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VARIATIONAL PROBLEMS IN L∞ INVOLVING SEMILINEAR

SECOND ORDER DIFFERENTIAL OPERATORS

Nikos Katzourakis1 and Roger Moser2*

Abstract. For an elliptic, semilinear differential operator of the form S(u) = A : D2u + b(x, u,Du),
consider the functional E∞(u) = ess supΩ |S(u)|. We study minimisers of E∞ for prescribed boundary
data. Because the functional is not differentiable, this problem does not give rise to a conventional
Euler–Lagrange equation. Under certain conditions, we can nevertheless give a system of partial differ-
ential equations that all minimisers must satisfy. Moreover, the condition is equivalent to a weaker
version of the variational problem. The theory of partial differential equations therefore becomes
available for the study of a large class of variational problems in L∞ for the first time.
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1. Introduction

Variational problems involving an L∞-norm tend to present challenges not shared by more conventional
variational problems. Indeed, the underlying functionals are typically not differentiable, not even in the Gateaux
sense, and therefore, the usual derivation of an Euler–Lagrange equation does not work. Sometimes it is possible
to derive an associated partial differential equation nevertheless (the Aronsson equation [2] is an example) but
such an equation is typically only degenerate elliptic and may have discontinuous coefficients [17]. Indeed, for
higher order problems (as studied in this paper), the equations may be fully nonlinear and not elliptic at all
[23]. Moreover, while the interesting functionals in the calculus of variations in L∞ typically enjoy a certain
degree of convexity, they are not strictly convex. Therefore, minimisers are not usually expected to be unique.

All these difficulties notwithstanding, there are some problems in the theory that are understood very well.
This applies in particular to a class of problems involving first order derivatives of scalar functions. More
precisely, let Ω ⊆ Rn be a bounded Lipschitz domain and consider functions u : Ω → R with fixed boundary
data. For a function F : Ω × R × Rn → R, consider the problem of minimising ess supx∈Ω F (x, u(x), Du(x)).
Under certain conditions on F , there is a good theory giving, for example, existence of solutions with good
properties [1, 3, 4], uniqueness [15, 16], and (for F (x, y, z) = |z|2) regularity [9–11].

Recently, the authors have studied a different, second order variational problem in L∞ and established good
properties of its solutions [22]. Suppose now that we wish to minimise a quantity such as ess supx∈Ω F (x,∆u(x)).
Assuming that F : Ω×R→ R satisfies some growth and convexity conditions, and that Ω, F , and the boundary
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data are sufficiently regular, it turns out that there exists a unique minimiser, which satisfies a certain system
of partial differential equations. Conversely, any solution of that system corresponds to a minimiser. Some of
the underlying ideas go back to earlier work [25, 26], and similar tools have in the meantime also been used for
other problems [12, 21, 24].

In the current paper, we study extensions of these results. This is one of a pair of works that examine two
different types of generalisations. Here we replace ∆u by more general, semilinear differential operators, while
restricting our attention to F (x, ξ) = |ξ| (but x-dependence is still included implicitly, because the coefficients
of the differential operator need not be constant any more). As a result, the results discussed here have far
more potential applications. It turns out that the inclusion of nonlinearities also changes the behaviour of the
problem somewhat, and for this reason we require different arguments as well. In a companion paper [20], we
study a quantity of the form ess supx∈Ω F (x, u(x),∆u(x)) for a fairly general class of functions F : Ω×R2 → R
(which again gives rise to more applications). There is of course some overlap between the two settings, and it
would be interesting to have a common framework, but this appears to be difficult for technical reasons.

We consider the following situation. Let Ω ⊆ Rn, as above, be a bounded Lipschitz domain. (For some
of our results we will need to impose additional regularity assumptions on Ω.) Let A ∈ C2(Ω;Rn×n) and
b ∈ C2(Ω×R×Rn). We assume that there exists λ > 0 such that for every x ∈ Ω, the matrix A(x) is symmetric
and satisfies A(x) : ζ ⊗ ζ ≥ λ|ζ|2 for all ζ ∈ Rn, where the colon denotes the Frobenius inner product. Define
the semilinear differential operator

S(u) = A : D2u+ b(x, u,Du) (1.1)

for u : Ω→ R, where Du is the gradient and D2u is the Hessian of u. We are interested in the functional

E∞(u) = ess sup
Ω
|S(u)|.

So far we have not mentioned the space on which this functional is defined. In order to obtain a good theory,
we need to work in a Sobolev space that may appear unconventional, but is quite natural for the problem. We
define

W2,∞(Ω) =
⋂

1<q<∞

{
u ∈W 2,q(Ω) | A : D2u ∈ L∞(Ω)

}
.

Furthermore,

W2,∞
0 (Ω) =W2,∞(Ω) ∩W 2,2

0 (Ω).

Given u0 ∈ W2,∞(Ω), we wish to study minimisers of E∞ in u0 +W2,∞
0 (Ω). For other variational problems,

the critical points would also be of interest, but in this case, the concept is not useful as E∞ is not differentiable.
We therefore work with the following idea instead.

Definition 1.1 (Almost-minimiser). A function u ∈ W2,∞(Ω) is called an almost-minimiser of E∞ if there
exists M ∈ R such that

E∞(u) ≤ E∞(u+ φ) +M‖φ‖2W 1,∞(Ω)

for every φ ∈ W2,∞
0 (Ω).

Intuitively, the definition provides a substitute for the idea that the Taylor expansion of E∞ has a vanishing
first order term at u. Since E∞ is not differentiable, it does of course not have a Taylor expansion. Instead,
we use a quadratic form Q : W2,∞(Ω)→ R such that the graph of Q touches the graph of E∞( · + u)−E∞(u)
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from below. This is related to the notion of second order subjets or subdifferentials that appears in the theory
of viscosity solutions of partial differential equations (discussed, e.g., in a survey article by Crandall, Ishii,
and Lions [6] or the introductory text by the first author [18]). In the case of Definition 1.1, the condition is
formulated in terms of the norm of W 1,∞(Ω), so it may be best to think of E∞ as a functional defined on
W 1,∞(Ω) in this context, with E∞(v) = ∞ when v 6∈ W2,∞(Ω). There is, however, some flexibility here. Our
main results remain true if ‖·‖W 1,∞(Ω) is replaced, e.g., by ‖·‖W 2,q(Ω) for any sufficiently large q <∞.

We show below that almost-minimisers can be characterised in terms of a system of partial differential
equations. In order to formulate this, we use the formal linearisation of the operator S at a point u ∈ W2,∞(Ω),
denoted S′u, and its formal L2-adjoint, denoted S∗u. We use the notation (x, y, z) for the variables in Ω×R×Rn.
We further write by for the partial derivative of b with respect to y, and bz for the vector comprising the partial
derivatives with respect to z1, . . . , zn. Then

S′uφ = A : D2φ+ bz(x, u,Du) ·Dφ+ by(x, u,Du)φ

and

S∗uf = div div(fA)− div
(
fbz(x, u,Du)

)
+ fby(x, u,Du).

In the div–div term, the divergence is applied once column-wise and once row-wise.
We are interested in the equation

S∗uf = 0. (1.2)

We can make sense of this for f ∈ L1(Ω): if

�
Ω

fS′uφ dx = 0 (1.3)

holds for all φ ∈ C∞0 (Ω), then we say that f is a weak solution of the equation.
Our first main result is as follows.

Theorem 1.2. Let u∞ ∈ W2,∞(Ω) be such that there exist e∞ ≥ 0 and f∞ ∈ L1(Ω) \ {0} satisfying

|f∞|S(u∞) = e∞f∞ (1.4)

almost everywhere in Ω and

S∗u∞f∞ = 0 (1.5)

weakly. Then u∞ is an almost-minimiser of E∞.

The converse is also true, provided that we impose some additional regularity on ∂Ω and on the boundary
data, and provided that we restrict our attention to differential operators that permit certain Lp-estimates.

Definition 1.3. For a differential operator S as in (1.1), we say that S is admissible if there exists p0 > 1 such
that for any p ≥ p0, the following holds true. Suppose that u0 ∈ W2,∞(Ω) and Λ > 0. Then there exists C > 0
such that for any u ∈ u0 +W2,p

0 (Ω), if

‖S(u)‖Lp(Ω) ≤ Λ,
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then

‖u‖W 2,p(Ω) ≤ C.

Now we can formulate our second main result.

Theorem 1.4. Suppose that ∂Ω is of class C3 and u0 ∈ C2(Ω). Further suppose that S is admissible. If
u∞ ∈ u0 +W2,∞

0 (Ω) is an almost-minimiser of E∞, then there exist f∞ ∈ L1(Ω) \ {0} and e∞ > 0 such that
(1.4) holds almost everywhere in Ω and (1.5) holds weakly.

For admissible operators, we can furthermore be certain that minimisers of E∞ exist for prescribed boundary
data. A minimiser is in particular an almost-minimiser, and thus we are guaranteed that the system (1.4), (1.5)
has a non-trivial solution.

Proposition 1.5. If S is admissible, then E∞ attains its minimum in u0 +W2,∞
0 (Ω) for any u0 ∈ W2,∞(Ω).

The proof relies on standard arguments and in particular on the direct method. For completeness, we outline
these arguments anyway.

Proof. Let (uk)k∈N be a minimising sequence. Then ‖S(uk)‖L∞(Ω) is obviously bounded. Hence if p0 is the
number from Definition 1.3, then it follows that (uk)k∈N is bounded in W 2,p(Ω) for any p ∈ [p0,∞). Therefore,
we may assume (extracting a subsequence if necessary) that we have the convergence uk ⇀ u∞ weakly in
W 2,p(Ω) for every p <∞. Moreover, the limit belongs to u0 +W 2,p

0 (Ω).
Using the Sobolev embedding theorem, we further conclude that (uk)k∈N is bounded in C1,α(Ω) as well

for every α ∈ (0, 1). The Arzelà-Ascoli theorem implies that uk → u∞ in C1(Ω). Hence b(x, uk, Duk) →
b(x, u∞, Du∞) uniformly.

Since (S(uk))k∈N is bounded in L∞(Ω), we may assume that S(uk)
∗
⇀ σ weakly* in L∞(Ω) for some σ ∈

L∞(Ω). Using the above convergence, we conclude that σ = S(u∞). Now it follows that

E∞(u∞) ≤ lim inf
k→∞

E∞(uk),

and thus u∞ is a minimiser.

Summarising Theorem 1.2 and Theorem 1.4, we can say that the system comprising equations (1.4) and
(1.5) is equivalent to the almost-minimising condition under certain assumptions. If we accept that the latter
is a reasonable substitute for critical points, then we may think of (1.4) and (1.5) as a substitute for an
Euler–Lagrange equation.

For a variety of other variational problems in L∞, a corresponding differential equation has been identified
by quite different methods. In the case of the optimal Lipschitz extension problem, the result is the Aronsson
equation [2]. Formally, Aronsson’s calculations can be carried out for the above problem as well. They give rise
to the equation S(u)D(S(u)) = 0. The connections between this equation and the variational problem are not
explored in this work, but we observe that the former is satisfied by solutions of (1.4).

The ‘Aronsson equation’ S(u)D(S(u)) = 0 is of third order, quasilinear, and in non-divergence form. It is not
elliptic in any reasonable sense. It allows neither weak nor viscosity solutions, but there is another approach that
does apply and has produced some results on equations such as this (see, e.g., the papers of the first author and
coauthors [7, 19, 23]). In this paper, however, we follow the alternative approach outlined above and consider
solutions to the system (1.4), (1.5) instead. This can be seen as a divergence-form (or div–div form) alternative
to the Aronsson equation.

The comparison with other variational problems in L∞ makes another aspect of the above results remarkable.
We note that the system (1.4), (1.5) is local in the sense that if it holds in Ω, then it is automatically satisfied
in any open subdomain Ω′ ⊆ Ω. Under the conditions of Theorem 1.4, it follows that the almost-minimising
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condition is also local in a similar sense. Indeed, if ∂Ω is of class C3 and u0 ∈ C2(Ω), then for any almost-
minimiser u∞ ∈ u0 +W2,∞

0 (Ω), Theorem 1.4 applies. Given a Lipschitz subdomain Ω′ ⊆ Ω, we can then use
Theorem 1.2 in Ω′, concluding that u∞ is an almost-minimiser in Ω′ as well. This is in stark contrast to the
optimal Lipschitz extension problem and similar variational problems, where locality must be imposed in order
to obtain solutions with good properties. These solutions are then known as absolute minimisers.

For the special case S(u) = ∆u (and for certain other problems), a previous paper [22] gives stronger results.
It is shown that solutions of (1.4), (1.5) are unique under the boundary condition u∞ ∈ u0 +W2,∞

0 (Ω) and
correspond to unique minimisers of E∞. For similar problems involving nonlinear operators, however, we do not
have uniqueness in general [24]. For semilinear operators as in this paper, the question is open. Furthermore,
for the problem studied here, we are led to the concept of almost-minimisers rather than minimisers. Because
of these differences in the behaviour, we need different arguments in addition to the ideas from the earlier
paper. They include a more sophisticated analysis of the functional and of the Sobolev spaces for the proof of
Theorem 1.2 and the inclusion of a penalisation term for the proof of Theorem 1.4. The latter is related to an
idea also used in a different paper [24], but takes a different form here and requires further arguments.

In the next section, we discuss second order elliptic, linear equations in div–div form, of which (1.5) is an
example. We consider solutions in L1(Ω) and derive some interior regularity that we will need for the proofs
of our main results. We will also show that weak solutions can be tested with functions in W2,∞

0 (Ω). We then
prove Theorem 1.2 and Theorem 1.4 in the following two sections. In the final section, we discuss some specific
differential operators of the form S(u) = ∆u + g(u) for a function g : R → R. In particular, we give some
conditions that imply that the operator is admissible in the sense of Definition 1.3. The purpose of this section
is not just to show that Theorem 1.4 is not vacuous, but also to give an idea of the nonlinearities allowed.

2. Elliptic equations in div–div form

In this section, we prove some properties of weak solutions of an equation of the form

div div(fA) + div(fB) + fc = divG+ g, (2.1)

where f is assumed to be in L1(Ω) or even a Radon measure on Ω. The matrix A will be the same as in the
introduction and will be fixed throughout. The properties of the coefficients B and c are described below. We
eventually apply these results to equations such as S∗uf = divG+ g for some u ∈W 2,p(Ω), or even to S∗u∞f = 0
for a function u∞ ∈ W2,∞(Ω), but we formulate them more generally here.

First we prove some interior regularity for weak solutions of the equation. We duplicate some results from a
more general theory here (see, e.g., the survey article of Bogachev, Krylov, and Röckner [5]). In order to make
the paper self-contained, we include a proof nevertheless.

Lemma 2.1. For any Ω′ b Ω and any p ∈ (n,∞), there exists a constant C > 0 such that the following holds
true. Let p′ = p

p−1 be the exponent conjugate to p. Suppose that B ∈ L∞(Ω;Rn), c ∈ L∞(Ω), g ∈ L1(Ω), and

G ∈ Lp′(Ω;Rn). Set

Γ = ‖B‖L∞(Ω) + ‖c‖L∞(Ω) + 1.

Suppose that µ ∈ (C0
0 (Ω))∗ is a distributional solution of

div div(Aµ) + div(Bµ) + cµ = divG+ g,

meaning that

�
Ω

(A : D2φ−B ·Dφ+ cφ) dµ =

�
Ω

(gφ−G ·Dφ) dx (2.2)
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for every φ ∈ C∞0 (Ω). Then µ is absolutely continuous with respect to the Lebesgue measure. Its Radon–Nikodym

derivative f belongs to W 1,p′

loc (Ω) and satisfies

‖f‖W 1,p′ (Ω′) ≤ CΓ2
(
|µ|(Ω) + ‖G‖Lp′ (Ω) + ‖g‖L1(Ω)

)
.

Proof. Consider a function χ ∈ C∞0 (Ω). Define a functional α ∈ (C1
0 (Ω))∗ by

α(ψ) =

�
Ω

χψ dµ, ψ ∈ C1
0 (Ω).

(This means that α corresponds to the measure χµ, but we regard it as a functional on C1
0 (Ω) at first.) Choose

an open, precompact set Ω′′ b Ω with smooth boundary and with suppχ ⊆ Ω′′. Given ψ ∈ C1
0 (Ω), we can solve

the equation

A : D2φ = ψ

in W 2,p(Ω′′) ∩W 1,p
0 (Ω′′) by [13], Theorem 9.15. Moreover, [13], Theorem 9.19 implies that φ ∈ C2(Ω′′). By

approximation, we then see that (2.2) is satisfied for the test function χφ. Thus we obtain

α(ψ) =

�
Ω

χA : D2φdµ

=

�
Ω

(
χB ·Dφ+ φB ·Dχ− cχφ−A : (2Dχ⊗Dφ+ φD2χ)

)
dµ

+

�
Ω

(χgφ− χG ·Dφ− φG ·Dχ) dx.

Note that [13], Lemma 9.17 implies that

‖φ‖W 2,p(Ω′′) ≤ C1‖ψ‖Lp(Ω)

for a constant C1 = C1(n,Ω′′, p, A). Hence

‖φ‖C1(Ω′′) ≤ C2‖ψ‖Lp(Ω)

for a constant C2 with the same dependence. Therefore, we find a constant C3 = C3(n,Ω′′, p, A, χ) such that

|α(ψ)| ≤ C3

(
Γ|µ|(Ω) + ‖g‖L1(Ω) + ‖G‖Lp′ (Ω)

)
‖ψ‖Lp(Ω).

In particular, the functional α has a continuous linear extension to Lp(Ω). It follows that there exists f̃ ∈ Lp′(Ω)
such that

�
Ω

χψ dµ =

�
Ω

f̃ψ dx

for all ψ ∈ C1
0 (Ω). Since C1

0 (Ω) is dense in C0
0 (Ω), this means that χµ is absolutely continuous with respect to

the Lebesgue measure and f̃ is the Radon–Nikodym derivative. Since these arguments work for any χ ∈ C∞0 (Ω),
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the measure µ is absolutely continuous as well and has a Radon–Nikodym derivative f ∈ Lp
′

loc(Ω). Choosing χ
such that χ ≡ 1 in Ω′, we also obtain the inequality

‖f‖Lp′ (Ω′) ≤ C3

(
Γ|µ|(Ω) + ‖G‖Lp′ (Ω) + ‖g‖L1(Ω)

)
. (2.3)

We now conclude that (2.2) holds true for every φ ∈W 2,p(Ω) with compact support in Ω.
For i ∈ {1, . . . , n}, we next consider the functional βi ∈ (C1

0 (Ω))∗ with

βi(ψ) =

�
Ω

fχψxi dx, ψ ∈ C1
0 (Ω)

(corresponding to a distributional derivative of χf). Given a fixed ψ ∈ C1
0 (Ω), solve

A : D2φ+ (divA) ·Dφ = ψxi

in W 2,p(Ω′′)∩W 1,p
0 (Ω′′). If we write ei for the i-th standard unit vector in Rn, then the equation can alternatively

be represented in the form

div(ADφ) = div(ψei).

Standard Lp-estimates for weak solutions thus give the estimate

‖φ‖W 1,p(Ω′′) ≤ C4‖ψ‖Lp(Ω)

for a constant C4 = C4(n,Ω′′, p, A). The function χφ is again a suitable test function for (2.2). We obtain

βi(ψ) =

�
Ω

f
(
χ(divA) ·Dφ−A : (2Dχ⊗Dφ+ φD2χ)

)
dx

+

�
Ω

f
(
B · (χDφ+ φDχ)− cχφ

)
dx

+

�
Ω

(χgφ− χG ·Dφ− φG ·Dχ) dx.

Hence there exists a constant C5 = C5(n,Ω′′, p, A, χ) such that

|βi(ψ)| ≤ C5

(
Γ‖f‖Lp′ (Ω′′) + ‖G‖Lp′ (Ω) + ‖g‖L1(Ω)

)
‖ψ‖Lp(Ω).

Therefore, there exists hi ∈ Lp
′
(Ω) such that

�
Ω

χfψxi dx =

�
Ω

hiψ dx

for all ψ ∈ C1
0 (Ω). This is true for i = 1, . . . , n, so the function χf has weak derivatives in Lp

′
(Ω), which satisfy

‖(χf)xi‖Lp′ (Ω) ≤ C5

(
Γ‖f‖Lp′ (Ω′′) + ‖G‖Lp′ (Ω) + ‖g‖L1(Ω)

)
. (2.4)

Since χ ∈ C∞0 (Ω) can be chosen arbitrarily, it follows that f ∈ W 1,p′

loc (Ω). Moreover, we obtain the desired
inequality if we combine (2.3) with (2.4).
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We will also require the following statement, which says that a weak solution of an equation of the form

div div(fA) + div(fB) + cf = 0 (2.5)

can be tested with functions from the space W2,∞
0 (Ω).

Lemma 2.2. Suppose that f ∈ L1(Ω) is a weak solution of equation (2.5). Then

�
Ω

f(A : D2φ−B ·Dφ+ cφ) dx = 0

for all φ ∈ W2,∞
0 (Ω).

Proof. Given φ ∈ W2,∞
0 (Ω), we first construct a family of approximations (φε)ε∈(0,ε0] in C∞0 (Ω) such that φε → φ

in W 2,q(Ω) for any q <∞ and, at the same time, such that A : D2φε remains bounded in L∞(Ω).
For this purpose, we extend φ by 0 outside of Ω. Choose a finite open cover {G1, . . . , GL} of Ω with the

property that there exist R > 0 and there exist open cones C1, . . . , CL ⊆ Rn such that for any x ∈ ∂Ω ∩G`,

C` ∩BR(0) ∩ (x− Ω) = ∅.

(Hence (x− C`) ∩BR(x) is an exterior cone to Ω.) This is possible, because Ω is a bounded Lipschitz domain.
For every ` = 1, . . . L, choose η` ∈ C∞0 (C` ∩B1(0)) with η` ≥ 0 and

�
B1(0)

η`(x) dx = 1.

For ε ∈ (0, R], set

η`ε(x) =
1

εn
η`

(x
ε

)
and

φ`ε = φ ∗ η`ε.

Then for x ∈ ∂Ω ∩G`,

φ`ε(x) =

�
C`∩Bε(0)∩(x−Ω)

η`ε(y)φ(x− y) dy = 0.

Moreover, the function φ`ε vanishes in a neighbourhood of any such point x.
Now choose a partition of unity χ1, . . . , χL in Ω with χ` ∈ C∞0 (G`) for ` = 1, . . . , L. Set

φε =

L∑
`=1

χ`φ`ε.

Then it is clear that φε ∈ C∞0 (Ω) and that φε → φ in W 2,q(Ω), for any q <∞, as ε↘ 0.
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For x ∈ Ω, we compute

A(x) : D2φ`ε(x) =

�
Bε(0)

η`ε(y)A(x) : D2φ(x− y) dy

=

�
Bε(0)

η`ε(y)(A(x)−A(x− y)) : D2φ(x− y) dy

+

�
Bε(0)

η`ε(y)A(x− y) : D2φ(x− y) dy.

Using an integration by parts, we find that

�
Bε(0)

η`ε(y)(A(x)−A(x− y)) : D2φ(x− y) dy =

�
Bε(0)

η`ε(y) divA(x− y) ·Dφ(x− y) dy

+

�
Bε(0)

(A(x)−A(x− y)) : Dη`ε(y)⊗Dφ(x− y) dy.

For y ∈ Bε(0), we have the inequality

|A(x)−A(x− y)| ≤ ε‖A‖C1(Ω).

Hence there exists a universal constant C1 such that∣∣∣∣∣
�
Bε(0)

η`ε(y)(A(x)−A(x− y)) : D2φ(x− y) dy

∣∣∣∣∣ ≤ C1‖A‖C1(Ω)

(
1 + ‖Dη`‖L1(B1(0))

)
‖Dφ‖L∞(Ω).

It is clear that ∣∣∣∣∣
�
Bε(0)

η`ε(y)A(x− y) : D2φ(x− y) dy

∣∣∣∣∣ ≤ ‖A : D2φ‖L∞(Ω).

Thus we obtain a uniform estimate for ‖A : D2φ`ε‖L∞(Ω). A similar estimate for φε is then easy to prove.

It follows that there exists a sequence εk ↘ 0 such that A : D2φεk
∗
⇀ g, weakly* in L∞(Ω), for some g ∈

L∞(Ω). For any ψ ∈ C∞0 (Ω), we then compute

�
Ω

ψg dx = lim
k→∞

�
Ω

ψA : D2φεk dx

= lim
k→∞

�
Ω

div div(ψA)φεk dx

=

�
Ω

div div(ψA)φ dx

=

�
Ω

ψA : D2φ dx.

It follows that g = A : D2φ. It then also follows that A : D2φε
∗
⇀ A : D2φ, i.e, it is not necessary to take a

subsequence.
Now the claim of the lemma is proved by approximation with φε and with standard arguments.



10 N. KATZOURAKIS ET AL.

3. Sufficiency of the equations

We now show that a non-trivial solution of the system (1.4), (1.5) gives rise to an almost-minimiser of E∞.

Proof of Theorem 1.2. We consider u∞ ∈ W2,∞(Ω) and assume that there exist e∞ ≥ 0 and f∞ ∈ L1 \ {0}
such that (1.4) is satisfied almost everywhere and (1.5) weakly in Ω. We are required to show that u∞ is an
almost-minimiser of E∞. It suffices, however, to prove the inequality in Definition 1.1 under the assumption
that ‖φ‖W 1,∞(Ω) ≤ 1, because otherwise,

E∞(u∞) ≤ E∞(u∞ + φ) +M‖φ‖2W 1,∞(Ω)

for the number M = E∞(u∞).
We first note that f∞ ∈ W 1,q

loc (Ω) for some q > 1 by Lemma 2.1. Hence the equation S∗u∞f∞ = 0 can be
written in the form

div
(
ADf∞ + f∞ divA− f∞bz(x, u∞, Du∞)

)
+ f∞by(x, u∞, Du∞) = 0.

With standard regularity theory for elliptic equations, we then obtain higher regularity, in particular f∞ ∈
W 2,p

loc (Ω) for every p <∞, and the results of Hardt and Simon [14] on the structure of the nodal set apply. It
follows that f∞ 6= 0 almost everywhere.

If e∞ = 0, then (1.4) implies that E∞(u∞) = 0, and u∞ is in fact a global minimiser. Thus it suffices to
consider e∞ > 0.

Fix φ ∈ W2,∞
0 (Ω) with ‖φ‖W 1,∞(Ω) ≤ 1. For t ∈ R, note that

∂

∂t
S(u∞ + tφ) = S′u∞+tφφ

and

∂2

∂t2
S(u∞ + tφ) = φ2byy(x, u∞ + tφ,Du∞ + tDφ)

+ 2φDφ · byz(x, u∞ + tφ,Du∞ + tDφ)

+ (Dφ⊗Dφ) : bzz(x, u∞ + tφ,Du∞ + tDφ).

Thus Taylor’s theorem, applied to the function t 7→ S(u∞+ tφ)(x) for each x ∈ Ω, implies there exists a function
τ : Ω→ [0, 1] such that

S(u∞ + φ) = S(u∞) + S′u∞φ+Bτ (3.1)

almost everywhere in Ω, where

Bτ =
1

2
φ2byy(x, u∞ + τφ,Du∞ + τDφ) + φDφ · byz(x, u∞ + τφ,Du∞ + τDφ)

+
1

2
(Dφ⊗Dφ) : bzz(x, u∞ + τφ,Du∞ + τDφ).

Therefore,

(S(u∞ + φ))2 = (S(u∞))2 + 2
(
S(u∞) +Bτ

)
S′u∞φ+ (S′u∞φ)2 + 2S(u∞)Bτ +B2

τ . (3.2)
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Formula (3.1) implies that Bτ is measurable. Since ‖φ‖W 1,∞(Ω) ≤ 1, we have the estimate

‖u∞ + τφ‖L∞(Ω) + ‖Du∞ + τDφ‖L∞(Ω) ≤ C1

for a constant C1 that is independent of φ. Hence there exists a constant C2, also independent of φ, such that

‖Bτ‖L∞(Ω) ≤ C2‖φ‖2W 1,∞(Ω). (3.3)

We now claim that

E∞(u∞ + φ) ≥ E∞(u∞)− 2C2‖φ‖2W 1,∞(Ω). (3.4)

Once this inequality is established, the proof is complete.
If 2C2‖φ‖2W 1,∞(Ω) > E∞(u∞), then (3.4) is obvious. Thus we assume that 2C2‖φ‖2W 1,∞(Ω) ≤ E∞(u∞).

If S′u∞φ = 0 almost everywhere, then (3.2) and (3.3) imply that

(S(u∞ + φ))2 ≥ (S(u∞))2 + 2S(u∞)Bτ ≥ (S(u∞))2 − 2C2E∞(u∞)‖φ‖2W 1,∞(Ω)

almost everywhere. Therefore,

(E∞(u∞ + tφ))2 ≥ (E∞(u∞))2 − 2C2E∞(u∞)‖φ‖2W 1,∞(Ω). (3.5)

If S′u∞φ 6= 0 in a set of positive measure, then we test equation (1.5) with φ. (This is possible in view of Lem.
2.2.) We obtain

�
Ω

f∞ S′u∞φdx = 0.

Recall that f∞ 6= 0 almost everywhere. Therefore, there exists a set Ω+ ⊆ Ω of positive measure such that
f∞ S′u∞φ > 0 in Ω+. As f∞ has the same sign as S(u∞) almost everywhere by (1.4), this means that
S(u∞)S′u∞φ > 0 almost everywhere in Ω+. Equation (1.4) also implies that |S(u∞)| = e∞ almost everywhere.

As ‖φ‖W 1,∞(Ω) ≤
√
e∞/(2C2) by the above assumption, inequality (3.3) implies that S(u∞) +Bτ has the same

sign as S(u∞) almost everywhere. Hence (
S(u∞) +Bτ

)
S′u∞φ > 0

almost everywhere in Ω+. With the help of (3.2) and (3.3), we conclude that

(S(u∞ + φ))2 ≥ e2
∞ − 2C2e∞‖φ‖2W 1,∞(Ω)

in Ω+. Hence we obtain (3.5) in this case as well.
Finally, from (3.5) we now obtain the estimate

E∞(u∞ + φ) ≥ E∞(u∞)

√
1−

2C2‖φ‖2W 1,∞(Ω)

E∞(u∞)

≥ E∞(u∞)

(
1−

2C2‖φ‖2W 1,∞(Ω)

E∞(u∞)

)
= E∞(u∞)− 2C2‖φ‖2W 1,∞(Ω).
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This proves (3.4) and completes the proof.

4. Necessity of the equations

In this section, we prove Theorem 1.4. For this purpose, we require the following lemma, which is an exten-
sion of a result proved by the authors in a previous paper [22], Lemma 8. This is where the extra regularity
assumptions in Theorem 1.4 are used. For r > 0, we use the notation Ωr = {x ∈ Ω | dist(x, ∂Ω) < r} here.

Lemma 4.1. Suppose that ∂Ω is of class C3 and u0 ∈ C2(Ω). Let g ∈ C0(Ω) and u ∈ C1(Ω). Given ε > 0,
there exist r > 0 and v ∈ C2(Ω), with v = u0 and Dv = Du0 on ∂Ω, such that ‖S′uv − g‖L∞(Ωr) ≤ ε.

Proof. Let δ > 0. Choose ũ0 ∈ C4(Ω) such that

‖u0 − ũ0‖C2(Ω) ≤ δ

and choose g̃ ∈ C2(Ω) such that∥∥g − g̃ − u0by(x, u,Du)−Du0 · bz(x, u,Du)
∥∥
C0(Ω)

≤ δ.

Consider a number r0 > 0 such that the function x 7→ dist(x, ∂Ω) is of class C3 in Ω2r0 . We can construct
a function ρ ∈ C3(Ω) such that ρ(x) = dist(x, ∂Ω) for x ∈ Ωr0 . Note that there exists c > 0 such that A :
Dρ⊗Dρ ≥ c in Ωr0 by the fact that A is uniformly positive definite and |Dρ| = 1. Define λ ∈ C2(Ω) such that
λ = 2A : Dρ⊗Dρ in Ωr0 and λ > 0 everywhere. Now define

h = g̃ −A : D2ũ0

and

v = u0 +
ρ2h

λ
.

Then

Dv = Du0 +
2ρh

λ
Dρ+ ρ2D

(
h

λ

)
and

D2v = D2u0 +
2h

λ
Dρ⊗Dρ+

2ρh

λ
D2ρ+ 2ρDρ⊗D

(
h

λ

)
+ 2ρD

(
h

λ

)
⊗Dρ+ ρ2D2

(
h

λ

)
.

Thus there exist Φ ∈ C0(Ω;Rn) and Ψ ∈ C0(Ω;Rn×n) such that

Dv = Du0 + ρΦ

and

D2v = D2u0 +
2h

λ
Dρ⊗Dρ+ ρΨ.
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In Ωr0 , it follows that

S′uv = A : D2u0 +
2h

λ
A : Dρ⊗Dρ+ ρA : Ψ

+

(
u0 +

ρ2h

λ

)
by(x, u,Du) + (Du0 + ρΦ) · bz(x, u,Du)

= A : D2u0 + g̃ −A : D2ũ0 + u0by(x, u,Du) +Du0 · bz(x, u,Du) + ρX,

where

X = A : Ψ +
ρh

λ
by(x, u,Du) + Φ · bz(x, u,Du).

By the choice of ũ0 and g̃, we conclude that

‖S′uv − g‖L∞(Ωr) ≤ (‖A‖L∞(Ω) + 1)δ + r‖X‖L∞(Ω).

Choosing δ and r sufficiently small, we obtain the desired inequality.
The boundary conditions are readily checked as well.

Proof of Theorem 1.4. We assume that ∂Ω is of class C3 and u0 ∈ C2(Ω). We further assume that S is admissi-
ble. Suppose that u∞ ∈ u0 +W2,∞

0 (Ω) is an almost-minimiser of E∞. We wish to show that there exist e∞ ≥ 0
and f∞ ∈ L1(Ω) \ {0} such that (1.4) is satisfied almost everywhere and (1.5) weakly.

If E∞(u∞) = 0, then we choose e∞ = 0. By a consequence of the Fredholm alternative [8], Theorem 6.2.4,
we can either find a nontrivial solution of S∗u∞f∞ = 0 in W 1,2

0 (Ω), or we can solve the boundary value problem

S∗u∞f∞ = 0 in Ω,

f∞ = 1 on ∂Ω,

in W 1,2(Ω). In either case, we conclude that f∞ ∈ L1(Ω) and does not vanish identically. Hence the required
conditions are satisfied.

We now assume that E∞(u∞) > 0. Because u∞ is an almost-minimiser, there exists M ∈ R such that

E∞(u∞) ≤ E∞(v) +M‖u∞ − v‖2W 1,∞(Ω)

for all v ∈ u0 +W2,∞
0 (Ω). Choose p0 > n such that the statement from Definition 1.3 applies. Note that by [13],

Lemma 9.17, there exists a constant C such that for all φ ∈W 2,p0
0 (Ω), the inequality

‖φ‖W 2,p0 (Ω) ≤ C‖A : D2φ‖Lp0 (Ω)

holds true. In conjunction with the Sobolev embedding theorem, this implies that there exists µ > 0 such that

E∞(u∞) ≤ E∞(v) + µ‖A : D2(u∞ − v)‖2Lp0 (Ω)

under the above assumptions.
For p <∞, we consider the functionals

Ep(u) =

( 
Ω

|S(u)|p dx

) 1
p

.
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Furthermore, we fix σ > 0 and define

Eσp (u) = Ep(u) + σ‖A : D2(u∞ − u)‖2Lp0 (Ω).

For every p ≥ p0, choose a minimiser up ∈ u0 + W 2,p
0 (Ω) of Eσp . (This can be found with the direct method.

Coercivity of the functional is a consequence of the assumption that S is admissible, similarly to the proof
of Proposition 1.5. Lower semicontinuity of Ep with respect to weak convergence in W 2,p(Ω) is also proved
analogously to Proposition 1.5, and the lower semicontinuity of the additional term follows from its convexity.)
For p0 ≤ p ≤ q, the minimality of Ep(up) and Hölder’s inequality imply that

Eσp (up) ≤ Eσp (uq) ≤ Eσq (uq) ≤ Eσq (u∞) = Eq(u∞) ≤ E∞(u∞). (4.1)

Because S is admissible, we infer that

lim sup
p→∞

‖up‖W 2,q(Ω) <∞ (4.2)

for any q < ∞. We may therefore choose a sequence pk → ∞ and find w∞ ∈ u0 +
⋂
q<∞W 2,q

0 (Ω) such that

upk ⇀ w∞ weakly in W 2,q(Ω) for every q < ∞. Then we also have the strong convergence upk → w∞ in
W 1,∞(Ω). It further follows that S(upk) ⇀ S(w∞) weakly in Lq(Ω) for every q <∞.

By the lower semicontinuity of the Lq-norm with respect to weak convergence and by (4.1), we have the
inequalities

Eσ∞(w∞) = lim
q→∞

Eσq (w∞)

≤ lim sup
q→∞

lim inf
k→∞

Eσq (upk)

≤ lim inf
k→∞

Eσpk(upk)

≤ E∞(u∞).

(4.3)

Hence w0 ∈ u0 +W2,∞
0 (Ω). As u∞ is an almost-minimiser of E∞, we also know that

E∞(u∞) ≤ Eµ∞(w∞).

Hence

(σ − µ)‖A : D2(w∞ − u∞)‖Lp0 (Ω) ≤ 0,

which implies that w∞ = u∞ if σ > µ. As this fixes the limit, we can in fact conclude that up ⇀ u∞, as p→∞,
weakly in W 2,q(Ω) for every q <∞. It also follows from (4.3) and (4.1) that Eσp (up)→ E∞(u∞) as p→∞.

We further observe that for any sequence pk →∞,

E∞(u∞) + σ lim inf
k→∞

‖A : D2(upk − u∞)‖2Lp0 (Ω) = lim
q→∞

Eq(u∞) + σ lim inf
k→∞

‖A : D2(upk − u∞)‖2Lp0 (Ω)

≤ lim sup
q→∞

lim inf
k→∞

Eq(upk) + σ lim inf
k→∞

‖A : D2(upk − u∞)‖2Lp0 (Ω)

≤ lim sup
q→∞

lim inf
k→∞

Eσq (upk).
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For every fixed q <∞, Hölder’s inequality gives Eσq (upk) ≤ Eσpk(upk) whenever k is sufficiently large. Hence

lim inf
k→∞

Eσq (upk) ≤ lim inf
k→∞

Eσpk(upk),

and we conclude that

E∞(u∞) + σ lim inf
k→∞

‖A : D2(upk − u∞)‖2Lp0 (Ω) ≤ lim inf
k→∞

Eσpk(upk) = E∞(u∞).

It follows that

lim
p→∞

‖A : D2(up − u∞)‖Lp0 (Ω) = 0.

Set e∞ = E∞(u∞) and ep = Ep(up). Then it follows that

e∞ = lim
p→∞

ep.

Set furthermore

ap = ‖A : D2(up − u∞)‖Lp0 (Ω).

Then the Euler–Lagrange equation for up is

e1−p
p S∗up

(
|S(up)|p−2S(up)

)
+ 2σ|Ω|a2−p0

p div div
(
|A : D2(up − u∞)|p0−2(A : D2(up − u∞))A

)
= 0.

Set

fp = e1−p
p |S(up)|p−2S(up)

and

φp = a2−p0
p |A : D2(up − u∞)|p0−2A : D2(up − u∞).

Then we have the system

|fp|
p−2
p−1S(up) = epfp, (4.4)

S∗upfp + 2σ|Ω|div div(φpA) = 0. (4.5)

We compute

 
Ω

|fp|p/(p−1) dx = e−pp

 
Ω

|S(up)|p dx = 1. (4.6)
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Hence we can find a sequence pk → ∞ such that fpk converges, in the weak* sense in (C0(Ω))∗, to a Radon
measure F∞ on Ω. Testing equation (4.5) with η ∈ C∞0 (Ω), we see that

�
Ω

S′u∞η dF∞ = lim
k→∞

�
Ω

fpkS
′
u∞η dx

= lim
k→∞

�
Ω

fpkS
′
upk

η dx

= −2σ|Ω| lim
k→∞

�
Ω

φpkA : D2η dx.

(In the second step, we have used the fact that by(x, up, Dup) → by(x, u∞, Du∞) and bz(x, up, Dup) →
bz(x, u∞, Du∞) uniformly as p→∞.) If p′0 is the exponent conjugate to p0, then

‖φp‖Lp′0 (Ω)
= a2−p0

p

(�
Ω

|A : D2(up − u∞)|p0 dx

) p0−1
p0

= ap → 0 (4.7)

as p→∞. Hence F∞ is a distributional solution of S∗u∞F∞ = 0. According to Lemma 2.1, its restriction to Ω is
absolutely continuous with respect to the Lebesgue measure, and the Radon–Nikodym derivative f∞ ∈ L1(Ω)
belongs to W 1,q

loc (Ω) for all q ∈ (1, n
n−1 ) (but F∞ may have a part supported on ∂Ω as well). Obviously, we now

have equation (1.5) in the weak sense.
Set hp = fp + 2σ|Ω|φp. Then (4.5) can be written in the form

S∗uphp = 2σ|Ω|
(
φpby(x, up, Dup)− div

(
φpbz(x, up, Dup)

))
.

We already know that the functions bz(x, up, Dup) and by(x, up, Dup) are uniformly bounded in L∞(Ω). Because

of (4.7), we have uniform bounds for φpby(x, up, Dup) and for φpbz(x, up, Dup) in Lp
′
0(Ω). The coefficients of

S∗up are also bounded in L∞(Ω). According to Lemma 2.1, this means that we have a uniform bound for
‖hp‖W 1,p′0 (Ω′)

for any precompact open set Ω′ b Ω. In particular, we can choose the above sequence pk → ∞
such that (hpk)k∈N converges in Lp

′
0(Ω′). Since we have the convergence φp → 0 in the same space by (4.7), we

must have Lp
′
0-convergence for (fpk)k∈N. The limit is of course f∞.

We may assume that fpk → f∞ almost everywhere in Ω′ and, at the same time, that ‖fpk − f∞‖Lp′0 (Ω′)
≤ 2−k

for every k ∈ N (otherwise we choose a further subsequence with this property). If we set

θ = |f∞|+
∞∑
k=1

|fpk − f∞|,

then this guarantees that θ ∈ Lp′0(Ω′). Moreover, we see that |fpk | ≤ θ for every k ∈ N. We therefore obtain the
pointwise inequality

∣∣∣∣|fpk | pk−2

pk−1 − |f∞|
∣∣∣∣p′0 ≤ (1 + 2θ)

p′0

(provided that pk > 2), and the dominated convergence theorem implies that

|fpk |
pk−2

pk−1 → |f∞|



VARIATIONAL PROBLEMS IN L∞ INVOLVING SEMILINEAR SECOND ORDER DIFFERENTIAL OPERATORS 17

in Lp
′
0(Ω′). Since we have the weak convergence of S(up) to S(u∞) in Lq(Ω) for any q <∞, we conclude that

|fpk |
pk−2

pk−1S(upk) ⇀ |f∞|S(u∞)

weakly in L1
loc(Ω). Recall that ep → e∞ as p→∞. Thus passing to the limit in (4.4), we obtain (1.4).

It remains to show that f∞ 6≡ 0.
For any p ≥ p0, we compute

|Ω|ep = e1−p
p

�
Ω

|S(up)|p dx =

�
Ω

fpS(up) dx =

�
Ω

fp

(
S′upup − gp

)
dx,

where

gp = −b(x, up, Dup) + upby(x, up, Dup) +Dup · bz(x, up, Dup).

We define g∞ by the analogous formula as well. Given ε > 0, we choose r > 0 and v ∈ u0 +W2,∞
0 (Ω) with

‖S′u∞v − g∞‖L∞(Ωr) ≤ ε

with the help of Lemma 4.1. Then, by (4.5),

|Ω|ep =

�
Ω

fp

(
S′upup − gp

)
dx

=

�
Ω

fp

(
S′upv − gp

)
dx− 2σ|Ω|

�
Ω

φpA : D2(up − v) dx

=

�
Ωr

fp
(
S′u∞v − g∞

)
dx+

�
Ωr

fp

(
S′upv − S

′
u∞v − gp + g∞

)
dx

+

�
Ω\Ωr

fp

(
S′upv − gp

)
dx− 2σ|Ω|

�
Ω

φpA : D2(up − v) dx

≤ ε|Ω|+
�

Ωr

fp

(
S′upv − S

′
u∞v − gp + g∞

)
dx

+

�
Ω\Ωr

fp

(
S′upv − gp

)
dx+ 2σ|Ω|ap ‖A : D2(up − v)‖Lp0 (Ω).

Letting p→∞, we note that S′upv → S′u∞v and gp → g∞ uniformly in Ω, while

lim sup
p→∞

‖fp‖L1(Ω) <∞

by (4.6). Furthermore, we know that ap → 0, while A : D2up is uniformly bounded in Lp0(Ω). We further know
that fpk → f∞ in L1(Ω \ Ωr). Hence

|Ω|(e∞ − ε) ≤
�

Ω\Ωr
f∞(S′u∞v − g∞) dx.

Choosing ε < e∞, we conclude that the integral on the right-hand side does not vanish. Hence f∞ 6≡ 0, and this
concludes the proof.
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5. Examples

The condition for admissible operators in Definition 1.3 often follows from standard estimates for linear
operators. For semilinear ones, some additional arguments are sometimes required. In this section, we consider
two examples. We restrict our attention to operators of the form

S(u) = ∆u+ g(u)

for some function g ∈ C2(R) here. We show that S is admissible if either g has the correct sign or satisfies a
suitable growth condition.

Proposition 5.1. If yg(y) ≤ 0 for all y ∈ R, then S is admissible.

Proof. Choose any p0 > n/2. Given u0 ∈ W2,∞(Ω), let

α = sup
x∈∂Ω

|u0(x)|.

Suppose that u ∈ u0 +W2,∞
0 (Ω) satisfies ‖S(u)‖Lp(Ω) ≤ Λ for some p ≥ p0. Then ‖S(u)‖Lp0 (Ω) ≤ |Ω|1/p0−1/pΛ

by Hölder’s inequality. We now solve the boundary value problem

∆w = −|S(u)| in Ω,

w = α on ∂Ω.

Then w ≥ α by the maximum principle. Furthermore, using Lp-estimates for the Laplacian and the Sobolev
embedding theorem, we see that w is bounded by a constant that depends only on n, Ω, p0, u0, and Λ.

In the set {x ∈ Ω | u(x) > 0}, we have the inequality

∆u = S(u)− g(u) ≥ S(u) ≥ ∆w.

Hence the comparison principle implies that u ≤ w in Ω.
Similarly, we show that u is bounded from below by a constant depending only on n, Ω, p0, u0, and Λ. The

condition from Definition 1.3 then follows with standard elliptic estimates.

For our second example, we assume that

lim
y→±∞

yg(y)� y
0
g(t) dt

= α. (5.1)

That is, the function g has asymptotic growth at ±∞ like y 7→ cyα−1 for some c ∈ R.

Proposition 5.2. Let n ≥ 3. Suppose that g satisfies (5.1) for some α ∈ [2, 2n
n−2 ). Then S is admissible.

Proof. Define

G(y) =

� y

0

g(t) dt.

Given β > α, inequality (5.1) implies that yG′(y) < βG(y) when |y| is sufficiently large. The Grönwall inequality
implies that there exists C1 > 0 with

G(y) ≤ C1(|y|β + 1)
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for all y ∈ R. Using (5.1) again, we find another constant C2 such that

|g(y)| ≤ C2(|y|β−1 + 1) (5.2)

for all y ∈ R.
Now suppose that u0 ∈ W2,∞(Ω) and consider u ∈ u0 +W2,∞

0 (Ω). We write ν for the outer normal vector
on ∂Ω and σ for the surface measure on ∂Ω. Then an integration by parts yields the identity

�
Ω

(|Du|2 − ug(u)) dx =

�
∂Ω

u0ν ·Du0 dσ −
�

Ω

uS(u) dx. (5.3)

We furthermore compute

div

(
(x ·Du)Du−

(
1

2
|Du|2 −G(u)

)
x

)
= (x ·Du)S(u)− n− 2

2
|Du|2 + nG(u).

Hence

�
Ω

(
n− 2

2
|Du|2 − nG(u)

)
dx =

�
Ω

(x ·Du)S(u) dx

−
�
∂Ω

(
(x ·Du0)(ν ·Du0)−

(
1

2
|Du0|2 −G(u0)

)
x · ν

)
dσ. (5.4)

Fix β ∈ (α, 2n
n−2 ). Then the combination of (5.3) and (5.4) implies that(
1

β
− n− 2

2n

) �
Ω

|Du|2 dx =

�
Ω

(
ug(u)

β
−G(u)

)
dx

−
�

Ω

(
1

β
uS(u) +

1

n
(x ·Du)S(u)

)
dx+

1

β

�
∂Ω

u0ν ·Du0 dσ

+
1

n

�
∂Ω

(
(x ·Du0)(ν ·Du0)−

(
1

2
|Du0|2 −G(u0)

)
x · ν

)
dσ. (5.5)

Under the assumptions of the proposition, we know that yg(y) ≤ βG(y) whenever |y| is sufficiently large.
Hence there exists some constant C3, depending only on g, such that

�
Ω

(
ug(u)

β
−G(u)

)
dx ≤ C3|Ω|.

The boundary integrals in (5.5) depend only on n, Ω, u0, g, and β. Hence there exists C4 = C4(n,Ω, u0, g, α)
such that

�
Ω

|Du|2 dx ≤ C4

(
‖S(u)‖L2(Ω)‖u‖W 1,2(Ω) + 1

)
.

From this and the Poincaré inequality, we derive the estimate

‖u‖W 1,2(Ω) ≤ C5

(
‖S(u)‖L2(Ω) + 1

)
for a constant C5 with the same dependence.
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Fix p0 > n and consider p ≥ p0. If we assume that

‖S(u)‖Lp(Ω) ≤ Λ,

then we can now use standard bootstrapping arguments to derive higher estimates. Since the growth of g
described in (5.2) is subcritical for the purpose of such estimates, we will eventually obtain a bound for ‖u‖W 2,p(Ω)

that depends only on n, Ω, u0, g, p, and Λ. Hence S is admissible.
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