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Abstract

Accurate models of protein tertiary structures are now available from numerous advanced prediction
methods, although the accuracy of each method often varies depending on the specific protein target.
Additionally, many models may still contain significant local errors. Therefore, reliable, independent model
quality estimates are essential both for identifying errors and selecting the very best models for further
biological investigations. ModFOLD9 is a leading independent server for detecting the local errors in mod-
els produced by any method, and it can accurately discriminate between high-quality models from multiple
alternative approaches. ModFOLD9 incorporates several new scores from deep learning-based
approaches, leading to greatly improved prediction accuracy compared with earlier versions of the server.
ModFOLD9 is continuously independently benchmarked, and it is shown to be highly competitive with
other public servers. ModFOLD9 is freely available at https://www.reading.ac.uk/bioinf/ModFOLD/.
� 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CCBY license (http://creativecom-

mons.org/licenses/by/4.0/).
Introduction

In a post-AlphaFold2 world, there are numerous
alternative methods for accurately modelling the
3D structures of proteins from amino acid
sequences. While this progress in modelling is a
major achievement, it is essential to note that
many predicted 3D models still contain significant
local errors. Here, we describe major updates to
ModFOLD (https://www.reading.ac.uk/bioinf/
ModFOLD/), which has maintained its position as
a leading server for the prediction of global and
local quality of 3D protein models over the past
decade. ModFOLD9 can successfully detect local
modeling errors, including those in high-quality
models that are close to experimental structures,
such as those from AlphaFold2,1 RoseTTAFold2

and ColabFold.3 Furthermore, ModFOLD9 can be
used to discriminate between multiple alternative
high-quality 3D models by ranking them in order of
global quality based on consistent independent
(s). Published by Elsevier Ltd.This is an open ac
scores. This independent scoring information is
essential for the successful utility and application
of the very best 3D models for further biological
investigations, and it will allow their wider accep-
tance by the bioscience community. As diverse pro-
tein modelling methods continue to emerge, it is
vital that general biologists can compare them and
build trust in them through the use of freely available
unbiased model quality assessment (QA) methods,
such as ModFOLD9.
Successive versions of the ModFOLD server

have been maintained and made freely available
to users since 2008.4–7 The ModFOLD server itself
has served >7,000 unique external users with over
250,000 jobs completed. ModFOLD predictions
are also built into the IntFOLD server results, which
have served >26,000 unique external users with
over >340,000 jobs completed. Each version of
the ModFOLD server has been independently
blind-tested in the biennial CASP experiments8–12

as well as the CAMEO project.13
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ModFOLD9 is the latest version of the server,
which combines the strengths of multiple pure-
single and quasi-single model methods. As well as
updates to the web interface, ModFOLD9 has
increased prediction accuracy compared with
previous versions, which was achieved through
the integration of newly developed scoring
methods and advanced deep learning-based
approaches. The ModFOLD9 protocol builds on
that of ModFOLD87 by including 6 new integrated
scoring methods: 3 new Contact Distance Agree-
ment (CDA) scores and the 3 variants of the
DeepAccNet14 methods (DeepAccNet,
DeepAccNet-Bert and DeepAccNet-MSA). Our
CDA scores measure the agreement between the
residue contacts predicted from the target
sequence and the measured Euclidean distance
(in�A) between residues in the predicted 3D model.
The contact predictions from trRosetta2,2

DeepDist15 and TripletRes16 were used for the
three new CDA scores, CDA_trR2 and CDA_DD
and CDA_TR, respectively. As in previous versions
of ModFOLD, neural networks were then used to
combine the component local quality scores from
each of the scoringmethods, resulting in a final con-
sensus of per-residue quality scores for each
model. For each model submitted in CASP15
experiment and CAMEO benchmark, the predicted
per-residue quality scores (plDDT*100) from Mod-
FOLD9 were added to the B-factor column for each
set of atom records.
ModFOLD9 played a key part in the high

performance of our group in the CASP15
experiment, and it is continuously benchmarked
using the CAMEO resource.13 According to the
independent benchmarking results, our new version
of ModFOLD shows improved performance over
our previous versions of the server, and it is com-
petitive with the other public servers.

Results and discussion

ModFOLD9 inputs and outputs

ModFOLD9 requires two inputs: the amino acid
sequence of the target protein and a single 3D
model in PDB format for evaluation. Additionally,
users have the option to upload multiple
alternative models as a gzipped tar file, provide
name their protein sequence, add their email
addresses for the result delivery, and select their
global score optimisation preference (see
Materials and Methods). Users are required to
submit a reference sequence both to ensure a fair
comparison for all submitted models using the
same input data calculated from the sequence
and to maintain consistent residue numbering for
all models. The analysis time using ModFOLD9
depends on factors such as the required
sequence length, the number of submitted
models, and the server’s capacity at the time of
submission. Generally, users receive results within
2

the same day for a new run on a single model, but
for larger proteins, or if there are several hundred
alternative models for a single target, then the
analysis time may exceed several days. However,
if a model for the same target has already been
submitted within the same week, then its
reference model library will be available to the
server, and so the results can be delivered within
a few hours.
The ModFOLD9 web server offers a user-friendly

interface for straightforward interaction. Figure 1A
shows a screenshot of the main results page as a
summary table of quality scores for each
submitted model, along with plots indicating local
errors and annotated 3D model images. Each row
in the table represents a specific model with
estimation results, including the rank and ID of the
model, overall quality scores, a confidence score
and P-value, and thumbnails of the graphical
results. The error plots and images of 3D models
are colour-coded to highlight local quality,
enabling users to easily identify regions of high
and low accuracy in the model. The main results
page provides push-buttons to show these
graphics in full size on separate pages, allowing
users to compare plots and images separately for
the best visualisation. The per-residue plots,
shown in Figure 1B, can be downloaded in PDF
format, and users can view ’b-factor’ annotated
models interactively in 3D directly within the
browser (Figure 1C), providing a tangible
understanding of the quality estimation results.
Additionally, users have the option to download
raw, machine-readable files encapsulating the
quality estimation data in CASP format and
compressed archives for all annotated models,
facilitating storage, accessibility, and further
independent analysis.

Independent benchmarking and cross-
validation
Performance on the CASP14 and CASP15 model
data. ModFOLD9 was initially trained and cross-
validated on the CASP14 model data, and
subsequently, it was used to assess models
during the CASP15 prediction season. Post
CASP15, the method was also 3-fold cross-
validated using the CASP15 model data. The data
in Table 1 shows ModFOLD9 outperforming all
other tested methods on the CASP15 model data
in terms of the predicted local lDDT scores, while
the retrained version demonstrates further
improvements. Additional CASP14 and CASP15
performance data are shown in Supplementary
Figures 1 and 2, and Supplementary Tables 1–3.
The data show that ModFOLD9 outperforms all
other tested approaches in terms of its local
scores measured by both the lDDT scores and the
superposition-dependent S-scores on both the
CASP14 and CASP15 model data (Table 1,



Figure 1. ModFOLD9 server results for the CASP15 target T1104. (A) The main results page shows a summary of
the graphical output for each model (the table is truncated to show a range of model quality data). The arrows point to
additional graphical results that are accessed via buttons on the main page. The ‘Fix errors using ReFOLD30 buttons
allow users to submit their 3D models to the ReFOLD server (19) for refinement guided by the local quality scores. (B)
An example of the plots for a high-accuracy model showing the per-residue errors (predicted distance in�A of each Ca
atom from the native structure) and accuracy scores (predicted lDDT scores) in the model, which can be downloaded
as PDFs. (C) The interactive JSmol view of the high-accuracy model. Users can also download their models in PDB
format with the predicted residue errors shown in the b-factor column. (D) and (E) show examples of plots and
interactive output for an example of a low-quality model.

L.J. McGuffin and Shuaa M.A. Alharbi Journal of Molecular Biology 436 (2024) 168531
Supplementary Tables 1–3). Furthermore, the data
demonstrate that models can be accurately
assessed by the ModFOLD9 global scores, both
in terms of their absolute score correlations with
observed scores and when they are used to rank
models by their relative quality (Supplementary
Figures 1 and 2). Indeed, in terms of the Pearson
correlation coefficients (Supplementary Figure 2),
the ModFOLD9_cor global scores correlate better
with the observed GDT_HA, GDT_TS, MaxSub
and TM-scores (the R values are 0.8112, 0.8328,
0.8237, and 0.8294, respectively) than the
observed lDDT scores correlate with the observed
GDT_HA, GDT_TS, MaxSub and TM-scores (the
R values are 0.78560, 0.7754, 0.7753, and
0.7527, respectively).
3

In CASP15, each participating group was
required to provide their own Accuracy Self
Estimates (ASE) in the “b-factor” column for each
generated model file (e.g., the plDDT scores
generated by AlphaFold2 and other methods).
Table 1 and Supplementary Figure 2 show the
performance that can be gained by considering
the local and global ASE scores contained within
each model file. The data show that the local ASE
scores are outperformed by ModFOLD9 and many
other QA methods according to all measures
(Table 1). Likewise, the global ASE scores are
greatly outperformed by ModFOLD9 and other QA
methods (Supplementary Figure 2).
While the individual ASE local scores from

different methods can be compared to some



Table 1 The performance of ModFOLD9 local model quality estimates on CASP15 models (65 targets, 29,915 models,
7,926,950 residues). The ModFOLD9 predicted local lDDT scores versus the observed local lDDT scores. AUC = Area
Under the ROC Curve. AUC 0–0.1 = Area Under the ROC curve with False Positive Rate � 0.1. A true positive (TP) is
defined as a residue correctly identified to be low quality, with local lDDT <= 0.6. The table is sorted by the AUC score.
ModFOLD9 – the original full version trained on CASP14 data, ModFOLD9_pure – only uses inputs from the pure-single
model methods, ModFOLD9_retrained – the latest full version cross-validated using CASP15 data.

Evaluated on lDDT Pearson v lDDT Spearman v lDDT AUC (TP lDDT <= 0.6) AUC 0.0–0.1 (TP lDDT <= 0.6)

ModFOLD9_retrained 0.7800 0.6599 0.9107 0.0501

ModFOLD9 0.7252 0.6113 0.8870 0.0443

ModFOLD9_pure 0.7340 0.5916 0.8702 0.0307

DeepAccNet 0.6738 0.5886 0.8591 0.0338

DeepAccNet_MSA 0.6807 0.5541 0.8441 0.0247

DeepAccNet_Bert 0.6467 0.5666 0.8385 0.0273

ProQ2D 0.5335 0.4701 0.8141 0.0316

ProQ2 0.5471 0.4671 0.8094 0.0309

ProQ3D 0.5433 0.4963 0.8087 0.0304

ProQ4 0.5130 0.4693 0.8087 0.0365

ASE 0.4592 0.5296 0.7742 0.0066

CDA_SC 0.3750 0.3325 0.7492 0.0201

ModFOLD5_single 0.3874 0.4088 0.7467 0.0276

VoroMQA 0.4080 0.3860 0.7411 0.0213

ModFOLDclustQ_single 0.3821 0.3951 0.7390 0.0278

DBA 0.3569 0.3622 0.7134 0.0210

CDA_trR2 0.3603 0.3490 0.7111 0.0266

ResQ 0.3004 0.2782 0.6752 0.0239

CDA_TR 0.2345 0.2215 0.6639 0.0201

CDA 0.2492 0.2694 0.6418 0.0189

CDA_DMP 0.1889 0.1495 0.6404 0.0063

SSA 0.1523 0.1394 0.5987 0.0098

CDA_DD 0.0546 0.0476 0.5501 0.0037
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extent, they are inconsistent. If the ASE scores are
considered in a global context, they are shown to
correlate quite poorly with the observed scores
and are less effective than using standard QA
methods for ranking. Therefore, independent
model quality estimates are superior for
comparing multiple models from different
methods. The scores from ModFOLD9 are more
consistent and can be used to directly compare
models ranging in quality from a variety of
different methods more accurately.
CAMEO QE (Quality Estimates) perfor-
mance. ModFOLD9 is continuously benchmarked
using the independent CAMEO resource.13 Figure 2
shows ROC analysis of the recent performance of
ModFOLD9 according to the CAMEO QE bench-
marking data compared with other methods on
common subsets. At the time of writing, the CAMEO
QE data show that ModFOLD9 is the leading public
QA method for producing local (per-residue) quality
scores, according to the lDDT scores, outperform-
ing all other public methods when compared on
common sets of models over the 1 week, 1 month,
3 month and 6 month time frames (Supplementary
Table 4, data obtained on 02/12/23). Further ROC
data are shown in Supplementary Figures 3–5
and Supplementary Table 5, which also show that
ModFOLD9 greatly outperforms our previous ver-
sions of ModFOLD. These data further demonstrate
4

that ModFOLD9 can accurately estimate the quality
of models, offering an unbiased comparison of
models from different methods regardless of the
modelling approach used.
Materials and methods

Our principal aim with the ModFOLD9
development was to further increase the predictive
accuracy of per-residue quality estimates, given
the prevalence of localised errors in otherwise
high-quality models. The ModFOLD9 server was
built on the strengths of our previously successful
versions, which included various scores from
different pure- and quasi-single model quality
methods.7

The pure-single model methods were the ProQ
family of methods, ProQ2,17 ProQ2D,18 ProQ3D,18

and ProQ4,12 in addition to the VoroMQAmethod,19

the Secondary Structure Agreement (SSA) score
and three different Contact Distance Agreement
(CDA) scores.6,10 The established CDA scores
were CDA_DMP CDA_SC, which were computed
according to DeepMetaPSICOV20 and SPOT-
Contact,21 respectively, in addition to the original
CDA score derived from MetaPSICOV.22 Building
on these scores, six new scores were added. Three
scores were computed using the DeepAccNet vari-
ants: DeepAccNet, DeepAccNet_Bert and
DeepAccNet_MSA.14 The other three new scores



Figure 2. The performance of ModFOLD9 local model quality estimates on CAMEO independent benchmarking
data – a comparison with the top 5 publicly available methods for each time frame. ROC analysis using common
subsets of CAMEO quality estimates (QE) data up until 02/12/23. A true positive is defined as a residue correctly
identified to be low quality, with local lDDT <= 60. Full ROC plots are shown for common subsets, including data for
the top 5 publicly available methods at the time of writing. (A) 1 week of data, 95 targets, 665 models. (B) 1 month of
data, 393 targets, 2751 models. (C) 3 months of data, 577 targets, 3462 models. (D) 6 months of data, 699 targets,
and 4194 models.
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were CDA_TR, CDA_trR2 and CDA_DD. These
new CDA scores were computed according to three
deep-learning contact prediction methods:
TripletRes,16 trRosetta2,2 and DeepDist,15

respectively.
The quasi-single model methods involved

ResQ,23 Disorder B-factor Agreement (DBA),
ModFOLDclust_single (MF5s) and
ModFOLDclustQ_single (MFcQs).6,10 Our group
developed the latter three methods, which assess
5

the single model in the context of multiple reference
models from tertiary structure prediction servers.
ResQ compares the single model to referencemod-
els predicted from the LOMETSmethod,24 whereas
our three scores used the IntFOLD7 server to gen-
erate 135 reference models to perform the compar-
ison approach.25

The scores were fed as inputs into two versions of
a neural network, implemented using the MLP
(multi-layer perceptron) from the RSNNS package
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to predict the local quality scores. The input of each
MLP version contains 90 neurons with a sliding
window size of five from 18 quality scores for each
residue (5*18 = 90). The two MLP versions were
trained to output the predicted residue quality
score, either based on the S-score6,10 or the lDDT
score.26 The MLP was trained and tested on both
the CASP14 and CASP15 model data using a
three-fold cross-validation procedure.
As with our previous versions of ModFOLD, we

produced three variants of ModFOLD9, each
optimised for the different facets of the quality
estimation problem. Firstly, ModFOLD9_rank was
developed to provide an optimised ranking of
models, with the highest-ranked models being
closer to the highest observed accuracy.
However, the relationship between the predicted
and observed scores may not be linear. Secondly,
ModFOLD9_cor was optimised to produce
correlations with observed scores that were closer
to linear. Finally, ModFOLD9 provides balanced
performance in terms of both correlations of
predicted and observed scores and rankings of
top models.
ModFOLD9 was used as the self-estimation

method for IntFOLD7,25 our integrated server for
modelling tertiary protein structures and functions.
The IntFOLD7 tertiary structure predictions were
blind tested during the recent CASP15 experiment.
ModFOLD9 also helped us greatly in the CASP15
experiment with our manual (McGuffin group) pre-
dictions of regular targets. As a result, we were
the top-performing academic group from the UK
and we ranked 6th out of all groups on regular tar-
gets (https://predictioncenter.org/casp15/zs-
cores_final.cgi). Moreover, both IntFOLD7 and
ModFOLD9 are continuously benchmarked using
the CAMEO resource.13 According to the 3D and
QE benchmark results, both of our new servers
show improved performance over our previous ver-
sions of those methods, and they are competitive
with the other public servers in their respective
categories.
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