
Cost-aware cloud workflow scheduling
using DRL and simulated annealing
Article

Published Version

Creative Commons: Attribution 4.0 (CC-BY)

Open Access

Gu, Y., Cheng, F., Yang, L., Xu, J. ORCID:
https://orcid.org/0009-0009-2964-8971, Chen, X. ORCID:
https://orcid.org/0000-0001-9267-355X and Cheng, L. ORCID:
https://orcid.org/0000-0003-1638-059X (2024) Cost-aware
cloud workflow scheduling using DRL and simulated
annealing. Digital Communications and Networks, 10 (6). pp.
1590-1599. ISSN 2352-8648 doi: 10.1016/j.dcan.2023.12.009
Available at https://centaur.reading.ac.uk/115740/

It is advisable to refer to the publisher’s version if you intend to cite from the
work. See Guidance on citing .

To link to this article DOI: http://dx.doi.org/10.1016/j.dcan.2023.12.009

Publisher: Elsevier

All outputs in CentAUR are protected by Intellectual Property Rights law,
including copyright law. Copyright and IPR is retained by the creators or other
copyright holders. Terms and conditions for use of this material are defined in
the End User Agreement .

www.reading.ac.uk/centaur

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence

CentAUR

Central Archive at the University of Reading
Reading’s research outputs online

Digital Communications and Networks 10 (2024) 1590–1599

Contents lists available at ScienceDirect

Digital Communications and Networks

journal homepage: www.keaipublishing.com/dcan

Cost-aware cloud workflow scheduling using DRL and simulated annealing

Yan Gu a, Feng Cheng b,∗, Lijie Yang a, Junhui Xu a, Xiaomin Chen c, Long Cheng a

a School of Control and Computer Engineering, North China Electric Power University, Beijing 100026, China
b School of Mathematics, Southwest Jiaotong University, Chengdu 610032, China
c Department of Computer Science, University of Reading, Reading RG6 6AH, UK

A R T I C L E I N F O A B S T R A C T

Keywords:

Cloud computing

Deep reinforcement learning

Simulated annealing algorithm

Job scheduling

Workflow

Cloud workloads are highly dynamic and complex, making task scheduling in cloud computing a challenging
problem. While several scheduling algorithms have been proposed in recent years, they are mainly designed to
handle batch tasks and not well-suited for real-time workloads. To address this issue, researchers have started
exploring the use of Deep Reinforcement Learning (DRL). However, the existing models are limited in handling
independent tasks and cannot process workflows, which are prevalent in cloud computing and consist of related
subtasks. In this paper, we propose SA-DQN, a scheduling approach specifically designed for real-time cloud
workflows. Our approach seamlessly integrates the Simulated Annealing (SA) algorithm and Deep Q-Network
(DQN) algorithm. The SA algorithm is employed to determine an optimal execution order of subtasks in a cloud
server, serving as a crucial feature of the task for the neural network to learn. We provide a detailed design
of our approach and show that SA-DQN outperforms existing algorithms in terms of handling real-time cloud
workflows through experimental results.
1. Introduction

Cloud computing has revolutionized the delivery of computing ser-

vices over the Internet. Its flexibility, scalability, and high performance
have led to rapid development in the field of information technology
and made it one of the most promising techniques in today’s business
world. Infrastructure-as-a-Service (IaaS) is a cloud service model that
provides businesses with powerful computing and storage resources,
allowing enterprises to deploy and run their online services in a conve-

nient and cost-efficient manner [1]. As a result, more and more compa-

nies are utilizing cloud computing as their service platforms, leading to
the development of increasingly complex cloud-based services [2].

Effective task scheduling strategies are critical in cloud computing
to efficiently dispatch computing tasks to a resource pool of Virtual
Machines (VMs), given that scheduling directly affects service perfor-

mance and operational costs [3]. Despite significant attention from both
academia and industry in recent years, most cloud task scheduling ap-

proaches focus on handling batch tasks rather than real-time tasks [4],
such as transactional workloads [5] that are common in various do-

mains such as e-commerce, with no fixed task arrival patterns. Service
providers may experience performance degradation due to the insta-

bility of such workloads [6]. As cloud computing is market-oriented,

* Corresponding author.

advanced task scheduling strategies that can effectively handle such
real-time tasks are required to maximize resource utilization, reduce
costs, and improve service quality.

Workflows are a prevalent computational model extensively used
in various scientific domains and applications [7]. Workflows are typ-

ically modeled as Directed Acyclic Graphs (DAGs) and can be broken
down into a set of related subtasks. Consequently, the cloud workflow
scheduling problem is more intricate than general task scheduling and
remains a significant challenge. Unlike independent tasks, which are
typically isolated, subtasks within a workflow are dependent on each
other, making it difficult to optimize resource utilization and reduce
costs while maintaining high performance. Workflow scheduling, as an
NP-hard problem, has consistently been a crucial research topic in the
field. In cloud computing, workflow scheduling refers to the process of
entailing the allocation of tasks to suitable VMs and executing them.
The objective of this paper is to investigate a highly efficient real-time
workflow scheduling framework capable of adapting to diverse work-

loads.

Numerous advanced workflow scheduling methods have been pro-

posed in the literature to handle the challenges of workflow scheduling
in cloud computing. Metaheuristic algorithms are a typical approach
that is easy to implement, presents low computational complexity,
Available online 2 January 2024
2352-8648/© 2024 Published by Chongqing University of Posts and Telecom
(http://creativecommons.org/licenses/by/4.0/).

E-mail address: chengfeng2013@swjtu.edu.cn (F. Cheng).

https://doi.org/10.1016/j.dcan.2023.12.009

Received 31 March 2023; Received in revised form 5 December 2023; Accepted 27 D
munications. This is an open access article under the CC BY license

ecember 2023

http://www.ScienceDirect.com/
http://www.keaipublishing.com/dcan
mailto:chengfeng2013@swjtu.edu.cn
https://doi.org/10.1016/j.dcan.2023.12.009
https://doi.org/10.1016/j.dcan.2023.12.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dcan.2023.12.009&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Y. Gu, F. Cheng, L. Yang et al.

and can provide near-optimal solutions, making them widely used
in workflow scheduling. For instance, Simulated Annealing (SA), Ant
Colony Optimization (ACO), Particle Swarm Optimization (PSO), and
other nature-inspired methods have been utilized for workflow schedul-

ing [8]. However, most of the existing approaches are designed for
specific workloads or metrics, such as satisfying user-defined deadlines
with minimal costs [9] or minimizing makespans [10]. Few methods
have considered real-time cases, in which workflows could be submit-

ted by different users at any time, and users may have unique ser-

vice requirements. This makes real-time workflow scheduling in cloud
computing a challenging problem, requiring the development of new
approaches that can handle the complexity and dynamic nature of real-

time workflows.

As mentioned above, the challenges in real-time workflow schedul-

ing encompass more than just considering task dependencies, resource
constraints, and uncertainties to enhance workflow performance and re-

liability. It is equally important to account for real-time requirements,
such as the unique service demands of users. To address the challenges
of real-time workflow scheduling in cloud computing, we propose a
novel intelligent cloud workflow scheduling framework called SA-Deep
Q-Network (SA-DQN). The framework is based on the seamless integra-

tion of SA [11] and Deep Reinforcement Learning (DRL) [12]. SA-DQN
can learn effective scheduling strategies to optimize both the Quality of
Service (QoS) and monetary costs on VMs in an automatic way. DRL
is a popular machine learning technique that allows an agent to learn
how to solve complex control problems by interacting with systems. We
leverage DRL to handle the real-time workflows in cloud computing.
Furthermore, the SA algorithm is utilized to obtain an optimal execu-

tion order of sub-tasks in a cloud server. This execution order is used as
a key characteristic of the task so that the DRL agent can learn and opti-

mize the scheduling strategy effectively. By combining SA and DRL, our
proposed framework can address the complexity and dynamic nature of
real-time workflow scheduling in cloud computing, while maximizing
resource utilization and minimizing operational costs.

In general, the main contributions of this paper can be summarized
as follows:

• We propose a DRL-based scheduling algorithm to address the real-

time scheduling problem of concurrent workflow-type tasks.

• We integrate metaheuristics with DRL-based scheduling in a seam-

less way, and use the SA algorithm as a case to extract the features
of tasks and cloud servers for facilitating the learning steps in DRL-

based algorithm.

• We compare our method with some other real-time scheduling
algorithms, and the experimental results show that our method out-

performs the other algorithms on costs and job completion time
under different workflow loads and VM configurations.

The remainder of this paper is organized as follows. Section 2 re-

views the related work. Section 3 introduces the system model and
the workflow scheduling problem for the cloud-based application. Sec-

tion 4 presents the implementation of our proposed SA-DQN algorithm.
Section 5 reports the performance evaluation for our approach, and Sec-

tion 6 concludes this paper with remarks on our future work.

2. Related work

Task scheduling is widely recognized as a critical and challeng-

ing problem in various domains like IoT, edge, and cloud comput-

ing [23,24]. Over the past few years, numerous advanced algorithms
have been proposed to tackle cloud task scheduling. For instance, [15]

introduces an efficient search algorithm based on the Markov deci-

sion process. The authors in [25] propose a dynamic task scheduling
algorithm employing a two-stage strategy. Additionally, [26] explores
the application of the Whale Optimization Algorithm (WOA) in cloud
1591

task scheduling with multi-objective optimization. However, these al-
Digital Communications and Networks 10 (2024) 1590–1599

gorithms primarily focus on scheduling independent tasks. As the com-

plexity of applications increases, there is a growing research interest
in workflow scheduling [27], aiming to enhance cloud service perfor-

mance through relevant scheduling strategies. In this context, our paper
contributes to the field by focusing on designing scheduling methods
specifically tailored for workflows.

Workflows are commonly used to describe data-intensive applica-

tions, and scheduling them poses a challenging problem in the field of
research. Task dependencies, resource constraints, and execution time
are crucial factors considered during workflow scheduling. Numerous
studies have explored the application of various heuristic algorithms
to address these challenges. Notable heuristic algorithms employed for
solving workflow scheduling problems include PSO [13], ACO [14],
and Genetic Algorithms (GA) [15]. Additionally, in [16], a fuzzy-

dominance-based Heterogeneous Earliest Finish Time (HEFT) algorithm
is proposed. The authors in [28] introduce a hybrid heuristic algo-

rithm based on enhanced task-type priorities for workflow scheduling in
deadline-constrained cloud environments. In contrast to the aforemen-

tioned approaches that solely rely on heuristic algorithms, this paper
combines heuristic algorithms and DRL to achieve efficient scheduling.

DRL has demonstrated its effectiveness in handling highly dynamic
and complex environments, making it a popular choice for address-

ing intricate decision-making problems, such as vehicle control [29]

and network optimization [30]. Given these advantages, an increasing
number of researchers are adopting DRL as a scheduling strategy for
workflows. For example, [17] proposes an algorithm that leverages DRL
to enhance near-end policy optimization techniques, tackling a complex
workflow scheduling problem in edge-cloud environments. The authors
in [18] formulate the workflow scheduling problem as a multi-objective
optimization challenge, introducing a design scheme based on DRL to
address the dynamic and evolving system scheduling decisions. Addi-

tionally, [31] presents a two-step service offloading approach based
on DRL, aiming to reduce the costs associated with edge servers. Fur-

thermore, [19] proposes a DRL-based workflow scheduling method that
considers changes in the network and machine states in the cloud, with
the objective of minimizing the workflow makespan. However, most of
the aforementioned scheduling algorithms do not specifically consider
real-time workflows.

In recent years, the design of real-time workflow scheduling has gar-

nered significant attention. For instance, [20] proposes an improved
PSO-based algorithm for real-time workflow scheduling, enabling adap-

tive optimization of resource utilization. The authors in [8] present a
real-time multi-workflow scheduling scheme that dynamically sched-

ules workflows with minimal costs under different deadline constraints.
Additionally, [21] develops a deadline-aware heuristic algorithm for
scheduling workflows with uncertain task execution time and random
arrivals. Furthermore, [22] introduces a dynamic workflow scheduling
algorithm that strikes a balance between the costs, system resource uti-

lization, and deviations.

Table 1 provides a summary of the key characteristics of the lit-
erature related to workflow scheduling. They are primarily divided
into real-time workflows and batch workflows. In contrast to these
approaches based solely on heuristic algorithms or DRL, this paper
proposes an algorithm that combines heuristic algorithms and DRL to
design a scheduling algorithm specifically tailored for real-time work-

flows. The SA algorithm determines the optimal execution order of
sub-tasks within each workflow, consequently optimizing the overall
workflow execution time. Subsequently, DRL is utilized to allocate the
entire workflow to the most suitable VM.

3. System model

This section introduces cloud scheduling and the system model used
in this study. To facilitate the presentation, we provide a list of the

notations used in Table 2.

Digital Communications and Networks 10 (2024) 1590–1599Y. Gu, F. Cheng, L. Yang et al.

Table 1

Typical methods for compressing smart meter data in literature.

Reference Job type Scheduling method Optimization objective

M. H. Shirvani et al. [13] Batch workflow Particle swarm optimization Makespan

Y. H. Jia et al. [14] Batch workflow Ant colony optimization Total cost and execution time

H. Y. Shishido et al. [15] Batch workflow Particle swarm and genetic optimization Execution cost and execution time

X. Zhou et al. [16] Batch workflow Fuzzy dominance sort Cost and makespan

A. Jayanetti et al. [17] Batch workflow Deep reinforcement learning Makespan and energy consumption

R. Xie et al. [18] Batch workflow Deep reinforcement learning Time and energy consumption

Y. Xiang et al. [19] Batch workflow Deep reinforcement learning Makespan

P. Guo et al. [20] Real-time workflow Particle swarm optimization Cost and makespan

X. Ma et al. [8] Real-time workflow Dynamic programming Rental cost

J. Liu et al. [21] Real-time workflow Dynamic programming Monetary cost

H. Chen et al. [22] Real-time workflow Dynamic programming Cost and resource utilization

Fig. 1. The cloud workflow task scheduling system.
Table 2

The used notations.

Notation Meaning

𝐽𝐼𝐷 ID of a job

𝐽𝑆𝐸 Subtask evaluation array

𝐽𝑆𝑅𝑀 Subtask relationship matrix

𝑄𝑜𝑆 Expected response time of users

𝑉𝑀𝐼𝐷 ID of a cloud instance

𝑉𝑀𝐶𝑂𝑀 Amount of computing in a cloud instance computing unit

𝑉𝑀𝑁𝐶𝑈 Number of cloud instance computing units

𝑉𝑀𝐶𝑂𝑆𝑇 Costs of cloud instances

𝑇𝑟𝑒𝑝 Response time of a job

𝑇𝑒𝑥𝑒 Execution time of a job

𝑇𝑤𝑎𝑖𝑡 Wait time of a job

𝑆𝐽𝑖 ID of the ith subtask

Δ𝑓 Cost function difference

𝑝 Probability that SA receives a new solution

3.1. System architecture

To streamline the cloud environment, we categorize it into 3 layers:
IaaS providers, application vendors, and end-users. In this setup, an ap-

plication vendor rents a number of VM instances from an IaaS provider
and deploys its service on the VMs. When a user submits a request to the
online service, a complex job is generated. Upon the arrival of a work-

flow, a metaheuristic algorithm (i.e., SA) is used to obtain the optimal
subtask execution order. The workflow is then sent to the queue of an
assigned VM instance for execution. Without loss of generality, we as-

sume that each VM contains a set of computing cores, and each core can
handle only 1 subtask at a time. The role of the scheduler, as explored
1592

in this research, is to minimize costs while guaranteeing QoS [32].
The general system architecture for cloud workflow scheduling is
illustrated in Fig. 1. When a job (i.e., workflow) arrives, the job infor-

mation and current VM instances are fed into the feature extractor. The
scheduler then sends the job to the queue of a specified instance based
on the extracted characteristics and optimization objectives. Each job
will have to wait until the previous job in the same queue is completed.

3.2. Scheduling model

3.2.1. Workflow characteristics

To execute a workflow, it is essential to understand the interdepen-

dencies between sub-tasks. For instance, some sub-tasks can only be
executed after the completion of other specific sub-tasks, known as pre-

conditions. By organizing subtasks into layers, we can formulate the
structure of the subtasks. As an example, consider Fig. 2, where sub-

tasks 2 and 3 depend on the execution of subtask 1. This allows us
to obtain topological relationships among subtasks, which can be rep-

resented using matrices. Based on this, an arriving workflow can be
represented as

𝐽𝑜𝑏𝑖 =
{
𝐽𝐼𝐷,𝐽𝑆𝐸, 𝐽𝑆𝑅𝑀,𝑄𝑜𝑆

}
(1)

where 𝐽𝐼𝐷 is the job’s identification, 𝐽𝑆𝐸 is an array that records
the amount of required computation for each subtask, measured in
points [26], 𝐽𝑆𝑅𝑀 is the relation matrix of subtasks, and 𝑄𝑜𝑆 is the
expected response time from the user.

3.2.2. Cloud instances

In practical cloud computing scenarios, service providers rent cloud
instances to deploy their applications. In the context of our study, we

consider the cloud instance model as a fundamental building block of

Y. Gu, F. Cheng, L. Yang et al.

Fig. 2. An example of a workflow structure.

the cloud system. The computing power of an instance depends on the
number and performance of its cores. We assume that a service provider
has reserved a limited number of VM instances from the resource pool
and utilizes them in an on-demand manner. For each instance, we pro-

vide the following definition.

𝑉𝑀𝑗 =
{
𝑉𝑀𝐼𝐷,𝑉 𝑀𝐶𝑂𝑀,𝑉𝑀𝑁𝐶𝑈 ,𝑉 𝑀𝐶𝑂𝑆𝑇

}
(2)

where 𝑉𝑀𝐼𝐷 denotes the ID of the cloud instance, 𝑉𝑀𝐶𝑂𝑀 repre-

sents the computing capability (in points) for each computing unit or
core of the cloud instance, 𝑉𝑀𝑁𝐶𝑈 denotes the number of cores, and
𝑉𝑀𝐶𝑂𝑆𝑇 represents the usage cost of the cloud instance.

3.2.3. Workflow scheduling mechanism

The scheduler is responsible for allocating workflows to suitable
VMs. When a workflow arrives, the SA algorithm is used to obtain
the optimal sub-task execution order. The scheduler determines the in-

stance to which the workflow should be assigned based on the time
dimension feature obtained from the execution order. Once a workflow
is assigned, the included subtasks are added to the task queue of the
instance following the previously calculated optimal order.

Task response time 𝑇𝑟𝑒𝑝 can be defined as

𝑇𝑟𝑒𝑝 = 𝑇𝑒𝑥𝑒 + 𝑇𝑤𝑎𝑖𝑡 (3)

where 𝑇𝑒𝑥𝑒 is the execution time of the workflow obtained by the SA
algorithm, and 𝑇𝑤𝑎𝑖𝑡 is the period from the arrival time point of the
workflow to the beginning time point of the execution. The waiting
time 𝑇𝑤𝑎𝑖𝑡

𝑖
of a workflow can be calculated as

𝑇𝑤𝑎𝑖𝑡
𝑖

=

{∑𝑠

𝑖=0 𝑇
𝑒𝑥𝑒
𝑖
, if 𝑠 > 0

0, if 𝑠 = 0
(4)

where 𝑠 is the location of the instance queue assigned by the task. In
essence, the waiting time of a workflow is equal to the sum of the ex-

ecution time of all preceding workflows in the queue. If there is no
workflow in the queue at the time the workflow is submitted, the wait
time is 0.

3.3. Workflow time feature extraction using SA

In a DRL-based method, the DRL agent needs to learn the charac-

teristics of workflows and VMs in the cloud system to make a decision,
and this requires an awareness of the state space of the environment.
However, using a task relation matrix with the amount of computa-

tion of each task, the configurations and queue information of each VM
as the state space would result in a huge feature space for the neural
network of the DRL agent to learn, leading to long learning time and
convergence problems. To address this, we propose to use the optimal
execution time of a workflow on a cloud server as its feature, which can
1593

be used to define the required state space.
Digital Communications and Networks 10 (2024) 1590–1599

The SA algorithm is utilized to extract workflow features. Our
scheme is also compatible with other metaheuristics methods, provid-

ing users with the flexibility to choose the most suitable approach for
their specific requirements. To begin with, we employ the SA algo-

rithm to establish the optimal execution order of subtasks within the
workflow. Subsequently, based on this determined order, we derive the
corresponding optimal execution time. This time, considered a signif-

icant feature of the workflow, plays a crucial role in subsequent task
scheduling processes. Specifically, we denote the subtasks of a work-

flow as
{
𝑆𝐽2, 𝑆𝐽0, 𝑆𝐽1, ..., 𝑆𝐽𝑁

}
, where 𝑆𝐽𝑖 is the ID of subtask 𝑖. The

SA algorithm model for solving the optimal subtask execution order is
as follows.

3.3.1. Solution space

Solution space 𝑆 refers to the set of all possible execution orders
that can successfully execute each task. A solution can be expressed as
a route list, denoted as 𝑟𝑜𝑢𝑡𝑒𝐿𝑖𝑠𝑡𝑖 =

{
𝑆𝐽2, 𝑆𝐽0, 𝑆𝐽1, .., 𝑆𝐽𝑁

}
, which in-

dicates the order in which the subtasks are to be executed. Specifically,
𝑆𝐽2 is executed first, followed by other subtasks, until 𝑆𝐽𝑁 is com-

pleted. In this case, we define the execution order of subtasks as

𝑟𝑜𝑢𝑡𝑒𝐿𝑖𝑠𝑡𝑖 =
{
𝑆𝐽2, 𝑆𝐽0, 𝑆𝐽1, .., 𝑆𝐽𝑁

}
(5)

3.3.2. Objective function

The objective function can be defined as the total time required to
execute all subtasks in the current order, which is also known as the
cost function.

𝑡𝑜𝑡𝑎𝑙𝑇 𝑖𝑚𝑒𝑖 = getTexe(𝑟𝑜𝑢𝑡𝑒𝐿𝑖𝑠𝑡𝑖) (6)

where getTexe computes the time required to complete all subtasks fol-

lowing a given execution order 𝑆 . The optimal execution order is the
one that results in the minimum value of the objective function.

3.3.3. New path generation

One way to generate a new subtask execution order is randomly
selecting two subtasks of a workflow and swapping their positions to
form a new order.

3.3.4. Cost function difference

Δ𝑓 = 𝑡𝑜𝑡𝑎𝑙𝑇 𝑖𝑚𝑒𝑛+1 − 𝑡𝑜𝑡𝑎𝑙𝑇 𝑖𝑚𝑒𝑛 (7)

where 𝑡𝑜𝑡𝑎𝑙𝑇 𝑖𝑚𝑒𝑛 is the time to complete all subtasks on the 𝑛-th path.
Δ𝑓 is the difference of the total execution time between two solutions,
and then the acceptance probability 𝑃 of the system from order 𝑛 to
𝑛 + 1 is calculated by

𝑃 =

{
1, Δ𝑓 ≥ 0

𝑒
−Δ𝑓
𝑇 , Δ𝑓 < 0

(8)

Here, 𝑇 is the current temperature. When Δ𝑓 ≥ 0, the new solution is
directly accepted; otherwise, the new solution is accepted with proba-

bility 𝑃 to avoid falling into local optima.

4. The proposed SA-DQN

In this section, we present the proposed SA-DQN method and pro-

vide a detailed description of its implementation.

4.1. Background of DRL

DRL is a type of machine learning that utilizes interactive strategies
to solve problems within an environment [33]. The fundamental com-

ponents of the RL system consist of the agent, state, action, reward, and
environment. The agent acquires information from the environment and
perceives the current state 𝑠𝑡. Based on this information, the agent se-
lects an action from a given action space. The agent’s action changes

Digital Communications and Networks 10 (2024) 1590–1599Y. Gu, F. Cheng, L. Yang et al.

Fig. 3. The framework of SA-DQN.
the state of the environment via a state transfer function and receives
a reward. Through continuous interactions with the environment and
the receipt of rewards, the agent can learn and adapt decision-making
strategies that maximize cumulative rewards.

Q-learning is a popular RL algorithm used to make rational decisions
based on experiences. It involves an agent saving a value 𝑄(𝑠, 𝑎) for
each state 𝑠 and its corresponding action 𝑎, representing the expected
income obtained by taking action 𝑎 at a certain time. The agent can use
a value function to estimate the 𝑄 value of each action in the current
state and make a decision action to maximize the long-term reward.
After each action, the value function is updated iteratively using the
following expression:

𝑄(𝑠, 𝑎)←𝑄′(𝑠, 𝑎) + 𝛼[𝑟+ 𝛾 ∗𝑚𝑎𝑥𝑎′𝑄(𝑠′, 𝑎′)] (9)

where 𝛼 𝜖 [0, 1] is the learning rate, 𝑟 is the reward after taking an
action, 𝛾 𝜖 [0,1] is the discount factor, 𝑄(𝑠, 𝑎) represents the new 𝑄
value, 𝑄′(𝑠, 𝑎) represents the old 𝑄 value.

However, the traditional Q-learning algorithm has performance is-
sues when dealing with complex problems with high-dimensional state
and action spaces. To address this, the Deep Q-Network (DQN) uses a
Deep Neural Network (DNN) to establish the correlation between each
state-action pair and its associated value function. This allows for more
efficient learning and decision-making. A diagram of the relevant DRL
method is demonstrated in Fig. 3.

4.2. Introduction of SA

Our study utilizes the SA algorithm [34] to extract the time-

dimension features of a workflow. The SA method is based on the
principle of solid annealing, where a solid is heated to a high tem-

perature and then gradually cooled. As the temperature increases, the
particles become disordered, leading to an increase in internal energy.
Conversely, as the particles cool, they become ordered and reach equi-

libriums at each temperature. At room temperature, the particles reach
1594

the ground state, minimizing the internal energy.
Algorithm 1 Simulated annealing.

1: Initialize temperature T (sufficiently large), initial solution state S (BestTime expected
execution time in random subtask execution sequence), iteration times of each T value
L.

2: Input: 𝐽𝑜𝑏𝑖 , 𝑉𝑀𝑗

3: if 𝑇 < 𝑇𝑚𝑖𝑛 then

4: Probability p of accepting the inferior solution is calculated based on the current
temperature. The lower the temperature T is, the smaller p is.

5: for k=1, k < L; k++ do

6: The execution sequence of the two subtasks is randomly swapped, and current-

Time is calculated;

7: if currentTime < BestTime then

8: Accept new solutions;

9: else

10: Accept the new solution based on probability P;

11: end if

12: end for

13: Perform cooling operation;

14: end if

15: Return the optimal solution;

The SA algorithm begins with a higher initial temperature and ex-

plores the global optimal solution of the objective function randomly
by decreasing the temperature parameters while utilizing the probabil-

ity jump characteristic. This approach enables the algorithm to escape
local optimal solutions and converge to the global optimal solution. The
detailed implementation of the algorithm is presented in Algorithm 1.

4.3. SA-DQN for workflow scheduling

In our workflow scheduling approach for cloud instances, we begin
by utilizing the SA algorithm to determine the optimal execution time
of the workflow on each cloud instance. Subsequently, we incorporate
the execution time as a feature of the workflow in the state space of the
scheduling system and feed them to the DRL model for training.

4.3.1. Action space

As described in the system scheduling model discussed in Section 3,

a batch of cloud instances is rented, and a random number of workflows

Y. Gu, F. Cheng, L. Yang et al.

arrive at each time point. The goal of our scheduling approach is to
allocate each workflow to a designated instance. Therefore, the action
space of the DRL model is defined as follows:

𝑎 =
[
𝑉𝑀1, 𝑉 𝑀2, ..., 𝑉 𝑀𝑁

]
(10)

where 𝑉𝑀𝑖 represents the 𝑖-th cloud instance.

4.3.2. State space

When a user submits a workflow job, we employ the SA algorithm
to obtain the optimal execution time of the job on each cloud instance.
Specifically, for a given 𝐽𝑜𝑏𝑗 and a virtual machine 𝑉𝑀𝑖, we obtain the
execution time 𝑇 𝑒𝑥𝑒

𝑗
using the following equation.

𝑇 𝑒𝑥𝑒
𝑗

= simulateAnnea(𝐽𝑜𝑏𝑗 , 𝑉 𝑀𝑖) (11)

In the equation above, simulateAnnea represents the SA function uti-

lized to calculate the job execution time. Using this approach, when a
workflow 𝑗 arrives at time 𝑇𝑗 , we can define the state of the system as
follows, including both the states of the workflows and underlying VMs.

𝑆𝑡𝑗 =
[
𝑇 𝑒𝑥𝑒
𝑗1 , 𝑇

𝑒𝑥𝑒
𝑗2 , ..., 𝑇

𝑒𝑥𝑒
𝑗𝑛
, 𝑇 𝑤𝑎𝑖𝑡
𝑗1 , 𝑇 𝑤𝑎𝑖𝑡

𝑗2 , ..., 𝑇 𝑤𝑎𝑖𝑡
𝑗𝑛

]
(12)

where 𝑇 𝑒𝑥𝑒
𝑗𝑛

represents the optimal execution time of workflow 𝑗 on the
𝑛-th cloud instance, 𝑇𝑤𝑎𝑖𝑡

𝑗𝑛
is the waiting time of the 𝑛-th VM when job

𝑗 arrives.

4.3.3. Reward function

Rewards play a crucial role in guiding agents to make effective de-

cisions to achieve our scheduling goals. Specifically, our objective is
to minimize the cost of job execution while satisfying the user’s 𝑄𝑜𝑆𝑗 ,
which is defined as the level of satisfaction of the user expressed as the
proportion of the total execution time to total response time. Therefore,
we can define 𝑄𝑜𝑆𝑗 as follows:

𝑄𝑜𝑆𝑗 =
𝑇 𝑒𝑥𝑒
𝑗

𝑇
𝑟𝑒𝑝

𝑗

(13)

where 𝑇 𝑟𝑒𝑝
𝑗

is the response time of job 𝑗, and 𝑇 𝑒𝑥𝑒
𝑗

is the total execution
time of 𝑗. For 𝑗, we define the reward as

𝑟 =𝑄𝑜𝑆𝑗 + 𝑒
−𝑉𝑀𝐶𝑂𝑆𝑇 ∗𝑇 𝑒𝑥𝑒𝑗 (14)

Here, 𝑉𝑀𝐶𝑂𝑆𝑇 represents the cost per unit time of the cloud instance,
and 𝑇 𝑒𝑥𝑒

𝑗
denotes the execution time of the job. Consequently, expres-

sion 𝑉𝑀𝐶𝑂𝑆𝑇 ∗ 𝑇 𝑒𝑥𝑒
𝑗

signifies the execution cost of 𝑗. It is evident that
the design of the reward function aligns with our optimization goals.
Specifically, lower execution costs and higher QoS for the workflow
will result in higher rewards. This incentivizes the agent to make deci-

sions that minimize the cost of job execution while ensuring the timely
completion of tasks, which is essential for satisfying 𝑄𝑜𝑆𝑗 .

4.4. Model training

In a DQN algorithm, the DRL agent needs to select an appropriate
action based on the estimated 𝑄 value derived from the DNN when
making a decision given the current state. During the training process
presented in Algorithm 2, we employ the 𝜉 − 𝑔𝑟𝑒𝑒𝑑𝑦 strategy. Here, the
selection probability of random instances is set to 𝜉, while the selec-

tion probability of instances with higher 𝑄 values is set to 1 − 𝜉. This
probability decreases as training time increases until it reaches a min-

imum value 𝜉0. This approach encourages the DRL agent to initially
explore randomly and gradually favor actions that yield higher returns
as it learns.

In the DRL training process, the DNN learns from historical data to
obtain a more accurate 𝑄 function using the experience replay mech-

anism. For each action 𝑎𝑡 taken in state 𝑆𝑡, there is a corresponding
reward 𝑟𝑡 and the next state 𝑆𝑡+1. These values (𝑆𝑡, 𝑎𝑡, 𝑟𝑡, 𝑆𝑡+1) are
1595

stored and periodically updated randomly to train the DQN model.
Digital Communications and Networks 10 (2024) 1590–1599

Algorithm 2 The training process of the proposed SA-DQN.

1: Initialize 𝜀, 𝛼, 𝛾 learning frequency f, start learning time 𝜏 , minibatch SΔ, replay pe-

riod 𝜂.
2: Initialize Q(s,a) to 0;

3: for each episode do

4: Assign current state to 𝑠𝑡 ;
5: for each step of episode do

6: Choose an action (cloud instance) randomly with probability 𝜀, or choose
𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄(𝑠, 𝑎; 𝜃);

7: Add task t to instance queue;

8: Obtain reward r for action selected;

9: Update 𝑄(𝑠, 𝑎) ←𝑄′(𝑠, 𝑎) + 𝛼[𝑟 + 𝛾 ∗𝑚𝑎𝑥𝑎′𝑄(𝑠′, 𝑎′);
10: Update 𝑠𝑡 to 𝑠𝑡+1 ;

11: Update 𝜀;
12: Until state is the last state;

13: end for

14: end for

Table 3

Summary of VM configurations.

𝑉𝑀𝑖𝑑 CPU Num. CPU Com. Cost

1 3 50 6

2 3 100 9

3 4 100 12

4 3 200 15

5 4 200 20

6 3 500 33

5. Performance evaluation

In this section, we compare our algorithm with several widely used
real-time workflow scheduling methods, which have been convention-

ally employed in various scenarios.

5.1. Experimental framework

5.1.1. Simulation environment

The experiments are performed using the Python 3.8 environment
on an Intel(R) Core(TM) i5-8265U CPU platform. Referring to previous
work [35], we set up cloud instances that resemble the instances de-

fined by real-world IaaS providers. Specifically, we assume that we have
6 available VMs. These VMs are distinguished by their on-demand usage
cost, the number of CPUs or cores (i.e., CPU Num), and their computa-

tional performance (i.e., CPU Com). The configuration of the 6 instances
used in our experiments, unless otherwise stated, is presented in Ta-

ble 3. Moreover, to simulate a real-world scenario, we assign higher
costs to VMs with greater performance. Accordingly, we utilize 3 low-

cost instances, 2 medium-cost instances, and 1 high-cost instance. We
evaluate our approach using multiple types of workflows, and Fig. 4

depicts the three types used in our evaluations.

In our evaluation, we initialize the underlying DQN using a feedfor-

ward neural network consisting of a hidden layer with 50 neurons. The
replay memory is set to 500 and mini-batch is set to 30. The learning
rate is set to 0.01 and the target iteration is set to 50 decisions per set.
Moreover, other parameters are set to: 𝛾 = 0.9, 𝐹 = 1, 𝜏 = 500, and in
each learning iteration, 𝜉 decreases by 0.002 from 0.9.

5.1.2. Baseline solutions

To assess the performance of our SA-DQN, we compare it with 4
baseline methods: random scheduling, round-robin scheduling, earliest
scheduling, and SA-GA scheduling. The random scheduling approach
(referred to as Random) is a straightforward strategy that randomly se-

lects a VM instance for each job. The round-robin scheduling approach
(referred to as RR) aims to evenly distribute jobs across VM instances
by selecting them in a circular order. The earliest scheduling method
(referred to as Earliest) is a time-greedy approach in which incoming
jobs are allocated to the earliest idle VM instance. Hence, the earliest

scheduling method assigns new jobs to the VM instance with the short-

Y. Gu, F. Cheng, L. Yang et al.

Fig. 4. Three types of workflow tasks used in our evaluation.

est wait time [36]. SA-GA refers to an approach where the SA method is
employed to obtain the optimal execution time for workflows, and the
GA is used to schedule processed workflows. Within the context of the
GA, the optimization objective is to improve QoS.

5.2. Comparison of scheduling algorithms

5.2.1. Varying mean arrival rates

In this experiment, we evaluate the performance of the 5 methods
under varying levels of job arrival intensities (hereinafter referred to as
arrival rates). To this end, we classify the arrival rates into 4 scenarios:
0.1, 0.3, 0.5, and 0.7. A higher arrival rate signifies a greater frequency
of job arrivals. Additionally, we set the job size range to [200, 300], the
number of sub-tasks to [10, 20], and the depth to [2, 3].

In this paper, it is worth noting that the purpose of the SA algorithm
is to obtain features of the workflow. Therefore, the average response
time and cost of workflow scheduling reported in this study encompass
solely the process of scheduling the workflow onto the most appropri-

ate VM, excluding the invocation of the SA algorithm. The experimental
results are presented in Fig. 5, which show that our SA-DQN approach
significantly outperforms the other baseline methods. Fig. 5(a) demon-

strates that SA-DQN consistently achieves the shortest response time
among almost all methods. In Fig. 5(b), with the increase in the ar-

rival rate, the success rates of all algorithms exhibit a general decline.
Nevertheless, the SA-DQN algorithm consistently outperforms the other
algorithms, maintaining the highest success rate across all arrival rate
levels. Specifically, it approximately a approximately 50% improvement
compared to Random, around a 40% improvement compared to RR,
roughly a 20% improvement compared to Earliest, and about a 10%
improvement compared to SA-GA. Moreover, Fig. 5(c) indicates that
our approach can achieve the lowest average cost, and there is an over-

all upward trend in the average cost of all algorithms as the arrival rate
increases.

5.2.2. Varying numbers of VMs

In this experiment, we assess the performance of the 5 scheduling
algorithms with different numbers of VMs. The experimental outcomes
are illustrated in Fig. 6. We consider 4 distinct settings for the num-

ber of virtual machines: 8, 10, 12, and 14. The workloads and types of
workflows are consistent with the settings in Section 5.2.1. Addition-

ally, to ensure a fair comparison, we fix the job arrival rate at 0.5 in
this experiment.

Based on the results shown in Fig. 6, our proposed SA-DQN approach
consistently achieves optimal performance in terms of the average re-

sponse time, except when the number of VMs is 10. Furthermore, it
significantly outperforms other comparison algorithms in terms of the
success rate and average cost. Additionally, as the number of VMs in-

creases, all algorithms exhibit an initial decline followed by a tendency
to plateau or slightly increase in the average response time and av-

erage cost. In contrast, as for the success rate, they show an initial
increase followed by a region of plateau or even a slight decrease.
1596

From these observations, we can conclude that for workflow scheduling,
Digital Communications and Networks 10 (2024) 1590–1599

Fig. 5. Performance comparison by varying arrival rates.

appropriately increasing the number of VMs can enhance scheduling
performance. However, it is essential to note that blindly increasing the
number of VMs does not guarantee the optimal performance, and the
specific quantity should be determined based on the scenario and re-

quirements.

5.2.3. Varying workload complexities

In this experiment, we evaluate the performance of the 5 scheduling
methods under different workloads. We generate 3 types of workloads,
each with varying levels of complexities, as shown in Table 4. In our
study, we adopt a specific approach to generate the workflow struc-

ture. First, we randomly select the number of depths and the number
of subtasks within each depth from the predefined range. Subsequently,
we establish the dependencies between the subtasks through a random
process. Once the workflow structure is determined, we proceed to ran-
domly assign workloads to each subtask within the defined range. These

Y. Gu, F. Cheng, L. Yang et al.

Fig. 6. Performance comparison by varying numbers of VMs.

Table 4

Summary of different workloads.

Depths Number of subtasks Workload of subtasks

Workload 1 [2, 3] [5, 10] [100, 200]

Workload 2 [4, 5] [10, 20] [200, 300]

Workload 3 [6, 7] [20, 30] [300, 400]

workloads represent different workflows with different levels of com-

plexities. Without loss of generality, we set the arrival rate to 0.1, and
the results are reported in Fig. 7.

Based on the results depicted in Fig. 7, it is evident that as the
complexity of the workload increases, workflow scheduling methods
generally require higher average response time, lower success rates,
and higher average costs. However, regardless of the workload type,
1597

SA-DQN consistently achieves superior performance in terms of the av-
Digital Communications and Networks 10 (2024) 1590–1599

Fig. 7. Performance comparison among varying workloads.

erage response time, success rate, and average cost. Particularly, as for
the success rate, SA-DQN significantly outperforms other comparison
algorithms. Based on this, we can conclude that SA-DQN is capable of
adapting to workflows with varying complexities, ensuring consistent
and excellent performance.

5.2.4. Experiments on real-world workflows

To assess the practical applicability of our proposed method in
workflow scheduling, we conduct a comprehensive evaluation that in-

corporates real-world workflows. In this evaluation, we meticulously
generate a total of 500 workflows, with each workflow’s structure ran-

domly selected from the 3 structures illustrated in Fig. 8. These authen-

tic workflows are sourced from the well-established Pegasus project.
Our evaluation aims to gauge the effectiveness of the proposed algo-

rithm in comparison to other existing algorithms, under varying arrival

rate conditions. Specifically, we consider the arrival rates of 0.1, 0.3,

Y. Gu, F. Cheng, L. Yang et al.

Fig. 8. Three types of real-world work
0.5, and 0.7, enabling us to comprehensively analyze the algorithm’s
performance. The outcomes of our experiments are depicted in Fig. 9.

The results from Fig. 9 demonstrate that SA-DQN consistently out-

performs other comparison algorithms in terms of the average response
time, success rate, and average cost across all arrival rate levels. Particu-

larly noteworthy is its substantial advantage in the success rate, achiev-

ing approximately a 60% improvement compared to Random, about a
50% improvement compared to RR, roughly a 20% improvement com-

pared to Earliest, and approximately a 10% improvement compared to
SA-GA. Furthermore, as the arrival rate increases, all scheduling meth-

ods show an upward trend in the average response time and average
cost, while the success rates exhibit a declining trend. These observa-

tions lead to the conclusion that SA-DQN exhibits practical applicability
and reliability.

6. Conclusion

In this work, we propose SA-DQN, an effective approach for schedul-

ing real-time workflows in cloud computing. Our approach seamlessly
integrates metaheuristic and DRL algorithms to optimize job execution
costs while ensuring job response time and success rates. To facilitate
the DRL process, we employ the SA algorithm to extract task and cloud
server features. We provide a detailed implementation of our method,
and our experimental results demonstrate that SA-DQN outperforms ex-

isting approaches in the presence of different workloads. In future work,
we plan to employ a hierarchical structure with multiple DRL agents to
handle workflow scheduling problems in large-scale scenarios, such as
those with hundreds of cloud instances. This would enable us to fur-

ther improve the performance of SA-DQN and extend its applicability
to more complex cloud environments.

CRediT authorship contribution statement

Yan Gu: Conceptualization, Data curation, Formal analysis, Inves-

tigation, Methodology, Resources, Software, Validation, Visualization,
Writing – original draft, Writing – review & editing. Feng Cheng: Con-

ceptualization, Data curation, Supervision, Validation, Writing – review
& editing. Lijie Yang: Data curation, Formal analysis, Resources, Writ-

ing – review & editing. Junhui Xu: Data curation, Formal analysis,
Validation, Writing – review & editing. Xiaomin Chen: Investigation,
Validation, Visualization, Writing – review & editing. Long Cheng:

Conceptualization, Data curation, Formal analysis, Investigation, Val-

idation, Visualization, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
1598

the work reported in this paper.
Digital Communications and Networks 10 (2024) 1590–1599

flow tasks used in our evaluation.
Fig. 9. Performance comparison on real-world workflows.

Digital Communications and Networks 10 (2024) 1590–1599Y. Gu, F. Cheng, L. Yang et al.

Acknowledgements

This work was supported by the Fundamental Research Funds for
the Central Universities (2023JC004 and 2023YQ002).

References

[1] L. Cheng, B.F. van Dongen, W.M. van der Aalst, Scalable discovery of hybrid process
models in a cloud computing environment, IEEE Trans. Serv. Comput. 13 (2) (2019)
368–380.

[2] J. Liu, H. Shen, H. Chi, H.S. Narman, Y. Yang, L. Cheng, W. Chung, A low-cost
multi-failure resilient replication scheme for high-data availability in cloud storage,
IEEE/ACM Trans. Netw. 29 (4) (2020) 1436–1451.

[3] L. Cheng, A. Kalapgar, A. Jain, Y. Wang, Y. Qin, Y. Li, C. Liu, Cost-aware real-time
job scheduling for hybrid cloud using deep reinforcement learning, Neural Comput.
Appl. 34 (21) (2022) 18579–18593.

[4] Y. Mao, W. Yan, Y. Song, Y. Zeng, M. Chen, L. Cheng, Q. Liu, Differentiate quality
of experience scheduling for deep learning inferences with docker containers in the
cloud, IEEE Trans. Cloud Comput. 11 (2) (2022) 1667–1677.

[5] A. Tchernykh, U. Schwiegelsohn, V. Alexandrov, E.-g. Talbi, Towards understanding
uncertainty in cloud computing resource provisioning, Proc. Comput. Sci. 51 (2015)
1772–1781.

[6] Y. Yu, V. Jindal, I.-L. Yen, F. Bastani, Integrating clustering and learning for im-

proved workload prediction in the cloud, in: Proceedings of the 2016 IEEE 9th
International Conference on Cloud Computing, IEEE, 2016, pp. 876–879.

[7] Z. Zhao, A. Belloum, C. de Laat, P. Adriaans, B. Hertzberger, Distributed execution
of aggregated multi domain workflows using an agent framework, in: Proceedings
of the 2007 IEEE Congress on Services, IEEE, 2007, pp. 183–190.

[8] X. Ma, H. Xu, H. Gao, M. Bian, Real-time multiple-workflow scheduling in cloud
environments, IEEE Trans. Netw. Serv. Manag. 18 (4) (2021) 4002–4018.

[9] S. Abrishami, M. Naghibzadeh, D.H. Epema, Deadline-constrained workflow
scheduling algorithms for infrastructure as a service clouds, Future Gener. Comput.
Syst. 29 (1) (2013) 158–169.

[10] Y. Hu, C. de Laat, Z. Zhao, Learning workflow scheduling on multi-resource clusters,
in: Proceedings of the 2019 IEEE International Conference on Networking, Architec-

ture and Storage, IEEE, 2019, pp. 1–8.

[11] S.Z. Selim, K. Alsultan, A simulated annealing algorithm for the clustering problem,
Pattern Recognit. 24 (10) (1991) 1003–1008.

[12] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, D. Meger, Deep reinforce-

ment learning that matters, in: Proceedings of the AAAI Conference on Artificial
Intelligence, ACM, 2018, pp. 3207–3214.

[13] M.H. Shirvani, A hybrid meta-heuristic algorithm for scientific workflow scheduling
in heterogeneous distributed computing systems, Eng. Appl. Artif. Intell. 90 (2020)
103501.

[14] Y.-H. Jia, W.-N. Chen, H. Yuan, T. Gu, H. Zhang, Y. Gao, J. Zhang, An intelligent
cloud workflow scheduling system with time estimation and adaptive ant colony
optimization, IEEE Trans. Syst. Man Cybern. Syst. 51 (1) (2018) 634–649.

[15] H.Y. Shishido, J.C. Estrella, C.F.M. Toledo, M.S. Arantes, Genetic-based algorithms
applied to a workflow scheduling algorithm with security and deadline constraints
in clouds, Comput. Electr. Eng. 69 (2018) 378–394.

[16] X. Zhou, G. Zhang, J. Sun, J. Zhou, T. Wei, S. Hu, Minimizing cost and makespan for
workflow scheduling in cloud using fuzzy dominance sort based heft, Future Gener.
Comput. Syst. 93 (2019) 278–289.

[17] A. Jayanetti, S. Halgamuge, R. Buyya, Deep reinforcement learning for energy and
time optimized scheduling of precedence-constrained tasks in edge–cloud comput-

ing environments, Future Gener. Comput. Syst. 137 (2022) 14–30.

[18] R. Xie, D. Gu, Q. Tang, T. Huang, F.R. Yu, Workflow scheduling in serverless edge
computing for the industrial Internet of things: a learning approach, IEEE Trans.
Ind. Inform. 19 (7) (2022) 8242–8252.

[19] Y. Xiang, X. Yang, Y. Sun, H. Luo, A fault-tolerant and cost-efficient workflow
scheduling approach based on deep reinforcement learning for it operation and
maintenance, in: Proceedings of the 2023 26th International Conference on Com-

puter Supported Cooperative Work in Design, IEEE, 2023, pp. 411–416.

[20] P. Guo, Z. Xue, An adaptive pso-based real-time workflow scheduling algorithm in
cloud systems, in: Proceedings of the 2017 IEEE 17th International Conference on
Communication Technology, IEEE, 2017, pp. 1932–1936.

[21] J. Liu, J. Ren, W. Dai, D. Zhang, P. Zhou, Y. Zhang, G. Min, N. Najjari, Online multi-

workflow scheduling under uncertain task execution time in iaas clouds, IEEE Trans.
Cloud Comput. 9 (3) (2019) 1180–1194.

[22] H. Chen, X. Zhu, D. Qiu, L. Liu, Uncertainty-aware real-time workflow scheduling in
the cloud, in: Proceedings of the 2016 IEEE 9th International Conference on Cloud
Computing, IEEE, 2016, pp. 577–584.

[23] F. Song, Y. Ma, I. You, H. Zhang, Smart collaborative evolvement for virtual group
creation in customized industrial IoT, IEEE Trans. Netw. Sci. Eng. 10 (5) (2022)
2514–2524.

[24] F. Song, M. Zhu, Y. Zhou, I. You, H. Zhang, Smart collaborative tracking for ubiq-

uitous power IoT in edge-cloud interplay domain, IEEE Int. Things J. 7 (7) (2019)
6046–6055.

[25] P. Zhang, M. Zhou, Dynamic cloud task scheduling based on a two-stage strategy,
IEEE Trans. Autom. Sci. Eng. 15 (2) (2017) 772–783.

[26] X. Chen, L. Cheng, C. Liu, Q. Liu, J. Liu, Y. Mao, J. Murphy, A woa-based optimiza-

tion approach for task scheduling in cloud computing systems, IEEE Syst. J. 14 (3)
(2020) 3117–3128.

[27] M. Adhikari, T. Amgoth, S.N. Srirama, A survey on scheduling strategies for work-

flows in cloud environment and emerging trends, ACM Comput. Surv. 52 (4) (2019)
1–36.

[28] Z. Sun, B. Zhang, C. Gu, R. Xie, B. Qian, H. Huang, ET2FA: a hybrid heuristic al-

gorithm for deadline-constrained workflow scheduling in cloud, IEEE Trans. Serv.
Comput. 16 (3) (2022) 1807–1821.

[29] J. Guo, L. Cheng, S. Wang, CoTV: cooperative control for traffic light signals and
connected autonomous vehicles using deep reinforcement learning, IEEE Trans. In-

tell. Transp. Syst. 24 (10) (2023) 10501–10512.

[30] Q. Liu, L. Cheng, A.L. Jia, C. Liu, Deep reinforcement learning for communication
flow control in wireless mesh networks, IEEE Netw. 35 (2) (2021) 112–119.

[31] M. Mekala, G. Dhiman, G. Srivastava, Z. Nain, H. Zhang, W. Viriyasitavat, G. Varma,
A DRL-based service offloading approach using dag for edge computational orches-

tration, IEEE Trans. Comput. Soc. Syst. (3) (2024) 3070–3078.

[32] L. Wang, E. Gelenbe, Adaptive dispatching of tasks in the cloud, IEEE Trans. Cloud
Comput. 6 (1) (2015) 33–45.

[33] K. Arulkumaran, M.P. Deisenroth, M. Brundage, A.A. Bharath, Deep reinforcement
learning: a brief survey, IEEE Signal Process. Mag. 34 (6) (2017) 26–38.

[34] E.A. Avello, F.F. Baesler, R.J. Moraga, A meta-heuristic based on simulated anneal-

ing for solving multiple-objective problems in simulation optimization, in: Proceed-

ings of the 2004 Winter Simulation Conference, IEEE, 2004.

[35] M. Ghobaei-Arani, S. Jabbehdari, M.A. Pourmina, An autonomic resource provision-

ing approach for service-based cloud applications: a hybrid approach, Future Gener.
Comput. Syst. 78 (2018) 191–210.

[36] Y. Wei, L. Pan, S. Liu, L. Wu, X. Meng, DRL-scheduling: an intelligent qos-

aware job scheduling framework for applications in clouds, IEEE Access 6 (2018)
55112–55125.
1599

http://refhub.elsevier.com/S2352-8648(23)00184-0/bib6B5711C20731E7693DD49A43AA8852AAs1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bib6B5711C20731E7693DD49A43AA8852AAs1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bib6B5711C20731E7693DD49A43AA8852AAs1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bib7EBB46C689F147A9AF7B437A71918EE1s1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bib7EBB46C689F147A9AF7B437A71918EE1s1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bib7EBB46C689F147A9AF7B437A71918EE1s1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bibD0ED65D7B445C619D9F9350C507F895Fs1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bibD0ED65D7B445C619D9F9350C507F895Fs1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bibD0ED65D7B445C619D9F9350C507F895Fs1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bibA2B286F3884F6C8B4227DC8EFF35D089s1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bibA2B286F3884F6C8B4227DC8EFF35D089s1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bibA2B286F3884F6C8B4227DC8EFF35D089s1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bib389A6D2ABB6CE6FCE1FF372940509743s1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bib389A6D2ABB6CE6FCE1FF372940509743s1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bib389A6D2ABB6CE6FCE1FF372940509743s1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bib573D3EE0A60CAFC744721D9D94E22640s1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bib573D3EE0A60CAFC744721D9D94E22640s1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bib573D3EE0A60CAFC744721D9D94E22640s1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bib38EBB251BE0D3533F0D2368A9FD3D53Es1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bib38EBB251BE0D3533F0D2368A9FD3D53Es1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bib38EBB251BE0D3533F0D2368A9FD3D53Es1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bib2B505CB8BEEAEC011AAFFBB0C92E7C50s1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bib2B505CB8BEEAEC011AAFFBB0C92E7C50s1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bib74E2E47B69B5C955641A0B4073BDD767s1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bib74E2E47B69B5C955641A0B4073BDD767s1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bib74E2E47B69B5C955641A0B4073BDD767s1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bib5BC1F15A721562EB59E65632467CB912s1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bib5BC1F15A721562EB59E65632467CB912s1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bib5BC1F15A721562EB59E65632467CB912s1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bib77D1B23A846944D9D42FD5FE725B4A34s1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bib77D1B23A846944D9D42FD5FE725B4A34s1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bib592C8C2B6EEFBEA2364114FB366FAE44s1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bib592C8C2B6EEFBEA2364114FB366FAE44s1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bib592C8C2B6EEFBEA2364114FB366FAE44s1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bibAC93BC43948DFFA1199D907893CE0F7Es1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bibAC93BC43948DFFA1199D907893CE0F7Es1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bibAC93BC43948DFFA1199D907893CE0F7Es1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bibE038315E523F6AC938A1F6C7A141FA7As1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bibE038315E523F6AC938A1F6C7A141FA7As1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bibE038315E523F6AC938A1F6C7A141FA7As1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bib7434CA91C9AB01BB3AD067E6AF9965A1s1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bib7434CA91C9AB01BB3AD067E6AF9965A1s1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bib7434CA91C9AB01BB3AD067E6AF9965A1s1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bib92EB5762456A7D71163F881CEF2BECB7s1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bib92EB5762456A7D71163F881CEF2BECB7s1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bib92EB5762456A7D71163F881CEF2BECB7s1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bib1D4479AEBD9D3AE4A5392E8429F959EAs1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bib1D4479AEBD9D3AE4A5392E8429F959EAs1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bib1D4479AEBD9D3AE4A5392E8429F959EAs1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bib2C5A37E3EACD5CA879CC58A719A774A4s1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bib2C5A37E3EACD5CA879CC58A719A774A4s1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bib2C5A37E3EACD5CA879CC58A719A774A4s1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bibF78D96F24019EB4795E2D85F5C4CAAA5s1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bibF78D96F24019EB4795E2D85F5C4CAAA5s1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bibF78D96F24019EB4795E2D85F5C4CAAA5s1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bibF78D96F24019EB4795E2D85F5C4CAAA5s1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bib84C6C0EC235567A17F8CD866DD795EBCs1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bib84C6C0EC235567A17F8CD866DD795EBCs1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bib84C6C0EC235567A17F8CD866DD795EBCs1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bib7879053681E4C3E90BFF4F2F5D4DFF2As1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bib7879053681E4C3E90BFF4F2F5D4DFF2As1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bib7879053681E4C3E90BFF4F2F5D4DFF2As1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bib4730F7A2D79A4BC06CC8298FB4A58F82s1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bib4730F7A2D79A4BC06CC8298FB4A58F82s1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bib4730F7A2D79A4BC06CC8298FB4A58F82s1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bib7C0700034308631C0A058065438B75D8s1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bib7C0700034308631C0A058065438B75D8s1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bib7C0700034308631C0A058065438B75D8s1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bibBCF606BE7339741368822F5CF40012E5s1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bibBCF606BE7339741368822F5CF40012E5s1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bibBCF606BE7339741368822F5CF40012E5s1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bibD129D907D52D221D0F1C7381F218020Fs1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bibD129D907D52D221D0F1C7381F218020Fs1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bib4D0FF785A42D173ACE4AB6CE6323F8F0s1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bib4D0FF785A42D173ACE4AB6CE6323F8F0s1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bib4D0FF785A42D173ACE4AB6CE6323F8F0s1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bib290294A798A801C65EEF656F14951744s1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bib290294A798A801C65EEF656F14951744s1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bib290294A798A801C65EEF656F14951744s1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bibACE524550804975F667DBE3667C4CCE5s1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bibACE524550804975F667DBE3667C4CCE5s1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bibACE524550804975F667DBE3667C4CCE5s1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bib1AC6E9C6B513D9651F32A9037C1032ECs1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bib1AC6E9C6B513D9651F32A9037C1032ECs1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bib1AC6E9C6B513D9651F32A9037C1032ECs1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bib95D9499930E83AAFBB724FD7C5BF41FFs1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bib95D9499930E83AAFBB724FD7C5BF41FFs1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bibB21002A009657E7DF7CE9BE5B74A873Fs1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bibB21002A009657E7DF7CE9BE5B74A873Fs1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bibB21002A009657E7DF7CE9BE5B74A873Fs1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bib2E21FE014E80573FEABDB8223087D905s1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bib2E21FE014E80573FEABDB8223087D905s1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bib4F8B677751DD74FECEBCCC4A07C0B1E5s1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bib4F8B677751DD74FECEBCCC4A07C0B1E5s1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bibBE2A690865060841BFBEFCD67A7A44B9s1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bibBE2A690865060841BFBEFCD67A7A44B9s1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bibBE2A690865060841BFBEFCD67A7A44B9s1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bib81926D120FD1E960B4FAB96DDD00FCEAs1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bib81926D120FD1E960B4FAB96DDD00FCEAs1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bib81926D120FD1E960B4FAB96DDD00FCEAs1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bib5EE0C76ECCF517E4D3D4040C8C5ED8BFs1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bib5EE0C76ECCF517E4D3D4040C8C5ED8BFs1
http://refhub.elsevier.com/S2352-8648(23)00184-0/bib5EE0C76ECCF517E4D3D4040C8C5ED8BFs1

	Cost-aware cloud workflow scheduling using DRL and simulated annealing
	1 Introduction
	2 Related work
	3 System model
	3.1 System architecture
	3.2 Scheduling model
	3.2.1 Workflow characteristics
	3.2.2 Cloud instances
	3.2.3 Workflow scheduling mechanism

	3.3 Workflow time feature extraction using SA
	3.3.1 Solution space
	3.3.2 Objective function
	3.3.3 New path generation
	3.3.4 Cost function difference

	4 The proposed SA-DQN
	4.1 Background of DRL
	4.2 Introduction of SA
	4.3 SA-DQN for workflow scheduling
	4.3.1 Action space
	4.3.2 State space
	4.3.3 Reward function

	4.4 Model training

	5 Performance evaluation
	5.1 Experimental framework
	5.1.1 Simulation environment
	5.1.2 Baseline solutions

	5.2 Comparison of scheduling algorithms
	5.2.1 Varying mean arrival rates
	5.2.2 Varying numbers of VMs
	5.2.3 Varying workload complexities
	5.2.4 Experiments on real-world workflows

	6 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	References

