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Abstract 

Control room environments are present throughout many areas of commercial and industrial 

infrastructure, from air traffic control and harbour masters to chemical plant control and 

military operations. These control rooms work using a human-in-the-loop system in which a 

human operator monitors the data from sensors in the environment they are responsible for and 

make decisions and take action to maintain efficiency and safety. Though humans possess a 

natural aptitude for spotting patterns and anomalies in complex data, the majority of safety and 

process control errors are still human errors. These errors are most often as a result of ‘cognitive 

overload’ – a state in which the operator is presented with more information than they can 

effectively process cognitively in real time.  

Machine learning is often employed to automate some of the tasks of the human operator to 

reduce their cognitive workload to reduce errors. The performance of machine learning systems 

relies on obtaining large volumes of labelled data; which is an expensive and time consuming 

process that is currently performed by experts manually reviewing complex data and providing 

labels.  

The work presented here focusses on automating the labelling process by assessing the 

cognitive state of the operator using objective measures and using these measures to detect 

when events occurred in complex data in order to provide labels. The research assesses pupil 

diameter, echocardiogram (ECG) and novel mouse movement metrics to determine their 

suitability as classifiers that can automatically detect when events occurred. Results 

demonstrate that pupil diameter performs better than ECG as a physiological classifier. When 

event types are analysed separately, results demonstrate that all measures developed correctly 

recall between 75% - 95% of longer event types whereas performance for shorter events types 
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correctly recalls between 14% for mouse measures, 31% ECG measures and 78% for pupil 

measures.  
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Chapter 1: Introduction 

 

1.1.   The Engineering Doctorate 

The Engineering Doctorate (EngD) is a PhD-level research degree with a particular focus on 

industrial application. Designed for students with a desire to persue a career in industry, the 

EngD draws project motivation from actual industrial need; often directly from the sponsoring 

company of the project itself. With the contributions to knowledge also being a direct 

contribution to the industrial requirement set out by the company. 

Structured into a four-year course, the EngD combines research with 2 years of taught modules 

in both technical and business subjects whilst working closely with a sponsoring company. The 

program focusses on developing research engineers with a strong technical and applied 

industrial skillset, whilst also completing a project that offers an original contribution to 

knowledge in an academic subject area. 

The sponsoring company for this EngD was Thales Research and Technology UK and it was 

undertaken at The Technologies for Sustainable Built Environments Centre at The University 

of Reading. 

 

1.2.   Human Operators and Control Rooms 

Industrial processes often have elements that are either controlled, or performed directly, by a 

human. The reason for inclusion of a human in these processes, or human-in-the-loop systems, 

is usually to add a level of human pattern recognition and understanding to what might 

otherwise be an automated system based on preprogrammed and inflexible rules. Humans have 
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a natural aptitude for spotting anomalies and deriving meaning and context from quite complex 

data; making humans invaluable assets in the field of safety and control processes such as air 

traffic control and port management. These control rooms are found in many areas of industry 

but all have the same basic structure; sensors in the environment transmit data back to an 

interface that is viewed by a human operator. This human operator then makes key decisions 

based on this data and relays instructions or commands back to the environment.  

A major concern in these industries is human error, given the pivotal role that operators play 

in the safety and efficiency of any control-based process. Many strategies have been 

implemented in an effort to reduce human error in these fields. Given this, studies have shown 

human error to be responsible for significant numbers of accidents. In aviation, one such study 

showed that air traffic control skill-based errors (errors due to memory lapses or attention 

failures) were responsible for, or involved in, 82% of accidents (Pape, Wiegmann and Shappell, 

2001). Another control-based study showed that human error was responsible for 70% of 

accidents in chemical process industries (Lees, 2016).  

A key risk that faces the human operator is that of data overload; a situation in which they are 

presented with more information than they can effectively process, cognitively, in real time. 

When experiencing data overload an operator is prone to mistakes that can lead to safety and 

efficiency decreases.  

In order to alleviate data overload, various levels of automated processing are applied to the 

incoming data to offload more rudimentary tasks from the human, allowing them to focus on 

more important, decision influencing data. The way in which the automation processes data 

must be intuitive, not impose risk of missed key data and must not burden the operator with 

further mental workload. In order to create such automations, large volumes of data history are 

taken from the control rooms. Algorithms are then applied in an attempt to autonomously detect 

anomalies, create alarms where danger is apparent or impending, or generally search for 
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important information in the incoming data stream. Difficulties arise when the data scientists 

behind these algorithms have poor understanding of the situational requirement of the 

operators. To address this, operators are often made part of the process of designing the 

automations – retrieving relevant data from operators for this is known as “expert data 

extraction”. This process can be difficult, often due to the intricate subtleties that operators are 

able to see and understand naturally in the data. Operators often also struggle to articulate their 

decision-making process. Accurately and effectively describing these events in a manner that 

can be automated is a complex task.  

This labelling process is extremely expensive, time-consuming and often inaccurate, given that 

different operators have differring opinions on what consitutes an event. This issue of data 

labelling for control room scenarios provides the key focus for this research. 

 

1.3.   Monitoring Operators 

Events that occur within control rooms that cause cognitive load to rise are of particular interest, 

as automation applied to these events will directly reduce the cognitive load on the operator.  

In the past few decades, it has been shown that the cognitive load of a human can be objectively 

measured using sensors recording their physiological output. Certain cognitive processes are 

linked to the autonomic nervous system. These processes affect some biological signals that 

can be measured, thus enabling the inference of the cognitive state of the human based on these 

signals. 

Some work has been done to estimate the cognitive state of operators during their work using 

such sensors that measure cognitive load objectively. These indices are part of systems that 

intend to form a closed-loop control room system interface in which measures are taken to 

reduce the cognitive load of the operator in real-time. 
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Thales Research and Technology has many industrial elements in the airspace and defense 

sectors that rely of control room operators. The Patterns of Life Team at Thales use machine 

learning and other big data analytics tools to create meaning from large datasets. These tools 

are subject to the difficulties of the data labelling problem. Thales are therefore investigating 

through this project, whether an automatic data labelling system could be made for labelling 

these complex, safety critical control room environments. Filtering through large data sets that 

can span several weeks at times is a very time consuming process and poses a significant 

challenge even to the operator that was there when the data was recorded. A system of 

significant benefit to Thales and all big data research teams would be a method to determine 

the times at which events of interest occurred in complex data sets. 

 

1.4.   Research Objectives and Thesis Structure 

For this work, we have an overall research objective:  To determine if the times at which events 

of interest occurred within complex control room scenarios can be retrieved without manual 

intervention from the operator. 

This thesis manuscript will design a piece of research to meet this objective and present the 

results herein. The structure of this thesis is as follows: In this chapter, we will perform a 

comprehensive literature review to determine the state of the art in terms of cognitive load 

measurement and control room applications. We will assess the differing methods used to 

obtain and process metrics of cognitive load and develop a broad understanding of the 

conclusions made from these findings. We will then identify the gaps in literature that we will 

form research questions to address. In chapter 2, i.e. literatrue review, we develop our research 

design. We will use the knowledge obtained from the literature review to create a hypothesis 

and experiment to validate the hypthothesis. We will design an experiment that will be used to 

gather data to be analysed. We will also outline which methods we will use and which signals 
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we will measure to obtain our data sets. We also design a series of trials to both train and 

validate our analysis. In chapter 4, i.e. analysis, the techniques used for analysing the data 

gathered from the experiments will be described in detail. Chapter 4 will also discuss the 

methods used to properly assess the performance of the techniques when applied to the 

gathered data. In chapter 5, i.e., Results and Discussion, we present the results of the analysis 

performed on the data gathered from the experiments. The results will then be discussed in the 

context of our research aim and subsequent research questions outlined in the methodology. 

Finally, in chapter 6, the conclusion, we will present the conclusions of the work. The 

limitations of the methods used and scope for future work will also be discussed in this chapter. 
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Chapter 2: Literature Review 

 

2.1.  Introduction 

In this chapter we will examine literature to assess the present state of the art and research 

pertaining to our project scope. We will first examine examples from industry-led projects that 

are focused on the data labelling problem in context of control rooms. We will then assess the 

state of the art for assessing cognitive load, addressing multiple methods and discussion in the 

framework of an extensive review of studies for eye-related measures, followed by measures 

derived from heart-related psychophysiological signals. The chapter will conclude with a 

discussion of the research examined and a framework for the research to be undertaken in this 

project. Further chapters will reference specific conclusions and research discussed in this 

section. 

 

2.2.   Online Data Labelling in Control Rooms 

The patterns of life team at Thales Research seeded this project from a piece of research called 

SeeCoast. Developed to extend the US Coast Guard Port Security system, SeeCoast is a 

learning program that can accept input from the operators whilst they work to develop a 

comprehensive model of ‘normal behaviour’. The system uses a heavily modified version of 

the Fuzzy ARTMAP neural network classifier – SeeCoast can learn this model of normalcy 

either unsupervised or supervised in what they call a hybrid approach. The modifications made 

to the Fuzzy ARTMAP were to establish it as an anomaly detection method as supposed to a 

pattern recognition method. The challenge being that anomaly detection, by definition, has very 
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few labelled examples for training. To overcome this, the system provided an interface to the 

operators that allowed them to confirm that particular anomalies discovered by the system were 

indeed anomalous from their experience. The labels then provided to the data were also not 

definite at the point of confirmation, to allow for operator mistakes or flexibility of the 

definition of anomalous. This flexibility allows the model of normalcy to develop constantly 

develop over time. 

The developers of SeeCoast explain their implementation of the system and the role of the 

operators in the application context. The approach continues to tune the system to the operator 

rather than the operator to the system. Difficulties that they acknowledge are those of false 

alarms due to misleading data e.g. radars confusing the bow and stern of a large ship and two 

separate ships. 

SeeCoast is a specifically tailored system, to a specific application, with a specific goal 

(anomaly detection). Given this, however, SeeCoast does address the issue of effectively 

applying the operator’s knowledge to the automation and by doing so in an online fashion, 

vastly reducing the development time and cost of development. By engaging the operators 

during their tasks, there is no requirement for them to recall and explain their skills in an 

accurate fashion at a later time after the event has occurred. There is a clear advantage to 

extracting this expert information whilst the operator is performing their normal tasks. This 

“online” labelling approach does have the drawback of adding yet another responsibility to the 

operators workload, in high-stress environments, this may lead to increased cognitive load. 

In the context of this work, the SeeCoast system intends to support the development of 

automated processes by making the labelling of data by field experts occur in real time as 

supposed to “post-hoc”. The system is an early attempt in industry to close the gap between 

automated system development using large, unlabeled datasets and overly-intrusive real-time 

alarm systems that are often found in control room scenarios. Though it clearly shows the 
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potential value in online expert data extraction systems; there clearly exists a further gap in the 

system that automates the input process, preventing the operator from having further duties 

that could exacerbate the cognitive load problem during highly demanding moments of the 

task. 

 

2.3   Cognitive Load 

A key factor cited in affecting operator performance is that of Mental Workload or Data 

overload, which in literature, appears synonymous with cognitive overload, information 

overload and overload of mental effort or mental strain and can be described in many different 

ways – subtle differences in definition are often due to the context being used. One such 

definition:  

 

“ Information overload occurs when the amount of input to a system exceeds its processing 

capacity. Decision makers have fairly limited cognitive processing capacity. Consequently, 

when information overload occurs, it is likely that a reduction in decision quality will occur.” 

(Speier, Valacich and Vessey, 2007) 

 

Work done in the area of data overload is widely ranging in domain, from the neuroscience 

perspective, tackling the physical factors that contribute to the problem (Chen, 2011), to the 

empirical measurement of the phenomenon using both objective and subjective measures (Hart 

and Staveland, 1988; Haapalainen et al., 2010). A report by the United States Air Force 

Research Laboratory attempts to characterise the problem in the context of technological 

approaches. They provide three characterisations of cognitive workload: 
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“1  – As a clutter problem where there is ‘too much data’: therefore, we can solve data 

overload by reducing the number of data bits that are displayed. 

2 - As a ‘workload bottleneck’ where there is too much to analyze in the time available: 

therefore, we can solve data overload by using automation and other technologies to perform 

activities for the user or to cooperate with the user during these activities. 

3 - As a problem in ‘finding the significance in data’ when it is not known a priori what 

data from a large data field will be informative: therefore, we can solve data overload through 

model-based abstractions and representations. (Woods, 1984; Vincente and Rasmussen, 1992; 

Zhang and Norman, 1994) – better organizing that data to help people extract meaning despite 

the fact that what is informative depends on context.”(Woods et al., 2012) 

 

Woods et al. also discuss the issues that attempts to ‘solve’ data overload using more 

technology. A feedback loop is created in which technological solutions create further 

problems that also require more technology to solve etc. Fittingly, they refer to this approach 

‘a little more technology will be enough’. Woods cites empirical studies (Norman, 1990a; 

Woods, 1993; Sarter, Woods and Billings, 1997) demonstrating that new systems almost 

always have surprising consequences or fail. Other examples of technological approaches 

failing include quotes from major figures in the space industry claiming that ‘alarms and 

flashing lights’ are useless, panning the approach to data overload problems to date. 

Conclusions such as these show clear motivation for the development of such systems as the 

SeeCoast system mentioned previously, that attempt to reduce the necessary input from an 

operator in real-time in order to develop a warning system that can more accurately produces 

“warnings” without further distracting the operator from their duties. 

Cognitive load is clearly a multidimensional concept, as a determination of an individual’s own 

subjective experience of a task’s pressures, it can also differ significantly between individuals 
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performing the same task. Measuring cognitive load is naturally also a multidimensional task; 

it can be measured both subjectively and objectively, with subjective measures more directly 

engaging an individual with their interpretation of load and objective measures inferring this 

through analysis of changing physiological responses. 

 

2.3.1.  Subjective Measures 

It has been suggested that when asking an individual to assess the workload they experienced 

with a quantitative scale, their responses are limited and inaccurate. The nature of their 

responses are inclusive, or exclusive, of particular meaning based on what the individual deems 

to be relevant markers of workload at the time. These types of self-assessment also do not 

distinguish between differing factors that cause load e.g. workload caused by time pressure or 

by the stressful conditions under which the task was performed. These challenges lead to the 

development of the NASA Task Load Index (NASA-TLX). The objective of the NASA-TLX 

system was to create a workload rating scale that was sensitive to differing task types and 

sources of workload whilst remaining insensitive to inter-individual differences in workload 

perception. The NASA-TLX system uses six component scales, each one assessed by the 

individual to achieve an overall workload rating (Hart and Staveland, 1988). These scales are: 

• Mental Demand - How much mental activity was required? Was the task mentally 

demanding? 

• Physical Demand - Was the task physically demanding? 

• Temporal Demand - Was the task slow or fast? How much time pressure did you feel? 

• Performance - How successful were you at the task? How satisfied were you with your 

performance?  

• Effort - How hard did you have to work (physically and mentally) to accomplish the 

performance you gave? 
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• Frustration - How irritated, stressed, and annoyed versus content, relaxed, and 

complacent did you feel during the task? 

Each of these component scales is ranked by the participant between 0 – 21. The results are 

then combined with weights applied to each input to achieve a task load score for the task.  

This measure is used widely throughout literature as the benchmark measure for subjective 

cognitive load. Other techniques for subjectively assessing cognitive load include the Subject 

Workload Assessment Technique (SWAT) (Reid and Nygren, 1988), Overall Workload scale 

(OW) (Vidulich, 1987) and the Modified Cooper-Harper (MCH) Scale (Harper and Cooper, 

1986). These 4 key methods of subjective ratings scales were compared systematically by Hill 

et al (Hill et al., 1992); they compared the techniques along four dimensions: operator 

acceptance, resource requirement and special procedures to determine if a single method was 

clearly preferable in the settings they were used in – this was primarily in military settings. 

They conclude that all four methods have unique characteristics that may make them more 

appropriate for different settings and objectives. OW and MCH are unidimensional scales (the 

output is measures on a single axis), which though less detailed may aid in the discovery of 

workload choke points in a control process more quickly. The extra effort required to obtain 

the more in-depth results produced by the NASA-TLX and SWAT is justified by their ability 

to more specifically diagnose what precisely is causing the workload in a situation and point 

toward ways to relieve the excessive workload. Ultimately, it was determined that NASA-TLX 

and OW were consistently superior in terms of sensitivity and acceptance by the participants 

of the examined studies. 

These methods form the deductive nature of studying cognitive load in operator environments. 

They are held in direct contrast to the more inductive forms of cognitive load measurement; 

namely “objective measures” – that we will discuss in detail in the following section. It is not 

yet clear which methods produce the most accurate results, subjective methods are often 
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argued to be a more direct measure as it is obtaining assessed cognitive state from the operators 

own formulation of cognitive load. These methods have been examined against the objective 

measures directly in several studies. Fallahi et al compared the NASA-TLX method against 

measured derived from monitoring the heart directly. They conclude that in the real-world 

scenario they gathered data from (city traffic control centre), that Heart Rate (HR), root mean 

square of successive differences (RMSSD), SDNN, ratio of low-frequency components to 

high-frequency components (LF/HF) and electromyography (EMG) amplitude all were 

significantly affected by increased traffic density and correlated with results obtained using the 

TLX (Fallahi et al., 2016). In a contrary study, in a driving simulator, Shakouri et al determined 

that though the NASA-TLX correlated with the increase of traffic density (and therefore task 

difficulty, therefore cognitive workload); the same heart-related measures as recorded by 

Fallahi remained largely unaffected.  

This is a timely research topic, contrasting the inductive and deductive methods still has much 

to investigate, as the examination of the “ground truth” of when an individual is “truly” 

experiencing increased mental workload appears still to be determined. Presently, there is 

clearly an operational difference in collecting the necessary data to make these determinations, 

with subjective measures being assessed post-hoc; there is always an element of memory 

required for operators to correctly recall their interpretation of the cognitive challenges of a 

task. 

 

2.3.2.  Objective Measures 

Measuring cognitive load or stress objectively has been established as a flourishing field of 

study in the last 30 years. The theory behind measuring cognitive load using direct 

physiological measures derives from the understanding of the Autonomic Nervous System 

(ANS). The ANS, comprising the Sympathetic Nervous System and Parasympathetic Nervous 
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System (SNS and PNS) is largely responsible for the bodies involuntary activities such as 

variations in heart rate, temperature, sweat production, pupil diameter etc. An increase in stress 

leads to an increase in activity of the SNS and decrease in the PNS (Sharma and Gedeon, 2012). 

Measuring these variations is achieved by physically monitoring the outputs of these 

involuntary actions (e.g. using an Electroencephalogram to measure the voltage of signals sent 

to the heart or using a camera to measure the diameter of a pupil). These readings are then 

analysed for correlates to external stressors to the body. 

The body of research in measuring cognitive load objectively is highly varied both in objectives 

and methods. Of the numerous methods of measuring Cognitive Load objectively, the two 

methods that stand out in prominence for applications in control room scenarios are that of 

pupillometry and heart related measures; we will assess the literature in these areas across a 

wide range of studies, and then review the literature from other methods.  

 

Measuring Cognitive Load through Pupil Diameter Methods. 

As well as reacting to changes in light, pupil diameter has been shown to react to different 

types of cognitive process. Observations of a relationship between the difficulty of mental 

arithmetic problems and the magnitude of the pupil’s dilation during the solution period were 

first made by Hess and Polt (Hess and Polt, 1964). Subsequent studies confirmed this 

correspondence in multiple contexts: arithmetic, short-term memory tasks of varying load, 

pitch discriminations of varying difficulties, standard tests of "concentration", sentence 

comprehension, paired-associate learning, imagery tasks with abstract and with concrete words 

and the emission of a freely selected motor response instead of an instructed response (Egeth 

and Kahneman, 1975). These studies all demonstrated an increase in dilation follows an 

increase in task demand or difficulty. It should be mentioned also that the underlying 

mechanism that drives cognitive pupillary effect and is still a topic of active enquiry.  Recent 
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studies suggest that pupillary response may be reflecting noradrenergic activity in the brain 

(Murphy et al., 2014). The exact cognitive measure that pupil diameter is responding to is still 

not known precisely and remains an area of active enquiry. Many studies have measured pupil 

diameter against a large variety of tasks designed to manipulate different aspects of cognition 

such as tracking, switching and inhibition (van der Wel and van Steenbergen, 2018) discuss 

that studies across these domains show that pupil dilation closely respond to task demands.  

Given that pupils react to changes in ambient light – it has also been shown that this effect and 

the effect on cognitive processes on is not additive. The advice of literature is to carefully 

control lighting when taking pupil diameter readings (Beatty and Lucero-Wagoner, 2000). 

 

Methods of Measuring the Pupil Diameter. 

In initial studies in literature, equipment involving two-way mirrors and cameras was used, 

with measurements been taken directly from photos. More advanced systems today use 

computer vision to track and measure the pupil from live video taken from either a stationary 

camera or a camera mounted on the participant’s head. While more accurate in measurement 

(Marshall, 2002), head mounted eye trackers have been described as cumbersome – indicating 

some detriment to results gathered from them. Eye trackers that are not physically attached to 

the participant, by way of a head mount or a chin rest are called remote eye trackers. Pupil 

Foreshortening Error (PFE) is the main methodological concern with remote eye trackers. It 

refers to the error in pupil diameter measurement that occurs when the eye rotates away from 

the camera. A geometric model was developed by (Hayes and Petrov, 2016) to correct for this 

error resulting in a reduced Root Mean Square Error of 82.5%. 

Klingner et al demonstrated that it is possible to determine cognitive load through pupil 

diameter using remote eye trackers (Klingner, Kumar and Hanrahan, 2008); replicating results 

produced in literature that utilized more complex, accurate equipment. Klinger also notes that 
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they were unable to produce the systematic PFE observed by (Velichkovsky et al., 2000) and 

suggest that the error is due to the method in which the eye tracker measures pupil diameter. 

The two main methods of measuring pupil diameter are: counting the number of pixels in the 

detected pupil and fitting an ellipse to the detected pupil and measuring the length of the major 

axis of the ellipse. The pupil itself is detected using an infrared light source that is reflected 

differently by the pupil than the surrounding eye, enabling simple subtraction on the image to 

classify the pupil’s location. Klinger suggests that as the Tobii 1750 eye tracker used in their 

experiments uses the ellipse-fitting technique, it is not affected by the perspective distortion. 

Though he does mention that this does not mean that it is free from error.  

 

Analysis of the Change in Pupil Diameter and Cognitive Load. 

The link between change in pupil diameter and underlying cognitive processes is field of active 

enquiry for differing fields of study. Human Factors research utilize this method to optimize 

layouts in user interfaces or to determine where processes can become stressful so as to edit 

and change systems to reduce stress on operators that oversee that particular system (such as 

car drivers, control room operators or pilots). Psychology favours the pupil diameter as a 

measure to determine the types of cognitive process that have greatest effect on cognitive load 

and other processes; attempting to delineate which types of physiological response most closely 

reflect changes in certain specific mental processes. 

Our project scope is seeking to apply the theory of objective cognitive load measurement to 

control room operators to determine times in which cognitive load was high. Resultantly, we 

will seek to assess the state-of-the-art for this field. 

Here, we will employ our own review to assess which applications pupil diameter have been 

monitored and analysed to assess its correlation with cognitive load. 
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Papers were gathered from the Google Scholar, Science Direct and Elsevier repositories with 

no date restrictions. Terms used for the search were “pupil” + “cognitive” then + “load”, 

“workload” and “overload” the inclusion of these three terms was to include variations in 

terminology. The paper’s abstracts were then read and manually determined if they were to be 

included; any papers with coincidental key word matches that were clearly not assessing pupil 

diameter or cognitive load were excluded.  

An initial total of 42 articles were found to fit the criteria for review. They were then first 

assessed to determine some key characteristics. We first determine whether the article is from 

an application or was domain-free or domain-independent. These were defined by whether or 

not the stimulus used to assess cognitive load for the participants was a specific test designed 

to increase cognitive load. Earlier studies mentioned above show researchers demonstrating 

the link between cognitive load and pupil diameter empirically using carefully designed tests 

such as the stroop-colour-word test and the n-back task. For this characterization, we will 

separate the studies based on the core stimulus test that participants were instructed to do; tasks 

such as reading, word games, memory tasks, auditory tasks and other categories of task 

specifically designed to contain mechanisms to only change the mental difficulty were 

separated from tasks that were either specifically from a domain such as a control room task or 

other tasks that have components that include in-task objectives such as games, driving, web 

browsing. 

We then include whether other physiological variables were assessed, whether the results were 

compared to a subjective measure, which analysis technique was used on the pupil dilation data 

and whether results showed a significant correlate with cognitive load. Table 2.1 a to g presents 

a summary of the articles reviewed. 
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From the literature reviewed in Tables 2.1 (a-g).we can determine the most common methods 

of assessing pupil diameter and cognitive load. Twenty six ( 62%) of the studies used, at least 

in part, the change in Mean PD across trials technique; eleven (26%) analysed in some way, 

the Task-Evoked Pupillary Response (TEPR); one (2.3%) analysed the median change in 

diameter across trials; one (2.3%)  analysed the mean change rate of pupil diameter; one (2.3%) 

utilized an Artificial Neural Network and two (4.7%) used a custom technique.  

 

The Mean Pupil Diameter across Trials. 

To assess whether or not a particular stressor, whether it be applied or not, is influencing change 

in pupil diameter, the stimulus scenario is broken into multiple trials (or phases). There will be 

a baseline phase, in which the participant is presented with no stimulus at all, to determine a 

control value for the pupil diameter. The experiment then continues with multiple trials of 

differing perceived cognitive load. In the example of the Stroop-colour word interference test 

(SCWT), used here in two articles (Zhai and Barreto, 2006; Ren et al>, 2014) a word is 

presented to the participant to read aloud (this is the congruent condition), the word is that of a 

colour. The participant is then given a differing selection of words to read in which the colour 

of the word to read is not that being described by the word, this is the incongruent condition 

designed to interfere with the more automated cognitive task of reading. In our reviewed 

studies, variations of the SCWT are created with specific trials being designated as congruent 

and incongruent, the hypothesis being that an incongruent condition will create higher demand 

on the participant’s mental effort, increasing cognitive load and by extension, increase pupil 

diameter. These hypotheses are tested by comparing the mean pupil diameter of the participant 

throughout a congruent or incongruent trial and comparing these values against each other and 

that of the baseline to determine if a significant effect has been observed. 
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This method is the most prolific in the literature studied. The general approach is to create a 

stimulus that can be manipulated in such a way as to change the cognition of the participant in 

some controlled way, create a baseline trial, then trials for varying degrees of load, measure 

the average pupil diameter of each trial then perform statistical analyses to determine 

significance. These results can then be compared to another standard for further analysis: in 

our review, 11 (26%) of studies compared the results from pupil diameter analysis with other 

physiological measures and 11 (26%) compared the pupil diameter results against some 

subjective measure such as those discuss previously. There is often correlation between pupil 

diameter and subjective measures, in our review, every study demonstrated correlates with 

subjective measures.  

 

The Task-Evoked Pupillary Response (TEPR) 

The Task-Evoked Pupillary Response is an indicator of brain processing that underlies the 

dynamic aspect of human cognition (Beatty and Lucero-Wagoner, 2000). The TEPR, similar 

to that of the Event-Related Potential (ERP) in EEG study, is a response of the pupil that occurs 

shortly after a task is started and subsides quickly when the task is complete (Kahneman and 

Beatty, 1966). In literature, the TEPR is modelled as a peak amplitude that is reached some 

time after an onset stimulus with reference to a baseline value. The TEPR requires precise 

knowledge of when the stimulus occurred and knowledge of the baseline pupil size pre-

stimulus. The TEPR is examined as an average response measured over multiple trials, given 

inter-individual differences in pupil size, this makes normalization of the data by way of 

reference to a baseline absolutely critical. The discovery of the baseline value of the pupil is 

often achieved by programming in some rest or calm state just prior to the onset stimulus. This 

approach has been reviewed for the assumed nature of a “rest state” over stimulus scenarios 

that consist of multiple events sequentially, it was determined that the baseline should be re-
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established before every TEPR for accurate analysis, as the baseline pupil level shifts 

incrementally throughout sustained activity (Mosaly, Mazur and Marks, 2017). 

 

Custom Techniques 

Of the literature reviewed here, two articles used a custom technique to derive cognitive load 

from pupil diameter. One study utilized the stroop-colour word interference test as a stimuli to 

stress the participant, then using pupil diameter, attempt to delineate between congruous and 

incongruous segments of the task post-hoc (Ren et al., 2014). In this study they split the data 

into pairs for each participant, congruous and incongruous. These pairs have three features 

extracted from them; the mean PD value, the max PD value and the difference between the 

Walsh coefficient after Walsh transform based on the PD value at the onset of each segment. 

These features were then used as features for a classifier to determine if any given segment was 

“congruent” or “incongruent”, which was achieved with a successful classification rate of 85% 

- it should be mentioned the data was first filtered to only include segments from participants 

that already showed significant differences in PD values between segments.  

Another study that developed a custom method used a chemical production plant control room 

simulator as its stimulus. They focus on the continuous change of PD as a basis for their 

analysis; hypothesizing that the pupil will reach a ‘steady-state’ after rising from the onset of 

increased workload and again after falling. They define this steady state by sliding a 3 second 

window over the data, and defining the window as ‘steady’ if the pupil size obtained is 

−0.005fW < μW < 0.005fW, where fW is the range of pupil size values within the window and 

μW is the mean value of PD for the window. They then compare the time taken to reach this 

state from the onset of the task (Bhavsar, Srinivasan and Srinivasan, 2016).  
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Domains of Stimulus Scenarios 

Of the literature reviewed, 18 (43%) used a participant stimulus scenario that was either from 

an applied domain or specifically not a controlled cognition task. The stimulus tasks ranged 

widely; 5 (28%) were from control rooms, 5 (28%) from game set ups, 2 (11%) from driving 

simulators, the remainder included aircraft piloting, target detection set up, map reading, 

manual assembly tasks, data visualization and web browsing (5.5% each). This body of 

literature does demonstrate that pupil diameter has been considered for use measuring cognitive 

load in applied scenarios.  

Of all the reviewed articles here, only 1 failed to find a significant correlate with task difficulty 

and cognitive load (Van Acker et al., 2020). This study used head-mounted eye trackers whilst 

the participants were instructed to build increasingly complicated physical structures on a desk. 

The nature of this task was to determine if pupil diameter could be implemented in a non-

laboratory setting without screen-based interfaces. The results determined that although the 

subjective measures correlated significantly with task difficulty, pupil diameter did not, 

perhaps shedding light on the infancy of the field in more deployable work scenarios. It could 

also simply demonstrate the limitations of the applied fields in which this method can be 

deployed; being only usable in more controlled and less physically active settings such as 

control rooms. 

Twenty eight percent of the literature applied pupil diameter as a cognitive load measure in 

control room settings, ranging from air traffic control to maritime operations to chemical 

production facilities. Puma et al increased the difficulty of the task in four incremental loads, 

the study is primarily about discerning where the ceiling may exist is terms of EEG’s ability to 

discriminate between these levels of difficulty and PD was included as a comparative measure. 

The PD did increase significantly for the first 3 tasks but not significantly between task 3 and 

4, the tasks being clearly separated as trials and mean PD values compared across each (Puma 
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et al., 2018). Truschzinski et al programmed a custom air traffic control task, with the 

participants being presented with a top-down display of aircraft that crossed paths, the objective 

being to prevent collisions. The difficulty of the task was tuned by increasing the frequency in 

which aircraft appeared. The experiment was conducted in stages, in between each stage the 

participant would complete a questionnaire to determine their mental state after the task. The 

stages were considered “low conditions” and “high conditions” they measured PD mean 

average 1.5s after events logged in the simulator such as a crash or an aircraft appearing. It was 

determined that mean PD was significantly higher during the high conditions than the low 

conditions (Truschzinski et al., 2018). Bhavsar et el used PD as a cognitive load measure to 

model the responses of control room operators and specific events of interest. The six events 

of interest were manually programmed events in a chemical production facility control room. 

They hypothesize that these abnormal events of interest would peak the cognitive load of the 

operators, as they have to respond to the issue, discover the cause and rectify it before the 

balance of the system they are maintaining fails. The conclusions from the work are unclear 

but they claim that the results demonstrate that PD is a valid measure of real-time cognitive 

load in control room operators, though it is not established how this is achieved as a real time 

metric (Bhavsar, Srinivasan and Srinivasan, 2016).  

There were five articles reviewed here that used a form of video game as the stimulus scenario 

to determine cognitive load using pupil diameter. Lecoutre et al simply uses an existing 

Playstation video game (Rayman Origins) as the stimulus scenario, their assumption being that 

the game has built-in methods of objectively increasing the difficulty for them to compare their 

measures (EEG, HRV and PD) against. They claim that the set up; an office chair and flat 

screen tv make “it close to a real-life situation” (Lecoutre et al., 2015). The results show a 

significant correlation between PD, the subjective measure and game difficulty. They also 

collected performance data from the game to determine correlation, this data consisted of 
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collected items within the game set up; this measure did not show any correlation with the other 

measures. This could be a relevant measure of performance data and cognitive load or simply 

a limitation given then incredibly specific measure of performance chosen, which has no 

potential to be transferred to another domain other than Rayman games for the Playstation. 

Marinescu et al designed a custom video game in which participants had to find and ‘shoot’ 

balls as they fell down the screen. The game was designed so that the difficulty could be 

manipulated in two ways; firstly, the number of target balls could be increased, secondly, the 

method of finding the target ball. In the easy condition, the target balls were red, whereas other 

falling balls were different colours and in the hard condition, all the balls were the same colour 

but were numbered, with the target balls being odd numbers, introducing another cognitive 

element to the tracking task (Marinescu et al., 2018). Mallick et al demonstrated that PD 

correlated with game difficulty whilst playing Tetris (Mallick et al., 2017). Wahn et al 

measured PD over multiple trials over multiple days for a multiple object tracking task. 

Multiple objects would appear on the screen, the target objects would be highlighted, then un-

highlighted and scrambled, the correct targets then need to be found by the participant. They 

conclude that pupillometry provides a viable metric for precisely assessing attentional load and 

task experience in visuospatial tasks (Wahn et al., 2016). 

Two of the papers reviewed assessed pupil diameter as a measure of cognitive load during 

driving tasks. Palinko et al had participants follow a lead car whilst driving normally; as they 

were driving they were to play “20 Questions” verbally with a questioner. The task was 

interrupted by playing the “last letter” (LL) word game at various intervals. They hypothesize 

that cognitive load would be greater during the interruption of the LL game – which was 

verified by way of mean pupil diameter change during these tasks (Palinko et al>, 2010). 

Pedrotti et al focused more on the challenge of the driving itself for their stimulus task. Their 

stimulus to increase cognitive load used a lane change task, which was then staged for increased 
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difficulty by including a distracting beep that indicated their driving was poor (which occurred 

regardless), and then also by the presence of observers that were ostensibly assessing their 

driving. They used an artificial neural network to classify which trial represented which level 

of difficulty based on their pupil diameter – which was achieved with approximately 83% 

accuracy (Pedrotti et al., 2014). 

 

Summary of Pupil Diameter Literature 

It is very clear from the literature that pupil diameter (PD) represents a valid measure of 

cognitive load and has been well established as a measure that can be deployed in applications 

outside of stringent lab conditions. The literature reviewed demonstrates PD as a measure still 

under investigation with regards to the specific cognitive process’s it is reflecting. This being 

said, its use in applications to demonstrate significant change with respect to certain stimulus 

is certainly promising for use in future technologies. For this project, we seek to use a 

physiological measure to detect events in control room situations; the PD is certainly a viable 

measure to assess given its simple implementation, lack of interference to the operator and 

clear response to changing scenarios based on mental load.  

 

2.3.3  Analysis of Cognitive Load through Heart Rate Measures 

Due to its direct influence on the Autonomic Nervous System (ANS), cardiac signals can also 

reflect cognitive load (Cohen, Janicki-Deverts and Miller, 2007). Though it is well known that 

an increase in physical effort such as exercise can increase the heart rate, other metrics of 

cardiac measurement can reveal variances that relate to cognitive processes.  

Signals from the nervous system can be measured using skin mounted electrodes on the torso. 

This Echocardiogram (ECG) signal is characteristic of the polarisation and depolarisation of 

the heart during beats. The resulting waveform is can be analysed for a pattern of repeating 
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morphological patterns known as QRS complexes. The peak of the complex is the R point, 

accurately measuring the time between these peaks gives the R-R interval. Heart Rate 

Variability or HRV is the variability of successive R peaks in ECG signals taken from the heart 

(see figure 2.1).  

 

Figure 2.1. Illustration of QRS Complex and R-R Interval (Science, 2017). 

 

The number of R peaks that occur within a minute is referred to as Beats per Minute (BPM) or 

Heart Rate (HR) and is the most common form of heart beat related measure. This creates an 

average R-R interval over the course of a minute.  HRV is most frequently analysed in two 

forms: in the time domain and the frequency domain. Three major frequency bands are usually 

examined for HRV: 

1 - The low frequency band (from 0.02 to 0.06 Hz). The energy in this band mainly comes from 

vasomotor activity involved in the regulation of body temperature and from slow linear and 

nonlinear trends in heart rate. 

2 - The mid-frequency band (from 0.07 to 0.14 Hz). The energy in this band comes from 

mechanisms involved in the short-term regulation of arterial pressure. 

3 - The high-frequency band (from 0.15 to 0.50 Hz). The energy in this band mainly reflects 

the effects of respiratory activity on the cardiac interval signal. (Aasman, Mulder and Mulder, 

1987). 

There are many different time-domain measures of HRV, one review counted 18 different time 

domain measures across the literature reviewed. These measures are detailed in Table 2.2. 
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Table 2.2. Common HRV Time Series Measures with unit and descriptions (Shaffer and Ginsberg, 2017). 

 

 

Extensive literature outlines the relationship between each of the measures outlined above and 

various bodily processes. In the review paper, these measures were used to assess their response 

to mental workload (Tao et al., 2019). In their review, IBI (inter-beat interval), pNN50, SDNN 

and RMSSD were respectively the most commonly used measures in the time-domain, with 

IBI showing a significant decrease with the increase in cognitive load. The review also 

examined frequency domain features and found that the ratio between the low frequency (LF) 

and high frequency (HF) or LF/HF ratio was the most widely used frequency-domain measure, 

with 75% of studies reporting sensitivity to cognitive load. 

 

Extensive literature review list 

In this section we will examine the literature to assess the state of the art and relative popularity 

of these measures across multiple studies. We will use the same criteria as with the pupil 

diameter review. Search terms were “heart” + “cognitive” then “load”, “workload” and 

“overload” to account for variability in terminology.  

Measure Unit Description

NN50 Count The number of pairs of successive NN (R-R) intervals that differ by more than 50 ms

pNN50 % The proportion of NN50 divided by the total number of NN (R-R) intervals.

SDNN ms Standard deviation of the NN (R-R) intervals

RMSSD ms root mean square of successive differences between normal heartbeats

TINN ms Baseline width of the RR interval histogram

SaEn Sample entropy

ApEn Approximate entropy

SD1/SD2 %

Ratio of SD1-to-SD2. SD1:Poincaré plot standard deviation perpendicular the line of

identity. SD2:Poincaré plot standard deviation along the line of identity

T-wave amplitude ampltude of T wave

T-wave width width of T wave

T-wave symmetry symmetry of T wave

T-wave kurtosis average of the fourth power of the standardized deviations from the mean for T wave

ST-segment amplitude amplitude of ST segment of the QRS complex.

SDSD ms Standard deviation of successive RR intervals differences

NNMin ms Minimum RR interval

NNMax ms Maximum RR interval

PNN20 % The proportion of NN20 divided by the total number of NN (R-R) intervals.

P-wave amplitude amplitude of the P wave
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Domains of Stimulus Scenarios 

Across our review, 12 (57%) of the total studies reviewed in Tables 2.3 (a-d) used domains 

from industrial settings or stimulus’ that were not tasks specifically designed to alter cognitive 

load.  

Four (19%) of the studies examined the HRV of pilots during a simulated flight situation. 

Mansikka et al reported that both the time and frequency measures used were capable of 

significantly differentiating between different types of piloting task even when the performance 

data was insignificant. Though they note further research is required, this demonstrates that the 

measures used here were sensitive to a notion that was not able to be detected by an outside 

observer, as the pilots performance did not change enough to determine which task they found 

more difficult (Mansikka, Virtanen, et al., 2016). Hidalgo et al and Tattersall and Hockey 

reported different findings for their studies both performed in a flight simulator, with Hidalgo 

(Hidalgo-Muñoz et al., 2018) reporting that mean RR was sensitive to increased cognitive load 

and Tattersall and Hockey (Tattersall and Hockey, 2006) reporting that only the MF component 

of the HRV was sensitive to changes in task difficulty. A further study by Mansikka 

demonstrated that IBI was sensitive and showing the difference between pilots at rest and 

performing a simple task and the difference between a simple/medium difficulty task and a 

very difficult task but not between simple and medium (Mansikka, Virtanen and Harris, 2019). 

This could demonstrate that the tasks that one wishes to differentiate between must be of 

significant difference in mental difficulty in their own right. 

Three (14%) of the reviewed studies employed a driving simulator as a stimulus to determine 

the cardiac response to driving tasks. The results of these scenarios show a consistency in that 

there is no clear sign that the measures respond to task difficulty. Heine et al assessed 20 

different measures across driving tasks of increasing difficulty and determined that though the 

measures generally trended with cognitive load, none of the measures were totally 
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discriminatory between different types of task (Heine et al., 2017). Shakouri et al determined 

no significant correlates between task difficulty and the HRV measures the calculated 

(Shakouri et al., 2018). The study by Tjolleng et al was the only study to conclude a significant 

change in HRV with task difficulty, but it should be mentioned that they adjusted the task 

dificulty by introducing a verbal n-back task to the driver to increase task difficulty, so not 

measuring the driving difficulty directly (Tjolleng et al., 2017). 

Two (9.5%) of the studies used a control room scenario as the stimulus for their studies. 

Matthews et al used a simulated control room set up for an unmanned ground vehicle system 

in a military environment, with different preprogrammed scarios used to increase cognitive 

load. The simulator involved a number of complex tasks for the participant to moniotor and 

respond to appropriately, the study was set up predominately to study EEG though HRV among 

other psycophyioslogical measures were also examined. They conclude that there was not 

significant relationship between the HRV and the tasks, but do offer an explaination that given 

the highly complex and demanding nature of the task, the results may indicate stress-driven 

emotion-regulation, reflecting CNS-ANS integration (Matthews et al., 2017). This may show 

a potential limitation of using HRV as a specific marker of task dissagregation when the 

environment has a large number of simultaneous tasks of high complexity such as surveilling 

a complex environment such as this. Another study monitored control room operators that were 

monitoring a city traffic centre, they noted that across all measures taken for HRV, they found 

a significant change between the low-density and high-desnity traffic conditions (Fallahi et al., 

2016). The two studies are not really comparable in terms of results given the significantly 

different nature of the stimuli and study set up. This being said, the trafic monitoring study’s 

differing task difficulties were far more broad in scope and significantly longer-form in terms 

of time (the particiapnts were monitored over 12 hour periods).  
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The study by Lecoutre et al was also found in the review for pupil diameter as both of these 

psychophysiological measures were taken. In this operation video game set up, HRV did not 

correlate with the subjective measure taken or with the task difficulty whereas the pupil 

diameter measure correlated significantly with both. The authors suggest the small number of 

participants (8) may explain the results (Lecoutre et al., 2015). 

 

Metrics Used In Review 

Across our review, we found no prevailing metric consistently used for either a specific 

measure of cognitive load or task difficulty, the tally of metrics used is shown in table 2.4. 

 

Table 2.4. Tally of metrics used within Literature cases. 

Measure Count 

RMSSD 10 

HF 7 

pNN50 5 

LF/HF Ratio 5 

SDNN 4 

Mean HR 4 

IBI 4 

LF 4 

MF 3 

Mean RR 2 

NN50 2 

SDRR 2 

pNNx 1 

AVNN 1 

pNN20 1 

SDHR 1 

SDSD 1 

ECGMAD 1 

HRVTRI 1 
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The most used metric was the RMSSD, followed by the HF, pNN50, LF/HF ratio etc. There 

was no reasoning offered for the use of any of the measures in the review; this could be due to 

the speculative element of the research in this field at this time. As the technology to assess 

HRV becomes more accessible, researchers are applying it to a wider variety of scenarios, 

selecting a large number of metrics to apply to see which is the most sensitive. The lack of 

consistency in the discussion of the selection of the measure is noted in some cases as an 

element to be examined in future research, though this scattered approach could be a systematic 

limitation in applying this research in this way. 

 

HRV Methodology Discussion 

As mentioned briefly above, there is little consistency in the methodology of using HRV as a 

stress or cognitive load metric across the literature surveyed; measures are either picked 

arbitrarily or without explanation and their implementation variables are not applied or 

controlled with any consistency. This being said, there is clearly evidence that HRV is a valid 

measure of cognitive load across the literature as a whole with most studies demonstrating a 

correlation with the controlled difficulty of a task. These findings are consistent with a 2015 

review of HRV as a measure of stress assessment (Castaldo, Melillo and Pecchia, 2015). The 

authors also found consensus among the literature across at least seven HRV measures that 

changed consistently with mental stress. They also recommend that studies are defined clearly 

in terms of length of HRV measures and the study protocol and to use statistical tests of results 

consistently. A further paper also criticizes the lack of standardization and assumptions behind 

studies that use ultra-short HRV features (<5min) in place of short term features (nominally 5 

mins) (Pecchia et al., 2018). The paper then demonstrates through literature review, the large 

heterogeneity in present studies and outlines the pitfalls in the statistical methods used to justify 

conclusions when assumptions about the validity of significance are made. For example, 
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several studies claimed that as there was significant correlation between results gathered using 

short-term features and the same gathered with ultra-short term they were valid surrogates of 

each other. This conclusion is flawed due to the nature of HRV data being non-normally 

distributed, therefore the parametric significance test is invalid, the author notes the data first 

requires log-transformation. 

 

Summary of HRV Literature 

The literature clearly demonstrates that HRV is a valid and sensitive measure of cognitive load. 

The subject is clearly very timely and heterogeneous in its application and domains. The 

literature reviewed here follows a certain trend, which is that studies start with the assumption 

that HRV is sensitive to cognitive load, then apply multiple measures of HRV in a domain 

scenario to determine the link between certain cognitive tasks and their HRV response. This 

approach seems speculative in the literature assessed that used a specific application domain. 

These human-centric scenarios are often investigated to optimize processes and the success in 

literature from psychological and medical research demonstrating the value of HRV as an 

objective measure of cognitive processes is clearly of interest in this developing field. As such, 

it appears to be applied in an inconsistent manner, which may affect the validity of the results 

when viewed in a narrower context. For example, many studies simply seek statistical 

differences between scenario A and scenario B and derive conclusions about the underlying 

cognitive processes, when it is clear that there is still a lot of research to do to differentiate the 

myriad of potential cognitive processes using a single psychophysiological method. This being 

said, for many of the applications this technology could apply to, this relative variance may be 

enough to draw some conclusions, such as when a control room task is becoming generally 

more difficult for a particular operator or a driving task is becoming too challenging for a 

particular driver. In these applications, a deeper understanding of the specific mental processes 
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may not be necessary to conclude that the task requires some sort of intervention to reduce 

overall cognitive load. 

 

2.3.4. Other Physiological Measures 

In this section, we will discuss literature relating to other psychophysiological measures of 

cognitive load. 

 

The Brain 

For a more direct measurement of cognitive load (given it occurs in the brain), neuroimaging 

techniques can be used to attain cognitive load values. Both EEG (electroencephalogram) and 

fMRI (functional Magnetic Resonance Imaging) have been used to assess cognitive load. The 

time resolution of EEG makes it possible to observe complex behaviors as they occur, EEG 

also can be applied outside of specialist laboratories that require large machines and teams of 

technicians (Gevins et al., 2007). Multiple studies have found correlations between EEG and 

cognitive load (Klimesch, 1999; Ryu and Myung, 2005; Berka et al., 2007; Trejo et al., 2007; 

Anderson et al., 2011; Brouwer et al., 2012; Das et al., 2014; Hogervorst, Brouwer and van 

Erp, 2014). Some studies show a relatively consistent relationship between cognitive load and 

a suppression of the lower alpha band frequency. Other studies have shown there to be a 

relationship between the alpha and theta bands and cognitive load (Klimesch, 1999; Das et al., 

2014). 

Devices that measure cognitive load can often be expensive and inherently impractical for this 

some real world applications e.g. functional Magnetic Resonance Imaging (fMRI) machines 

take up the better part of two rooms, require technical support staff and restrict the person inside 

to limited space and movement. Given this, there is yet to be a consistent, robust technique to 

obtain a cognitive load metric using EEG across literature. EEGs also require a participant to 
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be restricted to a piece of sensitive equipment that limits movement. Wireless, low-cost EEGs 

do exist but are in their infancy and claim to be able to produce a metric of cognitive load (Das 

et al., 2014) (Berka et al., 2007) though the positive literature is limited and not thorough in its 

investigation of the claims made by the developers of their proprietary “black box” metrics of 

cognitive load.  

 

“Our results indicate that, although most of the measures point toward the same direction, the 

B-Alert metrics fails to give a clear indication of the mental workload state of the participants. 

The use of the B-Alert workload index alone is not precise enough to assess an operator mental 

workload condition with certainty. Further evaluations of this measure need to be done.” 

(Lecoutre et al., 2015) 

 

Functional near-infrared spectroscopy (fNIRS) is a technique for measuring cortical blood 

flow. A small device containing infrared LEDs and infrared sensors is attached to the forehead. 

The infrared LEDs shine IR light through the skin, this light is then reflected off the blood and 

is detected by the IR sensors. The detected fluctuations in optical density result from metabolic 

changes in the brain (Ferrari and Quaresima, 2012). These changes have been linked with 

changes in cognitive load, though not definitively (Fishburn et al., 2014). 

 

The Skin 

Galvanic Skin Response (GSR) is the term used to describe the minute changes in the skin 

conductivity that change due to some external or internal stimulus that often relates to 

physiological arousal. This measurement, usually taken from the fingers, measures the 

electrical conductivity at the skin surface, which changes due to the activity of the sweat glands 

that are controlled by the sympathetic nervous system and as such, respond to internal stimuli 
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(such as stress) as well as external factors (such as heat). Though the majority of work in the 

field concentrates on determining mental state and emotional response from GSR, some recent 

studies have performed experiments to determine a link between GSR and cognitive load (Shi 

et al., 2007; Nourbakhsh et al., 2012).  

 

Mouse Activity and Cognitive Processes 

The use of basic interface devices such as mouse and keyboard has also been shown to provide 

some insight into the mental state of a human user. One such study allows the user to ‘find 

Waldo’ (a popular children’s book activity) (Handford, 1987) by searching through an image 

on a screen with the mouse. Using data from the mouse activity, such as click rate, zoom and 

pan statistics etc. they infer cognitive traits of the individual using the mouse such as 

extraversion and neuroticism. The algorithm was also able to predict within a 62 – 83% 

accuracy how fast the user would solve the puzzle.  

Mouse gesture information has been used as part of a multimodal approach to evaluate a user’s 

emotional state (Ko, 2013; Kaklauskas, 2015). Varying degrees of accuracy were achieved, but 

these results usually included the fusion of other data to aid in the recognition process. A 

version of the Dynamic Time Warping (DTW) algorithm was used to process the gestures from 

the mouse and touch screen information (Schuller, Lang and Rigoll, 2002). Though the 

algorithm was developed for use in speech recognition applications (Itakura and Umezaki, 

2005) it has been adapted for use with mouse data; a gesture being defined by a single stroke 

(a click and drag action) with the left mouse button being the delimiter. 

 

2.4.  Summary 

In this chapter, we assessed literature pertaining to the relationship between cognitive load and 

physiological signals in applied scenarios. Thales Research and Technology have an industrial 
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requirement to assess the data in control room situations automation solutions. An issue in this 

field is that of labelled data, which is rare and difficult to acquire given the complex nature of 

control rooms. There is some research into this field by way of an online labelling system for 

a machine learning model in the SeeCoast study (Rhodes et al>, 2007). This work outlines the 

importance of cognitive load in control room situations and the need for identifying events that 

may cause increased cognitive load as they can lead to decreased operator performance. 

This relationship between operator performance and cognitive load can also be examined in a 

more formal manner by way of subjective ratings scales. Scales such as the NASA-TLX and 

SWAT scale have been used in a wide variety of applications to assess a participant’s cognitive 

state or level of mental effort during a certain task. The fundamental issue behind this approach 

is that the surveys must be conducted post-hoc, requiring an element of memory and recall on 

the part of the participant. For the purposes of identifying when events of interest occur during 

a certain time frame, this method wouldn’t be appropriate – if you are asking the operator in 

the field a set of psychometric questions, you could simply ask when the events occurred. These 

methods are most often used as a general measure of task difficulty for specific, discrete task 

timespans. Given the infancy of the objective methods, subjective methods are held as the “gold 

standard” by which objective measures are often benchmarked against. 

The literature also clearly demonstrates the potential in the field of assessing cognitive load 

objectively using psychophysiological methods. There is a wide variety of signals that can be 

correlated with cognitive load, the results of which are varied. The field of objective cognitive 

load measurement is very timely especially given the more recent technological advancements 

that allow for the devices that measure these signals to be far more accessible and usable in 

practical environments. Naturally, this has lead to a recent flurry in applying these objective 

methods in control room contexts amongst other real-world domains given the link between 

cognitive load and operator performance. Of the myriad of measures for objective cognitive 
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load, some lend themselves to be more appropriate for use in applied scenarios than others; 

EEG and fMRI still require somewhat cumbersome equipment that has a sensitive and extended 

set up time, whereas remote eye tracking has clearly demonstrated its ability to measure 

variance in pupil diameter and correlate this significantly with cognitive load. Pupil diameter 

has also been widely deployed in driving simulators which typically have significantly more 

physical movement than a simple computer interface, movement being a component that often 

requires control or at least some level of filtering to separate the component of mental effort 

from physical exertion component of other psychophysiological signals (Sun et al., 2012). 

The main body of literature reviewed here focusses on modelling the nature of psychophysical 

response to certain tasks within a domain, controlling some aspect of the task to artificially 

increase perceived task difficulty and measure the difference in responses of various signals. 

To determine if there is significant change in a particular measure, tasks are often separated to 

assess average response e.g. difference between rest and easy task, rest and difficult task, easy 

task and difficult task etc. The results from these experiments allow researchers to confirm 

whether the signals do indeed respond in these various scenarios, but there is minimal research 

using these signals to determine when these events occurred in a timeframe in which many 

different events occurred. The precise knowledge of the time in which the events occurred is 

either preprogrammed or manually determined. The example of the Task-Evoked Pupil 

Response (TEPR) requires millisecond-precise knowledge of the onset of a stimulus in order 

to properly determine the response; this also needs to be repeated over a series of identical 

trials. The trials must also refer back to some known state in which there is no stimulus or a 

rest period in which responses are compared against for significance. 

There is much heterogeneity in the literature regarding conclusions about specific cognitive 

process’ respective psychophysiological response, there is clearly much future work regarding 

linking specific responses to specific mental processes. This being said, a fair conclusion from 
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the broad literature is that, in general, changes in cognitive load elicit changes in certain 

psychophysiological measures with significant correlation.  

The desired output of this project is the timestamps at which events occurred during a control 

room setup, with the input being passively recorded psychophysiological signals. The majority 

of the literature uses these timestamps as inputs to determine the nature of the recorded 

psychophysiological signals. 

In the context of the industrial work described at the beginning of this chapter, we can clearly 

see a gap in the literature combining the research in the fields of objective cognitive load and 

online data labelling systems. We discussed earlier in section 0 that the clear drawback of 

online labelling systems was the need for the operator to manually label events as they occur 

in the system, potentially increasing their cognitive load further at a time when it is likely to 

already be peaking. Other studies demonstrated that cognitive load could be used to infer when 

cognitive load was peaking during events of differing difficulty, remotely and with no input 

required from the operator. The gap between an online labelling system and measuring 

cognitive load objectively presents the gap in literature that will be the domain of this work. 

Bringing the objective cognitive load detection methods to control room scenarios to label data 

in real time, as supposed to “post-hoc” or using subjective methods. The value of such systems 

can be applied to many other contexts such as some that have been used as test bed in this 

literature review, such as in the contexts of video games, driving, piloting and other control 

rom scenarios. 
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3.   Methodology 

 

3.1.   Introduction  

As discussed in the literature review, the current state of literature in this field focuses heavily 

on characterising cognitive load using psychophysiological signals. There is little work on 

determining when events of interest occurred within a continuous session of control room 

activity. The closest body of research to this topic would be in examples in which the 

physiological output of an operator during a challenging event was compared against normal 

operating conditions to determine the difference in the signals. In some cases, this led to the 

development of a classifier that would determine the state of the operator during events of 

interest, but this is limited to lengthy periods of time in which task difficulty had sufficiently 

increased (Fallahi et al., 2016). There exists a gap in the work for determining smaller scale 

events of interest that occurred at unknown times in a continuous task setting in which 

participants were required to perform multiple duties. This area is of interest to Thales Research 

and Technology’s patterns of life department. 

In this chapter, we will outline our research objectives in the context of the literature reviewed 

and design a research method to assess the questions drawn from the objectives. The research 

will entail the standard methods set out by previous studies regarding psychophysiological 

signals but with a focus on retrieval of events of interest, rather than on the characterisation of 

the events by linking them to more nuanced cognitive processes.  
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3.2.   Research Objectives 

This project aims to determine if is possible to identify events of interest from a control room 

scenario without relying on asking the operators to label the data from the control situation 

either in real time or post hoc. Such labelling procedures are a large problem in the field of 

machine learning as generally, the quality and accuracy of a machine learning system is largely 

dictated by the volume of available labelled data. Obtaining these labels is still a manual 

process in most use cases. In simple scenarios where there is limited complexity in the model 

and the labels, this can be a relatively simple process, if not time consuming. Take an example 

where the objective is to train a model to determine if a person is walking or running based on 

accelerometer data. The output is a simple concept understood by most people, running is a 

clearly defined notion and can be determined by most observers, they simple need to watch 

and note the times in which the individual wearing the accelerometer was running and this, 

along with an aligned signal from the accelerometer, forms that labelled data set. A model can 

then be developed to iterate its parameter based on how correct it is until optimum accuracy is 

achieved. This process becomes significantly more difficult when the environments relative 

complexity increases. In the case of control room scenarios, the operators are highly trained 

and skilled people that are experts in interpreting the highly complex data they are receiving 

which often requires interpretation that takes many years to be able to understand. Transferring 

this knowledge base to a labelled data set becomes more complex as the pool of people 

available to label dataset of this nature is very small and therefore difficult and expensive to 

access. This problem is further compounded by the ‘unnatural’ way in which this data requires 

labelling. Operators are typically trained to observe data and make decisions in real time that 

directly affect the data they are observing. For example, if an air traffic controller spots a 

potential collision, their actions to mitigate the crash will affect how other aircraft move and 

operate in the space, potentially creating scenarios that require further actions to mitigate. 
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Given the high stakes environments these specialists often work in, it is not feasible to add 

extra tasks to their workload as they are performing them. This limits the potential for operators 

to label the data in real time. Equally, the comfort of these operators is often optimized to 

ensure their full mental resources can be applied to their tasks and observations without 

distraction. This limits the nature of intrusion of devices and observers to their live working 

environments. 

Strategies for optimizing the environment of operators begin with human factors regarding 

their working practices and physical environment e.g. strict shift patterns to reduce fatigue and 

ergonomic design of their equipment. The fundamental objective of these measures is 

ultimately to optimize the operator’s cognitive load. As we have found through our literature 

review, cognitive load is a complex mental process that is made up of different types of mental 

process (Woods et al., 2012). There exists a relationship between operators task performance 

and their cognitive load (Pape, Wiegmann and Shappell, 2001). Resultantly, research has 

focused on measuring operator’s cognitive load to establish if this attentional resource can be 

quantified. These methods have been robustly established using subjective measures (Hill et 

al., 1992), most often a formalized questionnaire taken after a task that characterizes the mental 

effort of the operator beyond a simple one-dimensional scale of subjective difficulty that can 

be applied across multiple individuals accounting for their inter-individual subjective 

experience of the same event. These methods are still used as the gold standard of cognitive 

load measurement given the infancy in their objective counterparts.  

Objective measures have present a potential solution to the issues of post-hoc measurement of 

cognitive load. Several psychophysiological measures have been developed over recent 

decades that aim to correlate physical signals from the body with cognitive load. Though the 

link between subconscious mental processes and some of these outputs has been observed for 

centuries (think heart rate increases and eye dilation without the presence of physical exertion 
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or light respectively) they were only truly empirically established in the latter half of the 20th 

century. With a more recent flurry of work resurging in recent years due to the increasing 

availability of previously cumbersome and expensive sensors required to measure these 

signals. These sensors have now been deployed in environments such as control rooms to 

determine if they are capable of responding significantly to changes in task difficulty. This 

approach of measuring cognitive load objectively clearly has many advantages over other 

methods. It enables researchers and stakeholders to gather large amounts of data across their 

respective domains to draw high-level conclusions about the cognitive nature of the work 

performed by these operators and to make potential adjustments to their working environment 

as discussed before but armed with information that has not been either accessible before or 

even understood given the subconscious nature of the processes being assessed. Research into 

applying the conclusions drawn from the body of work in this field is very timely and consensus 

is still to be obtained on the precise nature of the cognitive processes being reflected by these 

signals. One system found in literature has attempted to integrate the new technology into a 

control room setting in a closed loop system. The system designed by Aricò et al measures 

cognitive load in real time using EEG and adjusts the workload interface to the operator in real 

time to increase or decrease the cognitive load (Aricò et al., 2016). The process aims to 

optimize the available cognitive resources across a team of air traffic controllers to ensure 

average cognitive load is not too high or too low. 

Given our original research objective: To determine if the times at which events of interest 

occurred within complex control room scenarios can be retrieved without manual intervention 

from the operator. We can see the developments in literature certainly demonstrate that the use 

of psychophysiological can be used to determine the variance in the cognitive state of an 

operator. The literature clearly demonstrates that there exists at least broad correlations 

between cognitive load and psychophysiological signals, even though the precise nature of 
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these correlations is still to be determined. Given their established nature however, we can 

change our objective accordingly: To determine if the times at which events of interest occurred 

within complex control room scenarios can be retrieved without manual intervention from the 

operator by analysing their psychophysiological signals. 

This research does not seek to further the understanding of the relationship between 

psychophysiological signals but to utilise their present correlations to determine when events 

occur in a control room setting. This will form the basis for an automatic labelling system for 

control room environments, with the subconscious signals from the operators providing labels 

regarding the time at which events that are abnormal occur.  

The literature in its present state outlines significant work in the field of determining the nature 

of the physiological responses to certain stimuli, often in controlled cognitive tests such as the 

Stroop test. There has been work in more applied domains also, with these domains often 

designing custom environments to control stimuli presented to participants. The work focuses 

on characterisation of signal responses, with significance being determined using statistical 

tests averaged over a series of repeated trials and multiple individuals. In our work, we seek to 

establish the times at which the stimulus events occurred rather than the nature of the events. 

The research presented here has a potential use case in being applied in real world scenarios so 

the factors affecting those scenarios will be considered here. 

In real world scenarios where labelling would need to occur, events can take place at times 

unknown to the operators, these events can also often be totally unexpected and require 

immediate action. As a result, averaging results over several trials would not be possible in a 

real world scenario. Though there may be occasions in which multiple operators are working 

simultaneously, it is rarely on the same exact data, they will have separate duties. Given the 

times at which these events occur, their potential recurrence and repeatability in unknown, 

multiple trials over identical events would not be a scenario that would likely occur in a real 
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world scenario. Establishing significance over a multitude of trials would empirically 

demonstrate the nature of the response to a specific task, but not whether that response could 

be reliably repeated if the event occurred during an extended timeframe in a control room 

context, it also limits the search to events that have been previously understood by the operator. 

As a result, participants in this research will be treated as individuals and the focus will be on 

normalising their signals for examination as a whole. 

The nature of the stimulus scenarios found in literature also followed an established design. 

The design of the environments was to establish a normal working task for an operator, then 

adjust the task in some way as to increase the difficulty to simulate higher cognitive load. The 

hypothesis of these works is that increased difficulty in tasks will yield an increase in cognitive 

load that will be observed in the psychophysiological signals. These hypotheses can be tested 

by verifying the participants cognitive load using subjective measures for comparison, but often 

rely on the assumption that their adjustments to the normal tasks to increase difficulty are 

indeed increasing cognitive load. This assumption is undermined by the subjective nature of 

the tasks and the relative skills of the operator. If an individual is more skilled at a task, their 

response will not necessarily reflect the intended difficulty rise response, as was demonstrated 

by Bernhardt et al when studying engagement metrics across air traffic controllers with 

difference skill and experience levels (Bernhardt et al>, 2019). Without a precise and 

quantifiable understanding of an individual’s skill level at any given task, this assumption is 

difficult to research without. It also impacts the overall methodology of averaging different 

individuals together as higher and lower performers will skew the data assuming the skill levels 

are not normally distributed, which is difficult to determine empirically.  

We therefore present our hypothesis: 

An event of interest that differs from the normal procedures of a control room operator will 

induce a change in cognitive load that can be used to label the time at which the event occurred.  
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3.3.    Research Design 

To test our hypothesis we design an experiment and analysis procedure. We will outline this 

design in this section. 

Based off work from literature, we will design a control room simulator to act as our stimulus 

in which events of interest and normal operating procedures will occur. We will design events 

of interest to insert into the simulator at times unknown to the operators. The operators will run 

the system whilst their psychophysiological signals are being measured. These signals will then 

be analyzed to determine if the events of interest can be determined using only the 

psychophysiological data. 

The success criteria of this experiment is determined as a function of precision and recall. In 

the labelling process, accuracy is the most important factor. A label that is inaccurate can skew 

the results of a model. For our system, accuracy is measured in both recall and precision – with 

recall being defined in equation 1. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑜𝑡𝑎𝑙 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝑇𝑜𝑡𝑎𝑙 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
  Eq. 1 

 

Recall is the proportion of total events that are identified. This measure reflects the system’s 

performance in terms of number of events classified. A system with a low recall is one that did 

not identify many of the events that actually occurred. The other aspect of accuracy measured 

is precision, formally defined in equation 2. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑜𝑡𝑎𝑙 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝑇𝑜𝑡𝑎𝑙 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
    Eq. 2 

 

Precision represents the proportion of events classified correctly from the total number 

identified. A system with low precision may have identified many events, but not correctly.  
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Both of these measures reflect aspects of accuracy that are important yet different. A system 

with high recall and low precision generates too many false positives which is not optimal for 

labelling. Equally, a system with low recall and high precision simply does not generate enough 

labels. There is a balance between making lots of predictions and being often wrong and 

making very few predictions but being correct. This balance is most often represented as the 

F1-score; a weighted average of the recall and precision results; formally defined in equation 

3. 

 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ∗ 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
     Eq. 3 

 

The F1 score will be used to determine the accuracy of the labelling system devised for this 

research. The system design of the experiment is shown in Figure 3.1. 

 

 

Figure 3.1. Experiment System Design Diagram. 
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Figure 3.1. shows the events of interest occurring at certain points within the timespan of the 

control room scenario. The psychophysiological data is captured from the participant as they 

are using the simulator. This data is then analysed to determine the cognitive load of the 

participant and the times at which there is significant change are recorded. These times are then 

compared to the actual times the events occurred, generating our accuracy. This accuracy will 

be used to assess our hypothesis as to whether it is possible to consistently identify the 

timestamps of events of interest from control room scenarios using only psychophysiological 

data. 

 

3.4.   Simulator Design 

In this section we will discuss the design of the simulation space. Given the practical 

restrictions of this project, a real world control scenario was not used. An appropriate analogue 

was designed based on the types of simulators used in the literature to assess 

psychophysiological signals. 

A common theme amongst simulators is air traffic control-type games. These tasks involve the 

tracking of moving objects on a screen and ensuring the objects do not collide and are properly 

managed and controlled until they leave the “airspace”. Studies such as (Truschzinski et al, 

2018), see figure 3.2, used such a system to determine that air traffic control tasks of differing 

difficulty do impact cognitive load using both subjective and objective measures.  
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Figure 3.2. Schematic representation of the air traffic control task employed by Truschzinski 

(Truschzinski et al, 2018). 

 

The difficulty of the task is increased by also increasing the frequency at which the aircraft 

appear at the edges of the screen. The tasks are run separately, so one trial would be high 

frequency, then a separate trial would be at a lower frequency, the labels for each were “high 

difficulty” and “low difficulty” respectively with no further nuance during the period of time 

the task runs for (4mins per task).  

A similar tracking style task is employed by Marinescu as an object tracking task (see figure 

3.3).  

 

Figure 3.1. Object tracking task by Marinescu (Marinescu et al>, 2018). 
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The objective of the task is to handle the correct targets as they move down the screen, again 

with the difficulty being adjusted by increasing the number of targets appearing at the edge of 

the screen (Marinescu et al., 2018). 

These systems are simple for participant operators to learn and use, but also require the 

operators to engage in elements of vigilance, timing, tracking and scheduling. A game style 

environment is also used elsewhere in literature as game metrics by their very nature allow for 

easy adjustment of task difficulty and performance measurement (Mallick et al., 2017; Taub et 

al., 2017). Fundamentally, the task should be complex as to have multiple, simultaneous real-

time requirements on the operator in a continuous fashion. 

We present a simulation environment loosely based on a video game called Flight Control 

which simulates a subset of the tasks performed by a traffic management control room. The 

operator is presented with a birds eye view of an airport with three landing zones for different 

types of aircraft (large fixed wing, small fixed wing and helicopters) represented by different 

coloured circles. The circles appear at the edge of the screen at random positions; the operator 

must click and drag a path for the circle to follow at a set speed, directing it to the appropriate 

landing zone (see figure 3.4). 

 

Figure 3.4. Snapshot of the proposed simulator showing aircraft represented as circles and the landing zones. 
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As this path is created by the operator, it is drawn on the screen as a red line. The objective of 

the task is to safely land aircraft at their respective landing zone. The trajectories and starting 

positions of the aircraft are random so a key element of the task is to prevent collisions. The 

operator does have the ability to edit and change flight paths. Once an aircraft reaches the 

appropriate landing zone, it fades away or “lands”, if aircraft collide, a red circle appears around 

the crash zone and both aircraft disappear in a “crash”.  

The game is simple to operate, only requiring the participant to have basic mouse control skills. 

The basic functions can be mastered in less than 5 minutes.  

To use the simulator as a stimulus scenario for our research purposes, we must establish what 

is normal operating procedure and what is abnormal. The game was tested to determine what 

frequency of appearing aircraft was required to ensure the task required constant vigilance and 

attentional load, but was possible to do without crashing any aircraft. Normal operating 

procedures were determined by trialling the simulator on 5 participants recruited from the 

Technologies for the Sustainable Built Environment for 2 minutes a trial at increasing 

appearing aircraft frequencies. It was determined that a rate of 10 aircraft per minute was the 

level at which all participants could manage the system without any crashes and reported the 

task was consistently achievable. It should be noted that of the 5 participants (4 male, 1 female, 

age 21 – 37, mean 31) one claimed to have significant gaming experience, 4 claimed to have 

minimal to no experience. The objective of these trials was simply to determine if the game 

could be learned quickly and what frequency of aircraft appearing was the optimal for defining 

normal simulator experience. A normal operating procedure for the participants would be this 

task maintained consistently any given length of time.  

The simulation space also requires features that allow the task difficulty to be adjusted. To do 

this, the frequency of appearing aircraft is increased, similar to the simulations from literature.  



60 
 

Joshua Eadie                                                                         EngD 
Thesis  

We now define elements of the simulator that can be adjusted to create abnormal operating 

conditions by varying certain parameters of the task that will not be expected by the participant 

but will not pose such a change to the normal operating procedures a fundamental game 

mechanics such that they cannot handle the tasks. These changing elements will constitute the 

events of interest that we hypothesise will require a significant increase in cognitive load that 

will be detectable from the base cognitive load such that the times at which these events 

occurred will be recoverable using only psychophysiological data. We see in literature that 

events such as these are clearly separated into different trials and participants operate through 

a single trial containing a single event of interest, with the whole trial receiving the label of that 

event. By designing the experiment in this way, it is possible to determine if a significant 

difference in physiological output exists on average across trials of different difficulty, but by 

definition requires the start and end times of the event to be known such that the average can 

be calculated. It being established that increases in cognitive load to yield changes in 

psychophysiological output, this experiment puts multiple events of interest into a single trial, 

at different times, such that the average cognitive load measurement cannot be determined 

during an event period. As in the real world, the time at which the event occurred would not be 

known and is indeed the desired output of the system proposed here. 

We therefore design 4 events of interest. The events differ in the variable of the fundamental 

game mechanic that is being altered; the frequency of aircraft appearing, the speed of an 

aircraft, cloud cover blocking the view of the operator and an aircraft that doesn’t not respond 

to attempt to control it by the operator. In our simulation, these abnormal events of interest 

would be difficult to determine from the raw simulator data without reviewing some playback 

of the simulator trial, the discovery of which would therefore require the operator to label 

manually – replicating the lengthy task that forms the background problem of this research. 

For example, to determine when an event happened, you would need to ask the operator, who 
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would not be able to precisely recall the exact time of the event throughout the course of the 

trial and would require them to watch the replayed footage of themselves to determine. The 

events of interest are split into two typographies: long-form and short form. The long form 

events lasting significantly longer periods of time than the short-form.  

 

3.4.1.  Abnormal Event 1 – Traffic Surge (long form) 

This abnormal event represents the kind found in literature: a sharp increase in the frequency 

of aircraft appearing on the screen. This spreads the mental resources over more targets and 

increase the rate at which they must decide on paths and prevent crashes. The operator must 

respond by increasing the rate at which they create paths and the shapes the paths take to 

maintain order in the screen (see figure 3.5). This task will last for 75 seconds, though it may 

take longer for the operator to land the increased number of aircraft that appeared during that 

time. 

 

 

Figure 3.5. Example screenshot of traffic surge event showing increased number of aircraft. 
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3.4.2.  Abnormal Event 2 – Cloud Cover (long form) 

The second long form event involves a cloud drifting across the screen, obscuring the view of 

the operator (the aircraft will travel under the cloud out of sight, but still maintain their 

trajectories). The operator must respond by ensuring there are no colliding paths under cloud 

or by steering the path around the cloud as it moves across the screen. At no other point in the 

trial will clouds appear so the operator will not have any preparation but must react 

appropriately and in a timely fashion to maintain order in the airspace. 

 

 

Figure 3.6. Example Screenshot of cloud cover event. 

 

Figure 3.6 shows a screenshot of the cloud cover event, demonstrating the loss of visibility in 

the simulator. The cloud takes 30 seconds to cross the screen. 

 

3.4.3.  Abnormal Event 3 – Speeding Aircraft (short form) 

For this event, one aircraft will appear as normal, but travelling at 3 times the speed of all the 

other aircraft (which all travel at a constant speed). The operator must respond by “catching” 

the aircraft with mouse and dragging a new path for it, at which point the aircraft will slow to 

normal speed. Catching this aircraft requires faster mouse movements and response from the 
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operator, which diverts attention away from the other aircraft on screen. The operator needs to 

react in time to prevent the speeding aircraft crashing (see figure 3.7). 

 

 

Figure 3.7.  Example of Speeding Aircraft (Circled in red). 

 

This event will take as long as it takes the operator to catch the aircraft; theoretically, this could 

be achieved in 2 -3 seconds, making it the shortest event of the four abnormal events. 

 

3.4.4.  Abnormal Event 4 – Unresponsive Aircraft (Short form) 

The abnormal aircraft event tricks the operator by not allowing a path to be created from the 

aircraft. It will simply continue on its initial trajectory until it has left the screen. The operator 

will need to recognise that this aircraft cannot be controlled and adapt by changing the paths 

of relevant nearby aircraft to compensate for the aircraft that cannot be controlled. This task 

will take as long as it takes for the unresponsive aircraft to leave the screen (approximately 10-

13 seconds depending on the trajectory). 
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3.4.5.  Simulator Design Summary 

In this section we have outlined the design for our simulation environment. Similar in design 

to those in literature, it allows for adjustment of the difficulty of the task. We have also designed 

four events of interest, of differing types and lengths. The simulator has a simple interface that 

can be picked up quickly, but still require constant vigilance to complete the task successfully. 

The events of interest represent changes in the way the operator must handle the task, we 

hypothesise that the tasks will yield a change in cognitive load such that the times at which 

they occurred can be determined from the psychophysiological data being recorded from the 

participants as they use the simulator.  

The events of interest are not designed to alter specific elements of cognition to be 

demonstrated though characterisation of psychophysiological signals – that is outside the scope 

of this work. They are designed to represent a change in task that challenges the operator in 

such a way that their relative cognitive load will change. The increase in task difficulty 

represents the standard tasks difficulty change found in literature, which has been demonstrated 

as yielding a significant change in cognitive load. Here we present tasks of significantly shorter 

length to determine if the change in cognitive load they yield is enough to be detected from a 

baseline – as far as we are aware this is the first piece of research to investigate such short term 

events in relation to psychophysiological signals, which usually are determined over much 

longer periods in discrete repeated trials. 

 

3.5.  Signal Selection 

As the operators use the simulator space designed above, their psychophysiological signals will 

be measured for analysis to determine when the events of interest occurred without manually 

consulting the operators either during the task or post-hoc. In this section, we outline the signals 

chosen to measure and the equipment used to measure them. 
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3.5.1.  Practical Signal Measurement  

This project aims to determine if an automatic labelling system would be possible given the 

present state of sensors and understanding of psychophysiological signals in a control room 

scenario. As such, for this work, the primary factor when selecting the appropriate signals to 

measure from the operators was practicality in a real world scenario. This means the equipment 

used to measure the signal must pose minimal interference to the comfort of the operator 

performing their duties. 

As discussed in the literature review, there are some methods of measuring cognitive load 

objectively that, though demonstrate success in measuring cognitive load, are not appropriate 

for deployment in a control room. As such, fMRI was eliminated as a signal as this measure 

requires room-sized equipment that requires the participant to remain as still as possible to get 

clear images of the brain.  

Pupil diameter readings are most accurate when measured using a chin-mount and camera set 

up, this would be impractical for a control room even though the operator would still be able 

to move slightly more than inside an fMRI. Given this, low-cost eye trackers have been used 

in significant amount of recent literature as devices for measuring pupil diameter as a measure 

of cognitive load with significant correlation with subjective results, confirming their validity 

as tools for measurement in applied scenarios (Coyne and Sibley, 2016; Vlastos et al>, 2020). 

Of the two main types of device in this low cost bracket, head mounted and remote eye trackers, 

the remote eye tracker poses the most attractive in terms of practicality. As it is a completely 

non-contact device it can’t interfere with the operator on a physical level, in which they might 

accidentally knock or adjust the head mounted device for comfort, invalidating some results. 

There has also been some work to suggest that head mounted eye trackers are cumbersome and 

can distract users to the point of negatively affecting results (Marshall, 2002). Remote eye 

trackers allow for a relatively wide range of motion and have been successfully deployed in 
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driving simulator environments in which physical movement constitutes a fundamental part of 

the activity, the effects of which have not negatively affected the results of studies that use 

them. 

EEG devices have also demonstrated their ability to accurately assess cognitive load in control 

rooms and are also used in other domains to assess emotion states amongst other cognitive 

processes. Though EEG devices have shown potential in examples such as those posed by 

Arico et al, in which operators performed air traffic control duties whilst attached to EEG caps. 

Practically speaking however, EEG caps still require significant setup as the individual 

electrodes require soaking and calibration, which is a lengthy process. The EEG is also a very 

sensitive device that requires the user to be relatively still not to mention tethered to a computer. 

Though wireless EEG devices are now available, their value as devices capable of reliably 

measuring cognitive load still remains under question (Lecoutre et al., 2015).  

HRV has clearly demonstrating prominence in literature as a measure of cognitive processes. 

Though there is still research to do on the exact processes the changes in HRV are measuring, 

there is a consistent body of evidence to suggest that changes in cognitive load yield changes 

in HRV. HRV derived from ECG can now be achieved using low-cost wireless devices. These 

devices require minimal set up and do not restrict he movement of the individual as they 

perform their duties. 

 

3.5.2.  Chosen Psychophysiological Signals 

For this research, two psychophysiological measures were chosen to assess cognitive load. Two 

methods were chosen so that they can be compared for accuracy in determining events of 

interest.  
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Pupil Diameter 

Pupil diameter was chosen because of its inherent practical benefits when measured using a 

remote eye tracker and seems a natural choice for a control room context given its low 

intrusion. As the stimulus scenario is entirely based on a computer screen, a screen-mounted 

eye tracker was a good fit for the project. 

For this project, the Tobii X2-60 eye tracker was chosen. Tobii devices are ubiquitous in 

literature and come with a separate compute unit that performs some initial calculations 

automatically such as blink recognition. The Tobii devices also use the ellipse fitting method 

of measuring pupil diameter which has been shown to be more resistant to the pupil 

foreshortening error (Klingner, Kumar and Hanrahan, 2008) discussed in the literature review. 

The specifications of the device are listed in Table 3.1. 

 

Table 3.1. Specifications of the Tobii X2-60 eye tracker. 

Sample rate 60 Hz (±1 Hz) 

Accuracy 0.4° 

Precision 0.34° 

Mount type On screen, stand 

Screen size Up to 25" when mounted (16:9) 

Operating distance 40 – 90 cm 

Head movement 50 x 36 cm 

 

To assess if the pupil diameter readings responded to the simulation space, a small trial was 

run in which the number of aircraft on screen was changed dynamically to see if the pupil 

diameter cognitive load response correlated. 
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Figure 3.8. Initial trial results to map pupil diameter an cognitive load throughout the simulator experience. 

 

We can see from figure 3.8 a clear correlation between number of aircraft in the simulator and 

the pupil diameter response, confirming that the change in difficulty in the simulator does effect 

the pupil diameter response and that this effect can be measured on our chosen equipment. 

Using this measure, we derive a sub research question, Research Question 1: Can pupil dilation 

data be used to identify the times at which events occur in an operator scenario? We will assess 

this question through accuracy of our event detection analysis in a later chapter. 

 

HRV through ECG 

The second measure chosen for this work was the HRV derived from the 

electroencephalogram. HRV has been demonstrated to determine cognitive load in operators 

throughout literature (Tattersall and Hockey, 2006; Haapalainen et al>, 2010; Sun>et al>, 

2012). HRV has also been able to differentiate between different tasks and tasks of differing 

difficulty in a number of applications, though the measure has received criticism for not being 

consistent in its results of determining which form of cognitive load it is measuring. It was 

decided that as the nature of the cognitive process being determined was not the outcome 
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measured here but simply the relative change in HRV, it would be a suitable measure given the 

large body of research supporting its use and the availability of unobtrusive sensors. 

Some low cost devices claim to be able to derive HRV from a simple, single lead, wireless 

device, but it was chosen to use a five lead ECG monitor for its accuracy. The ECG monitor 

used in this project is the Shimmer Sensing wireless ECG monitor (see figure 3.9). A five-lead 

ECG device, the Shimmer communicates over Bluetooth and has a sampling rate of up to 

1025hz.  

 

Figure 3.9. The Shimmer Sensing ECG device and typical set up. 

 

The small size and portable nature of the device makes it unobtrusive and does not interfere 

with an operator’s task making it a good choice for deployment in this research. For this 

measure, we can pose research question 2:Can HRV data be used to identify the times at which 

events occur in an operator scenario? We will assess this question through accuracy of our 

event detection analysis in a later chapter. 

 

Other Measures 

Other measures considered for use were that of galvanic skin response and fNIRS. Ideally, all 

potential signals would be measured in a simple and unobtrusive way but due to limitations in 
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budget and given that a GSR device may interfere with the use of a mouse. The two measures 

above were chosen. This study could be repeated with other measures as potential future work 

to assess their suitability for assessing our research objective. 

 

3.5.3.  Mouse Data 

As the simulator environment uses a computer mouse as a primary input device, it was decided 

to capture positional data from the mouse to analyse alongside the psychophysiological 

methods. The data captured from the mouse was the positional coordinates and the click state 

of the mouse similar to studies surveyed in the literature. There is some evidence to suggest 

that mouse movement data can be used to infer the cognitive state of the user and given the 

mouse is already being used, its data will also be assessed. This gives us research question 3: 

Can mouse movement data be used to identify the times at which events occur in an operator 

scenario? We will assess this question through accuracy of our event detection analysis in a 

later chapter. 

 

3.6.  Experiment Design 

To gather data from our operators using our simulation environment, we devise two 

experiments. These experiments will generate the data to be processed by our analysis to 

determine the accuracy of the system in terms of identifying when the events of interest took 

place in the simulation environment. 

 

3.6.1.  Physical Set Up 

To gather data from a participant operator, they first had the ECG device affixed to their chest. 

The electrodes were placed as shown in Figure 3.10. 

 



71 
 

Joshua Eadie                                                                         EngD 
Thesis  

 

Figure 3.10. Placement of leads of shimmer ECG device. 

 

The central lead was placed at position v2. The rough position was provided to the participant 

and the electrode affixed to accommodate clothing in a comfortable fashion. The ECG device 

was then powered on and paired to the central PC.  

Once the ECG was affixed, the participant was invited to sit on a chair in front of a desk that 

had the central PC upon it. The participant was then asked to adjust the position of the chair to 

suit their comfort. The chair, desk, PC and participant were all situated in a 4m by 4m room 

inside the Technologies for The Sustainable Built Environment centre at the University. The 

room had the windows covered to prevent changes in light during the experiment, the internal 

lights were left on. The participant was then asked to sit in front of the central pc and 

adjustments were made to ensure that they could both see the screen properly and that the eye 

tracking device could see their pupils within the optimum viewing angle and distance. The 

participant was then instructed to adjust the mouse position and sensitivity to their desired 

comfort. The physical set up of the experiment can be seen in Figure 3.11. 
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Figure 3.11. Physical set up of experiment. 

 

3.6.2.  Preparation 

The participant was then shown how to use the simulator and given 30 minutes to familiarise 

themselves with its operation. For this process, the simulator was fixed at an incoming rate of 

aircraft at 10 per minute, as would become the normal operating procedure of the simulation. 

The participants were not informed about the events of interest or shown how or when they 

would occur. When the participant was comfortable with the controls and usage of the 

simulator, they were informed that they would operate the simulator for the length of the 

experiment. The eye tracker was calibrated using a 9-point calibration procedure. The software 

used (iMotions) provides a calibration score, the calibration procedure was repeated until the 

score was “excellent”. 

 

3.6.3.  Simulation Trials 

It was decided that two runs of the simulation would be run per participant, on separate days. 

Trial 1 differed from trial 2, as a repeat trial may allow for a participant to remember the nature, 

timing and order of the events and as such be prepared for their arrival. As this would not occur 
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in a real world scenario, the timing of the events of interest were changed between trials. The 

two runs on the simulator were 20 minutes and 10 minutes respectively. The 20 minute run 

was split into two data sets. This provides us with three 10 minute data sets; one training set 

and two validation sets per participant. Given that the first validation set is recorded in the same 

run as the training set and the second is recorded on a separate day, this allows us to compare 

if the training parameters determined from trial one will allow for accurate determination of 

event times in trial 2.  

The two trials differ in both length and complexity. The second trial will contain a less regular 

sequence of events of interest and twice the number of events. The second trial will also be the 

only trial with the unresponsive aircraft event. As this event is not seen in the first trial, it will 

not be recognised by the participants. This will enable testing of whether the system will be 

able to identify events of interest that are new and different and not optimised in the training 

set. 

Trial 1 

The first trial lasted 20 minutes. The trial is separated at the ten minute mark and the two halves, 

through completed in one run, are treated as separate trials (see figure 3.12).  

 

Figure3.12. Order of events and structure of Trial 1. 
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Figure 3.12 shows the order of events for the 20 minute first trial. The first 30 seconds of the 

simulator contain no aircraft. This was to allow for the participants pupils to settle from the 

transition from the calibration window to the simulator screen. Events then occurred with at 

least a 1 minute gap of normal aircraft frequency between them, this would allow for the 

cognitive load response to settle between events. The first trial run provides this separation and 

regularity to provide optimum conditions for cognitive load to spike during the events and 

settle between – this is of course not reflective of a real world scenario where events could take 

place closer together and with no regularity – these factors are included in the second trial. The 

first trial contains only the speeding aircraft event, traffic surge event and cloud cover event. 

The first ten minutes of the trial are then repeated, including the 30 seconds of no aircraft, the 

order of the events is also changed to avoid the participants predicting the nature of the trial. 

As the intentional difference between trial 1 and 2 is to make trial 2 a more complex run of the 

simulator, the non-responsive aircraft was added to the second trial only. 

 

Trial 2 

The second trial lasts 10 minutes, recorded on a separate day to the first, the second trial is 

made up entirely of validation data (See figure 3.13). 

 

Figure 3.13. Order of events and structure of Trial 2. 
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The events in the second trial appear as a function of the number of aircraft landed, not at 

specific set times. The second trial contains eight events total, twice the frequency of the 

training set and first validation set. This will determine if the system is capable of detecting 

events if they occur with high frequency and much closer together than the regularly separated 

events of the first trial. The second set also contains the unresponsive aircraft event. This event 

will be new to the participant at this stage; this will allow us to test if a previously unknown 

event can be detected even if it was not seen in the training data set. 

 

3.7.   Study Participants 

In total, 30 participants were recruited for this study. Their ages ranged from 19-58, mean age 

of 33, fifteen females and fifteen males. All participants were healthy, with normal or 

corrected-to-normal vision. They were recruited from the Reading, Berkshire area and were 

compensated £20 in Amazon vouchers for their time. Ethical approval was sought and 

approved by the University of Reading ethical committee. 

 

3.7.1.  Limitations of Participant Characterisation 

The participants were first asked if they had significant issues with their vision that would 

affect their normal pupil dilation. They were also asked if they knew of any health conditions 

or medication they were taking that would affect their heart rhythms or pupil responses. Though 

none of the participants answered yes to these exclusionary questions, it is accepted that this 

knowledge may have not been known to them given that they are not medically trained. For 

future work, exclusionary factors should be well defined, enabling potential participants to 

answer with confidence whether they know of any exclusionary factors. 
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Equally, a limitation of this study is that a deeper characterisation was not made to control for 

other common factors that may affect psychophysiological signals such as quality of sleep, 

caffeine intake or menstrual cycle.  

 

3.7.2.  Data Processing 

The two trials outlined in the previous section will generate 3 sets of data; the training data set 

(the first half of trial 1) and 2 validation sets, one with a simpler arrangement of events and one 

more complex with a previously unseen event. As the trials are running, the data collected from 

the participant is shown in Table 3.2. 

 

Table 1.2.  List of data type descriptions, units and measurement frequency 

taken from the participant during the experiment 

 

Data Unit Frequency (Hz) 

Pupil Size mm 60 

ECG mV 1023 

Mouse X 

position 

pixels 1023 

Mouse Y 

position 

pixels 1023 

Mouse Click 

State 

"UP" or 

"DOWN" 

1023 

 

The data is recorded using iMotions software. The iMotions software package allows 

researchers to integrate multiple physiological sensors together whilst presenting participants 

with a stimulus. The software records all of the sensors at their highest potential frequency and 

co-references the signals to a master timestamp. The software also provides the calibration 

sequence for the eye tracker device and records the screen whilst the participant uses the 

simulation environment, whilst allowing the researcher to overlay statistics such as eye gaze 
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position and pupil diameter. The co-referenced data is then exported to a .csv file to be analysed 

in the Matlab software package. The details on the analysis of the data are outlined in the 

Analysis chapter. 

 

3.8.   Summary 

In this chapter, we have created a research design in order to assess our core research objective: 

To determine if the times at which events of interest occurred within complex control room 

scenarios can be retrieved without manual intervention from the operator. As a result of 

reviewing the available literature in this field, we update our research objective: To determine 

if the times at which events of interest occurred within complex control room scenarios can be 

retrieved without manual intervention from the operator by analysing their 

psychophysiological signals. 

We designed a method to achieve this objective by constructing a controlled simulation 

stimulus environment in which the operator has to maintain a constant level of vigilance, spatial 

monitoring, scheduling and timing. The difficulty of the simulation space can be adjusted by 

increasing the frequency at which the aircraft appear on the screen. We also developed four 

events of interest that change the nature of the task the operator is performing in a manner 

intended to create a change in their cognitive load state. The times at which these events occur 

is the output of the system through analysis of the psychophysiological measures. 

Whilst the operators are using the simulator, they will have their psychophysiological signals 

measured simultaneously. In this chapter, we outlined the available measures and narrowed 

down HRV and pupil diameter as the most practical signals that demonstrated a consistent 

relationship with cognitive load in literature. We also determined the devices appropriate to 

measure these signals. Resultantly, we propose 2 research questions: 
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Can pupil dilation data be used to identify the times at which events occur in an operator 

scenario? and 

Can HRV data be used to identify the times at which events occur in an operator scenario? 

As the simulation environment also contained mouse movement data and there is some 

evidence to suggest these movements may reflect cognitive activity in users, this data was also 

considered to determine if events of interest could be identified. As the mouse is the primary 

input method for the simulator the data can be collected incidentally with no additional 

requirements from the operator such as affixing the ECG device or remaining in the optimum 

viewing angle of the eye tracker. Resultantly, we propose our 3rd research question: Can mouse 

movement data be used to identify the times at which events occur in an operator scenario? 

We will discuss the analysis of the data in the next chapter.  

So far in the research, we have explored our research area based on our initial objective and 

performed a literature review to assess the state of the art in the field. From this, we have 

identified a gap in the literature to create a novel contribution to the field. We have created 

research questions and the methods necessary to answer the questions.  

Literature has demonstrated that psychophysiological signals are capable of demonstrating 

changes in cognitive load. The literature has also demonstrated that these measures can be 

deployed in applied scenarios and characterisation of these signals has demonstrated that they 

respond significantly to changes in task difficulty. From here, we hypothesised that events of 

interest in operator scenarios would change the cognitive load of the operator in a manner that 

can be automatically determined from analysis of psychophysiological signals. We then 

determined the most practical signals to measure from a human operator given the context of a 

control room scenario; namely that the measures should not interfere with their comfort or 

concentration or provide any extra tasks to the operator. We then determined and acquired the 

necessary and appropriate equipment to measure these signals based on evidence and 
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precedence from literature. We designed a control room scenario using examples in literature 

to guide the design parameters and created the target events of interest to detect by varying the 

nature of the task significantly from a predetermined normal operating procedure. We then 

designed a 2-trial experiment that will gather 1 training set and 2 validation data sets. These 

validation sets differ from each other by providing increased complexity and being performed 

on a different day and including different events to test the limits of the optimisation of the 

analysis from the training data.  

 

The next chapter will outline the analysis of the data to be gathered from the experiments. 
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4.   Analysis 

 

4.1.   Introduction 

In the previous chapter, we outlined the research design. This research design yields an 

experiment that presents events of interest to human operators during a simulated control room 

environment. This experiment outputs data that we will analyse to draw conclusions to answer 

our research questions: 

Can pupil dilation data be used to identify the times at which events occur in an operator 

scenario? 

Can HRV data be used to identify the times at which events occur in an operator scenario? 

Can mouse movement data be used to identify the times at which events occur in an operator 

scenario? 

The data outputs from the simulation trials are: 

- Pupil Diameter (mm) 

- ECG (mV) 

- Mouse Data (X and Y coordinates, UP and DOWN mouse button) 

- Video replay of screen operator used during trial. 

In this chapter, we will outline the procedures for analysing the data to produce timestamps 

that indicate when events of interest occurred.  

The timestamp outputs will be generated from the pupil data, the ECG data and the mouse data 

respectively. The timestamps will be determined though analysis of the time series of these 
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data. These outputs will then be compared against the ground truth to determine the recall and 

precision of each of the signals.  

This chapter will be structured as follows: 

-  We will start by demonstrating the data preparation procedures for each measure to 

obtain a time series for each simulation trial. For the pupil data, this will mainly consist 

of data clean up. For the ECG, we will determine an appropriate metric to derive for use 

in this research by way of comparing the latency of multiple HRV measures discussed in 

literature against our training data, we will then select the highest performing measure to 

generate a time series. For the mouse data, we will derive the speed profile of the mouse 

movements to generate a time series, we will also generate a second time series by 

presenting a novel metric derived from shape analysis of the patterns made by the mouse. 

-  We then present a novel metric for determining time at which the cognitive load measure 

has changed significantly from a background level. This measure is based on a geometric 

analysis of the time series, bounded by the assumption that cognitive load will sharply 

increase then recover based on events that are significantly different enough from normal 

tasks. This will create a series of peaks in the time series that will be discovered and 

filtered by optimising the peak finding method by calibrating the parameters on a subset 

of data. 

-  We then generate our ground truth to assess the accuracy and precision of our time 

stamps. This process will be a manual one, requiring us to watch the screen recordings 

of each trial from every participant and annotate the timestamps. The methods for this 

process will be discussed in this section. 

The process for the data analysis procedure is visualised in Figure 4.1. showing the 

development of metrics and time series for each of the data streams gathered from the 

experiments. 
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4.2.   Pupil Data 

In this section, we summarise the methods used to pre-process the pupil diameter data. The raw 

data from the Tobii device includes automatic blink detection, the process for which is assumed 

to be accurate for this study as this assumption has been held in other studies using similar 

Tobii devices.  

 

4.3.   Pre-processing 

The data is sampled at 60hz by the Tobii X2-60 eye tracker. For each participant, we have 

three, 10-minute recordings. The first and second recording are both taken from the same 20-

minute experiment, but split into two, consecutive, ten-minute recordings. The first of these 

10-minute recordings provides our training set. The second half of the first experiment and the 

10-minute recording from the second experiment form our testing sets.  

 

4.3.1.  Interpolating Blinks 

The Tobii X2-60 eye tracker records occurrences of blinks as ‘-1’ values. The device also 

returns ‘-1’ values for instances when pupil diameter could not be measured; this can be from 

the head being turned too far from the eye tracker’s working viewing angle or from the 

participant blocking the view of the device, for example by scratching their face. These errors 

were permissible as the participant was to work comfortably and naturally.  

To remove these sections of data with ‘-1’ artefacts, the data was linearly interpolated over the 

sections that contained ‘-1’ readings. Linear interpolation is the most commonly used method 

for handling missing data or blinks in literature. An example of this is seen in Figure 4.2. 
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Figure 4.2. Example of pupil data errors being linearly interpolated. 

Top: data before interpolation. Bottom: data after linear interpolation. 

 

This procedure was applied to all participants’ data.  

 

4.3.2. Low Pass Filter 

The raw pupil diameter signal contains high-frequency noise. This noise was removed using a 

simple moving-average filter. Frequencies above 2hz are usually considered noise (Privitera et 

al., 2010). In addition, some measurements that are recorded contain physically implausible 

results; when a pupil diameter will jump by an implausible factor for a single sample then 

return. These types of errors are common in non-contact pupil diameter measurement devices 

and are similarly removed using the moving average filter. An example of this can be seen in 

Figure 4.3. 
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Figure 4.3. Example of moving average filter being applied to pupil diameter data. 

TOP: raw data before filter applied. BOTTOM: data after filter applied. 

 

4.3.3 Pupil Data Set 

The above pre-processing procedure uses standard methods from literature to clean up the raw 

pupil diameter signal. The resulting data set is three time series; one for the calibration set and 

two validation sets from each of the simple and complex trials. 

4.5.  ECG Data 

The raw ECG data collected from the experiment comes in the form of a time-series of millivolt 

values. In this section we will outline the method used to determine notably pronounced peaks 

in cognitive load from the raw data. 

 

4.5.1.  R-R Interval  

As discussed in the literature review, a key component of the ECG signal is the QRS complex 

(see Figure 4.4). 
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Figure 4.4. Example of QRS complex, points labelled. 

 

The point of interest in this work is the R-R interval, as variances in the R-R interval or Heart 

Rate Variance, have been shown to reflect cognitive load. In order to measure the R-R interval, 

the location of the R-peaks must first be determined. This was achieved using Kubios HRV 

software (Tarvainen et al., 2014). The software uses a variation of the QRS detection algorithm 

by Pan-Thompkins which is widely used through literature and industry (Pan and Tompkins, 

2007). As HRV can be sensitive to errors in R peak location, the raw data can be viewed in the 

Kubios software and R-peaks that have been missed by the algorithm can be manually inserted. 

This was performed where necessary for all participants. 

 

4.5.2.  HRV Measures 

As discussed in the literature review, multiple different metrics of HRV can be derived from 

the ECG signal. As there is no consensus on which measure provides the most robust indicator 

of cognitive load, we derive multiple measures and compare results.  

We derive two measures of HRV in the time domain and 3 measures in the frequency domain. 

The measures derived are the RMSSD, mean RR interval, Low frequency component, mid 

frequency component and high frequency bands.  
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A significant parameter in determining HRV measures is that of the windows within which the 

features are derived. As the longer the length of windows for short-term features are > minutes 

and given our trial lengths are 10 minutes each, it was decided to use ultra-short term features. 

Kubios software enables time-varying feature analysis for outputting time series of HRV using 

different metrics. The shortest available time window is 40 seconds, given the length of our 

event of interest can be as short as two seconds, this window size was chosen as the longer 

window sizes may average out potential peak responses in the time series.  

 

Mean RR interval 

For this measure, the mean R-R value for feature windows of 40 seconds was calculated. A 40 

second window was chosen as it allows for capturing of smaller variations in HRV for shorter 

events in our simulator that may be suppressed through averaging using longer window lengths. 

Figure 4.5 shows the time-series representation of this procedure for a single participant. 

 

Figure 4.5. Time-Series of Mean RR intervals from single participant over 10 minutes. 
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Root mean square of successive differences (RMSSD) 

The RMSSD is a common HRV metric, calculated using equation 4 over 40 second shifting 

windows:  

𝑅𝑀𝑆𝑆𝐷 =  √
1

𝑁−1
(∑ ((|𝑅𝑅|)𝑖−1 −  (|𝑅𝑅|)𝑖)

2𝑁−1
𝑖=1 )   Eq. 4 

 

In which N represents the number of R-R intervals in the window and R-R is the length of the 

R-R interval. The time-series representation of this is shown in Figure 4.6. 

 

 

Figure 4.6. Example Time-Series of RMSSD for Single Participant over 10 minutes. 

 

Frequency analysis 

For our 40-second windows, the frequency power was determined for the three frequency 

bands:  

1. Low-frequency (LF) 0.02 to 0.06 Hz; 

2. Mid-frequency (MF) from 0.07 to 0.14 Hz; and 

3. High-frequency (HF) from 0.15 to 0.50 Hz. 

An example of this decomposition can be seen Figure 4.7. 
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Figure 4.7. Time-Series Representation of Frequency Power at 3 different bands 

(LF, MF and HF) over a time of 10 minutes. 

 

It should be noted that 40-second windows is exceptionally short for these frequency measures 

and may affect the validity of their use. 

 

4.5.3.  Selection of HRV Measures 

From the onset of a stimulus, there is a latency as the input is processed by the participant and 

the nervous system outputs the signals that are measured by our sensors as a response. This 

latency varies depending on the contextual circumstances, inter-individual differences in 

physiology and the psychophysiological signal in question. The precise latency of each signal 

is difficult to determine in advance given these factors. Resultantly, all the signals gathered 

from our trials will be assessed for their average latency over our training set. Ideally, the less 

latency the closer the identified change in psychophysiological signal is to the true time stamp 

of the onset of the event of interest. 

We will perform this analysis of latency between the signals over each measure of HRV and 

select the signal with the shortest latency. This analysis is performed later in this chapter. 
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4.5.4.  HRV Data Set 

The output of the pre-processing procedures outlined in this section will yield five time series 

for HRV: Mean RR, RMSSD, LF, MF and HF. The measure that demonstrates the smallest 

latency will be selected. We will have three sets of HRV data, one calibration set and two 

validation sets from our experiment trials. 

 

4.6.  Mouse Data 

As discussed in the literature review, there has been some work on deriving the mental state of 

a user based on their mouse movements whilst performing a task. There are a large number of 

potential features that can be extracted from mouse data; one example in literature using as 

many as 64 different features to identify the mood of the user (Zimmermann and Gomez, 1984). 

Many of these features, such as acceleration, are simply derivatives of more basic features, 

such as speed, and are therefore highly correlated and omitted.   

For this study, two metrics were derived from the mouse data:  

1. Mouse speed profile; and  

2. A novel measure of mouse gesture normality presented here. 

For each participant, mouse position X and Y co-ordinate (in pixels), was recorded, as well as 

the click state, MOUSE_DOWN and MOUSE_UP. 

 

4.6.1.  Mouse Speed 

To derive the mouse speed from the raw data, the following procedure was performed: 

The Euclidean distance of each sample of positional data was calculated and divided by the 

difference in time between each point - formally defined by equation 5. 
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𝑠𝑖 =  
( √(𝑥𝑖+1− 𝑥𝑖)2+ (𝑦𝑖+1− 𝑦𝑖)2 

2
)

(𝑡𝑖+1− 𝑡𝑖)
         Eq. 5 

In which s is the speed, x is the x coordinate, y is the y coordinate and t is the timestamp. Figure 

4.8 illustrates the resulting time-series plot. 

 

 

Figure 4.8. Graph of calculated mouse speed in pixels/second for single participant over 10 minutes. 

 

A moving mean average filter is then applied to the speed profile to remove the high-frequency 

noise (see figure 4.9).  

 

Figure 4.9. Speed Profile across a 10 minute trial with moving average mean filter 

with 20 seconds window size applied. 
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The window size of the moving mean averaging filter is one of the parameters tuned in the 

calibration procedure outlined later in this chapter. The output of this process is a time series 

representing a speed profile of mouse movement data. 

 

4.6.2.  Mouse Gesture Normality 

In this section, we present a novel metric to determine the “normality” of mouse movement 

data. This method models the mouse movement data as a continuous series of 2-D shapes. Our 

novel method of determining the normality of these shapes works by cataloguing the series of 

shapes, clustering these shapes, then determining how “normal” each shape is based on each 

cluster’s proportion of the total number of shapes. We then plot this output to a time series to 

generate a continuous signal of mouse movement “normality”. 

 

Delimiting Gestures 

To generate a list of gestures from our continuous stream of coordinates, we segment this 

stream into sections or gestures by the clicking of the mouse. The gesture begins when the 

mouse button is pressed and ends when the mouse button is released. This creates a series of 

delimited gestures, which we can plot on our times-series as seen in Figure 4.10. 

 

Figure 4.10. Time-series representation of delimited mouse clicks across a 10 minute trial. 



93 
 

Joshua Eadie                                                                         EngD 
Thesis  

Normalising Coordinate Data 

As gestures can occur in differing absolute locations on the screen, we need to normalise the 

gestures so that they can be compared to each other without bias toward their absolute location.  

To achieve this, we calculate the heading between subsequent coordinates in the list that makes 

up each gesture – formally defined in equation 6. 

 

𝑏𝑖 =  𝑡𝑎𝑛−1 (
𝑎𝑏𝑠(𝑦𝑖+1− 𝑦𝑖)

𝑎𝑏𝑠(𝑥𝑖+1− 𝑥𝑖)
)      Eq. 6 

 

In which b is the bearing, y is the y-coordinate and x is the x-coordinate. These bearings provide 

us with a list of values for a gesture that is resistant to the absolute location on screen. An 

example of this can be seen in Figure 4.11. Example of two gestures, delimited by mouse clicks 

(left),  being converted to bearing sequences. 

 

Figure 4.11. Example of two gestures, delimited by mouse clicks (left),  

being converted to bearing sequences (right). 

 

Comparing Shapes with Dynamic Time Warping 

To cluster our bearing sequences into groups, we must first apply a distance metric. As our 

sequences can vary in length, but may still contain similar shapes, we apply the Dynamic Time 
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Warping (DTW) method (Sakoe and Chiba, 1978). The DTW algorithm compares two vectors 

that can be differing lengths by examining a sample-by-sample cost function, to find the 

optimal global alignment.  

The process starts by generating a matrix of distances between all of the points within two of 

the bearing sequences. Each element of the matrix is calculated using equation 7. 

 

𝐷[𝑚, 𝑛] = |𝐴𝑚 −  𝐵𝑛| + min (𝐷[𝑚 − 1, 𝑛 − 1], 𝐷[𝑚 − 1, 𝑛], 𝐷[𝑚, 𝑛 − 1]) Eq. 7 

 

Where D[m,n] is the distance value at index (m,n), Am is the value of the first bearing sequence 

at index m and Bn is the value of the second bearing sequence at index n. 

Once the matrix is populated, a path of minimum total value is iteratively calculated from 

position (m,n) to (0,0), in which the total value is the sum of all matrix elements on the path. 

This final value is the distance output of the DTW algorithm (see figure 4.12).  

 

 

Figure 4.12. Distance Matrix for DTW algorithm. The red dots in the 

matrix show the optimal alignment between the two time series’ A and B. 
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Clustering with DBScan Algorithm 

A distance matrix comparing all bearing sequences with each other is then generated using 

DTW. This is then clustered into groups of similarity using the DBScan, a well-established 

clustering algorithm (Daszykowski and Walczak, 2010). The algorithm clusters points in a 

space based on their density. Figure  shows an example of the algorithm’s process. Each point 

is the centre of a sphere that has a radius of epsilon (input parameter). If a point A in Figure 

4.13 was the start point, its sphere contains three further points, which in turn contain two 

further red points within their radii. C and B are also within the radius of two of the points in 

the red cluster and are therefore included in the cluster, whereas point N is outside the radius 

of these points in the cluster and therefore becomes another cluster. 

 

Figure 4.13. Illustration of DBScan Algorithm Output. 

 

Figure 4.13. shows an example of the gestures contained within a single gesture cluster after 

the DBScan was applied. The red dots represent elements that have been clustered together, 

with the yellow points demonstrating subsequent elements that will also be classified as red, 

with the blue dot representing an element that will not be clustered to red given it’s distance 
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from the other elements in the cluster. The epsilon input value of this process forms one of our 

tuning variables for this measure; the tuning of which will be discussed later in this chapter. 

 

Figure 4.14. Example of gestures that have been clustered together. 

Each graph area is a representation of the screen, with points representing X and Y coordinates of a 

gesture. 

 

Figure 4.14. shows the contents of a single cluster once. The gesture in the bottom right of the 

figure shows an example of a shape that is different, but within the tolerances of the gesture so 

as to be included. 

 

Determination of Abnormal Gestures 

Our hypothesis for mouse gestures is that the more abnormal gesture shapes will co-occur with 

the most abnormal events, our Events of Interest (EoI). To determine this abnormality, we sort 

the clusters by size in descending order, we give the first cluster the value of 1 and each 

subsequent cluster is labelled in turn. This will allocate a higher value to the more unique 

gestures. We can then plot the cluster value for each gesture, see Figure 4.15. 
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Figure 4.15. Clustered mouse gestures plotted across a 10 minute trial, the x position of the blue bars is 

the time in which they occurred, the height in y axis represents their cluster number. 

 

From this data, we can apply a moving mean filter to generate a continuous signal that 

determines the normality of the mouse gestures at a given time. The output of this filter can be 

seen in Figure 4.16. 

 

Figure 4.16. Output of mouse gesture normality metric across a 10 minute trial, the y axis representing 

the “abnormality” of the mouse gestures, the higher the value, the more abnormal. 

 

This novel mouse normality metric has three parameters:  

1. The DBscan algorithm epsilon value; 

2. The moving mean average window size; and  
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3. The minimum peak prominence. 

These values can be tuned using a calibration data set such as the one gathered from our 

experiment trials. 

 

4.6.3.  Mouse Data Set 

The processes outlined in this section outline transforms our raw mouse positional data into 

two time series: speed profile and shape normality profile. The mouse gesture normality metric 

is a novel metric to this work. The output of this process is six data sets for each participant, a 

speed and gesture normality profile for each of the three trials. 

 

4.7.  Ground Truth 

The final data stream gathered from the simulator is the video recording of the operators using 

the simulator. This video shows the exact moments at which the events occurred to each 

participant. The manual annotation of this data highlights an example of the complex and time-

consuming difficulties of manual data labelling procedures in real world applications. To assess 

the accuracy of our analysis of the times at which the events of interest occurred, each 

participant’s video will be examined and the times recorded manually.  

To add some perspective to this as a motivation for this research, each participant has 30 

minutes of video footage, on average; it takes 2.5 times the length of the video to determine all 

the events from the footage. As the creators of the simulation space, we define ourselves as 

experts in this specific application, therefore this average time represents the fastest possible 

time. In this experiment, we included 30 participants (this will be discussed in a later chapter); 

this results in 37.5 hours of manual review to determine the correct classifications for this study, 

highlighting a perfect scenario in which an automated data labelling system could be of use. 
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For the manual data labelling, there could also be an element of deviation between the onset of 

different participants events of interest. To minimize the variations in manual definitions of the 

different event times, a definition of each event is outlined below.  These definitions were used 

to keep the manually located timestamps as consistent as possible. 

 

4.7.1.  Sudden Traffic Surge 

This event is determined to have started from the moment the first aircraft appears in the surge. 

As this is programmed into the simulator for the first test set, this time is known prior to the 

participant using the simulator. The time at which the surge is deemed to have ended is also 

preprogramed; when the surge ends, normal traffic resumes, thus the moment when the first 

aircraft appears from the normal traffic section is the time at which the surge has ended. For 

the second test set, the time at which the traffic surge is deemed to have begun is achieved by 

identifying when a specific aircraft enters the screen, the type and trajectory of which is unique 

to the starting of the traffic surge event. Equally, normal traffic resuming is heralded by an 

aircraft of specific type at a unique trajectory, the presence of this aircraft determines the end 

of the traffic surge event for the second testing set. 

 

4.7.2.  Cloud Cover 

The cloud appears at a specific time that is preprogramed for the first test set. As the cloud 

moves at a constant speed across the screen, it always leaves the field of view 30 seconds after 

it appears. Thus, the time frame for cloud cover is understood before the participant uses the 

simulator. For the second test set, the moment when the cloud can first be seen entering the 

screen is determined to be the start, the end of the event is set at 30 seconds after this point. 
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4.7.3. Speeding aircraft 

The speeding aircraft appear at a time preprogramed into the simulator for the first test set; the 

appearance of the aircraft at this time marks the start of the speeding aircraft event (which will 

be the same for all participants in the first test set). The speeding aircraft event is deemed to 

have ended when the participant has landed the aircraft. This time had to be derived manually 

by inspecting the screen recording of the individual’s simulator run. The speeding aircrafts 

appear at specific locations unique to this event type. Thus, for the second test set, when these 

aircrafts were spotted on the screen recording, the event is deemed to have started, the end of 

the event is determined in the same fashion as the first test set. 

 

4.7.4.  Unresponsive aircraft 

Determining the times in which this event occurred was more complex. This is due to the 

aircraft being identical to all other aircrafts in normal traffic. The unresponsive aircraft appears 

at locations unique to this event, and were spotted manually using this knowledge. For the 

participant however, it is only recognisable as unresponsive once they attempt to move it with 

the mouse. Even then, the user may either not notice that their click had no effect, or simply 

believe that it was human error on their part. This creates a complication in discovering the 

ground truth as it is not possible to determine exactly when the event starts. It was decided that 

for consistency, the moment when the participant first clicks the unresponsive aircraft will be 

the moment that this event started and the moment the aircraft leaves the screen will be the end 

of the event. 

 

4.7.5.  Note on Ground Truth Labels 

As we are assessing elements of cognition in this work, it should be noted that the elements of 

event start time variance pose a non-trivial problem to creating an accurate ground truth. 
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When using psychophysiological sensor equipment to assess different elements of cognition, 

the start time of the onset of the stimulus being investigated is often in a highly controlled 

environment. In some studies, the participant is explicitly warned of the onset of a stimulus 

with either some text appearing on the screen or an audible tone. The nature of when an event 

started is not often discussed in literature surround practical applications of 

psychophysiological cognitive load measurements. For example, with the use of the Task 

Evoked Pupillary Response (TEPR) and other event-related potentials, the start time is a critical 

element of the analysis as the baseline for readings is often defined as the preceding seconds 

up to this point. In an example when an arithmetic question is audibly posed to a participant, 

this time is often labelled as “question being read” with analysis occurring from the moment 

the question has finished being asked, but this doesn’t not account for individuals who are 

already processing the information cognitively as the question is being read verses those who 

may begin this process a second or so after the end of the question. This notion is being 

mentioned here as a limitation of this study is that the start times of the events is ultimately a 

decision made by a fallible human; though we have attempted to mitigate this by standardising 

definitions of event start times in advance. 

 

4.7.6.  Ground Truth Data Set 

The labels generated through the process outlined in this section form our last data stream 

processed from the raw data. This data is in three sections, one calibration set and two 

validation sets, the calibration set will be used to optimise the classification analysis. 

 

4.8.  Determining the Times of Events of Interest from Time Series 

With our data streams from our psychophysiological signals pre-processed, we will now 

analyse the data to derive the times in which our Events of Interest (EoI) occurred. Our methods 
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for determining points at which events occurred is based on the hypothesis that an event will 

stimulate a response in the participant’s physiological response.  

Previous work in this area pays specific attention to characterizing types of cognitive load 

within trials. Each of the trials are designed to have subjectively differing mental workload 

differences. There is little literature on a continuous task with multiple event types within a 

single trial. Many of the previous works discussed in the literature review focus on methods 

such as the Task-Evoked Pupillary Response (TEPR) (Beatty and Lucero-Wagoner, 2000; 

Mosaly, Mazur and Marks, 2017; van der Wel and van Steenbergen, 2018). The difficulty with 

applying this marker in a situational context is that, in order to calculate it, the amplitudes of 

the pupil diameter increase need to be compared against a baseline pupil diameter, the proper 

discovery of which has wide ranging approaches. Mathôt notes that the method is sometimes 

applied inappropriately for the context  (Mathôt et al., 2018). The issue with the practical 

application of TEPR as a recall classifier is that it specifically requires knowledge of the exact 

moment the stimulus was provided in order to characterise the response. In this work, the 

identification of the time in which the stimulus occurred is the output and cannot be provided 

as an input.  

Equally, with methods such as HRV, they are demonstrated to have a significant response to 

increased cognitive load but either comparing a rest scenario to a specific scenario that was 

previously known to have contained a task of higher difficulty. When longer stimulus scenarios 

are presented such as those in the study by Fallahi et al, the labelled data often encompasses a 

significantly broader definition such as “higher traffic density” that the operator experienced 

for significant lengths of time, these methods do not identify specific individual events that 

occur within the scenario.  

These measures specifically require either a highly controlled lab environment, which limits 

its practical deployment or a well-labelled dataset, which requires manual labelling anyway 
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which defeats the objective of this work. This labelled data set allows the methods to perform 

statistical analysis on predetermined segments of time to assess if there is significant change in 

the signal when compared to, for example, a pre-determined rest period. In some cases, a large 

number of repeated trials occur and results averaged to assess significance. These methods are 

not applicable in this research as they all rely on a pre-labelled data set.  

In real world environments, no knowledge can be assumed for these purposes, for example, a 

rest period could be defined as a moment taken for a personal thought or when the operator’s 

attention drifts. As a result, the baseline of their cognitive load is unknown and cannot be 

determined without expressly defining the environment that represents rest and labelling it 

accordingly. 

In this research, we have a hypothesis that an event of interest will create a response in the 

cognitive load from the operator. We therefore model the time series as a continuous series of 

peaks that we assume are stimulated from the simulation environment. Resultantly, we present 

a novel method for assess cognitive load signals in time series, the method locates all peaks in 

the time series and then filters the peaks by tuning the parameters that characterise the peaks. 

This method does not require any knowledge of resting baseline or context of the previous 

elements of the simulation environment. The characteristics of the peaks that represent real 

events of interest are determined by tuning the peak finding procedure using the training data.  

 

4.8.1.  Peak Finding Procedure 

We define a peak in the data as a point Pt in which Pt-1 < Pt > Pt+1. We then calculate the 

prominence of each peak in the time series. We extend a horizontal line from the peak in both 

directions. This line terminates when it either crosses another point in the signal or reaches the 

end of the time series, in both directions. The data points under each of these extended lines, 

left and right, form two sub sections. The minima are found of these two subsections. The 
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greater value of these two minima forms the reference value for the prominence; the difference 

between the peak value and this reference is our peak prominence. This process is illustrated 

in Figure 4.17. 

 

Figure 4.17. Illustration of Peak Prominence Procedure 

 

A visual inspection of the pupil diameter data shows that certain areas show a significant 

increase in pupil diameter. Figure 4.18. shows an example of a single participant’s pupil data. 

 

 
Figure 4.18. Sample from test set of a single participant's pupil diameter data 

showing absolute pupil diameter over a time period of 10 minutes. 
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If we overlay the times in which Events of Interest (EoI) occurred, we can clearly see a 

relationship between these periods of increased pupil diameter and the EoI (see figure 4.19.). 

 

 

Figure 4-19. A sample of a single participant's pre-processed pupil data over a 10 minute period. The 

red highlighted areas show times in which Events of Interest were manually verified to have occurred. 

 

We can apply the algorithm to the entire time series signal to find all the peaks within the 

signal, then we can filter out peaks of certain prominence.  

 

Figure 4.20. Peak Finding procedure result with all peaks below 0.1 prominence filtered out. 
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Figure 4.20 shows the pre-processed pupil data with the peak finding procedure applied, 

filtering out all peaks beneath a prominence of 0.1. Given the higher frequency components of 

the signal, we can see a larger number of peaks located. Our hypothesis is that events in the 

simulator will stimulate a peak response from the pupil; we must now differentiate peak 

responses from normal events and those from our abnormal events of interest, which we expect 

to be greater. We can filter out smaller peaks in two ways:  

1. To adjust the data with a moving average filter in order to smooth the peaks from the 

signal, or; 

2. To adjust the minimum peak prominence input of the procedure.  

 

Figure 4.21. Peak finding result when moving mean filter of window size of 10 seconds applied 

 

Figure 4.21.shows the effects of a 10-second moving mean window filter on the number of 

peaks detected by the peak finding procedure compared to Figure 4.20. 
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Figure 4.22. Results of peak find procedure of unfiltered data with minimum 

peak prominence set at 0.5. 

 

Figure 4.22 shows the results of the peak finding procedure on unfiltered data when the 

minimum prominence has been increased to 0.5. We can see that the effect of both techniques 

reduces the number of peaks located, identifying those that represent the highest-amplitude 

peak responses.  

 

4.8.2.  Tuning Metrics with Calibration Data 

In this section we discuss the calibrating of the parameters of the methods outlined in the 

preceding sections. We will examine each type of data in turn, optimising the parameters for 

best classification precision and recall of events of interest. This optimisation will be 

performed across each individual, to then be tested on the validation set.  

 

Classification Recall and Precision 

Given that our methods cannot generate true negative results, we assess the performance of 

our classifier using recall and precision. Recall is the proportion of all the events that were 

correctly classified – formally defined in equation 8. 
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𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑜𝑡𝑎𝑙 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝑇𝑜𝑡𝑎𝑙 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
   Eq. 8 

 

Precision is the proportion of classifications that were correct – formally defined in equation 

9. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑜𝑡𝑎𝑙 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝑇𝑜𝑡𝑎𝑙 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
   Eq. 9 

 

Both recall and precision are important factors in determining the accuracy of the system. As 

a result, we combine the measures using a weighted average. We use the F1 score for the 

calibration data for each data type (pupils, HRV, Mouse speed and mouse gesture). The F1 

score is the weighted average of the recall and precision results – formally defined in equation 

10. 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ∗ 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
     Eq. 10 

 

Pupils 

The pupil data method has two parameters: the size of the moving average window and the 

minimum peak prominence. We calculate the F1 score for all combinations of these inputs; we 

then select the optimum values for our parameters before repeating this process to obtain 

window size and minimum peak prominence for all participants (see figure. 4.23).  
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Figure 4.23. Example of optimising pupil classifier F1 Score. The F1 score changes depending on the 

window size in this example; the window size of 30 seconds was selected as it yields the greatest F1 

score of 0.9. 

 

HRV 

We optimise our HRV values in the same fashion as the pupil data. The input parameter for the 

HRV data is the minimum peak prominence. We assess this value across each participant to 

find the optimum F1 score. We also take an average of this score across all participant for each 

of our HRV metrics to assess the optimum measure to use. 

 

Table 4.1. Average F1 Scores Across Different HRV Metrics 

 

 

We see from the results in Table 4.1. that the mean RR and RMSSD (Root mean square of 

successive differences) metrics outperform the frequency measures by approximately 20%. 

The highest performing metric is the RMSSD, this metric is one of the most frequently cited 

HRV Measure Average F1 Score

HRV - HF 0.421

HRV - MF 0.500

HRV - LF 0.444

HRV - Mean RR 0.725

HRV - RMSSD 0.807
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time domain metrics in literature and our results confirm its validity as a basis of a method to 

analyse cognitive load signals. 

 

Mouse 

Our mouse speed metric has two input parameters:  

1. The mean average window size; and  

2. The minimum peak prominence.  

These are optimised in the same fashion as the pupil data, iterating over combinations of both 

parameters and a maximum F1 score chosen. 

The procedure was repeated for the mouse gesture metric over the three input parameters: 

DBscan epsilon, mean average window size and minimum peak prominence. 

 

4.8.3.  Summary 

In section 0 we presented our method for determining the times at which event of interest 

occurred in a control room scenario using psychophysiological signals. We incorporate the 

understanding of physiological response peaks and the limitations of current methods for this 

research scope. We showed how we will calibrate the parameters from each of our data streams 

to achieve optimal classification accuracy using the F1-score. For the pupil, heart and mouse 

speed data, we tune the size of the window for the moving average filter and the minimum peak 

prominence. We also tune these parameters for the mouse gesture method, with the addition of 

the DBScan epsilon value. By properly calibrating these parameters for each of our participants 

using their calibration data set, we optimise the methods for testing on our validation data sets. 
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4.9.  Determining Correct Classifications 

The output of our methods is a time at which a peak of sufficient magnitude was determined 

for that particular data type. To determine if this timestamp was correctly classified as an event 

of interest, the timestamp output was compared with the ground truth. 

The issue with this approach is that it does not account for latency in response for shorter 

duration events. Latency periods vary depending on the measure used as well as variations 

occurring person-to-person, based on the moment at which the individual was aware the event 

was occurring. For pupil diameter, an average latency for a pupil response can be about 2 

seconds (Hoeks and Levelt, 1993), whereas heart related measures seem to have widely varying 

recorded latency periods of up to 10 seconds. Intuitively, we expect there to be a greater latency 

with the mouse data as this response has the added delay of cognition + motor action response.  

To determine the length of the latency, or delay, window for each channel of data, we examine 

the time between the onset of an event and a response (if any) in each channel. The purpose of 

calculating this window size is to get a value that best reflects the natural latency in each 

measure; this was performed before any optimisation was performed.  

 

4.9.1.  Latency Response per Channel 

Here we assess the time between the event starting in ground truth and the timestamp method 

output in each channel for each participant in our training set. For each participant we have 

four events in the 10-minute training data. We place a 20-second window starting at the onset 

of an event in ground truth and test to see if the classified data stream responded, we then 

calculate the time taken to respond for each participant for each event. If no response is detected 

within the 20-second window, we do not record any latency (false-negative).  
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Figure 4.24. Latency Boxplot of Pupil Responses over the four events in training data. 

 

We see from the boxplot in Figure 4.24. that the average pupil response recorded is 

approximately 5 seconds, with the fastest responses being approximately 3 seconds.  

  

 

Figure 4.25. Latency Boxplot of HRV responses using the mean R-R measure. 

 

Using the mean RR measure we note a delay of approximately 9.5 seconds for a response, as 

expected, longer than the pupil response (see figure 4.25). 
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Figure 2.26. Latency Boxplot of HRV responses using the RMSSD measure. 

 

We see in Figure 2.26. that response times of the root mean square of successive differences 

respond on average, faster than their mean RR equivalents.  

 

 

Figure 4.27. Latency Boxplot of HRV responses examining the Low-Frequency component measure 
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Figure 4.28. Latency Boxplot of HRV responses examining the Mid-Frequency component measure. 

 

 

Figure 4.29. Latency Boxplot of HRV responses examining the High-Frequency component measure. 

 

From examining the latency in our frequency measures, we see an increased average response 

time to that of the mean RR measure and in the mid-high frequency, we see response times 

comparable to that of the pupil measures See figures 4.27-4.29). 
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Figure 4.30. Latency Boxplot of mouse speed metric responses. 

 

The higher response times shown in Figure 4.30. Figure 4.31 confirms our hypothesis that 

mouse measures would have a longer latency than physiological measures. 

 

 

Figure 4.31. Latency Boxplot of mouse gesture metric responses. 

 

The response speed for the mouse gesture metric has the most variation between the events, 

most notable, between events 2&3 and 1&4. This is intuitive as events 1&4 are the short-term 

speeding aircraft events, which required a faster response. 
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4.9.2. Latency Summary 

Each measure has some latency; a window needs to be selected for each measure that accounts 

for this. Naturally, the larger the window, the higher number of correct classifications. If the 

window becomes too large however, we run the risk of incorrectly labelling false positives as 

true positives. Establishing this temporal segmentation is not a trivial matter, “common sense” 

backed with established theory is employed here to establish this window. This is discussed in 

work by Scheirer in which they attempt to define these windows, but concede that a fixed 

window, though necessary, does not factor in the many variables at work during an applied 

study involving psychophysiological measures (Scheirer et al., 2002). Here, we establish our 

windows through an examination of literature, which provides a wide range of latency values 

and also through an examination of latency values in our training data. These values are not 

precise, but do agree with values reported in the literature. As briefly discussed in section 0, 

the ground truth is established as objectively as possible, but factors outside of the realm of 

reasonable objective precision are at play. We will discuss these factors more in the Results 

and Discussion chapter. 

 

Table 4.2. Maximum Response Times of all metrics derived from raw data. 

 

 

Response Measure Event 1 Event 2 Event 3 Event 4 Maximum Response

Pupil 10.25 6.85 7.55 7.94 10.25

HRV - Mean RR 11.99 11.49 11.8 11.76 11.99

HRV - RMSSD 10.81 10.92 10.74 10.75 10.92

HRV - LF 15 14.3 16.1 13 16.10

HRV - MF 7.95 7.91 7.99 7.89 7.99

HRV - HF 8.77 8.57 8.73 8.49 8.77

Mouse - Speed 10.2 14.91 14.51 - 14.91

Mouse - Gesture 9.94 12.99 12.95 9.93 12.99

Maximum Response Time (seconds)
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This method defines how we determine if an event is correctly classified or not. The purple 

vertical line denotes the time at which the event was determined to have started – the 

determination of this time is explain in section 0. For each data type (pupils, heart, mouse) for 

each participant, we cycle through every event in the ground truth for that participant, for each 

event we search for a timestamp -  generated by the EoI detection method - in a window starting 

at the point when the event was manually deemed to have occurred + the latency window for 

that particular data type. If the timestamp that the particular data method deemed to be an event 

of interest occurs within this window, it is deemed a true positive classification, if outside, it is 

deemed a false positive.  

 

4.10.  Summary 

In this chapter, we outline our methods for transforming the raw data collected from our 

experiment trials into time series and determining the times at which events of interest occurred 

within. The methods designed and described in this chapter will allow us to answer our research 

questions. As for each research question, there in an input of raw data and an output of time 

stamps. 

For each data type, we have determined a method to automatically retrieve time stamps at 

which events of interest are predicted to have occurred. We start by using standard methods to 

pre-process each of the psychophysiological signals. We also present a novel method to create 

a time series of mouse movement data that represents how “normal” the shapes being generated 

by the mouse are.  

We then present a novel method to analyse time series data for significant peaks of operator 

response. This method circumvents issues with some of the methods in literature that require 

highly controlled environments or pre-labelled datasets in order to characterise signals. 
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Figure 4.33. shows the process of transforming the raw data into timestamps using the methods 

described in this chapter. The red boxes denote the parameters for each data types that are 

calibrated to each participant using the calibration data set. 

We also perform analysis on all of our classified data streams to determine the effect of latency 

on each channel. We discover that pupils have the fastest response time to the onset of an event 

of interest followed by the RMSSD of the ECG signal, thus we select the RMSSD as our chosen 

metric of HRV for this study. We also determine the latency for the mouse movement data. 

This latency study allows us to define custom windows, which are critical in the determination 

of whether an automatically generated time stamp agrees with the manually determined time 

stamps. The comparison of which will determine the answer to our research questions 

pertaining to the validity of this methodology of automatically data labelling. 

 

 

Figure 3.34. Flowchart demonstrating the transformation of raw data to time stamps. 
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In Figure 3.34.we show the transformation of raw data into time stamps. This is performed 

automatically using the methods outlined in this chapter. To assess the answer to our research 

questions we must also have a list of time stamps that represent the ground truth. This chapter 

also details how the ground truth is obtained. For the purposes of this research, the ground truth 

was obtained manually by annotating the data using definitions of each of the events of interest. 

These timestamps take a considerable amount of time and effort to obtain and, as discussed, 

may still not be totally accurate, but for our purposes, are considered to be the benchmark 

standard by which we will compare our automatically determined time stamps. We will assess 

the precision and recall capabilities of our system in the next chapter. 
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5.  Results and Discussion 

 

5.1.  Introduction 

In the previous chapters, we have generated a set of research questions by assessing the state 

of literature in this field. We then developed a methodology to generate data that would enable 

us to answer our research questions. We then created a set of analysis methods to transform the 

data gathered from the experimental trials into time stamps. We also developed a methodology 

for manually acquiring ground truth time stamps from video footage of our trials and gathered 

this data to compare our automatically generated timestamps against. 

In this chapter, we will assess the accuracy of our automatic labelling system. We will assess 

this by comparing the automatically generated timestamps against the ground truth. This 

accuracy will be determined by way of precision and recall. Recall representing the proportion 

of potential correct timestamps found and precision representing the proportion of events that 

were correctly identified.  

We first outline the resulting data from the experimental trials, detailing the nature of the data 

acquired and the participants used in the study.  

We then present the results of the analysis. The results are structured by answering each of our 

research questions separately. For each question, we examine the recall and precision results 

over several sub sets of data. We first examine the results gathered for the first validation set. 

We then assess results for the second validation set. We then assess the results when averaged 

over the population for the first validation set. We then assess the precision and recall results 

on a per event basis to determine if different event types were more or less likely to be classified 

by our analysis method. We then summarise the results in the discussion. 
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5.2.  Research Question 1: Can pupil dilation data be used to identify the 

times at which events of interest occur in an operator scenario? 

Our first research question focuses on the viability of pupillometry data as an automated 

annotation tool for unlabelled datasets. Our results were tuned on a training set of data then 

tested on 2 different sets of validating data. We will present the results of each participant in 

terms of recall and precision. Given that our time series has no mechanism for defining true 

negative classification results, a standard confusion matrix will yield little value. 

 

5.2.1. First Validation Set 

The first validation set contains data taken from the second half of the first experiment. This 

data represents 10 minutes of operator work. The 10-minute section contained four EoI that 

were to be correctly classified from pupil data. Though a useful measure, number of correct 

classifications does also include false positives, making recall and precision more valuable 

measures of the quality of our classifier. Table 5.1. contains the results of the classification 

recall and precision for all participants in validation set one. 
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Table 5.1 Table of Recall and Precision Results For Pupil Data Classifier on Validation Set 1. 

 

 

We can see from these results an average recall of ~67%. We also see that 16 of the 30 

participants recall was at least 75%; with seven of those demonstrating perfect recall. We also 

see and average precision of 57% across all participants, with 14 participants scoring above 

50% precision.   

 

Participant Recall (%) Precision (%)

1 50.0% 50.0%

2 50.0% 33.3%

3 50.0% 50.0%

4 50.0% 50.0%

5 50.0% 50.0%

6 50.0% 50.0%

7 100.0% 80.0%

8 50.0% 40.0%

9 50.0% 40.0%

10 100.0% 80.0%

11 75.0% 60.0%

12 75.0% 60.0%

13 100.0% 100.0%

14 50.0% 28.6%

15 75.0% 75.0%

16 75.0% 60.0%

17 100.0% 57.1%

18 50.0% 50.0%

19 75.0% 100.0%

20 50.0% 50.0%

21 50.0% 33.3%

22 50.0% 66.7%

23 75.0% 60.0%

24 25.0% 20.0%

25 100.0% 80.0%

26 100.0% 66.7%

27 75.0% 50.0%

28 100.0% 80.0%

29 75.0% 50.0%

30 75.0% 42.9%

Average: 67% 57%
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We can make two key observations at this stage: 

1. All participants correctly classified at least one EoI. 

2. There is a subset of particular individuals that scored higher than average recall and 

precision results.  

We will now examine a few representative samples from these results. 

 

 

Figure 5.1. Results From Participant 13 - an example of perfect recall and precision. 

 

Figure 5.1 is an example of a participant that was classified with perfect recall and 

classification. We note that for long-form events (traffic surge and cloud cover – on the figure: 

1st and 3rd shaded areas), the pupil response is longer in terms of increased amplitude than those 

of the short term events (2nd and 4th). The long-form events also appear to have a preceding 

amplitude increase before the events actually started. A number of potential reasons for this 

can be considered: 

- as a natural side-effect of the averaging filter that was first applied to the data. 

- the participant responding to event that were not pre-programmed into the simulator, for 

example accidentally creating a situation in which two aircraft nearly collide, requiring 
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intervention and increasing cognitive load and therefore pupil diameter. We will discuss in 

depth these potential scenarios later in the chapter. 

 

 

Figure 5.2.  Results From Participant 4 - an example of 50% recall and precision. 

 

In  Figure 5.2. we show an example of a participant achieving 50% recall and 50% precision. 

This particular individual shares these results with six other participants. We see from the 

results that the long-form events are correctly classified, we can also visually confirm a 

significant amplitude increase during these events. Neither of the shorter term events were 

correctly classified; the first speeding event (2nd highlighted section), seems to show no 

significant pupil response whereas the second speeding event (4th highlighted section) does 

show a response that was misclassified by our algorithm (false negative). The two false 

positives here could be as a result of other events not pre-programmed into the simulator – we 

will discuss this further in the chapter. 



127 
 

Joshua Eadie                                                                         EngD 
Thesis  

 

Figure 5.3. Results From Participant 24 - an example of 25% recall and 20% precision. 

 

Figure 5.3. shows an example of a participant with poor recall and precision: 25% and 20% 

respectively; by these, measures, the worst performing of all participants in this validation  set. 

Four of the five events detected by our method are false-positive, with one correct 

classification. It should be noted here that the event correctly classified was the long-form 

traffic surge; it appears so far in the investigation, that these events are more likely to be 

detected correctly than the short form events which we will discuss this later in the chapter. 

The four false positives are well outside of our latency windows, seemingly showing no 

relationship to the ground truth. Our reasoning for these events is again, down to potential 

events outside our pre-programmed EoI (discussed later). The presence of such a poor 

performing example shows a limitation of the methods used; being that if this particular 

operator’s data was used to classify a data set, it would have no practical use. 

 

5.2.2. Second Validation Set 

The second validation data poses a slightly different set of EoI, in that each participant faces 

the same set up of the simulator, but actions by the participant affect the timing of certain 
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events. Namely, the event non-responsive aircraft has a flexible timing between participants, 

as the definition of the ground truth is based on when it was deemed the participant noticed the 

non-responsive aircraft, rather than when the aircraft appeared as it is impossible to determine 

if it is responsive until the participant attempts to “contact” it, details of this labelling procedure 

were laid out in section 0. Our 10-minute section of data contains between four and eight events 

depending on the manner in which the participant played the simulator.  

 

Table 5.2. Results of Classifier on Pupil Data From Second Validation Set. 

 

Participant No. of Events Recall (%) Precision (%)

1 6 88% 100%

2 5 40% 67%

3 6 50% 33%

4 7 100% 88%

5 6 67% 57%

6 6 67% 80%

7 5 57% 67%

8 6 67% 57%

9 7 71% 56%

10 8 75% 86%

11 7 100% 86%

12 6 67% 50%

13 7 100% 100%

14 6 50% 100%

15 5 80% 80%

16 7 86% 86%

17 8 75% 75%

18 4 75% 33%

19 6 83% 83%

20 6 100% 55%

21 5 40% 67%

22 7 43% 75%

23 6 100% 67%

24 6 50% 100%

25 7 100% 88%

26 6 67% 80%

27 7 86% 75%

28 6 83% 83%

29 7 86% 86%

30 6 83% 100%

Average: 74% 75%
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For example, if a user never interacts with a non-contact aircraft, it will not be classed as an 

event in ground truth, therefore reducing the total number of events experienced. In table 5.2. 

we see the classification results of the pupil data from the second validation set. The second set 

shows an average recall of 74%, a 7% improvement on the first validation set. We also note a 

more significant 18% improvement in precision, from 57% to 75%. For this dataset, the pupil 

classification shows 90% of participants classifying at least 50% of the EoI.  

As we are currently assessing the results of individuals, it is also notable that the results of 

participant 13 had perfect recall and precision for both dataset 1 and 2. The results from 

participant can be seen in Figure 5.4. 

 

 

Figure 5.4. Classified pupil data for participant 13 from validation set 2. 

 

Given the varying precision and recall of the various participants, this provides some evidence 

to suggest that the method is more effective with certain individuals than others. There are 

innumerable inter-individual factors that can affect the psychophysiological response of 

different people. It requires a certain combination of factors to select an operator that will be 

best suited to this application, an area for further work. It could be a simple case of the 
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participant being more proficient at the task than others, assuming the only taxing element of 

the task for them being the EoI, whereas others could be applying more cognitive resources to 

the normal aspects of the simulation. As with the first validation set, we will also examine a 

representative choice of participants, an average example and a poor example. 

 

 

Figure 5.5. Classified pupil data from participant 17. 

 

In Figure 5.5. we see data from participant 17, with recall and precision of 75%. Here, as in the 

first data set, we see significant and sustained pupil dilation for the long-form events of traffic 

surge and cloud cover (red ground truth bars 3 & 5), which are correctly classified. We also 

note that the short-form speeding aircraft and non-contact aircraft (red ground truth bars 2 & 

4), are false-negatives, yet we do see a pupil response for these events. A lower threshold of 

peak prominence will have correctly classified these events, however, the threshold is set from 

the training data. We also note a false-positive classification at ~450 seconds; assuming 

response is correlated with events in the data, the event was not annotated as one of our ground 

truth EoI’s, we will discuss this further in the chapter.  
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The challenge posed by the ground truth of the non-contact aircraft becomes apparent towards 

the end of this data; the complex event appears to have stimulated two peaks of response, one 

peak for the moment when the participant realised the aircraft did not respond to first contact 

and a second for when they realised it would not respond to a second attempt. This complex 

response yielded two peaks, but only one event, in a practical application, it would be 

recognised that both these peaks referred to the same event, yet this method marks it as a 

misclassification, reducing the measured precision. 

 

 

Figure 5.6. Classified pupil data for participant 7 from validation set 2. 

 

The data in Figure 5.6. is from participant 7, with recall of 57% and precision of 67%. We note 

that, although only the first was correctly classified, both of our long-form events demonstrate 

a sustained pupil dilation increase. On multiple occasions for this participant we note a 

significant latency between event ground truth and peaks in pupil dilation; again multiple 

factors mean that it is not possible to state that these peaks are related to preceding events. 
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5.2.3. Results as a Population 

In this section we will examine the pupil results as a population, averaging over all participants. 

In an applied example, it is unlikely that population-level results will have any practical use, 

short of some very specific examples: these being situations in which multiple operators were 

working on the same incoming data or in control room situations that deal with highly regular 

temporal events. For example, air traffic control has a schedule that includes times of high 

traffic at regular intervals.  

Typically, psychophysiological data is examined over populations over multiple trials, this is 

mainly for characterising the responses of human outputs and referring them back to a 

psychological process from a controlled stimulus. In practise, as we have seen from our 

exploratory discussion of the pupil data in the previous sections, on an individual basis, there 

is potential for individuals to not respond to particular events in the same fashion as other 

individuals. 

Given in our first validation dataset, the events of interest all occur at the same time across all 

participants, we examine the average pupil dilation data over all participants. We use the same 

analysis methods as applied to the individual participants, using the training data to optimise 

the parameters for the classifier.  

The pupil data is first normalised, a baseline pupil value was established for each participant 

by taking an average of the measurements within the first 15 seconds (in which no stimulus is 

presented, this is our resting pupil diameter), this baseline was then subtracted from all values 

for each participant. An average was then obtained by taking the mean value for each sample 

of data across the 30 participants. The result of which can be seen in Figure 5.7. 
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Figure 5.7. Averaged Pupil Data Across 30 participants. 

 

We then classify the data using our pupil data method, the results of which can be seen in 

Figure 5.8. 

 

Figure 5.8. Classified pupil data across population of 30 participants. 

 

The results for the population were recall and precision of 100%. The graphical representation 

in Figure 5.8. shows clear responses for each of our events of interest. It can be said that 

averaging the results across the participants improves the classification recall and precision. 
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load for a sustained period, this result is to be expected. We see that the classification 

performance carries over to the more complex second validation set, showing the robustness 

of the pupil classifier for this type of event.  

We noted in our exploratory examples and the population average results the significant 

response peaks associated with the traffic surge event. This ubiquitous response was expected 

in the first validation set; given the structure of the event sequence ensured the event was 

followed and preceded by periods of normality. The results from the second validation set show 

that this response can be expected even when the event can precede or follow other events of 

interest by a comparatively narrow margin that may have affected the nature of the pupil 

response, given its latency and the more complex nature of the second validation set. 

 

Cloud Cover Event 

The cloud cover event has the second best classification performance for the pupil data. This 

event, like the traffic surge, represents a cognitive load stimulus sustained over a longer period 

of time compared to the short-form events. This period of time is however, slightly shorter than 

that of the traffic surge (~15 seconds shorter). This shortened time may be responsible for the 

slight (~13.5%) drop in classification performance when compared to the traffic surge event, 

signifying that there is a relationship between the length of the EoI and the likelihood of 

classification.  

The nature of the event is also different to that of the traffic surge. The traffic surge immediately 

increases the difficulty of the task and sustains that change of difficulty for the duration of the 

event. The cloud cover event however, provides an obstacle that requires the participant to 

change their strategy. The cognitive load increase for this task results mainly from the 

realisation that the strategy requires changing, then implementing the change; once this has 

been done, the difficulty of the event tails off.  
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This of course also depends on the ability of the participant to recognise and achieve this, which 

accounts for the inter-individual differences in the classification performance, which will, 

always pose an obstacle for psychophysiological measures to classify events. We also see a 

slight drop in classification performance between validation sets 1 and 2, which is attributable 

to the more complex and less regular nature of the second validation set. 

 

Speeding Aircraft Event 

The speeding aircraft is the first of our two short-form events. Lasting on average ~10 seconds, 

it is expected to quickly spike an increase in the user’s cognitive load as they attempt to handle 

the event before an aircraft collision occurs. This event, though short, does break the normal 

behaviour of the simulator space. It is expected that the participant is to quickly comprehend 

the event, and make inputs to mitigate any problems that could occur. We note a significant 

drop in classification performance for the speeding aircraft event to 43%. There are notable 

individual examples that responded very clearly to the speeding event as we saw in the 

exploratory discussion, who achieved 100% recall and precision.  

The event being short in this fashion may lead to it not being classified for the following 

reasons; the response stimulated from the event is not significant enough to be separated from 

noise in the signal, in which case, the optimisation from the training data will have increased 

the classification threshold above these responses to improve the precision of the results rather 

than including all responses of this size. Another reason may be that the event was simply too 

short to stimulate a response at all, which we noted in a few examples. The reason for this could 

be down to the cognition process of the individual or that the participant did not deem the event 

to be different enough from the normal procedure to yield a response. 

We do see however, in the population average, that both speeding aircraft events are correctly 

classified and visually show significant responses above noise. This favours our first 
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explanation of the poor performance by demonstrating that, on average, participants did 

respond with sufficient amplitude to differentiate the average to a clear response, just not 

enough on an individual basis. 

 

Non-Responsive Aircraft 

The non-responsive aircraft is the second short-form event, the event represents a significantly 

more complex cognitive event that is difficult to handle and also difficult to manually identify 

after the fact from video analysis. The event manifests as an aircraft entering the screen that 

visually looks no different from any other aircraft object. The only difference is that it cannot 

be controlled by the participant, a fact they are unaware of until they attempt to move it. This 

unyielding aircraft continues to move across the screen at the same speed and heading until it 

exits on the other side of the screen. The participant must attempt to move the aircraft and 

realise that it will not respond to their input, at which point they must make provisions to ensure 

the aircraft does not collide with other aircrafts currently on screen.  

The moment at which this realisation takes place is expected to be the moment at which the 

cognitive load of the participant begins to rise, culminating when the participant has made 

necessary operational changes to compensate for the unresponsive aircraft.  This increase in 

event complexity may be the reason for its higher classification performance (78%). The time 

taken to formulate a solution to the problem posed by the event may be longer, this may provide 

the sustained period of cognitive load increase required to consistently increase the response 

of the pupil beyond that of noise. 

 

5.2.5.  Summary 

We have presented results in this subsection to address our research question: can pupil dilation 

data be used to identify EoI in an operator scenario? 
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The general performance of our pupil data classifier shows a recall of 67% with a precision of 

57% for our first dataset. The training data used to develop the pupil classifier came from the 

first half of the 20 minute first experiment. We expect, therefore that this will yield greater 

recall and precision results for the 1st validation set, and less so in the 2nd validation set. 

However, the more complex second validation set, that used training data from the first 

experiment, outperformed the results for the first validation set in both recall and precision, 

significantly so in precision; yielding an 18% increase in correct event detection. 

Once averaged, the results from the first validation set are very clear; demonstrating 100% 

recall and precision. Showing that the average pupil responses across a population are clearly 

capable of identifying events of interest in complex control datasets. As discussed before 

however, in practise, a population experiencing an identical set of events in the temporal 

domain is unlikely. Across the averages of the participants however, there does exist a set of 

individuals whose data yielded perfect or very high precision and recall and there also existed 

those that pulled the average further down. Future work perhaps exists in the identification and 

experimentation with those individuals whose pupil responses appear to be sensitive to 

abnormal events in complex data, then using their results as a training set. We note that these 

high-performing individuals exist across both datasets when regarding pupil data classification. 

On an individual event basis, we note that there is a skew toward correct classification of 

longer-form events, the reasons for which we discussed above. We see an average correct 

classification rate of 92% for long-form events compared to 63% average for short-form events. 

This potentially rules out this method for identifying events of a short-form nature, depending 

on the acceptable false-positive and false-negative rates for a particular application. Further 

work on this could involve using more classification features to better identify the short term 

events, using the breadth of the response as well as the prominence to delineate between short 

and long-form event types. 



139 
 

Joshua Eadie                                                                         EngD 
Thesis  

In conclusion, the answer to our research question is that pupil data classification shows 

promise as a classifier for retrieving events of interest from complex control task datasets. 

Specifically, when certain individuals are used as the operator and long-form events are the 

events of interest, it can be said that according to these findings, pupil data can be used as a 

classifier to retrieve these events reliably. 

 

5.3.  Research Question 2: Can HRV data be used to identify the times at 

which events of interest occur in an operator scenario? 

As discuss in the previous section, we will now examine the results of classifying the HRV 

data on both our validation sets. We will first examine the classification results from the first 

validation set, examine a cross-section of individual participant classification performance and 

then examine the second validation set in similar fashion. We will then examine the 

performance of the classifier with respect to different event types. Finally, we will assess the 

data over the population rather than individuals. 

 

5.3.1.  First Validation Set 

Our first validation set results are presented in Table 5.4., with average recall and precision of 

64% and 53%, these are very similar to the results of the pupil classifier. 
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Table 5.4. Classification Results For RMSSD HRV Metric For Validation Set 1. 

 

 

 

 

 

 

Participant Recall (%) Precision (%)

1 75% 100%

2 50% 50%

3 75% 60%

4 25% 50%

5 50% 50%

6 100% 80%

7 50% 40%

8 50% 33%

9 75% 60%

10 75% 50%

11 75% 43%

12 75% 33%

13 100% 67%

14 50% 50%

15 75% 75%

16 75% 38%

17 75% 38%

18 50% 50%

19 50% 67%

20 75% 100%

21 0% 0%

22 75% 50%

23 75% 50%

24 50% 50%

25 100% 57%

26 100% 67%

27 50% 50%

28 50% 50%

29 75% 60%

30 25% 20%

Average: 64% 53%

RMSSD



141 
 

Joshua Eadie                                                                         EngD 
Thesis  

We will now examine a graphical result of an individual results: 

 

 

Figure 5.9. Classified HRV data from participant 6 showing perfect recall and 80% precision. 

 

As with the pupil data, we note in Figure 5.9. that the long-form (1st and 3rd red bars) events 

stimulate a wider peak response than the short-form (2nd an 3rd red bars) events. We also note 

a false positive result at toward the end of the data – the reason for which may have been 

stimulated by a non-programmed event. 

 

5.3.2.  Second Validation Set 

As discuss previously, the second validation set contains a greater number of EoI and also 

events that are more complex to identify. Given the work of the literature, we hypothesise that 

the slow reactive rate of HRV measures would be less precise when a denser set of events are 

presented in the same time frame. The classification results from the second validation set are 

presented in Table 5.5. 
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Table 5.5. Classification Results from HRV data for data set 2. 

 

 

As we hypothesised, both the recall and precision of the results are less than the first data set. 

This is most likely due to the increased number of events in the same time frame as dataset 1.  

Participant No. of Events Recall (%) Precision (%)

1 6 0% 0%

2 5 80% 44%

3 6 14% 33%

4 7 43% 43%

5 6 67% 67%

6 6 17% 20%

7 5 57% 67%

8 6 50% 50%

9 7 71% 36%

10 8 38% 60%

11 7 67% 80%

12 6 100% 18%

13 7 50% 60%

14 6 33% 50%

15 5 40% 33%

16 7 29% 50%

17 8 38% 50%

18 4 0% 0%

19 6 50% 75%

20 6 33% 40%

21 5 60% 50%

22 7 29% 40%

23 6 33% 29%

24 6 33% 33%

25 7 50% 30%

26 6 0% 0%

27 7 57% 67%

28 6 67% 36%

29 7 43% 60%

30 6 50% 60%

Average: 43% 43%
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Figure 5.10. Classified HRV data for participant 8 from the second validation set. 

 

We see in Figure 5.10. an example of a participants data, the 2 long-form events (red bars 2 & 

4) show clear responses in the HRV data, yet the short-form events appear to have no 

significant response in the HRV data.  

 

 

Figure 5.11. Classified HRV data for participant 11 from the second validation set. 

 

In the example result shown in Figure 5.11 however, we see a correctly classified response to 

a short-term (non-responsive aircraft) event (3rd red bar). This particular example however, 
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shows that the participant took longer to recognise that this was a non-contact aircraft, thus 

increasing the length of the ground truth of the event. When compared against the length of the 

same event in Figure 5.10., we see that the event is longer in the second example, perhaps this 

increased length of event is enough to trigger a response that can be classified.  

This does appear to favour a conclusion that this measure is simply not appropriate for 

identifying short term events consistently which we shall discuss in the next section. It should 

also be noted that the two long-form events in Figure 5.11. trigger a significant response and 

are correctly classified. We will examine the sensitivity of this metric to event types in a further 

section. 

 

5.3.3.  Results as a Population 

As done for the pupil data, we will now examine the classification results when the HRV data 

is averaged over the population. The same averaging procedure is applied; the results of 

which can be seen in Figure 5.12. 

 

Figure 5.12. Averaged HRV Data over population of 30 participants for validation set 1. 
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We see in these results, as we did in the pupil results, that a skew exists in favour of correctly 

classifying the long-form events. In 5.3.4. we discuss the specifics of the events in regards to 

our predictions regarding their potential cognitive response.  

In these HRV results we see a clear relationship between classifier performance and long-form 

events. HRV typically is rarely used to examine stimuli that last less than 5 minutes, it is 

therefore intuitive that we see a drop off of classification performance for our short-form events 

(being roughly 10 seconds). We note that the performance is also decreased in the second set, 

given the second data sets increased complexity, this is to be expected.  

Though the relationship of better performance for longer events holds in the second validation 

set, there is a more significant loss in classification performance for speeding aircrafts. This is 

most likely due to the denser event sequence, with HRV response requiring a longer recovery 

time between events; this makes a distinctive peak a short period of time less likely if a new 

event of interest starts soon after another. 

 

5.4.5.  Summary 

We have presented results in this subsection to address our research question: can ECG data be 

used to identify EoI in an operator scenario? Our classification results from validation set 1 and 

2 showed that the HRV classifier was capable of recall and precision of 64% and 53% 

respectively for the first validation set and 43% recall and precision for the second set. The 

HRV measure certainly shows less precision as a classifier than pupil dilation. In literature, the 

use of HRV has typically been on events lasting ~5mins and not for short term events such as 

the ones presented here.  

Due to the slower response times of HRV, the measure may not be so responsive to short term 

events. This is confirmed when our data is averaged across the population of participants. We 

note that the long-form events yield a clear and precise response in HRV, yet the lack of 
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precision in the smaller events is problematic for the averaged results as it produces more false-

positives, whereas pupil response average increased the recall and precision to 100%. The 

results at this stage show the HRV measure as a useful metric for recalling the long-form 

events. 

Given this, the results from the event-by-event analysis confirm the value of the measure at 

classifying long-form events, showing an average recall of 82% for long-form events and 30% 

recall for short-form events. These show the potential for HRV as a classifier for the long form 

events but provides strong evidence that the metric has no practical value when classifying 

short-term events as the low recall percentage is made less useful by the poor precision scores. 

 

5.4.  Research Question 3: Can mouse movement data be used to identify 

the times at which events of interest occur in an operator scenario? 

In this section we present and discuss the results of the mouse metric classifiers on the first and 

second validation data sets. We will first examine the results across all participants for the first 

data set, examine some graphical examples and discuss the output. We will then examine the 

results for the second validation data set. The results for the first data set at population level 

shall then be presented and discussed. The results for the mouse metrics classifications 

sensitivity to certain events will then be discussed. Finally, we shall discuss the constellation 

of results we have obtained in order to answer our research question. 

 

5.4.1.  First Validation Set 

We present the classification recall and precision results for all participants across validation 

set 1 in Table 5.7.  
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Table 5.7. Classification results across all participant for first validation set.

 

 

Our hypothesis for the mouse speed metric is that EoI will stimulate faster input responses 

from the operator. We see an average recall and precision of 76% and 75% respectively for 

the mouse speed metric. We see that 80% of the participant’s classifiers scored at least 75% 

recall, with two individuals scoring perfect recall and precision.  

Participant Recall (%) Precision (%) Recall (%) Precision (%)

1 50% 67% 50% 67%

2 75% 100% 100% 100%

3 100% 50% 75% 75%

4 75% 75% 50% 67%

5 75% 75% 50% 100%

6 75% 60% 25% 50%

7 100% 100% 50% 50%

8 100% 67% 50% 100%

9 75% 50% 50% 67%

10 75% 100% 75% 60%

11 75% 38% 50% 100%

12 75% 100% 50% 100%

13 75% 100% 25% 33%

14 50% 100% 25% 50%

15 75% 60% 25% 20%

16 25% 13% 25% 33%

17 100% 67% 50% 67%

18 75% 75% 50% 50%

19 100% 80% 50% 100%

20 75% 100% 50% 67%

21 100% 80% 50% 67%

22 75% 75% 50% 100%

23 50% 50% 50% 67%

24 75% 75% 50% 100%

25 75% 75% 75% 100%

26 75% 100% 50% 67%

27 100% 100% 50% 67%

28 50% 100% 50% 50%

29 75% 75% 50% 100%

30 50% 50% 50% 100%

Average: 75% 75% 50% 72%

Mouse Speed Metric Mouse Gesture Metric
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Figure 5.14. Classified mouse speed metric from participant 7 for  

validation dataset 1 showing perfect recall and precision 

 

We see in Figure 5.14 the graphical display of the results from participant 7; showing perfect 

recall and precision. We also note here the significant response from the two long-form events 

(red bars 2 & 4), which, intuitively, agrees with the hypothesis in that a sustained period of 

abnormality would stimulate an increased period of faster mouse activity. This example 

represents the ideal result that fits our hypothesis.  

 

Figure 5.15. Classified mouse speed metric from participant 18 for 

validation dataset 1 showing recall and precision of 75%. 
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Figure 5.15. shows an example participant that scored 75% recall and precision. Here we note 

the same significant, correctly classified responses to the long-form events (red bars 2 & 4). 

The remaining events seem indistinguishable from noise however, with a slightly more 

prominent showing our false positive result. This example demonstrates that this metric appears 

more sensitive than long-form EoI – we shall discuss this later within the chapter. 

 

 

Figure 5.16. Classified mouse speed metric from participant 16 for validation dataset 1 

showing recall and precision of 25% and 13% respectively. 

 

Figure 5.16. shows a poor performing participant’s data. Though we see two distinct periods 

of high mouse speed, only the first co-occurs with our long-form EoI with the second 

significant peak lagging significantly behind the stimulus EoI to be a false-positive. Five other 

false positives also have no relationship with other EoI. 
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Figure 5.17. Classified mouse gesture normality metric for participant 

2 showing perfect recall and precision. 

 

In Figure 5.17. we see an example of perfect recall and precision for dataset one. This example 

represents the upper envelope of the performance of this metric when paired with an 

appropriate individual. We note in this metric also, that there is a relationship between the size 

of the response and the length of the EoI, with the long-form events (red bars 1 & 3) showing 

the widest response peaks. Though the only participant’s data to show perfect recall and 

precision, it does show the potential for the measure to be an effective tool in finding EoI. 

 

 

Figure 5.18. Classified mouse gesture normality metric for participant 18 

showing 50 % recall and precision. 
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In Figure 5.18. we see an example of mouse gesture data that had 50% recall and precision. 

We note the two most significant responses co-occur with our 2 long form events (red bars 1 

& 3), but in this example we see potential peaks relating to the short-form events (red bars 2 & 

4). However, the first is both a false negative, sitting underneath the threshold obtained in the 

training set and also lagging behind the stimulus. The second short-form event appears to be in 

a peak of abnormal mouse gesture data, but the zenith lagging too far behind for a positive 

classification, but showing that with potentially a greater training set, that this participant’s 

data fits with our hypothesis as well and our ideal example in Figure 5.17. 

 

 

Figure 5.19. Classified mouse gesture normality metric for 

participant 16 showing 25 % recall and 33% precision. 

 

In Figure 5.19 we see one of the poorer examples of the gesture normality metric in terms of 

classification performance, scoring 25% recall and 33% precision. We see again, that even in 

this poor example, two significant peaks near our long-form events. Though in this case the 

second large peak precedes the event, leading to a false-positive, the reason for this is unknown 

but will be discussed further in the chapter. The other 3 false-positives equally appear to have 

no relationship to the pre-programmed EoI. 
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5.2.2.  Second Validation Set 

Our second validation set contains more EoI in the ten-minute period. It also contains a 

differing variety and order of events. This increased complexity and density will provide a 

challenge for our mouse gesture normality metric. We present the results of the classifier in 

table 5.8. 

Table 5.8. Classification results for mouse metrics across all participants in second validation set. 

 

 

Participant No. of Events Recall (%) Precision (%) Recall (%) Precision (%)

1 6 67% 100% 33% 100%

2 5 40% 67% 60% 30%

3 7 71% 83% 43% 50%

4 7 71% 71% 71% 100%

5 6 83% 63% 50% 60%

6 5 60% 75% 60% 33%

7 7 71% 71% 29% 100%

8 6 100% 75% 50% 60%

9 7 43% 60% 43% 50%

10 8 75% 67% 13% 100%

11 6 100% 60% 33% 100%

12 6 83% 71% 33% 50%

13 6 67% 67% 83% 83%

14 6 83% 83% 33% 67%

15 5 60% 100% 60% 33%

16 7 86% 55% 43% 60%

17 8 88% 88% 50% 57%

18 4 50% 33% 75% 33%

19 6 67% 44% 33% 50%

20 6 83% 71% 17% 33%

21 5 60% 60% 40% 67%

22 7 43% 75% 29% 67%

23 7 57% 100% 67% 80%

24 6 17% 25% 17% 100%

25 6 83% 63% 50% 75%

26 7 71% 56% 29% 67%

27 7 86% 100% 43% 50%

28 6 83% 83% 33% 40%

29 7 71% 83% 43% 38%

30 6 67% 44% 33% 50%

Average: 70% 70% 43% 63%

Mouse Speed Metric Mouse Gesture Metric
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We can see from the results in Table 5.8 that there is a drop in performance for our mouse 

metrics when applied to the more complex second validation set. The speed metric shows 70% 

recall and precision compared to the 75% recorded for the first validation set and the gesture 

metric shows recall and precision of 43% and 63% respectively. Considering the added 

complexities involved in the second validation set, this could be anticipated; we will examine 

a cross-section of individuals and discuss the outcomes further. 

 

 

Figure 5.20. Classified mouse speed data from participant 8 for the second 

validation set showing perfect recall and 75% precision. 

 

In the example in Figure 5.20. is from participant 8, with perfect recall and precision of 75%. 

This is our ideal participant from this metric in this data set. We see the characteristic large 

responses in speed for the long-form events (red bars 2 & 4). We also see all four of the short-

form events correctly classified. If these peaks do relate to abnormal simulator situations, the 

false-positives are not abnormal events that were pre-programed into the simulator, again, we 

will discuss these later in the chapter. 
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Figure 5.21. Classified mouse speed data from participant 23 for the second  

validation set, demonstrating 57% recall and perfect precision. 

 

The example in Figure 5.21. shows a participant that had a greater number of EoI than the 

example in Figure 5.20, achieving recall of 57% and perfect precision. We note here the same 

characteristic larger responses for the long-form events (red bars 3 & 5). We also note for two 

of the short-form event (red bars 2 & 4) there is some noticeable response that would be 

classified with a lower threshold, an example of where potentially more training data would 

improve the results for this individual. This data demonstrates that there is potential for this 

metric to perform better than the recall results show. 
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Figure 5.22. Classified mouse speed data from participant 24 for the 

second validation set, demonstrating 17% recall and perfect precision. 
 

The example in Figure 5.22. is the poorest performing individual for this metric with recall of 

57% and precision of 25%. This interesting example demonstrates again that the training data 

provided an inadequate threshold for responses; we can see responses for events 4, 5 and 6 that 

were false-negatives. We also note a lack of significant peaks around our long-form events. In 

this particular example, the non-contact aircraft (red bar 5) appears to have caused a significant 

and delayed response for the participant, a potential explanation may be that, in dealing with 

the non-contact aircraft, a significant queue of incoming aircraft built up and then had to be 

subsequently dealt with very quickly, stimulating the significant and delay response in this 

data. This raises potential further work on different methods for assessing methods for correct 

classifications, we shall discuss this in further sections. 
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Figure 5.23. Classified mouse gesture data for participant 4 from validation set 2. 

 

Our overall results for the mouse gesture normality metric showed a 7% decrease in recall and 

11% reduction in precision than our first validation set. We see an ideal example from the 

second validation set in Figure 5.23, showing recall of 71% and perfect precision. We note the 

typical large response for the first long-form event (3rd red bar) but no such response for the 

second long-form event (5th red bar). We do otherwise see clear responses that co-occur with 

our EoI, with the exception of the first two events. 

 

 

Figure 5.24. Classified mouse gesture data for participant 5 from validation set 2. 
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Figure 5.24. shows the data from participant 5, which scored a recall of 50% and precision of 

60%. We note in this average example a significant response for the first long-form event (red 

bar 2), the second long-form event does yield a large response but not to the same extent as the 

first. We see no further relationship between the two false positives and the EoI. 

 

 

Figure 5.25. Classified mouse gesture data for participant 19 from validation set 2. 

 

Figure 5.25. shows a poor performing example participant, with recall of 33% and precision of 

50%. We note a significant response for the second long-form event (4th red bar). The 

remaining events show no relationship to the EoI save the short-form event (3rd red bar); this 

appears to be the summit of a large response that is lagging behind the first long-form event. 

 

5.4.3.  Results as a population 

As with the pupil and HRV data, we will now examine the data as a population, first for the 

mouse speed metric, then for the gesture normality metric. For the speed metric, the data is 

per-sample averaged over the 30 participants (see Figure 5.26). 
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Figure 5.26. Mouse speed data averaged over 30 participants for validation set 1. 

 

We can see the characteristic large response peaks are pronounced in the averaged data. 

 

Figure 5.27. Classified Mouse Speed data across averaged data 

from 30 participants for validation set 1. 

 

Figure 5.27. shows the classification results for the averaged data. Though we do see small 

peaks occurring at the short-form events, they are false-negatives and the averaged data yields 

a recall and precision of 50%. The metric at a population level is clearly more sensitive to the 

long-form events. 
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Figure 5.28. Averaged mouse gesture data over the population of 30 

participants for validation data set 1. 

 

In Figure 5.28 we see the mouse gesture data averaged over the 30 participants using the 

same, per sample mean approach. 

 

 

Figure 5.29.  Classified mouse gesture data from population average 

over 30 participants from validation data set 1. 

 

The results in Figure 5.29 show the mouse gesture normality metric yields recall and precision 

of 50% for the averaged population. The results here are very similar to the mouse speed metric 
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average, showing that, on average, mouse-based metrics appear more sensitive to the long-

form EoI. 

 

5.4.4  Event Type Analysis 

As with the pupil and HRV metrics, we will assess the individual event performance of our 

mouse metric classifiers. The results of which can be seen in Table 5.9. 

 

Table 5.9. Mouse speed and mouse gesture classifier recall results across 

individual event types for validation set 1 & 2 

 

 

We note that, as with the other metrics, the mouse speed and gesture metrics have a far higher 

average recall percentage for long-form events.  

 

Traffic Surge 

We see that the recall percentage for this event is near 100% for the mouse speed metric. This 

fits intuitively with the nature of the event, as the constant influx of aircraft at a faster rate will 

require, on average, faster movements.  

The recall percentage for the mouse gesture metric is also very high for the first validation set 

(100%), yet falls to 67% in the second validation set. One reason for this may be due to the 

greater number of events of interest and the more complex events in the second validation set, 

leading to a broader range of differing mouse gestures, some of which would not have been 

seen in the training data. It is likely that a more appropriate training set is required to improve 

the recall of this metric. 

Testing Set Traffic Surge Cloud Cover Speeding Aircraft Non-Responsive Aircraft

One 97% 97% 55% n/a

Two 100% 87% 42% 69%

Testing Set Traffic Surge Cloud Cover Speeding Aircraft Non-Responsive Aircraft

One 100% 83% 8% n/a

Two 67% 67% 20% 39%

Mouse 

Speed 

Classifier

Mouse 

Gesture 

Classifier
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Cloud Cover 

The recall for the speed metric for validation set one is 97% for the cloud cover event, this 

recall falls slightly for the second validation set, in which 87% is achieved. This result is also 

expected, as the long-form nature of the cloud cover event requires the participant to input 

mouse actions quickly to mitigate the obscuring effects of the cloud.  

The mouse gesture recall for the first validation set is 83% falling to 67% for the second 

validation set. Again, for this long-form events, the higher recall results are expected, due to 

the sustained nature of abnormal gestures required to mitigate the cloud interference that occurs 

only once throughout the ten-minute simulator run, making the set of gestures associated with 

it relatively abnormal by comparison to those of normal procedure. Given the second validation 

set has a larger number of event of interest, it is reasonable to hypothesize that a greater number 

of abnormal gestures will be required, thus slightly reduce the extent to which the gestures 

during the cloud cover event in the second validation set are abnormal, slightly reducing the 

recall percentage. 

 

Speeding Aircraft 

We observe a reduction in recall percentage for the short-form events in the mouse speed 

metric. The operator is required to react quickly to a speeding aircraft to bring it under control, 

resulting in a peak on our mouse speed metric. The lower recall percentage compared to our 

long-form events may be explained by the short-term nature of this response; the increase of 

speed to control the speeding aircraft may only be for a fraction of a second, not enough to 

register a prominent enough peak. For those correctly classified, the knock-on effect of dealing 

with this abnormal aircraft may have resulted in the participant increasing the average speed of 

input to compensate for time lost dealing with the errant craft. 

The action required to handle a speeding aircraft in an ideal fashion, needs only a single gesture. 

This single gesture would have to be sufficiently different in shape to normal operating gestures 
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in order to be classified correctly. This may explain the weak performance of the gesture 

classifier of 8% recall for the first validation set and 20% for the second.  

 

Non-Responsive Aircraft 

The slight improvement in performance of the mouse speed classifier may be as a result of the 

complex nature of the non-responsive aircraft event. The period between the participant 

realising the aircraft cannot be controlled and inputting mitigating actions to compensate can 

be relatively frenetic, which is translated in this case into increased average speed. The lower 

recall percentage by comparison to the long-form events may be due this period of increased 

speed lagging too far behind the event to be correctly classified within the allowed latency 

period. 

The same reasoning can be applied to the mouse gesture metric which has a recall percentage 

of 39%. The abnormal gestures required to handle the knock-on effects of the non-responsive 

aircraft may have produced a peak that lags behind the allowed latency window. 

 

5.4.5.  Summary 

We have presented results in this subsection to address our research question: can mouse 

movement data be used to identify EoI in an operator scenario? 

The mouse speed metric we have used for a classifier in this work demonstrates results 

comparable to our pupil data, outperforming the average recall and precision pupil classifier 

results for the first validation set and returning classification recall and precision of near 100% 

for the long-form events in the first validation set. These results carry over to our more complex 

second validation set, returning average recall and classification of 100% and 87% 

respectively. This demonstrates the value of this metric in isolating long-form events of 

interest. We also see recall results averaging 55% across our short-form events. The metric 



164 
 

Joshua Eadie                                                                         EngD 
Thesis  

appears less sensitive to these shorter term events; further work here may involve utilising a 

broader range of mouse metrics to identify a classifier that is more sensitive to these events. 

We also present a novel mouse gesture normality metric that returns recall of 50% and precision 

of 72% for our first dataset and recall of 43% and precision of 63% for our second set. The 

metric is clearly more sensitive to the long-form events, yielding an average recall of 79% for 

long-form events and 22% for short form. The metric is widely applicable to different scenarios 

due to the ubiquitous use of a mouse in control situations.  

It should be mentioned that we expect greater classification results for this particular scenario 

given the intricately understood parameters of the EoI. Increase in mouse speed is expected for 

all of our EoI, we equally expect abnormal mouse gestures for our EoI. The robustness of these 

measures across differing contexts requires further examination. 

 

5.5.  Discussion Summary 

This chapter has presented the classification results for three data streams: pupil diameter, ECG 

and mouse movements. The classifiers developed for each were applied to the validation data 

from two experiments. The recall, precision and F1 Score of each of the measures was 

evaluated, a summary of these averages can be seen in Figure 5.30. 
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Figure 5.30. Bar chart showing average percentage recall and precision 

across all 30 participants for each classifier for experiments 1 & 2. 

 

For the physiological measures, pupil diameter demonstrates better performance than HRV. 

For the first experiment, the pupil classifier demonstrated a 4.65% higher average F1 score, but 

for the second, more complex experiment, there is a drop off in HRV performance and slight 

improvement in pupil performance – leading to the pupils having a F1 score 32.29% greater 

than HRV. As discussed above, this result demonstrates that a higher density of short-form 

events reduces the value of HRV as a classifier of events of interest. The mouse speed classifier 

demonstrates the highest average F1 score over experiments 1 and 2. Though the mouse gesture 

classifier does report lower average F1 scores than the mouse speed measure, it does also report 

higher precision compared to its recall percentage; meaning that though it is less likely to 

classify all events, the events it does classify are more likely to be correct. 

Each measure was also assessed on an event-by event basis. The performance of each classifier 

was clearly more robust when recalling the long-form events (traffic surge and cloud cover), 

as these events create a situation that requires a longer period of increased cognitive load. It is 
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expected that the classifier will be more sensitive to these events as a sustained event is more 

likely to create an increase the average response from each measure, increasing the likelihood 

it will meet the parametric requirements for a correct classification. This type of event is also 

more similar in characteristic to those found in literature that have been demonstrated to 

generate significant responses in cognitive load. 

 

Figure 5.31. Percentage of correct classifications across each event. 

 

It can be seen in Figure 5.31. that pupil diameter and mouse speed are the highest performing 

classifiers across all events. The speeding aircraft event was the event that all measures were 

least sensitive to. This can be explained by a very short duration of the event that will reduce 

the classification performance for the opposite reason of that of the long-form events. Another 

reason for the poor performance for this event for the mouse metrics is that the event can be 

handled with relatively few changes to the mouse input. For example, if the participant can 

click and drag a path from the speeding aircraft immediately, this represents both a very short 

increase in average speed that will not generate a large enough response in that measure, it also 
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may represent a single very ‘normal’ gesture, which will not increase the gesture normality 

data stream significantly enough to be classified.  

Overall, these results demonstrate that physiological indices can be used to identify the times 

in which long-form events occurred from complex datasets. With average classification 

between 81.5% and 98.5% for the long form events. The results also demonstrate that the use 

of mouse speed as a classifier of long form events yields equally high performance of 92% - 

98.5%. Finally, the use of mouse gesture normality as a classifier of events of interest 

demonstrates less value for long-form events than the speed based metric (average 16% less 

correct classifications), but the metric may be more widely applicable over differing contexts 

given its design, though examination of this needs further work. 
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6. Conclusion 

6.1.  Summary 

The research objective for this EngD project was: To determine if the times at which events of 

interest occurred within complex control room scenarios can be retrieved without manual 

intervention from the operator. 

We present in this thesis a body of work to meet this aim, which we have achieved. 

The research was inspired by the nature of the data labelling problem. The data labelling 

problem inhibits many different applications of machine learning, but arguably this problem is 

more acute in control room scenarios where obtaining labelled data is made more difficult 

again. With a combination of a very small pool of available experts to label data and the 

inherent complexity of the data they operate within, standard manual labelling methods are 

very time intensive and expensive to use in this context. Labelling the data in real time also 

poses a significant challenge as the inherent nature of the domains of control room operators 

are inherently high-stress, high-stakes environments where the attention of the operator is 

critical.  

Our motivation for the research comes from the pairing of this problem to that of cognitive 

load. Cognitive overload is often cited as the main performance issue suffered by control room 

operators. Cognitive load increases when more mental resources are applied to a certain task. 

Cognitive load is most commonly measures subjectively through the posing of structured 

questionnaires such as the NASA Task Load Index, this allows researchers to characterise the 

difficulty of certain tasks with more dimensionality. Cognitive load can also be measured 

objectively by monitoring human psychophysiological signals. Cognitive stimuli can influence 
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the autonomic nervous system to unconsciously change outputs that can be measured such as 

pupil diameter and heart rate. 

We attempt to determine if these two fields: objective cognitive load and the control room data 

labelling problem, can be linked to create an automatic data labelling system by passively 

monitoring an operators psychophysiological output. We hypothesise that the events we wish 

to label will yield a change in psychophysiological output that differs from the baseline 

cognitive load of the regular tasks of the operator. We would then determine when events of 

interest occur through analysis of these signals post hoc, resultantly, further honing our research 

objective: 

To determine if the times at which events of interest occurred within complex control room 

scenarios can be retrieved without manual intervention from the operator by analysing their 

psychophysiological signals. 

We first assessed literature to determine the state of the art in this field. Through this, we 

discover that a wide variety of psychophysiological signals have been applied in control room 

scenarios to characterise task difficulty and operator performance limits. We also discover there 

is a gap in the literature for using these signals to determine the time at which events of interest 

occur. Often, the analysis techniques used on these signals requires precise knowledge of the 

time of an event in order to perform the characterisation. 

We then develop a methodology to achieve our research objective by designing a piece of 

research. We select two well-documented signals to measure; ECG and pupil diameter. We 

also decide to use mouse input metrics given the inherent simplicity of integrating this data in 

this context. We then generate 3 research questions: 

Can pupil dilation data be used to identify the times at which events of interest occur in an 

operator scenario? 
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Can HRV data be used to identify the times at which events of interest occur in an operator 

scenario? 

Can mouse movement data be used to identify the times at which events of interest occur in an 

operator scenario? 

We then develop a simulation environment that will enable us to test our hypothesis in a control 

room scenario. The environment contains 4 events of interest that are manually labelled to 

determine the recall and precision of our analysis. 

We then pre-process the data gathered from the experiments, creating definitions for ground 

truth labelling the video feed as a benchmark. We then select an HRV metric based of an 

accuracy and latency study, determining that the significant difference in latencies of each 

measure needs to be carefully considered when determining correct classifications. 

We then develop a novel time series analysis of the psychophysiological signals, modelling the 

series as peak responses as filtering the responses by tuning parameters of peak prominences 

and data smoothing. We also develop a novel technique for determining a time series of 

“normality” for mouse movements. 

 

6.2.  Main Findings 

Of the two physiological measures, the pupil diameter measure is the best performing metric 

at determining times of events of interest; yielding an average F1 score of 67% across both the 

simpler first experiment and the more complex 2nd experiment. Upon inspection of the inter-

event classification performance, we note that the pupil diameter correctly recalled 91.5% of 

the long form events as an average across all participants. We also demonstrate that the value 

of the pupil diameter metric as a correct classifier for the short-form events is less than that of 

the long-form, correctly recalling the speeding aircraft and non-contact aircraft events at 55% 

and 78% respectively. These results conclude that pupil diameter can successfully be used to 
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locate times of events of interest, with robust classification performance for long-form events 

and with significantly less value as a classifier for short-form events.  

As with the pupil diameter, the HRV measure demonstrates higher recall of the long-form 

events; showing an average correct classification of 82% for long for events compared to an 

average 29.5% for short form. These results conclude that HRV is not capable of consistently 

locating times of short-form events of interest but can be used as a tool to locate these times 

for long form events.  

The mouse speed measure demonstrates an average F1-score of 70.5% across the two 

experiments - the highest of all the measures. As with the other measures, we note a drop-off 

in classification performance between the long and short-form events (from an average of 95% 

to 58.5%). We can conclude that the mouse speed measure is a suitable classifier to determine 

long –form events from complex data (assuming that the complex data required a mouse as an 

input). As for the short-form events, we can conclude that the measure is similarly as sensitive 

to these events as the pupil measure, though with an average correct recall of 58.5%, we cannot 

conclude that it is a robust measure. 

The mouse gesture normality measure presented here demonstrates an average F1 score of 

52.2% - from this average across all participants we can conclude that it is not a robust or 

consistent measure for determining times of events of interest from complex data. Upon 

inspection of the event-by-event results however, we can demonstrate that the measure has 

more value at determining short term events, with an average correct recall of 79%. This 

demonstrates the value of the measure during events that require a more sustained period of 

abnormality over those events that require a very short period of abnormal gestures. 

In context of the existing literature in this field, we present a totally novel set of results. To 

compare the results obtained here we must reframe the work in terms of the events definition. 

In literature, the events are pre-partitioned and the human data streams gathered within each of 
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these partitions and compared against either other partitions or some benchmark. The vast 

majority of studies determined that changing the difficulty of the task led to a significant change 

in psychophysiological signals (depending on both the type of signal and how it was 

processed). This leading conclusion led to the investigation in this research to apply the same 

logic in reverse; determining the times of the events of changing difficulty based on when the 

psychophysiological changed significantly (again, depending on the type of signal and how it 

was processed). The key difference being the context in which the event could occur, by 

comparing a known section against some previously known baseline would be inappropriate 

in a long-term scenario as it cannot distinguish against “normal” activity as “normal” activity 

has to be clearly defined across the length of the trial.  If we compare our results against those 

of (Pedrotti, Benedetto, et al., 2014) that attempt to classify pupil diameter as a measure of 

cognitive load against 4 increasing categories of difficulty in a simulated driving task; they 

achieve an average classification accuracy of 83%. On average, for the same 

psychophysiological measure, we achieve an average F1-score of 67%. This is significantly 

less accurate than our comparison study, this could be due to several factors that are important 

to note; firstly, that the context of the signal measurement comparison can affect the nature of 

the accuracy results (as they have clearly defined time sections of increased difficulty) with 

pauses in between these time periods. Also to consider are that we employ a greater sample 

size (30 participants vs their 16) and their domain context of driving is also a different scenario 

to our control room context. 

In conclusion, we determine that psychophysiological signals can be used to identify the times 

at which events of interest occur. The caveats of this approach become clear when event-type 

analysis is performed. Given the structure of increasing task difficulty in literature is often to 

maintain this for a sustained period of time, this agrees with our findings that the measures 
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perform significantly better at detecting long-form events. Detection of short-term events is 

certainly possible with pupil diameter and would be an interesting case for further research. 

We also conclude there is no concrete evidence to suggest HRV is capable of detecting short-

term events. This is to be expected given the nature of windowing the data for HRV procedures; 

window lengths of 40 seconds, considered ultra-short form, are likely to average out any 

smaller responses such as the short-term events here that last ~2 seconds. 

 

6.3.  Limitations of the Work 

We assume that the mental state of the participants was affected entirely by the simulator they 

were interacting with. It is not known precisely what was stimulating the participant at any 

given time. Controls were established in the experimental set up to mitigate potential external 

stimuli, but internal thought processes and their potential effect on the mental state of the 

participant could not be controlled.  

The nature of the roles of control room operators means that for any given dataset, the times at 

which events were detected based on the physiological and mouse input metrics would depend 

on the individual, not an average across a population. As seen in the results here, that individual 

could yield perfect precision and recall, or very low precision and recall, it would not be 

possible to confirm the validity of the results without a manual inspection of the data to 

establish a ground truth, which would negate the purpose of using the signals acquired from 

the operator.  

As mentioned in section 0, the characterization of the participants was not as thorough as was 

possible. This missing information may have been able to shed light on the nature of 

significantly higher performing individuals. 
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6.4.  Contributions of This Research 

This research is the first study to research retrieval of the times at which events of interest 

occurred in a control room scenario. We determine that pupil diameter and HRV can be used 

in this way to determine these events if the events in question last for a time of approximately 

30 seconds. This is also the first study to determine if these signals are capable of identifying 

short-form events lasting only 2 seconds or so. We determine that of the signals tested, only 

pupil diameter demonstrates that potential to recall such events, a valuable contribution to the 

field as often events of this nature and length are dismissed due to their difficult to detect nature.  

We also present a novel mouse movement metric that can produce a time series of the normality 

of the gestures created by the mouse in the context of the timespan recorded. This method has 

many potential applications beyond this research in human factors and other activity-

recognition and assessment fields.  

 

6.4.  Suggestions for Further Work 

The work presented in this thesis demonstrates the potential for significant value in automated 

human-data-driven labelling systems. Though the results show that this concept is possible, 

there is also significant potential for further work to extend the concept and explore new 

research territories.  

As mentioned in the methods chapter, a more thorough and robust process to find participants 

for the trials could be undertaken to examine some of the behaviours in the data that were not 

controlled in this work. Firstly, a larger sample size would improve the conclusions from the 

results presented here. Secondly, though high-level exclusionary factors were implemented 

here, there exist innumerable, myriad factors that could be used to either exclude, select or 

observe from the participants. We first mentioned in the results and discussion chapter, that 

there exist a subset of high-performing individuals of whom the methods here provided perfect 
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or near perfect recall and precision. An area for further work would be to investigate if these 

individuals have characteristics that identify them as suitable candidates for physiological 

signal-based event detection. Characteristics such as profession and competence with computer 

interfaces may lead to further findings that isolate particular participant profiles that are better 

suited to these methods.  

Further work would also involve applying the methods here to real-world scenarios. By 

deploying the psychophysiological signal capturing technologies to a range of differing 

domains, such as those mentioned in the literature review, assessments could be made to 

determine if particular domains are more or less suitable for abnormal event detection through 

psychophysiological assessment. For example, are the stresses on the cognitive function of a 

pilot too myriad and ranging to enable detection of events that are different from the normal 

functioning of their duties compared to the driver of a car? Research could also determine 

whether the skill or experience of the pilot/driver affected the methods presented here. 

Finally, the methods to analyse the data streams in this research treated each stream separately 

to determine the sensitivity of each to events of differing types. Further work here could expand 

these methods to include techniques that combine the various signals together to create 

ensemble classifiers. The potential of these techniques is ranging, from either simply increasing 

the specificity and accuracy of the system to potentially creating classifiers that are capable of 

distinguishing between different types of events. 
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