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Abstract

Although the scientific principles of anthropogenic climate change are well-established, existing calculations of the
warming effect of carbon dioxide rely on spectral absorption databases, which obscures the physical foundations of
the climate problem. Here, we show how CO2 radiative forcing can be expressed via a first-principles description
of the molecule’s key vibrational-rotational transitions. Our analysis elucidates the dependence of carbon dioxide’s
effectiveness as a greenhouse gas on the Fermi resonance between the symmetric stretch mode ν1 and bending
mode ν2. It is remarkable that an apparently accidental quantum resonance in an otherwise ordinary three-atom
molecule has had such a large impact on our planet’s climate over geologic time, and will also help determine its
future warming due to human activity. In addition to providing a simple explanation of CO2 radiative forcing on
Earth, our results may have implications for understanding radiation and climate on other planets.

Unified Astronomy Thesaurus concepts: Earth atmosphere (437); Greenhouse effect (2314); Planetary atmospheres
(1244); Planetary climates (2184)

1. Introduction

Carbon dioxide is an essential greenhouse gas on all rocky
planets in the solar system with significant atmospheres
(Venus, Earth, and Mars). On Earth, the carbonate-silicate
cycle regulates atmospheric CO2 on geological timescales, but
the last 150 yr has seen a rapid rise in concentrations from
approximately 280 ppmv to 415 ppmv (Tziperman 2022), due
to burning of fossil fuels by humans and land use changes
(Friedlingstein et al. 2022). Earth’s global-mean surface
temperature has risen by approximately 1 K during this same
period, with most of the warming a direct result of this CO2

increase. CO2 affects surface temperature because it is a
greenhouse gas: It absorbs more effectively at thermal infrared
frequencies than the near-infrared and visible frequencies
where solar radiation peaks. As a result, increasing levels of
atmospheric CO2 shifts the emission of thermal radiation to
space to higher-altitude regions of the atmosphere, where air is
less dense and colder. This colder air releases less thermal
radiation, so increasing CO2 decreases total emission to space
for fixed surface and atmospheric temperatures. The magnitude
of this decrease is defined as the radiative forcing of CO2.

Atmospheric mixing is fast compared to the rate of CO2

emission and removal, so to a first approximation the CO2

concentration is uniform in Earth’s lower atmosphere. The
stratosphere-adjusted radiative forcing due to an increase in the
atmospheric CO2 molar concentration from x0 to x is typically
expressed as4

aD » +F x xln , 10[ ] ( )

where α is defined as the CO2 radiative forcing parameter.
Global-mean calculations from detailed radiative transfer codes
using tabulated spectroscopic data yield α≈ 5.35Wm−2 (Myhre
et al. 1998), with an estimated accuracy of around 10%. Once the
atmosphere and ocean have thermally equilibrated, this radiative
forcing gives rise to a surface-temperature change of magnitude

lD » + D-T F, 2s
1 ( )

where the parameter λ is the climate feedback parameter, with
units of Wm−2 K−1. Based on data from a range of
observational and modeling sources, the sixth assessment report
of the Intergovernmental Panel on Climate Change (IPCC AR6)
stated that ΔTs for a doubling of CO2 is “very likely” (i.e., with
greater than 90% probability) in the range 2 to 5 K, with a best
estimate of 3 K (Masson-Delmotte et al. 2021). Since the
radiative forcing for CO2 doubling D = =´F 5.35 ln 22 ( )
3.71 Wm−2, this indicates a value of between 0.74 and
1.85Wm−2 K−1 for λ.
Given the clear correspondence between observations and the

results of sophisticated climate models, the scientific basis of
climate change is indisputable. In addition, many comprehensive
descriptions of the physics of climate and global warming,
including the specifics of the radiative effects of CO2 doubling,
already exist (Pierrehumbert 2011; Wilson & Gea-Bana-
cloche 2012; Zhong & Haigh 2013; Mlynczak et al. 2016;
Dufresne et al. 2020; Jeevanjee et al. 2021; Romps et al. 2022;
Tziperman 2022; Shine & Perry 2023). Despite this, it is
currently still not possible to derive Equation (1) directly starting
from fundamental properties of the CO2 molecule. This is an
important objective, because analytic methods are a powerful
tool to increase understanding and elucidate the results of
numerical simulations. Here, we build on previous efforts and
show how this can be achieved, via a synthesis of molecular
spectroscopy and climate physics. Our analysis here focuses on
Earth’s present-day climate, but potential applications to other
planets in the solar system and exoplanets are discussed in
Section 6.
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4 This differs slightly from the effective radiative forcing definition now used
by the IPCC (Masson-Delmotte et al. 2021), although the difference is not
important for our purposes. See also discussion in Section 5.
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2. A Simple Empirical Model of CO2 Radiative Forcing

In several recent papers (Wilson & Gea-Banacloche 2012;
Jeevanjee et al. 2021; Romps et al. 2022), it has been shown
that key features of CO2 radiative forcing can be captured using
a simplified representation of atmospheric radiative transfer
combined with an empirical approach to CO2 spectroscopy.
Absorption by CO2 in the thermal infrared at Earth-like
concentrations is dominated by a broad collection of bands
centered around 20 THz (667 cm−1 in wavenumber units)5 that
has a “triangular” shape in logarithmic units (Figure 2).
Because of this, this collection of bands can approximately be
represented using the formula

/s s
n n

= -
-

w
ln , 3cen

cen[ ] ∣ ∣ ( )

for absorption cross section σ. Here, σcen is the value of σ at the
band center, ν is the frequency, νcen is the frequency of the band
center, and w is a band structure coefficient, such that a smaller
value of w leads to a narrower band. Numerical estimation of w
from HITRAN spectroscopic data or line-by-line spectral
radiative forcing calculations yields a value of around 0.37 THz
(12.5 cm−1), with the value somewhat dependent on the fitting
approach chosen (Jeevanjee et al. 2021; Romps et al. 2022).

Taking the angle-averaged optical depth τ as increasing
downwards from the top of the atmosphere to the surface, we
can write a small change in τ as

t
s

m
=d

x

m

dp

g
, 4

a
( )

where m is the mean propagation angle of upwelling infrared
photons, p is pressure, g is gravity, and ma is the mean
molecular mass of air. If we assume a linear dependence of σ
on pressure due to line broadening such that σ= σ0(p/p0),
where p0 is a reference pressure (Table 1), then6

t
s
m

=
x p

g m p2
. 5

a

0
2

0

( )

Next, approximating infrared emission to space at a given
frequency as coming from a narrow pressure range in the
atmosphere, one can write an emission pressure corresponding
to τ(p, ν)= τem(ν). Combining Equations (3) and (5), noting
that τ and σ are proportional, setting τem= 1, rearranging in
terms of ν, and writing ν= νem yields (Jeevanjee et al. 2021)

n n
s
m

= p x w
x p

g m p
, ln

2
. 6cen

a
em cen

,0
2

0

⎡
⎣⎢

⎤
⎦⎥

( ) ( )

The logarithmic dependence of νem on x is what gives rise to
the logarithmic dependence of ΔF on x. The relationship
between νem and ΔF can be determined by noting that
increasing x is equivalent to swapping emission over a certain

frequency range from the surface to the stratosphere (Romps
et al. 2022). The expression for the CO2 radiative forcing
parameter that emerges from this analysis is

 a p n n= -w T T2 , , . 7s tcen cen[ ( ) ( )] ( )

Here,  n T,( ) is the Planck spectral irradiance evaluated at
frequency ν and temperature T, Ts is the surface temperature,
and Tt is the tropopause temperature (see Figure 1).
The analytic model represented by Equation (7) is highly

simplified, but it allows greater insight into the mechanism of
CO2 radiative forcing than is possible from numerical approaches.
Like all current approaches to understanding climate change,
however, it still requires us to assume that the infrared spectrum
of CO2 is available as a predetermined input. Our aim here is to
relax this requirement, and derive w and νcen, and hence
Equations (1) and (7), from the basic properties of the CO2

molecule.

3. CO2 Infrared Spectroscopy

CO2 absorbs in the infrared due to combinations of vibrational
and rotational quantum transitions (Pierrehumbert 2011). As a
three-atom linear molecule, CO2 has 3N− 5= 4 vibrational
degrees of freedom (Figure 3), with four quantum numbers V1,
V2a, V2b, and V3 corresponding to excitation of an symmetric
stretch mode, two degenerate bending modes, and an asym-
metric stretch mode, respectively.7 Superposition of the in-plane
and out-of-plane bending motions corresponding to V2a and V2b

results in an excitation where the three atoms perform circular
motions about the molecule’s major axis (Figure 3). Such
motion has angular momentum, which can be represented via
introduction of a new quantum number l. Because V2a and V2b

are degenerate, vibrational CO2 states can therefore be
characterized as ñV V Vl

1 2 3∣ , where V2= V2a+ V2b and l= V2,

Table 1
Key Parameters Used in the Analysis

Parameter Symbol Value Units

Mass of oxygen atom mO 16 mu

Mass of carbon atom mC 12 mu

Equilibrium C–O separation in CO2 ae 1.16 × 10−10 m
CO2 symmetric stretch force constant k 1680 N m−1

CO2 bending mode force constant dk ae
2 57 N m−1

CO2 transition dipole moment
magnitude

|〈m|d|n〉| 3.35 × 10−31 C m

CO2 Fermi coupling term |b| 2.14 × 1012 Hz
Collision cross section (CO2 in N2) σc 0.44 × 10−18 m2

Line-broadening coefficient nb 0.5 []
Earth mean surface pressure ps 105 Pa
Earth mean surface temperature Ts 288 K
Earth stratospheric temperature Tt 217 K

Notes. Throughout this paper, we assume that reference pressure and
temperature are equal to their surface values, p0 ≡ ps and T0 ≡ Ts. mu is the
atomic mass unit such that 1 mu = 1.66 × 10−27 kg. Values for ae, k, dk ae

2,
and |b| are taken from Herzberg (1945, pp. 21, 173, and 218); σc is from
Chapman & Cowling (1990, p. 263). Values for other quantities are justified in
the main text.

5 Traditionally, one of the novelties of atmospheric spectroscopy work is a
continuous need to interconvert between various non-SI units. Here, we stick to
SI units as much as possible, but when stating frequencies in hertz or terahertz
we also report wavenumber values in centimeters, to allow easy comparison
with other work.
6 This is a simplified approach, because pressure scaling at line centers and
line wings differs (Goody & Yung 1995; see also Section 3.2). However, the
approach works well in practice (Romps et al. 2022), and the specific choice of
pressure scaling in this equation does not affect our subsequent analysis.

7 The use of ν as the symbol for frequency and v for vibrational quantum
number is common in the modern spectroscopic literature, but to avoid
confusion we have chosen to use the upper-case V notation of Adel &
Dennison (1933) for quantum number here.
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V2− 2,K,1 or 0.8 Hence, for V2= 3, for example, l can be 3 or
1, while for V2= 4, l= 4, 2, or 0 are all allowed.

The frequency of each vibrational mode of CO2 can be
calculated approximately by treating the molecule as three
point masses connected by spring-like bonds.9 In particular,
using a valence force approach, which assumes restoring forces
act to oppose changes in the distance and angles of local atom–

atom bonds only (e.g., Herzberg 1945), the molecular
vibrational potential energy U can be written as

d= + + + dU U k Q Q k
1

2

1

2
. 8e 1

2
2
2 2( ) ( )

Here, Ue is the equilibrium potential energy corresponding to
zero vibrational motion, while Q1 and Q2 are the change in
separation between the C and the first and second O atoms
during vibrational motion, respectively. δ is the change in bond
angle that occurs during bending motion, and k and kδ are linear
and bending bond force constants, respectively.

The form of the terms in Equation (8) allows the normal
mode frequencies of the molecule to be simply expressed. We
focus on the first two modes here. While the antisymmetric
stretch mode ν3 gives rise to a strong absorption band, it is
located outside the thermal infrared spectral region and hence is
not relevant to our discussion. Additional combination bands
involving ν3 are present around 30 THz (1000 cm−1) but only
contribute around 5% to radiative forcing at present-day CO2

concentrations (Mlynczak et al. 2016).

For the symmetric stretch mode, we simply have oscillatory
motion of each O atom, leading to

n
p

= » -k

m

1

2
40.1 THz 1337 cm , 91

O

1( ) ( )

where mO is the mass of an oxygen atom. The value
k= 1680 Nm−1 yields ν1= 40.1 THz (1337 cm−1). This is
fairly close to the C–O bond force constant of 1860 Nm−1 in
carbon monoxide (CO). The bending mode frequency is

n
p

= + d

m

m

m

k

a

1

2

2
1 2 , 10

e
2

O

O

C
2

⎜ ⎟
⎛
⎝

⎞
⎠

( )

where mC is the mass of a carbon atom (Herzberg 1945). For
kδ= 7.7× 10−19 N m and ae= 116 pm (Table 1), the value of
ν2 is 20.0 THz (667 cm−1). ν2 is of course the well-known
bending mode associated with the center of the thermal infrared
band, νcen, as seen in Figure 2. The fact that ν2 is (apparently
coincidentally) about half the value of ν1 will be very important
in the discussion that follows.

3.1. Line Positions

Now we have an expression for the spectral location of the
ν2 band in Figure 2, we can start to build up a description of the
band structure. For this, we need to know what determines the
location, shape, and intensity of all the most important spectral
lines. We tackle this problem step by step, starting with line
location. We focus on explaining the most abundant iso-
topologue of CO2,

12C16O2, on the basis that the contribution of
all other isotopologues to CO2 radiative forcing is minor (Shine
& Perry 2023).
In the infrared, spectral lines appear because absorption or

emission of photons causes quantized changes in the vibra-
tional and/or rotational state of molecules. The center of the ν2
band at 20 THz (667 cm−1) corresponds to a vibrational
transition from the ground state |0000〉 to the first excited
bending mode with angular momentum number l= 1, |0110〉.10

The band has a strong central peak called the Q branch
(Figure 2) due to purely vibrational transitions, and P and R
branches at lower and higher frequencies, respectively, due to
combinations of vibrational and rotational transitions. Solution
of the time-independent Schrödinger equation in spherical
coordinates (Levine 1975) shows that the location of P- and
R-branch lines relative to ν2 is given by

n = - = ++ +E E h B J2 1 . 11J J J J, 1 1( ) ( ) ( )

Here, h is Planck’s constant, J= 0, 1, 2, K is the rotational
quantum number, EJ is the energy of rotational state J, and the
rotational constant B= h/8π2I, with moment of inertia =I
m a2 eO

2. In addition, ae is the equilibrium C–O separation in CO2

(Table 1). For lines in the Q branch, there is no change in J, while
in the P and R branches, ΔJ=±1. For 12C16O2, transitions
involving odd values of J are missing, because of selection rules
arising from the zero spin of the oxygen atoms (Levine 1975).
Given that ae= 116 pm, p= =B h m a16 11.7 GHze

2
O

2

(0.39 cm−1), so the spacing between the P- and R-branch lines

Figure 1. Idealized plot of temperature vs. altitude in Earth’s atmosphere. The
solid black line shows the temperature structure used to derive Equation (7)
(fixed tropospheric lapse rate of −6.5 K km1, isothermal stratospheric
temperature of 217 K). The dashed black line shows the 1976 Standard
Atmosphere temperature profile (Minzner 1977). Red and cyan dots show the
values of Ts and Tt, respectively.

8 As always, the Dirac or bra-ket notation represents quantum states, such that
|ψ〉 = ∫d3xψ(x)|x〉, and 〈ψ|f〉 = ∫ψ(x)

*

f(x)d3x when written in terms of
position x and wave functions ψ and f.
9 More accurate determination of vibrational frequencies can be achieved via
ab initio methods (e.g., Rodriguez-Garcia et al. 2007).

10 We use the term “ν2 band” here and elsewhere for simplicity, but, as will
become clear soon, transitions involving additional vibrational modes are also
important to the larger band structure.
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is about 2× 2B= 47GHz (1.6 cm−1). In the Q branch,
transitions with different rotational energies are not exactly
colocated because of subtle effects such as Coriolis interactions,
but for our purposes the lines can be treated as unseparated in
frequency. Rotational line spacing is further affected by
centrifugal and anharmonic effects, but these complications are
not important to climate forcing and so will be ignored here.

3.2. Line Shape and Width

All spectral lines have a shape that is determined by a
combination of natural broadening, Doppler and collisional
effects (Goody & Yung 1995). Line shape is dependent on both
temperature and pressure. A full analysis of this problem could
become complicated quickly, but in keeping with our aim of
getting a rough estimate of CO2 radiative forcing only, we take
a simple approach here. In the troposphere, thermal infrared
absorption lines are Lorentzian to a close approximation, with
line shape

n n
p

g
n n g

- =
- +

f
1

, 12mn
mn

2 2
( )

( )
( )

where νmn is the frequency of the transition from state m to n
and γ is the line width (half-width at half maximum) in hertz. γ
scales approximately linearly with pressure. This can be shown
by noting that the rms speed of a molecule in a gas of
temperature T is

=v k T m3 , 13B ( )

where kB is Boltzmann’s constant, and m is the mean molecular
mass of air. The mean relative collision speed is larger than this
by a factor of 2 , =v v2rel . The mean free path, or average
distance traveled by a molecule between collisions, is (Chap-
man & Cowling 1990)

s s
= =l

n

k T

p

1

2 2
, 14mfp

c c

B ( )

where σc is the intermolecular collision cross section, n is the
number density, T is the temperature, p is the pressure, and

p= nkBT from the ideal gas law. The line width in frequency
units can be written as g pt p= = v l1 2 2c mfprel( ) ( ), where τc
is the mean collision time between molecules.11 Finally, we
have

g g= -p T p p T T, . 15n
0 0 0 b( ) ( )( ) ( )

Here, nb= 0.5, the reference values p0 and T0 are taken to be
surface values (Table 1), and

g
s
p

=
p

mk T

3
. 16c

0
0

B 0
( )

For CO2 in N2, s p= ´ ´ =-3.75 10 m 0.44c
10 2( ) (nm)2

(Chapman & Cowling 1990), so γ0= 1.76 GHz (0.06 cm−1).
The HITRAN2020 database (Gordon et al. 2022) gives values
for γ0 in the CO2 ν2 band that range between 1.5 and 3 GHz
(0.05 cm−1 and 0.1 cm−1), and nb between 0.5 and 0.8, so our
simple method slightly underestimates γ0 and nb. These
differences are not important for the analysis that follows.

3.3. Line Intensity

Determining line intensity is one of the most challenging
aspects of quantum spectroscopy. However, in the range of
CO2 concentrations over which radiative forcing scales
approximately logarithmically according to Equation (1), ΔF
is not sensitive to the absolute values of line intensity in the ν2
band (e.g., Jeevanjee et al. 2021). Hence, we can also take an
approximate approach here. The most important quantities in
line intensity calculations are the Einstein coefficients, which
express the rate of absorption or emission of a photon by a CO2

molecule. Analysis of the Schrödinger equation in the presence
of a time-dependent perturbation due to an oscillating electric
field leads to the following expression for the Einstein

Figure 2. High-accuracy absorption spectrum of CO2 in the region of the ν2 band, in cross-section units of meters squared per molecule of CO2, at pressure ps and
temperature Ts (see Table 1). (a) shows the band over a wide frequency range, while (b) zooms in on the central fundamental band, with P, Q, and R branches labeled
(see Section 3). Both plots were produced using the HITRAN2020 database, with line truncation at the standard value of 25 cm−1(0.75 THz) (Gordon et al. 2022).

11 The factor of 2π in the relationship between γ and τc can be obtained from a
Fourier analysis of an ensemble of radiating oscillators (e.g., Stamnes et al.
2017).
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coefficient for spontaneous emission:12


p n

=
á ñd

A
m n

hc

16

3
. 17mn

mn
3 3 2

3
0

∣ ∣ ∣ ∣ ( )

Here, m and n are any two quantum states of energy Em and En

such that Em> En and νmn= (Em− En)/h. In addition, c is the
speed of light and ò0 is the vacuum permittivity. The term 〈m|d|
n〉 is the transition dipole moment, which is defined as

ò y yá ñ º á ñ =d d x d x xm n n m d . 18m n
3∣ ∣ ∣ ∣ ( ) ( ) ( )*

Here, d is the dipole moment operator of the molecule and ψk is
the eigenfunction of quantum state k. The transition dipole
moment has typical magnitude 3.34× 10−31 C m (0.1 D) for
CO2 transitions in the ν2 vibration-rotation band. This is similar
to the permanent dipole of the ground state of CO,
4.07× 10−31 C.m (0.122 D) (Muenter 1975). Taking νmn=
20 THz yields Amn≈ 1 s−1. Comparison with HITRAN data
shows that this is a reasonable approximation at the center of
the ν2 band, although the values of Amn decrease away from the
band center.

Line intensity expresses the frequency-integrated absorption
cross section of a line, independent of line shape. In SI units of
Hz m2 molecule−1, it is defined as13


pn

=S
c A

T
8

. 19mn
mn

mn
mn

2

2
( ) ( )

The dimensionless term  Tmn( ) incorporates multiple addi-
tional effects, of which the most important here is energy level
occupancy. The rate of absorption of photons by molecules in a
given energy state must depend on the number density of
molecules in that state, relative to the total number density. At
temperatures in the 250–290 K range, most CO2 molecules are
in the ν2 vibrational ground state,14 so the fundamental band
vibrational occupancy factor can be approximated as 1 for our
purposes. For the rotational state, however, occupancy up to J
values of around 50 is significant at Earth-like temperatures.
We take this into account by writing

 = + - +T J q2 1 e , 20mn
J J hB k T

r
1 B( ) ( ) ( )( )

with the rotational partition function approximated as
qr≈ kBT/2hB (Bernath 2020). The (2J+ 1) term in this
expression accounts for degeneracy, i.e., for a given J value,
there are 2J+ 1 states with the same energy.

The final step is to use line intensities to calculate the
absorption spectrum itself. This is done by noting that the
absorption cross section for a single line, in units of meters
squared per molecule, is simply

s n n= -S f , 21mn mn mn( ) ( )

and the total absorption cross section for the entire band is the
sum of σmn over all transitions:

ås n s= . 22
mn

mn( ) ( )

Now we have all the pieces required to begin building
absorption spectra. Using the line locations from Section 3.1,
line shape and width definitions from Section 3.2, and line
intensity formulae from this section, we can plot the P, Q, and
R branches of the ν2 fundamental band (Figure 4). Here, we
have included lines up to J= 100, on the basis that lines from
higher-rotational-number transitions are so weak that they
contribute little further to absorption. Comparison with
Figure 2 shows that line peaks are a little higher than in the
HITRAN spectrum, mostly because we are somewhat under-
estimating the line-broadening coefficient γ via Equations (15)
and (16). Otherwise, the overall form of the band center is
reproduced fairly accurately. At the sides of the band, however,
it is clear that our approach fails completely. Correctly
incorporating these sidebands will be the task of the next
section.

4. Fermi Resonance

The multiple sidebands present in the spectrum in Figure 2
arise due to vibrational transitions between higher-energy states
than the |0000〉 fundamental (Figure 5). In a perfect simple
harmonic oscillator, the spacing of vibrational energy levels is
uniform, and all transitions occur at the same frequency. This is
clearly not the case for the CO2 ν2 band. The reason for the
difference is Fermi resonance (Fermi 1931; Adel & Denni-
son 1933). Fermi resonance is far better known in quantum
spectroscopy than in climate physics, but it is key to
understanding CO2 radiative forcing. Recently, Shine & Perry
(2023) extracted individual bands from the HITRAN database
for the purpose of numerical calculations of the radiative
forcing and found that Fermi resonance contributes approxi-
mately half of the total forcing magnitude. Here, we begin by
discussing the physical nature of Fermi resonance, and then
show how incorporating it in our derivation allows us to write
down a quantum analytic formula for CO2 radiative forcing.
Fermi resonance occurs in CO2 because ν1≈ 2ν2: The

symmetric stretch frequency happens to be very close in value
to double the bending frequency. As a result, nonlinear
interactions between the two modes shift the energy levels of
states |1000〉 and |0200〉 and cause their wave functions to mix
(Figure 5). The best way to get an intuitive understanding of
Fermi resonance is by analogy with the classical coupled
pendulum experiment. This analogy is noted in passing in
Herzberg (1945), but we describe it in more detail here.
In the coupled pendulum experiment, two pendulums of

almost equal natural frequencies exchange energy with each
other via some nonlinear coupling (most commonly, torsion of
the string to which they are attached). Without this nonlinear
interaction, a Fourier transform of their motion would yield a
single peak. However, when the pendulums are coupled, the
same transform yields two peaks that are shifted from the
original central value by an amount that depends on the
strength of the interaction.
Mathematically, we can understand this process by first

writing the classical Hamiltonian for a simple harmonic

12 In many textbooks, the Einstein A coefficient is written in cgs units as
p n= á ñdA m n hc64 3mn mn

4 3 2 3∣ ∣ ∣ ∣ . To convert, note that in cgs units ò0 = 1/4π,
which when substituted into the previous expression yields Equation (17).
13 In HITRAN notation (Šimečková et al. 2006), we would write

p n=S A c T8mn mn mn
2˜ ( ˜ ) ( ), where Smn˜ has units of cm−1 (cm-2 molecule)−1.

To convert, we use n n= c˜ , and in addition =S cSmn mn˜ .
14 This can be seen by calculating the Boltzmann factor n-e h k T2 B , which
equals 0.036 given T = 288 K. This also indicates that neglecting stimulated
emission is a good approximation in this case.
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oscillator in isolation:

= +H x p
p

m
kx,

1

2

1

2
. 23

2
2( ) ( )

Here, p is the momentum, m is the mass, k is a force constant,
and x is the position. For two oscillators with a nonlinear
coupling constant α, the Hamiltonian is

a

= + +

+ +

H x p x p
p

m

p

m
kx

kx x x

, , ,
1

2

1

2

1

2
1

2
. 24

1 1 2 2
1
2

2
2

1
2

2
2

1 2

( )

( )

Using dp/dt=−∂H/∂x and dx/dt=+ ∂H/∂p, where
x= (x1, x2) and p= (p1, p2), we can derive equations of
motion for each oscillator in the coupled case:

w w= - -
d x

dt
x x , 25

2
1

2 0
2

1
2

2˜ ( )

w w= - -
d x

dt
x x . 26

2
2

2 0
2

2
2

1˜ ( )

Here, w = k m0 and w a= m˜ . The coupling term w̃
causes energy to be repeatedly exchanged between the first and
second oscillators (Figure 6). Taking the sum and difference of
Equations (25) and (26) and writing y1= x1+ x2, y2= x1− x2,
we have

w= - +
d y

dt
y , 27

2
1

2
2

1 ( )

w= - -
d y

dt
y , 28

2
2

2
2

2 ( )

where w w w= --
2

0
2 2˜ and w w w= ++

2
0
2 2˜ . With this change of

variables, it can be seen that the nonlinear coupling gives rise to
two new eigenfunctions whose frequencies are shifted away
from the unperturbed frequency ω0 by an amount dependent on

the coupling constant α. This is directly analogous to the way
in which nonlinear coupling between the symmetric stretch and
bending modes of CO2 give rise to the Fermi bands. Figure 6
shows nondimensional numerical solutions of Equations (25)
and (26) for k= 2, m= 1 and α= 0.1, alongside the resulting
power spectrum for x1.
To represent Fermi resonance in a quantum framework, a

degenerate first-order perturbation analysis can be used
(Dennison 1940). For this, the molecular vibrational potential
energy U discussed earlier is expressed in terms of dimension-
less mass-weighted normal coordinates ζ, ρ, and σ (see
Figure 3) and expanded as U=U0+ òU1+ ..., where ò is a
perturbation parameter. This results in the expressions

n s n r n z= + +U h
1

2
, 290

1
2

2
2

3
2( ) ( )

 s sr sz= + + ¢U h a b c
1

2
. 301 3 2 2( ) ( )

Here, a, b, and ¢c have units of frequency. Equation (29) allows
for simple harmonic oscillation of the CO2 molecule at its three
normal frequencies ν1, ν2, and ν3, and nothing else.
Equation (30) contains anharmonic terms, of which the second,
bσρ2, describes interaction between the bending and symmetric
stretch modes. Because the potential energy must remain the
same if the coordinates are reflected across a plane of symmetry
of the molecule, all other cubic terms (ρ3, ζ3, etc.) in U1 are
forbidden for a linear molecule like CO2.
With U defined, the Hamiltonian of the system is written in

the form = + ¢H H H0 , and first-order degenerate perturba-
tion theory (e.g., Robinett 2006) can be employed to derive a
formula for the perturbed energy levels and wave functions.
For clarity, we focus on the nearly degenerate states |1000〉 and
|0200〉, which we assign wave functions ψm and ψn. Writing
ψ= amψm+ anψn, we can express the time-independent
Schrödinger equation in the matrix form Ha= Ea, where the
individual elements of H are òy y y yá ñ = xH H di j i j

3∣ ∣ * . With

Figure 3. (a) Schematic of the three vibrational modes of carbon dioxide. The two degenerate bending modes superimpose to produce a motion where each atom
rotates around the major axis of the molecule, which is represented via the quantum number l. (b) Mass-weighted coordinate system used to express the three
fundamental modes of CO2 as simple harmonic oscillations (see Section 4).
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the expansion = + ¢H H H0 , we then have

 
 
+

+
=

E W W

W E W

a
a E

a
a , 31m mm mn

nm n nn
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where y y= á ¢ ñW Hnm n m
0 0∣ ∣ and E0

m and E0
n are the unperturbed

energies. Because of the symmetry of the system,
Wmm=Wnn= 0 and =W Wnm mn* . Hence,




-
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E E W

W E E

a
a 0. 32m mn

mn n
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*

Taking the determinant of the matrix to solve the eigenvalue
equation, we have

- - - =E E E E W W 0. 33m n mn mn
0 0 2( )( ) ( )*

Writing + =E E E2m n
0 0 0( ) , setting ò= 1, and solving for E

yields

=  - +E E E E W
1

2
4 . 34m n mn

0 0 0 2 2( ) ∣ ∣ ( )

Explicit evaluation of the perturbation matrix element for states
|m〉= |1000〉 and |n〉= |0200〉 (Adel & Dennison 1933; Herzberg
1945) yields the result that =W hb 210 0;02 00 0∣ ∣ . Writing the
difference between state frequencies in the absence of resonance
interaction as D = -E E hm n0

0 0( ) , we have the result that
resonance makes two new states emerge with energy levels

separated byD =  D + b2F 0
2 2 . At the level of approximation

we are using, the frequency difference |Δ0|= 0.5 THz
(16.7 cm−1), and the strength of coupling between the two modes
b= 2.14 THz (71.3 cm−1), so ΔF= 3.07 THz (102.3 cm−1).
Interestingly, these values of |Δ0| and b were originally first
determined from the spectra of CO2 itself (both absorption and
Raman; Fermi 1931; Dennison 1940).

5. Radiative Forcing

Using the results of the previous two sections, we can now
plot a revised synthetic spectrum for the CO2 ν2 band. The new
Fermi resonance bands B and C (Figure 5) are modeled just
like the fundamental band, with the difference that they are
shifted to lower/higher frequencies by an amount |ΔF|/2, and
to lower line intensities by addition of a vibrational occupancy
factor to Tmn( ). We take this to be the ratio of occupancy of
the ground states for each transition, or n-e h k TB2 . We add the
second set of Fermi bands D and E in a similar way, shifting
them to lower/higher frequencies by a factor |ΔF| and to lower
line intensities by n-e h k T2 B2 . Recent analysis of radiative
transfer model results shows that the fundamental band A

Figure 4. (a) Analytic CO2 ν2 band, including P, Q, and R branches for the fundamental vibrational transition from |0000〉 to |0110〉, but neglecting all additional
vibrational transitions. (b) shows a close-up of the same band. Pressure and temperature are ps and Ts in Table 1, as in Figure 2.

Figure 5. The key vibrational energy levels and transitions of the CO2

molecule that are most important to radiative forcing and climate change. Many
levels and transitions have been neglected for simplicity. Comparing with the
notation of Shine & Perry (2023), our A ≡ Fu; B, C ≡F1; D, E ≡ FF; and H1,
H2, and F2 are neglected. Numerical values for the energy levels were obtained
from Oberly et al. (1968).

7

The Planetary Science Journal, 5:67 (10pp), 2024 March Wordsworth, Seeley, & Shine



contributes about 50% of CO2 radiative forcing, while the
additional Fermi bands B to E contribute most of the remaining
50% (Shine & Perry 2023). The contribution of other bands,
such as the hot bands of the ν2 fundamental and the “second
Fermi” bands of Shine & Perry (2023), are neglected here on
the basis that they do not cause sufficiently large changes in
absorption in the spectral regions where they are present.
Examples of such bands include the H1, H2, and F2 transitions
mentioned in the caption to Figure 5.

As can be seen from Figure 7, inclusion of all the labeled
transitions in Figure 5 results in a far more realistic mid-
infrared absorption band for CO2. Reference to Figure 2 shows
that bands B and C are well captured by our approach. For
bands D and E, the limitations of our simple methodology
become more apparent, as they are both about 0.6 THz
(20 cm−1) too close to the fundamental band and too strong
compared to HITRAN data. These differences arise due to our
neglect of higher-order anharmonic terms, and our assumption
of a constant value for the Einstein A coefficient.

Overall, however, inclusion of these four new Fermi bands
results in a far more realistic mid-infrared absorption band for
CO2 than was shown in Figure 4. It is worth emphasizing that,
despite the fact it reproduces the main P, Q, and R branches
visible in the HITRAN CO2 spectrum (Figure 2), the spectrum
in Figure 4 is vastly simpler. The total number of lines in this
spectrum is 750, whereas in the HITRAN CO2 data set over the
15–25 THz (500–833 cm−1) spectral range around 100,000
lines are present if all isotopologues are included. Many of
these additional lines are not visible in Figure 2 because they
are overlaid by the five strong bands incorporated in Figure 7.

We can also use the understanding developed in the last
section to write down an analytic expression for the band
structure coefficient w, and hence for CO2 radiative forcing
itself. Clearly, νcen= ν2, and w must approximately equal half

of |ΔF| divided by the negative log of the occupancy factor:

n
=

D
w

k T

h2
. 35F B

2

∣ ∣ ( )

Given T= 250 K and ν2= 20 THz, w= 0.40 THz (13.3 cm−1).
The equivalent value obtained by fitting a full HITRAN
spectrum is remarkably close at 0.375 THz (12.5 cm−1)
(Romps et al. 2022).15

Our value for w yields α= 7.39 Wm−2 when substituted into
Equation (7). This is somewhat larger than the 5.35Wm−2 value
derived from comprehensive radiative transfer codes, or the
slightly higher effective radiative forcing values derived from
Earth-system models (Pinnock et al. 1995; Myhre et al. 1998;
Masson-Delmotte et al. 2021).16 The difference is primarily a
result of the assumptions made in deriving Equation (7), and
not our approach to calculating the CO2 spectrum, as
demonstrated by the close correspondence of our w value with
that in Romps et al. (2022). Refinement of the derivation
leading up to Equation (7) could be interesting to investigate in
the future.

Figure 6. Classical analogy to Fermi resonance. (a) Numerical solution of Equations (25) and (26) and (b) the resulting power spectrum of x1, with the analytical
values of ω0, ω−, and ω+ also shown. The simulation was run from t = 0 to t = 104 and solved using the 5(4)-order Runge–Kutta method. In the analogy, ω0 is
equivalent to ν2 (times a factor of 2π), and ω− and ω+ are equivalent to the centers of the first Fermi sidebands.

15 Romps et al.'s (2022) b, which has a value of 0.04 cm, is equal to 1/2 times
the inverse of our w expressed in centimeters.
16 Technical note: There are different definitions of radiative forcing (e.g.,
Masson-Delmotte et al. 2021), which represents the perturbation to the
planetary radiation budget due to a change in (in our case) of CO2, in the
absence of any surface-temperature change. The simplest definition is the
“instantaneous radiative forcing” in which only CO2 is changed. “Stratosphere-
adjusted radiative forcing” allows stratospheric temperatures to adjust to the
CO2 perturbation; this is a better predictor of surface-temperature change,
particularly when comparing the effect of changes in different constituents.
IPCC’s now-preferred definition (“effective radiative forcing”) allows addi-
tional atmospheric adjustments (e.g., to tropospheric temperatures, humidity,
and clouds); it is an even better predictor, although detailed Earth-system
model calculations are needed to compute these adjustments. For the
explanatory purposes of this paper, the differences between these definitions
are of secondary importance.
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Finally, we can use the result just obtained to write an
approximate expression for the radiative forcing from CO2

doubling as

 

p
n

n n

D »
D

´ - »

´

-

F
k T

h

T T

ln 2

, , 5.1 W m . 36

F

s t

2
B

2

2 2
2

( ) ∣ ∣

[ ( ) ( )] ( )

Interestingly, almost all the background theory required to
derive Equation (36) has existed since the first numerical CO2

radiative forcing calculations were performed in the 1960s.
While this equation does not provide us with any truly
new information, it does show us that the key driver of
anthropogenic climate change can be expressed purely in terms
of the measured properties of Earth’s atmosphere and the
fundamental properties of the CO2 molecule, without the need
for any numerical calculations.

6. Climate Sensitivity

The preceding analysis shows that the value of CO2 radiative
forcing can be understood in terms of the quantum properties of
the CO2 molecule, with the influence of Fermi resonance on the
band structure coefficient w particularly critical. To tie this
analysis back to Equation (2) in the Introduction (Section 1)
and link global warming to radiative forcing, the last thing we
need is an expression for the climate feedback parameter λ.
Analytic approaches to this problem have been discussed in
detail in other recent works (Ingram 2010; Jeevanjee et al.
2021a; Seeley & Jeevanjee 2021; Stevens & Kluft 2022;
Jeevanjee 2023; Koll et al. 2023), so we only provide a very
brief summary here, in the interests of completeness.

The simplest possible definition of λ occurs on an airless
planet, where all thermal emission comes from the surface. If

the planet is also a blackbody, we have

l s= =
dF

dT
T4 . 37

s
s
3 ( )

This yields λ≈ 5.4 Wm−2 K−1 for Ts= 288 K. This gives us
an upper limit on λ on Earth, because of course in many
spectral regions the atmosphere is optically thick, and radiation
to space occurs much higher, where air is colder and thermal
emission is lower.
In-depth analysis in the papers cited above shows that, under

present-day conditions, emission in the mid-infrared H2O
window region is the dominant contributor to λ, so
Equation (37) can be approximated by

òl p n n=
n

nd

dT
T d, , 38

s
s

A

B

( ) ( )

where νA and νB are the frequency limits of the window region.
Using the Wien approximation, this integral can be written as

l
p n n

»
D n-h

k c T

2
e , 39w w h k T

2 4

B
2 2

w B ( )

where νw= (νA+ νB)/2 and Δνw= νB− νA.
Writing νA = 21 THz (700 cm−1) and νB = 36 THz

(1200 cm−1), we obtain λ= 2.3 Wm−2 K−1, which is within
the range for the clear-sky long-wave feedback from observa-
tions and complex climate models (Andrews et al. 2012; McKim
et al. 2021; Roemer et al. 2023).17 Combining this estimate with
the value for ΔF2× calculated in the last section yields
ΔTs= 2.2 K. This is also reasonably close to values calculated
using much more complicated models, despite the approximate
nature of the calculation. As mentioned in the Introduction
(Section 1), the range of modern estimates for ΔTs extends to

Figure 7. Analytic CO2 ν2 band, including the fundamental vibrational transition and four additional Fermi sidebands. The red line in panel (a) shows the approximate
band shape predicted using Equations (3) and (35), given T = Ts. Labels in (a) correspond to the transitions in Figure 5. (b) shows a close-up of the fundamental band.
Pressure and temperature are the same as in Figure 2.

17 We leave the derivation of νA and νB from the quantum-mechanical
properties of the H2O molecule to future work.
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higher values (2–5 K), in part because cloud feedbacks are
predicted to increase warming in the future.

7. Discussion

We have shown using mostly first-principles reasoning how
the radiative forcing of CO2 emerges from the quantum-
mechanical properties of the CO2 molecule. This result has
implications for our understanding of both contemporary global
warming and the long-term evolution of Earth’s climate. There
are, of course, many things that our analysis misses out. Many
spectroscopic details, including anharmonic interactions, line
mixing, and additional weak bands have been neglected, as
have overlap with other gaseous absorbers and the radiative
effects of clouds. In common with many other 1D calculations,
atmospheric vertical temperature structure has been treated
crudely, and 3D dynamics is neglected entirely. Given all this,
it is remarkable that our analysis and others like it still allows a
reasonably accurate estimate of clear-sky radiative forcing and
climate sensitivity. This outcome provides further evidence, if
such evidence were needed, of the rock-solid foundation of the
physics of global warming and climate change.

The work presented here should not be seen as a substitute for
accurate numerical calculations, but instead a way to understand
the fundamental physics that underpins them. As our approach to
spectroscopy in this paper is rather specific to the problem at
hand, it is not immediately clear if there are many future
applications for doing calculations from first principles in this
way. Nonetheless, it would be interesting to see if our approach
could be extended to CO2 radiative forcing on other solar system
planets. Mars is likely to be an easier case than Venus in the
solar system, because of the importance of CO2 collision-
induced absorption (CIA) in Venus’s thick atmosphere, although
in principle a simplified approach to CIA along the lines we have
pursued here should also be possible.

Another interesting extension could be to use the analysis in
Section 3 to provide quick estimates of the warming potential of
different greenhouse gases in a planetary context. For exoplanet
and paleoclimate applications, this might be a particularly useful
way of increasing intuition and providing a reality check on the
results of complex climate models. It might also be interesting to
investigate in more detail why resonances appear in certain
molecules and bands but not in others.

Finally, carbon dioxide has likely been a key greenhouse gas
throughout Earth’s history. Given this, the dependence of CO2

radiative forcing on the accidental resonance between ν1 and ν2
is particularly interesting. One can imagine that with minor
differences in the quantum structure of CO2, this resonance
might be changed or inhibited, and the past and future
evolution of our planet’s climate would be very different. In
this sense, the CO2 Fermi resonance may be seen as somewhat
analogous to the nuclear resonances in astrophysics that give
rise to the production of heavy elements in stellar interiors
(Hoyle 1954; Livio et al. 1989).
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