-Feng et al. (2020). “Evaluation of the Bulk Mass Flux Formulation Using Large-

Eddy Simulations”. Journal of the Atmospheric Sciences 77.6, pp. 2115–2137. doi:

10.1175/JAS-D-19-0224.1 (cit. on pp. 30, 31, 181).

Han, Jongil et al. (2017). “Updates in the NCEP GFS Cumulus Convection Schemes with

Scale and Aerosol Awareness”. Weather and Forecasting 32.5, pp. 2005–2017. doi:

10.1175/WAF-D-17-0046.1 (cit. on p. 34).

Hanley, Kirsty et al. (2019). “Modifications to the representation of subgrid mixing in

kilometre-scale versions of the Unified Model”. Quarterly Journal of the Royal Mete-

orological Society 145.725, pp. 3361–3375. doi: https://doi.org/10.1002/qj.3624

(cit. on p. 33).

Hayes, Alexander G., Ralph D. Lorenz, and Jonathan I. Lunine (2018). “A post-Cassini

view of Titan’s methane-based hydrologic cycle”. Nature Geoscience 11 (5), pp. 306–

313. doi: 10.1038/s41561-018-0103-y (cit. on p. 9).

He, Jia et al. (2020). “An Improved Perturbation Pressure Closure for Eddy-Diffusivity

Mass-Flux Schemes”. Earth and Space Science Open Archive, p. 28. doi: 10.1002/es

soar.10505084.1 (cit. on pp. 36, 128).

He, Xiaozhou, Eberhard Bodenschatz, and Guenter Ahlers (2020). “Aspect ratio depen-

dence of the ultimate-state transition in turbulent thermal convection”. Proceedings of

the National Academy of Sciences 117.48, pp. 30022–30023. doi: 10.1073/pnas.200

7399117 (cit. on p. 51).

He, Xiaozhou et al. (2012). “Transition to the Ultimate State of Turbulent Rayleigh-

Bénard Convection”. Physical Review Letters 108 (2), p. 024502. doi: 10.1103/Phys

RevLett.108.024502 (cit. on p. 51).

Heslot, F., B. Castaing, and A. Libchaber (1987). “Transitions to turbulence in helium

gas”. Physical Review A 36 (12), pp. 5870–5873. doi: 10.1103/PhysRevA.36.5870

(cit. on p. 50).

Holloway, Christopher E., Steven J. Woolnough, and Grenville M. S. Lister (2013). “The

Effects of Explicit versus Parameterized Convection on the MJO in a Large-Domain

High-Resolution Tropical Case Study. Part I: Characterization of Large-Scale Organi-

zation and Propagation”. Journal of the Atmospheric Sciences 70.5, pp. 1342–1369.

doi: 10.1175/JAS-D-12-0227.1 (cit. on pp. 1, 32).

Holloway, Christopher E. et al. (2014). “Understanding and representing atmospheric con-

vection across scales: recommendations from the meeting held at Dartington Hall, De-

von, UK, 28–30 January 2013”. Atmospheric Science Letters 15.4, pp. 348–353. doi:

10.1002/asl2.508 (cit. on p. 177).

Holm, Darryl D. and Boris A. Kupershmidt (1984). “Multipressure regularization for mul-

tiphase flow”. Physics Letters A 106, pp. 165–168. doi: 10.1016/0375-9601(84)903

09-8 (cit. on p. 97).
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