

Improvements to methods for

the quality assessment of

three-dimensional models of

proteins

A thesis submitted for the degree of

Doctor of Philosophy
School of Biological Sciences

University of Reading

Ali Hassan Ahmed Maghrabi
September 2019

i

Declaration

I confirm that this is my own work and to the best of my knowledge, does not breach copyright

law, and has not been taken from other sources except where such work has been cited and

acknowledged within the text.

Ali Hassan Ahmed Maghrabi:

Date: 19/5/2020

ii

Abstract

After water, proteins are the most abundant substances in the human body, forming around 80% of

its dry mass. Understanding protein function is beneficial for life needs, such as finding medicines,

producing healthy foods and combating infectious diseases. Each protein molecule has its own

unique sequence which is comprised of linear chains of amino acids. These amino acid chains fold

to form tertiary structures, which confer the protein’s function. It is important that we can

characterise protein structures in order to better understand their functions. Several experimental

methods such as X-ray Crystallography and Nuclear Magnetic Resonance have been applied to

solve protein structures. However, such methods are costly and time consuming, and some proteins

are also problematic or impossible to solve using these methods. Consequently, the process of

growing protein structure data is relatively slow in comparison to the speed of sequencing genomes

and their encoded proteins, which has kept increasing especially after breakthroughs in the genetic

sequencing technology. As a result, a gap has grown between known protein sequences and their

resolved structures and it has been necessary to find other solutions. Computational methods for

predicting the structures of proteins directly from own sequences have become fast and effective

alternatives to experimental methods. Over the past 20 years there has been an emergence of

different types of protein structure predicting methods, the most accurate type being the

comparative modelling method, which consists of a number of steps including: template

recognition, alignment, quality assessment, and ending with refinement. Each of these steps

contribute to successful modelling pipelines, but perhaps the most critical step for the wider

acceptance of 3D models of proteins has been the quality assessment step, where the predicted

models are evaluated in terms of their likely accuracy, prior to the availability of an experimental

structure. Numerous approaches to the quality estimation problem have been developed over the

years including the use of statistical potentials, stereochemistry checks and machine learning

techniques. Such methods have traditionally been referred to as Model Quality Assessment

Programs (MQAPs). One of the leading MQAPs has been the ModFOLD method which has been

developed by our group. Since its inception, ModFOLD has been continuously improved, going

through many upgrades until its latest version, ModFOLD7. This study was conducted during a

major development cycle, beginning with the benchmarking of ModFOLD6, the most powerful

MQAP method compared to its other competitors at that time. The study starts with the

investigation of the integration of ten MQAP scoring methods in an attempt to enhance

performance. The study also explores the implementation of deep neural networks on the MQAP

iii

method’s pipeline, and how this technique can be used to improve the MQAP scoring approach. In

the later stage of our research, we managed to improve our method significantly leading to the

latest upgrade, ModFOLD7. During this project, we also participated in a number of independent

blind experiments and competitions to verify our improvements. We also undertook several

collaborations in order to apply our methods in practical contexts. The overall results have shown

incremental but significant improvements in ModFOLD performance during this study, with an

approximate 5% improvement over previous versions. However, there are still plenty of room for

ModFOLD to improve further and a number of suggestions for further developments will be

addressed throughout this thesis.

iv

Contents

Declaration ... i

Abstract .. ii

Contents .. iv
List of Figures... viii

List of Tables ... x

List of Abbreviations ... xii
Acknowledgement .. xiv

Chapter 1 - Introduction .. 1
 1.1. Proteins ... 2

 1.2. Amino acids .. 2

 1.3. From Primary to Quaternary Structure ... 6

 1.3.1. Primary structure .. 7
 1.3.2. Secondary structure .. 7

 1.3.3. Tertiary structure .. 8

 1.3.4. Quaternary structure ... 8
 1.4. Why determine the structure of proteins? ... 9

 1.5. Experimental methods ... 10

 1.5.1. X-ray Crystallography .. 10

 1.5.2. Nuclear Magnetic Resonance .. 11
 1.5.3. Cryogenic Electron Microscopy .. 12

 1.6. Resources for experimental protein structures .. 13

 1.7. Challenges facing experimental methods ... 14
 1.8. The sequence-structure gap.. 14

 1.9. The intervention of Bioinformatics .. 15

 1.9.1. Sequence-structure relationship ... 15
 1.9.2. Sequence alignments... 16

 1.9.2.1. Pairwise sequence alignments .. 17

 1.9.2.2. Multiple sequence alignments .. 18

 1.9.2.3. From sequence alignments to structure modelling... 18
 1.10. Protein structure prediction software .. 20

 1.11. Critical Assessment of Structure Prediction ... 22

 1.12. Estimate of Model Accuracy (Model Quality Assessment) ... 22
 1.13. Project objectives .. 24

Chapter 2 - Benchmarking ModFOLD6 among Ten MQAP Methods for Local and Global score

Optimisations ... 26
 2.1. Background ... 27

 2.1.1. ModFOLD .. 27

 2.1.2. Q-score in ProQ2 and ModFOLDclustQ for Speed, Accuracy and Consistency 28

 2.1.3. “Quasi-single-model mode” algorithm .. 29
 2.2. Objective ... 30

 2.3. Materials and Methods .. 31

 2.3.1. Ten MQAPs ... 31
 2.3.1.1. ModFOLD5_single_orig_global (M5so) .. 32

 2.3.1.2. ModFOLDclustQ_single_orig_global (Mcqso)... 32

 2.3.1.3. ModFOLDclust2_single_orig_global (Mc2s) ... 33

 2.3.1.4. ModFOLD5_single_res_global (M5sr) ... 33
 2.3.1.5. ModFOLDclustQ_single_res_global (Mcqsr) ... 34

 2.3.1.6. ProQ2_res_global (P) ... 34

 2.3.1.7. CDA_res_global (C) .. 34

v

 2.3.1.8. DBA_res_global (D) .. 34

 2.3.1.9. SSA_res_global (S) .. 35
 2.3.1.10. ModFOLD6_single_res_global (M6).. 35

 2.3.2. Observed Model Quality Measurements .. 35

 2.3.3. Data Collection ... 36

 2.3.4. Ranking/Selection and Correlation scores ... 36
 2.3.5. Linear Regression for MQAPs Individually .. 37

 2.3.6. Linear Regression for MQAPs in Combinations .. 37

 2.3.7. Multiple Linear Regression for MQAPs in Combinations .. 38
 2.3.8. Improvement Calculation .. 38

 2.4. Results and Discussion .. 38

 2.4.1. Ranking/Selection benchmarking .. 39
 2.4.2. Correlation benchmarking ... 40

 2.4.3. New approach to update ModFOLD6 .. 48

 2.4.3.1. Suggested component of per-residue/local similarity scoring methods for ModFOLD6 ... 48

 2.4.3.2. Suggested component of global scoring methods for ModFOLD6 49
 2.5. Conclusion .. 51

Chapter 3 - Integrating Two Deep Artificial Neural Networks (RSNNS & TensorFlow) for Optimising

the Local and Global score of ModFOLD6 ... 52
 3.1. Background ... 53

 3.1.1. History ... 53

 3.1.2. Biological Neurons ... 56

 3.1.3. Artificial Neurons ... 57
 3.1.4. Deep Neural Networks .. 59

 3.2. Objectives ... 60

 3.3. Materials and Methods .. 61
 3.3.1. Inputs and Outputs .. 61

 3.3.2. RSNNS... 62

 3.3.3. TensorFlow .. 63
 3.3.4. Neural Networks insertion using Multi-Layer Perceptron machine learning method 63

 3.3.4.1. Neural Networks Setup .. 64

 3.3.4.2. Neural Networks Parameterisations .. 64

 3.3.4.3. Data searching ... 64
 3.3.4.4. Data analysis .. 65

 3.4. Results and Discussion .. 65

 3.4.1. MQAP score optimisation using RSNNS and TensorFlow .. 65
 3.4.1.1. Correlation benchmarking through RSNNS and TensorFlow .. 66

 3.4.1.2. Ranking/Selection benchmarking through RSNNS and TensorFlow 74

 3.4.2. Data Analysis ... 77
 3.5. Conclusion .. 80

Chapter 4 - Independent Benchmarking for an Updated Version of ModFOLD6 with the Top EMA

Methods in CASP12 ... 81
 4.1. Background ... 83
 4.2. Materials and methods ... 85

 4.2.1. Architecture and pipeline of the optimised ModFOLD6 .. 85

 4.2.2. ModFOLD6 variants ... 90
 4.3. Results and Discussion .. 91

 4.3.1. Server inputs and outputs .. 91

 4.3.2. Independent benchmarking of global scoring with official CAMEO and CASP12 data 92

 4.3.3. Further benchmarking and cross-validation with official CASP11 data 100
 4.3.4. Comparisons between the top CASP12 EMA methods .. 105

 4.3.4.1. Estimation of global accuracy .. 106

vi

 4.3.4.2. Distinguishing good models from bad .. 106

 4.3.4.3. Ranking of models ... 106
 4.3.4.4. Similarities in model accuracy estimation scores .. 109

 4.3.4.5. Comparison of local accuracy estimations .. 111

 4.4. Conclusions ... 113

Chapter 5 - Deep Artificial Neural Network Parameterisation .. 115
 5.1. Background ... 116

 5.2. Objectives ... 116

 5.3. Materials and Methods .. 118
 5.3.1. Raw Data .. 118

 5.3.2. Neural Network Inputs .. 118

 5.3.3. DANNs Training Targets. ... 120
 5.3.4. Three-Fold Cross-Validation. .. 120

 5.3.5. Neural Network Parameters .. 120

 5.3.6. Solutions to Overfitting... 121

 5.3.6. Outcome Metrics .. 122
 5.4. Results and Discussion .. 123

 5.4.1. Deep Artificial Neural Networks for Correlation (DANNs C) ... 123

 5.4.1.1. Inputs and Training Targets .. 123
 5.4.1.2. Optimiser and Loss-Function ... 124

 5.4.1.3. Learning Rate and Training Cycles... 126

 5.4.1.4. Regularisation .. 128

 5.4.1.5. Architecture ... 130
 5.4.2. Deep Artificial Neural Networks for Ranking (DANNs R) .. 132

 5.4.2.1. Inputs and Training Targets .. 132

 5.4.2.2. Optimiser, Loss Function and Learning Rate .. 133
 5.4.2.3. Training Cycles and Regularisation .. 135

 5.4.2.4. Architecture ... 138

 5.4.3. Significance of Results ... 140
 5.5. Conclusion .. 142

Chapter 6 - Independent Benchmarking for the Upgraded ModFOLD7 with the Top EMA Methods

in CASP13.. .. 143
 6.1. Background ... 145
 6.2. Objectives ... 147

 6.3. Materials and Methods .. 148

 6.3.1. The ModFOLD7 component per-residue/local quality scoring methods 150
 6.3.2. The ModFOLD7 global scoring methods .. 150

 6.3.3. Server inputs ... 151

 6.3.4. Server outputs ... 153
 6.3.5. Benchmarking ModFOLD7 within the top ranked EMA methods in CASP13 154

 6.3.6. Relative performance of EMA methods depending on evaluation metric 157

 6.4. Results and Discussion .. 158

 6.4.1. Evaluation metric analysis .. 160
 6.4.2. Correlation of top N models .. 161

 6.4.3. ModFOLD7 variants ... 163

 6.4.4. ModFOLD7 vs ModFOLD6 ... 164
 6.5. Conclusions ... 166

Chapter 7 - ModFOLD Applications ... 167
 7.1. Background ... 169

 7.2. IntFOLD ... 170
 7.2.1. ModFOLD6 in IntFOLD4 ... 172

 7.2.1.1. Methods ... 172

vii

 7.2.1.2. Results ... 175

 7.2.2. ModFOLD7 in IntFOLD5 ... 177
 7.2.2.1. Methods ... 177

 7.2.2.2. Results ... 179

 7.3. WeFold ... 181

 7.3.1. Methods ... 181
 7.3.2. Results .. 184

 7.4. Modelling Connexin62 to understand the haemostasis mechanism in platelets 187

 7.4.1. Methods ... 188
 7.4.2. Results .. 189

 7.5. Conclusion .. 193

Chapter 8 - Synthesis, conclusion and next direction ... 195
 8.1. Synopsis of studies .. 196

 8.1.1. ModFOLD6 optimisation and the participation in CAMEO and CASP12 196

 8.1.2. RSNNS and TensorFlow DANNs ... 197

 8.1.3. DANNs parameterisation .. 197
 8.1.4. ModFOLD7 upgrade and the participation in CAMEO and CASP13 198

 8.1.5. ModFOLD6 and ModFOLD7 applications .. 199

 8.2. Conclusion .. 199
 8.3. Future directions.. 200

References .. 202

Appendices .. 221

viii

List of Figures

Figure 1.1. The structure of the 20 amino acids found in protein. .. 5

Figure 1.2. Summary of the protein structure .. 6

Figure 1.3. ATOM records within a PDB file format .. 13
Figure 1.4. Line graph representing the sequence-structure gap .. 15

Figure 1.5. Scatter plot representing the relationship between sequence identity and structural similarity of

core residues.. 14
Figure 2.1. Flowchart summarising the overall process of section 2.3. .. 31

Figure 2.2. Predicted model quality scores versus observed model quality scores 45

Figure 2.3. Line graph representing cross-validation of ModFOLD6 local scores versus its component

methods using CASP11 data .. 46
Figure 2.4. Dot plot demonstrating a six-month performance summary for competitive local QA programs

including the previous version of our program (ModFOLD4) and ModFOLD6 47

Figure 2.5. Flowchart simplifying the procedure of the local/per-residue similarity scoring method suggested
for ModFOLD6 ... 49

Figure 2.6. Diagram representing the three suggested options of ModFOLD6 global scoring variants 50

Figure 3.1. 3D drawing of the biological structure of a neuron .. 56

Figure 3.2. Drawing represents the consecutive layers construction of neurons in the brain..................... 57
Figure 3.3. Schematic drawing representing an analogy of Biological Neuron and Artificial Neuron 57

Figure 3.4. A diagram representing a linear threshold unit .. 58

Figure 3.5. Two diagrams illustrating the differences between ANNs (left panel) and DANNs (right panel)
.. 60

Figure 3.6. Bar chart representing the top 10 MQAP combinations for correlation through RSNNS 66

Figure 3.7. Bar chart representing the top 10 MQAP combinations for correlation through TensorFlow…69
Figure 3.8. Regression plots comparing ModFOLD6 with the ranked RSNNS and TensorFlow MQAP

combinations ... 73

Figure 3.9. Bar chart representing the top 10 MQAP combinations for correlation through RSNNS 74

Figure 3.10. Bar chart representing the top 10 MQAP combinations for correlation through TensorFlow.75
Figure 3.11. Bar chart representing the top-ranking combination score for each technique using GDT-HA

.. 77

Figure 3.12. Distribution of Model Quality in the data set, measured using GDT-HA 79
Figure 4.1. Flow of data for local quality assessment scoring in ModFOLD6 .. 85

Figure 4.2. Pipeline showing details of neural network architecture and flow of data for local quality

assessment scoring in ModFOLD6 .. 87

Figure 4.3. Flowchart outlining the principal stages of the ModFOLD6 server prediction pipeline 89
Figure 4.4. Summary of global score benchmarks for the 3 ModFOLD6 alternatives using CASP11 data 90

Figure 4.5. ModFOLD6 server results for models submitted to CASP12 generated for target T0859 (PDB

ID: 5jzr) .. 92
Figure 4.6. Line graph representing independent benchmarking of local scoring EMA methods.............. 95

Figure 4.7. Line graphs representing cross-validation of ModFOLD6 local scores versus its component

methods using CASP11 data .. 104
Figure 4.8. Boxplots of per target correlation for the top CASP12 EMA method versus GDT-TS, CAD, and

lDDT, (A‐C) global evaluations, (D, E) local evaluations... 108

Figure 4.9. Pairwise correlations between predicted global accuracy scores from different methods and

actual accuracy scores according to 3 measures ... 110

Figure 4.10. Pairwise correlation between local predicted S‐scores ... 112

Figure 5.1. The effect of using different combinations of inputs scores and training targets scores on the

results of the neural networks .. 124
Figure 5.2. The effects of using different optimiser algorithms and loss functions on the performance of the

networks.. 125

ix

Figure 5.3. The effects of changing the number of training cycles and the learning rate on the results of the

neural networks ... 127
Figure 5.4. The effect of Dropout and L2 regularisation on the results of the networks 129

Figure 5.5. Results from testing different network architectures of DANNs C....................................... 131

Figure 5.6. Histogram showing the rank scores produced by DANNs R for the top 10 input combinations

.. 133
Figure 5.7. Plot comparing the rank scores for three optimiser algorithms over different learning rates in

DANNs R.. 134

Figure 5.8. A comparison of the different loss functions on the rank scores. Only the top score loss function
of each method is plotted ... 135

Figure 5.9. Plot showing how the rank score of DANNs R varies as the number of training cycles are

changed ... 136
Figure 5.10. The effect of Dropout and L2 regularisation on the results of the networks........................ 137

Figure 5.11. Results from testing different network architectures of DANNs R. All error bars represent the

standard deviation of 10 repeats of the neural network using the same parameters 139

Figure 5.12. The final results of DANNs C and DANNs R compared to using an average of the input scores
.. 141

Figure 6.1. Flow of data illustrating the local and global estimates of model accuracy in ModFOLD7 .. 149

Figure 6.2. ModFOLD7 server inputs and outputs pages .. 152
Figure 6.3. A new approach of evaluation for benchmarking the top ranked EMA methods in CASP13

including ModFOLD7 ... 159

Figure 6.4. Relative success of different EMA methods in predicting four reference‐based evaluation scores

.. 160
Figure 6.5. Line charts representing the top ranking EMA methods based on the top N models evaluation

.. 162

Figure 6.6. Histograms summarising the improvements in ModFOLD7 variants vs ModFOLD6 variants on

CASP11‐13 datasets .. 165

Figure 7.1. Flowchart outlining the principal stages of stages of the IntFOLD4-TS prediction pipeline..173

Figure 7.2. Benchmarking the performance of QA methods for model selection using CASP11 data, prior

to CASP12 .. 176
Figure 7.3. An illustration of the WeFold pipeline concept ... 183

Figure 7.4. Average z-scores (>−2.0) of the 20 top CASP12 groups ... 185

Figure 7.5. Design of the 62Gap27 mimetic peptide and its role in the regulation of intercellular
communication .. 192

Figure S7. Scatter chart showing how the correlation changes with learning rate where the rate is between

0.00005 and 0.0005 ... 257
Figure S8. A scatterchart showing how the correlation changes with L2 regularisation, where the L2

parameter is between 100 and 300 ... 257

Figure S9. Line chart showing how rank score and correlation change with the L2 parameter between values

of 100 and 1000 ... 258
Figure S13. The wfAll-Cheng pipeline selected its model 1 among all models contributed by the WeFold

pipelines as well as servers models .. 262

x

List of Tables

Table 1.1. List of the 20 amino acids found in proteins ... 4

Table 1.2. List of a few of the common successful TBM and FM programs and servers 21

Table 2.1. Global score benchmarks of the 10 MQAPs individually using CASP11 data 39
Table 2.2. Global score benchmarks of the 10 MQAPs in combinations using CASP11 data. 40

Table 2.3. List of the top ranked individual MQAP methods based on predicted versus observed scores

using Pearson’s (R), Spearman’s (Rho) and Kendall’s (Tau) correlation coefficients. 41
Table 2.4. List of the top ranked combinations for the ten MQAP methods based on predicted versus

observed scores using linear regression. ... 43

Table 3.1. The parameters used in each set for both RSNNS and TensorFlow. .. 65
Table 3.2. List of key numbers used to label the 10 MQAP methods... 63

Table 3.3. The top combinations and their scores for each testing method in the combination stage in

RSNNS. .. 67

Table 3.4. The top combinations and the respective parameters for each correlation testing methods for
RSNNS. .. 68

Table 3.5. The top combinations and their scores for each testing method in the combination stage in

TensorFlow. .. 70
Table 3.6. The top MQAP combinations and the respective parameters for each correlation testing

methods for TensorFlow. ... 71

Table 3.7. Results of the data searching stage for correlation along with the ModFOLD6 scores. 72

Table 3.8. The top combinations and their scores for each Observed method in the combination stage in
RSNNS. .. 74

Table 3.9. The top combinations and the respective parameters for each Observed score in RSNNS. 75

Table 3.10. The top combinations and their scores for each observed method in the combination stage in
TensorFlow. .. 76

Table 3.11. The top combinations and their respective parameters for each Observed score in TensorFlow.

.. 77
Table 3.12. The results of the data searching stage for ranking along with the ModFOLD6 scores. 78

Table 4.1. Independent benchmarking of local scoring publicly available published EMA methods with

CAMEO comparing... 93

Table 4.2. Independent benchmarking of the top local scoring EMA methods... 93
Table 4.3. Independent benchmarking of global scoring EMA methods in CASP12. 96

Table 4.4. Independent benchmarking of Corr. local scoring EMA methods in CASP12. 97

Table 4.5. Independent benchmarking of ASE local scoring EMA methods in CASP12. 97
Table 4.6. Independent benchmarking of LDDT global scoring EMA methods in CASP12. 98

Table 4.7. Independent benchmarking of stage 1 global scoring EMA methods in CASP12. 98

Table 4.8. Independent benchmarking of stage 2 global scoring EMA methods in CASP12 99
Table 4.9. Independent benchmarking of global scoring EMA methods using specific targets from

CASP12. ... 99

Table 4.10. FM Cross-validation of ModFOLD6 versus its component methods using CASP11 data. ... 100

Table 4.11. TBM Cross-validation of ModFOLD6 versus its component methods using CASP11 data . 100
Table 4.12. Cross-validation of ModFOLD6 versus its component methods using CASP11 data 101

Table 4.13. Ranking/selection global score benchmarks using CASP11 data. 101

Table 4.14. Correlation global score benchmarks using CASP11 data. .. 102
Table 4.15. Summary of the best performing QA methods in CASP12 and comments about their strength

and weaknesses. .. 105

Table 5.1. List of the various hyperparameters within our neural network. .. 117

Table 5.2. Summary of the ten protein QA programs used as inputs during the experiments along. 119
Table 5.3. A summary of the final hyperparameters for DANNs C and DANNs R. 140

Table 6.1. Overview of EMA methods discussed in this study and the way they were developed. 156

Table 6.2. Top EMA methods in CAMEO. ... 164

xi

Table 7.1. Performance of IntFOLD4‐TS versus other servers. ... 177

Table 7.2. Independent benchmarking of tertiary structure predictions with CAMEO 3D data. 180
Table 7.3. Independent benchmarking of IntFOLD versions with CAMEO 3D data. 181

Table S1. List of the top ranked combinations for the ten MQAP methods based on predicted versus

observed scores using multiple linear regression. ... 222

Table S10. Performance of IntFOLD4-TS versus Robetta... 258
Table S11. Performance of IntFOLD4-TS versus other servers ... 259

Table S12. Independent benchmarking of tertiary structure predictions with CAMEO 3D data 260

Table S13. Intensive Independent benchmarking of tertiary structure predictions with CAMEO 3D data
.. 261

xii

List of Abbreviations

AI Artificial Intelligence

ANNs Artificial Neural Networks

ASE Accuracy of Self-Estimates

AUC Area Under the Curve

BNNs Biological Neural Networks

CAD(AA) Contact Area Difference (All Atom)

cAMP Cyclic Adenosine Monophosphate

CASP Critical Assessment of Structure Prediction

CDA Contact Distance Agreement

Cryo-EM Cryogenic Electron Microscope

DANNs Deep Artificial Neural Neworks

DBA Disorder B-factor Agreement

DOIs Digital Object Identifiers

DSSP Dictionary of Secondary Structures of Proteins

EMA Estimate of Model Accuracy

FM Free Modelling

GDT Global Distance Test

GDT-HA Global Distance Test-High Accuracy

GDT-TS Global Distance Test-Total Score

GPGPUs General-Purpose Graphics Processing Units

IEEE Institute of Electrical and Electronic Engineer

LDDT Local Distance Difference Test

MCC Matthews correlation coefficient

MLP Multilayer Perceptron

MNIST Modified National Institute of Standards and Technology

MSA Multiple Sequence Alignment

MSE Mean Squared Error

MTM Multiple Template Modelling

MQAPs Model Quality Assessment Programs

NMR Nuclear Magnetic Resonance

NN Neural Network

OMS Optimal Mean Score

PDB Protein Data Bank

PKA Protein Kinase A

PR Precision and Recall

PSSM Position-Specific Scoring Matrix

QA Quality Assessment

QE Quality Estimation

ReLU Rectified Linear Unit

RMSE Root Mean Squared Error

ROC Receiver Operating Characteristic

RSNNS R Stuttgart Neural Network Simulator

SCE Sigmoid Cross-Entropy

SG SphereGrinder

SNNS Stuttgart Neural Network Simulator

SSA Secondary Structure Agreement

xiii

SSEA Secondary Structure Element Alignment

StdErr Standard Error

TBM Template-Based Modelling

TM-score Template Modeling Score

VASP Vasodilator-Stimulated Phospho-Protein

WPGMC Weighted Pair Group Method Centroid

xiv

 Acknowledgment

First, and most of all, I would like to acknowledge the source of everything, and the cause behind

all reasons. The one which without nothing would have been existed. All praises be to the almighty

God.

I would like to express the deepest appreciation to Dr Liam McGuffin, this amazing person who

has the attitude and the substance of a genius. He continually and convincingly conveyed a spirit

of adventure in regard to research and scholarship, and an excitement in regard to teaching. Without

Dr McGuffin’s guidance and persistent help, this thesis would not have been possible.

I would like to extend my sincere gratitude to the exceptional Bioinformatics department in the

School of Biological Sciences at the University of Reading. I would like to give a special thanks

to Professor David Leake in sharing the effort and knowledge to make this research a reality. I also

thank Dr Bajuna Salehe, Jennifer Atkins, Dr Naqib Shuid, Recep Adiyaman, John Nealon, Limcy

Philomina, Ben Livesey, Filipe Jesus, and all the other colleagues who were continually

cooperative and supportive to our study and research.

I would like also to give my deepest gratitude to the other colleagues from the other departments,

thanks to Dr Khaled Sahli, Dr Gagan Flora and all the team in Professor Jon Gibbin's lab for the

great collaborative study. I also thank the other teams from different international universities and

organisations for the great collaboration during my Ph.D. study.

Finally, I would like to give special thanks to my happy family who has provided me a continuous

spiritual and material support. Never-ending love from me to my beloved mother for her support.

It is a great gift from God to be her son. Thanks are also given for my father the one who always

had confidence in me and knew that I can do it, and to my brothers, sisters, relatives and friends

who have given me cheerful and joyful days. I would like also to thank my government for

supporting me morally and financially throughout my entire years of studies.

Chapter 1

Introduction

Chapter 1

2

1.1. Proteins

The central dogma of molecular biology states that genetic information is stored in the DNA and

transcribed into RNA, which in turn is translated into the most versatile macromolecules that

govern the very basis of life - proteins. Proteins comprise the second largest percentage of material

(after water) in a cell and they play a key role in virtually every cellular process within living

organisms (Chauhan and Varma, 2013). Knowing the function of proteins is critical in many fields

within the life sciences - from the development of better drugs, improvement of crop yields, and

even the development to synthetic biofuels. In a single experiment using E. coli, for instance, 2300

proteins have been identified to be representing approximately 88% of the estimated expressed

proteome of E. coli (Soufi et al., 2015). Determining and characterising every protein molecule of

that bacterial cell can lead to the knowledge of how this prokaryotic cell is regulated. Normal

functioning proteins usually have one or more continuous polymer chains comprising various

combinations of multiple different amino acid residues. These residues interact with one another

forming covalent, hydrogen and ionic bonds and are subject to van der Waals interactions and

hydrophobic forces, which give rise to the specific 3D shapes and functions of proteins.

1.2. Amino acids

The tremendous abundance and variety of proteins with their enormous functional complexity are

all achieved by their polymeric nature, which emerges from a limited alphabet of building blocks

with varying properties - the amino acids. The discovery of the first few of the amino acids occurred

the early 19th century, when Vauquelin and Robiquet isolated a compound in Asparagus

(subsequently named Asparagine) to find the first protein amino acid (Vauquelin and Robiquet,

1806). The 20 common (or called the standard) amino acids then were discovered one after another

until the last amino acid, Threonine, was found in 1935 by William Cumming Rose (Simoni et al.,

2002).

The long unbranching chain of amino acids defines the primary structure of proteins, they are

linked to one another through a covalent peptide bond. Each amino acid consists of a central carbon

atom attached to an amino group (-NH2), a carboxyl group (-COOH) and a side chain group (-R).

There are 20 commonly known amino acids which make protein chains each with different side

chains. Each are specified by codons in the universal genetic code (Table 1.1). The different side

Chapter 1

3

chains give each amino acid its own chemical structure and properties, allowing us to classify them

differently, for example by polarity and charge (Figure 1.1). The 20 amino acids are typically

labelled with a one-letter as well as three-letter abbreviations in order to simplify the way of

recording, processing and understanding protein sequences. The one letter amino acid code can

also help us to more easily identify any specific mutations or binding sites occurred in a sequence

(Lodish et al. 2000), via e.g. sequence alignments and motif searching. Moreover, there are two

other “non-standard” amino acids (Selenocysteine and Pyrrolysine) which do not have a dedicated

codon, but are added in place of a stop codon when a specific sequence is present, UGA codon and

SECIS element for Selenocysteine (Bo¨ck et al., 1991), UAG PYLIS downstream sequence for

Pyrrolysine (Théobald-Dietrich et al., 2005). There are also other amino acids which are not

naturally encoded or found in the genetic code of any organism but rather they occur in nature or

be synthesised in the laboratory, these types of amino acids are termed as “non-proteinogenic”

(Filip and Iancu, 2018).

Chapter 1

4

Amino acid

Abbreviation
Side chain

Polarity

Side chain

charge
Class

Three-

letter

One-

letter

Aspartic acid (C4H7NO4) Asp D Polar Negative Acidic

Glutamic acid (C5H9NO4) Glu E Polar Negative Acidic

Arginine (C6H14N4O2) Arg R Polar Positive Basic

Lysine (C6H14N2O2) Lys K Polar Positive Basic

Histidine (C6H9N3O2) His H Polar Positive Basic

Asparagine (C4H8N2O3) Asn N Uncharged polar Neutral Acidic

Glutamine (C5H10N2O3) Gln Q Uncharged polar Neutral Acidic

Serine (C3H7NO3) Ser S Uncharged polar Neutral Hydroxyl

Threonine (C4H9NO3) Thr T Uncharged polar Neutral Hydroxyl

Tyrosine (C9H11NO3) Tyr Y Uncharged polar Neutral Aromatic

Alanine (C3H7NO2) Ala A Nonpolar Neutral Aliphatic

Cysteine (C3H7NO2S) Cys C Nonpolar Neutral Hydroxyl

Glycine (C2H5NO2) Gly G Nonpolar Neutral Aliphatic

Isoleucine (C6H13NO2) Ile I Nonpolar Neutral Aliphatic

Leucine (C6H13NO2) Leu L Nonpolar Neutral Aliphatic

Methionine (C5H11NO2S) Met M Nonpolar Neutral Hydroxyl

Phenylalanine(C9H11NO2) Phe F Nonpolar Neutral Aromatic

Proline (C5H9NO2) Pro P Nonpolar Neutral Cyclic

Tryptophan (C11H12N2O2) Trp W Nonpolar Neutral Aromatic

Valine (C5H11NO2) Val V Nonpolar Neutral Aliphatic

Alanine (C3H7NO2) Ala A Nonpolar Neutral Aliphatic

Table 1.1. List of the 20 amino acids found in proteins. The list includes the names formula, three-letter

abbreviation, One-letter abbreviation, side chain polarity, side chain charge and class for the. Adapted from

Williamson, (2011).

Chapter 1

5

Lysine Arginine Histidine Asparagine Glutamine

Aspartate Glutamate Serine Threonine Cysteine

Isoleucine Valine Alanine Proline Glycine

Phenylalanine Leucine Tyrosine Tryptophan Methionine

Figure 1.1. The structure of the 20 amino acids found in proteins. They are encoded by the universal

genetic code for the construction of protein sequences. Each amino acid is represented with its own side

chain. Adapted from Williamson (2011).

Chapter 1

6

1.3. From Primary to Quaternary Structure

Proteins exist in a plethora of different shapes and sizes which confers a vast range of biochemical

and cellular functions, as well as the different phenotypes they produce in a cell or an organism.

The structural diversity arises from the genetic code, specified in the DNA sequences, which in

turn specifies the linear chains of various lengths made up from different amino acid combinations.

The linear chains of amino acids subsequently fold into a diverse range of specific three-

dimensional structures which allows them to perform an incredible array of functions (Petsko and

Ringe, 2008). Four principal levels of protein structure have been characterised in order to help us

to better understand the diversity of protein structures that results from the sequence complexity

(Figure 1.2).

Figure 1.2. Summary of the protein structure. In the left side, a simplified cartoon representation of the

four levels of protein structures, and in the right side, a 3D computational cartoon representing the four

degrees of the protein structures using the example of PCNA (Mudavath and Pittu, 2013) (PDB: 1AXC).

Chapter 1

7

1.3.1. Primary structure

The primary structure is the linear sequence chain of polymer that is built from the 20 amino acids

described in Section 1.2. The chain is formed by a condensation (dehydration) reaction between

the carbonyl group (C=O) of one amino acid and the amino group (H-N) of the next leading to the

formation of a covalent (peptide) bond. The repeated process leads to the formation of an

unbranched polypeptide chain with two ends: the carboxyl terminus (C-terminus) and the amino

terminus (N-terminus) based on the nature of the free group on each end. If the chain is short (less

than ~40 amino acids) we generally refer to the chain as peptides rather that a protein. When writing

out the sequence of a protein, we begin with the first encoded amino acid from the N-terminus and

then continue until the last amino acid, which will be the one at the C-terminus end (Petsko and

Ringe 2008).

1.3.2. Secondary structure

The secondary structure level describes the locally ordered structure which is stabilised by

hydrogen bonding. There are two major types of secondary structures observed in proteins. The

first major type is called the alpha (α) helix, this structure resembles a coiled spring, and it is

stabilised by local hydrogen bonding located between the NH and CO groups in the polypeptide

chain. The second major type is called the beta (β) strand. Extended beta strands come together to

form beta-pleated sheets via more distant hydrogen bonding between amino acids linking the

folded chain so that strands lie adjacent to one another. The beta strands in a sheet can either be

described as being parallel, where the strands are running in the same direction from N-terminus

to C-terminus, or the pairing strands can run in opposite directions making them an anti-parallel β-

sheet. The elements of the regular secondary structure are usually connected by loop regions, also

referred to as coils.

A standardised vocabulary of secondary structure types was published by Kabsch and Sander in

their DSSP program (Kabsch and Sander, 1983). The program processes the atomic coordinate

data contained within PDB files and assigns secondary structures states to each residue in the

protein based on hydrogen bonding patterns. DSSP defines secondary structure states such as the

π-helix (’I’), three-ten helix (’G’), turn (’T’), β-bridge (’B’), bend (’S’) and coil (’C’). However,

commonly residues are grouped into a simplified three-state scheme - either helical (H), extended

Chapter 1

8

strand (E) and coil (C) states – for processing by structure prediction and classification programs

(Jones, 1999) (Zhang and Skolnick, 2005).

1.3.3. Tertiary structure

When multiple secondary structural elements start to get condensed, this level of structure arises.

The tertiary structure refers to the overall three-dimensional shape of a protein, once all the

secondary structure elements have folded together among each other. In this stage, the protein

backbone topology or mutual orientation of secondary structures are specified, and the full 3D

arrangement of all atoms is created through interactions between polar, nonpolar, acidic, and basic

R group within the polypeptide chain. The folding in this level are driven by several forces such as

hydrophobic effects, van der Waals forces, ionic interactions and hydrogen bonds (Lodish et al.,

2000). Once folded, the hydrophobic R groups of nonpolar amino acids will mostly lie in the interior

of the structure. In contrast, the hydrophilic R groups will mostly lie on the outside. Cysteine side

chains will form disulphide linkages in the presence of oxygen which is the only covalent bond

forming during protein folding. Such interactions are the main causes of the final 3D shape of a

protein. Without these types of bonding and forces, the protein three-dimensional shape will be

lost, and the protein will no longer has its function (Baldwin, 2007).

1.3.4. Quaternary structure

At the highest level of organisation, the quaternary structure combines two or more folded chains

into a multi-subunit structure. The multiple polypeptide chains arrange into stable and semi-stable

complexes based on the hydrophobic effect or electrostatic interactions between residues. The

hydrophobic interaction among nonpolar side chains at the contact regions of the subunits is the

major force which stabilise the quaternary structure. Whereas, the interactions between side chains

of the subunits including electrostatic interactions such as hydrogen and disulphide bonds are

functioning as additional stabilisers. Therefore, Hydrogen bonding, van der Waals interactions,

ionic bonding and disulphide bonding are the factors that keep the quaternary structure of proteins

held together. An example of a protein with quaternary structure is haemoglobin, an oxygen

transport protein which is translated as a tetrameric (four unit) protein consisting of two α and two β

subunits. Other examples include the DNA, polymerase, and ion channels as well. If there are

Chapter 1

9

multiple polypeptide chains with the same sequence, then the protein complex is referred to as a

homo-oligomer or homomer, whereas protein complexes having at least two different polypeptide

sequences are referred to as hetero-oligomers or heteromers. In the living cell, oligomers can be

found abundantly, and they serve in many different parts of the living body with a multitude of

functions (Berg et al., 2002).

1.4. Why determine the structure of proteins?

The motivation behind protein structure determination is based on the assumption that the function

of a protein is representative in its own morphology. When proteins fold into specific structural

conformations they also perform a specific biological function based on that fold. By determining

the shape of a protein, we can understand its role within the body and how it works, enabling

scientists to design new, effective cures for diseases more efficiently. Determining protein structure

can also help in finding how proteins interact with each other as well as with other molecules such

as ligands. There are several diseases which were caused because of misfolded proteins. Such these

diseases include cystic fibrosis (Fraser-Pitt and O’Neil, 2015) and Alzheimer's (Ashraf et al., 2014).

Protein folding is also important in improving our understanding about the proteins themselves.

Acquiring more knowledge about the proteins shape and the way they are operated through

simulations and models can open new potentials within drug discovery in a far reduced costs

association in experiments. The results of such research would ultimately improve the quality of

life for millions of patients around the world.

Protein design is another field which can be tremendously benefited from protein structure

determination. Many advances such as designing biodegradable enzymes which could help

managing pollutants like plastic and oil for the purpose of breaking down waste in an

environmentally friendly way can be boosted by knowing how to fold these protein enzymes

(Halton, 2018).

The ongoing increase in structural information of proteins has been providing continual insights

into their functions. However, revealing protein function from sequence is still an unsolved

problem as they differ in their biochemical properties, structures, and interactions between one

another. Having the knowledge that the protein has the ability to add a phosphate group to serine

residues, for example, is not going to be sufficient for understanding the exact function of that

Chapter 1

10

protein. Therefore, a number of molecular determinants have been considered crucial for

elucidating function, such as: protein structure; genetic approaches; protein homology and cell

location; protein-protein interactions, each of which has been carried out using a number of

powerful techniques and methods in order to characterise the precise structure, which means, the

precise function of a protein (Patthy, 2008) (Alberts et al., 2014).

1.5. Experimental methods

The precise 3D shape of individual proteins cannot be directly observed due to their relative size

which lies below the limit of detection. To overcome this issue, a number of methods have been

utilised in order to determine protein structures experimentally.

1.5.1 X-ray Crystallography

The most dominant experimental structure determination method is X-ray crystallography, a

method used for observing protein molecules by dealing with them in the crystalline state. The

technique exploits the properties of highly ordered crystals for the purpose of obtaining structural

information of biological macromolecules at atomic resolution. Determining protein structure

using the X-ray crystallography method are proceeded in 3 steps. Firstly, crystallising the protein

target, and that is by expressing and purifying a large amount of proteins in order to grow their

crystals. Secondly, collecting the diffraction patterns which are caused by the interaction between

the electrons of the sample and the X-ray wave as described by Braggs law (Bragg William Henry,

1913). Thirdly, the output data is combined computationally with complementary chemical

information to produce and refine a model of the arrangement of atoms within the crystal. The final

refined model is called a crystal structure and is stored usually in the PDB (Berman et al., 2000).

X-ray crystallography is a very useful experimental method in determining protein structure. It can

provide very detailed atomic information, showing every atom in a protein or nucleic acid along

with atomic details of ligands, inhibitors, ions, and other molecules that are incorporated into the

crystal. However, the crystallisation process is challenging and can impose limitations on the types

of proteins that may be studied by the method. For instance, the method can determine the

structures of rigid proteins excellently if only they formed nice, ordered crystals. Flexible proteins

are far more difficult to study through the process of this method because crystallography relies on

Chapter 1

11

having the exact same orientation of alignments for the protein molecules, similarly as a repeated

pattern in wallpaper. Having flexible portions of protein will often be invisible in crystallographic

electron density maps, since their electron density will be smeared over a large space (Guinier,

2013).

Recently, a new tool termed serial femtosecond crystallography has been revolutionasing the X-

ray crystallography method. The idea behind it lies in making very short pulses of radiation which

last only femtoseconds, these pulses are created by using a free electron X-ray laster (XFEL), and

this radiation is extremely bright. Afterwards, a stream of tiny crystals which do not exceed the

nano to the micrometers in size is passed through the beam, and each X-ray pulse produces a

diffraction pattern from a crystal, often burning it up in the process. A full data set is compiled

from as many as tens of thousands of these individual diffraction patterns. The method is very

powerful because it allows scientists to study molecular processes that occur over very short time

scales, such as the absorption of light by biological chromophores (Bergman et al., 2017).

1.5.2 Nuclear Magnetic Resonance

Nuclear Magnetic Resonance (NMR) is also used for proteins structure observation. This

spectroscopic technique is preferable for small protein molecules, and it determines the structure

in solution (Branden and Tooze, 1998). The method of this technique relies on the energy

differences between spin states of nuclei with the uneven number of protons and neutrons in a

magnetic field. State transitions between the low and high energy spin state are induced using a

radio pulse, the magnetic field perceived by nuclei differ due to chemical shielding by electrons,

these differences can be detected in the spectrum.

NMR has a major advantage that is missing in the X-ray crystallography, NMR can provide

information on proteins in solution, as opposed to those locked in crystal or bound to a microscope

grid. This feature makes NMR the premier method for studying the atomic structures of flexible

proteins. The method can give indications that help spotting the flexible parts of the molecule by

giving less or weaker signals in the experiment than the harder parts (Williams et al., 2016).

According to the PDB resource (www.pdb.org), over 11% of the deposited protein structures have

been solved using NMR. In such a database, two types of coordinate entries for NMR structures

can be found. The first type of entry includes the full ensemble from the structural determination,

Chapter 1

12

with each structure designated as a separate model. The second is a minimised average structure.

These files attempt to capture the average properties of the molecule based on the different

observations in the ensemble. A list of restraints that were determined by the NMR experiment can

also be found in PDB. These include a number of factors and other information such as hydrogen

bonds and disulphide linkages, distances between hydrogen atoms that are close to one another,

and restraints on the local conformation and stereochemistry of the chain (Wawer and Diehl, 2017).

1.5.3 Cryogenic Electron Microscopy

Another technique that has been used for structural analysis is the Cryogenic Electron Microscope

(Cryo-EM), this technique is a branch of the commonly used technique 3D Electron Microscopy

(3DEM). Unlike X-ray crystallography and NMR spectroscopy, Cryo-EM does not require 3D

crystals or a soluble medium. Molecules can be observed directly in multiple conformations in their

native environment (Murata and Wolf, 2018). The technique analyses the molecular structures

through their dynamics, this analysis is proceeded using advanced image-processing algorithms.

Providing these views show the molecule in myriad different orientations, a computational

approach akin to that used for computerised axial tomography (CAT) scans in medicine will yield

a 3D mass density map. The 3D map can then be interpreted by fitting an atomic model of the

macromolecule into the map when there are enough single particles. This process is similar to the

macromolecular crystallographers interpret their electron density maps, electron diffraction from

2D or 3D crystals or helical assemblies of biomolecules can also be used in a restricted number of

cases in order to determine 3D structures with an electron microscope using an approach very

similar to that of X-ray crystallography.

Cryo-EM is favoured by many structural biologists to solve proteins tertiary structure at cryogenic

temperature which is below -180°C (Schmidt and Urlaub, 2017). The 3DEM techniques are gaining

prominence in studying biological assemblies inside cryo-preserved cells and tissues using electron

tomography. This method involves recording images at different tilt angles and averaging the

images across multiple copies of the biological assembly in situ. The single particle 3DEM as well

as the electron diffraction, both methods can yield structures with high molecular and atomic detail

at resolution limits comparable to macromolecular crystallography, it can enable visualising amino

acid sidechains, surface water molecules, and non-covalently bound ligands. Cryo-electron

tomography can also provide structural information at slightly lower resolution such as protein

Chapter 1

13

domains and secondary structural elements. In 2016, PDB reported that the number of 3DEM

structures that was deposited in their bank exceeded those which were produced by NMR

spectroscopy for the first time. However, likewise the previous protein structure observing

methods, Cryo-EM has a number of limitations which makes it difficult in use. The main limitation

of this technique is the need for a very low thickness of the samples. Most cells are structurally

thick, that makes the method fails in excellently imaging the targeted structure as it depends on the

thickness of the sample (Cabra and Samsó, 2015). Such a limitation is due to the very low signal

to noise ratio that Cryo-EM has, and it leads to having a low contrast of the resulting images which

makes it difficult to detect features of a given sample when viewing a few samples.

1.6. Resources for experimental protein structures

Protein structures which have been determined experimentally are deposited in a computational

archive called the Protein Data Bank (PDB) (Berman et al., 2000). The PDB was established in the

early seventies in order to gather a small but growing number of solved protein structures in one

place and make it accessible to the scientific community (Bernstein et al., 1977). The atomic

coordinates together with the information associated with the crystallised polymer of every protein

experimental structure are deposited in the form of a PDB file (Figure 1.3). This information

includes oligomeric state, references and experimental details, such as unit cell size, and refinement

parameters. The stored structures are then labelled by assigning them with PDB identifiers, which

are unique four-character codes for each structure, as well as DOIs.

Figure 1.3. ATOM records within a PDB file format. The example was labelled for description purposes.

Adapted from https://www.cgl.ucsf.edu/chimera/docs/UsersGuide/tutorials/pdbintro.html.

Chapter 1

14

1.7 Challenges facing experimental methods

Although such methods and experimental techniques help in determining higher resolution

structures, they are still not reliable as not all proteins can be successfully determined under their

conditions. A large number of proteins cannot be crystallised; particularly problematic are

membrane bound proteins. Other types of proteins such as the small-sized insoluble ones are unable

to be determined by NMR. In addition, the currently available experimental methods used to

identify protein 3D structure like NMR and X-ray are relatively time-consuming and cost-

ineffective (Zhu and Azar, 2015). The difficulties in these techniques have led the structural

biological community to look for another substitute to rely on. Cryo-EM has become increasingly

important due to the recent advances that was developed in its techniques. Such improvements in

Cryo-EM have made it possible for structural biologists to determine the 3D structure of proteins

to near-atomic resolution (Callaway, 2015). However, as with the other experimental methods,

Cryo-EM still has many limitations. The Cryo-EM map is still limited in resolution and cannot be

used directly for building models (Cheng, 2015).

1.8 The sequence-structure gap

Breakthroughs in genetic sequencing techniques have led to obtaining a huge amount of protein

sequence information that has far outstripped the rate at which we are able to experimentally

characterise each protein structure. Genomic sequences of many organisms have nowadays been

easily and rapidly determined. This sequencing revolution is owing to the significant improvement

in genome sequencing technologies and efforts. Over the recent decades, over 1 billion sequences

from 420,000 formally described species have been deposited in the comprehensive public

sequences data banks, GenBank databases (Sayers et al., 2019). More than 150 million sequences

among them have been translated into protein amino acid sequences and stored in the

UniprotKB/trEMBL database (UniProt Consortium, 2015). Contrarily, despite all the tremendous

progress in the experimental structure determination techniques, the number of experimentally

determined structures deposited in the PDB database increased slower as reports showed only

147,508 structures at the end of 2018 (Figure 1.4). Therefore, it was urgent for biologists to find a

solution for this rapid widening in the sequence-structure gap.

Chapter 1

15

Figure 1.4. Line graph representing the sequence-structure gap. The number of entries in the trEMBL

sequence database (UniProt Consortium, 2015) is growing exponentially, while the number of the protein

structure entries is jammed making the protein structure gap between sequence and structures widening

dramatically.

1.9 The intervention of Bioinformatics

To close this gap issue, the development of computational approaches was exploited to grow the

field of what is called the protein structure prediction. Numerous studies have been focusing on

determining the protein 3D structure directly from the sequence data using a wide variety of

computational methods.

1.9.1 Sequence-structure relationship

A grand challenge that molecular biologists face in determining the protein three-dimensional

structure is unravelling the relationship between the amino acid sequence and the protein 3D

conformation. The work of Anfinsen in 1973 revealed that the major determinant of the 3D

structure of a protein was its own primary sequence (Anfinsen, 1973). Although the primary

sequence of proteins is subjected to changes as a direct consequence of evolution, protein structure

has proven to be astonishingly robust towards mutations. Such a robustness is due to the proteins

ability in adopting a limited ensemble of native conformations since those conformers have lower

energy than unfolded and mis-folded states (Taverna and Goldstein, 2002) (Tokuriki et al., 2007).

167,761,270

147,508
0

20,000,000

40,000,000

60,000,000

80,000,000

100,000,000

120,000,000

140,000,000

160,000,000

180,000,000

1986 2000 2005 2008 2010 2013 2015 2016 2017 2018

EN
TR

IE
S

N
U

M
B

ER

YEARS

 Sequences Structures

Chapter 1

16

This process is achieved by a distributed, internal network of cooperative interactions such as the

hydrophobic, polar and covalent (Shakhnovich et al., 2005). Stability in structural similarity can

even be found with the distantly related proteins.

Later and after a decade of achieving a huge amount of protein structural information, homologous

proteins which share detectable sequence similarity was seen to have similar 3D structures, and

their structural diversity is increasing with evolutionary distance as well. Such a finding was shown

by Chathia and Lesk in their seminal paper, “The Relation between the Divergence of Sequence

and Structure in Proteins” (Chothia and Lesk, 1986) (Figure 1.5).

Figure 1.5. Scatter plot representing the relationship between sequence identity and structural

similarity of core residues. The fitted curve shows that similar sequences imply similar structures. Adapted

from Chothia and Lesk, (1986).

1.9.2. Sequence alignments

The fact that sequence similarity implies structural similarity has been validated via many

bioinformatics and computational biology studies and methodologies, which compare the

relationships between protein sequences (Eddy, 2011). Sequence similarities are typically found

through comparing protein sequences using sequence alignment techniques. Computational

approaches to sequence alignment generally fall into two algorithmic categories. The first category

Chapter 1

17

involves the global alignment methods and these approaches force the alignment to span the entire

length of all query sequences. The second category involves the local alignment methods, and these

approaches identify regions of similarity within long sequences that are often widely divergent

overall. Both types of algorithms are within a complexity of O(nm), where n and m represent the

lengths of the first and second sequences respectively. Global alignments are useful when the

sequences in the query set are similar and of roughly equal size. An example of a global alignment

approach is the Needleman-Wunsch algorithm (Needleman and Wunsch, 1970). However, local

alignments approach sometimes are preferable when the aligned sequences are not directly related

to produce high-quality global alignments. A general example of local alignment method is the

Smith-Waterman algorithm (Smith and Waterman, 1981) (Polyanovsky et al., 2011).

1.9.2.1 Pairwise sequence alignments

Sequences are usually aligned in pairs to find the best-matching piecewise alignments of only two

query sequences at a time. The pairwise alignment approach is efficient and is often used for

methods which do not require extreme precision (such as searching a database for sequences with

high similarity to a query). There are three common techniques that produce pairwise alignments

(Mount, 2004): (1) Dot-matrix, this method implicitly produces a family of alignments for

individual sequence regions. The technique is qualitative and conceptually simple, though time-

consuming to analyse on a large scale. (2) Dynamic programming, this method is applied to

produce global alignments via Needleman-Wunsch algorithm, and local alignments via the Smith-

Waterman algorithm. The approach is useful for finding an optimal alignment given a particular

scoring function, though identifying a good scoring function is often an empirical rather than a

theoretical matter. (3) Word, also known as k-tuple, and this method is heuristic, which does not

guarantee finding an optimal alignment solution. However, Word technique is more efficient than

dynamic programming, especially in large-scale database searches where large proportion of the

candidate sequences will have essentially no significant match with the query sequence.

The efficiency of word or k-tuple based techniques, led to the development of a number of widely

and used programs such as FASTA (Lipman and Pearson, 1985) and BLAST (Altschul et al.,

1990). Since its introduction until today, BLAST is still one of the most widely used programs for

carrying out efficient sequence database searches. Its heuristic algorithm makes the program much

faster than other approaches. Prior to FASTA and BLAST, the procedure of searching for sequence

Chapter 1

18

alignments used to be by using the full alignment algorithms such as Smith-Waterman, which were

time consuming.

1.9.2.2 Multiple sequence alignments

More than two sequences can also be incorporated at a time using multiple sequence alignment

(MSA) approach which is an extension of pairwise alignment. MSA methods are often used to

identify conserved sequences regions across a group of sequences hypothesised to be evolutionarily

related (Rosenberg, 2009). Such approaches are useful in conjunction with structural and

mechanistic information to locate, for instance, the catalytic active sites of enzymes. They can also

be used to aid in establishing evolutionary relationships by constructing phylogenetic trees.

Although MSA approaches are computationally difficult to produce and sometimes they lead to

NP-complete combinatorial optimisation problems, the utility of these alignments has been able to

develop a variety of methods which helped in advancing bioinformatics. Such these methods are

Clustal Omega (Sievers and Higgins, 2014), Kalign (Lassmann and Sonnhammer, 2005),

MUSCLE (Edgar, 2004)… etc), these methods are suitable for aligning three or more sequences

(Wang and Jiang, 1994) (Elias, 2006).

Sequence alignments are usually stored in a format based on several specific alignment programs

or implementations. Many of these programs provide web-based tools that allow storing sequence

alignments using a limited number of input and output formats, such as FASTA format (Goldstein

et al., 2014) and GenBank format.

1.9.2.3. From sequence alignments to structure modelling

The fact that evolutionarily related proteins have similar structures has encouraged researchers to

develop methods for predicting the structure of proteins from their sequences (Kaczanowski and

Zielenkiewicz, 2010). One way of modelling a protein structure is by aligning the sequence to those

of already experimentally observed protein structures and then using those structures as templates

in order to map the 3D coordinates of each aligned residue. This procedure has been termed

homology modelling or comparative modelling (Martí-Renom et al., 2000). However, sometimes

structurally homologous proteins can have a very low sequence identity, and in these cases

homology modelling methods fail to identify a suitable template structures or produce poor

Chapter 1

19

alignments. This issue led to another way of determining protein structure called Threading or Fold

recognition (Rost et al., 1997). This modelling method does not use the homologous proteins with

known structures, but rather uses statistical knowledge of the relationship between the structures

which have been deposited in the PDB database and the targeted sequence. In recent years fold

recognition and homology modelling techniques have somewhat merged, with the ability to detect

ever more distant evolutionarily relationships using profile-profile searching methods and HMM-

HMM methods, such as the popular HHpred method (Hildebrand et al., 2009). The general concept

of modelling based on existing structures is now classified as Template-Based Modelling (TBM),

and the success of such methods relies on the availability and accurate detection of suitable

templates.

As the amount of detectable similarity between target protein and template structures decreases,

the accuracy of template-based techniques will start to be insufficient and such methods become

unreliable. In this case, another structure prediction technique, traditionally called de novo or ab

initio protein structure prediction is the only remaining option. The technique is based on predicting

the structure of proteins without the need of a template and is therefore known as template Free

Modelling or FM (Jothi, 2012). FM methods are not nearly as accurate as TBM methods when

templates are available (Moult et al., 2005). However, the concept of such techniques is somewhat

simpler comprising of only two elements: firstly an algorithm to search the space of possible

protein configurations for cost function minimisation and secondly various restraints, which are

the composition of the cost function itself, being either derived from physical laws and structural

features predicted by machine learning or other types of statistical systems (Larrañaga et al., 2006).

FM techniques have been incrementally improving and can provide us with valuable information

on how novel domains may fold (Kihara et al., 2001).

Most recent breakthroughs have arisen with the onset of deep learning. New approaches built using

Artificial Intelligence (AI) have been accelerating the structure prediction field by far. A method

called AlphaFold was developed by the DeepMind AI company has shown a significant progress

on generating 3D models of proteins in the worldwide protein prediction competition, CASP (more

details about this competition will be addressed in the later sections). The method was placed first

in rankings among the teams that entered in protein modelling competitions (details about the

protein structure prediction competition community will be addressed later). The reason behind

this success lies to the integration of the Deep Artificial Neural Neworks (DANNs) approach,

Chapter 1

20

which is a system of many learning algorithms which can be trained in order to be able to search

the protein landscape thoroughly, and as a result, it generates highly accurate structures. Such a

success has drawn the attention from all structural biologists to start studying this field in depth.

1.10. Protein structure prediction software

The field of computational protein prediction is evolving constantly, following the increase in

computational power of machines and the development of intelligent algorithms. Such an evolution

made the classification and categorisation of these methods hard to conserve. In this section, some

of the most popular programs and servers for protein structure prediction will be listed (Table 1.2)

according to the organisations which are interested on protein structure predictions, CASP (Moult

et al., 2005) and CAMEO (Haas et al., 2018). Some programs/servers can have more than one

edition/approach so that they can fulfil different methods.

Chapter 1

21

Table 1.2. List of a few of the common successful TBM and FM programs and servers. The list was

sorted in alphabetical order starting with our method which was developed by Dr Liam McGuffin, IntFOLD.

Program Type Short Description Reference

IntFOLD FM/TBM

An approach that works via iterative

multi-template-based modelling,

using the target-template alignments

from 14 alternative methods and

eight alternative threading methods,

and a powerful model quality

assessment component called

ModFOLD.

(Roche et al., 2011)

(McGuffin et al., 2019)

I-TASSER FM/TBM

A hierarchical approach that

MetaServer which combines various

TASSER-based approaches.

(Roy et al., 2010)

(Yang and Zhang, 2015)

MODELLER TBM

A homology or comparative

modelling approach which calculates

a model containing all non-hydrogen

atoms through the satisfaction of

spatial restraints.

(Fiser et al., 2000)

(Webb and Sali, 2016)

PconsFold2 FM

The program uses contact predictions

from PconsC3, the CONFOLD

folding algorithm and model quality

estimations to predict the structure of

a protein.

(Michel et al., 2017)

(Bassot et al., 2019)

QUARK FM

A computer algorithm for ab initio

protein modelling that uses replica-

exchange Monte Carlo simulation

under the guide of an atomic-level

knowledge-based force field.

(Xu and Zhang, 2012)

RaptorX-Contact FM

An approach that integrates

evolutionary and physical constraints

using machine learning (Random

Forests) and integer linear

programming.

(Wang et al., 2017)

RBO_aleph FM
A machine learning method that uses

graph‐based features of contact.
(Schneider and Brock, 2014)

Rosetta FM

A distributed computing project for

protein structure prediction on the

Berkeley Open Infrastructure for

Network Computing (BOINC)

platform, run by the Baker laboratory

at the University of Washington.

(Das and Baker, 2008)

(Ó Conchúir et al., 2015)

Chapter 1

22

1.11. Critical Assessment of Structure Prediction

Such techniques are a few of several other modelling techniques which have been developed and

utilised through the last decades in order to solve the protein sequence-structure gap dilemma. The

importance and far-reaching implications of having the ability to predict protein structures from

their amino acid is manifested by the ongoing biennial competition on “Critical Assessment of

Structure Prediction” (CASP).

The Critical Assessment of Techniques for Protein Structure Prediction or CASP is a global

community-wide experiment that has started taking place every other year since 1994 (Moult et

al., 1995). Protein structure modellers in more than a hundred research centres around the world

dedicate their late spring and summer to preparing their methods to be independently tested in this

centre. CASP is designed as a blind prediction experiment. A set of protein sequences is selected

by the organisers in order to assess the performance of the structural protein methods that will

predict it and help advance them. In the first CASP, the experiment was quite basic consisting of

just three parts: collecting targets experimentally, collecting tertiary structure predictions, and

assessing and discussing the results (Moult et al., 1995). The centre has since become popular, and

its participants with their experiments have been increasing continuously over the years until it has

taken the form of a competition which can be thought of as the “World Protein Structure Prediction

Championships”. Thirteen CASP experiments have been performed during the last 20 years, with

the last one completed in late 2018. The competition has evolved over the years and is now carried

out dividing its experiments into slightly more complicated sub categories, including tertiary

structure prediction; disorder prediction; contact prediction; model quality assessment or (QA)

which recently was called Estimate of Model Accuracy (EMA); binding site prediction; protein-

protein interactions; oligomerisation state; protein model refinement (Roche & McGuffin, 2016).

Each category represents an important part of the experiment that needs improvements in the

predictive power of algorithms, which will lead to having a high level of accuracy and consistency

in producing models close in quality to the experimentally derived protein structures.

1.12. Estimate of Model Accuracy (Model Quality Assessment)

Protein structure modeling is far less accurate in terms of the credibility than deriving protein

structures from experiments. Models are typically left un-annotated with quality estimates and can

span a broad range of the accuracy spectrum, whereas the accuracy of observed protein structures

Chapter 1

23

can be estimated from experiments and falls within a narrow range (Martí-Renom et al., 2000).

Therefore, a number of unbiased evaluation methods have been developed by modelers using some

techniques such as statistical potentials, molecular mechanics energy-based functions,

stereochemistry checks, and machine learning in order to analyse the correctness of protein

structures and models, and to tackle their problems (Kryshtafovych & Fidelis, 2009). Examples of

the early quality assessment tools are WHAT-CHECK (Hooft et al., 1996), PROCHECK

(Laskowski et al., 1996) and, more recently, MolProbity (Lovell et al., 2003). These tools use basic

stereochemical checks, and they are very useful in identifying unusual geometric features in a

model. However, such early quality assessment tools are not able to produce a single score for

ranking alternative models. Other examples of early quality assessment tools, that use a variety of

different methods, are ProSA (Sippl, 1993) and DFIRE (Zhou & Zhou, 2002), which have been

used along with VERIFY3D (Lüthy et al., 1992) in order to provide single scores that relate to the

global quality of protein models. Machine learning-based quality assessment programs have also

been utilised to provide a higher value of prediction accuracy. ProQ (Wallner & Elofsson, 2003),

the first ModFOLD method (McGuffin, 2007) and QMEAN (Benkert et al., 2008) are examples of

machine learning-based QA method, which helped programmers to use various combinations of

structural features and individual energy potentials in order to increase the accuracy of predicted

global model quality.

Because of the necessity of quality assessment methods, the CASP7 (2006) organisers had decided

to include a section for evaluating Model Quality Assessment Programs (MQAPs) as a separate

category in CASP (Fasnacht et al., 2007). In this category, CASP assessors will be testing the

methods that assess the quality of protein models. How accurate are MQAP methods in

distinguishing the similarity between model and native protein structures is the most important goal

in this category. Initially in CASP7, MQAP participants started using their QA tools to evaluate

each model individually and produce predicted global quality scores for a single model at a time,

except some other candidates, such as the Swedish meta server called Pcons, used a clustering

approach. In Pcons, it assumes that if the majority of the joined servers agree on a similar model,

then that model is more likely to match with its observed protein structure than models proposed

by one or a few servers. In other words, instead of considering a protein model from one server in

isolation, Pcons considers models from many prediction servers, and each server uses a different

modelling method from the other. The Pcons method works by carrying out all against all pairwise

Chapter 1

24

structural comparisons to assign a confidence score to each model. By using this technique, Pcons

had outperformed all the single-model servers by generating nearly 10% more correct predictions

(Lundström et al., 2001). Thereafter, this technique has been classified as a consensus-based or

clustering model quality assessment method, which is contrastable to single-model measurements.

1.13. Project objectives

The main aim of the study is to gain an improvement in the performance of our protein model

quality assessment method, ModFOLD6. For the initial aims of the study, an investigation of the

potential state of the art model quality assessment programs was undertaken. A review of where

our method stands between the other MQAPs is searched. As the first step of the project, a number

of the top ranked MQAPs are selected and revised in order to reflect the actual performance of

ModFOLD6 in comparison with the top performing MQAPs.

The initial part of analysis includes a measurement of correlations between predicted quality scores

from the methods selected for this study and four standard observed scores. These correlations

were performed using the Pearson’s R, Spearman’s Rho and Kendall’s tau B correlation

coefficients (more details about these measurements will be addressed in the Materials and

Methods section of this chapter) in a try to optimise the current scoring method of ModFOLD6.

The optimised ModFOLD6 was benchmarked and cross validated among the top model quality

assessment programs using data from the official worldwide competition, CASP11. The second

chapter shows the outcome of the benchmarking with a number of suggestions that can improve

our EMA method.

For the second objective of the study, two different Deep Neural Network techniques (RSNNS and

TensorFlow) were utilised to find a new way to combine the ten top performing model quality

assessment methods in order to improve local as well as the global quality score. Both techniques

are featured with the multilayer perceptron (MLP) class of feedforwarding artificial neural

network. The differences between them rests in their complexity. The techniques were tested for

comparisons showing different results. Several neural networks architectures were trained, and a

number of scoring measures were tested for a try to feature our EMA method with a deep learning

technique that can improve the accuracy of model estimations.

Chapter 1

25

In the second year of this project, we participated with our updated version of ModFOLD6 in one

of the most popular competitions in protein structure prediction field, CASP12. The method was

independently benchmarked among the most powerful participating EMA methods. Chapter 4

addresses a detailed description about our updated method and the successful results which

ModFOLD6 achieved from the participation in CASP12.

After CASP12, EMA researchers started to focus on integrating the Deep Neural Networks as they

found it to be a useful tool in strengthening their methods. Several were showing a huge difference

between including and excluding DANNs to their methods. This technique has started to be utilised

in a number of novel MQAP methods such as the Wang methods (Liu et al., 2016) and DL-pro

method (Nguyen et al., 2014). However, the benefit of deep learning technique has been emerged

in ProQ3D, a recently developed EMA method that could not participate in CASP12 (Uziela et al.

2016). After evaluating it, ProQ3D was proven to show a high improvement when the developers

utilised the theano backend as the deep learning strategy. The third objective involves Deep

Artificial Neural Networks parameterisation analysis for the purpose of gaining more

optimisations. The TensorFlow python software library was utilised in order to determine the

hyperparameters for a rank-optimised network and a correlation-optimised network.

For the fifth objective, a number of the pioneering pure-single and quasi-single model approaches

as well as some scoring functions were integrated to our EMA method. Such an integration plus

the previous updates gave our method the strengths to accurately score and rank predicted models

with higher consistency. The method was benchmarked, cross validated, and tested to be ready to

participate in the coming CASP as the 7th version of our program. In 2018, ModFOLD7 was ready

to participate in CASP13, and the competition showed excellent results for the method. Such a

success was described in detail in Chapter 6.

After CASP12 and CASP13, both upgraded ModFOLD methods have become available for public

use. The methods have been used in many experimental biological works and has been cited in

several publications. Alongside with the main study, a number of experimental applications of the

updated ModFOLD6 and ModFOLD7 were carried out by a collaboration between our team and

others in the biological school. For the last chapter of this thesis, a number of applications of

ModFOLD6 and ModFOLD7 which have been carried out during the project study will be

described.

Chapter 2

Benchmarking ModFOLD6 among Ten MQAP Methods for Local

and Global score Optimisations

Chapter 2

27

2.1. Background

2.1.1. ModFOLD

In the two years following CASP7, performance of protein structural QA servers were observed to

be considerably increasing. MQAP tools have become the cornerstone of many protein structure

modeling methods. More than a dozen papers were published in the area of QA between CASP7

and CASP8, and 45 methods were submitted for evaluation to CASP8 in that category.

ModFOLDclust2 (McGuffin, 2009), MQAPRank (Jing and Dong, 2017), MULTICOM_cluster

(Wang et al., 2010), ProQ2 (Ray et al., 2012), VoroMQA (Olechnovič and Venclovas, 2017),

ZHOU-SPARKS-X (Yang et al., 2011) are all examples of QA methods. Some methods have been

developed originally by their predictors using their own approach to measurements. Other methods

U meta-server/consensus approach that was rated as a highly effective MQAP was ModFOLD

(McGuffin, 2007).

ModFOLD is a machine learning-based QA program that was developed at the University of

Reading by Dr McGuffin’s group (McGuffin, 2007). The original ModFOLD method was

developed based on the nFOLD protocol (Jones et al., 2005), which is a combination of the new

GenTHREADER protocol (McGuffin & Jones, 2003) and a number of extra inputs into the

underlying neural network. The idea behind GenTHREADER is implied in three stages (Jones,

1999). Firstly, the sequence alignment using BLASTP program (Altschul et al., 1990) (the later

versions of GenTHREADER used PSI-BLAST (Altschul et al., 1997)) to scan the template

sequence against non-redundant dataset of proteins. Secondly, the pair potential and solvation

calculation terms based on a set of pairwise potentials of mean force (Hendlich et al., 1990), the

last one is determined by resolved protein X-Ray crystal structures and the application of the

inverse Boltzmann equation (Jones et al., 1992), plus using a solvation potential (Jones et al.,

1992). Thirdly, the alignment evaluation by training a neural network in order to combine sequence

alignment score, length information and energy potentials from threading into a single score. In the

original GenTHREADER, the neural network was simply trained using a binary classification

system called CATH (Dawson et al., 2017). This publicly available online resource was created in

the middle of 1990s by Professor Christine Orengo and colleagues (Orengo et al., 1997). CATH

database can provide information on the evolutionary relationships of protein domains. CATH

resource can be accessed freely at: https://www.cathdb.info/. In later versions of GenTHREADER,

the neural network was modified to be trained to learn a proteins similarity measurement termed

Chapter 2

28

FSSP Z-scores (Holm and Sander, 1996) which has improved the program. The nFOLD protocol

was developed afterwards by feeding three additional inputs into the neural network, which include

the SSEA score (McGuffin & Jones, 2003), a new functional site detection score (MetSite) (Sodhi

et al., 2004), and a simple model quality checking algorithm, MODCHECK (Jones & McGuffin,

2003).

Initially, ModFOLD was developed in two editions: ModFOLD, designed to be fast and used for

the global assessment of either single or multiple models, and ModFOLDclust, a more intensive

method that carries out clustering of multiple models and provides a per-residue local quality

assessment. ModFOLDclust has shown to significantly outperform all of its clustering/multiple

MQAP competitors, while ModFOLD has competed well against some of the best “true” single

model MQAP methods (McGuffin, 2007). Since CASP ranking relies on the prediction accuracy

regardless of the method used, clustering- or consensus-based MQAPs were ranked as the most

accurate methods for predicting 3D model quality, outperforming the single model methods.

2.1.2. Q-score in ProQ2 and ModFOLDclustQ for Speed, Accuracy and Consistency

Despite their accuracy, it was noticed that a number of advantages of the single model-based

methods were missing in the clustering methods. One missing feature was the speed. Like Pcons

and other consensus-based approaches, ModFOLDclust carries out pairwise comparisons of

numerous models by using multiple structural alignments, and that makes it often CPU intensive

(McGuffin, 2008). Another difficulty found in QA programs including ModFOLDclust was the

requirement of a large pool of diverse models, having a small number of models can minimise the

efficiency of MQAPs (Cao, Wang, & Cheng, 2014). To overcome such problems, Roche designed

an upgraded version of the same method, they called it ModFOLDclustQ (Roche et al., 2014). The

initial ‘Q’ labeled in the upgraded version name is referred to a score called Q-score has been

utilised in ModFOLDclustQ, while also standing for Quick. The Q-score is derived from the Q

measure that was developed by the Wolynes group (Eastwood et al., 2001). The Q-score has the

ability to efficiently estimate structural relations between two proteins based on their residue

distances. This method has been suggested by the CASP8 assessors as an alternative to the other

scoring methods such as the GDT-TS (Ben-David et al., 2009). By importing Q-score,

ModFOLDclustQ has shown to compete with the leading consensus MQAPs, but that was not the

eventual state of ModFOLDclust. When taking the mean of ModFOLDclustQ scores and its older

Chapter 2

29

ModFOLDclust, it showed a significant increase in prediction accuracy, with little computational

overhead. That led Dr McGuffin’s group to combine both scoring methods to form a new method

named ModFOLDclust2 (Roche et al., 2014). There are a number of other MQAPs that also used

Q-score to assess each individual residue in a model pertaining to the per-residue accuracy. A

successful per-residue consensus-based method was Pcons method, which was superseded then by

one of the leading consensus single model per-residue programs, known as ProQ (Wallner &

Elofsson, 2003). The method was then upgraded by updating its structural and predicted feature,

this upgrade to be as the second top ranking MQAP, ProQ2 (Wallner & Elofsson, 2007).

Although upgrading ModFOLDclust to ModFOLDclustQ and combining their scores have shown

a high improvement in the quality assessment speed and accuracy level, McGuffin’s group also

noticed the potential of using ModFOLDclust2 to guide 3D modelling using multiple templates. In

the process of modelling, using more than one-fold template is helpful in assessing models more

accurately. However, it was noticed that such a technique is not preferable in many cases as it may

result in poorer model quality. Besides the speed and the accuracy of an MQAP, there has to be the

consistency as well. To solve such a problem, Dr McGuffin and colleagues have started to

investigate the use of local as well as global model quality prediction scores that are produced by

ModFOLDclust2. This led to improvements in the selection of target-template alignments for the

construction of multiple-template models. After the investigation, it was found that the most

accurate and consistent way in improving models is to use accurate local model quality scores to

guide alignment selection while using accurate global model quality before selection for re-ranking

alignments. Applying this technique has made significant performance improvements to the

IntFOLD server (Buenavista et al., 2012).

2.1.3. “Quasi-single-model mode” algorithm

Another important feature that was missing in the clustering base approaches is addressing the real-

life needs of protein researchers when often only a single or few models for each protein target are

available for evaluation. In that case, clustering methods will provide a very poor result in

performance. McGuffin’s group was aware of this problem and they found a way to solve it. Instead

of proceeding a direct clustering to the submitted model/s, a tertiary structure prediction method

(IntFOLD2-TS, Roche et al., 2011) is used at the beginning as the first stage of the quality

assessment procedure to generate an initial reference set of template-based models. The submitted

Chapter 2

30

model/s of the target with the generated models are then clustered using ModFOLDclust2 as the

second stage of the process. By this algorithm, if the server received multiple models then the

procedure will go with the full clustering approach, whereas if only single or few models are

submitted, then the operation will take the so called quasi single-model approach, which operates

with comparable accuracy. This method has been implemented initially with the ModFOLD v3.0:

a server developed using ModFOLDclust2 integrated with the IntFOLD-QA tertiary structure

prediction pipeline (McGuffin & Roche, 2010). The algorithm has since been independently tested

for confidence and published with the term “quasi-single-model mode” in the fourth version of

ModFOLD, when ModFOLDclust2 was integrated with IntFOLD2-TS (McGuffin et al., 2013).

CASP assessments of QA methods were more concerned about the quality scoring results rather

than other practical considerations, such as the researcher accessibility, until the assessment was

updated following the eighth and ninth experiment (Kryshtafovych et al., 2011). In CASP10, the

criteria were modified to rebalance the quality assessment. This modification was implied by using

smaller bespoke data sets rather than allowing large sets of models, which some said unfairly

favoured clustering approaches. ModFOLD4 was the first beneficiary of this change of focus

having been benchmarked independently at CASP10 where it was ranked among the top

performing methods in the quality assessment category. The ModFOLD4 server provides a free

service for accurate prediction of global and local QA of 3D protein models. ModFOLD4 has a

comparable performance to clustering-based methods but retains the capability of making

predictions for a single model at a time, which is what has made it such a powerful MQAP

(McGuffin et al., 2013).

In 2015, the 5th version of ModFOLD has been released. This version was integrated with the

upgraded tertiary structure prediction IntFOLD3-TS pipeline which has given ModFOLD5 the

ability to generate greater number and variety of reference models (McGuffin et al., 2015).

2.2. Objective

The main aim of study is to gain an improvement in the performance of the protein model quality

assessment method, ModFOLD6. For this part of the study, an investigation of the potential state

of the art model quality assessment programs is undertaken. A number of the top-ranked MQAPs

are selected and revised in order to reflect the actual performance of ModFOLD6 in comparison

Chapter 2

31

with the top performing MQAPs. The initial part of analysis includes a measurement of correlations

between predicted quality scores from the methods selected for this study and four standard

observed scores using the Pearson’s R, Spearman’s Rho and Kendall’s tau B correlation

coefficients.

2.3. Materials and Methods

In this section, we describe the initial study in our research. A number of methods were used for

benchmarking ModFOLD6 in order to evaluate its performance and the possibilities of improving

its pipeline. Such evaluating methods include linear and non-linear regressions, ranking and

correlation methods individually and in combinations. Before getting into details, Figure 2.1 can

show an overall flow of the process and steps which are addressed in this section.

Figure 2.1. Flowchart summarising the overall process of section 2.3.

2.3.1. Ten MQAPs

A selection of ten high performing model quality assessment methods were benchmarked using

models that submitted by servers in CASP experiments. Six of these methods that were related to

ModFOLD were benchmarked against four other single-model MQAPs using four observed global

scoring measures. The ten MQAPs producing the predicted quality scores were

ModFOLD5_single_orig_global (M5so), ModFOLDclustQ_single_orig_global (Mcqso),

ModFOLDclust2_single_orig_global (Mc2s), ModFOLD5_single_res_global (M5sr),

ModFOLDclustQ_single_res_global (Mcqsr), ProQ2_res_global (P), CDA_res_global (C),

DBA_res_global (D), SSA_res_global (S) and ModFOLD6_single_res_global (M6), and the four

observed quality scores were GDT-HA, GDT, MaxSub and TM-score. This analysis was

implemented using the statistical computing software, R v3.2.3.

Data Collection
Ranking and
Correlation
Evaluation

Linear and
multiple linear

Regression

Improvement
Calculation

Chapter 2

32

2.3.1.1. ModFOLD5_single_orig_global (M5so)

The global scores were taken from our quasi-single model method that was developed for CASP11.

The global score was calculated from the comparison of each model with the reference set of

models built by IntFOLD3 server. Individual models were compared against the reference

IntFOLD3 set using the TM-score (Zhang & Skolnick, 2004). The equation for 𝑇𝑀𝑠𝑐𝑜𝑟𝑒 =

Max [
1

𝐿𝑁
∑

1

1+(
𝑑𝑖
𝑑0

)2

𝐿𝑇
𝑖=1] where 𝐿𝑁 and 𝐿𝑇 were the lengths of the native structure and the residues to

the template structure respectively. 𝑑𝑖 was the distance between 𝑖 the pair of aligned residues and

𝑑0 was a scale to normalise the match difference. The ModFOLD5_single_orig_global (M5so)

global score was calculated as 𝑀5𝑠𝑜 =
1

𝑁−1
∑ 𝑇𝑚𝑚∈𝑀 where 𝑀5𝑠𝑜 was the global quality score

for a model, 𝑁 was the number of models for the target, 𝑁 − 1 was the number of pairwise

structural alignments carried out for each model (i.e. models were not aligned with themselves), 𝑀

was the set of alignments and 𝑇𝑚 was the TM-score for each pairwise alignment of models. A TM-

score cut-off was implemented so that alignments with scores < 0.2 were not included in the

calculation. Therefore, the size of set 𝑀 was equal to the number of alignments with TM-scores ≥

0.2.

2.3.1.2. ModFOLDclustQ_single_orig_global (Mcqso)

This quasi-single model QA score was calculated from the comparison of each model with the

reference set of models built by IntFOLD3 server in a similar way to the

ModFOLD5_single_orig_global score described above, however here individual models were

compared against the reference IntFOLD3 set using the Q score (McGuffin & Roche, 2010)

(Eastwood et al., 2001).

In each pairwise comparison, the matrix of internal distances for ‘model a’ was designated as 𝑟𝑖𝑗
𝑎

and the matrix for ‘model b’ was designated 𝑟𝑖𝑗
𝑏 , where 𝑟𝑖𝑗 was the distance between the Ca atom

of residue 𝑖 and the Ca atom of residue 𝑗 in the same model. For each pair of equivalent residues

in a pairwise comparison of models, a score 𝑄𝑖𝑗 was calculated as 𝑄𝑖𝑗 = 𝑒𝑥𝑝 [− (𝑟𝑖𝑗
𝑎 − 𝑟𝑖𝑗

𝑏)] Thus,

for a perfect match between residues 𝑄𝑖𝑗 = 1 and for poor match 𝑄𝑖𝑗 ≈ 0. In the paper by Ben-

David et al., two measures, 𝑄𝑙𝑜𝑛𝑔 and 𝑄𝑠ℎ𝑜𝑟𝑡 were described to indicate the observed quality of the

Chapter 2

33

tertiary structure and secondary structure prediction, respectively, for a given model. The 𝑄𝑠ℎ𝑜𝑟𝑡

score for a given model was calculated by averaging 𝑄𝑖𝑗 , considering the best pair and 20, 40, 60,

80 and 100% of the ranked pairs that satisfied |𝑖 − 𝑗| ≤ 20 . Conversely, 𝑄𝑙𝑜𝑛𝑔 was calculated by

considering those that satisfied |𝑖 − 𝑗| > 20 . For this study, both the 𝑄𝑙𝑜𝑛𝑔 and 𝑄𝑠ℎ𝑜𝑟𝑡 measures

were attempted separately; however, it was found that the best results were obtained by including

both the long- and short-range internal distances by averaging 𝑄𝑖𝑗 for all ranked pairs (|i−j|>0) to

give a score, 𝑄𝑡𝑜𝑡 . For a given model, the 𝑄𝑡𝑜𝑡 scores were calculated for each pairwise comparison

and the final ModFOLDclustQ global (QMODE1) prediction of model quality was calculated

as 𝑀𝑐𝑞𝑠𝑜 =
1

𝑁−1
 ∑ 𝑄𝑡𝑜𝑡𝑚∈𝑀 where 𝑀𝑐𝑞𝑠𝑜𝑔𝑙𝑜𝑏𝑎𝑙 was the global model quality score for a model,

𝑁 was the number of models for the target, 𝑁 − 1 was the number of pairwise comparisons carried

out for each model, 𝑀 was the set of comparisons and 𝑄𝑡𝑜𝑡 was the pairwise similarity between

models.

2.3.1.3. ModFOLDclust2_single_orig_global (Mc2s)

This quasi-single model QA score was equivalent to the mean of the

ModFOLD5_single_orig_global (ModFOLDclust_single_orig_global) and the

ModFOLDclustQ_single_orig_global scores described above. Thus, 𝑀𝑐2𝑠 = (𝑀5𝑠𝑜 + 𝑀𝑐𝑞𝑠𝑜)/

2.

2.3.1.4. ModFOLD5_single_res_global (M5sr)

The sum of the predicted per-residue errors calculated using the ModFOLDclust_single quasi-

single model QA method was divided by the original target sequence length. For a residue in a

pairwise superposition the S-score (McGuffin et al., 2013) was defined as 𝑆𝑖 =
1

1+(
𝑑𝑖
𝑑0

)2
 where 𝑆𝑖

represents the S-score for residue 𝑖 in a model, whereas 𝑑𝑖 represents the distance between aligned

residues according to the TM-score superposition, and 𝑑0 represents the distance threshold (3.9Å).

That means the 𝑆𝑖 scores will be given only if 𝑑𝑖 was above 3.9Å. For each residue, the S-scores

were summed, and the mean score is calculated. The equation is 𝑆𝑟 =
1

𝑁−1
∑ 𝑆𝑖𝑎𝑎∈𝐴 where 𝑆𝑟

provides the accuracy of the predicted residue for the model, 𝑁 shows the models number for the

Chapter 2

34

target, 𝐴 is the set of alignments and 𝑆𝑖𝑎 is the 𝑆𝑖 score for a residue in a structural alignment 𝑎 .

The final global score is the (∑ 𝑆𝑟)/L where, L is the original target sequence length.

2.3.1.5. ModFOLDclustQ_single_res_global (Mcqsr)

The sum of the predicted per-residue errors using the ModFOLDclustQ_single QA method was

divided by the original target sequence length.

2.3.1.6. ProQ2_res_global (P)

The sum of local scores are taken from the ProQ2 (Wallner & Elofsson, 2007) pure single model

method was divided by the original target sequence length. Thus, 𝑃 = (∑ 𝑃𝑟𝑜𝑄2)/𝐿 where,

𝑃𝑟𝑜𝑄2 is the per-residue score and 𝐿 is the original target sequence length.

2.3.1.7. CDA_res_global (C)

This score was based on our new pure single model QA method from ModFOLD6. The Contact

Distance Agreement (CDA) score relates to the agreement between the predicted residue contacts

according to the MetaPSICOV (Jones et al., 2015) sequence-based method and the measured

Euclidean distance (in Angstroms) between residues in the model. All pairs of residues in a model

that were measured to be 8 Angstroms apart or less were considered and the CDA score for each

residue (i) was calculated by the mean MetaPSICOV p-value for that residue. Thus, 𝐶 =

∑ 𝑝/𝑛𝑢𝑚𝐶 where, 𝑝 was the probability of the two residues being in contact according to

MetaPSICOV, and 𝑛𝑢𝑚𝐶 wass the number of contacts <= 8 Angstroms for the residue in the model

where a value for 𝑝 exists. The 𝐶 score was the sum of the per-residues CDA scores divided by the

original target sequence length. Thus, 𝐶 = ∑ 𝐶𝐷𝐴/𝐿.

2.3.1.8. DBA_res_global (D)

This score was based on our new quasi-single model QA method from ModFOLD6. The Disorder

B-factor Agreement (DBA) score relates to the agreement between the predicted disordered

residues in the sequence according to DISOPRED3 (Jones & Cozzetto, 2015) and the

Chapter 2

35

ModFOLDclust_single predicted per-residue error in the model (as it appears in the B-factor

column). Thus, 𝐷 = 1 − |𝑆𝑟 − (1 − 𝑃𝑑)| where, 𝑆𝑟 was the accuracy of the predicted residue for

the model, as described in the S-scores equation above, and 𝑃𝑑 was the probability of disorder

according to DISOPRED3. The DBA_res_global score was the sum of the DBA scores for each

residue divided by the original target sequence length. Thus, 𝐷 = ∑ 𝐷𝐵𝐴/𝐿.

2.3.1.9. SSA_res_global (S)

This score was based on our new pure single model QA method from ModFOLD6. The Secondary

Structure Agreement (SSA) score relates to the agreement between the predicted secondary

structure of each residue according to PSIPRED (Buchan et al., 2013) and the secondary structure

state of the residue in the model according to DSSP (Kabsch & Sander, 1983). Thus, 𝑆 = 𝑃𝐶𝐻𝐸

where, 𝑃𝐶𝐻𝐸 was simply the p-value from PSIPRED for the secondary structure state of the residue,

coil (C), helix (H) or strand (E), in the model according to DSSP. The SSA_res_global score was

the sum of the SSA scores for each residue divided by the original target sequence length. Thus,

𝑆 = ∑ 𝑆𝑆𝐴/𝐿.

2.3.1.10. ModFOLD6_single_res_global (M6)

ModFOLD6 is our new neural network based quasi-single model method that takes as its input a

sliding window of per-residue scores from the ModFOLD5_single, ModFOLDclustQ_single,

ProQ2, CDA, DBA & SSA methods described above and outputs a single quality score for each

residue in the model. The ModFOLD6_single_res_global score was the sum of the ModFOLD6

local scores for each residue divided by the original target sequence length.

2.3.2. Observed Model Quality Measurements

In order to evaluate predicted model quality scores, four observed scoring measures were used.

The measures were GDT-HA, GDT, MaxSub and TM-score. These scores were used to measure

the observed model quality for each individual model by comparing them to the native (solved

experimental) structures. The term GDT stands for “global distance test”, in both the GDT and

GDT-HA scores. These two scores represent the measurement of similarity between two protein

Chapter 2

36

structures that both have identical amino acid sequences but may have different tertiary structures

i.e. a predicted model and the observed crystal structure (Zhang & Skolnick, 2004). The difference

between GDT and GDT-HA is that GDT-HA is “High Accuracy” and uses smaller cut off

distances, which makes it more rigorous and, as a result, is more stringent than GDT (Read &

Chavali, 2007). MaxSub is a measure that identifies in a model the largest subset of Cα atoms that

superimpose over the experimental structure, producing a single normalised score that represents

the quality of that model. And finally, TM-score stands for “template modelling” score. Again, this

measure is for calculating the similarity between two models with the same sequence, but with

different tertiary structure. The TM-score is arguably more accurate than GDT and GDT-HA in

comparing the similarity of structures with full-length protein chains, rather than domains (Zhang

& Skolnick, 2004). Each of these scores indicate the difference between two protein structures

(predicted versus observed) by providing a score between 0 and 1, where 1 is a perfect match

between the two compared structures (i.e. identical relative atom coordinates) and 0 is a non-

matched structure (Siew et al., 2000). The predicted output scores produced were tested by

comparing them to the observed scores.

2.3.3. Data Collection

Predicted QA scores (from the 10x MQAPs) and observed QA scores (from GDT-HA, GDT,

MaxSub and TM-score) were collected by evaluating the 16483 models produced for the CASP11

QA assessment category. Scores for 2383 models were removed because they did not have native

structures available, which means that those models could not form part of our benchmark, so we

ended up with a net amount of 14100 models. The individual QA scores for each model were then

collated, separated and distributed into columns, each column was named by its related method.

2.3.4. Ranking/Selection and Correlation evaluation

The collected scores were evaluated for all MQAP methods. Cross-validation tests were carried

out using the collected data from CASP11 to measure the ability of each MQAP method

individually as well as in different combinations. This measurement was evaluated in terms of

local/per-residue and global scores which are produced by the MQAP methods using two different

ways of scaling. Firstly, the Ranking/Selection approach which evaluates the ability of a method

Chapter 2

37

in ranking models correctly so that they can select the right top model more accurately. This scale

of measurement is calculated by measuring the cumulative GDT-HA, GDT, MaxSub and TM-score

scores (e.g. ΣGDT-HA). Secondly, the Correlation coefficient approach which evaluates the ability

of a method in how consistent its prediction can be, and how this method can achieve the highest

correlation between its predicted scores and the observed scores. This second scale of evaluation

was carried out using Pearson’s (R), Spearman’s rank (Rho) and Kendall's rank (Tau). Each of the

three method has its own properties. Spearman’s rank correlation is a non-parametric test which

measures association between two variables without making assumptions on bivariate relationships

(McDonald, 2014). Kendall’s rank correlation is also a non-parametric test but measures the

strength of dependence between the two variables by quantifying the difference between the

percentage of concordant and discordant pairs among all possible pairwise events (Legendre,

2005). Pearson’s correlation coefficient is different in that it is a parametric test, which measures

the degree of relationship between the linearly related variables (McDonald, 2014).

2.3.5. Linear Regression for MQAPs Individually

Following the collection of the target scores for each individual model, correlations were

performed. Each score of the ten MQAPs was correlated individually with its native observed

score. This scoring correlation is carried out in order to investigate the relationship between the

predicted and observed scores. The correlation has been implemented for this study by using three

methods, Pearson’s R, Spearman’s Rho and Kendall’s tau B correlation coefficients. Each

correlation method has its property in scoring the relation between the predicted and the observed

quality assessments. Pearson’s correlation coefficient is a linear correlation measure whereas

Spearman’s Rho and Kendall’s tau B correlation coefficients are non-parametric measures.

2.3.6. Linear Regression for MQAPs in Combinations

After scoring the ten MQAPs by correlating them individually, an optimisation is performed. The

ten MQAP methods were combined using all the combination odds (1012 combinations) for all

collected scores. The combined MQAP methods were then correlated using linear regression to

determine the most correlated combination of methods that shows the highest positive correlation.

This analysis was implemented using the three types of correlation coefficients, Pearson’s R,

Chapter 2

38

Spearman’s Rho and Kendall’s tau B. Four of the most correlated combinations were highlighted

for further analysis to find the resolution at which the best correlation coefficients of the optimum

combination occur.

2.3.7. Multiple Linear Regression for MQAPs in Combinations

The top four combinations of predictive methods, according to the correlations with observed

scores, were taken forward for multiple linear regression analysis. Each combination was

correlated against the other three combinations using the observed scores as measures. The analysis

was performed using Pearson’s R, Spearman’s Rho and Kendall’s tau B correlation coefficients.

2.3.8. Improvement Calculation

All scoring results were put together for comparison, and calculations were performed in order to

analyse any improvement could be achieved. Firstly, the individual as well as the combination

performance for the ten MQAP methods were compared. Such a comparison allowed us to gauge

the improvement that could be obtained from combining these MQAP methods i.e. the maximum

individual score was subtracted from the maximum correlation achieved through the linear

combinations. Secondly, the linear regression performance was similarly compared with the results

obtained by the multiple linear regression in order to determine if any further improvements were

gained. This last step of analysis was proceeded by finding the maximum value of score of the

multiple linear regression of the combination methods and subtracting it from the maximum value

of the linear regression MQAP combination scores.

2.4. Results and Discussion

In this study, 10 MQAP methods including the latest version of our method, ModFOLD6, were

benchmarked using two scales of measurements, Ranking/Selection and Correlation.

Chapter 2

39

2.4.1. Ranking/Selection benchmarking

For benchmarking using the ranking/selection scale, the cumulative scoring technique was carried

out to find the top optimised MQAP pipeline in selecting the best model through the 10 selected

MQAP methods. Firstly, each method was benchmarked individually against the four observed

scores. The results showed that ModFOLD6_single_res_global was performing well compared to

the other MQAP methods (Table 2.1).

MQAP Methods GDT-HA GDT MaxSub TM-score

ModFOLD5_single_orig_global 29.0719 40.0590 36.4405 42.4259

ModFOLDclustQ_single_orig_global 28.9016 39.9194 36.3461 42.2751

ModFOLDclust2_single_orig_global 29.0935 40.0328 36.5134 42.4060

ModFOLD5_single_res_global 29.0167 39.9715 36.3934 42.3664

ModFOLDclustQ_single_res_global 28.9016 39.9194 36.3461 42.2751

ProQ2_res_global 30.7222 42.9578 39.5015 45.7958

CDA_res_global 28.6485 40.4575 37.2034 43.1661

DBA_res_global 28.9930 40.0457 36.4816 42.4484

SSA_res_global 27.5855 39.3166 35.7842 41.9146

ModFOLD6_single_res_global 31.3937 43.1859 39.8614 45.8227

Table 2.1. Global score benchmarks of the 10 MQAPs individually using CASP11 data.

ModFOLD6_single_res_global was benchmarked against the component of the global scoring MQAP

methods, representing the cumulative scores from GDT-HA, GDT, MaxSub and TM-score.

In the second part, the cumulative evaluation was carried out with every combination from the 10

MQAP methods. After completing the test, the optimum combinations which produced the highest

QA scores were selected for further analysis (Table 2.2).

Chapter 2

40

MQAP combination Observed measure Cumulative Score

CDA_res_global

SSA_res_global

ModFOLD6_single_res_global

GDT-HA 32.34630537

CDA_res_global

SSA_res_global

ModFOLD6_single_res_global

GDT-TS 44.53946127

CDA_res_global

SSA_res_global

ModFOLD6_single_res_global

MaxSub 41.53627352

ProQ2_res_global

CDA_res_global

SSA_res_global

ModFOLD6_single_res_global

TM-score 47.24946607

Table 2.2. Global score benchmarks of the 10 MQAPs in combinations using CASP11 data.

ModFOLD6_single_res_global was benchmarked against the component of the global scoring MQAP

methods in combinations, representing the cumulative scores from GDT-HA, GDT, MaxSub and TM-score.

2.4.2. Correlation benchmarking

For the correlation scale evaluation, the ten methods were benchmarked using Pearson’s,

Spearman’s and Kendall’s. These correlation coefficients were investigated between predicted and

observed model quality scores to show which of the ten MQAPs either individually or in

combinations can produce the largest amount of model quality scores that are highly close to their

observed scores.

Firstly, the modelling scores produced from the 10 MQAP methods were correlated with the

observed scores individually. The results from Table 2.3 shows that all the 10 methods performed

well with all the correlation coefficients in general. The highest values and most consistency were

shown with method Mc2s, it performed well when was correlated with GDT-HA and GDT using

Spearman’s rho (≈ 0.925, ≈ 0.924 respectively) and Kendall’s tau (≈ 0.762, ≈ 0.768 respectively)

measures. The ModFOLD5_single-res_global (M5sr) method performed well, being ranked as the

second-best method compared to the 10 MQAPs with MaxSub and TM-score, when using

Spearman (≈ 0.92, ≈ 0.928 respectively) and Kendall (≈ 0.771, ≈ 0.768) correlations. When Pearson

Chapter 2

41

was used as a correlation coefficient measure, the DBA method (D) provided the highest result (≈

0.924) among all the ten methods, except with GDT-HA, where was outperformed by

ModFOLDclustQ_single_orig_global (Mcqso), ModFOLDclust2_single (Mc2s) and

ModFOLDclustQ_single_res_global (Mcqsr) (≈ 0.901 versus ≈ 0.897 for DBA). Such results

indicated the high performance of the quasi-single model based ModFOLD methods compared to

the pure-single model MQAPs in terms of assigning absolute global accuracy values. However, the

table illustrated a low level of consistency in the order of performance when using different

observed scores.

GDT-HA GDT MaxSub TM-score

R Rho Tau R Rho Tau R Rho Tau R Rho Tau

M5so 0.888 0.917 0.749 0.911 0.917 0.756 0.917 0.924 0.764 0.916 0.918 0.759

Mcqso 0.901 0.922 0.755 0.907 0.918 0.756 0.911 0.917 0.75 0.902 0.914 0.751

Mc2s 0.901 0.925 0.762 0.917 0.924 0.768 0.922 0.927 0.767 0.917 0.923 0.767

M5sr 0.892 0.922 0.757 0.912 0.922 0.765 0.92 0.928 0.771 0.915 0.923 0.768

Mcqsr 0.901 0.922 0.755 0.907 0.918 0.756 0.911 0.917 0.75 0.902 0.914 0.751

P 0.688 0.732 0.527 0.718 0.741 0.54 0.717 0.742 0.54 0.723 0.744 0.545

C 0.637 0.72 0.528 0.672 0.732 0.542 0.674 0.731 0.538 0.677 0.734 0.544

D 0.897 0.917 0.742 0.919 0.921 0.754 0.924 0.925 0.76 0.923 0.922 0.76

S 0.518 0.561 0.385 0.535 0.56 0.385 0.532 0.561 0.387 0.533 0.555 0.382

M6 0.881 0.916 0.748 0.914 0.92 0.762 0.914 0.924 0.763 0.919 0.922 0.767

Table 2.3. List of the top ranked individual MQAP methods based on predicted versus observed

scores using Pearson’s (R), Spearman’s (Rho) and Kendall’s (Tau) correlation coefficients. The

models for each target were pooled together and each correlation was measured separately for each method

and then the overall mean score was calculated. The observed model quality score was also calculated for

each individual model. The highest scores are highlighted in grey. Abbreviations are defined in the List of

Abbreviations section.

The DBA method was noticed to outperform all the ten MQAPs by providing the highest Pearson

correlation using three out of four observed scoring methods (the highest one is ≈ 0.924). However,

DBA lost its top spot according to the Spearman’s rho and Kendall’s tau correlations. These

varying results with the Pearson correlation coefficient highlighted the non-linear nature of some

of the high performing MQAP methods. The Pearson’s correlation coefficient is always used for

Chapter 2

42

measuring the strength of the linear relationship between two variables, whereas, Spearman and

Kendall are distribution-free correlation coefficients, which can be used for assessing non-linear

relationships between two variables. Typically, Spearman’s and Kendall’s methods showed how

well an arbitrary monotonic function can describe the relationship between two variables without

making any assumption about the frequency distribution of the variables (Hauke & Kossowski,

2011). Since, the relationship between predicted and observed model assessments was not always

parametric and their target scores were freely distributed, Spearman and Kendall were more

suitable method for measuring the correlation coefficient. Although there were strong correlations

for some of the methods according to some measures, the sub optimal results shown here confirmed

the necessity to improve the consistency of ModFOLD6 global scoring across the board. One

attempt to fulfil such a need is by combining the strengths of many MQAPs to achieve a better

score (McGuffin, 2007).

In the second part of the evaluation, the ten selected MQAPs were combined together in all

permutations (where the order was not important, without repetition), and a linear regression for

all the combination of the ten methods was performed. Each combination was compared with the

four observed scores using the three correlation coefficients. After going through the permutations,

improvements in correlation scores were shown (Table 2.4). The optimal combination was the

combination of three methods, ModFOLDclustQ_single_orig_global, DBA_res_global and

ModFOLD6_single_res_global. This simple combination (the mean of three scores) provided the

highest score improvement for most of the correlations, and even the lower scores were close to

those which were benchmarked highest in the other combinations. The results from the first attempt

of this optimisation showed that the correlation was slightly increased when the new version of

ModFOLD6 was combined with the approach based on the older ModFOLD method, and the new

scoring method, DBA. This increase was measured as ≈ 0.01 over approximately 75% of the target

scores. The second, third and fourth optimal combinations were also taken into account for further

optimisation analysis as they provided close results comparing to the first optimal linear

combination.

Chapter 2

43

Correlation

Coefficient

Observed

Measure
Combination

Correlation

Score
Improvement

R

GDT-HA

Mcqso+D 0.91 0.009

Rho Mcqso+Mcqsr+D+M6 0.931 0.006

Tau Mcqso+Mcqsr+D+M6 0.771 0.009

R

GDT

Mcqso+D+M6 0.926 0.007

Rho Mcqso+D+M6 0.932 0.008

Tau Mcqso+D+M6 0.782 0.014

R

MaxSub

Mcqso+D+M6 0.93 0.006

Rho Mcqso+D+M6 0.935 0.007

Tau Mcqso+D+M6 0.781 0.01

R

TM-score

D+M6 0.93 0.007

Rho Mcqso+D+M6 0.932 0.009

Tau Mcqso+D+M6 0.784 0.016

Table 2.4. List of the top ranked combinations for the ten MQAP methods based on predicted versus

observed scores using linear regression. The combined methods were measured using Pearson’s (R),

Spearman’s (Rho) and Kendall’s (Tau) correlation coefficients, and the topmost correlated combinations

were listed with their improvement over the scores of the methods individually. The highest improvement

is highlighted in grey.

Results showed that the combination of Mcqso+D+M6 gave the highest correlation score,

providing an approximate total of 66.67% among all the highly ranked scores. The second top was

for the combination of four methods (Mcqso+Mcqsr+D+M6) providing ≈ 16.67% of the highly

ranked scores. The third and fourth combinations were for the combinations of two methods

(Mcqso+D and D+M6), giving a ≈ 8.33% each.

The four ranked combinations were then tested using multiple linear regression in an attempt to

achieve additional improvement. However, the results of this test showed an insignificant increase

in some of the selected optimal combinations scores (Appendix 1). the highest correlated

combinations using multiple linear regression being produced by the combination of four methods,

(ModFOLDclustQ_single_orig_global, ModFOLDclustQ_single_res_global, DBA_res_global

and ModFOLD6_single_res_global) with a maximum score of ≈ 0.931 using Pearson’s R, ≈ 0.935

using Spearman’s Rho, and ≈ 0.784 using Kendall’s Taue, while the variable was GDT. Some

scores of the correlated optimal combinations were shown to be decreased when comparing with

Chapter 2

44

the scores of the mean linear regression which showed a better correlation than the multiple linear

regression. From the results, it can be seen that multiple linear regression provided an unconsidered

increase to the QA scores neither for the MQAP methods individually nor in combinations.

However, the scores produced by combining MQAP methods appeared to be increased by

approximately 2% as compared to the best scores from any individual of the ten MQAP methods.

To demonstrate such an improvement, the results from both best individual and combined MQAP

methods were plotted to visually compared their scores. In Figure 2.1, we can see a comparison of

two scatterplots, one plot is representing the highest improvement in terms of Kendall’s tau score

achieved by the top optimal combination method Mcqso+D+M6, and the second plot is for the

scores achieved by the top performing individual MQAP, Mc2s using the same correlation

coefficient. The plot consists of dots, each dot represents a model that was collected from CASP11

participants servers. Both scores were compared against the TM-score observed measurement. The

optimal combination output scores of Mcqso+D+M6 were shown to give a slightly tighter scatter

of dots, leading to an enhanced correlation in comparison to the one achieved by Mc2s individually.

Chapter 2

45

Figure 2.2. Predicted model quality scores versus observed model quality scores. A comparison between two scatterplots. The plot on the left is for the top

performing individual MQAP, ModFOLDclust2_single_orig_global (Mc2s). The plot on the right is for the optimal MQAP combination

ModFOLDclustQ_single_orig_global + DBA_res_global + ModFOLD6_single_res_global (Mcqso+D+M6). Both methods predicted global scores were plotted

against TM-score observed score. The plots are presented in brush paint style for more clarity.

T
M

-s
c
o
r
e

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

MC2s Mcqso+D+M6

 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

Chapter 2

46

ModFOLD6 then was also benchmarked to gauge local quality performance versus component

methods (Figure 2.2). The three pure-single scoring methods (ProQ2, CDA, SSA) and the three

quasi-single scoring methods (DBA, Mcs, Mcqs) have been compared against ModFOLD6 in an

evaluation of the target sequence and 3D model in terms of the ROC curve that shows the true

positive and negative rate. From the line graph it can be noticed that ModFOLD6 is outperforming

all the comprised scoring methods.

Figure 2.3. Line graph representing a benchmark of ModFOLD6 local scores versus its component

methods using CASP11 data. The local QA scoring ModFOLD6 method was benchmarked with the

constituent methods using the CASP11 data set. This comparison is performed continuously and can be

checked anytime at: http://cameo3d.org/qe/.

Chapter 2

47

Furthermore, the server is continuously benchmarked for local quality estimation (QE)

performance using the CAMEO resource (Haas et al., 2018) (Figure 2.3). Our internal benchmarks

and the independent CAMEO data shows that ModFOLD6 and another QE method called

QMEANDisCo are currently the leading public QA method for producing local scores.

Figure 2.4. Dot plot demonstrating a six-month performance summary for competitive local QA

programs including the previous version of our program (ModFOLD4) and ModFOLD6. The

evaluation was carried out using the receiver operating characteristic (ROC) and Precision vs Recall

analysis. This comparison is performed continuously and can be checked anytime at:

http://cameo3d.org/qe/.

Chapter 2

48

Such results indicate that the correlation scores of the selected combinations have reached their

maximum optimisation in terms of both linear and multiple linear regression. However, this is still

the beginning of this research study. Further investigation and analysis will be performed in order

to find the way to improve the accuracy and consistency of ModFOLD6. One suggested way is by

using machine learning techniques with the help of the advanced deep artificial neural network.

Alongside with energy/scoring functions and consensus methods, DANNs has been addressed to

be another supportive method for improving the QA of model prediction (Nguyen et al., 2014).

Deep learning is a branch of machine learning techniques that has made major advances in solving

many problems including the ones in image recognition (LeCun et al., 2015).

2.4.3. New approach to update ModFOLD6

Since CASP7 first included the Quality Assessment (currently termed as Estimate of Model

Accuracy or EMA) category, predictors have been persevering to develop the best Model Quality

Assessment Programs (MQAPs) for estimating the absolute quality of protein 3D models with the

highest accuracy. Numerous strategies and methods have been devised in order to increase the

accuracy of the best model selection as well as the consistency of MQAP output scores with

observed scores. Accuracy of selection was often found to be better with the methods that follow

the pure-single approaches whereas consistency of scores has historically been greater to be with

the consensus/clustering methods. Since its development, ModFOLD6 was used as our latest

version of EMA method in every MQAP competition. The program was designed to balance both

model selection accuracy and score consistency. Such a balance can be achieved by combining the

pure-single model with consensus/clustering-based methods. However, in this study, the current

version of ModFOLD6 can be updated with a suggested hybrid pure-single/quasi-single strategy

that can be adopted and swapped with the clustering method.

2.4.3.1. Suggested component of per-residue/local similarity scoring methods for ModFOLD6

Our initial emphasis was on increasing the accuracy of per-residue assessments for single models.

Three pure-single model methods were suggested to be parts of ModFOLD6 components, these

methods include ProQ2 (Wallner & Elofsson, 2007) and 2 newly developed methods, the Contact

Distance Agreement (CDA) score using MetaPSICOV (Jones et al., 2015) and the Secondary

Chapter 2

49

Structure Agreement (SSA) score using PSIPRED (Buchan et al., 2013). Additionally, a set of 130

reference 3D models (generated by IntFOLD4) were also suggested to score models using three

alternative quasi-single model methods, the newly developed Disorder B-factor Agreement (DBA)

score using DISOPRED3 (Jones & Cozzetto, 2015), the ModFOLDclust_single_res score (Mcs)

and the ModFOLDclustQ_single_res score (McQs). A simple neural network was then used to

combine the component per-residue/local quality scores from each of the six alternative scoring

methods, resulting in a final consensus of per-residue quality scores for each model (Figure 2.4).

Figure 2.5. Flowchart simplifying the procedure of the local/per-residue similarity scoring method

suggested for ModFOLD6. The process used three pure single model methods and three quasi-single

model methods (130 reference models are generated from sequence using IntFOLD4).

2.4.3.2. Suggested component of global scoring methods for ModFOLD6

Global scores were calculated by taking the mean per-residue scores (the sum of the per-residue

similarity scores divided by sequence lengths) for each of the 6 individual component methods,

described before, and the consensus output (ModFOLD6). Furthermore, 3 additional quasi-single

Chapter 2

50

global model quality scores were generated for each model based on the original ModFOLDclust,

ModFOLDclustQ and ModFOLDclust2 global scoring methods (in a similar vein to the

ModFOLD4_single and ModFOLD5_single global scores, tested in CASP10 and CASP11

respectively). Thus, we ended up with a total of 10 alternative global QA scores, which could be

combined in various ways in order to optimise for the different aspects of quality estimation.

Figure 2.6. Diagram representing the three suggested options of ModFOLD6 global scoring variants.

Three ModFOLD6 global scoring variants were suggested for evaluation (Figure 2.5). (1)

Balanced, The ModFOLD6 mean local scores considered alone which have a good balance of

performance based on correlations of predicted and observed scores and rankings of the top models;

(2) Correlation, The ModFOLD6_cor global score variant was found to be an optimal combination

for producing consistent correlations with the observed scores, i.e. the predicted global quality

scores should produce closer to linear correlations with the observed global quality scores; (3)

Ranking, The ModFOLD6_rank global score variant was found to be an optimal combination for

ranking, i.e. the top ranked models (top 1) should be closer to the highest accuracy, but the

relationship between predicted and observed scores may not be so linear.

Chapter 2

51

2.5. Conclusion

An initial study was undertaken to evaluate ten performing model quality assessment methods

including ModFOLD6. Statistical analysis showed that some methods like ModFOLD6 were

giving high scores individually.

However, it was seen that some combinations of the ten MQAP methods were producing better

scoring results than single methods. Thus, the methods were benchmarked as combinations, and

the results showed that ModFOLD6 method were able to provide some improvement in terms of

accuracy as well as consistency when combining the three pure-single methods (ProQ2, CDA and

SSA) as well as the three quasi-single methods (DBA, ModFOLDclust_single_res and

ModFOLDclustQ_single_res) to the component of per-residue/local similarity scoring methods. It

was also noticed that the method can be improved by using different weightings. Combining some

methods can improve ModFOLD6 in selecting the top 1 model and combining some other methods

can improve ModFOLD6 in correlating predictions with observed scores. Therefore, it was

suggested that we provide 3 alternatives (ModFOLD6, ModFOLD6_rank and ModFOLD6_cor)

for ModFOLD6 accordingly.

Finally, we found that some ranking techniques, such as regressions, have helped us in finding

some increase in the scores of our methods. We managed to gain ~ 2% improvement from our

method by combining and then benchmarking them using linear regressions. Such an improvement

led us to suggest a new strategy for updating ModFOLD6 which is to hybridise it to become a pure-

single/quasi-single EMA method.

However, as different weightings were found to be effective, we can then look for a way to calculate

scores more accurately. Instead of calculating only the mean scores from all combinations together,

we need to find an approach that can take the needed number of scores from some methods and

neglect another number of scores from others. We need ModFOLD6 to be able to calculate its input

scores based on which of the component MQAP methods are more important in certain times in

order to output some more accurate scores. One suggested technique that can apply this approach

is the Deep Artificial Neural Network, which was our focus in the next parts of this research project.

Chapter 3

Integrating Two Deep Artificial Neural Networks (RSNNS &

TensorFlow) for Optimising the Local and Global score of

ModFOLD6

Chapter 3

53

3.1. Background

The invention of aeroplanes was an inspiration of birds, Velcro was also invented by the inspiration

of burdock plants, and many other innovations have been inspired by nature. When researchers

looked at drawing inspiration from the workings of the brain nervous systems, novel machine

learning algorithms were designed and termed as Artificial Neural Networks (ANNs) (Hecht-

Nielsen, 1988). However, although some researchers argued that we should drop exactly the whole

biological analogy altogether, inspiring something does not mean copying the exact same thing,

for example the invented airplanes do not have to flap their wings (Cao, 2014).

The simplest definition of Artificial Neural Networks (ANNs) was provided by the inventor of one

of the first neurocomputers, Dr Robert Hecht-Nielsen. He defines ANNs as: "...a computing system

made up of a number of simple, highly interconnected processing elements, which process

information by their dynamic state response to external inputs” (Caudill, 1987). ANNs can be

identified as computing systems in their very core of Deep Learning which have been versified and

became a very powerful and scalable technique that can make them ideal in tackling large and

highly complex Machine Learning tasks, such as powering speech recognition services like Google

Assistant and Apple Siri, classifying billions of images like Google images, recommending the

best videos to watch to millions of users like YouTube, or learning a machine to be able to beat the

world champion at a game like the GO champion who lost against the DeepMind’s AlphaGo

machine.

3.1.1. History

The development of these computing systems began in the 1940s, when Artificial Neural Networks

emerged by McCulloch and Pitts who came up with the idea after their analysis of how human

brains works (McCulloch and Pitts, 1943). Since that time, researchers in this field started to mimic

the mechanism of neurons in the brain by modelling simple neural networks using electrical

circuits. After McCulloch and Pitts hypothesis by 7 years, a work was published by Donald Hebb

pointing out the fact that neural pathways are strengthened when they are in the usage status by the

human body (Hebb, 1949). His argument was stating that having 2 nerves fire at the same time can

enhance the connection between them. Such a concept was fundamentally essential as it gave an

insight to the ways in which humans learn.

Chapter 3

54

In the 1950’s, computers became more advanced, and it was finally possible for scientists to test

the Artificial Neural Networks (ANNs) (Priddy and Keller, 2005). The first attempt was conducted

by Nathaniel Rochester from the IBM research laboratories. Nathanial’s trial was stepping towards

building a simulated human brain, but unfortunately, that attempt was failed in doing so. Later in

1959, two models were developed by Bernard Widrow and Marcian Hoff, they called them

"MADALINE" and “ADALINE” relating to the use of the Multiple Adaptive Linear elements

(Widrow, 1960). These two models were the first ANNs being applied to solve real-world

problems. “MADALINE" was developed for using an adaptive filter which eliminates echoes on

phone lines, while “ADALINE” was developed for recognising binary patterns so that it can predict

the next parts of a read streaming section from phone lines.

In 1962, another model was developed by Windrow and Hoff, it was a learning procedure technique

which examines the value before the weight adjusts it (i.e. 0 or 1) according to the rule: Weight

Change = (Pre-Weight line value) * (Error / (Number of Inputs)). The model was developed based

on the assumption that while one active perceptron may receive a big error, one can adjust the

weight values to distribute it across the network, or at least to adjacent perceptrons. The results of

this equation still show an error whenever the line before the weight is 0, and eventually the error

gets corrected automatically. However, the error gets eliminated when it is conserved which means

it is distributed to all the weights. Although these models were developed using old fashion

techniques, they are still in commercial use.

After such revolutionary achievements, the success in applying the ANNs technique started to

expand more and more until the beginning of the 1970s, when it was confronted with the traditional

von Neumann architecture which took over the computing scene leaving the neural networks

technique behind (D’Addona, 2016). Ironically, one of the suggestions that John von Neumann

gave it himself was the imitation of neural functions by using telegraph relays or vacuum tubes. In

the same period, a number of other works reported that there could not be an extension from the

single layered neural network to a multiple layered neural network. Such suggestions at that time

have led to a sharp decrease in funding the ANNs research.

After funding flew elsewhere, ANNs entered a long dark era until the early 1980s when new

network architectures were invented, and better training techniques were developed. A paper was

presented to the National Academy of Sciences by John Hopfield showing a renewal interest in the

neural networks field (Hopfield, 1982). The approach was focusing on creating more useful

Chapter 3

55

machines by using bidirectional lines rather than having only one way in the connections between

neurons as the previous methods. Following that approach, a “Hybrid network” was utilised by

Reilly and Cooper with the feature having multiple layers and each layer uses a different problem-

solving strategy (Reilly et al., 1982). In the same year also, a great conference on

Cooperative/Competitive Neural Networks was held by USA and Japan (Amari and Arbib, 1982)

announcing a new fifth generation effort on neural networks as this technique went through 4 states

before. The first state when NNs used switches and wires, the second state used the transistor, the

third generation used solid-state technology such as integrated circuits and higher-level

programming languages, and the fourth state was the use of code generators. The fifth generation

announced in the joint US-Japan conference was from Japan, and it involved the artificial

intelligence. This announcement from Japan made US worries about being left behind, and

therefore, funding started to flow once again. In 1985, an American institute in Physics began an

annual meeting in Neural Networks for Computing, and in the third time the meeting was held in

the IEEE as the first international conference on NNs drawing more than 1800 attendees.

During the following years, the multiple layered NNs concept was spread, and the main issue at

that time was in finding the way to extend the Windrow-Hoff rule to multiple layers. In 1986, a

group of researchers from Stanford’s psychology school came up with similar ideas which are now

called propagation networks as it distributes pattern recognition errors throughout the network

(Tanaka et al., 1986). In contrast to Hybrid networks which used only two layers, the back-

propagation networks were able to use more than two layers. However, at that time, back-

propagation networks were found to be a “slow learner” which needed possibly thousands of

iterations to learn, and that was one of the problems which NNs faced during that time.

By the 1990s, other powerful machine learning techniques such as Support Vector Machines started

to show up, making researchers changing their minds in using NNs as they seemed to offer better

results and stronger theoretical foundations with other techniques (Gholami and Fakhari, 2017).

However, another wave of interest in ANNs has been witnessed recently, and it seems that this

wave is not going to disappeared like the previous waves. Few reasons to believe that Artificial

Neural Networks are not going to put down again. Firstly, the huge quantity of available data that

can be used for training neural networks making ANNs frequently outperform all other ML

techniques on very large and complex problems. Secondly, the tremendous increase in computing

power that can now make it possible for computers to train large NNs in a reasonable amount of

Chapter 3

56

time. Thirdly, the improvement in the training algorithms which has a huge positive impact.

Fourthly, solving many ANNs limitations such as the worries of getting stuck in local optima when

it turns out that this is rather rare in practice. Fifthly, the huge amount of funding and progress that

this technique is having in the many different areas. Up until now, the NNs technique has been

evolving through various applications which have been practicing it thoroughly (Géron, 2017).

3.1.2. Biological Neurons

Before discussing artificial neurons, we should have a look at the biological structure of neuron

itself (Figure 3.1). The biological neuron is an unusual-looking cell which is found in animal

cerebral cortexes composing of a cell body which contains the nucleus and most of the cell’s

complex components, and many branching extensions called dendrites, plus a longer extension

called the axon. The axon splits off into branches called telodendria, the tips of these branches are

to a minuscule structure called synaptic terminals, these are connected to the dendrites of other

neurons. When a biological neuron receives a sufficient number of an electrical impulse (called a

signal) from another neuron via these synapses within a few milliseconds, the neuron fires its own

signals as well (Seikel et al., 2018).

Figure 3.1. 3D drawing of the biological structure of a neuron. Adapted from Géron, (2017).

Chapter 3

57

The behaviours of an individual biological neuron seem to be simple. However, biological neurons are

organised in a vast network of billions of neurons connecting with each other building an architecture of

biological neural networks (BNNs) that can solve highly complex computations. The architecture of BNNs

is still the subject of active research. However, studies have managed to map some parts of the brain showing

that neurons are often organised in consecutive layers (Figure 3.2) (Géron, 2017).

Figure 3.2. Drawing represents the consecutive layers construction of neurons in the brain. Adapted

from Géron, (2017).

3.1.3. Artificial Neurons

The first simple model of the biological neuron was proposed by Warren McCulloch and Walter

Pitts, the model has one or more binary (on/off) inputs and one binary output. When more than a

certain number of the model’s inputs are active, the model simply activates its output. This model

was seen to mimic the biological neuron (Figure 3.3), and therefore, it was later termed as an

artificial neuron. By this simple architecture of the artificial neuron, McCulloch and Pitts showed

that it is possible to build a complex Artificial Neural Networks which can compute any logical

proposition we want (Browne, 1997).

Figure 3.3. Schematic drawing representing an analogy of Biological Neuron and Artificial Neuron. Adapted

from Géron, (2017).

Chapter 3

58

The building block unit and the first implementation of an ANNs was known as the perceptron

(Rosenblatt, 1957), a single layer of linear threshold units with nodes (neurons) connected to all

the inputs. Each node contains an activation function turns to be activated once that node receives

enough number of signals from the previous interconnected nodes. In a perceptron network, each

neuron is a linear threshold unit, and the inputs and output are considered as numbers rather than

on/off binary values. Each input is connected with other outputs of previously located neurons

(except the first inputs). Between these neurons there are connections associated with weights. The

linear threshold unit computes the weighted sum of its inputs as 𝑧 = 𝑤1𝑥1 + 𝑤2𝑥2 + ⋯ + 𝑤𝑛𝑥𝑛 =

𝑤𝑇 . 𝑥 and then applies a step function for that sum to be outputted as ℎ𝑤(𝑥) = 𝑠𝑡𝑒𝑝(𝑧) =

𝑠𝑡𝑒𝑝(𝑤𝑇 . 𝑥). An example in Figure 3.4 clarifies the architecture of this feedforward technique.

This example has 3 inputs, each of which has its own weight. These inputs are summed by the

linear combiner ∑ and then put through a function.

Figure 3.4. A diagram representing a linear threshold unit.

There are several step functions that can be used in Perceptrons, the most common ones are the sgn

step function and the Heaviside step function, they are calculated as:

𝑠𝑔𝑛 (𝑧) = {

−1 𝑖𝑓 𝑧 < 0
0 𝑖𝑓 𝑧 = 0
+1 𝑖𝑓 𝑧 > 0

 ℎ𝑒𝑎𝑣𝑖𝑠𝑖𝑑𝑒 (𝑧) = {
0 𝑖𝑓 𝑧 < 0
1 𝑖𝑓 𝑧 ≥ 0

Chapter 3

59

3.1.4. Deep Neural Networks

A single linear threshold unit can be used for simple linear binary classification. It can compute a

linear combination of the inputs and if the result exceeds a threshold, it outputs the positive class

or else outputs the negative class as similar as a Logistic Regression classifier or a linear SVM.

However, processing multiple linear threshold units in many layers of perceptrons constructing

what we may call it Deep Artificial Neural Networks. DANNs can compute more advanced

problems with several techniques and architectures to be formulated, the multilayer perceptron

(MLP) has been the best feedforward neural network class that has the ability to map a set of inputs

which pass it through hidden layers and send the calculated data to an output unit (Rosenblatt,

1962). MLP networks have been considered as a powerful technique in a large number of

applications from different fields of research. The benefits of MLPs come from the appropriateness

in dealing with most of the problems involving function approximation, pattern classification,

process control and time series forecasting (Efendigil et al., 2009).

Intuitively, we can expect that having more hidden layers would make our networks more powerful.

The single layer can be changed to multiple-layered artificial neural networks. This approach was

built up and found to have more complex intermediate layers which can have multiple layers of

abstraction (Ba and Caruana, 2014). Having multiple layers can give neural networks the ability to

solve more advanced challenges such as visualising pattern recognition. Eventually, this type of

NNs was referred as the Deep Artificial Neural Networks (DANNs).

The DANNs was found to spot the correct mathematical manipulation more accurately and turn

the input into the output whether in a linear or a non-linear relationship. Unlike ANNs, the multiple

layers in the DANNs give it the ability to process more complicated problems (Toth et al., 1996).

By testing the visualising pattern recognition example using DANNs, the neurons in the first layer

could learn recognising edges, then the neurons in the second layer would learn recognising more

shapes like triangles or rectangles which are built up from edges which already been learnt in the

first layer. The third layer could then recognize static more complex shapes, and the fourth learns

animatic shapes, and so on. This reminds us by how children start to learn basic shapes around

Chapter 3

60

them when their brains which contain multiple layers of neurons give them a compelling advantage

in starting to learn complexes pattern.

The differences between ANNs and DANNs lies in the depth of the model. The phrase Deep

learning is a term that has been used for more advanced artificial neural networks which contain

multiple processing layers. With this level of layers, networks will be able to create more space for

processing a huge amount of data. Figure 3.5 can show an example of how DANNs architectures

are highly complicated compared to ANNs. Such a complexity in DANNs is attributed by elaborate

patterns of how data can flow throughout the model.

Figure 3.5. Two diagrams illustrating the differences between ANNs (left panel) and DANNs (right

panel).

3.2. Objectives

The 6th version of ModFOLD described in the previous chapter is powered with different model

quality assessment programs (MQAPs) which produce a combination of model quality scores.

These scores are usually averaged to assign an Optimal Mean Score (OMS) for evaluating the

quality of a model. The OMS is a simple equal weighting consensus approach, which means that

ModFOLD6 assumes that all EMA scores used in the combination are equal under all

circumstances, however this can seem practically inaccurate. Sometimes, some EMA methods

scores can be relied on more than other scores. In the free modelling situation for example, the

scores produced by the pure-single methods such as CDA, SSA and ProQ2 should be more

considered than the scores produced from the quasi-single methods. Therefore, it was important to

Chapter 3

61

look for a way to overcome such an issue.

This chapter demonstrates an introduction to the Deep Artificial Neural Networks for a try to

combine scores more accurately than OMS by using different weightings for different score

combinations. The training process was automated in a way which allowed training with multiple

combinations and neural networks parameters in a short amount of time. Two packages were

utilised for constructing DANNs. For a “shallow” DANNs, we used the RSNNS package from the

statistical computing software, R v3.2.3 (Bergmeir and Benítez, 2012). While for a more advanced

DANNs, we used Google's TensorFlow v1.0 package in Python v2.7.5 (Abadi et al., 2016). The

results from this study show that both DANN packages are useful at different levels, RSNNS

derived networks were found to be the best method when testing for correlations with observed

scores while the TensorFlow deep neural networks outperformed all other techniques when testing

the method’s ability to pick the top ranked model.

Indeed, like all predicted scores, the Quality Assessment (QA) scores vary in accuracy when

compared to the true score of the predicted model. The OMS technique does not take this into

account as it assumes that all scores being combined are of the same accuracy. The work in this

chapter aims to create and train a deep neural network that can produce global scores which are

more accurate at model ranking/selection and produce more consistent output scores than the

standard ModFOLD6 global score. This will be achieved by exploring different feed forward deep

neural network architectures for combining scores using various optimal weightings. This Chapter

also aims to compare the performance of the deep learning NNs to the standard NNs in order to

discover which technique can produce the optimum combined QA scores.

3.3. Materials and Methods

3.3.1 Inputs and Outputs

Ten individual MQAPs scores were chosen to be the MLPs inputs while the output data were the

GDT-HA (Mirjalili and Feig, 2013) scores. Additionally, for benchmarking purposes, the GDT

(Zemla et al., 1999), MaxSub (Siew et al., 2000) or TM-scores (Zhang and Skolnick, 2004), were

also chosen as the observed quality measures. The initial MLP construction was basic, consisting

of 3 layers; an input layer, a hidden layer and an output layer. More complex systems can have

multiple hidden layers. The number of nodes (similar to neurons in biology) within a layer can also

Chapter 3

62

vary. Much like in the nervous system, NNs worked by feeding information into the input layer

which can be seen as the sensory neurons (Rosenblatt, 1962). The inputted data was then fed into

the hidden layers in which the information was interpreted; this is where weights were assigned

and could be seen as the interneurons. The interpreted information was then moved on and collected

at the output layer (which could be analogous to a motor neuron) where all the data was then

interpreted to be ready for outputting as results. MLPs also utilise a supervised learning technique

called backpropagation for the training of the network. Learning occurs through the changing of

the weights after each piece of data is processed in accordance with the amount of error in the

output compared to the observed scores (Rumelhart, et al., 1986).

In this section, two alternative NN packages were investigated. Both were MLPs however, they

varied in complexity. The first was an MLP from the RSNNS package in R (Appendix 2) (Bergmeir

& Sánchez, 2012) while the second was a shallow networks version of MLP which was created for

the specific task of QA score combination using tools from Google’s TensorFlow package

(Appendix 3). While the TensorFlow DANNs itself is built in python, the python script also utilises

two R scripts for data management and analysis (Appendix 4).

3.3.2. RSNNS

The Stuttgart Neural Network Simulator (SNNS) library (Zell, et al., 1994) with its many standard

implementations of neural networks contained was brought through the RSNNS package into R

script. The RSNNS MLP is a basic single hidden layer MLP (Bergmeir & Sánchez, 2012). It takes

multiple parameters; training inputs, training outputs (GDT-HA), size (which defines the number

of nodes in the hidden layer), iteration number, initialisation function, learning function, test inputs

and test outputs. These parameters were varied during this project except for the initialisation

function as it was unnecessary to change this value from its default when performing a high-level

function.

Chapter 3

63

3.3.3. TensorFlow

For implementing Deep Artificial Neural Networks, Google’s TensorFlow was utilised.

TensorFlow is a software library which contains tools for numerical computations using data flow

graphs. TensorFlow was developed with the aim of creating advanced tools for pattern prediction

and correlation (Abadi, et al., 2016). TensorFlow uses nodes or tensors which are formed in

multidimensional arrays in its DANNs. Our TensorFlow based MLP was designed with 2 hidden

layers, however, more can be used. In addition, multiple neural networks parameters were

configurable including training/testing inputs (number), training/testing outputs (e.g. GDT-HA),

the learning rate, iterations, size of the first hidden layer, size of the second hidden layer. These

parameters were varied and evaluated. With the utility of TensorFlow we used optimisation

algorithms and activation functions in order to mitigate several DANNs problems including hidden

layers and units separation and activation. One optimising algorithm used in our DANNs was the

AdaGrad (Duchi et al., 2011), an algorithm which adaptively scales the learning rate for each

dimension. The equation for the parameter update which have been used in practice was: θ𝑡+1 =

 θ𝑡 −
η

√εI+diag(Gt)
 . 𝑔𝑡, where θ is the parameter to be updated, η is the initial learning rate, ε is a

small quantity which are used to avoid the division of zero, I is the identity matrix, 𝐺𝑡 is the gradient

estimate in time-step 𝑡 that can be solved in further equations. The dropout function was also used

in our DANNs. This regularising tool is often very effective at reducing overfitting. It works by

dropping neurons based on the probability, which is defined by the user (a 90% keep probability

was used in this study), that a neuron's output is kept during dropout. This allows for dropout to be

turned on during training and turned off during testing.

3.3.4. Neural Networks insertion using Multi-Layer Perceptron machine learning method

After obtaining results from all the ten baseline MQAP methods, the Multi-Layer Perceptron

techniques were then inserted. Two types of MLPs were utilised, a basic MLP which was obtained

from the RSNNS package in R, and a more advanced MLP using TensorFlow. Both techniques

were evaluated and parameterised in order to find a suitable NNs pipeline for EMA scoring.

Chapter 3

64

3.3.4.1. Neural Networks Setup

The NN scripts were written using the programming language, Python v2.7.5. The initial scripts

were able to run the NNs with manually adjustable parameters. Subsequently, the parameterisation

was automated using an updated DANNs script (Appendix 5) for the purpose of accelerating the

research speed.

3.3.4.2. Neural Networks Parameterisations

When we managed to automate our DANN script, it became possible for us then to parameterising

the iterations and number of hidden nodes per layer. Each of the selected combinations from the

previous step was then run through a neural network parametrisation stage. The DANNs parameters

were changed, hidden node numbers ranged from 1 to 20 in RSNNS and 1 to 5 in TensorFlow (due

to time constraints) while iterations ranged from 50 to 950, all of these adjustments were proceeded

with each run (thorough investigations on DANNs parameterisation will be studied in Chapter 5).

After the DANNs parameterisation stage completed, we analysed our results to look for the best

combination with its optimal DANNs adjustment for both ranking and correlation scoring methods.

3.3.4.3. Data searching

After DANNs parameterisation, the script was then used to run through every possible combination

for the ten MQAPs using six different sets of iterations and numbers of hidden nodes (Table 3.1).

After running several DANN scripts of the six different sets for both MLPs, we ended up having a

huge amount of data which was outputted as tables showing the resulted top 10 ranking and

correlation methods scores of each run. However, the top 10 scores of the EMA combinations

produced from these DANNs runs were varied. Some scores of methods appeared to take the 1st

rank in some runs but lower ranks in some others. To exploit such an output, all tables were

analysed to look for the best methods in most of the resulted data. The methods which appeared to

produce ranking as well as correlation scores within the top 10 more often was chosen. The best-

chosen combinations with their optimal parameters for each of the 6 sets were then run through a

looped NN script (Appendix 6) aiming to achieve the highest possible model quality score. In this

part of study, GDT-HA was used as the observed scoring measurement control for most of the

conducted tests as it was showing better results in correlations.

Chapter 3

65

Set

Number

RSNNS TensorFlow

Hidden

neurons
Iterations

1st layer – number of

hidden neurons

2st layer – number of

hidden neurons
Iterations

1 3 100 2 3 550

2 Input number 100 3 2 550

3
Half Input

number
100 Half input number 2 550

4 2x input number 100 3 2 100

5 3 300 2 1 100

6 2x input number 300 6 2 100

Table 3.1. The parameters used in each set for both RSNNS and TensorFlow. There are 6 sets of

parameters. There are 2 parameters to vary for RSNNS as it only has a single hidden layer, while

TensorFlow has 3 parameters to vary as it has two hidden layers.

3.3.4.4. Data analysis

All the best outputted data of scores resulted from the combinations of the 10 MQAP methods

through RSNNS and TensorFlow using the correlation and ranking scales were collected and

analysed in order to look for any possible improvement to our EMA score.

3.4. Results and Discussion

In this study, the effect of implementing RSNNS and TensorFlow on our MQAP method was

analysed. RSNNS and TensorFlow were applied separately to our selected combinations of MQAP

methods, and an evaluation was carried out to search for any improvement through NNs process.

GDT-HA, GDT, MaxSub and TM-score were the observed scoring measurements which were used

as controls for all the following benchmarking analysis. Both benchmarking tests provided a

number of interesting results in the local as well as the global scoring level.

3.4.1. MQAP score optimisation using RSNNS and TensorFlow

Similarly as in the study done in Section 2.3.4, all combinations of the original 10 MQAPs were

considered for benchmarking individually and in combinations using the same measurements but

with the integration of the MLP technique. The resulted scores from MLP integration were then

Chapter 3

66

compared with the previously yielded scores from Chapter 2 in order to look for any improvement.

For guidance, the following key numbers will be used to describe each of the ten EMA methods as

described in Table 3.2.

Key MQAP method

3 ModFOLD5_single_orig_global

4 ModFOLDclustQ_single_orig_global

5 ModFOLDclust2_single_orig_global

6 ModFOLD5_single_res_global

7 ModFOLDclustQ_single_res_global

8 ProQ2_res_global

9 CDA_res_global

10 DBA_res_global

11 SSA_res_global

12 ModFOLD6_single_res_global

Table 3.2. List of key numbers used to label the 10 MQAP methods.

3.4.1.1. Correlation benchmarking through RSNNS and TensorFlow

Firstly, the 6 sets of neural network parameters (Table 3.1) from RSNNS and TensorFlow were

adapted to benchmark the ten MQAP methods following the correlation scale. The results of this

benchmarking were then analysed to rank the best combination of MQAP methods which can

produce the optimum QA score. The analysis was carried out based on the performance consistency

between the ranked combinations throughout the 6 sets of NNs parameters. This means that with

the RSNNS inclusion, the combined methods which produced the highest scores in most of the six

parameters were selected. These methods were ranked and denoted as the highest combination of

methods in appearance (Figure 3.6).

Figure 3.6. Bar chart representing the top 10 MQAP combinations for correlation through RSNNS.

The ranking was carried out based on the appearances in each set of the NNs.

Chapter 3

67

Further, all combinations were subjected to the same statistical analysis again, but this time for

finding only the combination of MQAP methods which produce the highest correlation scores.

Table 3.3 represents the output of this analysis showing differences in the correlation scores. From

these results, it can be noticed that the top combinations were diversified due to the variations of

the used correlation coefficients as well as our measuring controls. However, such a diversity did

not occur when the predicted scores were correlated against GDT-HA. This can indicate the

likelihood that the neural network was trained on the GDT-HA scores, thus making it a more

reliable measurement for correlation. Therefore, further evaluations in this section focused more

on regarding GDT-HA as a control, but also considering the other observed measurements.

Correlation

Coefficients

Observed

Measure

Correlation

Score
Combination

R

GDT-HA

0.9223 4_8_9_10_12

Rho 0.9374 4_8_9_10_12

Tau 0.7769 4_8_9_10_12

R

GDT

0.9305 6_7_8_9_10_12

Rho 0.9391 3_5_9_10_12

Tau 0.7847 3_5_9_10_12

R

MaxSub

0.9343 5_8_9_10_12

Rho 0.9393 6_8_9_10_12

Tau 0.7841 5_10_12

R

TM-score

0.9289 5_8_9_10_12

Rho 0.9375 3_5_9_10_12

Tau 0.7861 5_10_12

Table 3.3. The top combinations and their scores for each testing method in the combination stage in

RSNNS.

Additionally, by looking at the results, we can notice that one of the top combinations

(6_8_9_10_12) did not appear within the selected highly performing combination methods in most

of the six sets of the RSNNS parameters demonstrated in Figure 3.6. However, 6_8_9_10_12 was

still one of the combinations which gave the highest correlation scores, thus it will be taken with

the selected methods to be tested in the NNs parameterisation stage.

Chapter 3

68

In the parameterisation stage, the selected combinations of MQAP methods were tested through

several RSNNS runs to look for the most suitable NNs parameters that can give the highest

correlation scores. As can be seen in Table 3.4, 12 MQAP combinations were chosen as the highest

RSNNS correlation scoring methods. The optimum combination was for 6_8_9_10_12 with it

achieving the top score in 6 of the 12 selected methods, while 4_8_9_10_12 correlated best with

GDT-HA achieving the top score in all 3 correlation coefficients. For combination 6_8_9_10_12

the parameters of 2 hidden units and 800 iterations were chosen as it was the top performer in 5 of

the 6 times in which 6_8_9_10_12 was the highest scoring combination. For the 4_8_9_10_12

combination, the parameters of 2 hidden units and 100 iterations were chosen due to the large

increase in Pearson’s R. These selected combinations with their suitable NNs parameters were then

taken forward for a further analysis.

Correlation

Coefficient

Observed

Measure

Correlation

Score
Combination

Parameters

Hidden

units
Iterations

R

GDT-HA

0.9234691 4_8_9_10_12 2 100

Rho 0.937887 4_8_9_10_12 6 100

Tau 0.7773133 4_8_9_10_12 6 100

R

GDT

0.9312651 4_8_9_10_12 2 100

Rho 0.9410867 6_8_9_10_12 2 800

Tau 0.7867924 6_8_9_10_12 2 800

R

MaxSub

0.9340363 5_8_9_10_12 2 150

Rho 0.9425893 6_8_9_10_12 2 800

Tau 0.7861622 6_8_9_10_12 2 800

R

TM-score

0.9317801 6_8_9_10_12 2 250

Rho 0.9408387 6_8_9_10_12 2 800

Tau 0.7871806 5_10_12 4 500

Table 3.4. The top combinations and the respective parameters for each correlation testing methods

for RSNNS.

For TensorFlow, the same steps of NNs runs using the 6 sets of parameters were used in the

combination stage. As with RSNNS, the top 10 combinations were benchmarked based on the

methods performance consistency which led them toward the appearances in the top 10 scores in

most of the results, the top 10 combinations can be seen in Figure 3.7.

Chapter 3

69

Figure 3.7. Bar chart representing the top 10 MQAP combinations for correlation through

TensorFlow. The ranking was carried out based on the appearances in each set of the NNs.

As the RSNNS procedure, statistical analysis was applied for all combinations to look for the

optimal EMA combinations with can produce the highest scores. The top correlation scores for

each of the selected combinations are represented in Table 3.5. Similarly as in the RSNNS results,

one combination (4_10) from the TensorFlow ranked methods was found to disappear in the top

correlated TensorFlow combinations. Yet, the combination method was also used in the

parameterisation stage along with the top correlated methods.

Chapter 3

70

Correlation

Coefficient

Observed

Measure
Correlation Score Combination

R

GDT-HA

0.9103466 4_10

Rho 0.9307373 4_7_10_12

Tau 0.7708717 4_7_10_12

R

GDT

0.9260703 7_10_12

Rho 0.9321401 7_10_12

Tau 0.7820457 7_10_12

R

MaxSub

0.9295573 7_10_12

Rho 0.9347715 7_10_12

Tau 0.7807776 7_10_12

R

TM-score

0.9302162 10_12

Rho 0.9319469 10_12

Tau 0.7839458 7_10_12

Table 3.5. The top combinations and their scores for each testing method in the combination stage in

TensorFlow.

The top combinations were benchmarked using several parameters of TensorFlow DANNs this

time. The benchmarked MQAP combinations were then subjected to the correlation analysis to

find the optimal correlated methods. By including the TensorFlow, two combinations were found

to be of interest as can be seen in Table 3.6. The combination of 4_7_10_12 MQAP methods had

the best performance with GDT-HA (it came second in Pearson’s Rank) but in the majority of the

other observed measures 7_10_12 had the top correlation score. For this reason, both combinations

were taken into the data analysis stage. For 4_7_10_12 combination, the parameter of 2 hidden

units in the first layer, 2 units in the second and 50 iterations was chosen as it was the top performer

in most of the times in which 4_7_10_12 was showing the highest scoring combination. For

combination 7_10_12, the parameter of 4 hidden units in the first layer, 3 units in the second and

50 iterations was chosen as it was one of the top performing parameters for 7_10_12.

Chapter 3

71

Correlation

Coefficient

Observed

Measure

Correlation

Score
Combination

Parameters

Hidden units
Iterations

Layer 1 Layer 2

Pearson

GDT-HA

0.91435 4_10 5 1 50

Spearman 0.9330322 4_7_10_12 2 2 50

Kendal 0.7742101 4_7_10_12 2 3 50

Pearson

GDT

0.9299396 7_10_12 4 3 50

Spearman 0.9343262 7_10_12 4 3 50

Kendal 0.7847976 4_10_12 1 4 50

Pearson

MaxSub

0.9321558 7_10_12 1 1 100

Spearman 0.9363999 7_10_12 1 1 100

Kendal 0.7826315 10_12 2 2 50

Pearson

TM-score

0.9322891 10_12 5 1 50

Spearman 0.933866 7_10_12 1 1 100

Kendal 0.7857452 10_12 2 2 50

Table 3.6. The top MQAP combinations and the respective parameters for each correlation testing

methods for TensorFlow.

It can be seen from the data presented in Table 3.7 that a “shallow” single layer MLP from RSNNS

was clearly the superior method when attempting to get the optimal correlations from a

combination of scores. The two RSNNS combinations had between them all the top correlation

scores with each getting 6 of the possible 12 top scores. 6_8_9_10_12 was selected as the top

combination as it had an average improvement of 0.76% when considering all 12 forms of testing

correlation compared to 4_8_9_10_12’s 0.63%. However, 4_8_9_10_12 showed an improvement

of 2% in Pearson’s R when correlated with GDT-HA, and an average of 1% improvement when

using all techniques to correlate to GDT-HA, these are the largest improvements found in the study

for correlation.

Chapter 3

72

Correlation

Coefficient

Observed

Score
ModFOLD6

RSNNS TensorFlow

6_8_9_10_12 4_8_9_10_12 4_7_10_12 7_10_12

Pearson

GDT-HA

0.9058867 0.9186586 0.9253479 0.9122147 0.9112993

Spearman 0.9305616 0.9366413 0.9375623 0.9328477 0.9330121

Kendal 0.7700707 0.7750816 0.7755898 0.7734703 0.7734843

Pearson
GDT

0.9263458 0.9309587 0.9323503 0.927651 0.9300441

Spearman 0.9321835 0.9406859 0.9395187 0.9331065 0.9344475

Kendal 0.7819467 0.7854926 0.7821959 0.7812008 0.7833844

Pearson

MaxSub

0.9297004 0.9338626 0.9344752 0.9298453 0.9319266

Spearman 0.9349359 0.9421471 0.9397281 0.9341264 0.9360434

Kendal 0.7810229 0.7849646 0.7796613 0.7778905 0.7811618

Pearson

TM-score

0.9279442 0.9303009 0.9291652 0.9267494 0.930639

Spearman 0.9320759 0.9405161 0.9378111 0.9313664 0.9335525

Kendal 0.7841708 0.7858688 0.7801108 0.7800309 0.7835955

Table 3.7. Results of the data searching stage for correlation along with the ModFOLD6 scores. Green

represents the best score and red the worst score for each respective testing methods.

On the other hand, TensorFlow showed improvements in comparison to ModFOLD6 when testing

using GDT and GDT-HA. However, the pipeline failed to perform well in the majority of tests

when MaxSub and TM-score were used for comparisons. When looking at the regression plots in

Figure 3.8 it can be noticed that RSNNS provided a better correlation as its formed trendlines were

linear and almost intersects (0,0) and (1,1). Whereas both plots for TensorFlow show a similar

shape to ModFOLD6 and they seem to better fit an exponential trendline other than a linear line.

Chapter 3

73

Figure 3.8. Regression plots comparing ModFOLD6 with the ranked RSNNS and TensorFlow MQAP

combinations. Plot 1 shows the regression plot for ModFOLD6, Plot 2 shows the regression plot for

6_8_9_10_12 in RSNNS, Plot 3 shows the regression plot for 4_8_9_10_12 in RSNNS, Plot 4 shows the

regression plot for 4_7_10_12 in TensorFlow and Plot 5 shows the regression plot for 7_10_12 in

TensorFlow. All predicted scores were compared to GDT-HA.

Chapter 3

74

3.4.1.2. Ranking/Selection benchmarking through RSNNS and TensorFlow

The same 6 sets of neural network parameters were implied through RSNNS and TensorFlow when

benchmarking the MQAP methods using the ranking/selection scale.

Firstly, the selected combinations were benchmarked with the inclusion of the RSNNS networks.

The outputted scores of this benchmarking were analysed, and the results were ranked based on

the performance consistency through the 6 sets of NNs parameters. Unlike the correlation section,

all the top-ranking scores came from the combination 8_9 as seen in Table 3.8, and thus only the

10 combinations found in Figure 3.9 will be used in the parameterisation step.

Observed

Measures
Cumulative Score Combination

GDT-HA 31.76354231 8_9

GDT 44.01783111 8_9

MaxSub 40.69864599 8_9

TM-score 46.77266494 8_9

Table 3.8. The top combinations and their scores for each Observed method in the combination stage

in RSNNS.

Figure 3.9. Bar chart representing the top 10 MQAP combinations for correlation through RSNNS.

The ranking was carried out based on the appearances in each set of the NNs.

The parameterisation stage showed clear results as to which combination was best for ranking

scores. As seen in Table 3.9, the combination 8_9_11 produced the top score in each observed

score other than TM-score where it placed second. The top combination for ranking in TM-score

was 8_9 however this exact score was achieved 19 times by 8_9 during the parameterisation stage

Chapter 3

75

and is thus likely to be an upper limit of this combination. For this reason, the combination 8_9_11

was selected and used in the further optimisation stage. The parameters chosen in the data searching

stage was 2 hidden units and 550 iterations as these parameters worked best when selecting the top

model using GDT-HA.

Observed score Sum of Top Model Scores Combination
Parameters

Hidden units Iterations

GDT-HA 31.98587951 8_9_11 2 550

GDT 44.05480416 8_9_11 2 550

MaxSub 40.88442186 8_9_11 2 1000

TM-score
46.77266494 8_9 Multiple Multiple

46.75706769 8_9_11 2 300

Table 3.9. The top combinations and the respective parameters for each Observed score in RSNNS.

The 6 sets of parameters used for ranking in TensorFlow were the same as those used in correlation.

All the combinations shown in Figure 3.10 were used in the next stage, parameterisation. The

results in Table 3.10 showed that 9_11_12 outperformed all other combinations except for

8_9_11_12 according to the TM-score. The top scores shown already outperformed the results at

the end of the parameterisation step of RSNNS. As all the top-ranking combinations, shown in

Table 3.10, were included in the combinations in Figure 3.10, no extra combinations passed to the

parameterisation step.

Figure 3.10. Bar chart representing the top 10 MQAP combinations for correlation through

TensorFlow. The ranking was carried out based on the appearances in each set of the NNs.

Chapter 3

76

Observed

Measure

Cumulative

Score
MQAP Combination

GDT-HA 32.40589837 9_11_12

GDT 44.54382173 9_11_12

MaxSub 41.55411428 9_11_12

TM-score 47.25694338 8_9_11_12

Table 3.10. The top combinations and their scores for each observed method in the combination stage

in TensorFlow.

Table 3.11 shows the top scoring combinations for each observed score in TensorFlow along with

the respective parameters used. 9_11_12 was clearly the best combination at ranking as it

performed well according to all the observation scores, except the scores from TM-score where

8_9_11_12 was the top performing combination. However, 8_9_11_12 scored the same score of

47.28648181 using various parameters, and thus meaning this score is likely the upper limit of this

combination. This made picking the best combination easy, however, the results in Table 3.11

made it difficult to pick the parameters to use along with the combination 9_11_12. 4 hidden units

in layer 1, 2 hidden units in layer 2 and 300 iterations was the model parameter as it was best for

both GDT and TM-score. While 5 hidden units in layer 1, 4 hidden units in layer 2 and 100

iterations only achieved a top score in GDT-HA and MaxSub. Ultimately, 5 hidden units in layer

1, 4 hidden units in layer 2 and 100 iterations was chosen to be used in the data searching stage.

This set of parameters was chosen for two reasons: firstly, the NN is trained using GDT-HA thus

making it the primary focus of this study and secondly the methodology behind data searching uses

a set GDT-HA to loop over the NN.

Chapter 3

77

Observed

Measure

Cumulative

Score
Combination

Parameters

Hidden units in layer 1 Hidden units in layer 2 Iterations

GDT-HA 32.42876369 9_11_12 5 4 100

GDT 44.60932707 9_11_12 4 2 300

MaxSub 41.57506947 9_11_12 5 4 100

TM-score
47.28648181 8_9_11_12 various* various* various*

47.2269774 9_11_12 4 2 300

Table 3.11. The top combinations and their respective parameters for each Observed score in

TensorFlow. *The various parameters were 2, 3, 5 hidden units in layer 1, 3, 5 in layer 2, and 100, 400

iterations.

3.4.2. Data Analysis

After running the 10 MQAP methods through the 6 sets of parameters of NN pipelines with the

built-in RSNNS and TensorFlow and then benchmarking them using the ranking/selection and

correlation scales, a massive amount of data was collected. The data was analysed, and impressive

improvements were found when comparison. As can be seen in Figure 3.11, all differences in

scores between the new RSNNS and TensorFlow techniques were whatever outside the margin of

errors thus showing that the improvements are likely to be reliable.

Figure 3.11. Bar chart representing the top-ranking combination score for each technique using GDT-

HA.

Chapter 3

78

The results of analysed from the data searching stage were also shown in Table 3.12. While RSNNS

technique scores were an improvement to that of ModFOLD6, RSNNS underperformed when

compared to TensorFlow as well. However, TensorFlow technique achieved the highest score for

every observational method. The largest improvement was in GDT-HA with an overall

improvement of 0.88% compared to ModFOLD6.

Observed Score
Cumulative Score

ModFOLD6 RSNNS TensorFlow

GDT-HA 32.34630537 32.4621495 32.62412141

GDT 44.53946127 44.65405679 44.67576979

MaxSub 41.53627352 41.30589405 41.63982609

TM-score 47.18034881 47.28185714 47.26613235

Table 3.12. The results of the data searching stage for ranking along with the ModFOLD6 scores.

Green represents the best score for each Observed score while red represents the worst score for the

respective Observed score.

The study of both Correlation and Ranking scales gave opposing results. The correlation study tells

us that RSNNS using 6_8_9_10_12 is the superior method as TensorFlow was not even able to

outperform MODFOLD6 in certain tests. However, the ranking scores showed that TensorFlow

was the superior technique. In the Ranking scale, RSNNS also showed an improvement compared

to ModFOLD6. However, when statistical analyses were conducted using the Wilcoxon sign test,

the improvements were not statistically significant (p-value = 0.4836, N = 84), thus RSNNS could

not give any improvement when combining multiple global scores. On the other hand, TensorFlow

was found to be slightly better with a p-value of 0.0000000000000004064 (N = 84).

During the entirety of this study it became apparent that combinations were either good at ranking

or correlation, this may seem counterintuitive as the expected efficient MQAP method would be a

combination of methods which are accurate at assigning scores and also good at picking out the

top-ranking model. This may be due to the negatively skewed data set (Figure 3.12) thus meaning

combinations which were accurate at assigning scores to bad models score higher in the correlation

analysis than combinations which were only accurate at scoring good models. To resolve this issue,

future projects could use positively skewed data, this would mean that the NN is more accurate at

assigning scores to good models and worse at assigning scores to bad models. Being inaccurate at

assigning scores to bad models is not as much of a problem as the models themselves are inaccurate.

Chapter 3

79

Figure 3.12. Distribution of Model Quality in the data set, measured using GDT-HA.

The poor correlation for TensorFlow could be due to an error in the training methodology or a lack

of a specialised activation function. Indeed, this could be the case because as can be seen in the

regression plots in Figure 3.8, the highest prediction score made by TensorFlow was 0.46 which is

half the value of the highest true score. A change in methodology or a different activation function,

such as Rectified linear unit (ReLU) may solve this issue (Abadi, et al., 2016). ReLU uses a ramp

function to add linearity to the model which allows it to improve the training of the NN especially

when presented with a large data set (Arora, et al., 2016). Other activation functions can also be

considered such as sigmoid, softplus and tanh, however these functions seem to be of less use for

ModFOLD compared to the potential of ReLU Relu due to their non-linearity (Abadi, et al., 2016).

There are further improvements that can be made in TensorFlow, which may improve the accuracy

for both correlation and ranking. One improvement would be to use biases when training the NN.

Biases are used to manipulate the prediction scores and thus can be used to make the prediction

scores more linear. While this won’t improve correlation scores, it will improve the regression

plots. Batch training can also be implemented. In batch training, the training step for the NN uses

smaller batches of the training data, and the models in the batch are changed with each iteration.

Batch training could potentially allow for the increase in learning rate and iteration number without

overfitting the NN, thus this technique could improve accuracy of prediction.

Chapter 3

80

3.5. Conclusion

In this study we have sought to optimise combinations of the ten global model quality assessment

methods, including ModFOLD6. The methods were benchmarked firstly through different

regressions, individually as well as in combinations, using 2 scales of measurements,

Ranking/Selection and Correlation. The second benchmarking was conducted after the inclusion

of a simple MLPs (RSNNS) and a deep MLPs (TensorFlow) to the MQAP methods pipeline

separately. After benchmarking, the outputted data were analysed to find the optimum scores that

was achieved from the including these two neural networks. It was found that both NNs were useful

for different reasons. The MLPs from RSNNS outperformed the other techniques when testing for

correlation between the predicted score and the true score while the deep MLPs using TensorFlow

outperformed the others when testing for the ability to pick out the highest ranked models. This

study shows the potential in using deep learning techniques for combining scores from MQAPs

and offers suggestions as to how deep learning methodology could be modified (e.g. using different

activation functions and positively skewing training data) to improve the predictive ability of the

neural networks.

Chapter 4

Independent Benchmarking for an Updated Version of ModFOLD6

with the Top EMA Methods in CASP12

Chapter 4

82

Work presented in this chapter has been published in the following papers:

Maghrabi, A.H.A., McGuffin, L.J., 2017. ModFOLD6: an accurate web server for the global and

local quality estimation of 3D protein models. Nucleic Acids Res 45, W416–W421.

https://doi.org/10.1093/nar/gkx332 (Both authors contributed equally to the paper as first authors.

Figures and tables are adapted from Maghrabi & McGuffin 2017, unless otherwise indicated).

Elofsson, A., Joo, K., Keasar, C., Lee, J., Maghrabi, A.H.A., Manavalan, B., McGuffin, L.J.,

Hurtado, D.M., Mirabello, C., Pilstål, R., Sidi, T., Uziela, K., Wallner, B., 2018. Methods for

estimation of model accuracy in CASP12. Proteins: Structure, Function, and Bioinformatics 86,

361–373. https://doi.org/10.1002/prot.25395 (All authors contributed equally to this study and the

list is sorted alphabetically.)

Chapter 4

83

4.1. Background

Methods which predict the three-dimensional (3D) models of proteins are now routinely relied

upon to drive research across the life sciences. The reason behind that lies in the expense of the

protein structures determination experiments, and also their time limitations. Predicting a 3D model

is comparatively quick and can often be of sufficiently high quality. However, with all predictions

there is some level of uncertainty, and therefore accurate methods for model quality assessment

have become necessary for driving the acceptance of structure prediction methods. Essentially,

relying on a 3D model of a protein without an estimate of its accuracy is tantamount to relying on

a sequence alignment without an E-value. Thus, the development of 3D model Quality Assessment

(QA) tools has become an important area of research in itself. Numerous methods have been

developed over the years in an attempt to provide users with scores that will give them confidence

in their 3D models and allow them to identify any potentially suspect regions.

The model quality assessment field has its roots in early structure validation tools (Laskowski et

al., 1996) (Hooft et al., 1996) (Wiederstein and Sippl, 2007). Such tools can be used to perform

basic stereochemical checks, and they are very useful in identifying unusual geometric features in

a model. However, such methods are not able to produce a single global score that can be used for

ranking alternative models or discriminating good models from bad (often bad models will still

have good stereochemistry). Modern methods for QA can be classified into three broad categories:

pure-single model methods, which consider only information within an individual model

(Eisenberg et al., 1997) (Wiederstein and Sippl, 2007) (Zhou and Zhou, 2002) (McGuffin, 2007)

(Uziela and Wallner, 2016) (Uziela et al., 2017) (Benkert et al., 2008) (McGuffin, 2008),

clustering/consensus approaches (McGuffin, 2009) (Larsson et al., 2009) (Benkert et al., 2009)

(Cheng et al., 2009) (McGuffin and Roche, 2010), which can only be used if you have multiple

alternative models built for the same protein target, and quasi-single model methods (McGuffin et

al., 2013) (Roche et al., 2014), which can score an individual model against a pool of alternative

models generated from the target sequence. Each approach has its advantages and disadvantages.

Clustering methods have been far more accurate than pure single-model methods but are more

computationally intensive and do not work when very few similar models are available, which is

often the case in real life research scenarios. Pure-single model methods are less accurate overall,

but they are more rapid, they produce consistent scores for single or few models at a time and they

often perform better at model ranking and selection.

Chapter 4

84

Quasi-single model methods attempt to provide comparable accuracy to clustering methods, while

addressing real-life needs of researchers with few/single models. We initially implemented a quasi-

single model approach with our ModFOLD3 method (Roche et al., 2014), which generated

reference sets of models from the target sequence, using IntFOLD-TS (McGuffin and Roche,

2011), for comparison with the submitted model using ModFOLDclust2 (McGuffin and Roche,

2010). The method has since undergone a number of updates: ModFOLD4 (McGuffin et al. 2013),

which makes use of IntFOLD2-TS (Buenavista et al., 2012) models, and ModFOLD5, which

makes use of IntFOLD3-TS (McGuffin et al., 2015) models. Each of these quasi-single model

versions of ModFOLD have been ranked among the top performing methods in the quality

assessment categories of the recent CASP experiments (Kryshtafovych et al., 2014)

(Kryshtafovych et al., 2016) and have undergone incremental improvements in accuracy. By some

measures, the quasi-single model methods have been competitive with the predictive power offered

by clustering-based methods, as well as being capable of making predictions for a single model at

a time. While the ModFOLD server has been a pioneer of the quasi-single model approach and a

leader in terms of prediction performance, it has fallen short in some aspects, such as model

selection. Furthermore, there is still significant room for improvement in many aspects of quality

assessment.

In this chapter, we describe significant major updates to the ModFOLD server. The server has been

popular with modellers around the world, having completed ∼200 000 quality assessment jobs for

∼9000 unique users. The latest version, ModFOLD6, operates solely in single model mode,

deploying a novel hybrid pure/quasi-single model QA algorithm. In addition to interface updates,

in this chapter we will also briefly describe the major modifications to the prediction algorithm,

which have led to significant performance gains in both local and global model quality predictions,

allowing us to maintain our position as a leading prediction group. The main changes under the

hood have been the addition of several new local scoring inputs, a new neural network (NN)

architecture and alternative optimized global scores for different use cases. On the front end

submission page, users are now given three alternative choices for optimized global model quality

scoring, depending on whether their preference is for optimal model selection (the best models are

ranked at the very top), predicting absolute values (the predicted scores closely reflect the observed

scores) or more balanced performance for the two use cases. We also report on the independent

benchmarking of the server for the recent CASP12 experiment and ongoing CAMEO project.

Chapter 4

85

4.2. Materials and methods

4.2.1. Architecture and pipeline of the optimised ModFOLD6

The ModFOLD6 server combines a pure-single and quasi-single model strategy for improved

accuracy, which was originally developed for the CASP12 experiment. For ModFOLD version 6,

our initial emphasis was on increasing the accuracy of per-residue assessments for single models.

Each model was considered individually using three pure-single model methods, ProQ2 (Uziela

and Wallner 2016) and two newly developed methods: The Contact Distance Agreement (CDA)

score and the Secondary Structure Agreement (SSA) score. Additionally, a set of 130 reference 3D

models (generated using the latest version of IntFOLD (McGuffin and Roche, 2011) (Buenavista

et al., 2012) (McGuffin et al., 2015)) was used to score models using three alternative quasi-single

model methods: the Disorder B-factor Agreement (DBA) score, the ModFOLD5_single residue

score and the ModFOLDclustQ_single residue score (Figure 4.1). An NN was then used to combine

the component per-residue quality scores from each of the six alternative scoring methods, resulting

in a final consensus of per-residue quality scores for each model.

Figure 4.1. Flow of data for local quality assessment scoring in ModFOLD6. The target sequence and

3D model were evaluated with three pure-single model scoring methods (Secondary Structure Agreement

(SSA), Contact Distance Agreement (CDA) and ProQ2) and three quasi-single model methods (Disorder

B-factor Agreement (DBA), ModFOLD5_single (MF5s) and ModFOLDclustQ_single (MFcQs)). The new

methods developed for ModFOLD6 are highlighted in green. The per-residue scores from all six methods

were combined into a single residue score using an artificial neural network. Adapted from Maghrabi and

McGuffin, (2017).

Chapter 4

86

We used a standard neural network architecture (a Multi-Layer Perceptron, or MLP) for

ModFOLD6 in order to strengthen the accuracy of local quality assessment scoring (Figure 4.2).

Scores for each residue in the model were fed into the input layer, taken from the 6 local scoring

methods using a sliding window of 5 residues (30 inputs). The hidden layer was made up of 15

hidden neurons and the network was trained to learn the output 𝑆𝑖 score of the residue in the model

compared to the native structure according to the TM-score structural superposition: 𝑆𝑖 = 1/(1 +

(𝑑𝑖/𝑑0)2, where 𝑆𝑖 ranges from 0 to 1, 𝑑𝑖 is the distance between structurally aligned residues and

𝑑0 is the distance threshold = 3.9. Using 30 inputs and 15 hidden neurons was found to be an

optimal architecture. No significant improvement was gained by further increasing the number of

hidden neurons. The MLP function from RSNNS was used to build and train the network in R

(https://cran.r-project.org/web/packages/RSNNS/). This part of the research was taken into

consideration, and further studies were carried out later with the focus on the implementation of

neural network and deep neural network into our method.

https://cran.r-project.org/web/packages/RSNNS/

Chapter 4

87

Figure 4.2. Pipeline showing details of neural network architecture and flow of data for local quality

assessment scoring in ModFOLD6. Scores for each residue in the model are fed into the input layer, taken

from the 6 local scoring methods using a sliding window of 5 residues (30 inputs). The hidden layer was

made up of 15 hidden neurons and the network was trained to learn the output 𝑆𝑖 score of the residue in the

model compared to the native structure according to the TM-score structural superposition (𝑆𝑖 = 1/(1 +

(𝑑𝑖/𝑑0)2), where 𝑆𝑖 ranges from 0 to 1, 𝑑𝑖 is the distance between structurally aligned residues and 𝑑0 is

the distance threshold (3.9). 30 inputs and 15 hidden neurons was found to be an optimal architecture. No

significant improvement was gained by further increasing the number of hidden neurons. The multilayer

perceptron (MLP) function from RSNNS was used to build and train the network in R (https://cran.r-

project.org/web/packages/RSNNS/). Adapted from Maghrabi and McGuffin, (2017).

The ModFOLD6 component per-residue/local quality scoring methods were as follows: (1) CDA

is new pure-single model local QA method that relates to the agreement between the predicted

residue contacts according to MetaPSICOV (Jones et al., 2015) and the model contacts, which are

measured by the Euclidean distance (in Å) between residues in the 3D model. All pairs of residues

in a model that were measured to be 8 Å apart or less were considered to be in contact and the CDA

score for each residue was calculated by the mean MetaPSICOV score for those model contacts.

In other words, if residue i was measured to be in contact with both residue j and residue k in the

Chapter 4

88

model, and MetaPSICOV scores also existed for ij and ik, then the CDA score for residue i was

taken as the mean MetaPSICOV score for ij and ik. Thus, CDA = (∑p)/c, where p is the

MetaPSICOV score and c is simply the number of contacts for the residue in the model where a

value for p also exists. (2) SSA is a simple new pure-single model local QA method that relates to

the agreement between the predicted secondary structure of each residue according to PSIPRED

(Buchan et al. 2013) and the secondary structure state of the residue in the model according to

DSSP (Kabsch and Sander 1983). Thus, SSA = PCHE, where, PCHE is simply the p-value from

PSIPRED for the secondary structure state — coil (C), helix (H) or strand (E) — of the residue in

the model according to DSSP. The eight DSSP states (H, I, G, E, B, S, T, -) were reduced to three

states such that E (strand) and H (helix) were preserved and all other states were treated as C (coil).

(3) The local scores were also taken from the ProQ2 (Uziela and Wallner 2016) method. (4) The

ModFOLD5_single local QA scores were calculated from the comparison of each model with the

reference set of 130 models built by IntFOLD version 4, in a similar way to the ModFOLD4

(McGuffin et al. 2013) method acting in quasi-single model mode, with the predicted

distances d converted back into residue similarities Sr, thus: Sr = 1/(1 + (d/3.9)2). (5) The

ModFOLDclustQ_single local QA scores were calculated in a similar way to ModFOLD5_single,

however, in this case individual models were compared against the reference IntFOLD4 set using

the local Q-score approach (McGuffin and Roche, 2010) (Ben-David et al., 2009). (6) DBA is a

new quasi-single model QA method that relates to the agreement between the predicted disordered

residues in the sequence according to DISOPRED3 (Jones and Cozzetto, 2015) and the

ModFOLD5_single predicted per-residue error. Thus, 𝐷𝐵𝐴 = 1 − |𝑆𝑟 − (1 − 𝑃𝑑)|, where, 𝑆𝑟 is

the ModFOLD5_single accuracy of the predicted residue for the model and 𝑃𝑑 is the probability of

disorder according to DISOPRED3.

Global scores were then calculated by taking the mean per-residue scores (the sum of the per-

residue similarity scores divided by the target sequence lengths) for each of the six individual

component methods described above and the NN consensus output (ModFOLD6). Furthermore,

three additional quasi-single global model quality scores were generated (Figure 4.3) for each

model based on the original ModFOLDclust, ModFOLDclustQ and ModFOLDclust2 global

scoring methods (McGuffin and Roche, 2010) (in a similar vein to the ModFOLD4_single and

ModFOLD5_single global scores, which were previously tested in CASP10 (Kryshtafovych et al.,

2014) and CASP11 (Kryshtafovych et al. 2016) respectively).

Chapter 4

89

Figure 4.3. Flowchart outlining the principal stages of the ModFOLD6 server prediction pipeline. The initial input data are the target sequence and a single

3D model. The output data are the local/per‐residue scores from the ModFOLD6 NN and the global score variants—ModFOLD6, ModFOLD6_rank, and

ModFOLD6_cor. The ModFOLD6 pipeline is dependent on the following methods PSIPRED,31 DISOPRED,36 and MetaPSICOV37. Adapted from Elofsson

et al., (2018).

Chapter 4

90

4.2.2. ModFOLD6 variants

Thus, we ended up with 10 alternative global QA scores, which could be combined in various ways

in order to optimise for the different aspects of quality estimation (QE) (Figure 4.4). The

ModFOLD6 global score (the mean per-residue NN output score) considered alone was found to

have a good balance of performance based on correlations of predicted and observed scores and

rankings of the top models. The ModFOLD6_cor global score variant (calculated as:

(ModFOLDclustQ_single_global + DBA_global + ModFOLD6_global)/3) was found to be an

optimal combination for producing good correlations with the observed scores, i.e. the predicted

global quality scores produced should produce closer to linear correlations with the observed global

quality scores. The ModFOLD6_rank global score variant (calculated as:

ModFOLDclustQ_single_global + ProQ2_global + CDA_global + DBA_global + SSA_global +

ModFOLD6_global)/6) was found to be an optimal combination for ranking, i.e. the top ranked

models (top 1) should be closer to the highest accuracy, but the relationship between predicted and

observed scores may not be linear.

Figure 4.4. Summary of global score benchmarks for the 3 ModFOLD6 alternatives using CASP11

data. ModFOLD6_rank, ModFOLD6 and ModFOLD6_cor are the three optimised global accuracy scores

Chapter 4

91

that may be selected by users on the ModFOLD6 server submission page. They were benchmarked and

visualised for comparison. Adapted from Maghrabi and McGuffin, (2017).

4.3. Results and Discussion

4.3.1. Server inputs and outputs

The only required inputs to the ModFOLD6 server are the amino acid sequence for the target

protein and a single 3D model (in PDB format) for evaluation. However, users may optionally

upload multiple alternative models (as a compressed archive of PDB files), a name for their protein

sequence and their email address. The server provides a clean and simple interface so that results

can be easily interpreted by non-experts at a glance. The results page consists of a single table

summarising the quality assessment scores for each submitted model (Figure 4.5a). The prediction

data in the table are represented graphically, with thumbnail images of the local error plots and

annotated 3D models. Users can click through the images in the table in order to drill down into

individual results and visualize annotated 3D models interactively in using the JSmol/HTML5

framework (Figure 4.5b and c). No plugins are required and, conveniently, interactive results may

also be viewed on mobile devices.

Each row in the results table includes: a global score for the model, a P-value indicating the

likelihood that the observed similarity between the model and native structure is random (TM-

score < 0.2) and a plot of the local errors in the model (the predicted distance in Ångströms of each

residue from the native structure) (Figure 4.5a). Conveniently, the server also inserts the predicted

local quality scores into the B-factor column of the ATOM records for each submitted model and

makes them available to download, either individually or as a compressed archive. The results table

also includes a graphical view of each model coloured by predicted B-factors using the temperature

scheme (Figure 4.5a and b). The raw machine-readable data files for each set of predictions are

also provided for developers, which comply with the CASP data standards.

Chapter 4

92

Figure 4.5. ModFOLD6 server results for models submitted to CASP12 generated for target T0859

(PDB ID: 5jzr). (a) An example of the graphical output from the server showing the main results page with

a summary of the results from each method (truncated here to fit page). Clicking on the thumbnail images

in the main table allows results to be visualized in more detail. (b) A histogram of the local or per-residue

errors for the top ranked model, with the residue number on the x-axis and the predicted residue error

(distance of the Cα atom from the native structure in Å) on the y-axis, which may be downloaded. (c)

Interactive views of models, which can be manipulated in 3D using the JSmol/HTML5 framework and/or

downloaded for local viewing. Adapted from Maghrabi and McGuffin, (2017).

4.3.2. Independent benchmarking of global scoring with official CAMEO and CASP12 data

The ModFOLD6 server is continuously independently benchmarked for local QE performance

using the CAMEO resource (Haas et al., 2013). At the time that the original work was published

(July 2017), the CAMEO public QE data (http://www.cameo3d.org/) showed that ModFOLD6,

and another unpublished method (QMEANDisCo), were the leading public QA methods for

producing local (per-residue) quality scores, according to the lDDT (Mariani et al., 2013) measure

over 6 months. Our common subset analysis using 6 months of CAMEO data prior to CASP12,

Chapter 4

93

verifies that the ModFOLD6 server is a significant improvement on our previous leading public

ModFOLD4 method (McGuffin et al., 2013). Furthermore, these data show that ModFOLD6 also

outperforms the top publicly available published methods in terms of local quality (Table 4.1 &

4.2 and Figure 4.6).

Method AUC StdErr AUC 0–0.1 AUC 0–0.1 rescaled

ModFOLD6 (server18) 0.8748 0.00096 0.0508 0.5081

ModFOLD4 (server7) 0.8638 0.00099 0.0467 0.4669

ProQ2 (server 8) 0.8374 0.00107 0.0428 0.4283

Verify3d (server0) 0.7020 0.00134 0.0208 0.2081

Dfire v1.1 (server1) 0.6606 0.00138 0.0168 0.1675

Table 4.1. Independent benchmarking of local scoring publicly available published EMA methods

with CAMEO comparing. A 26-weeks data was collected between 29 April 2016 and 21 October 2016

from http://www.cameo3d.org/. AUC = Area Under the ROC Curve. StdErr = Standard Error in AUC score.

AUC 0-0.1 = Area Under the ROC curve with False Positive Rate ≤ 0.1. The table is sorted by the AUC

score. Adapted from Maghrabi and McGuffin, (2017).

Independent benchmarking of local scoring with CAMEO using 6 months of common data

comparing five publicly available published methods (177 025 common residues, 725 common

models, 113 650 high quality residues, 63 375 low quality residues).

Method AUC StdErr AUC 0-0.1 AUC 0-0.1 rescaled

ModFOLD6 (server18) 0.8921 0.002 0.0525 0.5249

ModFOLD4 (server7) 0.883 0.00207 0.0519 0.5189

ProQ2 (server 8) 0.8552 0.00229 0.0437 0.4369

VoroMQA_v2 (server17) 0.7925 0.00267 0.0247 0.2472

VoroMQA_sw5 (server15) 0.7657 0.0028 0.0304 0.3036

Verify3d (server0) 0.7157 0.003 0.02 0.2003

EQuant 2 (server16) 0.7014 0.00305 0.0185 0.1848

Prosa2003 (server2) 0.7007 0.00305 0.0215 0.2148

Naive PSIBlast (server3) 0.6769 0.00312 0.0171 0.1712

Dfire v1.1 (server1) 0.6332 0.00322 0.0156 0.1564

Table 4.2. Independent benchmarking of the top local scoring EMA methods. The data was collected

from CAMEO using 6 months including all 10 publicly available published methods (126 common models,

31076 common residues, 17984 high quality residues, 13092 low quality residues). 26 weeks of data

between 2016-04-29 and 2016-10-21 downloaded from http://www.cameo3d.org/. AUC = Area Under ROC

Chapter 4

94

curve. StdErr = Standard Error in AUC score. AUC 0-0.1 = Area Under the ROC curve with False Positive

Rate <= 0.1. Table is sorted by the AUC score. Adapted from Maghrabi and McGuffin, (2017).

Chapter 4

95

Figure 4.6. Line graph representing independent benchmarking of local scoring EMA methods. The

data was collected from CAMEO using 6 months - ROC plots for data shown in Table 4.2 and Table 4.3. A

true positive is defined as a residue correctly identified to be low quality, with local LDDT <= 60. (A) Full

ROC plot for common subset with 5 publicly available published methods. (B) ROC plot with False Positive

Rate (FPR) <= 0.1 for common subset including 5 publicly available published methods. (C) Full ROC plot

for common subset including all 10 publicly available published methods. (D) ROC plot with FPR <= 0.1

for common subset including all 10 publicly available published methods. Adapted from Maghrabi and

McGuffin, (2017).

Chapter 4

96

The ModFOLD6 server was also subjected to independent blind testing during the CASP12

experiment in 2016. We were invited to speak at the CASP12 meeting in Gaeta as one of the leading

groups in the Estimation of Model Accuracy category. The ModFOLD6 server performed

particularly well in terms of differentiating between good and bad models (Table 4.3), local scoring

(Table 4.4 & 2.5) and assigning absolute global accuracy values (Tables 4.6 – 4.9). The CASP12

data indicates that: ModFOLD6 ranks in top 10 in every benchmark of local score performance, it

is the overall leading single model approach, it is competitive with the consensus/clustering

approaches and it outperforms all pure-single model methods (Table 4.2 – 4.5). In terms of global

scores, the ModFOLD6 variants were ranked within the top three for nearly every global

benchmark using LDDT and CAD (Olechnovič et al., 2013) scores, as well as ranking within the

top 10 according to other scores. (Table 4.1 and 4.6 – 4.9). The server was also a key factor

contributing to our success in the Template Based Modelling category, where our group ranked in

second position according to the assessors formula (http://www.predictioncenter.org/casp12/).

 GDT-TS LDDT CAD(AA) SG

Rank Gr.Name Gr.Model AUC AUC AUC AUC

1 ModFOLD6_rank QA072_1 0.993 0.99 0.926 0.962

2 ModFOLD6_cor QA360_1 0.995 0.988 0.885 0.949

3 ModFOLD6 QA201_1 0.994 0.988 0.878 0.944

4 qSVMQA QA120_1 0.982 0.983 0.862 0.937

5 ProQ3 QA213_1 0.985 0.978 0.892 0.916

6 ProQ3_1_diso QA095_1 0.982 0.978 0.891 0.922

7 ProQ3_1 QA302_1 0.981 0.977 0.889 0.917

8 ProQ2 QA203_1 0.944 0.971 0.921 0.932

9 MUfoldQA_S QA334_1 0.977 0.968 0.898 0.913

10 MULTICOM-CLUSTER QA287_1 0.956 0.968 0.893 0.921

Table 4.3. Independent benchmarking of global scoring EMA methods in CASP12. The ability of

methods to separate good models (accuracy score ≥ 50) from bad (<50) according to GDT-TS (Li et al.,

2016), LDDT, CAD and SG scores is evaluated using the Areas Under the Curve (AUC)

(see http://predictioncenter.org/casp12/doc/presentations/CASP12_QA_AK.pdf). Only the top 10 methods

are shown, and the table is sorted using LDDT scores. The scores are calculated over all models for all

targets (QA stage 1–select 20). The table is sorted by the LDDT AUC score. Data are

from http://predictioncenter.org/casp12/qa_aucmcc.cgi. Adapted from Maghrabi and McGuffin, (2017).

http://www.predictioncenter.org/casp12/

Chapter 4

97

Rank Gr.Name Gr.Model MCC(3.8) MCC(5.0) Corr.

Rank Gr.Name Gr.Model MCC(3.8) MCC(5.0) Corr. AUC(3.8)

1 ModFOLD6_rank QA072_1 0.536 0.54 0.513 1 Wallner QA073_2 0.756 0.745 0.697 0.946

2 ModFOLD6 QA201_1 0.536 0.54 0.513 2 Pcons QA089_2 0.755 0.76 0.688 0.945

3 ModFOLD6_cor QA360_1 0.536 0.54 0.513 3 Pcons-net QA432_2 0.738 0.737 0.67 0.935

4 Pcons-net QA432_1 0.457 0.511 0.381 4 ModFOLDclust2 QA214_2 0.748 0.785 0.669 0.949

5 Wallner QA073_1 0.27 0.379 0.301 5 ModFOLD6_cor QA360_2 0.73 0.719 0.657 0.938

6 Pcons QA089_1 0.22 0.307 0.275 6 ModFOLD6_rank QA072_2 0.73 0.719 0.657 0.938

7 ProQ3 QA213_1 0.332 0.313 0.216 7 ModFOLD6 QA201_2 0.73 0.719 0.657 0.938

8 ProQ3_1 QA302_1 0.342 0.34 0.204 8 DavisEMAconsensus QA034_2 0.717 0.773 0.635 0.948

9 ProQ3_1_diso QA095_1 0.341 0.34 0.203 9 Pcomb-domain QA411_2 0.717 0.744 0.642 0.939

10 Wang1 QA132_1 0.188 0.164 0.198 10 ProQ3_1_diso QA095_2 0.601 0.579 0.512 0.885

Table 4.4. Independent benchmarking of Corr. local scoring EMA methods in CASP12. The top 10 groups are shown. Table is sorted by the Corr. score. Data are from

http://predictioncenter.org/casp12/qa2_aucmcccorr.cgi. Adapted from Maghrabi and McGuffin, (2017).

Rank Gr.Name Gr.Model ASE

Rank Gr.Name Gr.Model ASE

1 DavisEMAconsensus QA034_1 85.831 1 ModFOLDclust2 QA214_2 87.032

2 ModFOLDclust2 QA214_1 84.808 2 DavisEMAconsensus QA034_2 86.832

3 Pcons-net QA432_1 84.805 3 Pcons QA089_2 86.679

4 Pcons QA089_1 84.182 4 Pcons-net QA432_2 84.178

5 ModFOLD6 QA201_1 83.475 5 Wallner QA073_2 84.17

6 ModFOLD6_cor QA360_1 83.473 6 ModFOLD6 QA201_2 83.852

7 ModFOLD6_rank QA072_1 83.473 7 ModFOLD6_cor QA360_2 83.851

8 Pcomb-domain QA411_1 83.146 8 ModFOLD6_rank QA072_2 83.851

9 Wallner QA073_1 81.845 9 Pcomb-domain QA411_2 83.634

10 ZHOU-SPARKS-X QA452_1 80.188 10 ProQ3_1_diso QA095_2 79.158

Table 4.5. Independent benchmarking of ASE local scoring EMA methods in CASP12. The top 10 groups are shown. Table is sorted by the ASE score. Data are from

http://predictioncenter.org/casp12/qa2_ase.cgi. Adapted from Maghrabi and McGuffin, (2017).

http://predictioncenter.org/casp12/qa2_aucmcccorr.cgi
http://predictioncenter.org/casp12/qa2_ase.cgi

Chapter 4

98

Rank Gr.Name Gr.Model GDT-TS LDDT CAD(AA) SG Rank Gr.Name Gr.Model GDT-TS LDDT CAD(AA) SG

1 ModFOLD6_cor QA360_1 6.697 4.249 17.461 9.931 1 ModFOLD6_rank QA072_2 9.754 6.019 9.751 12.732

2 ModFOLD6_rank QA072_1 10.578 4.877 13.368 12.2 2 ModFOLD6_cor QA360_2 6.748 8.248 14.423 12.319

3 Pcomb-domain QA411_1 8.56 4.987 17.031 10.413 3 MULTICOMCLUSTER QA287_2 11.445 8.472 12.658 13.161

4 QASproCL QA267_1 9.107 5.432 16.59 11.624 4 ModFOLD6 QA201_2 7.087 8.565 14.35 12.292

5 ModFOLD6 QA201_1 5.883 5.813 19.241 9.005 5 Pcomb-domain QA411_2 9.839 8.842 11.312 13.275

6 MULTICOMCLUSTER QA287_1 10.222 5.835 14.943 12.013 6 qSVMQA QA120_2 11.608 8.879 12.336 13.642

7 Wang2 QA206_1 8.021 5.874 18.213 9.836 7 ProQ3_1 QA302_2 10.155 8.91 14.32 12.213

8 Deepfold-Contact QA219_1 8.507 6.313 20.421 10.464 8 ProQ3_1_diso QA095_2 10.159 8.931 14.778 12.088

9 naive QA109_1 8.507 6.313 20.421 10.464 9 MUfoldQA_S QA334_2 8.898 9.053 16.343 12.268

10 DeepFold-Boom QA223_1 8.507 6.313 20.421 10.464 10 ProQ3 QA213_2 11.418 9.14 15.006 12.622

Table 4.6. Independent benchmarking of LDDT global scoring EMA methods in CASP12. The top 10 groups are shown. Table is sorted by the LDDT score.

Data are from http://predictioncenter.org/casp12/qa_diff_mqas.cgi. Adapted from Maghrabi and McGuffin, (2017).

 GDT-TS LDDT CAD(AA) SG

Rank Gr.Name Gr.Model
MCC

(40)

MCC

(50)
AUC

MCC

(40)

MCC

(50)
AUC

MCC

(40)

MCC

(50)
AUC

MCC

(40)

MCC

(50)
AUC

1 ModFOLD6_rank QA072_1 0.613 0.814 0.993 0.685 0.686 0.99 0.382 0.502 0.926 0.572 0.523 0.962

2 ModFOLD6_cor QA360_1 0.694 0.863 0.995 0.668 0.686 0.988 0.314 0.472 0.885 0.538 0.483 0.949

3 ModFOLD6 QA201_1 0.676 0.708 0.994 0.665 0.578 0.988 0.343 0.489 0.878 0.551 0.504 0.944

4 qSVMQA QA120_1 0.521 0.579 0.982 0.587 0.562 0.983 0.399 0.541 0.862 0.544 0.525 0.937

5 ProQ3 QA213_1 0.579 0.625 0.985 0.611 0.53 0.978 0.314 0.524 0.892 0.491 0.524 0.916

6 ProQ3_1_diso QA095_1 0.516 0.572 0.982 0.556 0.509 0.978 0.337 0.503 0.891 0.481 0.476 0.922

7 ProQ3_1 QA302_1 0.522 0.584 0.981 0.557 0.526 0.977 0.343 0.511 0.889 0.473 0.483 0.917

8 ProQ2 QA203_1 0.366 0.455 0.944 0.456 0.459 0.971 0.48 0.522 0.921 0.451 0.443 0.932

9 MUfoldQA_S QA334_1 0.716 0.764 0.977 0.561 0.568 0.968 0.228 0.432 0.898 0.43 0.416 0.913

10 MULTICOMCLUSTER QA287_1 0.45 0.465 0.956 0.504 0.457 0.968 0.348 0.456 0.893 0.407 0.423 0.921

Table 4.7. Independent benchmarking of stage 1 global scoring EMA methods in CASP12. The top 10 groups are shown. Table is sorted by the LDDT-AUC

score. Data are from http://predictioncenter.org/casp12/qa_aucmcc.cgi. Adapted from Maghrabi and McGuffin, (2017).

http://predictioncenter.org/casp12/qa_diff_mqas.cgi
http://predictioncenter.org/casp12/qa_aucmcc.cgi

Chapter 4

99

 GDT-TS LDDT CAD(AA) SG

Rank Gr.Name Gr.Model
MCC

(40)

MCC

(50)
AUC

MCC

(40)

MCC

(50)
AUC

MCC

(40)

MCC

(50)
AUC

MCC

(40)

MCC

(50)
AUC

1 Wallner QA073_2 0.721 0.734 0.988 0.707 0.745 0.966 0.351 0.592 0.923 0.665 0.665 0.936

2 Pcomb-domain QA411_2 0.735 0.801 0.984 0.717 0.692 0.963 0.531 0.668 0.925 0.632 0.654 0.932

3 ModFOLD6_rank QA072_2 0.763 0.843 0.983 0.74 0.773 0.962 0.486 0.679 0.925 0.639 0.675 0.929

4 QASproCL QA267_2 0.788 0.783 0.987 0.733 0.676 0.958 0.493 0.635 0.906 0.629 0.635 0.928

5 MUfoldQA_C QA318_2 0.812 0.844 0.982 0.746 0.727 0.958 0.442 0.65 0.902 0.652 0.654 0.927

6 Pcons QA089_2 0.662 0.703 0.985 0.644 0.712 0.957 0.322 0.567 0.903 0.642 0.643 0.928

7 FDUBio QA237_2 0.835 0.872 0.984 0.773 0.741 0.957 0.437 0.66 0.91 0.673 0.664 0.928

8 ModFOLD6 QA201_2 0.774 0.835 0.983 0.723 0.735 0.955 0.471 0.664 0.903 0.614 0.657 0.919

9 ModFOLDclust2 QA214_2 0.761 0.851 0.985 0.72 0.751 0.954 0.393 0.644 0.901 0.639 0.677 0.924

10 Pcons-net QA432_2 0.66 0.66 0.979 0.633 0.662 0.954 0.324 0.537 0.923 0.612 0.616 0.925

Table 4.8. Independent benchmarking of stage 2 global scoring EMA methods in CASP12. The top 10 groups are shown. Table is sorted by the LDDT-AUC

score. Data are from http://predictioncenter.org/casp12/qa_aucmcc.cgi. Adapted from Maghrabi and McGuffin, (2017).

 GDT-TS LDDT CAD(AA) SG

Rank Gr.Name Gr.Model No. Targets Score No. Targets Score No. Targets Score No. Targets Score

1 MUfoldQA_C QA318_1 47 0.82 45 0.129 66 0.304 43 0

2 ModFOLD6_rank QA072_1 47 1.077 45 0.129 66 0.39 43 0.25

3 qSVMQA QA120_1 47 1.186 45 0.129 65 0.487 43 0.325

4 ModFOLD6_cor QA360_1 47 1.279 45 0.434 66 0.806 43 0.871

5 ModFOLD6 QA201_1 47 1.279 45 0.434 66 0.557 43 0.871

6 MUfoldQA_S QA334_1 47 2.558 45 1.417 66 0.903 43 2.755

7 Pcons-net QA432_1 42 2.949 41 1.434 57 0.767 40 1.973

8 QASproCL QA267_1 47 3.644 45 1.619 66 1.502 43 1.938

9 SVMQA QA208_1 47 3.557 45 1.723 65 0.739 43 2.93

10 ProQ3 QA213_1 47 4.244 45 2.148 66 1.113 43 3.103

Table 4.9. Independent benchmarking of global scoring EMA methods using specific targets from CASP12. For each score, only the targets with the best

model scoring above the threshold (GDT-TS, SG: 40.0; LDDT, CAD(AA): 0.4) were considered. The top 10 groups shown. Table is sorted by the LDDT score.

Data are from http://predictioncenter.org/casp12/qa_diff2best.cgi. Adapted from Maghrabi and McGuffin, (2017).

http://predictioncenter.org/casp12/qa_aucmcc.cgi
http://predictioncenter.org/casp12/qa_diff2best.cgi

Chapter 4

100

4.3.3. Further benchmarking and cross-validation with official CASP11 data

Prior to CASP12, the ModFOLD6 methods were also cross-validated using the CASP11 data to

gauge performance versus the component methods, in terms of local (Tables 4.10 – 4.12) and global

scores (Table 4.13 and 4.14). In all target categories, the ModFOLD6 local scores significantly

outperform the component methods. Similarly, significant performance gains can be made from

combining component global scores, both in terms of cumulative GDT-TS of the top ranked models

(with ModFOLD_rank) and in terms of assigning absolute accuracy values (with ModFOLD6_cor)

(Figure 4.7).

Method Pearson Spearman AUC AUC 0-0.1 StdErr

ModFOLD6 0.6657 0.5478 0.856 0.0505 0.00064

ModFOLD5_single 0.6472 0.5285 0.8357 0.0479 0.00067

ModFOLDclustQ_single 0.6062 0.5225 0.7975 0.045 0.00072

DBA 0.5543 0.3709 0.7856 0.0408 0.00074

ProQ2 0.3848 0.3642 0.7512 0.025 0.00077

SSA 0.1571 0.1506 0.6242 0.0109 0.00084

CDA 0.1769 0.2012 0.6187 0.0114 0.00084

Table 4.10. FM Cross-validation of ModFOLD6 versus its component methods using CASP11 data.

local scores evaluated on stage1 and stage 2 models for targets with FM domains (861605 residues, 147428

high quality, 714177 low quality). A 3.5Å CA atom cut-off was used to define high quality residues (<=3.5Å

are high quality, >3.5 Å low quality). Pearson = Pearson’s r. Spearman - Spearman’s rho. AUC = Area

Under ROC Curve. AUC 0-0.1 = Area Under the ROC curve with False Positive Rate <= 0.1. StdErr =

Standard Error in AUC score. Table is sorted by the AUC score. Adapted from Maghrabi and McGuffin,

(2017).

Method Pearson Spearman AUC AUC 0-0.1 StdErr

ModFOLD6 0.7111 0.6782 0.8736 0.0482 0.00088

ModFOLD5_single 0.6664 0.6704 0.8512 0.0444 0.00094

ModFOLDclustQ_single 0.6212 0.6694 0.815 0.0383 0.00102

DBA 0.5929 0.5839 0.8122 0.0374 0.00103

ProQ2 0.4653 0.4514 0.7888 0.0257 0.00107

CDA 0.2599 0.2808 0.6825 0.0154 0.0012

SSA 0.1697 0.1671 0.6226 0.011 0.00123

Table 4.11. TBM Cross-validation of ModFOLD6 versus its component methods using CASP11 data.

- local scores evaluated on stage1 and stage 2 models for targets with TBM hard domains (344169 residues,

70689 high quality, 273480 low quality). The same criteria in Table 4.10 was applied. Adapted from

Maghrabi and McGuffin, (2017).

Chapter 4

101

Method Pearson Spearman AUC AUC 0-0.1 StdErr

ModFOLD6 0.8337 0.7975 0.934 0.0645 0.00017

ModFOLD5_single 0.8192 0.7982 0.9282 0.063 0.00017

DBA 0.7674 0.7411 0.9037 0.0524 0.0002

ModFOLDclustQ_single 0.7687 0.7494 0.9032 0.0526 0.0002

ProQ2 0.6467 0.6342 0.8496 0.0374 0.00026

CDA 0.3848 0.4024 0.7186 0.022 0.00036

SSA 0.1835 0.1625 0.604 0.0097 0.00041

Table 4.12. Cross-validation of ModFOLD6 versus its component methods using CASP11 data. Local

scores evaluated on stage1 and stage 2 models for targets without FM or TBM hard domains (2036888

residues, 1367703 high quality, 669185 low quality). A 3.5 Å cut-off was used to define high quality

residues (<=3.5Å are high quality, >3.5 Å low quality). Pearson = Pearson’s r. Spearman - Spearman’s rho.

AUC = Area Under ROC Curve. AUC 0-0.1 = Area Under the ROC curve with False Positive Rate <= 0.1.

StdErr = Standard Error in AUC score. Table is sorted by the AUC score. Adapted from Maghrabi and

McGuffin, (2017).

QA method used for model ranking ΣGDT-TS StdErr in GDT-TS

Maximum possible GDT-TS 48.4655 0.0273

ModFOLD6_rank 44.4149 0.0277

ModFOLD6 43.1859 0.028

ProQ2 42.9578 0.027

ModFOLDclust2 42.6768 0.0294

CDA 40.4575 0.0281

ModFOLD5_single 40.059 0.0291

DBA 40.0457 0.029

ModFOLDclust2_single 40.0328 0.0292

ModFOLDclustQ_single 39.9194 0.0291

SSA 39.3166 0.0268

Random 37.87 0.0284

Table 4.13. Ranking/selection global score benchmarks using CASP11 data. ModFOLD6_rank versus

component global scoring methods. Cumulative GDT scores and standard error. 84 targets with structures,

models from QA round1 and round2 combined. The maximum possible GDT-TS is the cumulative score

obtained by selecting the best model available for every target. The StdErr in GDT-TS is σ/√n, where σ is

the standard deviation and n is the number of targets (84). Table is sorted by the ΣGDT-TS. Adapted from

Maghrabi and McGuffin, (2017).

Chapter 4

102

Table 4.14. Correlation global score benchmarks using CASP11 data. Correlations between predicted and observed global scores. ModFOLD6_cor versus

component global scoring methods. R = Pearson’s r. Rho - Spearman’s rho. Tau = Kendall’s tau. The analysis is carried out on all of the 84 targets with known

structures. The models from QA stage 1 and stage 2 were combined and all duplicate models (models from stage 1 occurring also in stage 2) were removed.

The table is sorted by the TM-score R value. Adapted from Maghrabi and McGuffin, (2017).

GDT-HA

(Mirjalili and Feig, 2013)

GDT

(Zemla et al., 1999)

MaxSub

(Siew et al., 2000)

TM-score

(Zhang and Skolnick, 2004)

Method R Rho Tau R Rho Tau R Rho Tau R Rho Tau

ModFOLD6_cor 0.9045 0.9288 0.7675 0.925 0.9303 0.7793 0.9285 0.9335 0.7789 0.9266 0.9302 0.7816

DBA_res_global 0.8962 0.9157 0.7405 0.9177 0.9192 0.7526 0.923 0.9245 0.7585 0.9216 0.9212 0.7586

ModFOLD6_single_res_global 0.8793 0.9143 0.7451 0.9121 0.9181 0.7591 0.9133 0.9221 0.7608 0.9178 0.9196 0.7644

ModFOLDclust2_single_orig_global 0.899 0.9234 0.7595 0.9152 0.922 0.7649 0.9205 0.9256 0.7652 0.9157 0.9209 0.7647

ModFOLD5_single_orig_global 0.886 0.9155 0.7469 0.9098 0.9155 0.7539 0.916 0.9223 0.7618 0.9144 0.9162 0.757

ModFOLD5_single_res_global 0.8905 0.9198 0.754 0.91 0.9203 0.7625 0.9186 0.9263 0.7682 0.9137 0.9211 0.765

ModFOLDclustQ_single_res_global 0.8996 0.92 0.7524 0.9054 0.9165 0.7536 0.9094 0.9161 0.7481 0.9003 0.9122 0.749

ModFOLDclustQ_single_orig_global 0.8995 0.92 0.7524 0.9053 0.9165 0.7536 0.9094 0.9161 0.748 0.9003 0.9122 0.749

ProQ2_res_global 0.6878 0.7319 0.5272 0.7182 0.7417 0.5404 0.7174 0.7427 0.5404 0.7239 0.7446 0.5452

CDA_res_global 0.6354 0.7192 0.527 0.6703 0.731 0.5407 0.6727 0.73 0.5369 0.6746 0.7333 0.5431

SSA_res_global 0.517 0.5595 0.3838 0.5348 0.5585 0.384 0.5318 0.5601 0.386 0.5324 0.5539 0.3816

Chapter 4

104

Figure 4.7. Line graphs representing cross-validation of ModFOLD6 local scores versus its

component methods using CASP11 data. ROC plots for the data shown in Tables 12 - 14. A true positive

is defined as a residue correctly identified to be of low quality (> 3.5Å from the native structure). The full-

length chains were used for the official CASP11 QA analysis, and so they contain multiple domains of

varying difficulty, with each domain being officially classified as either FM, TBM-hard or just TBM (easy).

In order to demonstrate the performance of ModFOLD6 on easy, medium and hard CASP11 targets, we

compare ROC plots for 3 different subsets of full length models: 1. Targets without any TBM-hard or FM

domains (i.e. the models for easy targets), 2. Targets with TBM-hard domains (i.e. models for medium/hard

targets) and 3. Targets with FM domains (i.e. models for hard targets). The analysis is carried out on all of

the 84 targets with known structures. The targets with FM domains are: T0761, T0763, T0767, T0771,

T0775, T0777, T0781, T0785, T0789, T0790, T0791, T0793, T0794, T0799, T0802, T0804, T0806, T0808,

T0810, T0814, T0820, T0824, T0826, T0827, T0831, T0832, T0834, T0836, T0837, T0855. The targets

with TBM-hard domains are: T0774, T0781, T0793, T0799, T0800, T0812, T0814, T0830, T0831, T0848.

The targets without FM or TBM-hard domains include all remaining targets. Domain definitions are from:

http://www.predictioncenter.org/casp11/domains_summary.cgi. The models from QA stage 1 and stage 2

were combined and all duplicate models (models from stage 1 occurring also in stage 2) were removed. (A)

The full ROC plot for targets without FM or TBM-hard domains. (B) ROC plot with FPR <= 0.1 for targets

without FM or TBM domains. (C) Full ROC plot for targets with TBM-hard domains. (D) ROC plot with

FPR <= 0.1 for targets with TBM-hard domains. (E) Full ROC plot for targets with FM domains. (F) ROC

plot with FPR <= 0.1 for targets with FM domains. Adapted from Maghrabi and McGuffin, (2017).

Chapter 4

105

4.3.4. Comparisons between the top CASP12 EMA methods

An independent detailed analysis of the CASP12 EMA methods is provided in the official EMA

assessment paper (Kryshtafovych et al., 2018). In this section, we refer to the results provided

pertaining to our methods and we also show an additional analysis based on the correlation between

different scores for different types of competing methods. A summary of the top EMA methods in

CASP12 are shown in Table 4.15.

Methods Type
Comment about global

performance

Comment about

local performance

MESHI (Amir et al., 2008) Single Top model selection N/A

MESHI_con (Amir et al., 2008) Singlea Top model selection N/A

ProQ2 (Ray et al., 2012) Single Good model selection
Acceptable local

scores

ProQ3 (Uziela et al., 2016) Single Top model selection Good local scores

SVMQA (Manavalan and Lee,
2017)

Single Top model selection N/A

ModFOLD6 (Maghrabi and

McGuffin, 2017)
Quasi‐
single

Balanced performance
Good assignment of

local scores

ModFOLD6_rank (Maghrabi

and McGuffin, 2017)
Quasi‐
single

Acceptable model selection
Identical to

ModFOLD6

ModFOLD6_cor (Maghrabi and

McGuffin, 2017)
Quasi‐
single

Best absolute but suboptimal model

selection

Identical to

ModFOLD6

qSVMQA (Manavalan and Lee,

2017)
Quasi‐
single

Assignment of the absolute score is

not accurate.
N/A

ModFOLDclust2 (McGuffin

and Roche, 2010)
Clustering

Good assignment of absolute global
scores but suboptimal model

selection

Top assignment of

local scores

Pcons (Lundström et al., 2001) Clustering
Good assignment of absolute global

scores

Top assignment of

local scores

Pcomb‐domain (Lundström et

al., 2001)
Combined

Good assignment of absolute global

scores, requires good domain

prediction

Top assignment of
local scores

Wallner (Wallner and Elofsson,

2007)
Combined

Good assignment of absolute global

scores

Top assignment of

local scores

Table 4.15. Summary of the best performing QA methods in CASP12 and comments about their

strength and weaknesses. Note: MESHI_con is not pure single methods but requires multiple models to

average the predictions. Adapted from Elofsson et al., (2018).

Chapter 4

106

4.3.4.1. Estimation of global accuracy

The results above showed that 3 single EMA methods were ranked highest when identifying the

best model. These methods were ProQ3, SVMQ and MESHI. The average error which means the

difference between the GDT-TS of the selected model and the best GDT-TS was around 5 GDT-

TS units. Each EMA method was ranked individually depending on the evaluation criteria.

According to the assessment results, there was not a noticeable difference between the top methods

(Kryshtafovych et al., 2018). When using these criteria, the best consensus and quasi-single

methods were only marginally worse than the pure single methods. However, since CASP11, these

results interpret a significant progress in single model method performance.

4.3.4.2. Distinguishing good models from bad

The results also showed that the best EMA approaches according to GDT-TS usually use consensus

or quasi-single methods and combine them with single model approaches. The top ranking 3 EMA

methods were Wallner, Pcomb-domain and ModFOLD6_rank. They all use the single model

method ProQ2 as part of their scoring. The Wallner and Pcomb‐domain scores are weighted sums

of ProQ2 and Pcons scores, while our ModFOLD6_rank method uses ProQ2 together with many

other scores. Although such methods are statistically better (Kryshtafovych et al., 2018), the much

simpler pure consensus methods Pcons and ModFOLDclust2 were not far behind, ranked sixth and

ninth respectively when using lDDT (Table 4.8).

4.3.4.3. Ranking of models

All targets were evaluated individually in order to test the methods ability in ranking the top models

for each target. This evaluation was carried out using the per target correlation (i.e. the correlation

of predicted and observed accuracy for each target). By looking at Figure 4.8, we can see the

distribution of per target correlations for all of the top CASP12 methods with the 3 different model

accuracy estimation measures (lDDT, CAD, and GDT-TS) as well. This ranking was sorted

according to the median correlations. The results showed that individual rankings of the methods

are quite different depending on the accuracy measure which was used. I can also be seen that

consensus and quasi-single based methods clearly outperformed the single model accuracy

estimation methods when using GDT-TS (Zemla, 2003). Contrarily, we can see that the best

Chapter 4

107

correlation was obtained with ProQ3 when using CAD (Olechnovič et al., 2013) or lDDT (Mariani

et al., 2013), and all the top methods were single model accuracty estimations. Similar differences

in ranking could be found in the AUC analysis on the CASP homepage

(http://predictioncenter.org/casp12/qa_aucmcc.cgi). Moreover, when using GDT-TS we can see

that ProQ3 was ranked 20th, but it jumped up to the 7th when CAD was used instead of GDT-TS.

On the other side, Pcons was ranked the 4th using GDT-TS but the 12th when using CAD. Such

results are interesting as they showed that “pure” consensus methods such Pcons and

ModFOLDclust2 only show a modest per target correlation with CAD and lDDT.

http://predictioncenter.org/casp12/qa_aucmcc.cgi

Chapter 4

108

Figure 4.8. Boxplots of per target correlation for the top CASP12 EMA method versus GDT-TS, CAD, and lDDT, (A‐C) global evaluations, (D, E) local

evaluations. To avoid bias from bad models only models with Z > 0 are included in the global analysis. For local correlation CAD values were not available so only

the distances, turned into S‐scores, and lDDT values are compared. Single‐model methods are colored blue, quasi green, clustering light gray and combination

models dark gray. Using GDT-TS the clustering‐based methods are slightly better than the single‐model predictors, while this is not the case using the alternative

measures CAD and lDDT. Clustering methods benefit from having low‐quality models in the pool while the single model methods appear better at ranking higher

quality models. For both local measures the single‐model evaluation methods have lower correlation than the superposition-based ones, but the difference in

correlation is smaller when using lDDT. Adapted from Elofsson et al., (2018).

Chapter 4

109

4.3.4.4. Similarities in model accuracy estimation scores

It was also important to know how different EMA methods produced similar model accuracy

estimation scores. Figure 4.9 shows the correlations between predicted accuracy estimates from all

the EMA servers. The methods were then clustered using WPGMC with the median correlation as

linkage. The results showed that all methods which use some sort of consensus (quasi-single or

consensus) were clustered except qSVMQA. The separation within this group was not between

quasi-single and consensus methods, but rather between the methods that primarily use consensus

and those which combine the consensus score with ProQ2 (Pcomb‐domain, ModFOLD6_rank,

Wallner, and ModFOLD6). It can be seen that ModFOLD6_cor was more similar to the pure

consensus methods (Pcons and ModFOLDclust2) than the other combined methods. The method

did not use ProQ2 global scores directly in its classification. The combined EMA methods results

are also closer to all the single methods than the pure consensus methods, that may be due to

including single methods to their pipelines as well.

Chapter 4

110

Figure 4.9. Pairwise correlations between predicted global accuracy scores from different methods

and actual accuracy scores according to 3 measures. The methods are clustered hierarchically using

WPGMC algorithm with the median correlation as similarity measure. Methods are coloured as follows.

Dark grey, pure consensus methods; light grey, combined single/consensus methods; green, quasi‐single

methods; and blue pure single methods. It can be noted that both quasi, pure, and combined consensus

methods are very similar (cc > 0.94), while the single model quality methods are more different (cc < 0.90

between the groups). ProQ2 is the real outlier having a cc < 0.82 to most methods. Interestingly ProQ2 and

ProQ3 are less similar to each other than any pair of consensus‐based methods. It can also be noted that the

combined methods are more similar to the single‐model methods than the pure consensus methods (Pcons,

ModFOLDClust2). Adapted from Elofsson et al., (2018).

Chapter 4

111

When looking at the performance of the single model accuracy estimation methods we found that

they have the largest performance diversity. The least method in showing similarities to the others

was SVMQA, it showed a more similar scores to the consensus methods than to any other single

model accuracy estimation method. The other 3 methods were more correlated, with the newer

methods ProQ3 and MESHI showing the highest correlation. It can also be noted that in general

ProQ2 showed the lowest correlation with the consensus methods, being by that the outlier.

The 3 different quality measurements (GDT-TS, CAD, and lDDT) were also compared together,

showing that they do not correlate with each other better than the consensus methods with GDT-

TS as seen in Figure 4.9. The correlation between the quality measures CAD and GDT-TS was

0.88; while the correlation of the predicted values from the consensus methods to GDT-TS is 0.92

or higher. It was clear that the accuracy of model quality estimation is getting close to a point where

they challenge the notion of measuring the quality of model given a known native structure even

when some of the problems might origin from domain division, as mentioned in Wallner sections

in Elofsson et al., 2018.

4.3.4.5. Comparison of local accuracy estimations

With regards to the estimation of local accuracy, we saw that the pure consensus methods were the

best performers, followed by quasi-single model approaches (Kryshtafovych et al., 2018). A heat

map in Figure 4.10 showed the correlation between all local predictions by the EMA methods

discussed in this section. Unfortunately, ProQ2 and ProQ3 from all the evaluated single predictors

were the only methods which produced local predictions, nevertheless the trend was similar as for

the global methods. All the consensus and quasi‐single methods provided very similar accuracy

estimates, while the 2 single model methods were outliers. It was clear from this analysis that the

consensus methods correlated better with S‐score (cc ∼0.85) than with lDDT (cc ∼0.77). As the

consensus methods are based on superposition algorithms, similar to those used when calculating

the S‐score, this might not come as a surprise. Interestingly both ProQ2 and ProQ3 correlated better

with lDDT (cc ∼0.71) than with S‐score (cc ∼0.65). It can also be noted that ProQ3 correlated

better than ProQ2 with both lDDT and S‐score. This highlights the improvements achieved in

single model quality estimates since CASP11.

Chapter 4

112

Figure 4.10. Pairwise correlation between local predicted S‐scores. The correlation was calculated using

the predicted distance using S‐score formula (see above) with d0 = 5 and local lDDT values (unfortunately

local CAD scores were not available). Only methods that predicted local quality are included. As the

ModFOLD6 methods only differ in their global scores and provide identical local estimates they were all

represented by the ModFOLD6 method. Methods are coloured as follows. Dark grey, pure consensus

methods; light grey, combined single/consensus methods; green, quasi‐single methods; and blue pure single

methods. Adapted from Elofsson et al., (2018).

Chapter 4

113

4.4. Conclusions

The ModFOLD6 series of methods (ModFOLD6, ModFOLD6_rank and ModFOLD6_cor)

perform particularly well in terms of assigning absolute global accuracy values. As expected, the

ModFOLD6_cor variant is the best of these as it was optimized for this task. The ModFOLD6

series of methods also perform competitively with clustering approaches for differentiating

between good and bad models; the ModFOLD6_rank method being the best of these, which is only

outperformed by 2 clustering groups (Wallner and Pcomb‐domain). Furthermore, as we

anticipated, the ModFOLD6_rank variant is better at selecting the top models than the ModFOLD6

and ModFOLD6_cor variants; however, it is outperformed by the latest pure‐single model

methods. Overall, in terms of global scores, the ModFOLD6 variants rank within the top 3 methods

for nearly every global benchmark according to lDDT and CAD scores, as well as ranking within

the top 10 according to other scores. The ModFOLD6 server provides users with intuitively

presented, high accuracy estimates of local and global quality of 3D protein models and it

implements each of the methods tested in the CASP12 experiment. The ModFOLD6 server has

also been independently verified, via the CAMEO project, showing a significant improvement on

our previous published server as well as taking the lead over other public published methods, in

terms of local accuracy estimates.

It is gratifying to see progress in CASP12 from many groups in both pure‐ and quasi‐single model

approaches to estimate model accuracy. However, it is also clear there is still room for

improvement of our methods. For instance, we are outperformed in terms of model selection by

the newer pure single model methods. Further integration of methods is probably needed. Different

methods are clearly better suited for different aspects of model accuracy estimation, therefore all

approaches to the problem are still important to pursue. Perhaps the most difficult problem faced

by all groups is how to optimize a global score for all aspects of model accuracy estimation, as

there seems to be no one‐size‐fits‐all solution presently. One potential solution to this might be to

use a deep learning approach that outputs multiple scores depending on the intended use case. A

global score for ranking models on a per‐target basis, irrespective of the observed model‐target

similarity scores, is clearly very useful, if it can consistently select the better models. On the other

hand a global score that can produce a near 1:1 mapping between predicted and observed scores,

that is consistent across all targets, will allow us to assign accurate confidence scores to individual

models (which is arguably more useful to an experimentalist than a top ranked, but nevertheless

Chapter 4

114

poor quality, model). As model accuracy estimation methods continue to improve and approach

perfect optimisation for each use case, eventually the scores may possibly converge on a single

answer.

It is clear from the CASP12 results that there has been progress in single model accuracy

estimations since CASP11. 3 new methods, SVMQA, MESHI, and ProQ3, are all better than the

best single model method in CASP11 (ProQ2). These methods are also better at selecting the top‐

ranked model compared to consensus‐based methods. However, quasi‐single model method and

consensus methods are still superior when it comes to distinguishing correct and incorrect models

as well as for local predictions. In those targets that have a wide spread of quality there is a clear

distinction between the correlations of single and consensus methods with the later performing

better. These are typically subunit of protein complexes, for which templates are available. Here,

estimating the accuracy of a single model might not make sense without taking the entire complex

into account. In CASP12 this is most dramatic for target T0865, where correlations for consensus‐

based methods are high and correlations for all single model methods are negative. By comparing

the predictions to each other it is seen that all consensus and quasi‐single methods actually are very

similar, while there is larger variation between the single methods, hence combining them may

provide additional value in the future.

During this evaluation we noted issues for multi‐domain targets where the individual domains are

correct but not their relative arrangement. Here, the GDT-TS score (and any superposition‐based

score) is based on the superposition of the largest domain. This causes problems when the

evaluation is not domain based. For model quality estimations the problem is most notable when

evaluating local QAs. It could therefore be useful, in future CASPs, to also use CAD or lDDT in

order to evaluate the quality of a model without using domain division. We do also notice that

single model estimation methods perform better when assessed with CAD or lDDT.

Training to lDDT scores, rather than the S-scores as the target function is one option to

improvement in both local and global scores if lDDT scores are to be used for evaluation (more

details about lDDT impacts will be described in Chapter 6). However, other optimisation strategies

can also be pursued to gain more improvement in terms of global and local accuracy, one of which

is to go beyond the simple OMS by combining scores using Deep Artificial Neural Networks. This

technique has been testified in recent years to dominate several areas of studies making significant

improvements in many researches, which attracted our interest towards it in the later studies.

Chapter 5

Deep Artificial Neural Network Parameterisation

Chapter 5

116

5.1. Background

In Chapter 3, we had a glance at Deep Artificial Neural Networks technique. We saw how this

learning model can process information via networks in order to solve problems, the same way that

a biological brain does. Such networks have been remarkably useful in solving problems in

different fields. They have been used in classifying handwritten digits with better than 98%

accuracy (McDonnell et al., 2015). However, there are more difficult computing problems that

need more advanced DANNs.

The revolution in Deep Artificial Neural Networks began in the last decade when deep learning

was considered as the key component. Its popularity started in the beginning of 2006 (Hinton et

al., 2006) (Hinton and Salakhutdinov, 2006). The first major breakthrough in deep learning was

achieved in speech recognition, when the DANNs designed model outperformed a technique called

HMM-GMM used to dominate this field for many years (Hinton et al., 2012).

The success behind this technology was due to the rapid improvement of hardware resources such

as GPGPUs, as well as the improved theory, starting with unsupervised pre-training and deep belief

nets. Nowadays, DANNs have become popularly used with impressive results in many areas such

as pattern recognition, image analysis, and object detection to name a few areas (Wang, 2016).

Although the impressive results that DANNs have achieved in several important application areas,

the parameterisation step of this technique is still challenging. Deciding what number of layers to

choose, how many neurons per layer, and how much time should the training iterate, all of these

parameters and others need training and testing which consume computing time and effort.

DANNs excel at classification problems, such as with the famous MNIST dataset of handwritten

digits (Deng, 2012), where the inputs are placed into one of several categories. The other usage is

regression, where the output is a number on a continuous scale.

5.2. Objectives

For the purposes of this experiment, DANNs were applied for scoring protein model quality

generated by different methods and comparing the output to the observed model quality scores

(measured by GDT-HA, GDT-TS, MaxSub or TM-score). The primary aim of this experiment is

to determine optimal hyperparameters to get the best possible network for ranking the top models,

and the best correlation between the network output and the observed model quality score.

Chapter 5

117

Examples of the various hyperparameters which were used within this experiment are given in

Table 5.1.

Hyperparameter Datatype Range Notes

Number of Neurons

per Hidden Layer
Integer 1 -> ∞

Each layer in the network can have different

numbers of neurons. Adding neurons slows down

the network but increases processing power.

Number of Hidden

Layers
Integer 1 -> ∞

Adding layers should increase the processing power,

but considerably slows down the network.

Number of Training

Cycles
Integer 1 -> ∞

Training loss is reduced with higher numbers of

cycles unless overfitting occurs, but training time is

also increased.

Learning Rate Real Number 0 -> 1
This value controls how much weights and biases

change during training.

Dropout Real Number 0 -> 1

Represents the probability for each neuron to be

“dropped” during training. This prevents overfitting

of the data.

Regularisation

Parameter
Real Number 0 -> ∞

Helps prevent overfitting by preventing weights

from growing too large.

Identity of Inputs
List of input

scores
N/A

While using all 10 inputs gives the network access

to the most information, large number of internal

parameters and conflicting information may result in

a loss of accuracy.

Identity of Training

Target Score

Output score

identity string
N/A

Learning via backpropagation of a different score

could improve the generalisation of the network.

Table 5.1. List of the various hyperparameters within our neural network. The data type for each

parameter, their range of values and a brief description of what aspect of the network they control are

presented.

To determine the hyperparameters of DANNs, several broad strategies can be conducted. One of

the simplest available strategies is the grid search where all possible combinations of values for the

network hyperparameters are explored, and then a comparison is performed over the network

accuracies in order to determine the optimal combinations (Hsu et al., 2003). This strategy has a

disadvantage with the amount of time required to run the network on all possible combinations.

Assuming that the network will take 10 minutes to run, by looking at only 10 values for each

hyperparameter listed in Table 5.1 a grid search would take over 1900 years to be completed! A

far more time-efficient method is called the random search. This is similar to a grid search, except

a far smaller number of values for each hyperparameter are chosen using random or quasi-random

Chapter 5

118

methods. Random searches work effectively as long as there are enough datapoints to provide good

coverage of the range of values for each hyperparameter. The main advantage is that it is

considerably faster than a full grid-search (Bergstra and Bengio, 2012). Hand-tuning

hyperparameters is another option, which makes use of the human ability to analyse and learn from

results but is also the least automated option. Hand-tuning can also be combined with grid searches

and random searches to make a semi-automated method which takes advantage of the human

analytical ability and the good coverage of the automated methods (Bergstra and Bengio, 2012).

Bayesian optimisation is a more advanced method of hyperparameter determination. A Gaussian

process model is used to predict new values for hyperparameters. These models assume that similar

inputs give similar outputs, they are particularly useful for predicting relationships where little prior

knowledge is available (Snoek et al., 2012).

5.3. Materials and Methods

5.3.1. Raw Data

For DANNs training and testing, raw data were obtained by assessing 16483 models from the QA

category of CASP11 using the QA programs listed in Table 5.2 to obtain 10 quality scores for each

model. Observed quality scores were also included in the collected data, they were used as training

targets for the network. After removing models for which there was no native structure, 14103

models remained, of which there were 84 unique protein targets.

5.3.2. Neural Network Inputs

The inputs for the DANNs were protein global quality scores generated by 10 different prediction

servers. For the purpose of simplicity during the project, each input was assigned a short key which

are summarised in Table 5.2. The DANNs inputs could be changed so that different numbers and

combinations of inputs could be utilised.

Chapter 5

119

Table 5.2. Summary of the ten protein QA programs used as inputs during the experiments

along. The short names V3-V12 refer to the default column vector names used in R data.

Input Program Name Program Description
Short

Name

ModFOLD5_single_orig_global

(McGuffin et al., 2015)

Quasi-single model technique. Submitted models

are compared to those predicted by the IntFOLD3

server.

V3

ModFOLDclustQ_single_orig_global

(McGuffin and Roche, 2010) (Eastwood et

al., 2001)

Another quasi-single model program which uses

the Q score for model comparisons.
V4

ModFOLDclust2_single_orig_global

(McGuffin and Roche, 2010)

Integrates the scores of V3 and V4 into a single

score.
V5

ModFOLD5_single_res_global

(McGuffin et al., 2015)

The per-residue errors, predicted by

ModFOLDclust are summed and divided by

sequence length.

V6

ModFOLDclustQ_single_res_global

(McGuffin and Roche, 2010)

The per-residue errors, predicted by

ModFOLDclustQ are summed and divided by the

sequence length.

V7

ProQ_res_global

(Uziela and Wallner, 2016)

ProQ2 uses a support vector machine to predict

model accuracy by combining different features

of the model.

V8

CDA_res_global

(Jones et al., 2015)

Predictions are made by the MetaPSICOV

method based on contact distance agreement.
V9

DBA_res_global

(Jones and Cozzetto, 2015) (Maghrabi and

McGuffin, 2017)

Disorder B-factor agreement compares the

predicted disordered regions between

DISOPRED3 and ModFOLDclust.

V10

SSA_res_global

(Maghrabi and McGuffin, 2017) (Buchan

et al., 2013) (Kabsch and Sander, 1983)

Secondary Structure Agreement is a pure-single

model method which compares the secondary

structures predicted by PSIPED to those in the

Dictionary of Secondary Structures of Proteins.

V11

ModFOLD6_single_res_global

(Maghrabi and McGuffin, 2017)

A neural network which combines scores from

V3, V4, V8, V9, V10 and V11 to generate local

scores. The sum of the scores is divided by the

sequence length.

V12

Chapter 5

120

5.3.3. DANNs Training Targets.

The DANNs were built to output one of four different model quality scores. These were the

possible training targets for the networks. The first measure is Global Distance Test – Total Score

(GDT-TS), it is one of the most common measures of protein model quality. GDT-TS is calculated

by finding the percentage of superimposed residues in the model and true structure within specified

threshold distances of 1, 2, 4 and 8 Å (Li et al., 2011). Secondly, Global Distance Test – High

Accuracy (GDT-HA), this is a more stringent version of GDT-TS which has been used in CASP

experiments since CASP7 (Moult et al., 2007). The threshold distances for GDT-HA are half the

size of those for GDT-TS, being 0.5, 1, 2 and 4 Å. The third measure is MaxSub, which is a scoring

method which looks at how well the α-carbon atoms of the predicted model superimpose over the

experimentally determined structure (Siew et al., 2000). Fourthly, Template Modeling Score (TM-

score), this measure was developed as an extension to GDT and MaxSub. The scoring function

uses a scale to eliminate the effect of protein size, and rather than using threshold cut-offs, all

superimposed residue pairs are included in the score (Zhang and Skolnick, 2004).

5.3.4. Three-Fold Cross-Validation.

In order to maximise the amount of training and test data available, cross-validation was used. The

Rscript program ParaPart1.R divided the raw data up into three training and testing sets, then

randomised the sample order. Each testing set contains data for unique models not included in the

testing set of the other two cross-validation sets. The overall result is that over the three validation

sets all of the data were used for testing and all were used for training, but the same data was never

used for training and testing on the same cross-validation set. All three sets were used to train and

test independent DANNs and the results were re-integrated by ParaPart2.R in order to calculate the

correlation and sum of top model scores (rank) for the network as a whole. Both Rscript programs

were identical to those used in Chapter 2 and can be found in Appendix 2.

5.3.5. Neural Network Parameters

The DANNs software used for this experiment was TensorFlow 1.0 (Rampasek and Goldenberg,

2016), an open source software library which provides tools for the construction of flexible deep

artificial neural networks in Python v2.7.5. The network architecture being used was that of a

Chapter 5

121

multilayer perceptron feedforward neural network (Ruck et al., 1990). The version of the DANNs

program used for parameterisation was designed to allow easy iteration over multiple values for a

single hyperparameter in sequence.

The inputs and training targets of the DANNs can be defined by changing the “inputs” list variable

and the “output” list variable within the program. Adding multiple training targets to the list will

cause the program to iterate over each target in turn. Other standard parameters (hidden neuron

number in each layer, initial training rate, number of training epochs, dropout probability and L2

regularisation parameter) can be changed by modifying their specific variables. Alternatively, the

program can iterate over multiple values of any standard parameter by replacing the x, y and z

variables with the parameter variable name and changing their range to either a range or list of

desired values to test. Using this method, it was also possible to test every combination of values

from two or three variables, although doing so was extremely time-consuming. This is equivalent

to a grid search using one, two or three parameters at a time.

Advanced parameters (number of layers, loss function, optimiser and activation function) cannot

be altered by simply changing a variable and involve making changes to the program. These

parameters cannot be iterated over and must be changed manually each time.

5.3.6. Solutions to Overfitting

Overfitting can be an issue when the network learns the unique features of the dataset itself rather

than the general pattern. When the training set is predicted extremely well by the DANNs, but the

testing set is predicted very poorly, that is a typical sign of overfitting.

Several ways can be used to solve this issue, one way was by using the “Dropout” activation

function. In TensorFlow, Dropout is a variable between 0 and 1, which indicates the probability

that any neuron in the hidden layers will be temporarily removed during any single round of

training (but not during testing). The same Dropout variable was applied to all hidden layers of the

network. The random removal of neurons in the network is designed to prevent the neurons from

co-adapting to complex patterns in the data and encourage generalisation instead (Srivastava et al.,

2014). The Dropout activation function tool was implemented in the para.py (Appendix 3) program

using tensorflow’s tf.nn.Dropout method, and can be easily iterated over multiple values.

Chapter 5

122

Another potential solution to overfitting, which is implemented in para.py was L2 regularisation

(Schmidhuber, 2015). This is defined by the following formula: 𝑪 = 𝑪𝟎 +
𝝀

𝟐𝒏
 ∑ 𝒘𝟐

𝒘

Regularisation alters the loss or cost function, where 𝑪𝟎 is the unregularised cost, and 𝒘 are the

weights in the model. 𝒏 is the number of samples in the training set, and 𝝀 is the regularisation

factor, a variable which determines the strength of the regularisation. The purpose of L2

regularisation is to prevent the model from generating excessively large weights, which are not

significantly changed by feeding the network conflicting data. A high value of 𝝀 places more

emphasis on retaining low weights in the cost function while a high value of 𝝀 puts more emphasis

on minimising the original cost function. 𝝀 is a simple variable within the para.py program, and

can be iterated over multiple values, a value of 0 disables L2 regularisation.

5.3.7. Outcome Metrics

The two ways (correlation and ranking) of optimisation evaluation were conducted to assess and

compare the performance of the hyperparameterised DANNs. Correlation was measured by

Pearson’s Correlation Coefficient between the network’s predicted quality scores for the test set

and the true quality score. The sum of top model scores is a metric to assess how well the network

ranks the top models of the same protein structure to their observed quality score ranking. It is

calculated by taking the sum of the GDT-HA score of each top predicted model and will herein be

referred to as the “Rank Score”. Ideally there should be a close relationship between the ranking

score and correlation, but this is not necessarily the case. ModFOLD6, for example, uses a

completely different set of parameters to get a good correlation and a good top model score, then

uses another set to obtain a balanced result (Maghrabi and McGuffin, 2017).

Chapter 5

123

5.4. Results and Discussion

5.4.1. Deep Artificial Neural Networks for Correlation (DANNs C)

5.4.1.1. Inputs and Training Targets

Most of the network hyperparameters were given placeholder values to start with. We began by

looking at the different combinations of inputs which can be used for the networks as well as

alternative training targets. The earlier studies indicated that using all the 10 MQAP methods

together as a combined input does not give the best results for rank or correlation. We tested the

top 10 combinations of inputs which were identified in Chapter 2 as producing the highest Pearson

correlations (Figure 5.1). The combination which produced the highest correlation was V4+V10,

with scores which were generally lower than the scores produced by our current optimum

correlation scoring method (ModFOLD6_cor). The identity of the training target score also had an

effect on the correlation for most input/target combinations. For most combinations, using GDT-

HA as the training target score produced the best correlation. However, when using the V4+V10

input combination, MaxSub gives the highest correlation. The results in Figure 5.1 have clearly

showed that using all 10 inputs is inferior to using a smaller selection despite the network having

much more information available to it when using more inputs. This could be due to the different

input scores providing conflicting information, making the predicted scores less reliable.

Alternatively, co-adaptations between multiple scores could be occurring during training, resulting

in the network identifying inappropriate patterns and applying this to the testing set (Hinton et al.,

2012). While less information being input into the network means less processing is required, it

also makes it harder to improve the network in the future when more quality-scoring methods are

available as inputs. Instead of adding a new score into the network, it will have to be tested in all

possible combinations with the other scores to identify any benefit of using it.

Chapter 5

124

Figure 5.1. The effect of using different combinations of inputs scores and training targets scores on

the results of the neural networks. Histogram showing the Pearson correlations produced by DANNs C

for the top 10 input combinations. The results of using all 10 inputs is also shown for comparison. The

clustered bars represent different network training targets. Error bars are calculated by re-sampling each

network ten times with the same parameters and taking the standard deviation.

5.4.1.2. Optimiser and Loss-Function

The effect of the DANNs optimiser algorithms and loss-function were tested on the networks

correlations as the next stage of the chapter project. The optimisation algorithm is what enables the

neural network to learn by calculating the updates to the weights and biases of all nodes within the

network in order to minimise loss. Adagrad was used repeatedly as in Chapter 3, a variant on the

simple gradient descent optimiser, which varies the size of weight updates based on the sparsity of

the data. Additionally, in this chapter, we tested the Adadelta optimiser (Zeiler, 2012), an extension

of Adagrad, which does not decay the learning rate as aggressively as Adagrad. Adam optimiser,

which takes into account past gradients (Kingma and Ba, 2014) in a similar way to a momentum

optimiser was also used. Each of the three optimisers were tested at initial learning rates of 0.1,

0.01 and 0.001, and the results of the comparison can be seen in Figure 5.2a. There was relatively

little difference in the correlations achieved except for Adadelta and also little difference between

Chapter 5

125

using different initial learning rates. The highest correlation was from Adagrad at an initial learning

rate of 0.001 (0.9088 ± 6.88E-5). The difference between using a learning rate of 0.01 and 0.001

was not quite statistically significant (p = 0.0567 in an unpaired two-tailed t-test, N = 10). However,

the difference between using Adagrad with a learning rate of 0.001 and using Adam at 0.001 was

statistically significant (p < 0.001, N=10).

Figure 5.2. The effects of using different optimiser algorithms and loss functions on the performance

of the networks. All error bars are derived from the standard deviation of 10 repetitions of each experiment.

a) A comparison of the effect of the three different optimiser algorithms on correlation in DANNs C with

different learning rates. The result for Adadelta with a learning rate of 0.001 is not shown because the

correlation is significantly below that of the other optimisers (0.166 ± 0.066). b) A comparison of the effect

of using different loss functions on the mean correlation in DANNs C. Each loss function was tested at three

different learning rates.

The loss function of a neural network determines how far the neural network’s predictions are from

the observed values during training. The optimiser algorithms make updates to the network

variables in order to minimise loss as defined by the loss function. In Chapter 3, we made use of a

cross-entropy loss function throughout (used as a default). We also investigated the effect of using

RMSE, MSE, absolute difference (abs. diff.) and SCE. Similar to the optimiser algorithm, each of

these loss functions were tested at learning rates of 0.1, 0.01 and 0.001, the results are shown in

Figure 5.2b. The highest correlation observed was when using the original cross-entropy loss

function with a learning rate of 0.001 (0.9088 ± 6.88E-5), which was the same result observed in

Chapter 5

126

the previous test. RMSE, MSE and SCE all produced results lower than 0.902, Abs. Diff. came

close with a Pearson correlation of 0.9086 ± 1.24E-5. However, the difference between the two

mean correlations was still significant (p < 0.0001).

It turned out that both the optimiser and loss-function used throughout the experiments in Chapter

3 proved superior to the other ones tested (at least with the placeholder parameters used in these

experiments). Learning rate was varied in these experiments in order to gauge whether its effect on

the different optimisers was significant or not. The lower learning rate produced a better result with

almost all of the optimisers and loss-functions tested, the only exception being with MSE. All of

the optimisers were designed to dynamically modify the learning rate (typically decaying the

learning rate as training proceeds) which should make the initial learning rate less important,

despite this, some difference is still seen between the optimisers at different learning rates. All the

later experiments on DANNs C made use of the Adagrad optimiser with the cross-entropy loss

function.

5.4.1.3. Learning Rate and Training Cycles

For our DANNs, several optimising parameters such as the learning rate and training cycles have

been evaluated in this study. The learning rate acts as a multiplier to the scale of updates, which

the optimiser applies to the network variables. By minimising the scale of learning rate, the risk of

not updating the weights and biases enough will be high. Contrarily, a large learning rate risks

over-compensating for small “quirks” of the training data. From the previous experiments, we have

already determined that a smaller training rate slightly improves the correlation of DANNs C.

Figure 5.3a shows the results of varying the training rate between 0.000001 and 1.0. There was a

little observable change in the correlation between a rate of 0.1 and 0.00001, beyond these points

there was a marked decrease in correlation and increase in standard deviation. The highest mean

correlation was 0.9088 ± 6.54E-5 at a learning rate of 0.0001. Further testing between rates of

0.0005 and 0.00005 resulted in a mean correlation of 0.9089 ± 1.37E-4 at a rate of 0.00006

(Appendix 7).

Chapter 5

127

Figure 5.3. The effects of changing the number of training cycles and the learning rate on the results

of the neural networks. Error bars represent the standard deviation of 10 repetitions of the network using

the same parameters. a) Plot showing how the correlation of DANNs C varies as the learning rate is changed.

The result for 0.000001 is excluded from the chart because it is significantly lower than the other results

(0.316). b) Plot showing how the correlation of DANNs C varies as the number of training cycles change.

The other DANNs optimising parameter which was evaluated in our study was the number of

training cycles. Results showed that there was a slight effect when varying the number of training

cycles on the correlation between 50 and 1000 cycles (Figure 5.3b). The peak occurs at 100 training

cycles and then gradually drops as the number of cycles increases (although the standard deviation

decreases). The peak correlation was 0.9088 ± 6.65E-5.

The lack of variation between the different learning rates used, except at the high and low extremes,

is probably once again due to the dynamic updates which the optimiser makes to the rate which

Chapter 5

128

makes the initial rate far less important than if using a simple gradient descent optimiser. The

gradual drop-off in correlation as the number of training cycles increase was somewhat more

unexpected. Logically one would expect a network, which is provided with more opportunities to

Chapter 5

129

analyse the training data and update its weights, to make better predictions. The fact that this is not

the case is an indicator that the network is over-fitting the training data to an extent.

5.4.1.4. Regularisation

For DANNs regularisation, the hyperparameters, Dropout, and L2 regularisation were included in

our evaluation. For the Dropout, the outputted data showed that implementing varying levels of

this activation function on the Pearson correlation and during training has different effects (Figure

5.4a). The indicated level of Dropout was applied evenly to both hidden layers of the network

throughout training with no dynamic updates. The results indicated that using any level of Dropout

on the network produces lower correlations, the highest correlation was found when there was 0

chance of Dropout.

Figure 5.4. The effect of Dropout and L2 regularisation on the results of the networks. All error bars

represent the standard deviation of 10 repetitions of the neural network using the same parameters. a) A

scatter chart showing how different levels of Dropout probability effect the correlations generated by

Chapter 5

130

DANNs C. b) Plot showing how different levels of L2 regularisation effect the correlations generated by

DANNs C.

On the other hand, L2 regularisation was found to be able to improve the correlation as shown in

Figure 5.4b. The highest correlation of an initial test (results not shown) of L2 hyperparameters

between 100 and 0.0000001 found to be when L2 = 100. The results in Figure 5.4b shows the

second test with L2 values between 10 and 1000. The highest correlation in this figure is 0.9105 ±

3.94E-4. Further testing found a more precise optimal L2 value of 170 where the correlation was

0.9107 ± 2.05E-4 (Appendix 8). L2 values less than that resulted in a gradual drop-off in the

Pearson correlation while using greater L2 values resulted in a steeper drop-off and increase in

result variance. Compared to the best correlation obtained from testing the number of training

cycles, the increase was 0.209% with a p-value of > 0.0001.

The fact that Dropout did not improve the results was surprising, since it is a commonly used and

effective method of regularisation (Srivastava et al., 2014). The preliminary tests indicated that

Dropout had a beneficial effect on rank score when applied at low levels (results not shown), but

evidently this does not carry over to correlation. Applying Dropout to DANNs with higher numbers

of training cycles may have a more beneficial effect since overfitting is more likely. Another option

was to introduce an individual Dropout probability for each node in the network which are updated

during training, just like the weights and biases. Another possibility for future research is to use

multiple methods of regularisation, this approach has been shown to improve results in other

networks (Phaisangittisagul, 2016).

5.4.1.5. Architecture

The architecture of a neural network refers to the number of layers in the network and the number

of neurons in each layer. The network in Chapter 3 used two layers for all tests, which is also our

starting point. Figure 5.5a is a heatmap showing how the correlation of the network varies as the

number of nodes in hidden layers 1 and 2 are changed between 10 and 100. The highest mean

correlation was found when there were 20 nodes in both hidden layers (0.9128 ± 6.69E-4) while

using 10 nodes in both layers was the least correlated combinations. Scores of 0.910 and higher

form a “stripe” across the heatmap, favouring low numbers of nodes in one layer. Furthermore, a

Chapter 5

131

total node number of around 150 is associated with lower correlations, forming a secondary stripe

across the heatmap.

Figure 5.5. Results from testing different network architectures of DANNs C. All error bars represent

the standard deviation of 10 repeats of the neural network using the same parameters. a) A heatmap showing

the effect of different numbers of nodes in a 2-hidden layer network on the correlation. Results are colour-

coded on a scale from low (red) to intermediate (white) to high (blue). Results are all the mean of 10 network

runs with the same hyperparameters. b) A bar chart showing how the correlation varies with the number of

nodes in a single-layer network. c, d and e) Bar charts showing how correlation varies in a three hidden-

Chapter 5

132

layer network using 20 nodes in two layers and then a varying number in a third layer before, between and

after the previous two.

Figure 5.5b shows how the number of nodes in a single-hidden layer network affects the

correlation, it did not manage to improve on the score of the two-layered network. Figure 5.5c,

4.6d and 4.6e show the effect of using a three-layer network where one of the layers, designated

layer X in the figures, has a variable number of neurons. The other two layers of the network both

had 20 neurons, which was shown to be the optimal configuration of a 2-layer network. None of

the three-layer networks make an improvement upon the optimal correlation of the 2-layer network.

Most preliminary tests up till this point used 200 nodes in each layer, a small number of nodes is

the optimal configuration is probably because only two inputs are used, therefore additional

network complexity is not required and only leads to overfitting. Using less than the optimal

number of nodes means that the networks processing capacity is impaired while learning, leading

to poor correlation. Using more nodes introduces needless complexity and leads to greater

overfitting. Tests of the three-layer network were far from comprehensive, largely due to the time

required to run a grid-search with three variables is an order of magnitude greater than a grid-search

with two variables. However, given that introducing additional complexity to a two-layer network

reduced the correlation, using a more complex three-layer network will probably never out-perform

the optimal 2-layer network.

5.4.2. Deep Artificial Neural Networks for Ranking (DANNs R)

5.4.2.1. Inputs and Training Targets

The starting point for determination of network inputs and training targets is identical to what has

been proceeded in Chapter 3, which identified 10 combinations of inputs that were partially better

at ranking models than using all 10 inputs. The results of using these 10 combinations compared

with using all 10 inputs while changing the network’s training target are shown in Figure 5.6. All

10 combinations tested produced slightly higher rank scores than using all 10 inputs. Compared to

the input/output testing on DANNs C, the identity of the output had much less effect on the rank

score than on the correlation. The highest rank score was achieved by the combination: V9, V11,

and V12 while using the GDT-HA output (32.409 ± 0.019).

Chapter 5

133

Figure 5.6. Histogram showing the rank scores produced by DANNs R for the top 10 input

combinations. The results of using all 10 inputs is also shown for comparison.

Once again, using all 10 inputs was shown to be inferior than using a smaller number, certain inputs

were seen far more frequently than others during this test, specifically V9 (occurs in all 10

combinations) and V11 (occurs in 8 of the top 10 combinations). This demonstrates that certain

inputs were of considerably more value than others when the objective was model ranking.

5.4.2.2. Optimiser, Loss Function and Learning Rate

An initial test was done using the three optimiser functions similar to the one done on DANNs C

with learning rates from 0.1 to 0.0001 (results not shown). In order to get a better idea of how the

correlation and rank score both change with the learning rate, a further test was performed, looking

at a more precise range of learning rates where the correlation began to fall below the target of 0.8.

The results of this test are shown in Figure 5.7. For Adagrad and Adadelta, the optimal rank scores

occur when the correlation dropped below the target value. However, when using the Adam

optimiser algorithm, the peak rank score (32.407 ± 0.028) occurred while the correlation was still

0.8231 at a learning rate of 0.0006.

Chapter 5

134

Figure 5.7. Plot comparing the rank scores for three optimiser algorithms over different learning

rates in DANNs R. The corresponding Pearson correlations for each network are plotted on the secondary

Y-axis. Error bars were excluded from this chart for clarity.

The five different loss functions were also tested over a more precise range of learning rates than

in DANNs C. However, although the correlation scores still dropped off as the learning rate was

13 reduced, none of the top rank scores were associated with a correlation of less than 0.80. The

top rank score from each loss function are shown in Figure 5.8. There was no significant difference

between the top mean rank scores for Cross-entropy, Abs. Diff., MSE and RMSE. The top score

was achieved by Cross-entropy (32.414 ± 0.029) at a learning rate of 0.006.

Chapter 5

135

Figure 5.8. A comparison of the different loss functions on the rank scores. Only the top score loss

function of each method is plotted.

From the results of these experiments, it seems that the cause of the issue with correlation is a

combination between optimiser and learning rate. Although the correlation also dropped off while

testing the loss-functions at different learning rates (data not shown), it did so in a pattern consistent

with that observed while testing the Adam optimiser which was also used for the loss function

experiment. This shows that the Adam optimiser and learning rates were the main factors in

determining correlation drop-off during the loss-function experiments. Future experiments with

this network will use the Adam optimiser in combination with cross-entropy as the loss function

with a learning rate of 0.0006.

5.4.2.3. Training Cycles and Regularisation

Since learning rate was changed extensively while investigating the optimiser and loss function,

further experimentation with this hyperparameter was deemed unnecessary. Figure 5.9 shows the

effect of changing the number of training cycles between 50 and 1000 on the rank score. The

optimal rank score was achieved at 100 training cycles (32.408 ± 0.081) and dropped off as the

number of training cycles increased. Once the lowest rank score was achieved at 550 training

cycles, it began to improve again incrementally as the number of training cycles increased further.

Chapter 5

136

Figure 5.9. Plot showing how the rank score of DANNs R varies as the number of training

cycles are changed.

In order to identify any potential effect of regularisation on overfitting within the network, different

levels of Dropout between 0 and 0.9 were tested using the 100-cycle network, 500 cycle network

and 1000 cycle network. The results of this test are shown in Figure 5.10a. There was no significant

effect of using any level of Dropout on the 100-cycle network. In the 500-cycle network, the usage

of any level of Dropout caused a slight reduction in the rank score. The 1000-cycle network proved

to be the exception and showed a slight improvement in rank score when the Dropout probability

reached 0.5 or higher. Overall, the application of Dropout did not manage to get any improvement

upon the rank score.

Chapter 5

137

Figure 5.10. The effect of Dropout and L2 regularisation on the results of the networks. All error bars

represent the standard deviation of 10 repetitions of the neural network using the same parameters. a) The

effect of Dropout on the rank score of DANNs R. Results of Dropout are shown on a 100, 500 and 1000

training cycle network. b) The effect of L2 regularisation on the rank score of DANNs R. Results of L2 are

shown for 100, 500 and 1000 training cycle networks.

Different levels of L2 regularisation were also tested on the same three network sizes. The results

of the experiment are shown in Figure 5.10b. The effect of L2 regularisation was least apparent on

the 100-cycle network although it still managed to improve upon the unregularised network’s score

with an L2 hyperparameter of 1000 (32.462 ± 0.043). Unfortunately, at this point, the correlation

Chapter 5

138

also dropped below the 0.8 threshold (0.758). Although the 500-cycle and 1000 cycle networks did

not manage to improve upon this rank score, applying an L2 hyperparameter of 1000 + resulted in

a steep increase in the rank score although the correlation also dropped below the threshold in both

cases. Further testing with levels of L2 regularisation between 100 and 1000 (Appendix 9) found

that using an L2 regularisation hyperparameter of 200 produced the highest rank score without

violating the correlation threshold (32.415 ± 0.011). Using an L2 hyperparameter of 500 or greater

resulted in the correlation dropping below 0.80.

Dropout did cause an improvement; however, it only improved the performance of the 100-cycle

network causing it to surpass the performance of the 500-cycle network. The effect on the 100-

cycle network was negligible potentially because it was not over fitting the data. Introducing L2

regularisation slightly improved the performance of the 500 and 1000-cycle networks, but it also

dropped the correlation below the threshold. The results of all three networks converged when the

L2 hyperparameter reaches 10000. This is because the L2 hyperparameter acts as a balancing 14

factor within the loss function between the original loss function, and the size of the weights in the

matrix. A very large value of L2 skewed the balance so that most of the final loss function result

was composed of the weights matrix, and the original loss function became irrelevant. Overall a

slight improvement in the rank score was obtained when an L2 hyperparameter of 200 was used.

5.4.2.4. Architecture

Figure 5.11a shows the results of a grid-search using two hidden layers with between 10 and 100

nodes in each layer. The highest rank scores were achieved with less than around 100 nodes total

within the network. Using more than 100 total nodes resulted in the rank score degrading. The

highest score was with 40 nodes in the first hidden layer and 30 nodes in the second (32.422 ±

0.039).

Chapter 5

139

Figure 5.11. Results from testing different network architectures of DANNs R. All error bars represent

the standard deviation of 10 repeats of the neural network using the same parameters. a) A heatmap showing

the effect of different numbers of nodes in a 2-hidden layer network on the rank score. Results are colour

coded on a scale from red (low) to intermediate (white) to high (blue). Results are the mean of 10 network

runs with the same hyperparameters. b) A bar chart showing how the rank scores varies with the number of

nodes in a single-layer network. c, d and e) Bar charts showing how the rank scores vary in a three hidden-

layer network using 30 nodes in two layers and then adding a varying number in a third layer before, between

and after the previous two.

Chapter 5

140

Using only a single hidden layer in the network did not improve the rank score (Figure 5.11b). A

third layer was added to the network by using the optimal combination for a two hidden-layer

network from Figure 5.11a and adding a third layer between 10 and 100 nodes. The results from

these DANNs are shown in Figures 5.11c, d and e. Using three layers did not improve upon the

optimal results from the two layered networks. The optimal number of nodes in DANNs R was

higher than in DANNs C, this was not surprising since the amount of input data was greater.

5.4.3. Significance of Results

Both DANNs were run a further 100 times with the optimal parameters in order to compare the

performance to existing EMA methods. The final hyperparameters for both networks are shown in

Table 5.3.

Hyperparameter DANNs C DANNs R

Input Combination V4, V10 V9, V11, V12

Training Target MaxSub GDT-HA

Optimiser Adagrad Adagrad

Loss Function Cross-Entropy Cross-Entropy

Learning Rate 0.00006 0.0006

Number of Training Cycles 100 100

Dropout 0 0

L2 Regularisation 170 200

Number of Layers 2 2

Number of Nodes per Layer 20/20 40/30

Table 5.3. A summary of the final hyperparameters for DANNs C and DANNs R.

Figure 5.12a shows the network predictions plotted against the observed GDT-HA scores. Figure

5.12b shows the mean of V4 and V10 plotted against the observed GDT-HA scores. DANNs C

produced a top correlation of 0.913971 using the V4 and V10 inputs. Taking the average of the

two inputs gave a correlation of 0.910036. The network performed marginally better (0.43%) than

simply taking the average of the network inputs. The results from the network described a clearer

relationship with fewer outliers, however the networks results mostly lied between 0.3 and 0.6,

leading to a more compressed scatter. This compressed scale of network output may limit its

performance in other CASP benchmarks, e.g. absolute differences in predicted versus observed

score.

Chapter 5

141

Figure 5.12. The final results of DANNs C and DANNs R compared to using an average of the input

scores. a) Plot with the predicted scores of DANNs C plotted against the observed GDT-HA scores. b) Plot

with the average of the V4 and V10 inputs plotted against the observed GDT-HA scores. c) A bar chart

comparing the results of DANNs R to the average of Inputs V9, V11 and V12 for ranking models. Error

bars are standard error.

DANNs R produced a top rank score of 32.473 using the V9, V11 and V12 combination of inputs.

Taking the average predictions of servers V9, V11 and V12 using the same data, gave a rank score

of 32.346, meaning that DANNs R achieved an improvement of 0.39% over averaging the inputs.

Comparing the top-ranked GDT-HA results for each model reveals that out of the 84 different

modelling targets, only 17 had a different model picked by the two methods. Figure 5.12c shows

both rank scores with the standard error included as error bars. Testing for significance by

Wilcoxon’s signed rank test (2-tailed) gives a p-value of 0.246, indicating that the improvement is

not significant.

Grid search combined with hand-tuning has proved to be an effective, time-saving method of

hyperparameter determination. However, the time investment in this project was still considerable.

Chapter 5

142

Furthermore, only a small number of all possible combinations of hyperparameters were tested,

using a random grid search would allow a greater number of combinations to be explored. Bayesian

optimisation on the other hand uses the results from previous attempts to inform as to potential

parameters for the next attempt. Using this method should save a considerable amount of time.

While both the model ranking and correlation of the results have been shown to be improved by

employing a neural network, what does this mean in terms of real-world applications? A network

which produces good correlations makes good estimations as to the quality of the models. This is

useful in the case where a quality estimate on one or a few models are required. A network which

produces good rank scores is capable of picking out the top model from a group of alternate models.

This is most useful when you must discriminate between multiple models of the same protein

target.

5.5. Conclusion

Using Deep Artificial Neural Networks, we have made marginal improvements in correlation and

ranking ability. DANNs show promise in improving the area of protein structure quality

assessment, but the amount of time and effort required to find the optimal hyperparameters is

prohibitive. The use of random grid searches or Bayesian optimisation could improve this in the

future. Another goal is to create a DANNs which is capable of getting high correlations and

effectively ranking the models without the necessity for two separate networks. In theory a network

which produces extremely high-quality predictions should produce good correlation and rank

scores.

With the large amount of protein structural data available, and the CASP experiment acting as a

catalyst, more and more software is being written to predict protein structure. The need for useful

EMA programs is increasing as more protein models are generated. DANNs have the potential to

learn how to combine scores from QA programs in ways that maximise their usefulness. The ability

of DANNs to learn, means that even very situational QA scores have the potential to be used as

inputs for any model, given that the DANNs can learn the situations where each individual score

is of most use.

Chapter 6

Independent Benchmarking for the Upgraded ModFOLD7 with the

Top EMA Methods in CASP13

Chapter 6

144

Work presented in this chapter has been published in the following papers:

Maghrabi, A.H.A., McGuffin, L.J., 2019. Estimating the quality of 3D protein models using the

ModFOLD7 server. Submitted to Springer.

Cheng, J., Choe, M.-H., Elofsson, A., Han, K.-S., Hou, J., Maghrabi, A.H.A., McGuffin, L.J.,

Menéndez‐Hurtado, D., Olechnovič, K., Schwede, T., Studer, G., Uziela, K., Venclovas, Č.,

Wallner, B., 2019. Estimation of model accuracy in CASP13. Proteins: Structure, Function, and

Bioinformatics. https://doi.org/10.1002/prot.25767

https://doi.org/10.1002/prot.25767

Chapter 6

145

6.1. Background

Since researchers from different fields of biological sciences started relying on the three-dimension

structural models of proteins, prediction programs have been improving rapidly. One of the major

components of structure prediction pipelines is the evaluation or assessment of the predicted model

accuracy. It is possible to generate many hundreds of alternative 3D models for any give protein

target using many different algorithms. Often the best modelling method is not always the most

accurate for a given target, so it is problematic to choose rank and select the models that are most

likely to be the closest to the native structure. Furthermore, local regions of models may differ in

quality and so it may help a biologist to know whether their specific regions of interest are

accurately modelled e.g. predicted interface/interacting residues. Such problems have been

recognised by the field of structural bioinformatics and many developers have focused their

attention towards improving methods for model QA that support their prediction pipelines. Such

tools and servers are also currently referred to as the Estimates of Model Accuracy (EMA) methods.

The EMA (a.k.a. MQA) methods and servers were included for evaluation as a category in two

major worldwide organisations that are specialised in the protein structure prediction field. The

first organisation conducts independent blind testing with the Critical Assessment of Techniques

for Protein Structure Prediction (CASP) (Moult et al., 2014) experiments, which are held every

other year. The second organisation is the continuously automatic model evaluation project called

CAMEO (Haas et al., 2018). Both organisations have highlighted the importance of the EMA

development for the improvement of protein structure prediction and have helped to encourage

progress in the field.

Modern methods of EMA can be classified into three broad categories. (1) The pure-single model

methods, which can score the data from the information of an individual model - they are featured

by their rapid processing and their strong performance at model ranking and selection, but they

often produce less consistent global scores. (2) The clustering/consensus approaches, which use

multiple alternative models build for the same protein target - these types of methods have the

opposite features of the single-model methods, they have been far more accurate but are more

computationally intensive and do not work when very few similar models are available. (3) The

quasi-single model methods, which can score an individual model against a pool of reference

alternative models that are generated from the same target sequence. Quasi-single model methods

Chapter 6

146

attempt to provide comparable accuracy to clustering methods, while addressing real-life needs of

researchers with few/single models.

ModFOLD (McGuffin, 2007) is our EMA protocol and various successive versions have been

competing with the top leading model quality assessment programs throughout the past 10 years.

ModFOLD was built in the beginning as two separate methods. The original single-model method

was called by its own original name, ModFOLD. Additionally, we developed a clustering-based

method, called ModFOLDclust (McGuffin and Roche, 2010). Over the years, both methods have

been merged with the adoption of a number of other methods to develop a new ModFOLD program

which was a pioneer of the quasi-single model approach.

The quasi-single model approach was firstly implemented with the 3rd version of ModFOLD

(Roche et al., 2014). By using this approach, ModFOLD3 was able to generate reference sets of

models from the target sequence, using the IntFOLD-TS (McGuffin and Roche, 2011) method

which were used for comparison with the submitted model using ModFOLDclust2 (McGuffin and

Roche, 2010). ModFOLD has since undergone a number of updates through versions 4 (McGuffin

et al., 2013), 5 (McGuffin et al., 2015) and 6 (Maghrabi and McGuffin, 2017), which have

maintained the use of a quasi-single model approach. Each successive version has been ranked

among the top performing EMA methods of the recent CASP experiments. The implementation of

quasi-single method has helped our ModFOLD pipeline keep its competitiveness using the

predictive power offered by clustering-based methods, as well as being capable of making

predictions for a single model at a time. While we have made significant progress in performance

over the years with our ModFOLD methods, there is still room for improvement in many aspects

of EMA.

Here we describe significant major updates to the ModFOLD server. The server has been popular

with modellers around the world, having completed hundreds of thousands of EMA jobs for

thousands of unique users over the past decade. In 2018, the ModFOLD7 server variant methods

participated in the latest world-wide Critical Assessment of Techniques for Protein Structure

Prediction competition (CASP13). The goal of this competition was to help advance the methods

which identify protein structure from sequence by testing them objectively via the process of blind

prediction. The competition includes many subcategories, one of them is the EMA where our

ModFOLD7 methods are independently evaluated. The CASP assessors provide sequences of

proteins whose structures have never been observed before. Participants uses their prediction

Chapter 6

147

servers in order to generate the 3D models of the target structures. Once server models have been

generated for a given target, they are then used for the EMA category; participants use their model

quality assessment methods in order to estimate the accuracy of the predicted models for each

target.

6.2. Objectives

In this chapter, we describe our latest upgrade of ModFOLD. ModFOLD7 is our leading resource

for EMA, which has been upgraded by integrating a number of the pioneering pure-single and

quasi-single model approaches. Such an integration has given our latest version the strengths to

accurately score and rank predicted models, with higher consistency compared to older EMA

methods. Additionally, the server provides three options for producing global score estimates,

depending on the requirements of the user: (i) ModFOLD7_rank, which is optimised for

ranking/selection, (ii) ModFOLD7_cor, which is optimised for correlations of predicted and

observed scores and (iii) ModFOLD7 global for balanced performance. ModFOLD7 has been

ranked among the top few EMA methods according to independent blind testing by the CASP13

assessors. Another evaluation resource for ModFOLD7 is the CAMEO project, where the method

is continuously automatically evaluated, showing a significant improvement compared to our

previous versions. The ModFOLD7 server is freely available at:

http://www.reading.ac.uk/bioinf/ModFOLD/.

http://www.reading.ac.uk/bioinf/ModFOLD/

Chapter 6

148

We will also compare the improvement in our methods with all improvements gained from

CASP12 to CASP13 in the field of EMA as seen from the progress of the most successful methods

in CASP13. We show small but clear progress, i.e. several methods perform better than the best

methods from CASP12. Some progress is driven by applying deep learning and residue-residue

contacts to model quality prediction. We show that there has been measurable progress since

CASP12. Although direct comparisons are difficult, as the targets and underlying methods that

generate the targets change between CASP seasons, it is clear that progress has been made as novel

methods outperform the best methods in CASP12. Further, we show that the best EMA methods

marginally outperform the best servers when it comes to selecting one model per target.

6.3. Materials and Methods

The latest version of our server, ModFOLD7, uses a new quality assessment technique which

combines the strengths of multiple pure-single and quasi-single model methods for the

improvement of prediction accuracy. The server comprises a single model approach which

combines 10 scoring methods. Six of the methods are pure-single model inputs methods, these

include: 1- Contact Distance Agreement (CDA) which uses MetaPSICOV (Jones et al., 2015) to

relate to the agreement between the predicted residue contacts and the contacts in model; 2-

Secondary Structure Agreement (SSA) which uses PSIPRED (Buchan et al., 2013) to relate to the

agreement between the predicted secondary structure of each residue and the secondary structure

state of the residue in model according to Dictionary of Secondary Structures of Proteins (DSSP);

3- ProQ2 (Uziela and Wallner, 2016); 4- ProQ2D (Uziela et al., 2017); 5- ProQ3D (Uziela et al.,

2017); and 6- VoroMQA (Olechnovič and Venclovas, 2017). The remaining four methods are

quasi-single model input methods, these are: 1- ModFOLDclust_single (MFcs) which uses input

model against the 130 IntFOLD5 reference models; 2- Disorder “B-factor” Agreement (DBA)

which compares DISOPRED (Jones and Cozzetto, 2015) scores against the MFcs score; 3-

ModFOLDclustQ_single (MFcQs) (McGuffin and Roche, 2010) which uses input model against

the IntFOLD5 reference models; and 4- ResQ (Yang et al., 2016) which estimates the residue-

specific quality and B-factor, and it compares the input model against LOMETS (Wu and Zhang,

2007) models. The combination of the component per-residue/local quality scores from each of the

10 methods are processed using Neural Networks resulting in a final consensus of per-residue

Chapter 6

149

quality scores for each model. A flowchart of the data and processes used in the ModFOLD7 server

is shown in Figure 6.1.

Chapter 6

150

Figure 6.1. Flow of data illustrating the local and global estimates of model accuracy in ModFOLD7. The method pipeline starts with 2 inputs, the target

sequence and a single model. The target sequence is evaluated with 5 pre-processing methods. The resulting data from the pre-processing methods with the input

single model then are evaluated with 10 scoring methods resulting in local score input data. Next, the local scores are processed using 2 neural networks trained to

two target functions, the S-score and the lDDT score, resulting in the final local score outputs. Lastly, the mean local scores from each method are used to form 12

global scores, which are then optimally combined in the different ways indicated to form the 3 variants of ModFOLD7. Figure from Cheng et al., (2019).

Chapter 6

151

6.3.1. The ModFOLD7 component per-residue/local quality scoring methods

The ModFOLD7 NNs were trained using two separate target functions for each residue in a model:

the residue contacts based lDDT score and the superposition-based S-score which has been used

in previous versions of ModFOLD. The RSNNS package for R was used to construct the NNs,

which were trained using data derived from the evaluation of CASP11 & 12 server models versus

native structures. The per-residue similarity scores were calculated using a simple multilayer

perceptron (MLP). For the method trained using the lDDT score (ModFOLD7_res_lddt), the MLP

input consisted of a sliding window (size=5) of per-residue scores from all 10 of the methods

described above, and the output was a single quality score for each residue in the model (50 inputs,

25 hidden, 1 output). For the method trained using the S-score (ModFOLD7_res), this time only 7

of the 10 methods were used as inputs - all apart from the ProQ2, CDA and SSA scores - with a

sliding window (size=5), therefore 35 inputs, 18 hidden, 1 output. For both of the per-residue

scoring methods, the similarity scores, s, for each residue were converted back to distances, d, with

d = 3.5√((1/s) −1).

6.3.2. The ModFOLD7 global scoring methods

Global scores were calculated by taking the mean per-residue scores (the sum of the per-residue

similarity scores divided by sequence lengths) for each of the 10 individual component methods,

described above, plus the NN output from ModFOLD7_res and ModFOLD7_res_lddt.

Furthermore, 3 additional quasi-single global model quality scores were generated for each model

based on the original ModFOLDclust, ModFOLDclustQ and ModFOLDclust2 global scoring

methods (in a similar vein to the ModFOLD4_single and ModFOLD5_single global scores, tested

in CASP10 and CASP11 respectively). Thus, we ended up with 15 alternative global QA scores,

which could be combined in various ways in order to optimize for the different facets of the quality

estimation problem. For the CASP13 experiment, we registered three ModFOLD7 global scoring

variants: 1. The ModFOLD7 global score, which used the mean per-residue NN output score from

ModFOLD7_res, this score considered alone was found to have a good balance of performance

both for correlations of predicted versus observed scores and rankings of the top models. 2. The

ModFOLD7_cor global score variant ((MFcQs + DBA + ProQ3D + ResQ + ModFOLD7_res)/5)

was found to be an optimal combination for producing good correlations with the observed scores,

i.e. the predicted global quality scores produced should produce closer to linear correlations with

Chapter 6

152

the observed global quality scores. 3. The ModFOLD7_rank global score variant ((CDA + SSA +

VoroMQA + ModFOLD7_res + ModFOLD7res_lDDT)/5) was found to be an optimal

combination for ranking, i.e. the top ranked models (top 1) should be closer to the highest accuracy,

but the relationship between predicted and observed scores may not be linear. The local scores of

the ModFOLD7 and ModFOLD_rank variants used the output from the ModFOLD7_res NN,

whereas the ModFOLD_cor variant used the local scores from the ModFOLD7_res_lddt NN.

6.3.3. Server inputs

Like the previous versions, the ModFOLD server version 7.0 requires the amino acid sequence

(Figure 6.2) of your target protein and either a single 3D model file in PDB format or a tarball

containing a directory of multiple separate files in PDB format. To produce a tarball file for your

own 3D models, for Linux/OSX/other Unix users: (a) Tar up the directory containing your PDB

files e.g. type the following at the command line: tar cvf my_models.tar my_models/ (b) Gzip the

tar file e.g. gzip my_models.tar (c) Upload the gzipped tar file (e.g. my_models.tar.gz) to the

ModFOLD server, for Windows users: (a) Download a file archiver application such as 7-zip (b)

Select the directory (folder) of model files to add to the .tar file, click "Add", select the "tar" option

as the "Archive format:" and save the file as something memorable e.g. my_models.tar (c) Select

the tar file, click "Add" and then select the "GZip" option as the "Archive format:" - the file should

then be saved as my_models.tar.gz (d) Upload the the gzipped tar file (e.g. my_models.tar.gz) to

the ModFOLD server. Providing the email address will give the permission to send a link with the

graphical results and machine-readable results directly after the predictions are completed.

However, if the user does not provide the email address then s/he must bookmark the results page

in order to view and refer to it when it is available. In the text box labelled “Input sequence of

protein target”, users should carefully paste in the full amino acid for the interested target protein

in single letter format.

It is important that the user provides the full sequence that corresponds to the sequence of residue

coordinates in the model file. If the model does not contain numbering which corresponds directly

to the order of residues in the sequence file, then the server will attempt to renumber the residues

in the model files accordingly. However, submitting a model file with residues that are not

contained in the provided sequence will not complete the prediction for that model. Users must

ensure that each PDB file contains the coordinates for one model only. The coordinates for multiple

Chapter 6

153

models should always be uploaded as a tarred and gzipped directory of separate files. Assigning a

short memorable name to user’s prediction jobs is useful for identifying and distinguishing them,

because ModFOLD will not necessarily return the results in the order the user submitted them.

Figure 6.2. ModFOLD7 server inputs and outputs pages. Inputs page: containing a text box to paste the

amino acid sequence of protein target in single letter code, a push button to upload model/models (either a

single PDB file or a tarred and gzipped directory of PDB files) of the protein target, three options to select

the global accuracy score optimisation preference, and two optional text boxes to input the user E-mail

address and to give a short name for protein target. Outputs page: showing the result page for models

submitted to CASP13 generated for target T0959. The main output page is shown with summary tables of

the results for each model. Results can also be visualised in more detail by clicking on the thumbnail images

in the main table.

Chapter 6

154

6.3.4. Server outputs

The outputted results are provided in a clean and simple user interface so that it can be interpreted

easily by non-experts at a glance. Once the prediction process is complete a results page is

generated containing a single table summarising the quality assessment scores for each submitted

model. Each assessed model is represented in the table graphically, with thumbnail images of the

local error plots and annotated 3D models. Images in the table are clickable for detailed 3D

visualisation using the JSmol/HTML5 framework. Conveniently, interactive 3D results can also be

viewed on mobile devices without any plugin requirement. The results table shows a global score

for each model, a P-value indicating the likelihood that the model is incorrectly folded and a plot

of the local errors in the model in Ångströms. Users can also download the models annotated with

the ModFOLD7 predicted local quality scores, which have been inserted into the B-factor column

of the ATOM records for each submitted model. The raw machine-readable data files for each set

of predictions, which comply with the CASP data standards, are also provided for developers and

more advanced users. An overview of the ModFOLD7 interface is shown in Figure 6.2.

The results table is ranked according to decreasing global model quality score. The global model

quality scores range between 0 and 1. In general, scores less than 0.2 indicate there may be

incorrectly modelled domains and scores greater than 0.4 generally indicate more complete and

confident models, which are highly similar to the native structure. If the global model quality scores

are low, then the per-residue scores can give you an idea of specific domains or regions in your

protein that might be correctly modelled. From the global scores, the p-value which represents the

probability that each model is incorrect can be calculated. In other words, for a given predicted

model quality score, the p-value is the proportion of models with that score that do not share any

similarity with the native structure (TM-score < 0.2). Each model is also assigned a colour coded

confidence level depending on the p-value: p < 0.001 = blue = CERT = Less than a 1/1000 chance

that the model is incorrect, p < 0.01 = green = HIGH = Less than a 1/100 chance that the model is

incorrect, p < 0.05 = yellow = MEDIUM = Less than a 1/20 chance that the model is incorrect, p

< 0.1 = orange = LOW = Less than a 1/10 chance that the model is incorrect, p > 0.1 = red = POOR

= Likely to be a poor model with little or no similarity to the native structure.

The per-residue scores indicate the predicted distance (in Angstroms) between the CA atom of the

residue in the model and the CA atom of the equivalent residue in the native structure. Thumbnail

images of plots depicting the per-residue error versus residue number are included in each row in

Chapter 6

155

the results table. Each of the thumbnails links to a page that displays a larger view of the plot and

contains a further link to download a PostScript version. Each row in the table also displays a

thumbnail of the 3D cartoon view of the model which is colour coded with the residue error

according to the RasMol temperature colouring scheme. Each small image also links to a page that

shows a larger image of the 3D view and contains a link to download a PDB file of the model with

residue accuracy predictions (Angstroms) in the B-factor column. The model is also loaded into

JSmol for convenient interactive viewing of per-residue errors within the browser. The time taken

for a prediction will depend on the length of sequence, the number of models submitted and the

load on the server. For a new run on single model the user should typically receive his/her results

back within 24 hours, once the job is running. Large batches of models (several hundred) for a

single target may take several days to process. If the user has already submitted a model for the

same target sequence within the same week, then the reference model library for that sequence will

already be available to the server (the results will be cached) and so s/he will receive the results

back much more quickly (within a few hours).

6.3.5 Benchmarking ModFOLD7 within the top ranked EMA methods in CASP13

ModFOLD7 has been evaluated with a number of EMA predictors from six top-performing labs in

CASP13. Each EMA method has its own input and output approach which features it from the

other EMAs. In terms of input, EMA methods can be classified as single‐model methods (Wallner

and Elofsson, 2003) (Olechnovič and Venclovas, 2017) (Ray et al., 2012) (Sippl, 1990) and multi‐

model (or consensus) methods (Ginalski et al., 2003) (Lundström et al., 2001). The former takes a

single structural model as input to predict its accuracy, while the latter uses multiple structural

models of a protein as input to estimate their accuracy, often leveraging the similarity between the

models. In terms of output, EMA methods can be categorised as global accuracy assessment

methods (Zhang and Skolnick, 2005) (Zemla, 2006) and local accuracy assessment methods

(Wallner and Elofsson, 2006), see Table 6.1. The global methods predict a single global score (eg,

GDT‐TS score) measuring the global accuracy of a whole model, whereas the local methods

estimate the local accuracy (e.g., the distance deviation from the native position) for each residue

in a model. The vast majority of local accuracy methods also produce a global estimate of the

accuracy. This is often done by using the average local accuracy.

Chapter 6

156

Group Name Method Local/Global Inputs
Sequence

features
Structure features

Predicted

Features

Target

Function

Machine

Learning

method

Studer

(Waterhouse
et al., 2018)

FaeNNz
Local (Global is

avg. Local)

Model and full-

length target

sequence

Statistical Potentials of Mean

Force + Distance Constraints

from Templates + Solvent Acc.

Sec. Str and

Surface Area

LDDT

(local)

Multi‐Layer

Perceptron

McGuffin

(Maghrabi

and

McGuffin,

2019)
(McGuffin et
al., 2019)

ModFOLD7
Local (Global is
avg. of local)

Model and full-
length target

sequence

PSSM
Pairwise comparisons of
generated reference models,

residue contacts

Contacts,
Sec. Str and

Disorder

S‐score

(local)

Multi‐Layer

Perceptron

ModFOLD7_cor

Local and

optimised

composite global

score

Model and full-

length target

sequence

PSSM

Pairwise comparisons of

generated reference models,

residue contacts

Contacts,

Sec. Str and

Disorder

lDDT

(local)

GDT-TS

(global)

Multi‐Layer

Perceptron

ModFOLD7_ran
k

Local and

optimised
composite global

score

Model and full-
length target

sequence

PSSM
Pairwise comparisons of
generated reference models,

residue contacts

Contacts,
Sec. Str and

Disorder

S‐score

(local)

GDT-TS

(global)

Multi‐Layer

Perceptron

Elofsson

(Wallner and

Elofsson,

2003)

ProQ2
Local (Global is

sum of local)

Profile + model +

predictions
PSSM Atom contacts, residue contacts

Sec. Str and

Surface Area
S‐score

(local)
Linear SVM

ProQ3
Local (Global is

sum of local)

Profile + model +

predictions +
energies

PSSM
Atom contacts, residue

contacts + Energy terms

Sec. Str and

Surface Area

S‐score

(local)
Linear SVM

ProQ3D
Local (Global is

sum of local)

Profile + structure

+ predictions +

energies

PSSM
See Atom contacts, residue

contacts + Energy terms

Sec. Str and

Surface Area
S‐score

(local)

Multi‐Layer

Perceptron

ProQ3D‐TM
Local (Global is

sum of local)

Profile + model +

predictions +

energies

PSSM
Atom contacts, residue

contacts + Energy terms

Sec. Str and

Surface Area
TM‐score

(local)

Multi‐Layer

Perceptron

ProQ3D‐lDDT
Local (Global is

sum of local)

Profile + model +

predictions +

energies

PSSM
Atom contacts, residue

contacts + Energy terms

Sec. Str and

Surface Area

lDDT(loc

al)
Multi‐Layer
Perceptron

ProQ3D‐CAD
Local (Global is

sum of local)

Profile + model +

predictions +

energies

PSSM
Atom contacts, residue

contacts + Energy terms

Sec. Str and

Surface Area

CAD‐
score

(local)

Multi‐Layer

Perceptron

 (Continues)

Chapter 6

157

Group Name Method Local/Global Inputs
Sequence

features
Structure features

Predicted

Features

Target

Function

Machine

Learning

method

Elofsson

(Wallner and

Elofsson, 2003)

ProQ4

(ProQ4)

Local (Global is

sum of local)
Profile + DSSP PSSM

DSSP (sec. Str and surface

area)

Internally

DSSP.

lDDT

(local)

Deep

Network

Han

(Cheng et al.,

2005)

SART_G Global

Model +

predictions +
energies

Statistical Potentials + Solvent

Acc + Sec. Str + Residue
Contact

Sec. Str,

Solvent Acc

and Residue
Contact

GDT-TS
Linear

Regression

SART_L Local

Model +

predictions +

energies

Statistical Potentials + Solvent

Acc + Sec. Str + Residue

Contact

Sec. Str,

Solvent Acc

and Residue

Contact

S‐score
Linear

Regression

SARTclust_G Global

Model +

predictions +

energies

Statistical Potentials + Solvent

Acc + Sec. Str + Residue

Contact

Sec. Str,

solvent acc

and residue

contact

GDT-TS
Linear

Regression

Venclovas

(Olechnovič

and Venclovas,

2014)

VoroMQA‐A,

VoroMQA‐B
Local and global Model Not used

Voronoi tessellation‐based

contact areas.
Not used Not used

Statistical

potential

Cheng

(Wang et al.,

2010)

MULTICOM‐
CLUSTER

Global
Model and full‐
length sequence

Not used
Secondary structure, Solvent

accessibility, residue contacts

Contacts,

Sec. Str,
surface area

and structural

scores

GDT-TS

(global)

Deep network

+ ensemble

MULTICOM‐
CONSTRUCT

Global
Model and full‐
length sequence

Not used
Secondary structure, solvent

accessibility, residue contacts

Contacts,

Sec. Str,

surface area

and structural

scores

GDT-TS

(global)

Deep network

+ ensemble

MULTICOM

NOVEL

Local (Global is

sum of local)
Model and full‐
length sequence

PSSM,

Amino acid

encoding

Secondary structure, Solvent

accessibility, Energy terms

Disorder,

Sec. Str and

surface area

S‐score

(local) and

GDT-TS

(global)

Deep network

Table 6.1. Overview of EMA methods discussed in this study and the way they were developed. Adapted from Cheng et al., (2019).

Chapter 6

158

Different EMA methods utilise different descriptions of the models. Historically, EMA methods

were often divided into single and consensus methods. Here, single methods only use a single

model and predict the accuracy of that model (or regions of that model), while consensus methods

compared a set of models and (often) assumed that the more similar they were the more likely they

were to be correct. In earlier CASPs a category of “quasi‐single” methods also existed. These

methods do not require a set of models, as for the consensus methods, instead they compare the

model with a set of internally generated models, assuming that the more similar the model is to the

internally generated models the better it is. Now, many methods combine many of the methods

making it hard to exactly classify each method, but we have tried to describe the most important

features of all EMA methods in Table 6.1.

6.3.6. Relative performance of EMA methods depending on evaluation metric

Using different reference‐based scores (evaluation metrics) may lead to different rankings of

models and different best models. Some EMA methods are trained to predict specific reference‐

based scores, for example, GDT‐TS or TM‐score. Therefore, it might be expected that the relative

performance of EMA methods may depend on the use of specific evaluation scores. To test whether

this is the case, we asked how successful different EMA methods are in selecting models according

to four different scores: two superposition‐based scores (GDT‐TS and TM‐score) and two

superposition‐free scores (lDDT and CAD‐score). To make the comparison straightforward, for

every reference‐based score we used Z‐scores instead of raw values. For every CASP13 target, we

derived z‐score values using the procedure typically used in CASP assessments: calculate z‐scores

for all models; exclude models with z‐scores lower than −2 and recalculate Z‐scores; assign −2 to

every Z‐score lower than −2. For each EMA method, we then summed Z‐scores of selected models

for all CASP13 targets. The evaluation was done separately for GDT‐TS, TM‐score, lDDT and

CAD‐score. If a given EMA method is equally successful in selecting models according to each of

the four reference‐based scores, then the contribution of each type of z‐score would be

approximately the same, or ~25% of the total sum of z‐scores for GDT‐TS, TM‐score, lDDT, and

CAD‐score (100%). We tested whether this is the case by computing the actual deviation from

25% for each type of z‐scores. The positive and negative values indicate correspondingly that the

Chapter 6

159

EMA method is either relatively more or less successful according to that score, but not its absolute

performance.

6.4. Results and Discussion

The value and potential of EMA methods can be seen when selecting the top model for each target,

see Figure 6.3. Here a small improvement can be obtained when using the best EMA methods

compared with using the best server alone. The average GDT-TS for the best server on the 80 full-

length targets used in the evaluation of the EMA methods is 56.3. When the best EMA method is

used to select the best model the average GDT-TS score is 57.6. Moreover, in total nine EMA

methods select models better than the best individual server. However, the potential for

improvement is quite significant. If the best model for each target were selected, the average GDT-

TS would increase by 10% to 63.3%. Using any other measure, similar numbers appear.

Unfortunately, no EMA method is close to always identifying the best model yet. The value of

EMA methods seems slightly bigger for hard targets (2.5%-6.0%) compared with easier targets

(0.8%-3.5%). Also, as expected there is more room for improvement for the harder targets, see

Figure 6.3.

Chapter 6

160

Figure 6.3. A new approach of evaluation for benchmarking the top ranked EMA methods in CASP13

including ModFOLD7. A, Comparison of average score of the first ranked model for each target in

relationship to the score of the best model made by any server using different evaluation measures. In blue

the best server and in red the model selected by the best EMA method. In darker colours easy targets

(average GDT-TS > 0.5) and in lighter colours the harder targets. In (B) the number of EMA methods that

are better than the best server is shown. C, Boxplot of per target loss for the top group methods based on the

GDT‐TS score. The rectangular box shows the median, 25% percentile, 75% percentile of the loss on 80

targets. Dots of different shapes/colours denote the loss of individual targets of different types

(MultiDomain, SingleDomain, FM, FM/TBM, TBM‐easy, and TBM‐hard). The mean of the loss is also

listed next to the name of each method. D, Boxplot of per target correlation for the top group methods based

on the GDT‐TS score. Adapted from Cheng et al., (2019).

Chapter 6

161

6.4.1. Evaluation metric analysis

Results of the four different reference‐based evaluation are presented in Figure 6.4. Several

inferences can be drawn from these results. First, the relative success of most EMA methods indeed

depends on the evaluation metric. Only some consensus‐based methods were relatively balanced

in this regard. Strikingly, all the ModFOLD7 alternatives and the absolute majority of EMA

methods showed relatively better performance according to the superposition‐free scores, lDDT,

and CAD‐score (the latter in particular). It is interesting that even an EMA method trained using

TM‐score as a target function (ProQ3D‐TM) was still relatively more successful according to the

superposition‐free scores. The results suggest that for single‐model EMA methods, it is generally

easier to predict superposition‐free scores than the superposition‐based scores. In turn, this might

be interpreted as the ability of superposition‐free scores to provide a more objective definition of

model accuracy.

Figure 6.4. Relative success of different EMA methods in predicting four reference‐based evaluation

scores. The relative success according to each of the four scores is expressed as the difference between the

actual percentage and 25%. Positive values indicate relatively higher success, negative values indicate

relatively lower success. For each method positive values balance out negative ones (their sum is zero).

EMA methods are ordered by increasing disbalance, which is unrelated to the absolute performance. The

methods that are not classified as single‐model are indicated with the bold italic font. Adapted from Cheng

et al., (2019).

Chapter 6

162

6.4.2 Correlation of top N models

When choosing an evaluation metric for EMA methods, it is essential that this metric rates the

methods based on whether they accurately estimate the correctness of high‐quality models, but it

is less important to rate them based on whether they accurately estimate the correctness of low‐

quality models. For that reason, it has been argued that the correlation between the predicted and

real scores of models is not a useful metric when evaluating EMA methods, as it gives equal

importance to all models. As a result, one of the evaluation metrics that are currently most

employed is the first‐ranked score loss, as it takes into account only the best ranked model for each

target, so gives more importance on how the EMA methods evaluate the high-quality models.

However, the first ranked score loss has its disadvantages, because it might be somewhat noisy

when the differences between the predicted scores are tiny.

Here, we suggest a novel way to evaluate the EMA methods, see Figure 6.5. We calculate the

average per target Pearson correlation and first ranked lDDT loss for Top N models, where Top N

models are selected based on their lDDT scores. In such a way we evaluate how the EMA methods

perform when all the models are high quality, but also when they are of varying qualities.

Chapter 6

163

Figure 6.5. Line charts representing the top ranking EMA methods based on the top N models evaluation. (A) Average per target Pearson correlations

between lDDT and the predicted accuracy scores of our EMA methods for top N models. (B) First ranked lDDT loss for top N models. Top N models are selected

based on lDDT scores. For example, top 10 models are the 10 models that have the best lDDT scores. The methods in the legend are sorted according to Area

Under the Curve (AUC) values. Adapted from Cheng et al., (2019)

Chapter 6

164

The output of the top N models correlation is shown in Figure 6.5. The results show that

ModFOLD7_rank had the highest correlation with an Area Under the Curve (AUC) of 0.56. The

method also showed the lowest first ranked loss after MULTICOM_CLUSTER with an AUC of

0.04.

One important thing that we learn from this analysis is that the performance of different EMA

methods depends a lot on how many of the top models we choose as the evaluation data set.

Recently it has been a standard in CASP to evaluate all the methods on 150 models per target that

are selected by an arbitrary consensus method (ie, the “stage 2” evaluations). We believe that the

evaluation would be more independent if we evaluate the methods on a range of different data set

sizes.

6.4.3 ModFOLD7 variants

Looking at global scoring evaluations on the CASP13 data, as expected the ModFOLD7_rank

method was the best variant at ranking or selecting the best models and the ModFOLD7_cor variant

was better at reflecting observed accuracy scores or estimating the absolute error, while the

ModFOLD7 method was more balanced in terms of performance. For local scoring, the

ModFOLD7_rank and ModFOLD7 variants performed better according to S‐score and

ModFOLD7_cor method according to lDDT.

ModFOLD7 is also one of the EMA servers that are continuously independently benchmarked for

local EMA performance by the evaluating organisation, CAMEO (identified as server 28). The

method has been independently verified to be an improvement on our previous methods

(ModFOLD4 and ModFOLD6). At the time of writing, the ModFOLD7_(res)_lDDT method ranks

among the top few QE servers on CAMEO. For the last year, the CAMEO public EMA data

(https://www.cameo3d.org/) shows that ModFOLD7 is one of the leading public EMA methods

for producing local (per-residue) quality scores. The results from CAMEO also show that

ModFOLD7 is performing significantly better than its previous versions, ModFOLD6 and

ModFOLD4 (Maghrabi and McGuffin, 2017) (McGuffin et al., 2013) (Table 6.2).

https://www.cameo3d.org/

Chapter 6

165

Server

Structural models ROC
ROC

normalised
PR

PR

normalised

Submitted Received %
AUC

0,1

AUC

0,0.2

AUC

0,1

AUC

0,0.2

AUC

0,1

AUC

0.8,1

AUC

0,1

AUC

0.8,1

QMEANDisCo 10388 10329 99.4 0.94 0.8 0.94 0.79 0.91 0.69 0.91 0.69

ModFOLD7_lDDT 10388 8442 81.3 0.91 0.71 0.74 0.58 0.87 0.6 0.71 0.49

ModFOLD6 10388 7375 71.0 0.89 0.65 0.63 0.46 0.84 0.57 0.59 0.41

QMEAN 3 10388 9544 91.9 0.87 0.61 0.8 0.56 0.81 0.53 0.74 0.49

ProQ2 10388 9695 93.3 0.86 0.59 0.8 0.55 0.8 0.51 0.74 0.47

ModFOLD4 10388 6009 57.8 0.85 0.58 0.49 0.34 0.78 0.5 0.45 0.29

Table 6.2. Top EMA methods in CAMEO. 1 year of data downloaded from http://www.cameo3d.org/. 1-

year – (2018-07-20 - 2019-07-13) - "All" dataset. The table is sorted by the ROC AUC score. ROC =

Receiver Operating Characteristic. AUC = Area Under the ROC Curve. PR = Precision and Recall. Adapted

from Cheng et al., (2019).

6.4.4 ModFOLD7 vs ModFOLD6

Specific improvements over ModFOLD6 from our in‐house analysis using CASP11, CASP12, and

CASP13 data were calculated for global and local scoring, and a summary of selected key results

are shown in Figure 6.6. The ModFOLD7 variants showed small but significant improvements in

both local scoring and selection of best models across all three datasets (CASP11‐13), compared

with the equivalent ModFOLD6 variants. The plots on top panels of the figure demonstrate the 3

alternative optimised scoring methods of the ModFOLD7 server being benchmarked against their

respective previous versions from the ModFOLD6 server. For the cumulative GDT-TS of top

ranked model, ModFOLD6_rank method was giving a score below 44.5 as their highest, whereas

ModFOLD7_rank was able to cross the 45 and go higher. For the Pearson correlation comparing

the predicted score versus the observed score (GDT-TS), ModFOLD6_cor achieved a correlation

0.9250 while for ModFOLD7_cor the correlation was found to be over 0.9300. For the evaluation

of local model quality prediction accuracy using the Area Under the ROC Curve (AUC) (where,

residues with lDDT scores <= 0.6 = 0), ModFOLD6 could not reach an AUC score of 0.93, whereas

ModFOLD7 was closer to 0.95.

The plots on left panels of Figure 6.6 also showed that ModFOLD7 rank outperformed

ModFOLD6_rank in terms of selecting the best models measured by cumulative GDT-TS; a

http://www.cameo3d.org/

Chapter 6

166

significant improvement on all three data sets. In the middle panels, the ModFOLD7_cor method

outperforms ModFOLD6_cor in terms of the correlation of the global output score vs the GDT-TS

score on some data sets. However, no consistent improvement in global correlations was observed

for ModFOLD7_cor over ModFOLD6_cor across all data sets, and any improvements seen were

dependent on the chosen data set and/or the observed score (eg, ModFOLD7 outperforms

ModFOLD6_cor according to the lDDT score on the CASP13 set, but not by GDT-TS). Finally,

in terms of local accuracy estimates, based on both the lDDT scores (Figure 6.6, right panels) and

S‐scores, we also observed a significant improvement with the newer ModFOLD7 variants vs our

older ModFOLD6 method.

Figure 6.6. Histograms summarising the improvements in ModFOLD7 variants vs ModFOLD6

variants on CASP11‐13 datasets. Model data from EMA stages 1 and 2 are combined with duplicate

models removed. Left panels show the ranking/model selection performance measures by cumulative GDT-

TS scores of the top selected models by each method. Middle panels show Pearson correlation coefficients

of global predicted accuracy vs observed accuracy according to GDT‐TS. Right panels show performance

of local accuracy estimates as measured by the area under the curve (AUC) scores from ROC analysis using

the lDDT observed local scores. Adapted from Cheng et al., (2019).

Chapter 6

167

Such results indicate that our latest version, ModFOLD7 has demonstrated progress in performance

compared to ModFOLD6 and according to many measures the improvements are significant. The

consistent performance improvements of ModFOLD7 variants over ModFOLD6 were due to; (a)

The addition of more input scores and correspondingly more input and hidden layer neurons to the

neural network, (b) Training to different local target functions (the lDDT score and the S‐score),

and (c) Optimising for different evaluation metrics using a higher number of global scoring metrics.

6.6. Conclusions

We show that there has been a marginal but significant improvement since CASP12 in ModFOLD7

and the other EMA methods over the previous versions of methods. It can be noted that many of

the improved methods use deep learning, but in different ways. The rapid development of deep

learning models as exemplified here might indicate that the best way to use machine learning for

model accuracy evaluations is still not developed. We also notice that on average the best EMA

methods select models that are better than those provided by the best server. However, still, much

more significant improvements could be achieved if there were possible ways to always select the

best model for each target. Finally, we do notice systematic differences when using different model

evaluation methods. Single model methods perform relatively better when using superposition free

evaluation methods.

Chapter 7

ModFOLD Applications

Chapter 7

169

Work presented in this chapter has been published in the following papers:

McGuffin, L.J., Shuid, A.N., Kempster, R., Maghrabi, A.H.A., Nealon, J.O., Salehe, B.R., Atkins,

J.D., Roche, D.B., 2018. Accurate template-based modeling in CASP12 using the IntFOLD4-TS,

ModFOLD6, and ReFOLD methods. Proteins: Structure, Function, and Bioinformatics 86, 335–

344. https://doi.org/10.1002/prot.25360

McGuffin, L.J., Adiyaman, R., Maghrabi, A.H.A., Shuid, A.N., Brackenridge, D.A., Nealon, J.O.,

Philomina, L.S., 2019. IntFOLD: an integrated web resource for high performance protein structure

and function prediction. Nucleic Acids Res 47, W408–W413. https://doi.org/10.1093/nar/gkz322

Keasar, C., McGuffin, L.J., Wallner, B., Chopra, G., Adhikari, B., Bhattacharya, D., Blake, L.,

Bortot, L.O., Cao, R., Dhanasekaran, B.K., Dimas, I., Faccioli, R.A., Faraggi, E., Ganzynkowicz,

R., Ghosh, Sambit, Ghosh, Soma, Giełdoń, A., Golon, L., He, Y., Heo, L., Hou, J., Khan, M.,

Khatib, F., Khoury, G.A., Kieslich, C., Kim, D.E., Krupa, P., Lee, G.R., Li, H., Li, J., Lipska, A.,

Liwo, A., Maghrabi, A.H.A., Mirdita, M., Mirzaei, S., Mozolewska, M.A., Onel, M.,

Ovchinnikov, S., Shah, A., Shah, U., Sidi, T., Sieradzan, A.K., Ślusarz, M., Ślusarz, R., Smadbeck,

J., Tamamis, P., Trieber, N., Wirecki, T., Yin, Y., Zhang, Y., Bacardit, J., Baranowski, M.,

Chapman, N., Cooper, S., Defelicibus, A., Flatten, J., Koepnick, B., Popović, Z., Zaborowski, B.,

Baker, D., Cheng, J., Czaplewski, C., Delbem, A.C.B., Floudas, C., Kloczkowski, A., Ołdziej, S.,

Levitt, M., Scheraga, H., Seok, C., Söding, J., Vishveshwara, S., Xu, D., Crivelli, S.N., 2018. An

analysis and evaluation of the WeFold collaborative for protein structure prediction and its

pipelines in CASP11 and CASP12. Scientific Reports 8, 9939. https://doi.org/10.1038/s41598-

018-26812-8

Khaled A. Sahli, Gagan D. Flora, Parvathy Sasikumar, Ali H. Maghrabi, Lisa-Marie Holbrook,

Sarah K. AlOuda, Tanya Sage, Alexander R. Stainer, Recep Adiyaman, Mohammad AboHassan,

Marilena Crescente, Alexander P. Bye, Liam J. McGuffin, Jonathan M. Gibbins., 2019. Structural,

Functional and Mechanistic Insights Uncover the Fundamental Role of Orphan Connexin 62 in

Platelets. Submitted to Cell.

https://doi.org/10.1002/prot.25360
https://doi.org/10.1093/nar/gkz322
https://doi.org/10.1038/s41598-018-26812-8
https://doi.org/10.1038/s41598-018-26812-8

Chapter 7

170

7.1. Background

The application of accurate methods for producing EMA has become a principal focus for

researchers who need to establish the utility of their 3D protein models. Having any percentage of

improvement in the EMA scoring methods can lead directly to improved quality and higher

accuracy of 3D modeling. Therefore, relying on the model quality assessment has always been at

the core of our modeling strategy in both CASP and real-world use cases. IntFOLD is our main

server of predicting 3D protein models. The method has developed tremendously over the past

years, and that is due to the relative development of the integrated MQA which has been inspired

by previous research with the nFOLD (Jones, 1999) and GenTHREADER (McGuffin and Jones,

2003) methods. Focused development on methods for EMA was initiated from the 7th round of

CASP when the QA category was introduced. In CASP7, the ModFOLD method (McGuffin,

2007) was developed purely to tackle to the QA problem, and it was utilised in parallel with the

third version of nFOLD. A further improvement in scoring 3D models was achieved after

integrating the clustering-based variant (ModFOLDclust) (McGuffin, 2008). The improvement

was independently verified when the method was used subsequently in CASP8 for the predictions

in the quality assessment category (Buenavista et al., 2012), and also for ranking of server models

for the manual predictions of the Tertiary Structure (TS) category.

In the 9th season of CASP, assessors requested that predictors should include error estimates for

every submitted 3D model, which were scaled in Angstroms in place of the temperature factor (B-

factor) field for each atom record. After applying that request in CASP9, a change of performance

was noticed. The assessors then began to emphasize the value of the “B-factor errors” or what has

now been termed the ASE scores. The importance of assessing the quality of a 3D predicted protein

model has become as important as considering the E‐value when using BLAST.

The first integration of ModFOLD with the original IntFOLD server method, was in 2011, when

ModFOLDclust2 was integrated for ranking and providing the ASE scores for single template

modeling (Roche et al., 2011). The output from ModFOLDclust2 included ASE scores for each

generated IntFOLD model which were included in the “B-factor” columns of all atom coordinate

files. The high performance of the IntFOLD-TS method (McGuffin and Roche, 2011) in CASP9

gained attention in the consideration of model reliability, and the “B-factor” scores were

independently evaluated in the TBM category (McGuffin and Roche, 2011).

Chapter 7

171

In CASP10, our group aimed to exploit the strengths in ASE scoring by using our QA methods in

multiple-template modeling protocols rather than just in single-template modeling (Buenavista et

al., 2012). Some extra sequence-structure alignment methods were added for IntFOLD3‐TS

(McGuffin et al., 2015), and it was evaluated in CASP11 while using the same multiple-template

modeling ranking and ASE scoring protocols of IntFOLD2.

In every CASP experiment since CASP8, the McGuffin group has used the ModFOLD variants for

both ranking server models and adding ASE scores for all of their manual target model

submissions. The IntFOLD server has shown incremental improvements cumulative GDT-TS

scores and consistent success in the server category, however the main strengths gained have been

through developments in the ASE scores achieved by ModFOLD.

In this chapter, we describe each of the major applications of the ModFOLD versions and variants

throughout the period of this study; we describe the projects where ModFOLD has been involved,

the way it has been integrated, and the improvements that ModFOLD has made to our

understanding of protein structures.

Finally, in this chapter we describe the application of our method in the investigation of the

Connexin62 complex, which is a new orphan hexametric hemichannel protein that has been found

to have a fundamental role in the thrombi mechanism in platelets. The protein was uncovered using

several techniques including ModFOLD.

7.2. IntFOLD

Over the past 20 years, the community of structure prediction has achieved great advances with

several major improvements in the TBM, FM and EMA coming in the last few CASP experiments

(Kryshtafovych et al., 2018) (Abriata et al., 2018). The IntFOLD server components along with

their upgraded versions have been independently benchmarked in every CASP from CASP9 to the

latest CASP13 experiments. The methods have also been benchmarked continually by the CAMEO

project (Haas et al., 2018). Over the years, the improvements of the ModFOLD methods

specifically have led to our own advances in the IntFOLD server performance, and particularly in

the ranking of 3D models and ASE scoring improvements (Kryshtafovych et al., 2018) (McGuffin

et al., 2018).

Chapter 7

172

Successive IntFOLD versions have been described and benchmarked in several publications. The

initial versions were described in the Nucleic Acid Research journal (Roche et al., 2011) and 2015

(McGuffin et al., 2015). Over the years the IntFOLD server has served more than 15k unique users,

and it has completed more than 200k predictions since its inception. The component methods of

IntFOLD server have been developed in order to model the 3D structure of proteins as well as the

interactions for a diverse range of specialisations across the life sciences. Numerous studies have

been carried out by researchers using our tools to help them investigate their own proteins of

interest. For example, modelling novel proteins in the Drosophila melanogaster genome (Dunwell

et al., 2013); revealing new interactions and mechanisms for the regulation of mammalian GCKIII

kinases (Fuller et al., 2012) (Sugden et al., 2013), explaining the evolutionary resurrection of

flagellar motility in Pseudomonas fluorescens (Taylor et al., 2015), annotating the proteome of

barley powdery mildew structurally and functionally (Blumeria graminis f. sp. hordei)

(Bindschedler et al., 2011) and understanding the effect of the missense mutation associated with

dermatosparaxis (Monteagudo et al., 2015).

There are six component methods that are integrated and can be accessed through the single

interface of the IntFOLD server. Firstly, IntFOLD-TS, the main tool which predicts the tertiary

structure of proteins (McGuffin et al., 2018) (Roche et al., 2011) (McGuffin et al., 2015) (McGuffin

and Roche, 2011) (Buenavista et al., 2012). Secondly, ModFOLD, and this is the key stone for 3D

model selection and ASE scoring (McGuffin et al., 2018) (Maghrabi and McGuffin, 2017). Thirdly,

ReFOLD, the tool which refines the proteins after being predicted and quality assessed by

ModFOLD (Shuid et al., 2017) (Adiyaman and McGuffin, 2019). Fourthly, DISOclust - this tool

is for predicting the disordered regions in the modelled proteins (McGuffin, 2008) (Atkins et al.,

2015). Fifthly, DomFOLD - this tool predicts the structural domains of the predicted protein models

(Roche et al., 2011) (McGuffin et al., 2015). Finally, FunFOLD, a tool for ligand binding site

prediction (Roche et al., 2011) (Roche et al., 2013). Each component method has its own category

in CASP and has been tested independently with the other competitors of its kind.

Since its inception, IntFOLD has been through many enhancements to the server methodology, but

the foundation has always been the TS prediction algorithm with integrated model quality

assessment at its core (McGuffin et al., 2015). The world leading quality self-estimates and ranking

have been the key contributing factors to the historical success of the component methods

(Kryshtafovych et al., 2018) (Kryshtafovych et al., 2018) (McGuffin et al., 2018) (McGuffin and

Chapter 7

173

Roche, 2011) (Noivirt-Brik et al., 2009) (Schmidt et al., 2011) (Kryshtafovych et al., 2014)

(McGuffin, 2009) (Kryshtafovych et al., 2016).

7.2.1. ModFOLD6 in IntFOLD4

The IntFOLD method (Version 4) integrates the ModFOLD6 (Maghrabi and McGuffin,

2017) variant, ModFOLD6_rank, for improved selection and ASE scoring. Such an integration has

given IntFOLD4 significant improvements to be able to compete with and rank among the best

other servers in the protein prediction field.

7.2.1.1. Methods

In 2016, the McGuffin group participated in CASP12 with an updated version of IntFOLD, version

4. This version was developed with the feature of producing results for the TS prediction category

(including the now mandatory built–in ASE scores). For the local quality assessment predictions,

each TS model file included predicted distances in the B-factor column. These ASE scores were

produced by the ModFOLD6 (Maghrabi and McGuffin, 2017) EMA method. (N.B. predictions in

the EMA/QA category of CASP12 were all also returned by our ModFOLD6 and ModFOLDclust2

servers, see Chapter 4 for more details).

The aim of developing the updated IntFOLD4-TS was to gain the ability to identify and then to

attempt to fix the local errors in an initial pool of single template models via iterative multi-template

modeling. The technique of this method was built upon our previous CASP successful results in

accurately predicting local errors in our models (McGuffin and Roche, 2011) - we took the global

and local per‐residue errors into consideration during the multiple template selection stage

(Buenavista et al., 2012).The IntFOLD4 pipeline can be broken down into two major stages: (1)

single template modeling with ASE scoring and (2) QA guided multiple template modeling with

ASE scoring (Figure 7.1)

Chapter 7

174

Figure 7.1. Flowchart outlining the principal stages of stages of the IntFOLD4-TS prediction pipeline. Rectangles show processes, parallelograms show

datasets. The only input is the target sequence. The initial single-template modelling stages start with 14 sequence-structure alignment methods (eight from the

LOMETS (Wu and Zhang, 2007) package and six others as described in the main text (Zhou and Zhou, 2005) (Söding, 2005) (Margelevicius and Venclovas, 2010)

(Yang et al., 2011) (Ma et al., 2013). Single‐template models are built from the various alignment methods using MODELLER (Uziela and Wallner, 2016) (creating

the IntFOLD60, IntFOLD140 model datasets) and then ranked with ModFOLDclust2 (McGuffin and Roche, 2010). LOMETS4.4 is also used to rank the backbone

models produced by its own component threading methods. The multiple template modelling stages include QA guided multi‐template modelling (using the scores

from ModFOLDclust2) in order to generate a set of multi‐template models. Additionally, models from HHpred (Meier and Söding, 2015) and I‐TASSER_LIGHT

(Roy et al., 2010) are added to the final IntFOLD4_multi set for evaluation. The ModFOLD6_rank method (Maghrabi and McGuffin, 2017) is used for ASE and

final model selection. Adapted from McGuffin et al. (2018).

In the first major stage of the single template modelling, the server ran 14 different fold recognition

methods (in-house), generating up to 10 sequence-to-structure alignments for each method and

resulting in up to 140 alternative single-template-based models being generated for each CASP

target. The following fold recognition methods used were: SP3 (Zhou and Zhou, 2005), SPARKS2

(Zhou and Zhou, 2005), HHsearch (Söding, 2005), COMA (Margelevicius and Venclovas,

2010), SPARKSX (Yang et al., 2011), CNFsearch (Ma et al., 2013), and the eight alternative

threading methods that are integrated into the current LOMETS package (Wu and Zhang,

2007) (PPA, dPPA, dPPA2, sPPA, MUSTER, wPPA, wdPPA, and wMUSTER). In order to assign

global and local model quality scores at the end of the first stage, all single-template models were

assessed using ModFOLDclust2 (McGuffin and Roche, 2010).

For the second major stage, sequence-structure alignments are selected using the single-template

model quality scores, and other criteria involving template coverage in order to build multiple-

template models (Buenavista et al., 2012). Our overall aim here is selecting appropriate target-

template alignments that would minimise local errors in the final models. There are four main

alternative alignment selection methods that are included in the MTM stage, they are termed as

multi1, 2, 3, and 4, and worked mainly in building the 3D model. Firstly, multi1, and this method

simply used the top 2 alignments according to the template ranking. Secondly, multi2, this used

the top ranked alignment and any subsequent alignments if there were no less than 40 new residues

covered, and 20 residues were overlapping. The third method, multi3, used the top ranked

alignment and any subsequent alignment, but only if the overlapping region was predicted to

increase local model quality. The fourth method is multi4, and it used the top ranked alignment and

any subsequent alignments, but only if the coverage was increased by at least once residue.

Additionally, four variants on these methods (multi5-multi8) repeated multi1-multi4, respectively.

However, the alignments for each of the single-template methods were firstly reranked based on

the ModFOLDclust2 predicted global model quality scores. These methods which uses MTM

approaches were first introduced in our IntFOLD2-TS method. All the methods were described and

benchmarked in our article which was published in 2012 (Buenavista et al., 2012). The result of

having these alternative MTM alignment selection methods is generating a new population of up

to 124 multi-template models for each target. In addition, I-TASSER_LIGHT20 (I-TASSER 4.4

run in “light mode” with wall-time restricted to 5 h; for sequences < 600 residues) and HHpred21

were used to generate three models each, which were then added into the final pool of alternative

multi-template models for ranking. In the final stage, the ~130 models in the final reference set

Chapter 7

176

were then evaluated using our ModFOLD6_rank1 (Maghrabi and McGuffin, 2017) QA method,

and the top five ranked models were submitted as the final IntFOLD4-TS predictions.

7.2.1.2. Results

Before subjecting IntFOLD4 to blind testing in CASP12, the new method components were

benchmarked locally in order to confirm the level of their performance as well as consistency.

Another intention was to check if the new methods were performing better than the older versions

of server TS methods: IntFOLD2‐TS (Buenavista et al., 2012) and IntFOLD3‐TS (McGuffin et al.,

2015), and QA methods: ModFOLD4 (McGuffin et al., 2013) and ModFOLD5. In CASP11, the

IntFOLD3‐TS method was used for our server TS predictions and ModFOLD5 (which was similar

in performance to ModFOLD4) was used in order to select the top server models for our manual

submissions.

ModFOLD6_rank was evaluated via in-house benchmarking (Figure 7.2). The method was

compared with other EMA methods for model selection using data collected from the previous

CASP. From the results it can be seen that ModFOLD6_rank showed higher cumulative GDT-TS

scores (∑GDT = 44.42) for model selection than its component methods (Maghrabi and McGuffin,

2017) (Uziela and Wallner, 2016). ModFOLD6_rank also outperformed the previous versions

(ModFOLD5_single with ∑GDT-TS = 40.06 and ModFOLDclust2 with ∑GDT-TS = 42.68) of

ModFOLD which were used in CASP11 for EMA and model selection.

Chapter 7

177

Figure 7.2. Benchmarking the performance of QA methods for model selection using CASP11 data,

prior to CASP12. ModFOLD6_rank versus other global scoring methods: SSA, Secondary Structure

Agreement; DBA, Disorder B‐factor Agreement; CDA, Contact Distance Agreement (Maghrabi and

McGuffin, 2017). Cumulative GDT scores for the top selected models from the QA targets (models from

QA round1 and round2 combined, 84 targets with structure). The maximum possible GDT-TS (MaxGDT-

TS) is the cumulative score obtained by selecting the best model available for every target. The error bars

show the Standard Error in GDT-TS (σ/√n, where σ is the standard deviation and n is the number of targets

(84)). Adapted from McGuffin et al. 2018.

After integrating ModFOLD6_rank method within the IntFOLD4-TS pipeline, the server was

benchmarked against the other prediction methods as well as the previous versions of IntFOLD

using the CAMEO resource (Haas et al., 2013). Table 7.1 shows a direct comparison of the

performance between all servers including the previous IntFOLD versions. The results of 12

months of data and a common subset of 500 targets from CAMEO-3D shows that IntFOLD4-TS

outperformed all servers except Robetta. (more comparisons between IntFOLD4-TS and Robetta

are shown in Appendix 10. The 6 months of data from CAMEO analysis also shows the same

server performance ranking (Appendix 11). Additionally, ModFOLD6 server is benchmarked

separately with CAMEO-QE in terms of ASE/local score predictions. This continuous

benchmarking confirms that ModFOLD6 outperformed the older versions of ModFOLD as well as

most other EMAs.

Chapter 7

178

 Average lDDT Average CAD score Average lDDT‐BS

Server Name Dif. Ref. Dif. Ref. Dif. Ref.

Robetta −1.63 70.9 −0.02 0.7 2.73 68.86

IntFOLD4‐TS 0 69.27 0 0.68 0 71.6

RaptorX 0.82 68.45 0 0.67 4.36 67.24

IntFOLD3‐TS 1.74 67.53 0.02 0.66 3.02 68.57

IntFOLD2‐TS 1.98 67.28 0.02 0.66 2.64 68.96

HHpredB 2.09 67.17 0 0.67 2.59 69.01

SWISS‐MODEL 3.82 65.44 0.04 0.64 1.1 70.5

SPARKS‐X 5.26 64.01 0.03 0.64 5.54 66.06

Princeton_TEMPLATE 9.36 59.91 0.09 0.59 15.14 56.46

NaiveBLAST 11.57 57.7 0.12 0.56 11.15 60.45

Table 7.1. Performance of IntFOLD4‐TS versus other servers. CAMEO‐3D: Common Subset

Comparison, 1‐year Performance (2016–05‐13 to 2017–05‐06) (500 targets to 10 methods). IntFOLD4-TS

is the reference server. Data are from http://www.cameo3d.org/. The table is sorted by difference in Average

lDDT score. Adapted from McGuffin et al. (2018).

7.2.2. ModFOLD7 in IntFOLD5

For version 5 of the IntFOLD server, the algorithms for both 3D model selection and ASE scoring

have been upgraded via the integration of our new ModFOLD7_rank method.

7.2.2.1. Methods

For CASP13, the newly upgraded IntFOLD5-TS was developed and prepared to be working via

iterative multi-template-based modelling (Buenavista et al., 2012) using the target-template

alignments from the 14 alternative methods, SP3 (Zhou and Zhou, 2005), SPARKS2 (Zhou and

Zhou, 2005), HHsearch (Söding, 2005), COMA (Margelevicius and Venclovas, 2010), SPARKSX

(Yang et al., 2011), CNFsearch (Ma et al., 2013), and the eight alternative threading methods that

are integrated into the current LOMETS package (Wu and Zhang, 2007), identical to the IntFOLD4

server first stage. The ASE scoring via ModFOLD7_rank method (rather than ModFOLD6_rank)

then was used to select the multiple target-template alignments for 3D modelling with the aim of

minimising local errors in final generated models. In addition, the HHpred method (Meier and

Söding, 2015) and the template free method I-TASSER light (Roy et al., 2010) (for sequence <500

residues; run in ‘light mode’ with wall-time restricted to 5h) were utilised to contribute models for

http://www.cameo3d.org/

Chapter 7

179

ranking. All the final decoy models then were then pooled, scored and ranked using the

ModFOLD7_rank method. The outputted data then presented to the user in descending order

showing the global model quality. The produced PDB formatted model files then incorporated the

ASE scores in the temperature factor column. By integrating ASE scores directly into the PDB

formatted model files, users are able to view the local model quality as a temperature gradient that

can be mapped onto their 3D models conveniently using their favourite molecular viewing

software, such as PyMOL (http://www.pymol.org/).

The main factor behind the improvement in the IntFOLD5 prediction accuracy lies in the latest

update to the QA method, ModFOLD7_rank, which combines the strengths of multiple pure-single

and quasi-single model methods together - the same successful approach that led to the success of

ModFOLD6 (Elofsson et al., 2018) (McGuffin et al., 2018) (Maghrabi and McGuffin, 2017). The

major emphasis for the IntFOLD5 server was the noticeable increase in the performance of per-

reside accuracy prediction for our own models, as well as improving our model ranking and score

consistency for our models. Each IntFOLD5 model was considered individually using 6 pure-single

model methods:CDA (Maghrabi and McGuffin, 2017), SSA (Maghrabi and McGuffin, 2017),

ProQ2 (Uziela and Wallner, 2016), ProQ2D (Uziela et al., 2017), ProQ3D (Uziela et al., 2017) and

VoroMQA (Olechnovič and Venclovas, 2017); and four alternative quasi-single model methods:

DBA (Maghrabi and McGuffin, 2017), MF5s (Maghrabi and McGuffin, 2017), MFcQs (Maghrabi

and McGuffin, 2017) and ResQ (Yang et al., 2016). Neural networks were then used for combining

the component per-residue/local quality scores from each of the 10 alternative scoring methods.

The combination resulted in a final consensus of per-residue quality scores for each model. To

produce the global score outputs, several variants which combined the mean global scores from the

different methods were made, and each were optimised for different aspects of the quality

estimation problem. Obtaining the most accurate selection of top models produced by IntFOLD5

was the main objective. Therefore, the integration of the ModFOLD7_rank variant was applied in

order to support optimisation for ranking.

Additionally, several new user interface upgrades were implemented for IntFOLD in parallel with

the performance enhancement. The upgrades included a streamlined submission form, recalibrated

P-values for confidence scoring of model quality estimates, the ability to download compressed

archives of all annotated models, and the ability to interact with models and then further refine

them with a few clicks via simple push buttons.

http://www.pymol.org/

Chapter 7

180

7.2.2.2. Results

By analysing the results produced from CASP9 until CASP13, it can be noticed that the

performance for the major versions of the IntFOLD component methods in each of the relevant

categories has remained competitive throughout (McGuffin et al., 2018) (McGuffin and Roche,

2011). The recent results showed that the component methods of IntFOLD have ranked among the

top independent servers in the TS prediction category, the EMA category (Kryshtafovych et al.,

2018), and historical categories of intrinsic disorder structure and function prediction (Noivirt-Brik

et al., 2009) (Schmidt et al., 2009). A significant boost in performance was obtained over

DISOPRED (McGuffin, 2008) by designing the DISOclust component method and integrating its

latest version with the IntFOLD server. The IntFOLD5 server and its components have also been

benchmarked continuously using the CAMEO resource (Haas et al., 2018), which has

demonstrated high performance in each respective category (see results from the 3D, QE and LB

categories at https://www.cameo3d.org/). The FunFOLD component has also been benchmarked

during the most recent CAFA experiment (https://www.biofunctionprediction.org/cafa/, paper in

preparation)

Principally, the CAMEO project focuses on the continuous evaluation of the TS predictions from

publicly available servers. The TS predictions of the IntFOLD versions have shown a consistent

ranking among the top few public servers according to lDDT_BS scores and lDDT scores. From a

3-month data for all targets represented in Table 7.2, it can be seen that IntFOLD5-TS ranked as

the top publicly available method. Also, another evaluation based on pairwise comparisons using

a common subset of targets over the last year (Appendix 12 and 13) showed that IntFOLD5-TS

ranks as the second-best 3D server according to the lDDT scores.

https://www.cameo3d.org/
https://www.biofunctionprediction.org/cafa/

Chapter 7

181

 Average lDDT Average lDDT-BS

Server name All targets Modelled targets All targets Modelled targets

IntFOLD5-TS 68.04 68.04 70.94 70.94

RaptorX 67.38 67.38 68.45 68.45

Robetta 65.51 69.1 63.24 66.11

HHpredB 64.06 64.06 68.59 68.59

SWISS-MODEL 62.22 62.97 64.85 65.56

IntFOLD4-TS 55.02 68.1 58.12 73.25

SPARKS-X 54.63 60.7 58.07 66.78

M4T-SMOTIF-TF 54.45 60.77 62.92 65.78

IntFOLD3-TS 53.75 66.85 55.76 69.33

PRIMO 51.74 57.48 58.32 64.65

PRIMO_BST_CL 51.71 57.45 58.32 64.65

NaiveBLAST 50.34 55.69 60.08 62.11

PRIMO_BST_3D 49.83 55.86 57.99 63.51

PRIMO_HHS_3D 48.27 55.87 56.49 62.62

PRIMO_HHS_CL 46.73 56.43 55.55 61.58

Princeton_TEMPLATE 24.46 54.61 25.63 58.95

Phyre2 24.06 52.77 29.27 67.31

Table 7.2. Independent benchmarking of tertiary structure predictions with CAMEO 3D data.

Performance results for 3 months of data (26 October 2018 to 19 January 2019) are shown for all 250 targets

and all 17 public methods. Data are sorted by average lDDT score for all targets. The scores for the

IntFOLD-TS methods are indicated in bold. Data are taken from the CAMEO 3D front

page http://www.cameo3d.org/ on 19 January 2019. Adapted from McGuffin et al. (2018).

From the represented results above, we can see that IntFOLD5-TS has been improved in 3D protein

modelling performance. The recent progress in the server has given it the strength to significantly

perform better than all the competitive servers in the predicting field. The IntFOLD5-TS was also

evaluated with its previous versions and was verified to be an improvement over both IntFOLD3-

TS and IntFOLD4-TS (Table 7.3).

http://www.cameo3d.org/

Chapter 7

182

 Avg. lDDT Avg. CAD-score Avg. lDDT-BS

Server Name Dif. Ref. Dif. Ref. Dif. Ref.

IntFOLD5-TS 0 67.72 0 0.67 0 71.86

IntFOLD4-TS 0.53 67.18 0 0.66 0.23 71.62

IntFOLD3-TS 2.11 65.61 0.02 0.65 1.9 69.96

Table 7.3. Independent benchmarking of IntFOLD versions with CAMEO 3D data. The data shows

the sequential improvement in server performance since the last webserver paper describing IntFOLD3.

Performance results for 1 year of data (26 January 2018 to 19 January 2019) are shown for a common subset

of 581 targets. The reference method is IntFOLD5-TS, and the table is sorted by average lDDT. Data are

downloaded from http://www.cameo3d.org/ . Adapted from McGuffin et al. (2018).

7.3. WeFold

A large number of web-based efforts were initiated to promote collaboration within and outside

the community of CASP, so that it will be an attraction for researchers from other fields to

contribute new ideas to it, one of these efforts was called WeFold. It is a coopetition (cooperation

and competition) organisation found in 2012, and its goal is to build a mixed pipeline by recruiting

members who have already been participating in CASP as individual teams. By attracting

predictors to WeFold they can share components of their methods with other teams in one hybrid

pipeline to actively contribute to this project. The organisation asserts that the scale and diversity

of integrative prediction pipelines could not have been achieved by any individual lab or even by

any collaboration among a few partners. All the models contributed and generated through the

created pipelines from all the participating groups are publicly available at the WeFold website.

Such a collaboration has created a huge amount of information and a wealth of data that remains

to be tapped.

7.3.1. Methods

The main objective for WeFold is to provide a flexible infrastructure for prediction experts to be

able to create hybrid pipelines, which may have different approaches of their model quality

assessment, refinement and other components of methods (e.g. Figure 7.3 shows the pipelines that

start with Rosetta decoys). After creating these hybrid pipelines, they participate in CASP as groups

to allow the overall performance to be submitted under an objective and coherent manner of

evaluation along with all the other CASP participants. Thereby, the developed methods can be

http://www.cameo3d.org/

Chapter 7

183

applied to a variety of inputs sources and the utility of its outcome can be tested within a variety of

pipelines. Furthermore, the project aims to document the entire information flow through this

infrastructure, to have a result of a data source for the development of methods, which tackle sub-

problems of proteins structure prediction. The WeFold community is still growing, and its

infrastructure needs a community of users in order to accomplish its goals. Up until now, the

organisation pursued an inclusive approach, which brought different protein modelling groups who

have already participated in CASP. This approach makes WeFold inclusive and allows predictors

to reach out to raise awareness and excitement, beyond the CASP community. The WeFold project

also aims to act as an incubator for new ideas. In fact, a number of non-CASP groups have been

recruited to the WeFold efforts and have been co-authors of our manuscripts. Some other members

have been working on more blue-sky innovative methods for the upcoming CASP exercises

(Mirzaei et al., 2016) (Corcoran et al., 2018).

Chapter 7

184

Figure 7.3. An illustration of the WeFold pipeline concept. The figure presents a schematic

depiction of 5 of the WeFold3 pipelines, which share their first components and differ in the final

stages. Rounded rectangles represent information and plain rectangles represent basic tasks, each

of which is an open computational problem. A prediction process starts with a protein sequence,

passes at least once through a set of decoys (structural models of proteins), and ends with a short

list, ideally one, of high score decoys. Adapted from Keasar et al., (2018).

Chapter 7

185

The protein structure prediction category in CASP was the main focus for the WeFold project. 12

different pipelines were recruited to take part in the 3rd iteration of WeFold protein structure

prediction project (Figure 7.3). The groups participated with their main components which

included: three major model (or decoy) generators (Rosetta, UNRES, and the CASP12 servers)

(Rojas et al., 2008) (Song et al., 2013) (Bradley et al., 2005), two contact prediction methods

(GREMLIN and Floudas) (Kamisetty et al., 2013), one secondary structure prediction method

(conSSert) (Kieslich et al., 2016), one clustering algorithm (Murtagh, 1985), three refinement

methods (Princeton_TIGRESS, GalaxyRefine, and 3Drefine) (Khoury et al., 2014) (Lee et al.,

2016) (Bhattacharya and Cheng, 2013), and seven QA/selection methods (APOLLO, MESHI-

score, MESHI-MSC, ModFOLD6, MUFold, ProQ2, and Seder (Mirzaei et al., 2016) (Wang et al.,

2011) (McGuffin, 2008) (Ray et al., 2012) (Faraggi and Kloczkowski, 2014) (Maghrabi and

McGuffin, 2017) (Zhang et al., 2011). The WeFold organisers then decided to compare QA/scoring

methods fairly by applying them to the same decoys sets. Thus, wfRosetta-MUfold, wfRosetta-

ProQ-MESHI, wfRosetta-ProQ-MESHI-MSC, wfRosetta-ProQ-ModF6, wfDB_BW_SVGroup,

and wfRosetta-Wallner started with the same set of Rosetta decoys and wfMESHI-

Seok and wfMESHI-TIGRESS started with the same subsets of server decoys selected by MESHI.

Moreover, wfRosetta-ProQ-MESHI and wfRosetta-ProQ-MESHI-MSC also used the same set of

decoys and features to strictly compare two scoring functions (Mirzaei et al., 2016). With regards

to decoys reduction needed to reduce the large set of Rosetta decoys to a manageable size for

refinement and QA, the organisers replaced the filtering and clustering procedure that we had used

in WeFold2 for the Foldit decoys, by ProQ2.

7.3.2. Results

Several WeFold3 pipelines of methods were developed, built and prepared for the participation in

the CASP12 experiment. Each pipeline method was then independently benchmarked against the

top protein predictors in CASP12. Several pipelines were competitive in the different target

categories, giving an impressive scoring compared to most of the participating groups.

Chapter 7

186

Figure 7.4. Average z-scores (>−2.0) of the 20 top CASP12 groups. WeFold pipelines are marked with

asterisks (Black = wfAll-Cheng; Red = wfMESHI-TIGRESS; Orange = wfMESHI-Seok; Light

green = wfRstta-PQ2-seder; Dark green = wfRstta-PQ-ModF6; Light blue = wfRosetta-MUFOLD; Dark

blue = wfRstta-PQ-MESHI-MSC; Purple = wfRosetta-PQ-MESHI). The results of MESHI and BAKER-

ROSETTASERVER are marked by black circle and triangle respectively. Only those groups that submitted

models for at least half of the targets are considered. Chart on the left shows top 20 groups/servers when

considering the best model submitted by each group for each target. Chart on the right shows top 20

groups/servers when considering Model 1 only. CASP assessors used GDT-HA + ASE only for TBM targets

hence the double depicting of that category.

Source: http://www.predictioncenter.org/casp12/zscores_final.cgi. Adapted from Keasar et al., (2018).

http://www.predictioncenter.org/casp12/zscores_final.cgi

Chapter 7

187

Following a benchmarking analysis, the results showed significant scores in 4 groups of WeFold

among the top 20 CASP12 groups/servers, as shown in the top panel of Figure 7.4. The comparison

was carried out according to average GDT-TS z-scores > -2 when considering all 3 categories

(template-based modelling, template-based modelling/free modelling, and free modelling), and

only those groups that submitted models for at least half of the targets. The chart on the left-hand

side shows the top 20 groups/servers when considering the best model submitted by each group for

each target and the chart on the right-hand side shows top 20 groups/servers when considering

Model 1 only.

Many WeFOLD3 pipelines gained a better performance than the original pipelines that they were

built from. Such these pipelines are those which were built based on MESHI selection, wfMESHI-

TIGRESS and wfMESHI-Seok. These methods benefited from the top performance of the MESHI

group and one of them (wfMESHI-TIGRESS) slightly outperformed MESHI when considering the

best model submitted by each group. Another group called wfAll-Cheng, which used all the models

shared by all the WeFold3 groups but usually selected models from the MESHI-based groups (as

shown in Appendix 14) ranked 13th in both cases, when considering the best model and model 1

only. This method showed a significant improvement with respect to its own performance in

CASP11 when it ranked 47th. Of the Rosetta-based teams, none ranked among the top 20 when

considering the best model submitted. Finally, group wfRstta-PQ2-Seder, which uses a mix of

Rosetta and server models, also ranked among the top 20. In the next sections, we analyze the

performance of the WeFold3 pipelines in the 3 subcategories TBM, TBM/FM, and FM.

In the TBM category, the target proteins are those for which a relationship could be detected by

distant sequence similarity searches providing one or more-fold templates. Panel 2 and 3 in Figure

7.4 shows the top 20 ranking CASP12 groups/servers when considering the average z-scores of

both the assessors formula and GDT-TS, respectively. The CASP12 assessors used GDT-HA + ASE

for the assessment of models in this category. ASE is defined as 𝐴𝑆𝐸 = 100.0 ∗ (1 −

𝑀𝑒𝑎𝑛(|𝑆(𝑡𝑓𝑖 |𝑑0) − 𝑆((𝑑𝑖|𝑑0)|) where 𝑡𝑓𝑖 is the temperature factor of i-th residue in the model,

and 𝑑𝑖 is the distance between i-th residues in lga alignment (sequence dependent mode) 𝑆(𝑥) =

1/(1 + 𝑥2), and 𝑑0 is the scaling factor, set 𝑑0 = 5.0

(http://www.predictioncenter.org/casp12/doc/help.html#ASE).

The results from the above charts illustrate that focusing on either GDT-TS or ASE produced

different results. In fact, when considering the assessors formula, two WeFold pipelines ranked

http://www.predictioncenter.org/casp12/doc/help.html#ASE

Chapter 7

188

among the top 20: wfRosetta-ProQ-ModF6 and wfAll-Cheng. It can be noticed that wfRosetta-

ProQ-ModF6 selected best 5 models among the models generated by the BAKER-

ROSETTASERVER and neither the BAKER-ROSETTASERVER nor the BAKER group are

among the top 20 in this category. The high performance of the wfRosetta-ProQ-ModF6 group was

mainly due to accurate ranking and ASE using the ModFOLD6_rank method (Maghrabi and

McGuffin, 2017). On the other hand, when using GDT-TS values, the two MESHI-based groups

and wfAll-Cheng ranked among the top 20 when considering both the best model among the 5

submitted and model 1. wfMESHI-Seok showed better results in TBM category than in other

categories probably because the refinement method was originally trained to improve template-

based models.

7.4. Modelling Connexin62 to understand the haemostasis mechanism in platelets

In numerous mammalian cells, 1536 proteins have been found to be expressed in their plasma

membrane, 297 of them are oligomerising into hexameric hemichannels making what we call it

“cellular gap junctions” (Giepmans and van IJzendoorn, 2009). A large family of these types of

proteins is called Connexins. Connexin proteins (a.k.a. Cx) are constructed as hexameric

hemichannels on adjacent cells dock together to form gap junctions (GJs). These gap junctions

facilitate the direct trafficking of molecules whose size are approximately less than 1 kDa. This

trafficking occurs between cells, so the molecules would travel from one cell to another through

these Connexins, they also serve in allowing coordinated responses between cells in tissues. For

example, the human platelets have the C37 and Cx40 from the connexin family. They are expressed

in human platelets for the function of selective inhibition. Several studies have reported that the

presence of connexins in platelets is essential for the formation of gap junctions within platelet

thrombi as they are required for the control of clot retraction. The same species are having another

function which is the selective deletion in transgenic mice attenuates platelet (Vaiyapuri et al.,

2012).

In this study, the expression of an orphan connexin termed Cx62 in human and mouse platelets

(Cx57, mouse homologue) was identified by our collaborators by using two techniques, the

Western Blot and the Immunocytochemistry. A mimetic peptide, called 62Gap27, was developed

that targets the second extracellular loop of Cx62 to reduce the hemichannel permeability and GJ-

mediated intercellular communication. In the study, we applied an in silico 3D modelling of the

Chapter 7

189

hemichannel and prediction of the 62Gap27 peptide interaction site. The 3D models corroborate the

experimental observations and suggest a structural explanation for the observed changes in

permeability caused by the mimetic peptide. Several features of agonist-induced platelet activation,

including aggregation, degranulation, fibrinogen binding to integrin αIIbβ3, Ca2+ mobilisation and

integrin αIIbβ3 outside-in signalling (which controls clot retraction and spreading), were inhibited

by 62Gap27 compared to scrambled peptide control. Thrombus formation (in vitro and in vivo) and

tail bleeding were also significantly inhibited by 62Gap27 when it was injected via femoral vein 5

minutes before 1mm of tail tip was removed using a scalpel blade, and the tail tip was placed in

sterile saline at 37°C. The time to cessation of bleeding was measured up to 10 min. Anti-platelet

and anti-thrombotic activity of the 62Gap27 peptide was found to be associated with reduced

platelet signalling events, including tyrosine phosphorylation of key platelet signalling components

and inhibition of PKC activity. Analysis of VASP phosphorylation identified that treatment of

62Gap27 was found to increased PKA activation in both resting and activated platelets in a cAMP-

independent manner. This study identifies Cx62 and Cx57 are expressed in human and mouse

platelets, respectively, where they play a fundamental role in platelet function, thrombus formation.

7.4.1. Methods

Obtaining the complete sequence of Cx62 was through the online server GenBank (Sayers et al.,

2019), and ProPram (Wilkins et al., 1999) was utilised for the physio-chemical analysis. State-of-

art structure prediction tools were employed due to the absence of the experimental structures.

From the IntFOLD server (McGuffin et al., 2015), IntFOLD4-TS method (McGuffin et al., 2018)

was utilised for the tertiary structure models prediction of the Cx62 protomer (monomeric subunit).

In addition, the new conformations of the full-length Cx62 protein model were evaluated in terms

of its stereochemical quality assessment using ModFOLD6 (Maghrabi and McGuffin 2017). The

evaluation and validation were performed firstly after designing the first model, and then before

and after the assembling and refinement steps to check the quality of its structure giving the local

and global scores. The designed Cx62 hemichannel was superposed with the reference to test the

construction accuracy using TM-align algorithm (Zhang and Skolnick 2005). The docked

hemichannels model output from PISA was edited by rotating the hemichannels against each other

in order to correct their positions so that it matches the same design of the 12-mer structure of other

studies (Maeda et al., 2009) (Nakagawa et al. 2010).

Chapter 7

190

Due to the lack of an existing Cx62 targeting peptide, a mimetic peptide Gap27 was designed so

that it can target the second external loop of Cx62 specifically. Moreover, the second external loop

for most of the hemichannels has been commonly targeted while designing Gap27 mimetic peptide.

Therefore, a multiple sequence alignment of human connexin sequences was performed using

ClustalW (Larkin et al. 2007) in order to prevent any cross-reactivity of the designed mimetic

peptide with other Cx molecules. Post multiple sequence alignments, a selective 62Gap27 was

designed with the feature of preventing the possibility in targeting any connexin member except

Cx62. To exclude any false positive data, a negative control (scrambled peptide) was designed

using a web-server tool based on the Mimotopes method (Geysen et al., 1986). Blast (Altschul et

al., 1990) test was also performed to ensure that the designed 62Gap27 is not present in proteins

other than Cx62. The structure of the inhibitor 62Gap27 was predicted using PEP-FOLD3

(Lamiable et al., 2016).

Subsequently, protein-ligand docking was performed to predict the most likely interactions that

could occur between Cx62 and the 62Gap27 inhibitor, this step was carried out using the SwissDock

server (Grosdidier et al., 2011). The FullFitness and Gibbs free energy (ΔG) score of each run of

the docking were evaluated and the final ranking of each cluster was based on the FullFitness

scores.

The Cx62 hemichannels (2x 6-mers) were successfully modelled using the PDB entry 2zw3 as a

template. The docked hemichannel assembly (12-mer) template for PDB ID 2zw3 was downloaded

from PISA (Krissinel and Henrick, 2007) service at the EBI

(http://www.ebi.ac.uk/pdbe/prot_int/pistart.html). For each hemichannel, the template was used to

orientate six of the modelled protomers by a six-fold symmetry axis perpendicular to the membrane

plane and build the complete model of the docked hemichannel (12-mer) complex. Residues in the

modelled protein-protein and protein-ligand complexes were considered to be interacting if the

distance between the closest heavy atoms (i.e. non-hydrogen) in the residues belonging to different

chains was <= 5Å.

7.4.2. Results

The Cx62 sequence has 543 amino acid residues, with a calculated molecular mass of 62 kDa and

a pI of 7.89. The instability index of Cx62 is computed to be 60.31 (ProtParam), which classifies

http://www.ebi.ac.uk/pdbe/prot_int/pistart.html

Chapter 7

191

it as an unstable protein overall. This is due to a long C-terminal disordered region revealed by the

structure prediction results presented below.

The 3D model of Cx62 predicted using the IntFOLD server reveals a protomer (monomer subunit)

consisting of four transmembrane helices, two extracellular loops, a small bended N-terminal helix,

cytoplasmic and C-terminus loops, forming a typical four-helical bundle in which any pair of

adjacent helices are antiparallel (Figure 7.5a and 7.5b). The ModFOLD6 global 3D model quality

score for the full-length protein was calculated as 0.43 (p < 0.01; less than a 1 in 100 chance of an

incorrect model). The ModFOLD6 quality score increases to 0.57(p < 0.001; less than a 1 in 1000

chance of an incorrect model) when the long-disordered C-terminal loop is excluded. The

calculated local (or per-residue) errors from ModFOLD6 were mapped onto the model using the

temperature colouring scheme ranging from blue (indicating residues modelled with high quality)

to red (indicating residues with lower model quality, which are often more flexible or disordered)

(Figure 7.5a). Such results indicate that the ordered regions of the Cx62 structure were generally

modelled with high confidence.

Chapter 7

192

Chapter 7

193

Figure 7.5. Design of the 62Gap27 mimetic peptide and its role in the regulation of intercellular

communication. (A) Predicted 3D model of the Cx62 tertiary structure. The cartoon view of the structure

is coloured using the temperature colouring scheme, where blue indicates ordered regions with low

ModFOLD predicted per-residue errors and red indicates high per-residue errors and more flexibility. (B)

Schematic representation of the designed 62Gap27 binding site on Cx62. Topological diagram of the Cx62

protomer, the predicted binding site (BS) is highlighted in orange. (C) Structural representation of the target

region where the 62Gap27 mimetic peptide was designed, and the putative binding site of the inhibitor on

Cx62. (D) Surface representation of Cx62 hemichannels being targeted by 62Gap27 showing the pore cross

section and side views respectively. (E) The efflux of calcien was calculated using flow cytometric analysis.

Calcein loaded platelets incubated with 62Gap27 or scrambled peptide (100 μg/ml) were stimulated with

thrombin (0.1 U/ml). Histograms of calcein fluorescence for unstimulated (green), and thrombin-stimulated

platelets in the presence of scrambled (blue) or 62Gap27 (100µg/ml) (orange) (n=4). (F) Calcein efflux

following thrombin stimulation for varying time periods was measured by the rate of fluorescence reduction

in platelets. Median fluorescence intensity for unstimulated and stimulated samples treated with scrambled

or 62Gap27 was analysed (n=4). (G) Calcein loaded platelets were treated with scrambled or 62Gap27

(100µg/ml) for 5 minutes prior to their stimulation on fibrinogen and collagen-coated coverslips and FRAP

analysis was performed. Representative images represent fluorescence recovery (Pre-bleach, At-bleach and

Post-bleach) in samples treated with scrambled or 62Gap27. (H) Quantified data shows mean fluorescence

recovery intensity of scrambled and 62Gap27 treated samples and normalised to the level of fluorescence

at bleach point (shown in red circle) (n=5). (I) Inter-protomer interactions. The hemichannel formed by six

protomers of Cx62 is shown in grey cartoon view, the sidechains in the zoomed views are shown as sticks

with brown and yellow colours to differentiate between the residues of interacting protomer pairs. (J)

Modelled intercellular interactions between docked hemichannels. In the left-hand panel, a Cx62 gap

junction channel is shown. The region enclosed by dashed lines is sectioned perpendicular to the pore axis

and is viewed from the pore axis (right-hand panel). The interactions between the 2 docked hemichannels

(the first external loop (E1) and the second external loop (E2) regions) are depicted in the close-up images.

In region E1, Gln58 forms symetrical hydrogen bonds with the same residue from the opposite protomer

while Asn55 forms a hydrogen bond with Arg57 in the opposite protomer. In region E2, Asn196 and Asp199

form hydrogen bonds with the same residues on the opposite protomer. Data represent Mean ± SEM,

****P˂0.0001 was calculated by two-way ANOVA.

Chapter 7

194

The tertiary structure models of Cx62 were subsequently used as targets for in silico docking of

the designed mimetic peptide and for quaternary structure assembly of the docked hemichannel

complex (Figure 7.5D, 7.5I and 7.5J). To confirm the molecular interactions that occur between

Cx62 and 62Gap27 inhibitor, single ligand docking prediction was performed using SwissDock.

The protein-ligand docking results from SwissDock revealed a number of alternative sites for the

62Gap27 inhibitor binding to Cx62. The output showed the most favourable binding locations for

the 62Gap27 inhibitor based on FullFitness score and cluster formation. Six clusters contained

ligand poses in approximately the same location at the end of the second external loop (Figure 7.5B

and 7.5C), corroborating the experimental results. For the most favourable interaction, the docking

results gave a FullFitness score of -3210.54 kcal/mol and an estimated Gibbs free energy (ΔG) of

-6.27 kcal/mol.

While Gap27 peptides are used widely to explore connexin function, the exact mode of action was

not clearly understood. It is believed that they induce a conformational change in hemichannel (or

gap junctions) and also modulate the docking of two complementary hemichannels to form a gap

junction, thereby regulating permeability of the pore (Leybaert et al., 2003; Vaiyapuri et al., 2015;

Vaiyapuri et al., 2012). Professor Jon Gibbin’s team performed flow cytometry to investigate this

in calcein-loaded platelets where efflux of calcein (anionic 0.62 kDa fluorescent dye) from the

platelet cytosol was measured (Figure 7.5E, 7.5F). Upon stimulation with thrombin, calcein

associated fluorescence decreased in scrambled peptide treated cells by ~50%, indicating a release

of dye. The treatment of platelets with 62Gap27 prevented this loss of fluorescence. This indicates

a role for Cx62 hemichannels in regulating platelet permeability and/or platelet activation.

7.5. Conclusion

In this chapter, we have presented the applications of ModFOLD6 and ModFOLD7 during the

project of this Ph.D. study. IntFOLD was the method which gained the largest benefits from this

application. It was seen that after integrating ModFOLD6 and ModFOLD7 to our latest versions

of IntFOLD, the predicting methods has been noticeably improved. When ModFOLD6 was applied

in IntFOLD4, the method showed a significant improvement over the previous versions as well as

its other competitive predicting methods. With IntFOLD5, the integration of ModFOLD7 has

Chapter 7

195

strengthen the method making it more maintained in terms of competitiveness, and more

confidence in terms of model scores and ranking.

Another application of our EMA methods was for the success in the participation with WeFold3.

Official scoring exams have showed that WeFold3 pipelines were ranked among the top 10

predicting methods in the TBM category. They performed well with most of the targets, and the

credits went to the quality assessment part of the methods led by ModFOLD6.

Finally, we saw that ModFOLD also helped in the huge project of Connexin62. The method with

its integration to IntFOLD has managed to reveal the closest-to-native structure of the Cx62 despite

that the protein structure was challenging since having too many disordered regions in it. Our

methods have also succeeded in predicting the structure of the ligand 62Gap27 which was used for

further studies in the project showing some interesting results.

Such applications in the latest versions of IntFOLD4 and IntFOLD5, the participation in WeFold

version 3, and the confirmation of the novel orphan Cx62 has also given us the opportunity to study

our method more practically, knowing by that the strong and confident sides as well as the

weaknesses in order find a better way of improving it. ModFOLD has also got its popularity

through such applications, and therefore, became more famous for use internationally.

Chapter 8

Synthesis, conclusion and next direction

Chapter 8

197

8.1. Synopsis of studies

8.1.1. ModFOLD6 optimisation and the participation in CAMEO and CASP12

This study focused on the importance of having methods that reliably estimate the likely similarity

between the predicted and native structures of proteins for driving the acceptance and adoption of

3D protein models by life science community. The main aim of the initial study was to gain an

improvement in the performance of the currently available model quality assessment method,

ModFOLD6. It was the latest version of the leading resource for Estimates of Model Accuracy.

The ModFOLD6 method was benchmarked in the first step of the study with a number of the top

ranked model quality assessments programs, which were selected and revised to reflect the actual

performance of ModFOLD6. For the initial part of the study, a correlation analysis was carried out

between predicted quality scores from the selected methods, including ModFOLD6, and standard

observed scores from four measuring methods, and the correlation was carried out using three

correlation coefficients.

Further, ModFOLD6 was optimised to use a pioneering hybrid quasi-single model approach. The

server was designed to be able to integrate scores from three pure-single model methods and three

quasi-single model methods using a neural network for the estimation of local quality scores.

Moreover, the ModFOLD6 server interface was designed to provide three options for producing

global score estimates, depending on the requirements of the users: (i) ModFOLD6_rank, which is

optimised for ranking/selection, (ii) ModFOLD6_cor, which is optimised for correlations of

predicted and observed scores and (iii) ModFOLD6 global for balanced performance.

When the ModFOLD6 method was optimised and was ready for testing, the server was registered

for participation in the biggest independent blind testing experiment, CASP. It was the 12th season

of CASP (in 2016) at the time of ModFOLD6 development. The ModFOLD6 variants were tested

and ranked among the top few for EMA methods. The CASP12 experiment showed us some very

interesting results, which were then used for the next parts of this study.

The ModFOLD6 server was also continuously automatically evaluated as part of a large-scale

protein structure prediction project called CAMEO. The results showed significant improvements

after optimisation, and performance gains were observed compared to the other EMA methods as

well as our previous versions of ModFOLD. The ModFOLD6 server is freely available at:

https://www.reading.ac.uk/bioinf/ModFOLD/ModFOLD6_form.html.

https://www.reading.ac.uk/bioinf/ModFOLD/ModFOLD6_form.html

Chapter 8

198

8.1.2. RSNNS and TensorFlow DANNs

For the third chapter of this thesis, two different deep neural network tools were trialled (each tool

at a time) in order to combine the selected EMA methods for the purpose of gaining further

improvements in the ModFOLD6 method. Both NN techniques used the MLPs class of

feedforwarding artificial neural networks, and they differed in terms of their complexity.

Previously, the selected methods including ModFOLD6 were evaluated individually as well as in

combinations using simple mean scores and multiple linear regression. Subsequently, the two

different NN packages, RSNNS and TensorFlow were deployed in separate pipelines in order to

explore the efficiency that could occur when integrating these different tools.

The results showed that integrating the simple MLPs effected our method when it was tested for

correlation between the predicted score and the true score. ModFOLD6 with the integration of the

RSNNS neural networks outperformed the other top selected methods.

However, it was noticed that the ModFOLD6 method was not showing any better performance

with the deep MLPs in the correlation measurement. Contrarily, when we look at the highest ranked

models a measurement, we can see that integrating TensorFlow to our method increases its

performance making ModFOLD6 able to outperform most of the other EMA methods.

The study showed the potential in using standard shallow as well as deep artificial neural networks,

and the effects of learning techniques in optimising model quality assessment programs. It also

offered suggestions as to how the deep learning methodology could be modified in order to improve

the NN ability of predictions.

8.1.3. DANNs parameterisation

In the next study, we focused on exploring the use of DANNs to combine multiple quality

assessment scores. Numerous different QA programs exist which all use different methods of

scoring model quality. Therefore, it was suggested to use DANNs in order to regularise these

methods so that we can achieve a better prediction of model quality, and to pick the top ranked

model from a group of alternatives.

A DANN was built using the TensorFlow python software library in order to determine the

hyperparameters for rank-optimised as well as correlation-optimised networks. The constructed

Chapter 8

199

deep network was built and underwent several modifications. The network then was subjected to

alternative parameterisations in an attempt to obtain the most suitable DANNs for our EMA

method.

The results show that the DANNs used can improve both the ranking (0.39% improvement) as well

as the correlation (0.43% improvement) beyond that of taking the average of networks input scores.

However, the improvement is marginal, and future research should focus more on alternative

methods of hyperparameter optimisation.

8.1.4. ModFOLD7 upgrade and the participation in CAMEO and CASP13

For the CASP13, we managed to make some improvement to our method by combining further

pure and quasi-single model methods. Such a combination has given the method further

performance boost and enabled better prediction accuracy. The method was built on the successful

strategy that was used in ModFOLD6, but with the additional training to an alternative target

function (lDDT) for accuracy self-estimates and scoring.

The upgraded ModFOLD7 then was tested for stability having noticed that this version showed the

same strengths and accuracy score in the ranking and correlation assessments, but with higher

consistency compared to ModFOLD6. The server also provides the three alternative options based

on the users interest whether they are looking for a ranking/selection, correlations or a balanced

performance.

After testing and preparation, ModFOLD7 was ready for the participation to the 13th season of the

worldwide independent blind testing experiment, CASP. The results in CASP13 showed that our

method was ranked among the top few EMA methods according to several of the official

benchmarks. The method also showed relatively better performance in accordance with the

superposition-free scores, lDDT, and CAD-score.

Another evaluation resource for ModFOLD7 was the CAMEO project, where the method was

continuously automatically evaluated, showing a significant improvement compared to the

previous versions as well as the other EMA competitors. The ModFOLD7 server is also freely

available at: https://www.reading.ac.uk/bioinf/ModFOLD/ModFOLD7_form.html.

https://www.reading.ac.uk/bioinf/ModFOLD/ModFOLD7_form.html

Chapter 8

200

8.1.5. ModFOLD6 and ModFOLD7 applications

The first application of our method was the integration of ModFOLD6 with the 4th version of

IntFOLD. The ModFOLD6_rank variant was chosen for this integration for the purpose of

improving the selection and ASE scoring. As a result, IntFOLD4 became more powerful,

significantly outperforming IntFOLD3, and competitive with the best publicly available 3D

prediction methods. Details about this work can be found in the following article:

https://onlinelibrary.wiley.com/doi/abs/10.1002/prot.25360

ModFOLD6 was also part of the web-based efforts community, WeFold. With diversified

integrative prediction pipelines, our method was allocated to be included with the constructed

WeFold3 pipelines, with the aim of increasing the model quality estimation of the modelled 3D

structure of proteins. The prepared WeFold pipelines were benchmarked against the top performing

methods in CASP12. According to several official analyses, the results showed that some WeFold3

pipelines ranked among the top 20 methods. One of these methods was wfRosetta-ProQ-

ModF6 which included ModFOLD6 as the final stage of its pipeline. Details about this work can

be found in the following article: https://www.nature.com/articles/s41598-018-26812-8

ModFOLD7 was developed in the latter part of this doctoral study. The method was integrated with

the fifth version of IntFOLD prediction method, leading to improved performance over previous

versions. IntFOLD5 method participated in CASP13 in 2018, showing such impressive results in

most of the formula in the TS category. Details about this work can be found in the following

article: https://academic.oup.com/nar/article/47/W1/W408/5482507

Alongside and within the period of processing and improving ModFOLD6 and ModFOLD7, a

number of experimental applications were carried out. One of the successful applications our

developed methods was the collaboration with the study of identifying the expression of the orphan

Connexin62 in the human and mouse platelets. It was a cooperative project which combined a

number of in vivo, in vitro, and in silico methods. The study was completed, and it is currently on

the process of submission to the Cell journal to be reviewed.

8.2. Conclusion

Overall, it is clear that the ModFOLD method has been incrementally but significantly improved

during the course of this study. The first progressive step occurred when the method was optimised,

https://onlinelibrary.wiley.com/doi/abs/10.1002/prot.25360
https://www.nature.com/articles/s41598-018-26812-8
https://academic.oup.com/nar/article/47/W1/W408/5482507

Chapter 8

201

and a combination of pure-single and quasi-single scoring methods were added, leading to an

improvement of about 2%. Subsequently, DANNs were implemented in attempt to optimise the

integration of component methods in the ModFOLD pipelines. Such an implementation showed an

incomplete improvement which then led us to work on parameterising these Neural Networks. The

second progressive step occurred after DANNs parameterisations and when the lDDT scores were

used for training instead of the S-scores, this development led to a further marginal improvement

(≈ 1%). Lastly, further improvements (≈ 2%) were gained after combining additional pure-single

as well as quasi-single scoring methods, making ModFOLD7 one of the leading EMA methods in

the field thus far.

8.3. Future directions

Although, our newly developed ModFOLD has shown some impressive results in different areas

of studies, there are still a considerable room for gaining more improvement to our method’s

pipeline. Here are several ways that can be considered as our future goals to improve ModFOLD

method:

a) Further optimisation needs to be carried out for the ranking/selection as well as the correlation

scoring methods in order to achieve more accurate measuring techniques, and to try merging

the two scoring methods into one single input.

b) More studies in the Deep Artificial Neural Networks are needed for the purpose of achieving

an optimal network. These studies include: the type of DANNs to be used as there are different

types (e.g. Recurrent neural networks, Convolutional neural networks) of Deep Neural

Networks depending on the user’s interest; the use of activation functions (such as sigmoid,

tanh, RdLu, ReLU6, dropout) which provide forms of non-linearities for nodes in the Neural

Networks; the use of optimisers (such as Adam, Adagrad) which calculate and apply gradients

to variables, and some utilise the exponentially decaying average of past gradients and past

squared gradients (Walia, 2018).

c) A more focus on contact predictions as recent studies showed that contact features have

improved the performance of EMA methods. In the last season of CASP, a number of new

CDA scores based on the contact prediction measures were reported to provide high impacts

in scoring the EMA more accurately showing by that some significant results which has been

considered.

Chapter 8

202

d) Integration of further pure single model methods such as the ones which have been powered

with more features in their upgraded versions (e.g. ProQ4 (Hurtado et al., 2018)).

 References

203

References

 References

204

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving,

G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D.G., Steiner, B.,

Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu, Y., Zheng, X., 2016. TensorFlow: A

system for large-scale machine learning, in: 12th USENIX Symposium on Operating Systems

Design and Implementation (OSDI 16). pp. 265–283.

Abriata, L.A., Tamò, G.E., Monastyrskyy, B., Kryshtafovych, A., Dal Peraro, M., 2018.

Assessment of hard target modeling in CASP12 reveals an emerging role of alignment-based

contact prediction methods. Proteins 86 Suppl 1, 97–112. https://doi.org/10.1002/prot.25423

Adiyaman, R., McGuffin, L.J., 2019. Methods for the Refinement of Protein Structure 3D

Models. International Journal of Molecular Sciences 20, 2301.

https://doi.org/10.3390/ijms20092301

Alberts, B., Johnson, A.D., Lewis, J., Morgan, D., Raff, M., Roberts, K., Walter, P., 2014.

Molecular Biology of the Cell, Sixth edition. ed. W. W. Norton & Company, New York, NY.

Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J., 1990. Basic local alignment

search tool. J. Mol. Biol. 215, 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

Amari, S., Arbib, M.A. (Eds.), 1982. Competition and Cooperation in Neural Nets: Proceedings

of the U.S.-Japan Joint Seminar held at Kyoto, Japan February 15–19, 1982, Lecture Notes in

Biomathematics. Springer-Verlag, Berlin Heidelberg.

Amir, E.-A.D., Kalisman, N., Keasar, C., 2008. Differentiable, multi-dimensional, knowledge-

based energy terms for torsion angle probabilities and propensities: Energy Terms for Protein

Torsion Angles. Proteins 72, 62–73. https://doi.org/10.1002/prot.21896

Anfinsen, C.B., 1973. Principles that govern the folding of protein chains. Science 181, 223–230.

Ashraf, G.M., Greig, N.H., Khan, T.A., Hassan, I., Tabrez, S., Shakil, S., Sheikh, I.A., Zaidi,

S.K., Akram, M., Jabir, N.R., Firoz, C.K., Naeem, A., Alhazza, I.M., Damanhouri, G.A., Kamal,

M.A., 2014. Protein misfolding and aggregation in Alzheimer’s disease and type 2 diabetes

mellitus. CNS Neurol Disord Drug Targets 13, 1280–1293.

Atkins, J.D., Boateng, S.Y., Sorensen, T., McGuffin, L.J., 2015. Disorder Prediction Methods,

Their Applicability to Different Protein Targets and Their Usefulness for Guiding Experimental

Studies. Int J Mol Sci 16, 19040–19054. https://doi.org/10.3390/ijms160819040

Ba, J., Caruana, R., 2014. Do Deep Nets Really Need to be Deep?, in: Ghahramani, Z., Welling,

M., Cortes, C., Lawrence, N.D., Weinberger, K.Q. (Eds.), Advances in Neural Information

Processing Systems 27. Curran Associates, Inc., pp. 2654–2662.

Baldwin, R.L., 2007. Energetics of protein folding. J. Mol. Biol. 371, 283–301.

https://doi.org/10.1016/j.jmb.2007.05.078

Bassot, C., Hurtado, D.M., Elofsson, A., 2019. Using PconsC4 and PconsFold2 to Predict Protein

Structure. Current Protocols in Bioinformatics 66, e75. https://doi.org/10.1002/cpbi.75

 References

205

Ben-David, M., Noivirt-Brik, O., Paz, A., Prilusky, J., Sussman, J.L., Levy, Y., 2009.

Assessment of CASP8 structure predictions for template free targets. Proteins 77 Suppl 9, 50–65.

https://doi.org/10.1002/prot.22591

Benkert, P., Tosatto, S.C.E., Schomburg, D., 2008. QMEAN: A comprehensive scoring function

for model quality assessment. Proteins 71, 261–277. https://doi.org/10.1002/prot.21715

Benkert, P., Tosatto, S.C.E., Schwede, T., 2009. Global and local model quality estimation at

CASP8 using the scoring functions QMEAN and QMEANclust. Proteins 77 Suppl 9, 173–180.

https://doi.org/10.1002/prot.22532

Benson, D.A., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J., Wheeler, D.L., 2003. GenBank.

Nucleic Acids Res. 31, 23–27. https://doi.org/10.1093/nar/gkg057

Berg, J.M., Tymoczko, J.L., Stryer, L., Berg, J.M., Tymoczko, J.L., Stryer, L., 2002.

Biochemistry, 5th ed. W H Freeman.

Bergman, U., Yachandra, V.K., Yano, J., 2017. X-Ray Free Electron Lasers: Applications in

Materials, Chemistry and Biology. Royal Society of Chemistry.

Bergmeir, C., Benítez, J.M., 2012. Neural Networks in R Using the Stuttgart Neural Network

Simulator: RSNNS. Journal of Statistical Software 46, 1–26.

https://doi.org/10.18637/jss.v046.i07

Bergstra, J., Bengio, Y., 2012. Random search for hyper-parameter optimization. Journal of

Machine Learning Research 13, 281–305.

Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N.,

Bourne, P.E., 2000. The Protein Data Bank. Nucleic Acids Res 28, 235–242.

https://doi.org/10.1093/nar/28.1.235

Bhattacharya, D., Cheng, J., 2013. 3Drefine: consistent protein structure refinement by

optimizing hydrogen bonding network and atomic-level energy minimization. Proteins 81, 119–

131. https://doi.org/10.1002/prot.24167

Bindschedler, L.V., McGuffin, L.J., Burgis, T.A., Spanu, P.D., Cramer, R., 2011.

Proteogenomics and in silico structural and functional annotation of the barley powdery mildew

Blumeria graminis f. sp. hordei. Methods 54, 432–441.

https://doi.org/10.1016/j.ymeth.2011.03.006

Bo¨ck, A., Forchhammer, K., Heider, J., Baron, C., 1991. Selenoprotein synthesis: an expansion

of the genetic code. Trends in Biochemical Sciences 16, 463–467. https://doi.org/10.1016/0968-

0004(91)90180-4

Bradley, P., Misura, K.M.S., Baker, D., 2005. Toward high-resolution de novo structure

prediction for small proteins. Science 309, 1868–1871. https://doi.org/10.1126/science.1113801

Bragg William Henry, 1913. The reflection of X-rays by crystals. (II.). Proceedings of the Royal

Society of London. Series A, Containing Papers of a Mathematical and Physical Character 89,

246–248. https://doi.org/10.1098/rspa.1913.0082

 References

206

Branden, C.I., Tooze, J., 1998. Introduction to Protein Structure, 2 edition. ed. Garland Science,

New York.

Browne, A., 1997. Neural Network Perspectives on Cognition and Adaptive Robotics. CRC

Press.

Buchan, D.W.A., Minneci, F., Nugent, T.C.O., Bryson, K., Jones, D.T., 2013. Scalable web

services for the PSIPRED Protein Analysis Workbench. Nucleic Acids Res. 41, W349-357.

https://doi.org/10.1093/nar/gkt381

Buenavista, M.T., Roche, D.B., McGuffin, L.J., 2012. Improvement of 3D protein models using

multiple templates guided by single-template model quality assessment. Bioinformatics 28,

1851–1857. https://doi.org/10.1093/bioinformatics/bts292

Cabra, V., Samsó, M., 2015. Do’s and Don’ts of Cryo-electron Microscopy: A Primer on Sample

Preparation and High Quality Data Collection for Macromolecular 3D Reconstruction. Journal of

visualized experiments : JoVE. https://doi.org/10.3791/52311

Cao, R., 2014. Signaling in the Brain: In Search of Functional Units. Philosophy of Science 81,

891–901. https://doi.org/10.1086/677688

Caudill, M., 1987. Neural Networks Primer, Part I. AI Expert 2, 46–52.

Chauhan, A.K., Varma, A., 2013. A Textbook of Molecular Biotechnology. I. K. International

Pvt Ltd.

Cheng, J., Choe, M.-H., Elofsson, A., Han, K.-S., Hou, J., Maghrabi, A.H.A., McGuffin, L.J.,

Menéndez‐Hurtado, D., Olechnovič, K., Schwede, T., Studer, G., Uziela, K., Venclovas, Č.,

Wallner, B., 2019. Estimation of model accuracy in CASP13. Proteins: Structure, Function, and

Bioinformatics.

Cheng, J., Randall, A.Z., Sweredoski, M.J., Baldi, P., 2005. SCRATCH: a protein structure and

structural feature prediction server. Nucleic Acids Res. 33, W72-76.

https://doi.org/10.1093/nar/gki396

Cheng, J., Wang, Z., Tegge, A.N., Eickholt, J., 2009. Prediction of global and local quality of

CASP8 models by MULTICOM series. Proteins 77 Suppl 9, 181–184.

https://doi.org/10.1002/prot.22487

Cheng, Y., 2015. Single-Particle Cryo-EM at Crystallographic Resolution. Cell 161, 450–457.

https://doi.org/10.1016/j.cell.2015.03.049

Chothia, C., Lesk, A. m., 1986. The relation between the divergence of sequence and structure in

proteins. The EMBO Journal 5, 823–826. https://doi.org/10.1002/j.1460-2075.1986.tb04288.x

Corcoran, T., Zamora-Resendiz, R., Liu, X., Crivelli, S., 2018. A Spatial Mapping Algorithm

with Applications in Deep Learning-Based Structure Classification. arXiv:1802.02532 [cs].

 References

207

D’Addona, D.M., 2016. Neural Network, in: The International Academy for Produ, Laperrière,

L., Reinhart, G. (Eds.), CIRP Encyclopedia of Production Engineering. Springer, Berlin,

Heidelberg, pp. 1–9. https://doi.org/10.1007/978-3-642-35950-7_6563-3

Das, R., Baker, D., 2008. Macromolecular modeling with rosetta. Annu. Rev. Biochem. 77, 363–

382. https://doi.org/10.1146/annurev.biochem.77.062906.171838

Dawson, N.L., Lewis, T.E., Das, S., Lees, J.G., Lee, D., Ashford, P., Orengo, C.A., Sillitoe, I.,

2017. CATH: an expanded resource to predict protein function through structure and sequence.

Nucleic Acids Res 45, D289–D295. https://doi.org/10.1093/nar/gkw1098

Deng, L., 2012. The MNIST database of handwritten digit images for machine learning research

[best of the web]. IEEE Signal Processing Magazine 29, 141–142.

Duchi, J., Hazan, E., Singer, Y., 2011. Adaptive subgradient methods for online learning and

stochastic optimization. Journal of Machine Learning Research 12, 2121–2159.

Dunwell, T.L., McGuffin, L.J., Dunwell, J.M., Pfeifer, G.P., 2013. The mysterious presence of a

5-methylcytosine oxidase in the Drosophila genome: possible explanations. Cell Cycle 12, 3357–

3365. https://doi.org/10.4161/cc.26540

Eastwood, M.P., Hardin, C., Luthey-Schulten, Z., Wolynes, P.G., 2001. Evaluating protein

structure-prediction schemes using energy landscape theory. IBM Journal of Research and

Development 45, 475–497. https://doi.org/10.1147/rd.453.0475

Eddy, S.R., 2011. Accelerated Profile HMM Searches. PLoS Comput. Biol. 7, e1002195.

https://doi.org/10.1371/journal.pcbi.1002195

Efendigil, T., Önüt, S., Kahraman, C., 2009. A decision support system for demand forecasting

with artificial neural networks and neuro-fuzzy models: A comparative analysis. Expert Systems

with Applications 36, 6697–6707. https://doi.org/10.1016/j.eswa.2008.08.058

Eisenberg, D., Lüthy, R., Bowie, J.U., 1997. VERIFY3D: assessment of protein models with

three-dimensional profiles. Meth. Enzymol. 277, 396–404.

Elias, I., 2006. Settling the intractability of multiple alignment. J. Comput. Biol. 13, 1323–1339.

https://doi.org/10.1089/cmb.2006.13.1323

Elofsson, A., Joo, K., Keasar, C., Lee, J., Maghrabi, A.H.A., Manavalan, B., McGuffin, L.J.,

Hurtado, D.M., Mirabello, C., Pilstål, R., Sidi, T., Uziela, K., Wallner, B., 2018. Methods for

estimation of model accuracy in CASP12. Proteins: Structure, Function, and Bioinformatics 86,

361–373. https://doi.org/10.1002/prot.25395

Faraggi, E., Kloczkowski, A., 2014. A global machine learning based scoring function for protein

structure prediction. Proteins 82, 752–759. https://doi.org/10.1002/prot.24454

Filip, N., Iancu, C.-E., 2018. Non-Proteinogenic Amino Acids. BoD – Books on Demand.

Fraser-Pitt, D., O’Neil, D., 2015. Cystic fibrosis – a multiorgan protein misfolding disease.

Future Sci OA 1. https://doi.org/10.4155/fso.15.57

 References

208

Fuller, S.J., McGuffin, L.J., Marshall, A.K., Giraldo, A., Pikkarainen, S., Clerk, A., Sugden, P.H.,

2012. A novel non-canonical mechanism of regulation of MST3 (mammalian Sterile20-related

kinase 3). Biochem. J. 442, 595–610. https://doi.org/10.1042/BJ20112000

Géron, A., 2017. Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts,

Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc.

Geysen, H.M., Rodda, S.J., Mason, T.J., 1986. A priori delineation of a peptide which mimics a

discontinuous antigenic determinant. Molecular Immunology 23, 709–715.

https://doi.org/10.1016/0161-5890(86)90081-7

Gholami, R., Fakhari, N., 2017. Chapter 27 - Support Vector Machine: Principles, Parameters,

and Applications, in: Samui, P., Sekhar, S., Balas, V.E. (Eds.), Handbook of Neural

Computation. Academic Press, pp. 515–535. https://doi.org/10.1016/B978-0-12-811318-9.00027-

2

Giepmans, B.N.G., van IJzendoorn, S.C.D., 2009. Epithelial cell–cell junctions and plasma

membrane domains. Biochimica et Biophysica Acta (BBA) - Biomembranes 1788, 820–831.

https://doi.org/10.1016/j.bbamem.2008.07.015

Ginalski, K., Elofsson, A., Fischer, D., Rychlewski, L., 2003. 3D-Jury: a simple approach to

improve protein structure predictions. Bioinformatics 19, 1015–1018.

https://doi.org/10.1093/bioinformatics/btg124

Goldstein, T., Studer, C., Baraniuk, R., 2014. A Field Guide to Forward-Backward Splitting with

a FASTA Implementation. arXiv:1411.3406 [cs].

Guinier, A., 2013. X-Ray Diffraction: In Crystals, Imperfect Crystals, and Amorphous Bodies.

Courier Corporation.

Haas, J., Barbato, A., Behringer, D., Studer, G., Roth, S., Bertoni, M., Mostaguir, K., Gumienny,

R., Schwede, T., 2018. Continuous Automated Model EvaluatiOn (CAMEO) complementing the

critical assessment of structure prediction in CASP12. Proteins 86 Suppl 1, 387–398.

https://doi.org/10.1002/prot.25431

Halton, M., 2018. Recycling hope for plastic-hungry enzyme. BBC News.

Hauke, J., Kossowski, T., 2011. Comparison of values of Pearson’s and Spearman’s correlation

coefficients on the same sets of data. Quaestiones geographicae 30, 87–93.

Hebb, D., 1949. The Organization of Behavior. New York: John Wiley and Sons, Inc.

Hecht-Nielsen, R., 1988. Neurocomputing: picking the human brain. IEEE Spectrum 25, 36–41.

https://doi.org/10.1109/6.4520

Hendlich, M., Lackner, P., Weitckus, S., Floeckner, H., Froschauer, R., Gottsbacher, K., Casari,

G., Sippl, M.J., 1990. Identification of native protein folds amongst a large number of incorrect

models: The calculation of low energy conformations from potentials of mean force. Journal of

Molecular Biology 216, 167–180. https://doi.org/10.1016/S0022-2836(05)80068-3

 References

209

Hildebrand, A., Remmert, M., Biegert, A., Söding, J., 2009. Fast and accurate automatic structure

prediction with HHpred. Proteins 77 Suppl 9, 128–132. https://doi.org/10.1002/prot.22499

Hinton, G., Deng, L., Yu, D., Dahl, G.E., Mohamed, A., Jaitly, N., Senior, A., Vanhoucke, V.,

Nguyen, P., Sainath, T.N., Kingsbury, B., 2012. Deep Neural Networks for Acoustic Modeling in

Speech Recognition: The Shared Views of Four Research Groups. IEEE Signal Processing

Magazine 29, 82–97. https://doi.org/10.1109/MSP.2012.2205597

Hinton, G.E., Osindero, S., Teh, Y.-W., 2006. A fast learning algorithm for deep belief nets.

Neural Comput 18, 1527–1554. https://doi.org/10.1162/neco.2006.18.7.1527

Hinton, G.E., Salakhutdinov, R.R., 2006. Reducing the Dimensionality of Data with Neural

Networks. Science 313, 504–507. https://doi.org/10.1126/science.1127647

Holm, L., Sander, C., 1996. The FSSP database: fold classification based on structure-structure

alignment of proteins. Nucleic acids research 24, 206–209. https://doi.org/10.1093/nar/24.1.206

Hooft, R.W., Vriend, G., Sander, C., Abola, E.E., 1996. Errors in protein structures. Nature 381,

272. https://doi.org/10.1038/381272a0

Hopfield, J.J., 1982. Neural networks and physical systems with emergent collective

computational abilities. PNAS 79, 2554–2558. https://doi.org/10.1073/pnas.79.8.2554

Hsu, C.-W., Chang, C.-C., Lin, C.-J., 2003. A practical guide to support vector classification.

Hurtado, D.M., Uziela, K., Elofsson, A., 2018. Deep transfer learning in the assessment of the

quality of protein models. arXiv:1804.06281 [q-bio].

Jing, X., Dong, Q., 2017. MQAPRank: improved global protein model quality assessment by

learning-to-rank. BMC Bioinformatics 18, 275. https://doi.org/10.1186/s12859-017-1691-z

Jones, D.T., 1999. Protein secondary structure prediction based on position-specific scoring

matrices. J. Mol. Biol. 292, 195–202. https://doi.org/10.1006/jmbi.1999.3091

Jones, D.T., Bryson, K., Coleman, A., McGuffin, L.J., Sadowski, M.I., Sodhi, J.S., Ward, J.J.,

2005. Prediction of novel and analogous folds using fragment assembly and fold recognition.

Proteins 61 Suppl 7, 143–151. https://doi.org/10.1002/prot.20731

Jones, D.T., Cozzetto, D., 2015. DISOPRED3: precise disordered region predictions with

annotated protein-binding activity. Bioinformatics 31, 857–863.

https://doi.org/10.1093/bioinformatics/btu744

Jones, D.T., Singh, T., Kosciolek, T., Tetchner, S., 2015. MetaPSICOV: combining coevolution

methods for accurate prediction of contacts and long range hydrogen bonding in proteins.

Bioinformatics 31, 999–1006. https://doi.org/10.1093/bioinformatics/btu791

Jones, D.T., Taylor, W.R., Thornton, J.M., 1992. The rapid generation of mutation data matrices

from protein sequences. Comput. Appl. Biosci. 8, 275–282.

Jothi, A., 2012. Principles, challenges and advances in ab initio protein structure prediction.

Protein Pept. Lett. 19, 1194–1204.

 References

210

Kabsch, W., Sander, C., 1983. Dictionary of protein secondary structure: pattern recognition of

hydrogen-bonded and geometrical features. Biopolymers 22, 2577–2637.

https://doi.org/10.1002/bip.360221211

Kaczanowski, S., Zielenkiewicz, P., 2010. Why similar protein sequences encode similar three-

dimensional structures? Theor Chem Acc 125, 643–650. https://doi.org/10.1007/s00214-009-

0656-3

Kamisetty, H., Ovchinnikov, S., Baker, D., 2013. Assessing the utility of coevolution-based

residue-residue contact predictions in a sequence- and structure-rich era. Proc. Natl. Acad. Sci.

U.S.A. 110, 15674–15679. https://doi.org/10.1073/pnas.1314045110

Keasar, C., McGuffin, L.J., Wallner, B., Chopra, G., Adhikari, B., Bhattacharya, D., Blake, L.,

Bortot, L.O., Cao, R., Dhanasekaran, B.K., Dimas, I., Faccioli, R.A., Faraggi, E., Ganzynkowicz,

R., Ghosh, Sambit, Ghosh, Soma, Giełdoń, A., Golon, L., He, Y., Heo, L., Hou, J., Khan, M.,

Khatib, F., Khoury, G.A., Kieslich, C., Kim, D.E., Krupa, P., Lee, G.R., Li, H., Li, J., Lipska, A.,

Liwo, A., Maghrabi, A.H.A., Mirdita, M., Mirzaei, S., Mozolewska, M.A., Onel, M.,

Ovchinnikov, S., Shah, A., Shah, U., Sidi, T., Sieradzan, A.K., Ślusarz, M., Ślusarz, R.,

Smadbeck, J., Tamamis, P., Trieber, N., Wirecki, T., Yin, Y., Zhang, Y., Bacardit, J.,

Baranowski, M., Chapman, N., Cooper, S., Defelicibus, A., Flatten, J., Koepnick, B., Popović, Z.,

Zaborowski, B., Baker, D., Cheng, J., Czaplewski, C., Delbem, A.C.B., Floudas, C.,

Kloczkowski, A., Ołdziej, S., Levitt, M., Scheraga, H., Seok, C., Söding, J., Vishveshwara, S.,

Xu, D., Crivelli, S.N., 2018. An analysis and evaluation of the WeFold collaborative for protein

structure prediction and its pipelines in CASP11 and CASP12. Scientific Reports 8, 9939.

https://doi.org/10.1038/s41598-018-26812-8

Khoury, G.A., Tamamis, P., Pinnaduwage, N., Smadbeck, J., Kieslich, C.A., Floudas, C.A.,

2014. Princeton_TIGRESS: protein geometry refinement using simulations and support vector

machines. Proteins 82, 794–814. https://doi.org/10.1002/prot.24459

Kieslich, C.A., Smadbeck, J., Khoury, G.A., Floudas, C.A., 2016. conSSert: Consensus SVM

Model for Accurate Prediction of Ordered Secondary Structure. J Chem Inf Model 56, 455–461.

https://doi.org/10.1021/acs.jcim.5b00566

Kihara, D., Lu, H., Kolinski, A., Skolnick, J., 2001. TOUCHSTONE: an ab initio protein

structure prediction method that uses threading-based tertiary restraints. Proc. Natl. Acad. Sci.

U.S.A. 98, 10125–10130. https://doi.org/10.1073/pnas.181328398

Krissinel, E., Henrick, K., 2007. Inference of macromolecular assemblies from crystalline state.

Journal of molecular biology 372, 774–797.

Kryshtafovych, A., Barbato, A., Fidelis, K., Monastyrskyy, B., Schwede, T., Tramontano, A.,

2014. Assessment of the assessment: evaluation of the model quality estimates in CASP10.

Proteins 82 Suppl 2, 112–126. https://doi.org/10.1002/prot.24347

Kryshtafovych, A., Barbato, A., Monastyrskyy, B., Fidelis, K., Schwede, T., Tramontano, A.,

2016. Methods of model accuracy estimation can help selecting the best models from decoy sets:

 References

211

Assessment of model accuracy estimations in CASP11. Proteins 84 Suppl 1, 349–369.

https://doi.org/10.1002/prot.24919

Kryshtafovych, A., Fidelis, K., Tramontano, A., 2011. Evaluation of model quality predictions in

CASP9. Proteins 79 Suppl 10, 91–106. https://doi.org/10.1002/prot.23180

Kryshtafovych, A., Monastyrskyy, B., Fidelis, K., Moult, J., Schwede, T., Tramontano, A.,

2018a. Evaluation of the template-based modeling in CASP12. Proteins 86 Suppl 1, 321–334.

https://doi.org/10.1002/prot.25425

Kryshtafovych, A., Monastyrskyy, B., Fidelis, K., Schwede, T., Tramontano, A., 2018b.

Assessment of model accuracy estimations in CASP12. Proteins: Structure, Function, and

Bioinformatics 86, 345–360. https://doi.org/10.1002/prot.25371

Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H.,

Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., Thompson, J.D., Gibson, T.J., Higgins, D.G.,

2007. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948.

https://doi.org/10.1093/bioinformatics/btm404

Larrañaga, P., Calvo, B., Santana, R., Bielza, C., Galdiano, J., Inza, I., Lozano, J.A.,

Armañanzas, R., Santafé, G., Pérez, A., Robles, V., 2006. Machine learning in bioinformatics.

Brief. Bioinformatics 7, 86–112.

Larsson, P., Skwark, M.J., Wallner, B., Elofsson, A., 2009. Assessment of global and local model

quality in CASP8 using Pcons and ProQ. Proteins 77 Suppl 9, 167–172.

https://doi.org/10.1002/prot.22476

Laskowski, R.A., Rullmannn, J.A., MacArthur, M.W., Kaptein, R., Thornton, J.M., 1996. AQUA

and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR.

J. Biomol. NMR 8, 477–486.

Lassmann, T., Sonnhammer, E.L., 2005. Kalign – an accurate and fast multiple sequence

alignment algorithm. BMC Bioinformatics 6, 298. https://doi.org/10.1186/1471-2105-6-298

LeCun, Y., Bengio, Y., Hinton, G., 2015. Deep learning. Nature 521, 436–444.

https://doi.org/10.1038/nature14539

Lee, G.R., Heo, L., Seok, C., 2016. Effective protein model structure refinement by loop

modeling and overall relaxation. Proteins 84 Suppl 1, 293–301.

https://doi.org/10.1002/prot.24858

Leybaert, L., Braet, K., Vandamme, W., Cabooter, L., Martin, P.E., Evans, W.H., 2003.

Connexin channels, connexin mimetic peptides and ATP release. Cell communication &

adhesion 10, 251–257.

Lipman, D.J., Pearson, W.R., 1985. Rapid and sensitive protein similarity searches. Science 227,

1435–1441. https://doi.org/10.1126/science.2983426

 References

212

Lovell, S.C., Davis, I.W., Arendall, W.B., de Bakker, P.I.W., Word, J.M., Prisant, M.G.,

Richardson, J.S., Richardson, D.C., 2003. Structure validation by Calpha geometry: phi,psi and

Cbeta deviation. Proteins 50, 437–450. https://doi.org/10.1002/prot.10286

Lundström, J., Rychlewski, L., Bujnicki, J., Elofsson, A., 2001. Pcons: a neural-network-based

consensus predictor that improves fold recognition. Protein Sci. 10, 2354–2362.

https://doi.org/10.1110/ps.08501

Ma, J., Wang, S., Zhao, F., Xu, J., 2013. Protein threading using context-specific alignment

potential. Bioinformatics 29, i257–i265. https://doi.org/10.1093/bioinformatics/btt210

Maeda, S., Nakagawa, S., Suga, M., Yamashita, E., Oshima, A., Fujiyoshi, Y., Tsukihara, T.,

2009. Structure of the connexin 26 gap junction channel at 3.5 A resolution. Nature 458, 597–

602. https://doi.org/10.1038/nature07869

Maghrabi, A.H.A., McGuffin, L.J., 2017. ModFOLD6: an accurate web server for the global and

local quality estimation of 3D protein models. Nucleic Acids Res. 45, W416–W421.

https://doi.org/10.1093/nar/gkx332

Manavalan, B., Lee, J., 2017. SVMQA: support-vector-machine-based protein single-model

quality assessment. Bioinformatics 33, 2496–2503. https://doi.org/10.1093/bioinformatics/btx222

Margelevicius, M., Venclovas, C., 2010. Detection of distant evolutionary relationships between

protein families using theory of sequence profile-profile comparison. BMC Bioinformatics 11,

89. https://doi.org/10.1186/1471-2105-11-89

Mariani, V., Biasini, M., Barbato, A., Schwede, T., 2013. lDDT: a local superposition-free score

for comparing protein structures and models using distance difference tests. Bioinformatics 29,

2722–2728. https://doi.org/10.1093/bioinformatics/btt473

Martí-Renom, M.A., Stuart, A.C., Fiser, A., Sánchez, R., Melo, F., Sali, A., 2000. Comparative

protein structure modeling of genes and genomes. Annu Rev Biophys Biomol Struct 29, 291–

325. https://doi.org/10.1146/annurev.biophys.29.1.291

McCulloch, W.S., Pitts, W., 1943. A logical calculus of the ideas immanent in nervous activity.

Bulletin of Mathematical Biophysics 5, 115–133. https://doi.org/10.1007/BF02478259

McDonald, J.H., 2014. Handbook of Biological Statistics 3rd ed Sparky House Publishing.

Baltimore, MD: Available http://www. biostathandbook. com/transformation. html.

McDonnell, M.D., Tissera, M.D., Vladusich, T., Schaik, A. van, Tapson, J., 2015. Fast, Simple

and Accurate Handwritten Digit Classification by Training Shallow Neural Network Classifiers

with the ‘Extreme Learning Machine’ Algorithm. PLOS ONE 10, e0134254.

https://doi.org/10.1371/journal.pone.0134254

McGuffin, L.J., 2009. Prediction of global and local model quality in CASP8 using the

ModFOLD server. Proteins 77 Suppl 9, 185–190. https://doi.org/10.1002/prot.22491

 References

213

McGuffin, L.J., 2008a. Intrinsic disorder prediction from the analysis of multiple protein fold

recognition models. Bioinformatics 24, 1798–1804.

https://doi.org/10.1093/bioinformatics/btn326

McGuffin, L.J., 2008b. The ModFOLD server for the quality assessment of protein structural

models. Bioinformatics 24, 586–587. https://doi.org/10.1093/bioinformatics/btn014

McGuffin, L.J., 2007. Benchmarking consensus model quality assessment for protein fold

recognition. BMC Bioinformatics 8, 345. https://doi.org/10.1186/1471-2105-8-345

McGuffin, L.J., Adiyaman, R., Maghrabi, A.H.A., Shuid, A.N., Brackenridge, D.A., Nealon,

J.O., Philomina, L.S., 2019. IntFOLD: an integrated web resource for high performance protein

structure and function prediction. Nucleic Acids Res 47, W408–W413.

https://doi.org/10.1093/nar/gkz322

McGuffin, L.J., Atkins, J.D., Salehe, B.R., Shuid, A.N., Roche, D.B., 2015. IntFOLD: an

integrated server for modelling protein structures and functions from amino acid sequences.

Nucleic Acids Res. 43, W169-173. https://doi.org/10.1093/nar/gkv236

McGuffin, L.J., Buenavista, M.T., Roche, D.B., 2013. The ModFOLD4 server for the quality

assessment of 3D protein models. Nucleic Acids Res. 41, W368-372.

https://doi.org/10.1093/nar/gkt294

McGuffin, L.J., Jones, D.T., 2003. Improvement of the GenTHREADER method for genomic

fold recognition. Bioinformatics 19, 874–881. https://doi.org/10.1093/bioinformatics/btg097

McGuffin, L.J., Roche, D.B., 2011. Automated tertiary structure prediction with accurate local

model quality assessment using the IntFOLD-TS method. Proteins 79 Suppl 10, 137–146.

https://doi.org/10.1002/prot.23120

McGuffin, L.J., Roche, D.B., 2010. Rapid model quality assessment for protein structure

predictions using the comparison of multiple models without structural alignments.

Bioinformatics 26, 182–188. https://doi.org/10.1093/bioinformatics/btp629

McGuffin, L.J., Shuid, A.N., Kempster, R., Maghrabi, A.H.A., Nealon, J.O., Salehe, B.R.,

Atkins, J.D., Roche, D.B., 2018. Accurate template-based modeling in CASP12 using the

IntFOLD4-TS, ModFOLD6, and ReFOLD methods. Proteins: Structure, Function, and

Bioinformatics 86, 335–344. https://doi.org/10.1002/prot.25360

Meier, A., Söding, J., 2015. Automatic Prediction of Protein 3D Structures by Probabilistic

Multi-template Homology Modeling. PLOS Computational Biology 11, e1004343.

https://doi.org/10.1371/journal.pcbi.1004343

Mirjalili, V., Feig, M., 2013. Protein Structure Refinement through Structure Selection and

Averaging from Molecular Dynamics Ensembles. J Chem Theory Comput 9, 1294–1303.

https://doi.org/10.1021/ct300962x

Mirzaei, S., Sidi, T., Keasar, C., Crivelli, S., 2016. Purely Structural Protein Scoring Functions

Using Support Vector Machine and Ensemble Learning. IEEE/ACM Transactions on

 References

214

Computational Biology and Bioinformatics PP, 1–1.

https://doi.org/10.1109/TCBB.2016.2602269

Monteagudo, L.V., Ferrer, L.M., Catalan-Insa, E., Savva, D., McGuffin, L.J., Tejedor, M.T.,

2015. In silico identification and three-dimensional modelling of the missense mutation in

ADAMTS2 in a sheep flock with dermatosparaxis. Vet. Dermatol. 26, 49–52, e15-16.

https://doi.org/10.1111/vde.12178

Moult, J., Fidelis, K., Kryshtafovych, A., Rost, B., Hubbard, T., Tramontano, A., 2007. Critical

assessment of methods of protein structure prediction—Round VII. Proteins: Structure, Function,

and Bioinformatics 69, 3–9.

Moult, J., Fidelis, K., Kryshtafovych, A., Schwede, T., Tramontano, A., 2014. Critical

assessment of methods of protein structure prediction (CASP)--round x. Proteins 82 Suppl 2, 1–6.

https://doi.org/10.1002/prot.24452

Moult, J., Fidelis, K., Rost, B., Hubbard, T., Tramontano, A., 2005. Critical assessment of

methods of protein structure prediction (CASP)--round 6. Proteins 61 Suppl 7, 3–7.

https://doi.org/10.1002/prot.20716

Moult, J., Pedersen, J.T., Judson, R., Fidelis, K., 1995. A large-scale experiment to assess protein

structure prediction methods. Proteins 23, ii–v. https://doi.org/10.1002/prot.340230303

Mount, D.W., 2004. Bioinformatics: Sequence and Genome Analysis, 2nd Revised edition

edition. ed. Cold Spring Harbor Press, Cold Spring Harbor, N.Y.

Mudavath, S., Pittu, V., 2013. HPLC Method Developmentfor Proteinsand Polypeptides 266–

276.

Murata, K., Wolf, M., 2018. Cryo-electron microscopy for structural analysis of dynamic

biological macromolecules. Biochimica et Biophysica Acta (BBA) - General Subjects,

Biophysical Exploration of Dynamical Ordering of Biomolecular Systems 1862, 324–334.

https://doi.org/10.1016/j.bbagen.2017.07.020

Murtagh, F., 1985. Multidimensional clustering algorithms. Physica-Verlag.

Nakagawa, S., Maeda, S., Tsukihara, T., 2010. Structural and functional studies of gap junction

channels. Current Opinion in Structural Biology, Membranes / Engineering and design 20, 423–

430. https://doi.org/10.1016/j.sbi.2010.05.003

Needleman, S.B., Wunsch, C.D., 1970. A general method applicable to the search for similarities

in the amino acid sequence of two proteins. Journal of Molecular Biology 48, 443–453.

https://doi.org/10.1016/0022-2836(70)90057-4

Neumann, J., 1945. First Draft of a Report on the EDVAC. Moore School of Electrical

Engineering University of Pennsylvania.

Nguyen, S.P., Shang, Y., Xu, D., 2014. DL-PRO: A Novel Deep Learning Method for Protein

Model Quality Assessment. Proc Int Jt Conf Neural Netw 2014, 2071–2078.

https://doi.org/10.1109/IJCNN.2014.6889891

 References

215

Noivirt-Brik, O., Prilusky, J., Sussman, J.L., 2009. Assessment of disorder predictions in CASP8.

Proteins 77 Suppl 9, 210–216. https://doi.org/10.1002/prot.22586

Ó Conchúir, S., Barlow, K.A., Pache, R.A., Ollikainen, N., Kundert, K., O’Meara, M.J., Smith,

C.A., Kortemme, T., 2015. A Web Resource for Standardized Benchmark Datasets, Metrics, and

Rosetta Protocols for Macromolecular Modeling and Design. PLoS ONE 10, e0130433.

https://doi.org/10.1371/journal.pone.0130433

Olechnovič, K., Kulberkytė, E., Venclovas, C., 2013. CAD-score: a new contact area difference-

based function for evaluation of protein structural models. Proteins 81, 149–162.

https://doi.org/10.1002/prot.24172

Olechnovič, K., Venclovas, Č., 2017. VoroMQA: Assessment of protein structure quality using

interatomic contact areas. Proteins 85, 1131–1145. https://doi.org/10.1002/prot.25278

Olechnovič, K., Venclovas, C., 2014. Voronota: A fast and reliable tool for computing the

vertices of the Voronoi diagram of atomic balls. J Comput Chem 35, 672–681.

https://doi.org/10.1002/jcc.23538

Orengo, C.A., Michie, A.D., Jones, S., Jones, D.T., Swindells, M.B., Thornton, J.M., 1997.

CATH--a hierarchic classification of protein domain structures. Structure 5, 1093–1108.

Patthy, L., 2008. Protein Evolution. Wiley.

Petsko, G., Ringe, D., 2008. Protein Structure and Function, Primers in Biology. Oxford

University Press, Oxford, New York.

Phaisangittisagul, E., 2016. An analysis of the regularization between L2 and dropout in single

hidden layer neural network, in: 2016 7th International Conference on Intelligent Systems,

Modelling and Simulation (ISMS). IEEE, pp. 174–179.

Polyanovsky, V.O., Roytberg, M.A., Tumanyan, V.G., 2011. Comparative analysis of the quality

of a global algorithm and a local algorithm for alignment of two sequences. Algorithms Mol Biol

6, 25. https://doi.org/10.1186/1748-7188-6-25

Priddy, K.L., Keller, P.E., 2005. Artificial Neural Networks: An Introduction. SPIE Press.

Rampasek, L., Goldenberg, A., 2016. Tensorflow: Biology’s gateway to deep learning? Cell

systems 2, 12–14.

Ray, A., Lindahl, E., Wallner, B., 2012. Improved model quality assessment using ProQ2. BMC

Bioinformatics 13, 224. https://doi.org/10.1186/1471-2105-13-224

Reilly, D.L., Cooper, L.N., Elbaum, C., 1982. A Neural Model for Category Learning. Biol.

Cybern. 45, 35–41. https://doi.org/10.1007/BF00387211

Roche, D.B., Buenavista, M.T., McGuffin, L.J., 2014. Assessing the quality of modelled 3D

protein structures using the ModFOLD server. Methods Mol. Biol. 1137, 83–103.

https://doi.org/10.1007/978-1-4939-0366-5_7

 References

216

Roche, D.B., Buenavista, M.T., McGuffin, L.J., 2013. The FunFOLD2 server for the prediction

of protein-ligand interactions. Nucleic Acids Res. 41, W303-307.

https://doi.org/10.1093/nar/gkt498

Roche, D.B., Buenavista, M.T., Tetchner, S.J., McGuffin, L.J., 2011a. The IntFOLD server: an

integrated web resource for protein fold recognition, 3D model quality assessment, intrinsic

disorder prediction, domain prediction and ligand binding site prediction. Nucleic Acids Res. 39,

W171-176. https://doi.org/10.1093/nar/gkr184

Roche, D.B., McGuffin, L.J., 2016. In silico identification and characterization of protein-ligand

binding sites, in: Computational Design of Ligand Binding Proteins. Springer, pp. 1–21.

Roche, D.B., Tetchner, S.J., McGuffin, L.J., 2011b. FunFOLD: an improved automated method

for the prediction of ligand binding residues using 3D models of proteins. BMC Bioinformatics

12, 160. https://doi.org/10.1186/1471-2105-12-160

Rojas, A., Czaplewski, C., Liwo, A., Makowski, M., O_dziej, S., Kaz¬¥mierkiewicz, R.,

Scheraga, H., Murarka, R., 2008. Simulation of Protein Structure and Dynamics with the Coarse-

Grained UNRES Force Field. pp. 107–122. https://doi.org/10.1201/9781420059564.ch8

Rosenberg, M.S., 2009. Sequence Alignment: Methods, Models, Concepts, and Strategies.

University of California Press.

Rosenblatt, F., 1962. Principles of neurodynamics: perceptrons and the theory of brain

mechanisms. Spartan Books.

Rosenblatt, F., 1957. The Perceptron, a Perceiving and Recognizing Automaton Project Para.

Cornell Aeronautical Laboratory.

Rost, B., Schneider, R., Sander, C., 1997. Protein fold recognition by prediction-based threading.

J. Mol. Biol. 270, 471–480. https://doi.org/10.1006/jmbi.1997.1101

Roy, A., Kucukural, A., Zhang, Y., 2010. I-TASSER: a unified platform for automated protein

structure and function prediction. Nat Protoc 5, 725–738. https://doi.org/10.1038/nprot.2010.5

Ruck, D.W., Rogers, S.K., Kabrisky, M., 1990. Feature selection using a multilayer perceptron.

Journal of Neural Network Computing 2, 40–48.

Rumelhart, D.E., Hinton, G.E., Williams, R.J., 1986. Learning representations by back-

propagating errors. Nature 323, 533–536. https://doi.org/10.1038/323533a0

Sayers, Eric W., Agarwala, R., Bolton, E.E., Brister, J.R., Canese, K., Clark, K., Connor, R.,

Fiorini, N., Funk, K., Hefferon, T., 2019. Database resources of the national center for

biotechnology information. Nucleic acids research 47, D23.

Sayers, Eric W, Cavanaugh, M., Clark, K., Ostell, J., Pruitt, K.D., Karsch-Mizrachi, I., 2019.

GenBank. Nucleic Acids Research 47, D94–D99. https://doi.org/10.1093/nar/gky989

Schmidhuber, J., 2015. Deep learning in neural networks: An overview. Neural networks 61, 85–

117.

 References

217

Schmidt, C., Urlaub, H., 2017. Combining cryo-electron microscopy (cryo-EM) and cross-

linking mass spectrometry (CX-MS) for structural elucidation of large protein assemblies.

Current Opinion in Structural Biology, Cryo electron microscopy: exciting advances in CryoEM

herald a new era in structural biology • Biophysical methods: behind the scenes of the cryo-EM

revolution 46, 157–168. https://doi.org/10.1016/j.sbi.2017.10.005

Schmidt, T., Haas, J., Gallo Cassarino, T., Schwede, T., 2011. Assessment of ligand-binding

residue predictions in CASP9. Proteins 79 Suppl 10, 126–136. https://doi.org/10.1002/prot.23174

Schneider, M., Brock, O., 2014. Combining physicochemical and evolutionary information for

protein contact prediction. PLoS ONE 9, e108438. https://doi.org/10.1371/journal.pone.0108438

Seikel, J.A., Konstantopoulos, K., Drumright, D.G., 2018. Neuroanatomy and Neurophysiology

for Speech and Hearing Sciences. Plural Publishing.

Shakhnovich, B.E., Deeds, E., Delisi, C., Shakhnovich, E., 2005. Protein structure and

evolutionary history determine sequence space topology. Genome Res 15, 385–392.

https://doi.org/10.1101/gr.3133605

Shuid, A.N., Kempster, R., McGuffin, L.J., 2017. ReFOLD: a server for the refinement of 3D

protein models guided by accurate quality estimates. Nucleic Acids Res. 45, W422–W428.

https://doi.org/10.1093/nar/gkx249

Sievers, F., Higgins, D.G., 2014. Clustal Omega, accurate alignment of very large numbers of

sequences. Methods Mol. Biol. 1079, 105–116. https://doi.org/10.1007/978-1-62703-646-7_6

Siew, N., Elofsson, A., Rychlewski, L., Fischer, D., 2000. MaxSub: an automated measure for

the assessment of protein structure prediction quality. Bioinformatics 16, 776–785.

https://doi.org/10.1093/bioinformatics/16.9.776

Simoni, R.D., Hill, R.L., Vaughan, M., 2002. The discovery of the amino acid threonine: the

work of William C. Rose [classical article]. J. Biol. Chem. 277, E25.

Sippl, M.J., 1993. Recognition of errors in three-dimensional structures of proteins. Proteins:

Structure, Function, and Bioinformatics 17, 355–362. https://doi.org/10.1002/prot.340170404

Sippl, M.J., 1990. Calculation of conformational ensembles from potentials of mean force. An

approach to the knowledge-based prediction of local structures in globular proteins. J. Mol. Biol.

213, 859–883. https://doi.org/10.1016/s0022-2836(05)80269-4

Smith, T.F., Waterman, M.S., 1981. Identification of common molecular subsequences. J. Mol.

Biol. 147, 195–197.

Snoek, J., Larochelle, H., Adams, R.P., 2012. Practical bayesian optimization of machine

learning algorithms, in: Advances in Neural Information Processing Systems. pp. 2951–2959.

Söding, J., 2005. Protein homology detection by HMM-HMM comparison. Bioinformatics 21,

951–960. https://doi.org/10.1093/bioinformatics/bti125

 References

218

Song, Y., DiMaio, F., Wang, R.Y.-R., Kim, D., Miles, C., Brunette, T., Thompson, J., Baker, D.,

2013. High-resolution comparative modeling with RosettaCM. Structure 21, 1735–1742.

https://doi.org/10.1016/j.str.2013.08.005

Soufi, B., Krug, K., Harst, A., Macek, B., 2015. Characterization of the E. coli proteome and its

modifications during growth and ethanol stress. Front Microbiol 6.

https://doi.org/10.3389/fmicb.2015.00103

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R., 2014. Dropout: a

simple way to prevent neural networks from overfitting. The journal of machine learning research

15, 1929–1958.

Sugden, P.H., McGuffin, L.J., Clerk, A., 2013. SOcK, MiSTs, MASK and STicKs: the GCKIII

(germinal centre kinase III) kinases and their heterologous protein-protein interactions. Biochem.

J. 454, 13–30. https://doi.org/10.1042/BJ20130219

Tanaka, M., Fujiwara, M., Ikegami, H., 1986. Propagation of a Gaussian wave packet in an

absorbing medium. Phys. Rev. A 34, 4851–4858. https://doi.org/10.1103/PhysRevA.34.4851

Taverna, D.M., Goldstein, R.A., 2002. Why are proteins so robust to site mutations?11Edited by

J. Thornton. Journal of Molecular Biology 315, 479–484. https://doi.org/10.1006/jmbi.2001.5226

Taylor, T.B., Mulley, G., Dills, A.H., Alsohim, A.S., McGuffin, L.J., Studholme, D.J., Silby,

M.W., Brockhurst, M.A., Johnson, L.J., Jackson, R.W., 2015. Evolution. Evolutionary

resurrection of flagellar motility via rewiring of the nitrogen regulation system. Science 347,

1014–1017. https://doi.org/10.1126/science.1259145

Théobald-Dietrich, A., Giegé, R., Rudinger-Thirion, J., 2005. Evidence for the existence in

mRNAs of a hairpin element responsible for ribosome dependent pyrrolysine insertion into

proteins. Biochimie, Facets of the RNA world 87, 813–817.

https://doi.org/10.1016/j.biochi.2005.03.006

Tokuriki, N., Stricher, F., Schymkowitz, J., Serrano, L., Tawfik, D.S., 2007. The Stability Effects

of Protein Mutations Appear to be Universally Distributed. Journal of Molecular Biology 369,

1318–1332. https://doi.org/10.1016/j.jmb.2007.03.069

Toth, G., Lent, C.S., Tougaw, P.D., Brazhnik, Y., Weng, W., Porod, W., Liu, R.-W., Huang, Y.-

F., 1996. Quantum cellular neural networks. Superlattices and Microstructures 20, 473–478.

https://doi.org/10.1006/spmi.1996.0104

UniProt Consortium, 2015. UniProt: a hub for protein information. Nucleic Acids Res. 43, D204-

212. https://doi.org/10.1093/nar/gku989

Uziela, K., Menéndez Hurtado, D., Shu, N., Wallner, B., Elofsson, A., 2017. ProQ3D: improved

model quality assessments using deep learning. Bioinformatics 33, 1578–1580.

https://doi.org/10.1093/bioinformatics/btw819

Uziela, K., Shu, N., Wallner, B., Elofsson, A., 2016. ProQ3: Improved model quality assessments

using Rosetta energy terms. Sci Rep 6, 33509. https://doi.org/10.1038/srep33509

 References

219

Uziela, K., Wallner, B., 2016. ProQ2: estimation of model accuracy implemented in Rosetta.

Bioinformatics 32, 1411–1413. https://doi.org/10.1093/bioinformatics/btv767

Vaiyapuri, S., Flora, G.D., Gibbins, J.M., 2015. Gap junctions and connexin hemichannels in the

regulation of haemostasis and thrombosis. Biochem. Soc. Trans. 43, 489–494.

https://doi.org/10.1042/BST20150055

Vaiyapuri, S., Jones, C.I., Sasikumar, P., Moraes, L.A., Munger, S.J., Wright, J.R., Ali, M.S.,

Sage, T., Kaiser, W.J., Tucker, K.L., Stain, C.J., Bye, A.P., Jones, S., Oviedo-Orta, E., Simon,

A.M., Mahaut-Smith, M.P., Gibbins, J.M., 2012. Gap junctions and connexin hemichannels

underpin hemostasis and thrombosis. Circulation 125, 2479–2491.

https://doi.org/10.1161/CIRCULATIONAHA.112.101246

Vauquelin, L.-N., Robiquet, P.J., 1806. The discovery of a new plant principle in Asparagus

sativus. Ann Chim 57, 14.

Wallner, B., Elofsson, A., 2007. Prediction of global and local model quality in CASP7 using

Pcons and ProQ. Proteins 69 Suppl 8, 184–193. https://doi.org/10.1002/prot.21774

Wallner, B., Elofsson, A., 2006. Identification of correct regions in protein models using

structural, alignment, and consensus information. Protein Sci. 15, 900–913.

https://doi.org/10.1110/ps.051799606

Wallner, B., Elofsson, A., 2003. Can correct protein models be identified? Protein Sci. 12, 1073–

1086. https://doi.org/10.1110/ps.0236803

Wang, L., Jiang, T., 1994. On the complexity of multiple sequence alignment. J. Comput. Biol. 1,

337–348. https://doi.org/10.1089/cmb.1994.1.337

Wang, S., Sun, S., Li, Z., Zhang, R., Xu, J., 2017. Accurate De Novo Prediction of Protein

Contact Map by Ultra-Deep Learning Model. PLoS Comput. Biol. 13, e1005324.

https://doi.org/10.1371/journal.pcbi.1005324

Wang, X., 2016. Deep Learning in Object Recognition, Detection, and Segmentation. now.

Wang, Z., Eickholt, J., Cheng, J., 2011. APOLLO: a quality assessment service for single and

multiple protein models. Bioinformatics 27, 1715–1716.

https://doi.org/10.1093/bioinformatics/btr268

Wang, Z., Eickholt, J., Cheng, J., 2010a. MULTICOM: a multi-level combination approach to

protein structure prediction and its assessments in CASP8. Bioinformatics 26, 882–888.

https://doi.org/10.1093/bioinformatics/btq058

Wang, Z., Eickholt, J., Cheng, J., 2010b. MULTICOM: a multi-level combination approach to

protein structure prediction and its assessments in CASP8. Bioinformatics 26, 882–888.

Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F.T., de

Beer, T.A.P., Rempfer, C., Bordoli, L., Lepore, R., Schwede, T., 2018. SWISS-MODEL:

homology modelling of protein structures and complexes. Nucleic Acids Res. 46, W296–W303.

https://doi.org/10.1093/nar/gky427

 References

220

Wawer, I., Diehl, B., 2017. NMR Spectroscopy in Pharmaceutical Analysis. Elsevier.

Webb, B., Sali, A., 2016. Comparative Protein Structure Modeling Using MODELLER. Curr

Protoc Bioinformatics 54, 5.6.1-5.6.37. https://doi.org/10.1002/cpbi.3

Widrow, B., 1960. Adaptive “adaline” neuron using chemical “memistors.”. Stanford Electronics

Laboratories Technical Report.

Wiederstein, M., Sippl, M.J., 2007. ProSA-web: interactive web service for the recognition of

errors in three-dimensional structures of proteins. Nucleic Acids Res. 35, W407-410.

https://doi.org/10.1093/nar/gkm290

Wilkins, M.R., Gasteiger, E., Bairoch, A., Sanchez, J.C., Williams, K.L., Appel, R.D.,

Hochstrasser, D.F., 1999. Protein identification and analysis tools in the ExPASy server. Methods

Mol. Biol. 112, 531–552. https://doi.org/10.1385/1-59259-584-7:531

Williams, A., Martin, G., Rovnyak, D., 2016. Modern NMR Approaches to the Structure

Elucidation of Natural Products: Volume 2: Data Acquisition and Applications to Compound

Classes. Royal Society of Chemistry.

Williamson, M., 2011. How Proteins Work, 1 edition. ed. Routledge, New York.

Wu, S., Zhang, Y., 2007. LOMETS: A local meta-threading-server for protein structure

prediction. Nucleic Acids Res 35, 3375–3382. https://doi.org/10.1093/nar/gkm251

Xu, D., Zhang, Y., 2012. Ab initio protein structure assembly using continuous structure

fragments and optimized knowledge-based force field. Proteins 80, 1715–1735.

https://doi.org/10.1002/prot.24065

Yang, J., Wang, Y., Zhang, Y., 2016. ResQ: An approach to unified estimation of B-factor and

residue-specific error in protein structure prediction. J Mol Biol 428, 693–701.

https://doi.org/10.1016/j.jmb.2015.09.024

Yang, J., Zhang, Y., 2015. I-TASSER server: new development for protein structure and function

predictions. Nucleic Acids Res 43, W174–W181. https://doi.org/10.1093/nar/gkv342

Yang, Y., Faraggi, E., Zhao, H., Zhou, Y., 2011. Improving protein fold recognition and

template-based modeling by employing probabilistic-based matching between predicted one-

dimensional structural properties of query and corresponding native properties of templates.

Bioinformatics 27, 2076–2082. https://doi.org/10.1093/bioinformatics/btr350

Zeiler, M.D., 2012. ADADELTA: an adaptive learning rate method. arXiv preprint

arXiv:1212.5701.

Zell, A., Mache, N., Huebner, R., Mamier, G., Vogt, M., Schmalzl, M., Herrmann, K.-U., 1994.

SNNS (stuttgart neural network simulator), in: Neural Network Simulation Environments.

Springer, pp. 165–186.

Zemla, A., 2003. LGA: A method for finding 3D similarities in protein structures. Nucleic Acids

Res. 31, 3370–3374. https://doi.org/10.1093/nar/gkg571

 References

221

Zemla, A., Venclovas, Č., Moult, J., Fidelis, K., 1999. Processing and analysis of CASP3 protein

structure predictions. Proteins: Structure, Function, and Bioinformatics 37, 22–29.

https://doi.org/10.1002/(SICI)1097-0134(1999)37:3+<22::AID-PROT5>3.0.CO;2-W

Zemla, A.T., 2006. Protein Classification Based on Analysis of Local Sequence-Structure

Correspondence (No. UCRL-TR-218946). Lawrence Livermore National Lab. (LLNL),

Livermore, CA (United States). https://doi.org/10.2172/893991

Zhang, Jingfen, Wang, Q., Vantasin, K., Zhang, Jiong, He, Z., Kosztin, I., Shang, Y., Xu, D.,

2011. A multilayer evaluation approach for protein structure prediction and model quality

assessment. Proteins 79 Suppl 10, 172–184. https://doi.org/10.1002/prot.23184

Zhang, Y., Skolnick, J., 2005. TM-align: a protein structure alignment algorithm based on the

TM-score. Nucleic Acids Res. 33, 2302–2309. https://doi.org/10.1093/nar/gki524

Zhang, Y., Skolnick, J., 2004. Scoring function for automated assessment of protein structure

template quality. Proteins 57, 702–710. https://doi.org/10.1002/prot.20264

Zhou, H., Zhou, Y., 2005. SPARKS 2 and SP3 servers in CASP6. Proteins 61 Suppl 7, 152–156.

https://doi.org/10.1002/prot.20732

Zhou, H., Zhou, Y., 2002. Distance-scaled, finite ideal-gas reference state improves structure-

derived potentials of mean force for structure selection and stability prediction. Protein Sci. 11,

2714–2726. https://doi.org/10.1110/ps.0217002

Zhu, Q., Azar, A.T. (Eds.), 2015. Complex System Modelling and Control Through Intelligent

Soft Computations, Studies in Fuzziness and Soft Computing. Springer International Publishing.

 Appendices

222

Appendices

 Appendices

223

Appendix 1

Correlation

Coefficient

Observed

Measure
Combination

Correlation

Score
Improvement

R

GDT-HA

GDT-HA~Mcqso+Mcqsr+D+M6 0.911 0.00129

Rho GDT-HA~Mcqso+Mcqsr+D+M6 0.931 -0.00067

Tau GDT-HA~Mcqso+Mcqsr+D+M6 0.771 -0.00121

R

GDT

GDT~Mcqso+Mcqsr+D+M6 0.927 0.00068

Rho GDT~Mcqso+Mcqsr+D+M6 0.932 -0.00029

Tau GDT~Mcqso+Mcqsr+D+M6 0.782 -0.00078

R

MaxSub

MaxSub~Mcqso+Mcqsr+D+M6 0.931 0.00108

Rho GDT~Mcqso+Mcqsr+D+M6 0.935 0.00025

Tau GDT~Mcqso+Mcqsr+D+M6 0.781 0.00047

R

TM-score

TM-score~Mcqso+Mcqsr+D+M6 0.93 0.00025

Rho GDT~Mcqso+D+M6 0.932 0.00032

Tau GDT~Mcqso+Mcqsr+D+M6 0.784 0.00028

Table S1. List of the top ranked combinations for the ten MQAP methods based on predicted

versus observed scores using multiple linear regression. The top correlated combined methods are

measured using Pearson’s (R), Spearman’s (Rho) and Kendall’s (Tau) correlation coefficients. and

the topmost correlated combinations are listed with the improvement over the scores of the single linear

regression optimised method.

 Appendices

224

Appendix 2

RSNNS_for_R

library(RSNNS)

library(data.table)

all1 <- fread("Global_QA_round1_all.out")

all2 <- fread("Global_QA_round2_all.out")

all <- rbind(all1, all2)#combine data from both rounds

#remove data for where no native structures are available

DT <- subset(all, V1!="T0775" & V1!="T0779" & V1!="T0793" & V1!="T0795" & V1!="T0799"

& V1!="T0802" & V1!="T0804" & V1!="T0826" & V1!="T0828" & V1!="T0839" & V1!="T0842" &

V1!="T0844" & V1!="T0846" & V1!="T0850")

training_set1 <- subset(DT, V1!="T0834" & V1!="T0798" & V1!="T0816" & V1!="T0845" &

V1!="T0822" & V1!="T0784" & V1!="T0833" & V1!="T0857" & V1!="T0763"

& V1!="T0782" & V1!="T0820" & V1!="T0854" & V1!="T0800" & V1!="T0840" & V1!="T0832" &

V1!="T0810" & V1!="T0827" & V1!="T0766"

& V1!="T0771" & V1!="T0858" & V1!="T0765" & V1!="T0855" & V1!="T0847" & V1!="T0796" &

V1!="T0778" & V1!="T0761" & V1!="T0764"

& V1!="T0821")

#nrow(training_set1)

#9517 patterns/residues/rows in table

testing_set1 <-subset(DT, V1=="T0834" | V1=="T0798" | V1=="T0816" | V1=="T0845" |

V1=="T0822" | V1=="T0784" | V1=="T0833" | V1=="T0857" | V1=="T0763"

| V1=="T0782" | V1=="T0820" | V1=="T0854" | V1=="T0800" | V1=="T0840" | V1=="T0832" |

V1=="T0810" | V1=="T0827" | V1=="T0766"

| V1=="T0771" | V1=="T0858" | V1=="T0765" | V1=="T0855" | V1=="T0847" | V1=="T0796" |

V1=="T0778" | V1=="T0761" | V1=="T0764"

| V1=="T0821")

#4586 patterns/residues/rows in table

#nrow(training_set1) + nrow(testing_set1) = 14103

training_set2 <- subset(DT, V1!="T0781" & V1!="T0829" & V1!="T0769" & V1!="T0836" &

V1!="T0759" & V1!="T0777" & V1!="T0852" & V1!="T0792" & V1!="T0818"

& V1!="T0772" & V1!="T0794" & V1!="T0811" & V1!="T0787" & V1!="T0762" & V1!="T0825" &

V1!="T0773" & V1!="T0801" & V1!="T0812"

& V1!="T0831" & V1!="T0760" & V1!="T0853" & V1!="T0815" & V1!="T0856" & V1!="T0788" &

V1!="T0805" & V1!="T0808" & V1!="T0835"

& V1!="T0843")

#9344 patterns/residues/rows in table

testing_set2 <- subset(DT, V1=="T0781" | V1=="T0829" | V1=="T0769" | V1=="T0836" |

V1=="T0759" | V1=="T0777" | V1=="T0852" | V1=="T0792" | V1=="T0818"

 Appendices

225

| V1=="T0772" | V1=="T0794" | V1=="T0811" | V1=="T0787" | V1=="T0762" | V1=="T0825" |

V1=="T0773" | V1=="T0801" | V1=="T0812"

| V1=="T0831" | V1=="T0760" | V1=="T0853" | V1=="T0815" | V1=="T0856" | V1=="T0788" |

V1=="T0805" | V1=="T0808" | V1=="T0835"

| V1=="T0843")

#4759 patterns/residues/rows in table

#nrow(training_set2) + nrow(testing_set2) = 14103

training_set3 <- subset(DT, V1!="T0819" & V1!="T0851" & V1!="T0790" & V1!="T0789" &

V1!="T0823" & V1!="T0813" & V1!="T0770" & V1!="T0803" & V1!="T0841"

& V1!="T0807" & V1!="T0848" & V1!="T0768" & V1!="T0785" & V1!="T0817" & V1!="T0838" &

V1!="T0797" & V1!="T0767" & V1!="T0780"

& V1!="T0837" & V1!="T0774" & V1!="T0786" & V1!="T0824" & V1!="T0814" & V1!="T0830" &

V1!="T0783" & V1!="T0849" & V1!="T0776"

& V1!="T0806")

#9345 patterns/residues/rows in table

testing_set3 <- subset(DT, V1=="T0819" | V1=="T0851" | V1=="T0790" | V1=="T0789" |

V1=="T0823" | V1=="T0813" | V1=="T0770" | V1=="T0803" | V1=="T0841"

| V1=="T0807" | V1=="T0848" | V1=="T0768" | V1=="T0785" | V1=="T0817" | V1=="T0838" |

V1=="T0797" | V1=="T0767" | V1=="T0780"

| V1=="T0837" | V1=="T0774" | V1=="T0786" | V1=="T0824" | V1=="T0814" | V1=="T0830" |

V1=="T0783" | V1=="T0849" | V1=="T0776"

| V1=="T0806")

#4758 patterns/residues/rows in table

#nrow(training_set3) + nrow(testing_set3) = 14103

#randomise each training set

training_set1_ran <- training_set1[sample(1:nrow(training_set1), replace=FALSE),]

training_set1_inputs_ran <- training_set1_ran[, 3:12, with=FALSE]

training_set1_outputs_GDT-HA <- training_set1_ran[, 13, with=FALSE]

training_set1_outputs_GDT <- training_set1_ran[, 14, with=FALSE]

training_set1_outputs_MaxSub <- training_set1_ran[, 15, with=FALSE]

training_set1_outputs_TM-score <- training_set1_ran[, 16, with=FALSE]

testing_set1_inputs <- testing_set1[, 3:12, with=FALSE]

testing_set1_outputs_GDT-HA <- testing_set1[, 13, with=FALSE]

testing_set1_outputs_GDT <- testing_set1[, 14, with=FALSE]

testing_set1_outputs_MaxSub <- testing_set1[, 15, with=FALSE]

testing_set1_outputs_TM-score <- testing_set1[, 16, with=FALSE]

training_set2_ran <- training_set2[sample(1:nrow(training_set2), replace=FALSE),]

training_set2_inputs_ran <- training_set2_ran[, 3:12, with=FALSE]

training_set2_outputs_GDT-HA <- training_set2_ran[, 13, with=FALSE]

 Appendices

226

training_set2_outputs_GDT <- training_set2_ran[, 14, with=FALSE]

training_set2_outputs_MaxSub <- training_set2_ran[, 15, with=FALSE]

training_set2_outputs_TM-score <- training_set2_ran[, 16, with=FALSE]

testing_set2_inputs <- testing_set2[, 3:12, with=FALSE]

testing_set2_outputs_GDT-HA <- testing_set2[, 13, with=FALSE]

testing_set2_outputs_GDT <- testing_set2[, 14, with=FALSE]

testing_set2_outputs_MaxSub <- testing_set2[, 15, with=FALSE]

testing_set2_outputs_TM-score <- testing_set2[, 16, with=FALSE]

training_set3_ran <- training_set3[sample(1:nrow(training_set3), replace=FALSE),]

training_set3_inputs_ran <- training_set3_ran[, 3:12, with=FALSE]

training_set3_outputs_GDT-HA <- training_set3_ran[, 13, with=FALSE]

training_set3_outputs_GDT <- training_set3_ran[, 14, with=FALSE]

training_set3_outputs_MaxSub <- training_set3_ran[, 15, with=FALSE]

training_set3_outputs_TM-score <- training_set3_ran[, 16, with=FALSE]

testing_set3_inputs <- testing_set3[, 3:12, with=FALSE]

testing_set3_outputs_GDT-HA <- testing_set3[, 13, with=FALSE]

testing_set3_outputs_GDT <- testing_set3[, 14, with=FALSE]

testing_set3_outputs_MaxSub <- testing_set3[, 15, with=FALSE]

testing_set3_outputs_TM-score <- testing_set3[, 16, with=FALSE]

GDT-HA <- rbind(testing_set1_outputs_GDT-HA, testing_set2_outputs_GDT-HA,

testing_set3_outputs_GDT-HA)

GDT <- rbind(testing_set1_outputs_GDT, testing_set2_outputs_GDT,

testing_set3_outputs_GDT)

MaxSub <- rbind(testing_set1_outputs_MaxSub, testing_set2_outputs_MaxSub,

testing_set3_outputs_MaxSub)

TM-score <- rbind(testing_set1_outputs_TM-score, testing_set2_outputs_TM-score,

testing_set3_outputs_TM-score)

#try a NN with the ModFOLD6_rank combo of global score inputs

#target_id, actualfilename, ModFOLDclustscore, ModFOLDclustQscore, ModFOLDclust2,

ModFOLDclustres, ModFOLDclustQres, ProQ2res, CDAres, DBAres, SSAres, ModFOLD6res

#mean of ModFOLDclustQres+ProQ2res+CDAres+DBAres+SSAres+ModFOLD6res gives good top model

score (for each round and FM models) and reasonable correlations

cat("7_8_9_10_11_12-0_5_100it_3_hidden\n", file =

"Global_NN_both_rounds_correlations.dat",append = TRUE)

training_set1_inputs_ran <- training_set1_ran[, c(7,8,9,10,11,12), with=FALSE]

training_set2_inputs_ran <- training_set2_ran[, c(7,8,9,10,11,12), with=FALSE]

training_set3_inputs_ran <- training_set3_ran[, c(7,8,9,10,11,12), with=FALSE]

testing_set1_inputs <- testing_set1[, c(7,8,9,10,11,12), with=FALSE]

 Appendices

227

testing_set2_inputs <- testing_set2[, c(7,8,9,10,11,12), with=FALSE]

testing_set3_inputs <- testing_set3[, c(7,8,9,10,11,12), with=FALSE]

#train to GDT-HA score

model <- mlp(training_set1_inputs_ran, training_set1_outputs_GDT-HA, size = 3,

learnFuncParams = c(0.5, 0.01), maxit = 100, inputsTest = testing_set1_inputs,

targetsTest = testing_set1_outputs_GDT-HA)

save(model, file="Global_7_8_9_10_11_12-0_5_100it_3_hidden.model.train_window_set1")

predictions_set1 <- predict(model, testing_set1_inputs)

model <- mlp(training_set2_inputs_ran, training_set2_outputs_GDT-HA, size = 3,

learnFuncParams = c(0.5, 0.01), maxit = 100, inputsTest = testing_set2_inputs,

targetsTest = testing_set2_outputs_GDT-HA)

save(model, file="Global_7_8_9_10_11_12-0_5_100it_3_hidden.model.train_window_set2")

predictions_set2 <- predict(model, testing_set2_inputs)

model <- mlp(training_set3_inputs_ran, training_set3_outputs_GDT-HA, size = 3,

learnFuncParams = c(0.5, 0.01), maxit = 100, inputsTest = testing_set3_inputs,

targetsTest = testing_set3_outputs_GDT-HA)

save(model, file="Global_7_8_9_10_11_12-0_5_100it_3_hidden.model.train_window_set3")

predictions_set3 <- predict(model, testing_set3_inputs)

predictions <- rbind(predictions_set1, predictions_set2, predictions_set3)

#test correlations pred v obs

cat("ModFOLD7_NN_test_GDT-HA",

cor(predictions, GDT-HA, method="pearson"), cor(predictions, GDT-HA, method="spearman"),

cor(predictions, GDT-HA, method="kendall"),

cor(predictions, GDT, method="pearson"), cor(predictions, GDT, method="spearman"),

cor(predictions, GDT, method="kendall"),

cor(predictions, MaxSub, method="pearson"), cor(predictions, MaxSub, method="spearman"),

cor(predictions, MaxSub, method="kendall"),

cor(predictions, TM-score, method="pearson"), cor(predictions, TM-score,

method="spearman"), cor(predictions, TM-score, method="kendall")

, "\n", sep=" ", file = "Global_NN_both_rounds_correlations.dat",append = TRUE)

#test ranking - cumulative scores of top ranked models

cat("7_8_9_10_11_12-0_5_100it_3_hidden\n", file =

"Global_NN_both_rounds_ranks.dat",append = TRUE)

DT2 <- rbind(testing_set1, testing_set2, testing_set3)

DT2[,V17 := predictions]#add predictions as last column (V17)

target_ids <- unique(DT2$V1)#get all IDs in data (unique variables in column $V1)

 Appendices

228

#setup empty arrays

NNtest <- c()

for(i in 1:length(target_ids))

{

 #print(target_ids[i])

 set1 <-subset(DT2, V1==target_ids[i])

 #mean of ModFOLDclustQ_single_res_global_all, ProQ2_res_global_all,

CDA_res_global_all, DBA_res_global_all, SSA_res_global_all and

ModFOLD6_single_res_global_all #<--- 3rd BEST COMBO FOR RANKING

 NNtest <- rbind(NNtest, c(set1[which.max(set1$V17),]$V1,

set1[which.max(set1$V17),]$V2, set1[which.max(set1$V17),]$V13,

set1[which.max(set1$V17),]$V14, set1[which.max(set1$V17),]$V15,

set1[which.max(set1$V17),]$V16))

}

#standard error function for error bars

std_err <- function(x) sd(x)/sqrt(length(x))

#cumlative GDT-HA, GDT-TS, MaxSub & TM-scores of top models for each target ranked by

each global QA score

cumulativescores <- c()

cumulativescores <- rbind(cumulativescores, c("Method", "GDT-HA", "GDT-TS", "MaxSub",

"TM-score", "Std_err_GDT-HA", "Std_err_GDT-TS", "Std_err_MaxSub", "Std_err_TM-score"))

cumulativescores <- rbind(cumulativescores, c("NNtest", sum(as.numeric(NNtest[,3])),

sum(as.numeric(NNtest[,4])), sum(as.numeric(NNtest[,5])), sum(as.numeric(NNtest[,6])),

std_err(as.numeric(NNtest[,3])), std_err(as.numeric(NNtest[,4])),

std_err(as.numeric(NNtest[,5])), std_err(as.numeric(NNtest[,6]))))

#output table to a file

cat("Round1+Round2\n", file = "Global_NN_both_rounds_ranks.dat", append = TRUE)

write.table(cumulativescores, file = "Global_NN_both_rounds_ranks.dat", sep = " ", quote

= FALSE, row.names = FALSE, col.names = FALSE, append = TRUE)

 Appendices

229

Appendix 3

DANNs_for_TensorFlow

import os

import tensorflow as tf

import numpy

import pandas as pd

sess = tf.InteractiveSession()

Create a list containing the methods which are too be combined.

Key: ModFOLD5_single_orig_global (3), ModFOLDclustQ_single_orig_global (4),

ModFOLDclust2_single_orig_global (5), ModFOLD5_single_res_global (6),

ModFOLDclustQ_single_res_global (7), ProQ2_res_global (8), CDA_res_global (9),

DBA_res_global (10), SSA_res_global (11), ModFOLD6_single_res_global (12).

combination_choice = ["V5", "V6", "V7", "V8", "V9", "V10"]

#Create a text file containing the wanted combination, this file is fed into R_Part1

file = open("combination.txt","w")

file.write("5,6,7,8,9,10")

file.close()

Runs the R script, R_Part1.R through the terminal.

os.system("Rscript R_Part1.R")

A function which aims to extract all the data produced from R_Part1 and stores them

in arrays to be used in the NN.

def run(set_num, combination, observation, learning_rate, training_epochs, n_hidden1,

n_hidden2, n_input):

 # Read files produced by R_Part1 and stores the data into a Data Frame.

 df_train = pd.read_csv("training_set%d_inputs_ran.csv" % set_num)

 df_GDT-HA = pd.read_csv("training_set%d_outputs_GDT-HA.csv" % set_num)

 df_test_inputs = pd.read_csv("testing_set%d_inputs.csv" % set_num)

 df_test_output = pd.read_csv("testing_set%d_outputs_GDT-HA.csv" % set_num)

 # Extracts the wanted data from the Data Frames above and converts the frame into a

Numpy-array.

 trainer = df_train.as_matrix(combination)

 label = df_GDT-HA.as_matrix(observation)

 test_inputs = df_test_inputs.as_matrix(combination)

 test_outputs = df_test_output.as_matrix(observation)

 h = my_mlp(set_num, trainer, label, learning_rate, training_epochs, n_hidden1,

n_hidden2, n_input, test_inputs, test_outputs)

 return h

 Appendices

230

def multilayer_perceptron(x, w1, w2, drop, out):

 # the first hidden layer

 layer_1 = tf.matmul(x, w1)

 layer_1 = tf.nn.dropout(layer_1, drop)

 # the second hidden layer

 layer_2 = tf.matmul(layer_1, w2)

 layer_2 = tf.nn.dropout(layer_2, drop)

 # Output layer with linear activation

 out_layer = tf.matmul(layer_2, out)

 return out_layer

def my_mlp (num, trainer, trainer_awn, learning_rate, training_epochs, n_hidden1,

n_hidden2, n_input, test_inputs, test_outputs):

 trX, trY= trainer, trainer_awn

 #create placeholders

 x = tf.placeholder(tf.float32, shape=[None, n_input])

 y_ = tf.placeholder(tf.float32, shape=[None,])

 keep_prob = tf.placeholder("float")

 #create initial weights

 w1 = tf.Variable(tf.truncated_normal([n_input, n_hidden1], stddev=0.01))

 w2 = tf.Variable(tf.truncated_normal([n_hidden1, n_hidden2], stddev=0.01))

 out = tf.Variable(tf.truncated_normal([n_hidden2, 1], stddev=0.01))

 #predicted class and loss function

 y = multilayer_perceptron(x, w1, w2, keep_prob, out)

 # Reshapes the observational data.

 y_ = tf.reshape(y_, [-1, 1])

 # Cost function, aims to reduce the difference between the predictions and the

observational data.

 cross_entropy = tf.reduce_sum(tf.abs(y - y_))

 #training

 train_step =

tf.train.AdagradOptimizer(learning_rate=learning_rate).minimize(cross_entropy)

 correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))

 accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))

 init_op = tf.initialize_all_variables()

 saver = tf.train.Saver()

 # Start training.

 with tf.Session() as sess:

 # you need to initialize all variables

 sess.run(init_op)

 #training session, it is run multiple times equal to the set iterations/epochs.

 for i in range(training_epochs + 1):

 Appendices

231

 #feeds the training data, both combination data and observation data, into

the placeholders.

 sess.run([train_step, cross_entropy], feed_dict={x: trX, y_: trY,

keep_prob: 0.9})

 print("Accuracy:", accuracy.eval({x: test_inputs, y_: test_outputs, keep_prob:

1}))

 #Creates a Numpy array containing the final model predictions.

 best = sess.run(y, feed_dict={x: test_inputs, keep_prob: 1})

 #Saves the weights for each set seperatly.

 saver.save(sess,

'/home/filipe/Documents/Disseration/tensorflow/Data_searching/dropout/Rank/Model%d/mode

l' % num)

 return best

#train each data set to GDT-HA score (V13)

prediction1 = run(1, [combination_choice], ["V13"], 0.01, 550, 2, 3,

len(combination_choice))

numpy.savetxt('prediction_set1.out', prediction1)

prediction2 = run(2, [combination_choice], ["V13"], 0.01, 550, 2, 3,

len(combination_choice))

numpy.savetxt('prediction_set2.out', prediction2)

prediction3 = run(3, [combination_choice], ["V13"], 0.01, 550, 2, 3,

len(combination_choice))

numpy.savetxt('prediction_set3.out', prediction3)

Runs the R script, R_Part2.R through the terminal.

os.system("Rscript R_Part2.R")

 Appendices

232

Appendix 4

R_Part1

library(RSNNS)

library(data.table)

all1 <- fread("Global_QA_round1_all.out")

all2 <- fread("Global_QA_round2_all.out")

all <- rbind(all1, all2)#combine data from both rounds

#remove data for where no native structures are available

DT <- subset(all, V1!="T0775" & V1!="T0779" & V1!="T0793" & V1!="T0795" & V1!="T0799"

& V1!="T0802" & V1!="T0804" & V1!="T0826" & V1!="T0828" & V1!="T0839" & V1!="T0842" &

V1!="T0844" & V1!="T0846" & V1!="T0850")

training_set1 <- subset(DT, V1!="T0834" & V1!="T0798" & V1!="T0816" & V1!="T0845" &

V1!="T0822" & V1!="T0784" & V1!="T0833" & V1!="T0857" & V1!="T0763"

 & V1!="T0782" & V1!="T0820" & V1!="T0854" & V1!="T0800" &

V1!="T0840" & V1!="T0832" & V1!="T0810" & V1!="T0827" & V1!="T0766"

 & V1!="T0771" & V1!="T0858" & V1!="T0765" & V1!="T0855" &

V1!="T0847" & V1!="T0796" & V1!="T0778" & V1!="T0761" & V1!="T0764"

 & V1!="T0821")

#nrow(training_set1)

#9517 patterns/residues/rows in table

testing_set1 <-subset(DT, V1=="T0834" | V1=="T0798" | V1=="T0816" | V1=="T0845" |

V1=="T0822" | V1=="T0784" | V1=="T0833" | V1=="T0857" | V1=="T0763"

 | V1=="T0782" | V1=="T0820" | V1=="T0854" | V1=="T0800" |

V1=="T0840" | V1=="T0832" | V1=="T0810" | V1=="T0827" | V1=="T0766"

 | V1=="T0771" | V1=="T0858" | V1=="T0765" | V1=="T0855" |

V1=="T0847" | V1=="T0796" | V1=="T0778" | V1=="T0761" | V1=="T0764"

 | V1=="T0821")

#4586 patterns/residues/rows in table

#nrow(training_set1) + nrow(testing_set1) = 14103

training_set2 <- subset(DT, V1!="T0781" & V1!="T0829" & V1!="T0769" & V1!="T0836" &

V1!="T0759" & V1!="T0777" & V1!="T0852" & V1!="T0792" & V1!="T0818"

 & V1!="T0772" & V1!="T0794" & V1!="T0811" & V1!="T0787" &

V1!="T0762" & V1!="T0825" & V1!="T0773" & V1!="T0801" & V1!="T0812"

 & V1!="T0831" & V1!="T0760" & V1!="T0853" & V1!="T0815" &

V1!="T0856" & V1!="T0788" & V1!="T0805" & V1!="T0808" & V1!="T0835"

 & V1!="T0843")

#9344 patterns/residues/rows in table

 Appendices

233

testing_set2 <- subset(DT, V1=="T0781" | V1=="T0829" | V1=="T0769" | V1=="T0836" |

V1=="T0759" | V1=="T0777" | V1=="T0852" | V1=="T0792" | V1=="T0818"

 | V1=="T0772" | V1=="T0794" | V1=="T0811" | V1=="T0787" |

V1=="T0762" | V1=="T0825" | V1=="T0773" | V1=="T0801" | V1=="T0812"

 | V1=="T0831" | V1=="T0760" | V1=="T0853" | V1=="T0815" |

V1=="T0856" | V1=="T0788" | V1=="T0805" | V1=="T0808" | V1=="T0835"

 | V1=="T0843")

#4759 patterns/residues/rows in table

#nrow(training_set2) + nrow(testing_set2) = 14103

training_set3 <- subset(DT, V1!="T0819" & V1!="T0851" & V1!="T0790" & V1!="T0789" &

V1!="T0823" & V1!="T0813" & V1!="T0770" & V1!="T0803" & V1!="T0841"

 & V1!="T0807" & V1!="T0848" & V1!="T0768" & V1!="T0785" &

V1!="T0817" & V1!="T0838" & V1!="T0797" & V1!="T0767" & V1!="T0780"

 & V1!="T0837" & V1!="T0774" & V1!="T0786" & V1!="T0824" &

V1!="T0814" & V1!="T0830" & V1!="T0783" & V1!="T0849" & V1!="T0776"

 & V1!="T0806")

#9345 patterns/residues/rows in table

testing_set3 <- subset(DT, V1=="T0819" | V1=="T0851" | V1=="T0790" | V1=="T0789" |

V1=="T0823" | V1=="T0813" | V1=="T0770" | V1=="T0803" | V1=="T0841"

 | V1=="T0807" | V1=="T0848" | V1=="T0768" | V1=="T0785" |

V1=="T0817" | V1=="T0838" | V1=="T0797" | V1=="T0767" | V1=="T0780"

 | V1=="T0837" | V1=="T0774" | V1=="T0786" | V1=="T0824" |

V1=="T0814" | V1=="T0830" | V1=="T0783" | V1=="T0849" | V1=="T0776"

 | V1=="T0806")

#4758 patterns/residues/rows in table

#nrow(training_set3) + nrow(testing_set3) = 14103

#randomise each training set

training_set1_ran <- training_set1[sample(1:nrow(training_set1), replace=FALSE),]

training_set1_inputs_ran <- training_set1_ran[, 3:12, with=FALSE]

training_set1_outputs_GDT-HA <- training_set1_ran[, 13, with=FALSE]

training_set1_outputs_GDT <- training_set1_ran[, 14, with=FALSE]

training_set1_outputs_MaxSub <- training_set1_ran[, 15, with=FALSE]

training_set1_outputs_TM-score <- training_set1_ran[, 16, with=FALSE]

testing_set1_inputs <- testing_set1[, 3:12, with=FALSE]

testing_set1_outputs_GDT-HA <- testing_set1[, 13, with=FALSE]

testing_set1_outputs_GDT <- testing_set1[, 14, with=FALSE]

testing_set1_outputs_MaxSub <- testing_set1[, 15, with=FALSE]

testing_set1_outputs_TM-score <- testing_set1[, 16, with=FALSE]

training_set2_ran <- training_set2[sample(1:nrow(training_set2), replace=FALSE),]

 Appendices

234

training_set2_inputs_ran <- training_set2_ran[, 3:12, with=FALSE]

training_set2_outputs_GDT-HA <- training_set2_ran[, 13, with=FALSE]

training_set2_outputs_GDT <- training_set2_ran[, 14, with=FALSE]

training_set2_outputs_MaxSub <- training_set2_ran[, 15, with=FALSE]

training_set2_outputs_TM-score <- training_set2_ran[, 16, with=FALSE]

testing_set2_inputs <- testing_set2[, 3:12, with=FALSE]

testing_set2_outputs_GDT-HA <- testing_set2[, 13, with=FALSE]

testing_set2_outputs_GDT <- testing_set2[, 14, with=FALSE]

testing_set2_outputs_MaxSub <- testing_set2[, 15, with=FALSE]

testing_set2_outputs_TM-score <- testing_set2[, 16, with=FALSE]

training_set3_ran <- training_set3[sample(1:nrow(training_set3), replace=FALSE),]

training_set3_inputs_ran <- training_set3_ran[, 3:12, with=FALSE]

training_set3_outputs_GDT-HA <- training_set3_ran[, 13, with=FALSE]

training_set3_outputs_GDT <- training_set3_ran[, 14, with=FALSE]

training_set3_outputs_MaxSub <- training_set3_ran[, 15, with=FALSE]

training_set3_outputs_TM-score <- training_set3_ran[, 16, with=FALSE]

testing_set3_inputs <- testing_set3[, 3:12, with=FALSE]

testing_set3_outputs_GDT-HA <- testing_set3[, 13, with=FALSE]

testing_set3_outputs_GDT <- testing_set3[, 14, with=FALSE]

testing_set3_outputs_MaxSub <- testing_set3[, 15, with=FALSE]

testing_set3_outputs_TM-score <- testing_set3[, 16, with=FALSE]

GDT-HA <- rbind(testing_set1_outputs_GDT-HA, testing_set2_outputs_GDT-HA,

testing_set3_outputs_GDT-HA)

GDT <- rbind(testing_set1_outputs_GDT, testing_set2_outputs_GDT,

testing_set3_outputs_GDT)

MaxSub <- rbind(testing_set1_outputs_MaxSub, testing_set2_outputs_MaxSub,

testing_set3_outputs_MaxSub)

TM-score <- rbind(testing_set1_outputs_TM-score, testing_set2_outputs_TM-score,

testing_set3_outputs_TM-score)

#Creates data sets containing the data for the specified combination

combination <- fread("combination.txt")

if (1 <= length(combination)){

 q = data.matrix(combination[[1]])

 if (2 <= length(combination)){

 w = data.matrix(combination[[2]])

 if (3 <= length(combination)){

 e = data.matrix(combination[[3]])

 if (4 <= length(combination)){

 Appendices

235

 r = data.matrix(combination[[4]])

 if (5 <= length(combination)){

 t = data.matrix(combination[[5]])

 if (6 <= length(combination)){

 y = data.matrix(combination[[6]])

 if (7 <= length(combination)){

 u = data.matrix(combination[[7]])

 if (8 <= length(combination)){

 i = data.matrix(combination[[8]])

 if (9 <= length(combination)){

 o = data.matrix(combination[[9]])

 if (10 <= length(combination)){

 p = data.matrix(combination[[10]])

 training_set1_inputs_ran <- training_set1_ran[, c(q, w, e, r, t, y,

u, i, o, p), with=FALSE]

 training_set2_inputs_ran <- training_set2_ran[, c(q, w, e, r, t, y,

u, i, o, p), with=FALSE]

 training_set3_inputs_ran <- training_set3_ran[, c(q, w, e, r, t, y,

u, i, o, p), with=FALSE]

 testing_set1_inputs <- testing_set1[, c(q, w, e, r, t, y, u, i, o,

p), with=FALSE]

 testing_set2_inputs <- testing_set2[, c(q, w, e, r, t, y, u, i, o,

p), with=FALSE]

 testing_set3_inputs <- testing_set3[, c(q, w, e, r, t, y, u, i, o,

p), with=FALSE]

 } else {

 training_set1_inputs_ran <- training_set1_ran[, c(q, w, e, r, t, y,

u, i, o), with=FALSE]

 training_set2_inputs_ran <- training_set2_ran[, c(q, w, e, r, t, y,

u, i, o), with=FALSE]

 training_set3_inputs_ran <- training_set3_ran[, c(q, w, e, r, t, y,

u, i, o), with=FALSE]

 testing_set1_inputs <- testing_set1[, c(q, w, e, r, t, y, u, i, o),

with=FALSE]

 testing_set2_inputs <- testing_set2[, c(q, w, e, r, t, y, u, i, o),

with=FALSE]

 testing_set3_inputs <- testing_set3[, c(q, w, e, r, t, y, u, i, o),

with=FALSE]

 }

 } else{

 training_set1_inputs_ran <- training_set1_ran[, c(q, w, e, r, t, y,

u, i), with=FALSE]

 Appendices

236

 training_set2_inputs_ran <- training_set2_ran[, c(q, w, e, r, t, y,

u, i), with=FALSE]

 training_set3_inputs_ran <- training_set3_ran[, c(q, w, e, r, t, y,

u, i), with=FALSE]

 testing_set1_inputs <- testing_set1[, c(q, w, e, r, t, y, u, i),

with=FALSE]

 testing_set2_inputs <- testing_set2[, c(q, w, e, r, t, y, u, i),

with=FALSE]

 testing_set3_inputs <- testing_set3[, c(q, w, e, r, t, y, u, i),

with=FALSE]

 }

 } else {

 training_set1_inputs_ran <- training_set1_ran[, c(q, w, e, r, t, y, u),

with=FALSE]

 training_set2_inputs_ran <- training_set2_ran[, c(q, w, e, r, t, y, u),

with=FALSE]

 training_set3_inputs_ran <- training_set3_ran[, c(q, w, e, r, t, y, u),

with=FALSE]

 testing_set1_inputs <- testing_set1[, c(q, w, e, r, t, y, u),

with=FALSE]

 testing_set2_inputs <- testing_set2[, c(q, w, e, r, t, y, u),

with=FALSE]

 testing_set3_inputs <- testing_set3[, c(q, w, e, r, t, y, u),

with=FALSE]

 }

 } else {

 training_set1_inputs_ran <- training_set1_ran[, c(q, w, e, r, t, y),

with=FALSE]

 training_set2_inputs_ran <- training_set2_ran[, c(q, w, e, r, t, y),

with=FALSE]

 training_set3_inputs_ran <- training_set3_ran[, c(q, w, e, r, t, y),

with=FALSE]

 testing_set1_inputs <- testing_set1[, c(q, w, e, r, t, y), with=FALSE]

 testing_set2_inputs <- testing_set2[, c(q, w, e, r, t, y), with=FALSE]

 testing_set3_inputs <- testing_set3[, c(q, w, e, r, t, y), with=FALSE]

 }

 } else {

 training_set1_inputs_ran <- training_set1_ran[, c(q, w, e, r, t),

with=FALSE]

 training_set2_inputs_ran <- training_set2_ran[, c(q, w, e, r, t),

with=FALSE]

 training_set3_inputs_ran <- training_set3_ran[, c(q, w, e, r, t),

with=FALSE]

 Appendices

237

 testing_set1_inputs <- testing_set1[, c(q, w, e, r, t), with=FALSE]

 testing_set2_inputs <- testing_set2[, c(q, w, e, r, t), with=FALSE]

 testing_set3_inputs <- testing_set3[, c(q, w, e, r, t), with=FALSE]

 }

 } else {

 training_set1_inputs_ran <- training_set1_ran[, c(q, w, e, r), with=FALSE]

 training_set2_inputs_ran <- training_set2_ran[, c(q, w, e, r), with=FALSE]

 training_set3_inputs_ran <- training_set3_ran[, c(q, w, e, r), with=FALSE]

 testing_set1_inputs <- testing_set1[, c(q, w, e, r), with=FALSE]

 testing_set2_inputs <- testing_set2[, c(q, w, e, r), with=FALSE]

 testing_set3_inputs <- testing_set3[, c(q, w, e, r), with=FALSE]

 }

 } else {

 training_set1_inputs_ran <- training_set1_ran[, c(q, w, e), with=FALSE]

 training_set2_inputs_ran <- training_set2_ran[, c(q, w, e), with=FALSE]

 training_set3_inputs_ran <- training_set3_ran[, c(q, w, e), with=FALSE]

 testing_set1_inputs <- testing_set1[, c(q, w, e), with=FALSE]

 testing_set2_inputs <- testing_set2[, c(q, w, e), with=FALSE]

 testing_set3_inputs <- testing_set3[, c(q, w, e), with=FALSE]

 }

 } else {

 training_set1_inputs_ran <- training_set1_ran[, c(q, w), with=FALSE]

 training_set2_inputs_ran <- training_set2_ran[, c(q, w), with=FALSE]

 training_set3_inputs_ran <- training_set3_ran[, c(q, w), with=FALSE]

 testing_set1_inputs <- testing_set1[, c(q, w), with=FALSE]

 testing_set2_inputs <- testing_set2[, c(q, w), with=FALSE]

 testing_set3_inputs <- testing_set3[, c(q, w), with=FALSE]

 }

 } else {

 training_set1_inputs_ran <- training_set1_ran[, c(q), with=FALSE]

 training_set2_inputs_ran <- training_set2_ran[, c(q), with=FALSE]

 training_set3_inputs_ran <- training_set3_ran[, c(q), with=FALSE]

 testing_set1_inputs <- testing_set1[, c(q), with=FALSE]

 testing_set2_inputs <- testing_set2[, c(q), with=FALSE]

 testing_set3_inputs <- testing_set3[, c(q), with=FALSE]

 }

}

#Creates files containing all the data sets need to for the NN in python and also the

data needed for R_Part2

write.csv(training_set1_inputs_ran, file="training_set1_inputs_ran.csv")

write.csv(training_set2_inputs_ran, file="training_set2_inputs_ran.csv")

write.csv(training_set3_inputs_ran, file="training_set3_inputs_ran.csv")

 Appendices

238

write.csv(training_set1_outputs_GDT-HA, file="training_set1_outputs_GDT-HA.csv")

write.csv(training_set2_outputs_GDT-HA, file="training_set2_outputs_GDT-HA.csv")

write.csv(training_set3_outputs_GDT-HA, file="training_set3_outputs_GDT-HA.csv")

write.csv(testing_set1_inputs, file="testing_set1_inputs.csv")

write.csv(testing_set2_inputs, file="testing_set2_inputs.csv")

write.csv(testing_set3_inputs, file="testing_set3_inputs.csv")

write.csv(testing_set1_outputs_GDT-HA, file="testing_set1_outputs_GDT-HA.csv")

write.csv(testing_set2_outputs_GDT-HA, file="testing_set2_outputs_GDT-HA.csv")

write.csv(testing_set3_outputs_GDT-HA, file="testing_set3_outputs_GDT-HA.csv")

write.csv(GDT-HA, file="GDT-HA.csv")

write.csv(GDT, file="GDT.csv")

write.csv(MaxSub, file="MaxSub.csv")

write.csv(TM-score, file="TM-score.csv")

write.csv(testing_set1, file="testing_set1.csv")

write.csv(testing_set2, file="testing_set2.csv")

write.csv(testing_set3, file="testing_set3.csv")

#R_Part2

library(RSNNS)

library(data.table)

predictions_set1 <- fread("prediction_set1.out")

predictions_set1 <- data.matrix (predictions_set1)

predictions_set2 <- fread("prediction_set2.out")

predictions_set2 <- data.matrix (predictions_set2)

predictions_set3 <- fread("prediction_set3.out")

predictions_set3 <- data.matrix (predictions_set3)

GDT <- read.csv("GDT.csv")

GDT$X <- NULL

GDT-HA <- read.csv("GDT-HA.csv")

GDT-HA$X <- NULL

MaxSub <- read.csv("MaxSub.csv")

MaxSub$X <- NULL

TM-score <- read.csv("TM-score.csv")

TM-score$X <- NULL

testing_set1 <- read.csv("testing_set1.csv")

testing_set1$X <- NULL

testing_set2 <- read.csv("testing_set2.csv")

testing_set2$X <- NULL

testing_set3 <- read.csv("testing_set3.csv")

testing_set3$X <- NULL

#Combine all prediction data

 Appendices

239

predictions <- rbind(predictions_set1, predictions_set2, predictions_set3)

#test correlations pred v obs

cat(

 cor(predictions, GDT-HA, method="pearson"), cor(predictions, GDT-HA,

method="spearman"), cor(predictions, GDT-HA, method="kendall"),

 cor(predictions, GDT, method="pearson"), cor(predictions, GDT, method="spearman"),

cor(predictions, GDT, method="kendall"),

 cor(predictions, MaxSub, method="pearson"), cor(predictions, MaxSub,

method="spearman"), cor(predictions, MaxSub, method="kendall"),

 cor(predictions, TM-score, method="pearson"), cor(predictions, TM-score,

method="spearman"), cor(predictions, TM-score, method="kendall")

 , "\n", sep=" ", file = "Global_NN_both_rounds_correlations.dat",append = TRUE)

DT2 <- rbind(testing_set1, testing_set2, testing_set3)

DT2$V17 <- predictions #add predictions as last column (V17)

target_ids <- unique(DT2$V1)#get all IDs in data (unique variables in column $V1)

#setup empty arrays

NNtest <- c()

for(i in 1:length(target_ids))

{

 #print(target_ids[i])

 set1 <-subset(DT2, V1==target_ids[i])

 #mean of ModFOLDclustQ_single_res_global_all, ProQ2_res_global_all,

CDA_res_global_all, DBA_res_global_all, SSA_res_global_all and

ModFOLD6_single_res_global_all #<--- 3rd BEST COMBO FOR RANKING

 NNtest <- rbind(NNtest, c(set1[which.max(set1$V17),]$V1, set1[which.max(set1$V17),

]$V2, set1[which.max(set1$V17),]$V13, set1[which.max(set1$V17),]$V14,

set1[which.max(set1$V17),]$V15, set1[which.max(set1$V17),]$V16))

}

#standard error function for error bars

std_err <- function(x) sd(x)/sqrt(length(x))

#cumlative GDT-HA, GDT-TS, MaxSub & TM-scores of top models for each target ranked by

each global QA score

cumulativescores <- c()

cumulativescores <- rbind(cumulativescores, c(sum(as.numeric(NNtest[,3])),

sum(as.numeric(NNtest[,4])), sum(as.numeric(NNtest[,5])), sum(as.numeric(NNtest[,6])),

 Appendices

240

std_err(as.numeric(NNtest[,3])), std_err(as.numeric(NNtest[,4])),

std_err(as.numeric(NNtest[,5])), std_err(as.numeric(NNtest[,6]))))

#output table to a file

write.table(cumulativescores, file = "Global_NN_both_rounds_ranks.dat", sep = " ",

quote = FALSE, row.names = FALSE, col.names = FALSE, append = TRUE)

 Appendices

241

Appendix 5

RSNNS_Para

library(RSNNS)

library(data.table)

all1 <- fread("Global_QA_round1_all.out")

all2 <- fread("Global_QA_round2_all.out")

all <- rbind(all1, all2)#combine data from both rounds

#remove data for where no native structures are available

DT <- subset(all, V1!="T0775" & V1!="T0779" & V1!="T0793" & V1!="T0795" & V1!="T0799"

& V1!="T0802" & V1!="T0804" & V1!="T0826" & V1!="T0828" & V1!="T0839" & V1!="T0842" &

V1!="T0844" & V1!="T0846" & V1!="T0850")

#seperate training and testing data into 3 subsets.

training_set1 <- subset(DT, V1!="T0834" & V1!="T0798" & V1!="T0816" & V1!="T0845" &

V1!="T0822" & V1!="T0784" & V1!="T0833" & V1!="T0857" & V1!="T0763"

 & V1!="T0782" & V1!="T0820" & V1!="T0854" & V1!="T0800" &

V1!="T0840" & V1!="T0832" & V1!="T0810" & V1!="T0827" & V1!="T0766"

 & V1!="T0771" & V1!="T0858" & V1!="T0765" & V1!="T0855" &

V1!="T0847" & V1!="T0796" & V1!="T0778" & V1!="T0761" & V1!="T0764"

 & V1!="T0821")

#nrow(training_set1)

#9517 patterns/residues/rows in table

testing_set1 <-subset(DT, V1=="T0834" | V1=="T0798" | V1=="T0816" | V1=="T0845" |

V1=="T0822" | V1=="T0784" | V1=="T0833" | V1=="T0857" | V1=="T0763"

 | V1=="T0782" | V1=="T0820" | V1=="T0854" | V1=="T0800" |

V1=="T0840" | V1=="T0832" | V1=="T0810" | V1=="T0827" | V1=="T0766"

 | V1=="T0771" | V1=="T0858" | V1=="T0765" | V1=="T0855" |

V1=="T0847" | V1=="T0796" | V1=="T0778" | V1=="T0761" | V1=="T0764"

 | V1=="T0821")

#4586 patterns/residues/rows in table

#nrow(training_set1) + nrow(testing_set1) = 14103

training_set2 <- subset(DT, V1!="T0781" & V1!="T0829" & V1!="T0769" & V1!="T0836" &

V1!="T0759" & V1!="T0777" & V1!="T0852" & V1!="T0792" & V1!="T0818"

 & V1!="T0772" & V1!="T0794" & V1!="T0811" & V1!="T0787" &

V1!="T0762" & V1!="T0825" & V1!="T0773" & V1!="T0801" & V1!="T0812"

 & V1!="T0831" & V1!="T0760" & V1!="T0853" & V1!="T0815" &

V1!="T0856" & V1!="T0788" & V1!="T0805" & V1!="T0808" & V1!="T0835"

 & V1!="T0843")

#9344 patterns/residues/rows in table

 Appendices

242

testing_set2 <- subset(DT, V1=="T0781" | V1=="T0829" | V1=="T0769" | V1=="T0836" |

V1=="T0759" | V1=="T0777" | V1=="T0852" | V1=="T0792" | V1=="T0818"

 | V1=="T0772" | V1=="T0794" | V1=="T0811" | V1=="T0787" |

V1=="T0762" | V1=="T0825" | V1=="T0773" | V1=="T0801" | V1=="T0812"

 | V1=="T0831" | V1=="T0760" | V1=="T0853" | V1=="T0815" |

V1=="T0856" | V1=="T0788" | V1=="T0805" | V1=="T0808" | V1=="T0835"

 | V1=="T0843")

#4759 patterns/residues/rows in table

#nrow(training_set2) + nrow(testing_set2) = 14103

training_set3 <- subset(DT, V1!="T0819" & V1!="T0851" & V1!="T0790" & V1!="T0789" &

V1!="T0823" & V1!="T0813" & V1!="T0770" & V1!="T0803" & V1!="T0841"

 & V1!="T0807" & V1!="T0848" & V1!="T0768" & V1!="T0785" &

V1!="T0817" & V1!="T0838" & V1!="T0797" & V1!="T0767" & V1!="T0780"

 & V1!="T0837" & V1!="T0774" & V1!="T0786" & V1!="T0824" &

V1!="T0814" & V1!="T0830" & V1!="T0783" & V1!="T0849" & V1!="T0776"

 & V1!="T0806")

#9345 patterns/residues/rows in table

testing_set3 <- subset(DT, V1=="T0819" | V1=="T0851" | V1=="T0790" | V1=="T0789" |

V1=="T0823" | V1=="T0813" | V1=="T0770" | V1=="T0803" | V1=="T0841"

 | V1=="T0807" | V1=="T0848" | V1=="T0768" | V1=="T0785" |

V1=="T0817" | V1=="T0838" | V1=="T0797" | V1=="T0767" | V1=="T0780"

 | V1=="T0837" | V1=="T0774" | V1=="T0786" | V1=="T0824" |

V1=="T0814" | V1=="T0830" | V1=="T0783" | V1=="T0849" | V1=="T0776"

 | V1=="T0806")

#4758 patterns/residues/rows in table

#nrow(training_set3) + nrow(testing_set3) = 14103

#randomise each training set

training_set1_ran <- training_set1[sample(1:nrow(training_set1), replace=FALSE),]

training_set1_inputs_ran <- training_set1_ran[, 3:12, with=FALSE]

training_set1_outputs_GDT-HA <- training_set1_ran[, 13, with=FALSE]

training_set1_outputs_GDT <- training_set1_ran[, 14, with=FALSE]

training_set1_outputs_MaxSub <- training_set1_ran[, 15, with=FALSE]

training_set1_outputs_TM-score <- training_set1_ran[, 16, with=FALSE]

testing_set1_inputs <- testing_set1[, 3:12, with=FALSE]

testing_set1_outputs_GDT-HA <- testing_set1[, 13, with=FALSE]

testing_set1_outputs_GDT <- testing_set1[, 14, with=FALSE]

testing_set1_outputs_MaxSub <- testing_set1[, 15, with=FALSE]

testing_set1_outputs_TM-score <- testing_set1[, 16, with=FALSE]

training_set2_ran <- training_set2[sample(1:nrow(training_set2), replace=FALSE),]

 Appendices

243

training_set2_inputs_ran <- training_set2_ran[, 3:12, with=FALSE]

training_set2_outputs_GDT-HA <- training_set2_ran[, 13, with=FALSE]

training_set2_outputs_GDT <- training_set2_ran[, 14, with=FALSE]

training_set2_outputs_MaxSub <- training_set2_ran[, 15, with=FALSE]

training_set2_outputs_TM-score <- training_set2_ran[, 16, with=FALSE]

testing_set2_inputs <- testing_set2[, 3:12, with=FALSE]

testing_set2_outputs_GDT-HA <- testing_set2[, 13, with=FALSE]

testing_set2_outputs_GDT <- testing_set2[, 14, with=FALSE]

testing_set2_outputs_MaxSub <- testing_set2[, 15, with=FALSE]

testing_set2_outputs_TM-score <- testing_set2[, 16, with=FALSE]

training_set3_ran <- training_set3[sample(1:nrow(training_set3), replace=FALSE),]

training_set3_inputs_ran <- training_set3_ran[, 3:12, with=FALSE]

training_set3_outputs_GDT-HA <- training_set3_ran[, 13, with=FALSE]

training_set3_outputs_GDT <- training_set3_ran[, 14, with=FALSE]

training_set3_outputs_MaxSub <- training_set3_ran[, 15, with=FALSE]

training_set3_outputs_TM-score <- training_set3_ran[, 16, with=FALSE]

testing_set3_inputs <- testing_set3[, 3:12, with=FALSE]

testing_set3_outputs_GDT-HA <- testing_set3[, 13, with=FALSE]

testing_set3_outputs_GDT <- testing_set3[, 14, with=FALSE]

testing_set3_outputs_MaxSub <- testing_set3[, 15, with=FALSE]

testing_set3_outputs_TM-score <- testing_set3[, 16, with=FALSE]

GDT-HA <- rbind(testing_set1_outputs_GDT-HA, testing_set2_outputs_GDT-HA,

testing_set3_outputs_GDT-HA)

GDT <- rbind(testing_set1_outputs_GDT, testing_set2_outputs_GDT,

testing_set3_outputs_GDT)

MaxSub <- rbind(testing_set1_outputs_MaxSub, testing_set2_outputs_MaxSub,

testing_set3_outputs_MaxSub)

TM-score <- rbind(testing_set1_outputs_TM-score, testing_set2_outputs_TM-score,

testing_set3_outputs_TM-score)

#loops NN over all possible combinations of parameters, hidden units from 1-20 and

hidden units from 50-950

t = seq(1, 20, 1)

f = seq(50, 950, 50)

n = 1

while(n <= length(t)){

 r = t[n]

 h = 1

 n = n +1

 Appendices

244

 while(h <= length(f)){

 c = f[h]

 h = h + 1

 print(c(r,c))

 #try a NN with the ModFOLD6_rank combo of global score inputs

 #target_id, actualfilename, ModFOLDclustscore, ModFOLDclustQscore, ModFOLDclust2,

ModFOLDclustres, ModFOLDclustQres, ProQ2res, CDAres, DBAres, SSAres, ModFOLD6res

 #mean of ModFOLDclustQres+ProQ2res+CDAres+DBAres+SSAres+ModFOLD6res gives good top

model score (for each round and FM models) and reasonable correlations

 #cat("3,5,9,10,12-0_5_100it_3_hidden\n", file =

"Global_NN_both_rounds_correlations.dat",append = TRUE)

 training_set1_inputs_ran <- training_set1_ran[, c(3,5,9,10,12), with=FALSE]

 training_set2_inputs_ran <- training_set2_ran[, c(3,5,9,10,12), with=FALSE]

 training_set3_inputs_ran <- training_set3_ran[, c(3,5,9,10,12), with=FALSE]

 testing_set1_inputs <- testing_set1[, c(3,5,9,10,12), with=FALSE]

 testing_set2_inputs <- testing_set2[, c(3,5,9,10,12), with=FALSE]

 testing_set3_inputs <- testing_set3[, c(3,5,9,10,12), with=FALSE]

 set1 = paste0("Global_-

0_5_3,5,9,10,12_",c,"it_",r,"_hidden.model.train_window_set1")

 #train to GDT-HA score

 model <- mlp(training_set1_inputs_ran, training_set1_outputs_GDT-HA, size = r,

learnFuncParams = c(0.5, 0.01), maxit = c, inputsTest = testing_set1_inputs,

targetsTest = testing_set1_outputs_GDT-HA)

 save(model, file = set1)

 predictions_set1 <- predict(model, testing_set1_inputs)

 set2 = paste0("Global_-

0_5_3,5,9,10,12_",c,"it_",r,"_hidden.model.train_window_set2")

 model <- mlp(training_set2_inputs_ran, training_set2_outputs_GDT-HA, size = r,

learnFuncParams = c(0.5, 0.01), maxit = c, inputsTest = testing_set2_inputs,

targetsTest = testing_set2_outputs_GDT-HA)

 save(model, file= set2)

 predictions_set2 <- predict(model, testing_set2_inputs)

 set3 = paste0("Global_-

0_5_3,5,9,10,12_",c,"it_",r,"_hidden.model.train_window_set3")

 model <- mlp(training_set3_inputs_ran, training_set3_outputs_GDT-HA, size = r,

learnFuncParams = c(0.5, 0.01), maxit = c, inputsTest = testing_set3_inputs,

targetsTest = testing_set3_outputs_GDT-HA)

 save(model, file= set3)

 predictions_set3 <- predict(model, testing_set3_inputs)

 Appendices

245

 predictions <- rbind(predictions_set1, predictions_set2, predictions_set3)

 #test correlations pred v obs

 cat(r, c, cor(predictions, GDT-HA, method="pearson"), cor(predictions, GDT-HA,

method="spearman"), cor(predictions, GDT-HA, method="kendall"),

 cor(predictions, GDT, method="pearson"), cor(predictions, GDT,

method="spearman"), cor(predictions, GDT, method="kendall"),

 cor(predictions, MaxSub, method="pearson"), cor(predictions, MaxSub,

method="spearman"), cor(predictions, MaxSub, method="kendall"),

 cor(predictions, TM-score, method="pearson"), cor(predictions, TM-score,

method="spearman"), cor(predictions, TM-score, method="kendall")

 , "\n", sep=" ", file = "Global_NN_both_rounds_correlations.dat",append =

TRUE)

 #test ranking - cumulative scores of top ranked models

 #doh = paste0("3,5,9,10,12-0_5_",c,"it_",r,"_hidden\n")

 #cat(doh, file = "Global_NN_both_rounds_ranks.dat",append = TRUE)

 DT2 <- rbind(testing_set1, testing_set2, testing_set3)

 DT2[,V17 := predictions]#add predictions as last column (V17)

 target_ids <- unique(DT2$V1)#get all IDs in data (unique variables in column $V1)

 #setup empty arrays

 NNtest <- c()

 for(i in 1:length(target_ids))

 {

 #print(target_ids[i])

 set1 <-subset(DT2, V1==target_ids[i])

 #mean of ModFOLDclustQ_single_res_global_all, ProQ2_res_global_all,

CDA_res_global_all, DBA_res_global_all, SSA_res_global_all and

ModFOLD6_single_res_global_all #<--- 3rd BEST COMBO FOR RANKING

 NNtest <- rbind(NNtest, c(set1[which.max(set1$V17),]$V1,

set1[which.max(set1$V17),]$V2, set1[which.max(set1$V17),]$V13,

set1[which.max(set1$V17),]$V14, set1[which.max(set1$V17),]$V15,

set1[which.max(set1$V17),]$V16))

 }

 #standard error function for error bars

 std_err <- function(x) sd(x)/sqrt(length(x))

 Appendices

246

 #cumlative GDT-HA, GDT-TS, MaxSub & TM-scores of top models for each target ranked

by each global QA score

 cumulativescores <- c()

 cumulativescores <- rbind(cumulativescores, c(c, r, sum(as.numeric(NNtest[,3])),

sum(as.numeric(NNtest[,4])), sum(as.numeric(NNtest[,5])), sum(as.numeric(NNtest[,6])),

std_err(as.numeric(NNtest[,3])), std_err(as.numeric(NNtest[,4])),

std_err(as.numeric(NNtest[,5])), std_err(as.numeric(NNtest[,6]))))

 #output table to a file

 #cat("Round1+Round2\n", file = "Global_NN_both_rounds_ranks.dat", append = TRUE)

 write.table(cumulativescores, file = "Global_NN_both_rounds_ranks.dat", sep = " ",

quote = FALSE, row.names = FALSE, col.names = FALSE, append = TRUE)

 }

}

#Tensorflow_Para

import os

import tensorflow as tf

import numpy

import pandas as pd

sess = tf.InteractiveSession()

A function which aims to extract all the data produced from R_Part1 and stores them

in arrays to be used in the NN.

def run(set_num, combination, observation, learning_rate, training_epochs, n_hidden1,

n_hidden2, n_input):

 # Read files produced by R_Part1 and stores the data into a Data Frame.

 df_train = pd.read_csv("training_set%d_inputs_ran.csv" % set_num)

 df_GDT-HA = pd.read_csv("training_set%d_outputs_GDT-HA.csv" % set_num)

 df_test_inputs = pd.read_csv("testing_set%d_inputs.csv" % set_num)

 df_test_output = pd.read_csv("testing_set%d_outputs_GDT-HA.csv" % set_num)

 # Extracts the wanted data from the Data Frames above and converts the frame

into a Numpy-array.

 trainer = df_train.as_matrix(combination)

 label = df_GDT-HA.as_matrix(observation)

 test_inputs = df_test_inputs.as_matrix(combination)

 test_outputs = df_test_output.as_matrix(observation)

 h = my_mlp(set_num, trainer, label, learning_rate, training_epochs, n_hidden1,

n_hidden2, n_input, test_inputs, test_outputs)

 return h

def multilayer_perceptron(x, w1, w2, drop, out):

 # the first hidden layer

 Appendices

247

 layer_1 = tf.matmul(x, w1)

 layer_1 = tf.nn.dropout(layer_1, drop)

 # the second hidden layer

 layer_2 = tf.matmul(layer_1, w2)

 layer_2 = tf.nn.dropout(layer_2, drop)

 # Output layer with linear activation

 out_layer = tf.matmul(layer_2, out)

 return out_layer

def my_mlp (num, trainer, trainer_awn, learning_rate, training_epochs, n_hidden1,

n_hidden2, n_input, test_inputs, test_outputs):

 trX, trY= trainer, trainer_awn

 #create placeholders

 x = tf.placeholder(tf.float32, shape=[None, n_input])

 y_ = tf.placeholder(tf.float32, shape=[None,])

 keep_prob = tf.placeholder("float")

 #create initial weights

 w1 = tf.Variable(tf.truncated_normal([n_input, n_hidden1], stddev=0.01))

 w2 = tf.Variable(tf.truncated_normal([n_hidden1, n_hidden2], stddev=0.01))

 out = tf.Variable(tf.truncated_normal([n_hidden2, 1], stddev=0.01))

 #predicted class and loss function

 y = multilayer_perceptron(x, w1, w2, keep_prob, out)

 # Reshapes the observational data.

 y_ = tf.reshape(y_, [-1, 1])

 # Cost function, aims to reduce the difference between the predictions and the

observational data.

 cross_entropy = tf.reduce_sum(tf.abs(y - y_))

 #training

 train_step =

tf.train.AdagradOptimizer(learning_rate=learning_rate).minimize(cross_entropy)

 correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))

 accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))

 init_op = tf.initialize_all_variables()

 saver = tf.train.Saver()

 # Start training.

 with tf.Session() as sess:

 # you need to initialize all variables

 sess.run(init_op)

 #training session, it is run multiple times equal to the set iterations/epochs.

 for i in range(training_epochs + 1):

 #feeds the training data, both combination data and observation data, into

the placeholders.

 Appendices

248

 sess.run([train_step, cross_entropy], feed_dict={x: trX, y_: trY,

keep_prob: 0.9})

 print("Accuracy:", accuracy.eval({x: test_inputs, y_: test_outputs, keep_prob:

1}))

 #Creates a Numpy array containing the final model predictions.

 best = sess.run(y, feed_dict={x: test_inputs, keep_prob: 1})

 #Saves the weights for each set seperatly.

 saver.save(sess,

'/home/filipe/Documents/Disseration/tensorflow/Data_searching/dropout/Rank/Model%d/mode

l' % num)

 return best

Create a list containing the methods which are too be combined.

Key: ModFOLD5_single_orig_global (3), ModFOLDclustQ_single_orig_global (4),

ModFOLDclust2_single_orig_global (5), ModFOLD5_single_res_global (6),

ModFOLDclustQ_single_res_global (7), ProQ2_res_global (8), CDA_res_global (9),

DBA_res_global (10), SSA_res_global (11), ModFOLD6_single_res_global (12).

combination_choice = ["V9", "V11", "V12"]

#Create a text file containing the wanted combination, this file is fed into R_Part1

file = open("combination.txt","w")

file.write("9, 11, 12")

file.close()

Runs the R script, R_Part1.R through the terminal.

os.system("Rscript Data_searching_Part1.R")

#loops NN over all possible combinations of parameters, hidden units from 1-20 and

hidden units from 50-950

for inter in range(50, 1000, 50):

 for hidden1 in range(1, 6, 1):

 for hidden2 in range(1, 6, 1):

 #train each data set to GDT-HA score (V13)

 prediction1 = run(1, [combination_choice], ["V13"], 0.01, inter, hidden1,

hidden2, len(combination_choice))

 numpy.savetxt('prediction_set1.out', prediction1)

 prediction2 = run(2, [combination_choice], ["V13"], 0.01, inter, hidden1,

hidden2, len(combination_choice))

 numpy.savetxt('prediction_set2.out', prediction2)

 prediction3 = run(3, [combination_choice], ["V13"], 0.01, inter, hidden1,

hidden2, len(combination_choice))

 Appendices

249

 numpy.savetxt('prediction_set3.out', prediction3)

 # Runs the R script, R_Part2.R through the terminal.

 os.system("Rscript Para_part2.R")

 Appendices

250

Appendix 6

RSNNS_Data_search

library(RSNNS)

library(data.table)

all1 <- fread("Global_QA_round1_all.out")

all2 <- fread("Global_QA_round2_all.out")

all <- rbind(all1, all2)#combine data from both rounds

#remove data for where no native structures are available

DT <- subset(all, V1!="T0775" & V1!="T0779" & V1!="T0793" & V1!="T0795" & V1!="T0799"

& V1!="T0802" & V1!="T0804" & V1!="T0826" & V1!="T0828" & V1!="T0839" & V1!="T0842" &

V1!="T0844" & V1!="T0846" & V1!="T0850")

#seperate training and testing data into 3 subsets.

training_set1 <- subset(DT, V1!="T0834" & V1!="T0798" & V1!="T0816" & V1!="T0845" &

V1!="T0822" & V1!="T0784" & V1!="T0833" & V1!="T0857" & V1!="T0763"

 & V1!="T0782" & V1!="T0820" & V1!="T0854" & V1!="T0800" &

V1!="T0840" & V1!="T0832" & V1!="T0810" & V1!="T0827" & V1!="T0766"

 & V1!="T0771" & V1!="T0858" & V1!="T0765" & V1!="T0855" &

V1!="T0847" & V1!="T0796" & V1!="T0778" & V1!="T0761" & V1!="T0764"

 & V1!="T0821")

#nrow(training_set1)

#9517 patterns/residues/rows in table

testing_set1 <-subset(DT, V1=="T0834" | V1=="T0798" | V1=="T0816" | V1=="T0845" |

V1=="T0822" | V1=="T0784" | V1=="T0833" | V1=="T0857" | V1=="T0763"

 | V1=="T0782" | V1=="T0820" | V1=="T0854" | V1=="T0800" |

V1=="T0840" | V1=="T0832" | V1=="T0810" | V1=="T0827" | V1=="T0766"

 | V1=="T0771" | V1=="T0858" | V1=="T0765" | V1=="T0855" |

V1=="T0847" | V1=="T0796" | V1=="T0778" | V1=="T0761" | V1=="T0764"

 | V1=="T0821")

#4586 patterns/residues/rows in table

#nrow(training_set1) + nrow(testing_set1) = 14103

training_set2 <- subset(DT, V1!="T0781" & V1!="T0829" & V1!="T0769" & V1!="T0836" &

V1!="T0759" & V1!="T0777" & V1!="T0852" & V1!="T0792" & V1!="T0818"

 & V1!="T0772" & V1!="T0794" & V1!="T0811" & V1!="T0787" &

V1!="T0762" & V1!="T0825" & V1!="T0773" & V1!="T0801" & V1!="T0812"

 & V1!="T0831" & V1!="T0760" & V1!="T0853" & V1!="T0815" &

V1!="T0856" & V1!="T0788" & V1!="T0805" & V1!="T0808" & V1!="T0835"

 & V1!="T0843")

#9344 patterns/residues/rows in table

 Appendices

251

testing_set2 <- subset(DT, V1=="T0781" | V1=="T0829" | V1=="T0769" | V1=="T0836" |

V1=="T0759" | V1=="T0777" | V1=="T0852" | V1=="T0792" | V1=="T0818"

 | V1=="T0772" | V1=="T0794" | V1=="T0811" | V1=="T0787" |

V1=="T0762" | V1=="T0825" | V1=="T0773" | V1=="T0801" | V1=="T0812"

 | V1=="T0831" | V1=="T0760" | V1=="T0853" | V1=="T0815" |

V1=="T0856" | V1=="T0788" | V1=="T0805" | V1=="T0808" | V1=="T0835"

 | V1=="T0843")

#4759 patterns/residues/rows in table

#nrow(training_set2) + nrow(testing_set2) = 14103

training_set3 <- subset(DT, V1!="T0819" & V1!="T0851" & V1!="T0790" & V1!="T0789" &

V1!="T0823" & V1!="T0813" & V1!="T0770" & V1!="T0803" & V1!="T0841"

 & V1!="T0807" & V1!="T0848" & V1!="T0768" & V1!="T0785" &

V1!="T0817" & V1!="T0838" & V1!="T0797" & V1!="T0767" & V1!="T0780"

 & V1!="T0837" & V1!="T0774" & V1!="T0786" & V1!="T0824" &

V1!="T0814" & V1!="T0830" & V1!="T0783" & V1!="T0849" & V1!="T0776"

 & V1!="T0806")

#9345 patterns/residues/rows in table

testing_set3 <- subset(DT, V1=="T0819" | V1=="T0851" | V1=="T0790" | V1=="T0789" |

V1=="T0823" | V1=="T0813" | V1=="T0770" | V1=="T0803" | V1=="T0841"

 | V1=="T0807" | V1=="T0848" | V1=="T0768" | V1=="T0785" |

V1=="T0817" | V1=="T0838" | V1=="T0797" | V1=="T0767" | V1=="T0780"

 | V1=="T0837" | V1=="T0774" | V1=="T0786" | V1=="T0824" |

V1=="T0814" | V1=="T0830" | V1=="T0783" | V1=="T0849" | V1=="T0776"

 | V1=="T0806")

#4758 patterns/residues/rows in table

#nrow(training_set3) + nrow(testing_set3) = 14103

#randomise each training set

training_set1_ran <- training_set1[sample(1:nrow(training_set1), replace=FALSE),]

training_set1_inputs_ran <- training_set1_ran[, 3:12, with=FALSE]

training_set1_outputs_GDT-HA <- training_set1_ran[, 13, with=FALSE]

training_set1_outputs_GDT <- training_set1_ran[, 14, with=FALSE]

training_set1_outputs_MaxSub <- training_set1_ran[, 15, with=FALSE]

training_set1_outputs_TM-score <- training_set1_ran[, 16, with=FALSE]

testing_set1_inputs <- testing_set1[, 3:12, with=FALSE]

testing_set1_outputs_GDT-HA <- testing_set1[, 13, with=FALSE]

testing_set1_outputs_GDT <- testing_set1[, 14, with=FALSE]

testing_set1_outputs_MaxSub <- testing_set1[, 15, with=FALSE]

testing_set1_outputs_TM-score <- testing_set1[, 16, with=FALSE]

training_set2_ran <- training_set2[sample(1:nrow(training_set2), replace=FALSE),]

 Appendices

252

training_set2_inputs_ran <- training_set2_ran[, 3:12, with=FALSE]

training_set2_outputs_GDT-HA <- training_set2_ran[, 13, with=FALSE]

training_set2_outputs_GDT <- training_set2_ran[, 14, with=FALSE]

training_set2_outputs_MaxSub <- training_set2_ran[, 15, with=FALSE]

training_set2_outputs_TM-score <- training_set2_ran[, 16, with=FALSE]

testing_set2_inputs <- testing_set2[, 3:12, with=FALSE]

testing_set2_outputs_GDT-HA <- testing_set2[, 13, with=FALSE]

testing_set2_outputs_GDT <- testing_set2[, 14, with=FALSE]

testing_set2_outputs_MaxSub <- testing_set2[, 15, with=FALSE]

testing_set2_outputs_TM-score <- testing_set2[, 16, with=FALSE]

training_set3_ran <- training_set3[sample(1:nrow(training_set3), replace=FALSE),]

training_set3_inputs_ran <- training_set3_ran[, 3:12, with=FALSE]

training_set3_outputs_GDT-HA <- training_set3_ran[, 13, with=FALSE]

training_set3_outputs_GDT <- training_set3_ran[, 14, with=FALSE]

training_set3_outputs_MaxSub <- training_set3_ran[, 15, with=FALSE]

training_set3_outputs_TM-score <- training_set3_ran[, 16, with=FALSE]

testing_set3_inputs <- testing_set3[, 3:12, with=FALSE]

testing_set3_outputs_GDT-HA <- testing_set3[, 13, with=FALSE]

testing_set3_outputs_GDT <- testing_set3[, 14, with=FALSE]

testing_set3_outputs_MaxSub <- testing_set3[, 15, with=FALSE]

testing_set3_outputs_TM-score <- testing_set3[, 16, with=FALSE]

GDT-HA <- rbind(testing_set1_outputs_GDT-HA, testing_set2_outputs_GDT-HA,

testing_set3_outputs_GDT-HA)

GDT <- rbind(testing_set1_outputs_GDT, testing_set2_outputs_GDT,

testing_set3_outputs_GDT)

MaxSub <- rbind(testing_set1_outputs_MaxSub, testing_set2_outputs_MaxSub,

testing_set3_outputs_MaxSub)

TM-score <- rbind(testing_set1_outputs_TM-score, testing_set2_outputs_TM-score,

testing_set3_outputs_TM-score)

#loops over the NN as until score is higher than the score specified

while(sum(as.numeric(NNtest[,3])) < 32.2){

 #try a NN with the ModFOLD6_rank combo of global score inputs

 #target_id, actualfilename, ModFOLDclustscore, ModFOLDclustQscore, ModFOLDclust2,

ModFOLDclustres, ModFOLDclustQres, ProQ2res, CDAres, DBAres, SSAres, ModFOLD6res

 #mean of ModFOLDclustQres+ProQ2res+CDAres+DBAres+SSAres+ModFOLD6res gives good top

model score (for each round and FM models) and reasonable correlations

 cat("8,9,11-0_5_100it_3_hidden\n", file =

"Global_NN_both_rounds_correlations.dat",append = TRUE)

 Appendices

253

 #create variables containing a matrix of only the methods included in the combination

 training_set1_inputs_ran <- training_set1_ran[, c(8,9,11), with=FALSE]

 training_set2_inputs_ran <- training_set2_ran[, c(8,9,11), with=FALSE]

 training_set3_inputs_ran <- training_set3_ran[, c(8,9,11), with=FALSE]

 testing_set1_inputs <- testing_set1[, c(8,9,11), with=FALSE]

 testing_set2_inputs <- testing_set2[, c(8,9,11), with=FALSE]

 testing_set3_inputs <- testing_set3[, c(8,9,11), with=FALSE]

 #train to GDT-HA score

 model <- mlp(training_set1_inputs_ran, training_set1_outputs_GDT-HA, size = 2,

learnFuncParams = c(0.5, 0.001), maxit = 550, inputsTest = testing_set1_inputs,

targetsTest = testing_set1_outputs_GDT-HA)

 save(model, file="Global_8,9,11-0_5_550it_2_hidden.model.train_window_set1")

 predictions_set1 <- predict(model, testing_set1_inputs)

 model <- mlp(training_set2_inputs_ran, training_set2_outputs_GDT-HA, size = 2,

learnFuncParams = c(0.5, 0.001), maxit = 550, inputsTest = testing_set2_inputs,

targetsTest = testing_set2_outputs_GDT-HA)

 save(model, file="Global_8,9,11-0_5_550it_2_hidden.model.train_window_set2")

 predictions_set2 <- predict(model, testing_set2_inputs)

 model <- mlp(training_set3_inputs_ran, training_set3_outputs_GDT-HA, size = 2,

learnFuncParams = c(0.5, 0.001), maxit = 550, inputsTest = testing_set3_inputs,

targetsTest = testing_set3_outputs_GDT-HA)

 save(model, file="Global_8,9,11-0_5_550it_2_hidden.model.train_window_set3")

 predictions_set3 <- predict(model, testing_set3_inputs)

 predictions <- rbind(predictions_set1, predictions_set2, predictions_set3)

 #test correlations pred v obs

 cat("ModFOLD7_NN_test_GDT-HA",

 cor(predictions, GDT-HA, method="pearson"), cor(predictions, GDT-HA,

method="spearman"), cor(predictions, GDT-HA, method="kendall"),

 cor(predictions, GDT, method="pearson"), cor(predictions, GDT,

method="spearman"), cor(predictions, GDT, method="kendall"),

 cor(predictions, MaxSub, method="pearson"), cor(predictions, MaxSub,

method="spearman"), cor(predictions, MaxSub, method="kendall"),

 cor(predictions, TM-score, method="pearson"), cor(predictions, TM-score,

method="spearman"), cor(predictions, TM-score, method="kendall")

 , "\n", sep=" ", file = "Global_NN_both_rounds_correlations.dat",append = TRUE)

 #test ranking - cumulative scores of top ranked models

 Appendices

254

 cat("8,9,11-0_5_100it_3_hidden\n", file = "Global_NN_both_rounds_ranks.dat",append =

TRUE)

 DT2 <- rbind(testing_set1, testing_set2, testing_set3)

 DT2[,V17 := predictions]#add predictions as last column (V17)

 target_ids <- unique(DT2$V1)#get all IDs in data (unique variables in column $V1)

 #setup empty arrays

 NNtest <- c()

 for(i in 1:length(target_ids))

 {

 #print(target_ids[i])

 set1 <-subset(DT2, V1==target_ids[i])

 #mean of ModFOLDclustQ_single_res_global_all, ProQ2_res_global_all,

CDA_res_global_all, DBA_res_global_all, SSA_res_global_all and

ModFOLD6_single_res_global_all #<--- 3rd BEST COMBO FOR RANKING

 NNtest <- rbind(NNtest, c(set1[which.max(set1$V17),]$V1,

set1[which.max(set1$V17),]$V2, set1[which.max(set1$V17),]$V13,

set1[which.max(set1$V17),]$V14, set1[which.max(set1$V17),]$V15,

set1[which.max(set1$V17),]$V16))

 }

 #standard error function for error bars

 std_err <- function(x) sd(x)/sqrt(length(x))

 #cumlative GDT-HA, GDT-TS, MaxSub & TM-scores of top models for each target ranked by

each global QA score

 cumulativescores <- c()

 cumulativescores <- rbind(cumulativescores, c("Method", "GDT-HA", "GDT-TS",

"MaxSub", "TM-score", "Std_err_GDT-HA", "Std_err_GDT-TS", "Std_err_MaxSub",

"Std_err_TM-score"))

 cumulativescores <- rbind(cumulativescores, c("NNtest",

sum(as.numeric(NNtest[,3])), sum(as.numeric(NNtest[,4])), sum(as.numeric(NNtest[,5])),

sum(as.numeric(NNtest[,6])), std_err(as.numeric(NNtest[,3])),

std_err(as.numeric(NNtest[,4])), std_err(as.numeric(NNtest[,5])),

std_err(as.numeric(NNtest[,6]))))

 #output table to a file

 cat("Round1+Round2\n", file = "Global_NN_both_rounds_ranks.dat", append = TRUE)

 write.table(cumulativescores, file = "Global_NN_both_rounds_ranks.dat", sep = " ",

quote = FALSE, row.names = FALSE, col.names = FALSE, append = TRUE)

}

 Appendices

255

TensorFlow_Data_search

import itertools

import os

import os.path

import tensorflow as tf

import numpy

import pandas as pd

sess = tf.InteractiveSession()

A function which aims to extract all the data produced from R_Part1 and stores them

in arrays to be used in the NN.

def run(set_num, combination, observation, learning_rate, training_epochs, n_hidden1,

n_hidden2, n_input):

 # Read files produced by R_Part1 and stores the data into a Data Frame.

 df_train = pd.read_csv("training_set%d_inputs_ran.csv" % set_num)

 df_GDT-HA = pd.read_csv("training_set%d_outputs_GDT-HA.csv" % set_num)

 df_test_inputs = pd.read_csv("testing_set%d_inputs.csv" % set_num)

 df_test_output = pd.read_csv("testing_set%d_outputs_GDT-HA.csv" % set_num)

 # Extracts the wanted data from the Data Frames above and converts the frame

into a Numpy-array.

 trainer = df_train.as_matrix(combination)

 label = df_GDT-HA.as_matrix(observation)

 test_inputs = df_test_inputs.as_matrix(combination)

 test_outputs = df_test_output.as_matrix(observation)

 h = my_mlp(set_num, trainer, label, learning_rate, training_epochs, n_hidden1,

n_hidden2, n_input, test_inputs, test_outputs)

 return h

def multilayer_perceptron(x, w1, w2, drop, out):

 # the first hidden layer

 layer_1 = tf.matmul(x, w1)

 layer_1 = tf.nn.dropout(layer_1, drop)

 # the second hidden layer

 layer_2 = tf.matmul(layer_1, w2)

 layer_2 = tf.nn.dropout(layer_2, drop)

 # Output layer with linear activation

 out_layer = tf.matmul(layer_2, out)

 return out_layer

def my_mlp (num, trainer, trainer_awn, learning_rate, training_epochs, n_hidden1,

n_hidden2, n_input, test_inputs, test_outputs):

 Appendices

256

 trX, trY= trainer, trainer_awn

 #create placeholders

 x = tf.placeholder(tf.float32, shape=[None, n_input])

 y_ = tf.placeholder(tf.float32, shape=[None,])

 keep_prob = tf.placeholder("float")

 #create initial weights

 w1 = tf.Variable(tf.truncated_normal([n_input, n_hidden1], stddev=0.01))

 w2 = tf.Variable(tf.truncated_normal([n_hidden1, n_hidden2], stddev=0.01))

 out = tf.Variable(tf.truncated_normal([n_hidden2, 1], stddev=0.01))

 #predicted class and loss function

 y = multilayer_perceptron(x, w1, w2, keep_prob, out)

 # Reshapes the observational data.

 y_ = tf.reshape(y_, [-1, 1])

 # Cost function, aims to reduce the difference between the predictions and the

observational data.

 cross_entropy = tf.reduce_sum(tf.abs(y - y_))

 #training

 train_step =

tf.train.AdagradOptimizer(learning_rate=learning_rate).minimize(cross_entropy)

 correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))

 accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))

 init_op = tf.initialize_all_variables()

 saver = tf.train.Saver()

 # Start training.

 with tf.Session() as sess:

 # you need to initialize all variables

 sess.run(init_op)

 #training session, it is run multiple times equal to the set iterations/epochs.

 for i in range(training_epochs + 1):

 #feeds the training data, both combination data and observation data, into

the placeholders.

 sess.run([train_step, cross_entropy], feed_dict={x: trX, y_: trY,

keep_prob: 0.9})

 print("Accuracy:", accuracy.eval({x: test_inputs, y_: test_outputs, keep_prob:

1}))

 #Creates a Numpy array containing the final model predictions.

 best = sess.run(y, feed_dict={x: test_inputs, keep_prob: 1})

 #Saves the weights for each set seperatly.

 saver.save(sess,

'/home/filipe/Documents/Disseration/tensorflow/Data_searching/dropout/Rank/Model%d/mode

l' % num)

 return best

 Appendices

257

#End file created by TensorFlow_Data_searching_Part2 when the NN is score higher than

the score specified

while os.path.exists("end.csv") == False:

 # Create a list containing the methods which are too be combined.

 # Key: ModFOLD5_single_orig_global (3), ModFOLDclustQ_single_orig_global (4),

ModFOLDclust2_single_orig_global (5), ModFOLD5_single_res_global (6),

ModFOLDclustQ_single_res_global (7), ProQ2_res_global (8), CDA_res_global (9),

DBA_res_global (10), SSA_res_global (11), ModFOLD6_single_res_global (12).

 combination_choice = ["V9", "V11", "V12"]

 #Create a text file containing the wanted combination, this file is fed into

R_Part1

 file = open("combination.txt","w")

 file.write("9, 11, 12")

 file.close()

 # Runs the R script, R_Part1.R through the terminal.

 os.system("Rscript Data_searching_Part1.R")

 #train each data set to GDT-HA score (V13)

 prediction1 = run(1, [combination_choice], ["V13"], 0.001, 100, 5, 4,

len(combination_choice))

 numpy.savetxt('prediction_set1.out', prediction1)

 prediction2 = run(2, [combination_choice], ["V13"], 0.001, 100, 5, 4,

len(combination_choice))

 numpy.savetxt('prediction_set2.out', prediction2)

 prediction3 = run(3, [combination_choice], ["V13"], 0.001, 100, 5, 4,

len(combination_choice))

 numpy.savetxt('prediction_set3.out', prediction3)

 # Runs the R script, R_Part2.R through the terminal.

 os.system("Rscript Data_searching_Part2.R")

 Appendices

258

Appendix 7

Figure S7. Scatter chart showing how the correlation changes with learning rate where the

rate is between 0.00005 and 0.0005. Error bars are calculated by taking the standard deviation

of 10 runs of the network using the same hyperparameters.

Appendix 8

Figure S8. Scatter chart showing how the correlation changes with L2 regularisation, where

the L2 parameter is between 100 and 300. Error bars are calculated by taking the standard

deviation of 10 runs of the network using the same hyperparameters.

 Appendices

259

Appendix 9

Figure S9. Line chart showing how rank score and correlation change with the L2

parameter between values of 100 and 1000. Error bars are excluded for clarity.

Appendix 10

 Average lDDT Average CAD score Average lDDT-BS

Server Name Dif. Ref. Dif. Ref. Dif. Ref.

Robetta -2.15 69.04 -0.03 0.69 2.66 67.81

IntFOLD4-TSb 0 66.89 0 0.66 0 70.47

Table S10. Performance of IntFOLD4-TS versus Robetta. CAMEO-3D: Common Subset Comparison,

1-year Performance (2016-07-01 - 2017-06-24) (891 targets - 2 methods). IntFOLD4_TS is the reference

server (listed as server58, or IntFOLD4-TSb on CAMEO). Data are from http://www.cameo3d.org/. The

table is sorted by difference in Average lDDT score.

http://www.cameo3d.org/

 Appendices

260

Appendix 11

 Average lDDT Average CAD score Average lDDT-BS

Server Name Dif. Ref. Dif. Ref. Dif. Ref.

Robetta -2.43 71.88 -0.03 0.7 3.53 70.45

IntFOLD4-TSb 0 69.45 0 0.68 0 73.98

RaptorX 0.11 69.34 0 0.68 5.54 68.43

IntFOLD3-TS 1.55 67.9 0.02 0.66 3.52 70.45

IntFOLD2-TS 1.74 67.71 0.02 0.66 4.33 69.64

HHpredB 2.37 67.08 0 0.67 4.07 69.91

SWISS-MODEL 3.45 66 0.03 0.64 2.86 71.12

SPARKS-X 6.19 63.26 0.04 0.64 7.19 66.78

Princeton_TEMPLATE 9.84 59.61 0.09 0.59 17.92 56.06

NaiveBLAST 11.74 57.71 0.12 0.56 10.69 63.29

Table S11. Performance of IntFOLD4-TS versus other servers. CAMEO-3D: Common

Subset Comparison, 6-months Performance (2016-12-30 - 2017-06-24) (304 targets - 10

methods). IntFOLD4_TS is the reference server (listed as server58, or IntFOLD4-TSb on

CAMEO). Data are from http://www.cameo3d.org/. The table is sorted by difference in Average

lDDT score.

http://www.cameo3d.org/

 Appendices

261

Appendix 12

 Avg. lDDT Avg. CAD-score Avg. lDDT-BS

Server Name Dif. Ref. Dif. Ref. Dif. Ref.

Robetta -1.67 72.45 -0.02 0.7 5.54 71.32

IntFOLD5-TS 0 70.78 0 0.69 0 76.85

RaptorX 0.18 70.6 0 0.68 4.84 72.01

IntFOLD4-TS 0.45 70.33 0 0.68 0.27 76.58

IntFOLD3-TS 1.82 68.96 0.02 0.67 1.43 75.42

SWISS-MODEL 2.64 68.14 0.03 0.66 0.47 76.38

HHpredB 3.64 67.14 0.01 0.67 6.26 70.6

M4T-SMOTIF-TF 5.46 65.32 0.05 0.64 1.79 75.07

SPARKS-X 6.39 64.38 0.04 0.64 5.94 70.92

PRIMO 7.17 63.61 0.06 0.63 5.02 71.83

PRIMO_BST_CL 7.17 63.61 0.06 0.63 5.02 71.83

PRIMO_BST_3D 8.47 62.3 0.07 0.61 6.92 69.93

PRIMO_HHS_3D 8.86 61.92 0.08 0.61 6.95 69.91

PRIMO_HHS_CL 9.31 61.47 0.08 0.61 9.26 67.59

NaiveBLAST 9.74 61.04 0.1 0.59 4.37 72.49

Princeton_TEMPLATE 10.26 60.52 0.09 0.59 18.63 58.22

Phyre2 13.15 57.62 0.06 0.63 4.74 72.12

Table S12. Independent benchmarking of tertiary structure predictions with CAMEO 3D data.

Performance results for 1 year of data (2018-01-26 to 2019-01-19) are shown for a common subset of 199

targets for all the 17 public methods. The reference method is IntFOLD5-TS and the table is sorted by

average lDDT. Data are downloaded from http://www.cameo3d.org/.

http://www.cameo3d.org/

 Appendices

262

Appendix 13

Avg.

lDDT

Avg.

CAD-score

Avg.

lDDT-BS

Server Name Dif. Ref. Dif. Ref. Dif. Ref.

Robetta -1.32 69.07 -0.02 0.68 5.8 66

IntFOLD5-TS 0 67.75 0 0.67 0 71.81

IntFOLD4-TS 0.52 67.23 0 0.66 0.24 71.57

RaptorX 0.58 67.17 0 0.66 4.85 66.95

IntFOLD3-TS 2.1 65.65 0.02 0.65 1.9 69.9

Table S13. Intensive independent benchmarking of tertiary structure predictions with CAMEO 3D

data. Performance results for 1 year of data (2018-01-26 to 2019-01-19) are shown for a common subset of

575 targets for the top 3 public methods plus the older versions of IntFOLD. The reference method is

IntFOLD5-TS and the table is sorted by average lDDT. Data are downloaded from

http://www.cameo3d.org/.

 Appendices

263

Appendix 14

Figure S13. The wfAll-Cheng pipeline selected its model 1 among all models contributed by the

WeFold pipelines as well as servers models. (Top left) Of the 67 CASP12 domains released so far, the

wfAll-Cheng pipeline selected 22 models submitted by pipeline wfMESHI_TIGRESS and 18 models

submitted by pipeline wfMESHI-Seok as model 1. (Top right) Of the 39 FM CASP12 domains released so

far, the wfAll-Cheng pipeline selected 14 models submitted by pipeline wfMESHI_TIGRESS and 9 models

submitted by pipeline wfMESHI-Seok as model 1. (Bottom left) Of the 16 TBM/FM CASP12 domains

released so far, the wfAll-Cheng pipeline selected 6 models submitted by pipeline wfMESHI_TIGRESS

and 5 models submitted by pipeline wfMESHI-Seok as model 1. (Bottom right) Of the 12 TBM CASP12

domains released so far, the wfAll-Cheng pipeline selected 4 models submitted by pipeline wfMESHI_Seok

and 2 models submitted by pipeline wfMESHI-TIGRESS as model 1.

