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Abstract 

After water, proteins are the most abundant substances in the human body, forming around 80% of 

its dry mass. Understanding protein function is beneficial for life needs, such as finding medicines, 

producing healthy foods and combating infectious diseases. Each protein molecule has its own 

unique sequence which is comprised of linear chains of amino acids. These amino acid chains fold 

to form tertiary structures, which confer the protein’s function. It is important that we can 

characterise protein structures in order to better understand their functions. Several experimental 

methods such as X-ray Crystallography and Nuclear Magnetic Resonance have been applied to 

solve protein structures. However, such methods are costly and time consuming, and some proteins 

are also problematic or impossible to solve using these methods. Consequently, the process of 

growing protein structure data is relatively slow in comparison to the speed of sequencing genomes 

and their encoded proteins, which has kept increasing especially after breakthroughs in the genetic 

sequencing technology. As a result, a gap has grown between known protein sequences and their 

resolved structures and it has been necessary to find other solutions. Computational methods for 

predicting the structures of proteins directly from own sequences have become fast and effective 

alternatives to experimental methods. Over the past 20 years there has been an emergence of 

different types of protein structure predicting methods, the most accurate type being the 

comparative modelling method, which consists of a number of steps including: template 

recognition, alignment, quality assessment, and ending with refinement. Each of these steps 

contribute to successful modelling pipelines, but perhaps the most critical step for the wider 

acceptance of 3D models of proteins has been the quality assessment step, where the predicted 

models are evaluated in terms of their likely accuracy, prior to the availability of an experimental 

structure. Numerous approaches to the quality estimation problem have been developed over the 

years including the use of statistical potentials, stereochemistry checks and machine learning 

techniques. Such methods have traditionally been referred to as Model Quality Assessment 

Programs (MQAPs). One of the leading MQAPs has been the ModFOLD method which has been 

developed by our group. Since its inception, ModFOLD has been continuously improved, going 

through many upgrades until its latest version, ModFOLD7. This study was conducted during a 

major development cycle, beginning with the benchmarking of ModFOLD6, the most powerful 

MQAP method compared to its other competitors at that time. The study starts with the 

investigation of the integration of ten MQAP scoring methods in an attempt to enhance 

performance. The study also explores the implementation of deep neural networks on the MQAP 
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method’s pipeline, and how this technique can be used to improve the MQAP scoring approach. In 

the later stage of our research, we managed to improve our method significantly leading to the 

latest upgrade, ModFOLD7. During this project, we also participated in a number of independent 

blind experiments and competitions to verify our improvements. We also undertook several 

collaborations in order to apply our methods in practical contexts. The overall results have shown 

incremental but significant improvements in ModFOLD performance during this study, with an 

approximate 5% improvement over previous versions. However, there are still plenty of room for 

ModFOLD to improve further and a number of suggestions for further developments will be 

addressed throughout this thesis.
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1.1. Proteins 

The central dogma of molecular biology states that genetic information is stored in the DNA and 

transcribed into RNA, which in turn is translated into the most versatile macromolecules that 

govern the very basis of life - proteins. Proteins comprise the second largest percentage of material 

(after water) in a cell and they play a key role in virtually every cellular process within living 

organisms (Chauhan and Varma, 2013). Knowing the function of proteins is critical in many fields 

within the life sciences - from the development of better drugs, improvement of crop yields, and 

even the development to synthetic biofuels. In a single experiment using E. coli, for instance, 2300 

proteins have been identified to be representing approximately 88% of the estimated expressed 

proteome of E. coli (Soufi et al., 2015). Determining and characterising every protein molecule of 

that bacterial cell can lead to the knowledge of how this prokaryotic cell is regulated. Normal 

functioning proteins usually have one or more continuous polymer chains comprising various 

combinations of multiple different amino acid residues. These residues interact with one another 

forming covalent, hydrogen and ionic bonds and are subject to van der Waals interactions and 

hydrophobic forces, which give rise to the specific 3D shapes and functions of proteins.  

 

1.2. Amino acids 

The tremendous abundance and variety of proteins with their enormous functional complexity are 

all achieved by their polymeric nature, which emerges from a limited alphabet of building blocks 

with varying properties - the amino acids. The discovery of the first few of the amino acids occurred 

the early 19th century, when Vauquelin and Robiquet isolated a compound in Asparagus 

(subsequently named Asparagine) to find the first protein amino acid (Vauquelin and Robiquet, 

1806). The 20 common (or called the standard) amino acids then were discovered one after another 

until the last amino acid, Threonine, was found in 1935 by William Cumming Rose (Simoni et al., 

2002). 

The long unbranching chain of amino acids defines the primary structure of proteins, they are 

linked to one another through a covalent peptide bond. Each amino acid consists of a central carbon 

atom attached to an amino group (-NH2), a carboxyl group (-COOH) and a side chain group (-R). 

There are 20 commonly known amino acids which make protein chains each with different side 

chains. Each are specified by codons in the universal genetic code (Table 1.1). The different side 
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chains give each amino acid its own chemical structure and properties, allowing us to classify them 

differently, for example by polarity and charge (Figure 1.1). The 20 amino acids are typically 

labelled with a one-letter as well as three-letter abbreviations in order to simplify the way of 

recording, processing and understanding protein sequences. The one letter amino acid code can 

also help us to more easily identify any specific mutations or binding sites occurred in a sequence 

(Lodish et al. 2000), via e.g. sequence alignments and motif searching. Moreover, there are two 

other “non-standard” amino acids (Selenocysteine and Pyrrolysine) which do not have a dedicated 

codon, but are added in place of a stop codon when a specific sequence is present, UGA codon and 

SECIS element for Selenocysteine (Bo¨ck et al., 1991), UAG PYLIS downstream sequence for 

Pyrrolysine (Théobald-Dietrich et al., 2005). There are also other amino acids which are not 

naturally encoded or found in the genetic code of any organism but rather they occur in nature or 

be synthesised in the laboratory, these types of amino acids are termed as “non-proteinogenic” 

(Filip and Iancu, 2018). 
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Amino acid 

Abbreviation 
Side chain 

Polarity 

Side chain 

charge 
Class 

Three- 

letter 

One-

letter 

Aspartic acid (C4H7NO4) Asp D Polar Negative Acidic 

Glutamic acid (C5H9NO4) Glu E Polar Negative Acidic 

Arginine (C6H14N4O2) Arg R Polar Positive Basic 

Lysine (C6H14N2O2) Lys K Polar Positive Basic 

Histidine (C6H9N3O2) His H Polar Positive Basic 

Asparagine (C4H8N2O3) Asn N Uncharged polar Neutral Acidic 

Glutamine (C5H10N2O3) Gln Q Uncharged polar Neutral Acidic 

Serine (C3H7NO3) Ser S Uncharged polar Neutral Hydroxyl 

Threonine (C4H9NO3) Thr T Uncharged polar Neutral Hydroxyl 

Tyrosine (C9H11NO3) Tyr Y Uncharged polar Neutral Aromatic 

Alanine (C3H7NO2) Ala A Nonpolar Neutral Aliphatic 

Cysteine (C3H7NO2S) Cys C Nonpolar Neutral Hydroxyl 

Glycine (C2H5NO2) Gly G Nonpolar Neutral Aliphatic 

Isoleucine (C6H13NO2) Ile I Nonpolar Neutral Aliphatic 

Leucine (C6H13NO2) Leu L Nonpolar Neutral Aliphatic 

Methionine (C5H11NO2S) Met M Nonpolar Neutral Hydroxyl 

Phenylalanine(C9H11NO2) Phe F Nonpolar Neutral Aromatic 

Proline (C5H9NO2) Pro P Nonpolar Neutral Cyclic 

Tryptophan (C11H12N2O2) Trp W Nonpolar Neutral Aromatic 

Valine (C5H11NO2) Val V Nonpolar Neutral Aliphatic 

Alanine (C3H7NO2) Ala A Nonpolar Neutral Aliphatic 

Table 1.1. List of the 20 amino acids found in proteins. The list includes the names formula, three-letter 

abbreviation, One-letter abbreviation, side chain polarity, side chain charge and class for the. Adapted from 

Williamson, (2011). 
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Lysine Arginine Histidine Asparagine Glutamine 

 

 

 

 

 

Aspartate Glutamate Serine Threonine Cysteine 

 

 

 

 

 

Isoleucine Valine Alanine Proline Glycine 

 

 

 

 

 

Phenylalanine Leucine Tyrosine Tryptophan Methionine 

 

 

 

 

 

Figure 1.1. The structure of the 20 amino acids found in proteins. They are encoded by the universal 

genetic code for the construction of protein sequences. Each amino acid is represented with its own side 

chain. Adapted from Williamson (2011).  
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1.3. From Primary to Quaternary Structure 

Proteins exist in a plethora of different shapes and sizes which confers a vast range of biochemical 

and cellular functions, as well as the different phenotypes they produce in a cell or an organism. 

The structural diversity arises from the genetic code, specified in the DNA sequences, which in 

turn specifies the linear chains of various lengths made up from different amino acid combinations. 

The linear chains of amino acids subsequently fold into a diverse range of specific three-

dimensional structures which allows them to perform an incredible array of functions (Petsko and 

Ringe, 2008). Four principal levels of protein structure have been characterised in order to help us 

to better understand the diversity of protein structures that results from the sequence complexity 

(Figure 1.2).  

 

Figure 1.2. Summary of the protein structure. In the left side, a simplified cartoon representation of the 

four levels of protein structures, and in the right side, a 3D computational cartoon representing the four 

degrees of the protein structures using the example of PCNA (Mudavath and Pittu, 2013) (PDB: 1AXC). 
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1.3.1. Primary structure 

The primary structure is the linear sequence chain of polymer that is built from the 20 amino acids 

described in Section 1.2. The chain is formed by a condensation (dehydration) reaction between 

the carbonyl group (C=O) of one amino acid and the amino group (H-N) of the next leading to the 

formation of a covalent (peptide) bond. The repeated process leads to the formation of an 

unbranched polypeptide chain with two ends: the carboxyl terminus (C-terminus) and the amino 

terminus (N-terminus) based on the nature of the free group on each end. If the chain is short (less 

than ~40 amino acids) we generally refer to the chain as peptides rather that a protein. When writing 

out the sequence of a protein, we begin with the first encoded amino acid from the N-terminus and 

then continue until the last amino acid, which will be the one at the C-terminus end (Petsko and 

Ringe 2008). 

 

1.3.2. Secondary structure 

The secondary structure level describes the locally ordered structure which is stabilised by 

hydrogen bonding. There are two major types of secondary structures observed in proteins. The 

first major type is called the alpha (α) helix, this structure resembles a coiled spring, and it is 

stabilised by local hydrogen bonding located between the NH and CO groups in the polypeptide 

chain. The second major type is called the beta (β) strand. Extended beta strands come together to 

form beta-pleated sheets via more distant hydrogen bonding between amino acids linking the 

folded chain so that strands lie adjacent to one another. The beta strands in a sheet can either be 

described as being parallel, where the strands are running in the same direction from N-terminus 

to C-terminus, or the pairing strands can run in opposite directions making them an anti-parallel β-

sheet. The elements of the regular secondary structure are usually connected by loop regions, also 

referred to as coils. 

A standardised vocabulary of secondary structure types was published by Kabsch and Sander in 

their DSSP program (Kabsch and Sander, 1983). The program processes the atomic coordinate 

data contained within PDB files and assigns secondary structures states to each residue in the 

protein based on hydrogen bonding patterns. DSSP defines secondary structure states such as the 

π-helix (’I’), three-ten helix (’G’), turn (’T’), β-bridge (’B’), bend (’S’) and coil (’C’). However, 

commonly residues are grouped into a simplified three-state scheme - either helical (H), extended 
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strand (E) and coil (C) states – for processing by structure prediction and classification programs 

(Jones, 1999) (Zhang and Skolnick, 2005). 

 

1.3.3. Tertiary structure 

When multiple secondary structural elements start to get condensed, this level of structure arises. 

The tertiary structure refers to the overall three-dimensional shape of a protein, once all the 

secondary structure elements have folded together among each other. In this stage, the protein 

backbone topology or mutual orientation of secondary structures are specified, and the full 3D 

arrangement of all atoms is created through interactions between polar, nonpolar, acidic, and basic 

R group within the polypeptide chain. The folding in this level are driven by several forces such as 

hydrophobic effects, van der Waals forces, ionic interactions and hydrogen bonds (Lodish et al., 

2000). Once folded, the hydrophobic R groups of nonpolar amino acids will mostly lie in the interior 

of the structure. In contrast, the hydrophilic R groups will mostly lie on the outside. Cysteine side 

chains will form disulphide linkages in the presence of oxygen which is the only covalent bond 

forming during protein folding. Such interactions are the main causes of the final 3D shape of a 

protein. Without these types of bonding and forces, the protein three-dimensional shape will be 

lost, and the protein will no longer has its function (Baldwin, 2007). 

 

1.3.4. Quaternary structure 

At the highest level of organisation, the quaternary structure combines two or more folded chains 

into a multi-subunit structure. The multiple polypeptide chains arrange into stable and semi-stable 

complexes based on the hydrophobic effect or electrostatic interactions between residues. The 

hydrophobic interaction among nonpolar side chains at the contact regions of the subunits is the 

major force which stabilise the quaternary structure. Whereas, the interactions between side chains 

of the subunits including electrostatic interactions such as hydrogen and disulphide bonds are 

functioning as additional stabilisers. Therefore, Hydrogen bonding, van der Waals interactions, 

ionic bonding and disulphide bonding are the factors that keep the quaternary structure of proteins 

held together. An example of a protein with quaternary structure is haemoglobin, an oxygen 

transport protein which is translated as a tetrameric (four unit) protein consisting of two α and two β 

subunits. Other examples include the DNA, polymerase, and ion channels as well. If there are 
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multiple polypeptide chains with the same sequence, then the protein complex is referred to as a 

homo-oligomer or homomer, whereas protein complexes having at least two different polypeptide 

sequences are referred to as hetero-oligomers or heteromers. In the living cell, oligomers can be 

found abundantly, and they serve in many different parts of the living body with a multitude of 

functions (Berg et al., 2002).  

 

1.4. Why determine the structure of proteins? 

The motivation behind protein structure determination is based on the assumption that the function 

of a protein is representative in its own morphology. When proteins fold into specific structural 

conformations they also perform a specific biological function based on that fold. By determining 

the shape of a protein, we can understand its role within the body and how it works, enabling 

scientists to design new, effective cures for diseases more efficiently. Determining protein structure 

can also help in finding how proteins interact with each other as well as with other molecules such 

as ligands. There are several diseases which were caused because of misfolded proteins. Such these 

diseases include cystic fibrosis (Fraser-Pitt and O’Neil, 2015) and Alzheimer's (Ashraf et al., 2014).  

Protein folding is also important in improving our understanding about the proteins themselves. 

Acquiring more knowledge about the proteins shape and the way they are operated through 

simulations and models can open new potentials within drug discovery in a far reduced costs 

association in experiments. The results of such research would ultimately improve the quality of 

life for millions of patients around the world. 

Protein design is another field which can be tremendously benefited from protein structure 

determination. Many advances such as designing biodegradable enzymes which could help 

managing pollutants like plastic and oil for the purpose of breaking down waste in an 

environmentally friendly way can be boosted by knowing how to fold these protein enzymes  

(Halton, 2018). 

The ongoing increase in structural information of proteins has been providing continual insights 

into their functions. However, revealing protein function from sequence is still an unsolved 

problem as they differ in their biochemical properties, structures, and interactions between one 

another. Having the knowledge that the protein has the ability to add a phosphate group to serine 

residues, for example, is not going to be sufficient for understanding the exact function of that 
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protein. Therefore, a number of molecular determinants have been considered crucial for 

elucidating function, such as: protein structure; genetic approaches; protein homology and cell 

location; protein-protein interactions, each of which has been carried out using a number of 

powerful techniques and methods in order to characterise the precise structure, which means, the 

precise function of a protein (Patthy, 2008) (Alberts et al., 2014). 

 

1.5. Experimental methods 

The precise 3D shape of individual proteins cannot be directly observed due to their relative size 

which lies below the limit of detection. To overcome this issue, a number of methods have been 

utilised in order to determine protein structures experimentally.  

 

1.5.1 X-ray Crystallography 

The most dominant experimental structure determination method is X-ray crystallography, a 

method used for observing protein molecules by dealing with them in the crystalline state. The 

technique exploits the properties of highly ordered crystals for the purpose of obtaining structural 

information of biological macromolecules at atomic resolution. Determining protein structure 

using the X-ray crystallography method are proceeded in 3 steps. Firstly, crystallising the protein 

target, and that is by expressing and purifying a large amount of proteins in order to grow their 

crystals. Secondly, collecting the diffraction patterns which are caused by the interaction between 

the electrons of the sample and the X-ray wave as described by Braggs law (Bragg William Henry, 

1913). Thirdly, the output data is combined computationally with complementary chemical 

information to produce and refine a model of the arrangement of atoms within the crystal. The final 

refined model is called a crystal structure and is stored usually in the PDB (Berman et al., 2000). 

X-ray crystallography is a very useful experimental method in determining protein structure. It can 

provide very detailed atomic information, showing every atom in a protein or nucleic acid along 

with atomic details of ligands, inhibitors, ions, and other molecules that are incorporated into the 

crystal. However, the crystallisation process is challenging and can impose limitations on the types 

of proteins that may be studied by the method. For instance, the method can determine the 

structures of rigid proteins excellently if only they formed nice, ordered crystals. Flexible proteins 

are far more difficult to study through the process of this method because crystallography relies on 
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having the exact same orientation of alignments for the protein molecules, similarly as a repeated 

pattern in wallpaper. Having flexible portions of protein will often be invisible in crystallographic 

electron density maps, since their electron density will be smeared over a large space (Guinier, 

2013).  

Recently, a new tool termed serial femtosecond crystallography has been revolutionasing the X-

ray crystallography method. The idea behind it lies in making very short pulses of radiation which 

last only femtoseconds, these pulses are created by using a free electron X-ray laster (XFEL), and 

this radiation is extremely bright. Afterwards, a stream of tiny crystals which do not exceed the 

nano to the micrometers in size is passed through the beam, and each X-ray pulse produces a 

diffraction pattern from a crystal, often burning it up in the process. A full data set is compiled 

from as many as tens of thousands of these individual diffraction patterns. The method is very 

powerful because it allows scientists to study molecular processes that occur over very short time 

scales, such as the absorption of light by biological chromophores (Bergman et al., 2017). 

 

1.5.2 Nuclear Magnetic Resonance 

Nuclear Magnetic Resonance (NMR) is also used for proteins structure observation. This 

spectroscopic technique is preferable for small protein molecules, and it determines the structure 

in solution (Branden and Tooze, 1998). The method of this technique relies on the energy 

differences between spin states of nuclei with the uneven number of protons and neutrons in a 

magnetic field. State transitions between the low and high energy spin state are induced using a 

radio pulse, the magnetic field perceived by nuclei differ due to chemical shielding by electrons, 

these differences can be detected in the spectrum.  

NMR has a major advantage that is missing in the X-ray crystallography, NMR can provide 

information on proteins in solution, as opposed to those locked in crystal or bound to a microscope 

grid. This feature makes NMR the premier method for studying the atomic structures of flexible 

proteins. The method can give indications that help spotting the flexible parts of the molecule by 

giving less or weaker signals in the experiment than the harder parts (Williams et al., 2016). 

According to the PDB resource (www.pdb.org), over 11% of the deposited protein structures have 

been solved using NMR. In such a database, two types of coordinate entries for NMR structures 

can be found. The first type of entry includes the full ensemble from the structural determination, 
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with each structure designated as a separate model. The second is a minimised average structure. 

These files attempt to capture the average properties of the molecule based on the different 

observations in the ensemble. A list of restraints that were determined by the NMR experiment can 

also be found in PDB. These include a number of factors and other information such as hydrogen 

bonds and disulphide linkages, distances between hydrogen atoms that are close to one another, 

and restraints on the local conformation and stereochemistry of the chain (Wawer and Diehl, 2017). 

 

1.5.3 Cryogenic Electron Microscopy 

Another technique that has been used for structural analysis is the Cryogenic Electron Microscope 

(Cryo-EM), this technique is a branch of the commonly used technique 3D Electron Microscopy 

(3DEM). Unlike X-ray crystallography and NMR spectroscopy, Cryo-EM does not require 3D 

crystals or a soluble medium. Molecules can be observed directly in multiple conformations in their 

native environment (Murata and Wolf, 2018). The technique analyses the molecular structures 

through their dynamics, this analysis is proceeded using advanced image-processing algorithms. 

Providing these views show the molecule in myriad different orientations, a computational 

approach akin to that used for computerised axial tomography (CAT) scans in medicine will yield 

a 3D mass density map. The 3D map can then be interpreted by fitting an atomic model of the 

macromolecule into the map when there are enough single particles. This process is similar to the 

macromolecular crystallographers interpret their electron density maps, electron diffraction from 

2D or 3D crystals or helical assemblies of biomolecules can also be used in a restricted number of 

cases in order to determine 3D structures with an electron microscope using an approach very 

similar to that of X-ray crystallography.  

Cryo-EM is favoured by many structural biologists to solve proteins tertiary structure at cryogenic 

temperature which is below -180°C (Schmidt and Urlaub, 2017). The 3DEM techniques are gaining 

prominence in studying biological assemblies inside cryo-preserved cells and tissues using electron 

tomography. This method involves recording images at different tilt angles and averaging the 

images across multiple copies of the biological assembly in situ. The single particle 3DEM as well 

as the electron diffraction, both methods can yield structures with high molecular and atomic detail 

at resolution limits comparable to macromolecular crystallography, it can enable visualising amino 

acid sidechains, surface water molecules, and non-covalently bound ligands. Cryo-electron 

tomography can also provide structural information at slightly lower resolution such as protein 
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domains and secondary structural elements. In 2016, PDB reported that the number of 3DEM 

structures that was deposited in their bank exceeded those which were produced by NMR 

spectroscopy for the first time. However, likewise the previous protein structure observing 

methods, Cryo-EM has a number of limitations which makes it difficult in use. The main limitation 

of this technique is the need for a very low thickness of the samples. Most cells are structurally 

thick, that makes the method fails in excellently imaging the targeted structure as it depends on the 

thickness of the sample (Cabra and Samsó, 2015). Such a limitation is due to the very low signal 

to noise ratio that Cryo-EM has, and it leads to having a low contrast of the resulting images which 

makes it difficult to detect features of a given sample when viewing a few samples. 

 

1.6. Resources for experimental protein structures 

Protein structures which have been determined experimentally are deposited in a computational 

archive called the Protein Data Bank (PDB) (Berman et al., 2000). The PDB was established in the 

early seventies in order to gather a small but growing number of solved protein structures in one 

place and make it accessible to the scientific community (Bernstein et al., 1977). The atomic 

coordinates together with the information associated with the crystallised polymer of every protein 

experimental structure are deposited in the form of a PDB file (Figure 1.3). This information 

includes oligomeric state, references and experimental details, such as unit cell size, and refinement 

parameters. The stored structures are then labelled by assigning them with PDB identifiers, which 

are unique four-character codes for each structure, as well as DOIs.  

 

Figure 1.3. ATOM records within a PDB file format. The example was labelled for description purposes. 

Adapted from https://www.cgl.ucsf.edu/chimera/docs/UsersGuide/tutorials/pdbintro.html. 
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1.7 Challenges facing experimental methods 

Although such methods and experimental techniques help in determining higher resolution 

structures, they are still not reliable as not all proteins can be successfully determined under their 

conditions. A large number of proteins cannot be crystallised; particularly problematic are 

membrane bound proteins. Other types of proteins such as the small-sized insoluble ones are unable 

to be determined by NMR. In addition, the currently available experimental methods used to 

identify protein 3D structure like NMR and X-ray are relatively time-consuming and cost-

ineffective (Zhu and Azar, 2015). The difficulties in these techniques have led the structural 

biological community to look for another substitute to rely on. Cryo-EM has become increasingly 

important due to the recent advances that was developed in its techniques. Such improvements in 

Cryo-EM have made it possible for structural biologists to determine the 3D structure of proteins 

to near-atomic resolution (Callaway, 2015). However, as with the other experimental methods, 

Cryo-EM still has many limitations. The Cryo-EM map is still limited in resolution and cannot be 

used directly for building models (Cheng, 2015).  

 

1.8 The sequence-structure gap 

Breakthroughs in genetic sequencing techniques have led to obtaining a huge amount of protein 

sequence information that has far outstripped the rate at which we are able to experimentally 

characterise each protein structure. Genomic sequences of many organisms have nowadays been 

easily and rapidly determined. This sequencing revolution is owing to the significant improvement 

in genome sequencing technologies and efforts. Over the recent decades, over 1 billion sequences 

from 420,000 formally described species have been deposited in the comprehensive public 

sequences data banks, GenBank databases (Sayers et al., 2019). More than 150 million sequences 

among them have been translated into protein amino acid sequences and stored in the 

UniprotKB/trEMBL database (UniProt Consortium, 2015). Contrarily, despite all the tremendous 

progress in the experimental structure determination techniques, the number of experimentally 

determined structures deposited in the PDB database increased slower as reports showed only 

147,508 structures at the end of 2018 (Figure 1.4).  Therefore, it was urgent for biologists to find a 

solution for this rapid widening in the sequence-structure gap. 
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Figure 1.4. Line graph representing the sequence-structure gap. The number of entries in the trEMBL 

sequence database (UniProt Consortium, 2015) is growing exponentially, while the number of the protein 

structure entries is jammed making the protein structure gap between sequence and structures widening 

dramatically.  

 

1.9 The intervention of Bioinformatics 

To close this gap issue, the development of computational approaches was exploited to grow the 

field of what is called the protein structure prediction. Numerous studies have been focusing on 

determining the protein 3D structure directly from the sequence data using a wide variety of 

computational methods.  

 

1.9.1 Sequence-structure relationship 

A grand challenge that molecular biologists face in determining the protein three-dimensional 

structure is unravelling the relationship between the amino acid sequence and the protein 3D 

conformation. The work of Anfinsen in 1973 revealed that the major determinant of the 3D 

structure of a protein was its own primary sequence (Anfinsen, 1973). Although the primary 

sequence of proteins is subjected to changes as a direct consequence of evolution, protein structure 

has proven to be astonishingly robust towards mutations. Such a robustness is due to the proteins 

ability in adopting a limited ensemble of native conformations since those conformers have lower 

energy than unfolded and mis-folded states (Taverna and Goldstein, 2002) (Tokuriki et al., 2007). 
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This process is achieved by a distributed, internal network of cooperative interactions such as the 

hydrophobic, polar and covalent (Shakhnovich et al., 2005). Stability in structural similarity can 

even be found with the distantly related proteins.  

Later and after a decade of achieving a huge amount of protein structural information, homologous 

proteins which share detectable sequence similarity was seen to have similar 3D structures, and 

their structural diversity is increasing with evolutionary distance as well. Such a finding was shown 

by Chathia and Lesk in their seminal paper, “The Relation between the Divergence of Sequence 

and Structure in Proteins” (Chothia and Lesk, 1986) (Figure 1.5). 

 

Figure 1.5. Scatter plot representing the relationship between sequence identity and structural 

similarity of core residues. The fitted curve shows that similar sequences imply similar structures. Adapted 

from Chothia and Lesk, (1986). 

 

1.9.2. Sequence alignments 

The fact that sequence similarity implies structural similarity has been validated via many 

bioinformatics and computational biology studies and methodologies, which compare the 

relationships between protein sequences (Eddy, 2011). Sequence similarities are typically found 

through comparing protein sequences using sequence alignment techniques. Computational 

approaches to sequence alignment generally fall into two algorithmic categories. The first category 
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involves the global alignment methods and these approaches force the alignment to span the entire 

length of all query sequences. The second category involves the local alignment methods, and these 

approaches identify regions of similarity within long sequences that are often widely divergent 

overall. Both types of algorithms are within a complexity of O(nm), where n and m represent the 

lengths of the first and second sequences respectively. Global alignments are useful when the 

sequences in the query set are similar and of roughly equal size. An example of a global alignment 

approach is the Needleman-Wunsch algorithm (Needleman and Wunsch, 1970). However, local 

alignments approach sometimes are preferable when the aligned sequences are not directly related 

to produce high-quality global alignments. A general example of local alignment method is the 

Smith-Waterman algorithm (Smith and Waterman, 1981) (Polyanovsky et al., 2011).  

 

1.9.2.1 Pairwise sequence alignments 

Sequences are usually aligned in pairs to find the best-matching piecewise alignments of only two 

query sequences at a time. The pairwise alignment approach is efficient and is often used for 

methods which do not require extreme precision (such as searching a database for sequences with 

high similarity to a query). There are three common techniques that produce pairwise alignments 

(Mount, 2004): (1) Dot-matrix, this method implicitly produces a family of alignments for 

individual sequence regions. The technique is qualitative and conceptually simple, though time-

consuming to analyse on a large scale. (2) Dynamic programming, this method is applied to 

produce global alignments via Needleman-Wunsch algorithm, and local alignments via the Smith-

Waterman algorithm. The approach is useful for finding an optimal alignment given a particular 

scoring function, though identifying a good scoring function is often an empirical rather than a 

theoretical matter. (3) Word, also known as k-tuple, and this method is heuristic, which does not 

guarantee finding an optimal alignment solution. However, Word technique is more efficient than 

dynamic programming, especially in large-scale database searches where large proportion of the 

candidate sequences will have essentially no significant match with the query sequence.  

The efficiency of word or k-tuple based techniques, led to the development of a number of widely 

and used programs such as FASTA (Lipman and Pearson, 1985) and BLAST (Altschul et al., 

1990). Since its introduction until today, BLAST is still one of the most widely used programs for 

carrying out efficient sequence database searches. Its heuristic algorithm makes the program much 

faster than other approaches. Prior to FASTA and BLAST, the procedure of searching for sequence 
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alignments used to be by using the full alignment algorithms such as Smith-Waterman, which were 

time consuming. 

 

1.9.2.2 Multiple sequence alignments 

More than two sequences can also be incorporated at a time using multiple sequence alignment 

(MSA) approach which is an extension of pairwise alignment. MSA methods are often used to 

identify conserved sequences regions across a group of sequences hypothesised to be evolutionarily 

related (Rosenberg, 2009). Such approaches are useful in conjunction with structural and 

mechanistic information to locate, for instance, the catalytic active sites of enzymes. They can also 

be used to aid in establishing evolutionary relationships by constructing phylogenetic trees. 

Although MSA approaches are computationally difficult to produce and sometimes they lead to 

NP-complete combinatorial optimisation problems, the utility of these alignments has been able to 

develop a variety of methods which helped in advancing bioinformatics. Such these methods are 

Clustal Omega (Sievers and Higgins, 2014), Kalign (Lassmann and Sonnhammer, 2005), 

MUSCLE (Edgar, 2004)… etc), these methods are suitable for aligning three or more sequences 

(Wang and Jiang, 1994) (Elias, 2006). 

Sequence alignments are usually stored in a format based on several specific alignment programs 

or implementations. Many of these programs provide web-based tools that allow storing sequence 

alignments using a limited number of input and output formats, such as FASTA format (Goldstein 

et al., 2014) and GenBank format. 

 

1.9.2.3. From sequence alignments to structure modelling 

The fact that evolutionarily related proteins have similar structures has encouraged researchers to 

develop methods for predicting the structure of proteins from their sequences (Kaczanowski and 

Zielenkiewicz, 2010). One way of modelling a protein structure is by aligning the sequence to those 

of already experimentally observed protein structures and then using those structures as templates 

in order to map the 3D coordinates of each aligned residue. This procedure has been termed 

homology modelling or comparative modelling (Martí-Renom et al., 2000). However, sometimes 

structurally homologous proteins can have a very low sequence identity, and in these cases 

homology modelling methods fail to identify a suitable template structures or produce poor 
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alignments. This issue led to another way of determining protein structure called Threading or Fold 

recognition (Rost et al., 1997). This modelling method does not use the homologous proteins with 

known structures, but rather uses statistical knowledge of the relationship between the structures 

which have been deposited in the PDB database and the targeted sequence. In recent years fold 

recognition and homology modelling techniques have somewhat merged, with the ability to detect 

ever more distant evolutionarily relationships using profile-profile searching methods and HMM-

HMM methods, such as the popular HHpred method (Hildebrand et al., 2009). The general concept 

of modelling based on existing structures is now classified as Template-Based Modelling (TBM), 

and the success of such methods relies on the availability and accurate detection of suitable 

templates. 

As the amount of detectable similarity between target protein and template structures decreases, 

the accuracy of template-based techniques will start to be insufficient and such methods become 

unreliable. In this case, another structure prediction technique, traditionally called de novo or ab 

initio protein structure prediction is the only remaining option. The technique is based on predicting 

the structure of proteins without the need of a template and is therefore known as template Free 

Modelling or FM (Jothi, 2012). FM methods are not nearly as accurate as TBM methods when 

templates are available (Moult et al., 2005). However, the concept of such techniques is somewhat 

simpler comprising of only two elements: firstly an algorithm to search the space of possible 

protein configurations for cost function minimisation and secondly various restraints, which are 

the composition of the cost function itself, being either derived from physical laws and structural 

features predicted by machine learning or other types of statistical systems (Larrañaga et al., 2006). 

FM techniques have been incrementally improving and can provide us with valuable information 

on how novel domains may fold (Kihara et al., 2001). 

Most recent breakthroughs have arisen with the onset of deep learning. New approaches built using 

Artificial Intelligence (AI) have been accelerating the structure prediction field by far. A method 

called AlphaFold was developed by the DeepMind AI company has shown a significant progress 

on generating 3D models of proteins in the worldwide protein prediction competition, CASP (more 

details about this competition will be addressed in the later sections). The method was placed first 

in rankings among the teams that entered in protein modelling competitions (details about the 

protein structure prediction competition community will be addressed later). The reason behind 

this success lies to the integration of the Deep Artificial Neural Neworks (DANNs) approach, 
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which is a system of many learning algorithms which can be trained in order to be able to search 

the protein landscape thoroughly, and as a result, it generates highly accurate structures. Such a 

success has drawn the attention from all structural biologists to start studying this field in depth. 

 

1.10. Protein structure prediction software 

The field of computational protein prediction is evolving constantly, following the increase in 

computational power of machines and the development of intelligent algorithms. Such an evolution 

made the classification and categorisation of these methods hard to conserve. In this section, some 

of the most popular programs and servers for protein structure prediction will be listed (Table 1.2) 

according to the organisations which are interested on protein structure predictions, CASP (Moult 

et al., 2005) and CAMEO (Haas et al., 2018). Some programs/servers can have more than one 

edition/approach so that they can fulfil different methods.  
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Table 1.2. List of a few of the common successful TBM and FM programs and servers. The list was 

sorted in alphabetical order starting with our method which was developed by Dr Liam McGuffin, IntFOLD. 

 

Program Type Short Description Reference 

IntFOLD FM/TBM 

An approach that works via iterative 

multi-template-based modelling, 

using the target-template alignments 

from 14 alternative methods and 

eight alternative threading methods, 

and a powerful model quality 

assessment component called 

ModFOLD. 

(Roche et al., 2011) 

(McGuffin et al., 2019) 

I-TASSER FM/TBM 

A hierarchical approach that 

MetaServer which combines various 

TASSER-based approaches. 

(Roy et al., 2010) 

(Yang and Zhang, 2015) 

MODELLER TBM 

A homology or comparative 

modelling approach which calculates 

a model containing all non-hydrogen 

atoms through the satisfaction of 

spatial restraints. 

(Fiser et al., 2000) 

(Webb and Sali, 2016) 

PconsFold2 FM 

The program uses contact predictions 

from PconsC3, the CONFOLD 

folding algorithm and model quality 

estimations to predict the structure of 

a protein. 

(Michel et al., 2017) 

(Bassot et al., 2019) 

QUARK FM 

A computer algorithm for ab initio 

protein modelling that uses replica-

exchange Monte Carlo simulation 

under the guide of an atomic-level 

knowledge-based force field. 

(Xu and Zhang, 2012) 

RaptorX-Contact FM 

An approach that integrates 

evolutionary and physical constraints 

using machine learning (Random 

Forests) and integer linear 

programming. 

(Wang et al., 2017) 

RBO_aleph FM 
A machine learning method that uses 

graph‐based features of contact. 
(Schneider and Brock, 2014) 

Rosetta FM 

A distributed computing project for 

protein structure prediction on the 

Berkeley Open Infrastructure for 

Network Computing (BOINC) 

platform, run by the Baker laboratory 

at the University of Washington. 

(Das and Baker, 2008) 

(Ó Conchúir et al., 2015) 
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1.11. Critical Assessment of Structure Prediction 

Such techniques are a few of several other modelling techniques which have been developed and 

utilised through the last decades in order to solve the protein sequence-structure gap dilemma. The 

importance and far-reaching implications of having the ability to predict protein structures from 

their amino acid is manifested by the ongoing biennial competition on “Critical Assessment of 

Structure Prediction” (CASP). 

The Critical Assessment of Techniques for Protein Structure Prediction or CASP is a global 

community-wide experiment that has started taking place every other year since 1994 (Moult et 

al., 1995). Protein structure modellers in more than a hundred research centres around the world 

dedicate their late spring and summer to preparing their methods to be independently tested in this 

centre. CASP is designed as a blind prediction experiment. A set of protein sequences is selected 

by the organisers in order to assess the performance of the structural protein methods that will 

predict it and help advance them. In the first CASP, the experiment was quite basic consisting of 

just three parts: collecting targets experimentally, collecting tertiary structure predictions, and 

assessing and discussing the results (Moult et al., 1995). The centre has since become popular, and 

its participants with their experiments have been increasing continuously over the years until it has 

taken the form of a competition which can be thought of as the “World Protein Structure Prediction 

Championships”. Thirteen CASP experiments have been performed during the last 20 years, with 

the last one completed in late 2018. The competition has evolved over the years and is now carried 

out dividing its experiments into slightly more complicated sub categories, including tertiary 

structure prediction; disorder prediction; contact prediction; model quality assessment or (QA) 

which recently was called Estimate of Model Accuracy (EMA); binding site prediction; protein-

protein interactions; oligomerisation state; protein model refinement (Roche & McGuffin, 2016). 

Each category represents an important part of the experiment that needs improvements in the 

predictive power of algorithms, which will lead to having a high level of accuracy and consistency 

in producing models close in quality to the experimentally derived protein structures. 

 

1.12. Estimate of Model Accuracy (Model Quality Assessment) 

Protein structure modeling is far less accurate in terms of the credibility than deriving protein 

structures from experiments. Models are typically left un-annotated with quality estimates and can 

span a broad range of the accuracy spectrum, whereas the accuracy of observed protein structures 
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can be estimated from experiments and falls within a narrow range (Martí-Renom et al., 2000). 

Therefore, a number of unbiased evaluation methods have been developed by modelers using some 

techniques such as statistical potentials, molecular mechanics energy-based functions, 

stereochemistry checks, and machine learning in order to analyse the correctness of protein 

structures and models, and to tackle their problems (Kryshtafovych & Fidelis, 2009). Examples of 

the early quality assessment tools are WHAT-CHECK (Hooft et al., 1996), PROCHECK 

(Laskowski et al., 1996) and, more recently, MolProbity (Lovell et al., 2003). These tools use basic 

stereochemical checks, and they are very useful in identifying unusual geometric features in a 

model. However, such early quality assessment tools are not able to produce a single score for 

ranking alternative models. Other examples of early quality assessment tools, that use a variety of 

different methods, are ProSA (Sippl, 1993) and DFIRE (Zhou & Zhou, 2002), which have been 

used along with VERIFY3D (Lüthy et al., 1992) in order to provide single scores that relate to the 

global quality of protein models. Machine learning-based quality assessment programs have also 

been utilised to provide a higher value of prediction accuracy. ProQ (Wallner & Elofsson, 2003), 

the first ModFOLD method (McGuffin, 2007) and QMEAN (Benkert et al., 2008) are examples of 

machine learning-based QA method, which helped programmers to use various combinations of 

structural features and individual energy potentials in order to increase the accuracy of predicted 

global model quality. 

Because of the necessity of quality assessment methods, the CASP7 (2006) organisers had decided 

to include a section for evaluating Model Quality Assessment Programs (MQAPs) as a separate 

category in CASP (Fasnacht et al., 2007). In this category, CASP assessors will be testing the 

methods that assess the quality of protein models. How accurate are MQAP methods in 

distinguishing the similarity between model and native protein structures is the most important goal 

in this category. Initially in CASP7, MQAP participants started using their QA tools to evaluate 

each model individually and produce predicted global quality scores for a single model at a time, 

except some other candidates, such as the Swedish meta server called Pcons, used a clustering 

approach. In Pcons, it assumes that if the majority of the joined servers agree on a similar model, 

then that model is more likely to match with its observed protein structure than models proposed 

by one or a few servers. In other words, instead of considering a protein model from one server in 

isolation, Pcons considers models from many prediction servers, and each server uses a different 

modelling method from the other. The Pcons method works by carrying out all against all pairwise 
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structural comparisons to assign a confidence score to each model. By using this technique, Pcons 

had outperformed all the single-model servers by generating nearly 10% more correct predictions 

(Lundström et al., 2001). Thereafter, this technique has been classified as a consensus-based or 

clustering model quality assessment method, which is contrastable to single-model measurements. 

 

1.13. Project objectives 

The main aim of the study is to gain an improvement in the performance of our protein model 

quality assessment method, ModFOLD6. For the initial aims of the study, an investigation of the 

potential state of the art model quality assessment programs was undertaken. A review of where 

our method stands between the other MQAPs is searched. As the first step of the project, a number 

of the top ranked MQAPs are selected and revised in order to reflect the actual performance of 

ModFOLD6 in comparison with the top performing MQAPs.  

The initial part of analysis includes a measurement of correlations between predicted quality scores 

from the methods selected for this study and four standard observed scores. These correlations 

were performed using the Pearson’s R, Spearman’s Rho and Kendall’s tau B correlation 

coefficients (more details about these measurements will be addressed in the Materials and 

Methods section of this chapter) in a try to optimise the current scoring method of ModFOLD6. 

The optimised ModFOLD6 was benchmarked and cross validated among the top model quality 

assessment programs using data from the official worldwide competition, CASP11. The second 

chapter shows the outcome of the benchmarking with a number of suggestions that can improve 

our EMA method. 

For the second objective of the study, two different Deep Neural Network techniques (RSNNS and 

TensorFlow) were utilised to find a new way to combine the ten top performing model quality 

assessment methods in order to improve local as well as the global quality score. Both techniques 

are featured with the multilayer perceptron (MLP) class of feedforwarding artificial neural 

network. The differences between them rests in their complexity. The techniques were tested for 

comparisons showing different results. Several neural networks architectures were trained, and a 

number of scoring measures were tested for a try to feature our EMA method with a deep learning 

technique that can improve the accuracy of model estimations. 
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In the second year of this project, we participated with our updated version of ModFOLD6 in one 

of the most popular competitions in protein structure prediction field, CASP12. The method was 

independently benchmarked among the most powerful participating EMA methods. Chapter 4 

addresses a detailed description about our updated method and the successful results which 

ModFOLD6 achieved from the participation in CASP12. 

After CASP12, EMA researchers started to focus on integrating the Deep Neural Networks as they 

found it to be a useful tool in strengthening their methods. Several were showing a huge difference 

between including and excluding DANNs to their methods. This technique has started to be utilised 

in a number of novel MQAP methods such as the Wang methods (Liu et al., 2016) and DL-pro 

method (Nguyen et al., 2014). However, the benefit of deep learning technique has been emerged 

in ProQ3D, a recently developed EMA method that could not participate in CASP12 (Uziela et al. 

2016). After evaluating it, ProQ3D was proven to show a high improvement when the developers 

utilised the theano backend as the deep learning strategy. The third objective involves Deep 

Artificial Neural Networks parameterisation analysis for the purpose of gaining more 

optimisations. The TensorFlow python software library was utilised in order to determine the 

hyperparameters for a rank-optimised network and a correlation-optimised network. 

For the fifth objective, a number of the pioneering pure-single and quasi-single model approaches 

as well as some scoring functions were integrated to our EMA method. Such an integration plus 

the previous updates gave our method the strengths to accurately score and rank predicted models 

with higher consistency. The method was benchmarked, cross validated, and tested to be ready to 

participate in the coming CASP as the 7th version of our program. In 2018, ModFOLD7 was ready 

to participate in CASP13, and the competition showed excellent results for the method. Such a 

success was described in detail in Chapter 6. 

After CASP12 and CASP13, both upgraded ModFOLD methods have become available for public 

use. The methods have been used in many experimental biological works and has been cited in 

several publications. Alongside with the main study, a number of experimental applications of the 

updated ModFOLD6 and ModFOLD7 were carried out by a collaboration between our team and 

others in the biological school. For the last chapter of this thesis, a number of applications of 

ModFOLD6 and ModFOLD7 which have been carried out during the project study will be 

described.
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2.1. Background 

2.1.1. ModFOLD 

In the two years following CASP7, performance of protein structural QA servers were observed to 

be considerably increasing. MQAP tools have become the cornerstone of many protein structure 

modeling methods. More than a dozen papers were published in the area of QA between CASP7 

and CASP8, and 45 methods were submitted for evaluation to CASP8 in that category. 

ModFOLDclust2 (McGuffin, 2009), MQAPRank (Jing and Dong, 2017), MULTICOM_cluster 

(Wang et al., 2010), ProQ2 (Ray et al., 2012), VoroMQA (Olechnovič and Venclovas, 2017), 

ZHOU-SPARKS-X (Yang et al., 2011) are all examples of QA methods. Some methods have been 

developed originally by their predictors using their own approach to measurements. Other methods 

U meta-server/consensus approach that was rated as a highly effective MQAP was ModFOLD 

(McGuffin, 2007). 

ModFOLD is a machine learning-based QA program that was developed at the University of 

Reading by Dr McGuffin’s group (McGuffin, 2007). The original ModFOLD method was 

developed based on the nFOLD protocol (Jones et al., 2005), which is a combination of the new 

GenTHREADER protocol (McGuffin & Jones, 2003) and a number of extra inputs into the 

underlying neural network. The idea behind GenTHREADER is implied in three stages (Jones, 

1999). Firstly, the sequence alignment using BLASTP program (Altschul et al., 1990) (the later 

versions of GenTHREADER used PSI-BLAST (Altschul et al., 1997)) to scan the template 

sequence against non-redundant dataset of proteins. Secondly, the pair potential and solvation 

calculation terms based on a set of pairwise potentials of mean force (Hendlich et al., 1990), the 

last one is determined by resolved protein X-Ray crystal structures and the application of the 

inverse Boltzmann equation (Jones et al., 1992), plus using a solvation potential (Jones et al., 

1992). Thirdly, the alignment evaluation by training a neural network in order to combine sequence 

alignment score, length information and energy potentials from threading into a single score. In the 

original GenTHREADER, the neural network was simply trained using a binary classification 

system called CATH (Dawson et al., 2017). This publicly available online resource was created in 

the middle of 1990s by Professor Christine Orengo and colleagues (Orengo et al., 1997). CATH 

database can provide information on the evolutionary relationships of protein domains. CATH 

resource can be accessed freely at: https://www.cathdb.info/.  In later versions of GenTHREADER, 

the neural network was modified to be trained to learn a proteins similarity measurement termed 



 

 

Chapter 2 

 

 
28 

FSSP Z-scores (Holm and Sander, 1996) which has improved the program. The nFOLD protocol 

was developed afterwards by feeding three additional inputs into the neural network, which include 

the SSEA score (McGuffin & Jones, 2003), a new functional site detection score (MetSite) (Sodhi 

et al., 2004), and a simple model quality checking algorithm, MODCHECK (Jones & McGuffin, 

2003). 

Initially, ModFOLD was developed in two editions: ModFOLD, designed to be fast and used for 

the global assessment of either single or multiple models, and ModFOLDclust, a more intensive 

method that carries out clustering of multiple models and provides a per-residue local quality 

assessment. ModFOLDclust has shown to significantly outperform all of its clustering/multiple 

MQAP competitors, while ModFOLD has competed well against some of the best “true” single 

model MQAP methods (McGuffin, 2007). Since CASP ranking relies on the prediction accuracy 

regardless of the method used, clustering- or consensus-based MQAPs were ranked as the most 

accurate methods for predicting 3D model quality, outperforming the single model methods. 

 

2.1.2. Q-score in ProQ2 and ModFOLDclustQ for Speed, Accuracy and Consistency 

Despite their accuracy, it was noticed that a number of advantages of the single model-based 

methods were missing in the clustering methods. One missing feature was the speed. Like Pcons 

and other consensus-based approaches, ModFOLDclust carries out pairwise comparisons of 

numerous models by using multiple structural alignments, and that makes it often CPU intensive 

(McGuffin, 2008). Another difficulty found in QA programs including ModFOLDclust was the 

requirement of a large pool of diverse models, having a small number of models can minimise the 

efficiency of MQAPs (Cao, Wang, & Cheng, 2014). To overcome such problems, Roche designed 

an upgraded version of the same method, they called it ModFOLDclustQ (Roche et al., 2014). The 

initial ‘Q’ labeled in the upgraded version name is referred to a score called Q-score has been 

utilised in ModFOLDclustQ, while also standing for Quick. The Q-score is derived from the Q 

measure that was developed by the Wolynes group (Eastwood et al., 2001). The Q-score has the 

ability to efficiently estimate structural relations between two proteins based on their residue 

distances. This method has been suggested by the CASP8 assessors as an alternative to the other 

scoring methods such as the GDT-TS (Ben-David et al., 2009). By importing Q-score, 

ModFOLDclustQ has shown to compete with the leading consensus MQAPs, but that was not the 

eventual state of ModFOLDclust. When taking the mean of ModFOLDclustQ scores and its older 
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ModFOLDclust, it showed a significant increase in prediction accuracy, with little computational 

overhead. That led Dr McGuffin’s group to combine both scoring methods to form a new method 

named ModFOLDclust2 (Roche et al., 2014). There are a number of other MQAPs that also used 

Q-score to assess each individual residue in a model pertaining to the per-residue accuracy. A 

successful per-residue consensus-based method was Pcons method, which was superseded then by 

one of the leading consensus single model per-residue programs, known as ProQ (Wallner & 

Elofsson, 2003). The method was then upgraded by updating its structural and predicted feature, 

this upgrade   to be as the second top ranking MQAP, ProQ2 (Wallner & Elofsson, 2007). 

Although upgrading ModFOLDclust to ModFOLDclustQ and combining their scores have shown 

a high improvement in the quality assessment speed and accuracy level, McGuffin’s group also 

noticed the potential of using ModFOLDclust2 to guide 3D modelling using multiple templates. In 

the process of modelling, using more than one-fold template is helpful in assessing models more 

accurately. However, it was noticed that such a technique is not preferable in many cases as it may 

result in poorer model quality. Besides the speed and the accuracy of an MQAP, there has to be the 

consistency as well. To solve such a problem, Dr McGuffin and colleagues have started to 

investigate the use of local as well as global model quality prediction scores that are produced by 

ModFOLDclust2. This led to improvements in the selection of target-template alignments for the 

construction of multiple-template models. After the investigation, it was found that the most 

accurate and consistent way in improving models is to use accurate local model quality scores to 

guide alignment selection while using accurate global model quality before selection for re-ranking 

alignments. Applying this technique has made significant performance improvements to the 

IntFOLD server (Buenavista et al., 2012). 

 

2.1.3. “Quasi-single-model mode” algorithm 

Another important feature that was missing in the clustering base approaches is addressing the real-

life needs of protein researchers when often only a single or few models for each protein target are 

available for evaluation. In that case, clustering methods will provide a very poor result in 

performance. McGuffin’s group was aware of this problem and they found a way to solve it. Instead 

of proceeding a direct clustering to the submitted model/s, a tertiary structure prediction method 

(IntFOLD2-TS, Roche et al., 2011) is used at the beginning as the first stage of the quality 

assessment procedure to generate an initial reference set of template-based models. The submitted 
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model/s of the target with the generated models are then clustered using ModFOLDclust2 as the 

second stage of the process. By this algorithm, if the server received multiple models then the 

procedure will go with the full clustering approach, whereas if only single or few models are 

submitted, then the operation will take the so called quasi single-model approach, which operates 

with comparable accuracy. This method has been implemented initially with the ModFOLD v3.0: 

a server developed using ModFOLDclust2 integrated with the IntFOLD-QA tertiary structure 

prediction pipeline (McGuffin & Roche, 2010). The algorithm has since been independently tested 

for confidence and published with the term “quasi-single-model mode” in the fourth version of 

ModFOLD, when ModFOLDclust2 was integrated with IntFOLD2-TS (McGuffin et al., 2013). 

CASP assessments of QA methods were more concerned about the quality scoring results rather 

than other practical considerations, such as the researcher accessibility, until the assessment was 

updated following the eighth and ninth experiment (Kryshtafovych et al., 2011). In CASP10, the 

criteria were modified to rebalance the quality assessment. This modification was implied by using 

smaller bespoke data sets rather than allowing large sets of models, which some said unfairly 

favoured clustering approaches. ModFOLD4 was the first beneficiary of this change of focus 

having been benchmarked independently at CASP10 where it was ranked among the top 

performing methods in the quality assessment category. The ModFOLD4 server provides a free 

service for accurate prediction of global and local QA of 3D protein models. ModFOLD4 has a 

comparable performance to clustering-based methods but retains the capability of making 

predictions for a single model at a time, which is what has made it such a powerful MQAP 

(McGuffin et al., 2013). 

In 2015, the 5th version of ModFOLD has been released. This version was integrated with the 

upgraded tertiary structure prediction IntFOLD3-TS pipeline which has given ModFOLD5 the 

ability to generate greater number and variety of reference models (McGuffin et al., 2015). 

 

2.2. Objective 

The main aim of study is to gain an improvement in the performance of the protein model quality 

assessment method, ModFOLD6. For this part of the study, an investigation of the potential state 

of the art model quality assessment programs is undertaken. A number of the top-ranked MQAPs 

are selected and revised in order to reflect the actual performance of ModFOLD6 in comparison 
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with the top performing MQAPs. The initial part of analysis includes a measurement of correlations 

between predicted quality scores from the methods selected for this study and four standard 

observed scores using the Pearson’s R, Spearman’s Rho and Kendall’s tau B correlation 

coefficients. 

 

2.3. Materials and Methods 

In this section, we describe the initial study in our research. A number of methods were used for 

benchmarking ModFOLD6 in order to evaluate its performance and the possibilities of improving 

its pipeline. Such evaluating methods include linear and non-linear regressions, ranking and 

correlation methods individually and in combinations. Before getting into details, Figure 2.1 can 

show an overall flow of the process and steps which are addressed in this section. 

 

 

Figure 2.1. Flowchart summarising the overall process of section 2.3. 

 

2.3.1. Ten MQAPs 

A selection of ten high performing model quality assessment methods were benchmarked using 

models that submitted by servers in CASP experiments. Six of these methods that were related to 

ModFOLD were benchmarked against four other single-model MQAPs using four observed global 

scoring measures. The ten MQAPs producing the predicted quality scores were 

ModFOLD5_single_orig_global (M5so), ModFOLDclustQ_single_orig_global (Mcqso), 

ModFOLDclust2_single_orig_global (Mc2s), ModFOLD5_single_res_global (M5sr), 

ModFOLDclustQ_single_res_global (Mcqsr), ProQ2_res_global (P), CDA_res_global (C), 

DBA_res_global (D), SSA_res_global (S) and ModFOLD6_single_res_global (M6), and the four 

observed quality scores were GDT-HA, GDT, MaxSub and TM-score. This analysis was 

implemented using the statistical computing software, R v3.2.3.  
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2.3.1.1. ModFOLD5_single_orig_global (M5so) 

The global scores were taken from our quasi-single model method that was developed for CASP11. 

The global score was calculated from the comparison of each model with the reference set of 

models built by IntFOLD3 server. Individual models were compared against the reference 

IntFOLD3 set using the TM-score (Zhang & Skolnick, 2004). The equation for 𝑇𝑀𝑠𝑐𝑜𝑟𝑒 =

Max [
1

𝐿𝑁
∑

1

1+(
𝑑𝑖
𝑑0

)2

𝐿𝑇
𝑖=1 ] where 𝐿𝑁 and 𝐿𝑇 were the lengths of the native structure and the residues to 

the template structure respectively. 𝑑𝑖 was the distance between 𝑖 the pair of aligned residues and 

𝑑0 was a scale to normalise the match difference. The ModFOLD5_single_orig_global (M5so) 

global score was calculated as 𝑀5𝑠𝑜 =
1

𝑁−1
∑ 𝑇𝑚𝑚∈𝑀  where 𝑀5𝑠𝑜 was the global quality score 

for a model, 𝑁 was the number of models for the target, 𝑁 − 1 was the number of pairwise 

structural alignments carried out for each model (i.e. models were not aligned with themselves), 𝑀 

was the set of alignments and 𝑇𝑚 was the TM-score for each pairwise alignment of models. A TM-

score cut-off was implemented so that alignments with scores < 0.2 were not included in the 

calculation. Therefore, the size of set 𝑀 was equal to the number of alignments with TM-scores ≥ 

0.2. 

 

2.3.1.2. ModFOLDclustQ_single_orig_global (Mcqso) 

This quasi-single model QA score was calculated from the comparison of each model with the 

reference set of models built by IntFOLD3 server in a similar way to the 

ModFOLD5_single_orig_global score described above, however here individual models were 

compared against the reference IntFOLD3 set using the Q score (McGuffin & Roche, 2010) 

(Eastwood et al., 2001). 

In each pairwise comparison, the matrix of internal distances for ‘model a’ was designated as 𝑟𝑖𝑗
𝑎 

and the matrix for ‘model b’ was designated 𝑟𝑖𝑗
𝑏  , where 𝑟𝑖𝑗 was the distance between the Ca atom 

of residue 𝑖 and the Ca atom of residue 𝑗 in the same model. For each pair of equivalent residues 

in a pairwise comparison of models, a score 𝑄𝑖𝑗  was calculated as 𝑄𝑖𝑗 = 𝑒𝑥𝑝 [− (𝑟𝑖𝑗
𝑎 − 𝑟𝑖𝑗

𝑏)] Thus, 

for a perfect match between residues 𝑄𝑖𝑗 = 1 and for poor match 𝑄𝑖𝑗 ≈ 0. In the paper by Ben-

David et al., two measures, 𝑄𝑙𝑜𝑛𝑔  and 𝑄𝑠ℎ𝑜𝑟𝑡 were described to indicate the observed quality of the 
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tertiary structure and secondary structure prediction, respectively, for a given model. The 𝑄𝑠ℎ𝑜𝑟𝑡 

score for a given model was calculated by averaging 𝑄𝑖𝑗  , considering the best pair and 20, 40, 60, 

80 and 100% of the ranked pairs that satisfied |𝑖 − 𝑗| ≤ 20 . Conversely, 𝑄𝑙𝑜𝑛𝑔  was calculated by 

considering those that satisfied |𝑖 − 𝑗| > 20 . For this study, both the 𝑄𝑙𝑜𝑛𝑔  and 𝑄𝑠ℎ𝑜𝑟𝑡  measures 

were attempted separately; however, it was found that the best results were obtained by including 

both the long- and short-range internal distances by averaging 𝑄𝑖𝑗  for all ranked pairs (|i−j|>0) to 

give a score, 𝑄𝑡𝑜𝑡 . For a given model, the 𝑄𝑡𝑜𝑡 scores were calculated for each pairwise comparison 

and the final ModFOLDclustQ global (QMODE1) prediction of model quality was calculated 

as 𝑀𝑐𝑞𝑠𝑜 =  
1

𝑁−1
 ∑ 𝑄𝑡𝑜𝑡𝑚∈𝑀  where 𝑀𝑐𝑞𝑠𝑜𝑔𝑙𝑜𝑏𝑎𝑙  was the global model quality score for a model, 

𝑁 was the number of models for the target, 𝑁 − 1 was the number of pairwise comparisons carried 

out for each model, 𝑀 was the set of comparisons and 𝑄𝑡𝑜𝑡 was the pairwise similarity between 

models. 

 

2.3.1.3. ModFOLDclust2_single_orig_global (Mc2s) 

This quasi-single model QA score was equivalent to the mean of the 

ModFOLD5_single_orig_global (ModFOLDclust_single_orig_global) and the 

ModFOLDclustQ_single_orig_global scores described above. Thus, 𝑀𝑐2𝑠 =  (𝑀5𝑠𝑜 + 𝑀𝑐𝑞𝑠𝑜)/

2. 

 

2.3.1.4. ModFOLD5_single_res_global (M5sr) 

The sum of the predicted per-residue errors calculated using the ModFOLDclust_single quasi-

single model QA method was divided by the original target sequence length. For a residue in a 

pairwise superposition the S-score (McGuffin et al., 2013) was defined as 𝑆𝑖 =  
1

1+(
𝑑𝑖
𝑑0

)2
 where 𝑆𝑖  

represents the S-score for residue 𝑖 in a model, whereas 𝑑𝑖 represents the distance between aligned 

residues according to the TM-score superposition, and 𝑑0 represents the distance threshold (3.9Å). 

That means the 𝑆𝑖 scores will be given only if 𝑑𝑖 was above 3.9Å. For each residue, the S-scores 

were summed, and the mean score is calculated. The equation is 𝑆𝑟 =  
1

𝑁−1
∑ 𝑆𝑖𝑎𝑎∈𝐴  where 𝑆𝑟 

provides the accuracy of the predicted residue for the model, 𝑁 shows the models number for the 
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target, 𝐴 is the set of alignments and 𝑆𝑖𝑎  is the 𝑆𝑖 score for a residue in a structural alignment 𝑎 . 

The final global score is the (∑ 𝑆𝑟)/L where, L is the original target sequence length. 

 

2.3.1.5. ModFOLDclustQ_single_res_global (Mcqsr) 

The sum of the predicted per-residue errors using the ModFOLDclustQ_single QA method was 

divided by the original target sequence length.  

 

2.3.1.6. ProQ2_res_global (P) 

The sum of local scores are taken from the ProQ2 (Wallner & Elofsson, 2007) pure single model 

method was divided by the original target sequence length. Thus, 𝑃 = (∑ 𝑃𝑟𝑜𝑄2)/𝐿 where, 

𝑃𝑟𝑜𝑄2 is the per-residue score and 𝐿 is the original target sequence length. 

 

2.3.1.7. CDA_res_global (C) 

This score was based on our new pure single model QA method from ModFOLD6. The Contact 

Distance Agreement (CDA) score relates to the agreement between the predicted residue contacts 

according to the MetaPSICOV (Jones et al., 2015) sequence-based method and the measured 

Euclidean distance (in Angstroms) between residues in the model. All pairs of residues in a model 

that were measured to be 8 Angstroms apart or less were considered and the CDA score for each 

residue (i) was calculated by the mean MetaPSICOV p-value for that residue. Thus, 𝐶 =

∑ 𝑝/𝑛𝑢𝑚𝐶 where, 𝑝 was the probability of the two residues being in contact according to 

MetaPSICOV, and 𝑛𝑢𝑚𝐶 wass the number of contacts <= 8 Angstroms for the residue in the model 

where a value for 𝑝 exists. The 𝐶 score was the sum of the per-residues CDA scores divided by the 

original target sequence length. Thus, 𝐶 = ∑ 𝐶𝐷𝐴/𝐿. 

 

2.3.1.8. DBA_res_global (D) 

This score was based on our new quasi-single model QA method from ModFOLD6. The Disorder 

B-factor Agreement (DBA) score relates to the agreement between the predicted disordered 

residues in the sequence according to DISOPRED3 (Jones & Cozzetto, 2015) and the 
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ModFOLDclust_single predicted per-residue error in the model (as it appears in the B-factor 

column). Thus, 𝐷 = 1 − |𝑆𝑟 − (1 − 𝑃𝑑)| where, 𝑆𝑟 was the accuracy of the predicted residue for 

the model, as described in the S-scores equation above, and 𝑃𝑑 was the probability of disorder 

according to DISOPRED3. The DBA_res_global score was the sum of the DBA scores for each 

residue divided by the original target sequence length. Thus, 𝐷 = ∑ 𝐷𝐵𝐴/𝐿. 

 

2.3.1.9. SSA_res_global (S) 

This score was based on our new pure single model QA method from ModFOLD6. The Secondary 

Structure Agreement (SSA) score relates to the agreement between the predicted secondary 

structure of each residue according to PSIPRED (Buchan et al., 2013) and the secondary structure 

state of the residue in the model according to DSSP (Kabsch & Sander, 1983).  Thus, 𝑆 = 𝑃𝐶𝐻𝐸  

where, 𝑃𝐶𝐻𝐸  was simply the p-value from PSIPRED for the secondary structure state of the residue, 

coil (C), helix (H) or strand (E), in the model according to DSSP. The SSA_res_global score was 

the sum of the SSA scores for each residue divided by the original target sequence length. Thus, 

𝑆 = ∑ 𝑆𝑆𝐴/𝐿. 

 

2.3.1.10. ModFOLD6_single_res_global (M6) 

ModFOLD6 is our new neural network based quasi-single model method that takes as its input a 

sliding window of per-residue scores from the ModFOLD5_single, ModFOLDclustQ_single, 

ProQ2, CDA, DBA & SSA methods described above and outputs a single quality score for each 

residue in the model. The ModFOLD6_single_res_global score was the sum of the ModFOLD6 

local scores for each residue divided by the original target sequence length. 

 

2.3.2. Observed Model Quality Measurements 

In order to evaluate predicted model quality scores, four observed scoring measures were used. 

The measures were GDT-HA, GDT, MaxSub and TM-score. These scores were used to measure 

the observed model quality for each individual model by comparing them to the native (solved 

experimental) structures. The term GDT stands for “global distance test”, in both the GDT and 

GDT-HA scores. These two scores represent the measurement of similarity between two protein 
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structures that both have identical amino acid sequences but may have different tertiary structures 

i.e. a predicted model and the observed crystal structure (Zhang & Skolnick, 2004). The difference 

between GDT and GDT-HA is that GDT-HA is “High Accuracy” and uses smaller cut off 

distances, which makes it more rigorous and, as a result, is more stringent than GDT (Read & 

Chavali, 2007). MaxSub is a measure that identifies in a model the largest subset of Cα atoms that 

superimpose over the experimental structure, producing a single normalised score that represents 

the quality of that model. And finally, TM-score stands for “template modelling” score. Again, this 

measure is for calculating the similarity between two models with the same sequence, but with 

different tertiary structure. The TM-score is arguably more accurate than GDT and GDT-HA in 

comparing the similarity of structures with full-length protein chains, rather than domains (Zhang 

& Skolnick, 2004). Each of these scores indicate the difference between two protein structures 

(predicted versus observed) by providing a score between 0 and 1, where 1 is a perfect match 

between the two compared structures (i.e. identical relative atom coordinates) and 0 is a non-

matched structure (Siew et al., 2000). The predicted output scores produced were tested by 

comparing them to the observed scores. 

 

2.3.3. Data Collection 

Predicted QA scores (from the 10x MQAPs) and observed QA scores (from GDT-HA, GDT, 

MaxSub and TM-score) were collected by evaluating the 16483 models produced for the CASP11 

QA assessment category. Scores for 2383 models were removed because they did not have native 

structures available, which means that those models could not form part of our benchmark, so we 

ended up with a net amount of 14100 models. The individual QA scores for each model were then 

collated, separated and distributed into columns, each column was named by its related method. 

 

2.3.4. Ranking/Selection and Correlation evaluation 

The collected scores were evaluated for all MQAP methods. Cross-validation tests were carried 

out using the collected data from CASP11 to measure the ability of each MQAP method 

individually as well as in different combinations. This measurement was evaluated in terms of 

local/per-residue and global scores which are produced by the MQAP methods using two different 

ways of scaling. Firstly, the Ranking/Selection approach which evaluates the ability of a method 
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in ranking models correctly so that they can select the right top model more accurately. This scale 

of measurement is calculated by measuring the cumulative GDT-HA, GDT, MaxSub and TM-score 

scores (e.g. ΣGDT-HA). Secondly, the Correlation coefficient approach which evaluates the ability 

of a method in how consistent its prediction can be, and how this method can achieve the highest 

correlation between its predicted scores and the observed scores. This second scale of evaluation 

was carried out using Pearson’s (R), Spearman’s rank (Rho) and Kendall's rank (Tau). Each of the 

three method has its own properties. Spearman’s rank correlation is a non-parametric test which 

measures association between two variables without making assumptions on bivariate relationships 

(McDonald, 2014). Kendall’s rank correlation is also a non-parametric test but measures the 

strength of dependence between the two variables by quantifying the difference between the 

percentage of concordant and discordant pairs among all possible pairwise events (Legendre, 

2005). Pearson’s correlation coefficient is different in that it is a parametric test, which measures 

the degree of relationship between the linearly related variables (McDonald, 2014).  

 

2.3.5. Linear Regression for MQAPs Individually  

Following the collection of the target scores for each individual model, correlations were 

performed. Each score of the ten MQAPs was correlated individually with its native observed 

score. This scoring correlation is carried out in order to investigate the relationship between the 

predicted and observed scores. The correlation has been implemented for this study by using three 

methods, Pearson’s R, Spearman’s Rho and Kendall’s tau B correlation coefficients. Each 

correlation method has its property in scoring the relation between the predicted and the observed 

quality assessments. Pearson’s correlation coefficient is a linear correlation measure whereas 

Spearman’s Rho and Kendall’s tau B correlation coefficients are non-parametric measures. 

 

2.3.6. Linear Regression for MQAPs in Combinations 

After scoring the ten MQAPs by correlating them individually, an optimisation is performed. The 

ten MQAP methods were combined using all the combination odds (1012 combinations) for all 

collected scores. The combined MQAP methods were then correlated using linear regression to 

determine the most correlated combination of methods that shows the highest positive correlation. 

This analysis was implemented using the three types of correlation coefficients, Pearson’s R, 



 

 

Chapter 2 

 

 
38 

Spearman’s Rho and Kendall’s tau B. Four of the most correlated combinations were highlighted 

for further analysis to find the resolution at which the best correlation coefficients of the optimum 

combination occur. 

 

2.3.7. Multiple Linear Regression for MQAPs in Combinations 

The top four combinations of predictive methods, according to the correlations with observed 

scores, were taken forward for multiple linear regression analysis. Each combination was 

correlated against the other three combinations using the observed scores as measures. The analysis 

was performed using Pearson’s R, Spearman’s Rho and Kendall’s tau B correlation coefficients. 

 

2.3.8. Improvement Calculation 

All scoring results were put together for comparison, and calculations were performed in order to 

analyse any improvement could be achieved. Firstly, the individual as well as the combination 

performance for the ten MQAP methods were compared. Such a comparison allowed us to gauge 

the improvement that could be obtained from combining these MQAP methods i.e. the maximum 

individual score was subtracted from the maximum correlation achieved through the linear 

combinations. Secondly, the linear regression performance was similarly compared with the results 

obtained by the multiple linear regression in order to determine if any further improvements were 

gained. This last step of analysis was proceeded by finding the maximum value of score of the 

multiple linear regression of the combination methods and subtracting it from the maximum value 

of the linear regression MQAP combination scores. 

 

2.4. Results and Discussion 

In this study, 10 MQAP methods including the latest version of our method, ModFOLD6, were 

benchmarked using two scales of measurements, Ranking/Selection and Correlation. 
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2.4.1. Ranking/Selection benchmarking 

For benchmarking using the ranking/selection scale, the cumulative scoring technique was carried 

out to find the top optimised MQAP pipeline in selecting the best model through the 10 selected 

MQAP methods. Firstly, each method was benchmarked individually against the four observed 

scores. The results showed that ModFOLD6_single_res_global was performing well compared to 

the other MQAP methods (Table 2.1). 

MQAP Methods GDT-HA GDT MaxSub TM-score 

ModFOLD5_single_orig_global 29.0719 40.0590 36.4405 42.4259 

ModFOLDclustQ_single_orig_global 28.9016 39.9194 36.3461 42.2751 

ModFOLDclust2_single_orig_global 29.0935 40.0328 36.5134 42.4060 

ModFOLD5_single_res_global 29.0167 39.9715 36.3934 42.3664 

ModFOLDclustQ_single_res_global 28.9016 39.9194 36.3461 42.2751 

ProQ2_res_global 30.7222 42.9578 39.5015 45.7958 

CDA_res_global 28.6485 40.4575 37.2034 43.1661 

DBA_res_global 28.9930 40.0457 36.4816 42.4484 

SSA_res_global 27.5855 39.3166 35.7842 41.9146 

ModFOLD6_single_res_global 31.3937 43.1859 39.8614 45.8227 

Table 2.1. Global score benchmarks of the 10 MQAPs individually using CASP11 data. 

ModFOLD6_single_res_global was benchmarked against the component of the global scoring MQAP 

methods, representing the cumulative scores from GDT-HA, GDT, MaxSub and TM-score.  

 

In the second part, the cumulative evaluation was carried out with every combination from the 10 

MQAP methods. After completing the test, the optimum combinations which produced the highest 

QA scores were selected for further analysis (Table 2.2).  
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MQAP combination Observed measure Cumulative Score 

CDA_res_global 

SSA_res_global 

ModFOLD6_single_res_global 

GDT-HA 32.34630537 

CDA_res_global 

SSA_res_global 

ModFOLD6_single_res_global 

GDT-TS 44.53946127 

CDA_res_global 

SSA_res_global 

ModFOLD6_single_res_global 

MaxSub 41.53627352 

ProQ2_res_global 

CDA_res_global 

SSA_res_global 

ModFOLD6_single_res_global 

TM-score 47.24946607 

Table 2.2. Global score benchmarks of the 10 MQAPs in combinations using CASP11 data. 

ModFOLD6_single_res_global was benchmarked against the component of the global scoring MQAP 

methods in combinations, representing the cumulative scores from GDT-HA, GDT, MaxSub and TM-score.  

 

2.4.2. Correlation benchmarking 

For the correlation scale evaluation, the ten methods were benchmarked using Pearson’s, 

Spearman’s and Kendall’s. These correlation coefficients were investigated between predicted and 

observed model quality scores to show which of the ten MQAPs either individually or in 

combinations can produce the largest amount of model quality scores that are highly close to their 

observed scores. 

Firstly, the modelling scores produced from the 10 MQAP methods were correlated with the 

observed scores individually. The results from Table 2.3 shows that all the 10 methods performed 

well with all the correlation coefficients in general. The highest values and most consistency were 

shown with method Mc2s, it performed well when was correlated with GDT-HA and GDT using 

Spearman’s rho (≈ 0.925, ≈ 0.924 respectively) and Kendall’s tau (≈ 0.762, ≈ 0.768 respectively) 

measures. The ModFOLD5_single-res_global (M5sr) method performed well, being ranked as the 

second-best method compared to the 10 MQAPs with MaxSub and TM-score, when using 

Spearman (≈ 0.92, ≈ 0.928 respectively) and Kendall (≈ 0.771, ≈ 0.768) correlations. When Pearson 
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was used as a correlation coefficient measure, the DBA method (D) provided the highest result (≈ 

0.924) among all the ten methods, except with GDT-HA, where was outperformed by 

ModFOLDclustQ_single_orig_global (Mcqso), ModFOLDclust2_single (Mc2s) and 

ModFOLDclustQ_single_res_global (Mcqsr) (≈ 0.901 versus ≈ 0.897 for DBA). Such results 

indicated the high performance of the quasi-single model based ModFOLD methods compared to 

the pure-single model MQAPs in terms of assigning absolute global accuracy values. However, the 

table illustrated a low level of consistency in the order of performance when using different 

observed scores. 

 
GDT-HA GDT MaxSub TM-score 

R Rho Tau R Rho Tau R Rho Tau R Rho Tau 

M5so 0.888 0.917 0.749 0.911 0.917 0.756 0.917 0.924 0.764 0.916 0.918 0.759 

Mcqso 0.901 0.922 0.755 0.907 0.918 0.756 0.911 0.917 0.75 0.902 0.914 0.751 

Mc2s 0.901 0.925 0.762 0.917 0.924 0.768 0.922 0.927 0.767 0.917 0.923 0.767 

M5sr 0.892 0.922 0.757 0.912 0.922 0.765 0.92 0.928 0.771 0.915 0.923 0.768 

Mcqsr 0.901 0.922 0.755 0.907 0.918 0.756 0.911 0.917 0.75 0.902 0.914 0.751 

P 0.688 0.732 0.527 0.718 0.741 0.54 0.717 0.742 0.54 0.723 0.744 0.545 

C 0.637 0.72 0.528 0.672 0.732 0.542 0.674 0.731 0.538 0.677 0.734 0.544 

D 0.897 0.917 0.742 0.919 0.921 0.754 0.924 0.925 0.76 0.923 0.922 0.76 

S 0.518 0.561 0.385 0.535 0.56 0.385 0.532 0.561 0.387 0.533 0.555 0.382 

M6 0.881 0.916 0.748 0.914 0.92 0.762 0.914 0.924 0.763 0.919 0.922 0.767 

Table 2.3.  List of the top ranked individual MQAP methods based on predicted versus observed 

scores using Pearson’s (R), Spearman’s (Rho) and Kendall’s (Tau) correlation coefficients. The 

models for each target were pooled together and each correlation was measured separately for each method 

and then the overall mean score was calculated. The observed model quality score was also calculated for 

each individual model. The highest scores are highlighted in grey. Abbreviations are defined in the List of 

Abbreviations section. 

 

The DBA method was noticed to outperform all the ten MQAPs by providing the highest Pearson 

correlation using three out of four observed scoring methods (the highest one is ≈ 0.924). However, 

DBA lost its top spot according to the Spearman’s rho and Kendall’s tau correlations. These 

varying results with the Pearson correlation coefficient highlighted the non-linear nature of some 

of the high performing MQAP methods. The Pearson’s correlation coefficient is always used for 
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measuring the strength of the linear relationship between two variables, whereas, Spearman and 

Kendall are distribution-free correlation coefficients, which can be used for assessing non-linear 

relationships between two variables. Typically, Spearman’s and Kendall’s methods showed how 

well an arbitrary monotonic function can describe the relationship between two variables without 

making any assumption about the frequency distribution of the variables (Hauke & Kossowski, 

2011). Since, the relationship between predicted and observed model assessments was not always 

parametric and their target scores were freely distributed, Spearman and Kendall were more 

suitable method for measuring the correlation coefficient. Although there were strong correlations 

for some of the methods according to some measures, the sub optimal results shown here confirmed 

the necessity to improve the consistency of ModFOLD6 global scoring across the board. One 

attempt to fulfil such a need is by combining the strengths of many MQAPs to achieve a better 

score (McGuffin, 2007). 

In the second part of the evaluation, the ten selected MQAPs were combined together in all 

permutations (where the order was not important, without repetition), and a linear regression for 

all the combination of the ten methods was performed. Each combination was compared with the 

four observed scores using the three correlation coefficients. After going through the permutations, 

improvements in correlation scores were shown (Table 2.4). The optimal combination was the 

combination of three methods, ModFOLDclustQ_single_orig_global, DBA_res_global and 

ModFOLD6_single_res_global. This simple combination (the mean of three scores) provided the 

highest score improvement for most of the correlations, and even the lower scores were close to 

those which were benchmarked highest in the other combinations. The results from the first attempt 

of this optimisation showed that the correlation was slightly increased when the new version of 

ModFOLD6 was combined with the approach based on the older ModFOLD method, and the new 

scoring method, DBA. This increase was measured as ≈ 0.01 over approximately 75% of the target 

scores. The second, third and fourth optimal combinations were also taken into account for further 

optimisation analysis as they provided close results comparing to the first optimal linear 

combination. 
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Correlation 

Coefficient 

Observed 

Measure 
Combination 

Correlation 

Score 
Improvement 

R 

GDT-HA 

Mcqso+D 0.91 0.009 

Rho Mcqso+Mcqsr+D+M6 0.931 0.006 

Tau Mcqso+Mcqsr+D+M6 0.771 0.009 

R 

GDT 

Mcqso+D+M6 0.926 0.007 

Rho Mcqso+D+M6 0.932 0.008 

Tau Mcqso+D+M6 0.782 0.014 

R 

MaxSub 

Mcqso+D+M6 0.93 0.006 

Rho Mcqso+D+M6 0.935 0.007 

Tau Mcqso+D+M6 0.781 0.01 

R 

TM-score 

D+M6 0.93 0.007 

Rho Mcqso+D+M6 0.932 0.009 

Tau Mcqso+D+M6 0.784 0.016 

Table 2.4.  List of the top ranked combinations for the ten MQAP methods based on predicted versus 

observed scores using linear regression. The combined methods were measured using Pearson’s (R), 

Spearman’s (Rho) and Kendall’s (Tau) correlation coefficients, and the topmost correlated combinations 

were listed with their improvement over the scores of the methods individually. The highest improvement 

is highlighted in grey. 

 

Results showed that the combination of Mcqso+D+M6 gave the highest correlation score, 

providing an approximate total of 66.67% among all the highly ranked scores. The second top was 

for the combination of four methods (Mcqso+Mcqsr+D+M6) providing ≈ 16.67% of the highly 

ranked scores. The third and fourth combinations were for the combinations of two methods 

(Mcqso+D and D+M6), giving a ≈ 8.33% each. 

The four ranked combinations were then tested using multiple linear regression in an attempt to 

achieve additional improvement. However, the results of this test showed an insignificant increase 

in some of the selected optimal combinations scores (Appendix 1). the highest correlated 

combinations using multiple linear regression being produced by the combination of four methods, 

(ModFOLDclustQ_single_orig_global, ModFOLDclustQ_single_res_global, DBA_res_global 

and ModFOLD6_single_res_global) with a maximum score of ≈ 0.931 using Pearson’s R, ≈ 0.935 

using Spearman’s Rho, and ≈ 0.784 using Kendall’s Taue, while the variable was GDT. Some 

scores of the correlated optimal combinations were shown to be decreased when comparing with 
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the scores of the mean linear regression which showed a better correlation than the multiple linear 

regression. From the results, it can be seen that multiple linear regression provided an unconsidered 

increase to the QA scores neither for the MQAP methods individually nor in combinations.  

However, the scores produced by combining MQAP methods appeared to be increased by 

approximately 2% as compared to the best scores from any individual of the ten MQAP methods. 

To demonstrate such an improvement, the results from both best individual and combined MQAP 

methods were plotted to visually compared their scores. In Figure 2.1, we can see a comparison of 

two scatterplots, one plot is representing the highest improvement in terms of Kendall’s tau score 

achieved by the top optimal combination method Mcqso+D+M6, and the second plot is for the 

scores achieved by the top performing individual MQAP, Mc2s using the same correlation 

coefficient. The plot consists of dots, each dot represents a model that was collected from CASP11 

participants servers. Both scores were compared against the TM-score observed measurement. The 

optimal combination output scores of Mcqso+D+M6 were shown to give a slightly tighter scatter 

of dots, leading to an enhanced correlation in comparison to the one achieved by Mc2s individually. 
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Figure 2.2. Predicted model quality scores versus observed model quality scores. A comparison between two scatterplots. The plot on the left is for the top 

performing individual MQAP, ModFOLDclust2_single_orig_global (Mc2s). The plot on the right is for the optimal MQAP combination 

ModFOLDclustQ_single_orig_global + DBA_res_global + ModFOLD6_single_res_global (Mcqso+D+M6). Both methods predicted global scores were plotted 

against TM-score observed score. The plots are presented in brush paint style for more clarity.
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ModFOLD6 then was also benchmarked to gauge local quality performance versus component 

methods (Figure 2.2). The three pure-single scoring methods (ProQ2, CDA, SSA) and the three 

quasi-single scoring methods (DBA, Mcs, Mcqs) have been compared against ModFOLD6 in an 

evaluation of the target sequence and 3D model in terms of the ROC curve that shows the true 

positive and negative rate. From the line graph it can be noticed that ModFOLD6 is outperforming 

all the comprised scoring methods. 

 

Figure 2.3. Line graph representing a benchmark of ModFOLD6 local scores versus its component 

methods using CASP11 data. The local QA scoring ModFOLD6 method was benchmarked with the 

constituent methods using the CASP11 data set. This comparison is performed continuously and can be 

checked anytime at: http://cameo3d.org/qe/. 

 



 

 

Chapter 2 

 

 
47 

Furthermore, the server is continuously benchmarked for local quality estimation (QE) 

performance using the CAMEO resource (Haas et al., 2018) (Figure 2.3). Our internal benchmarks 

and the independent CAMEO data shows that ModFOLD6 and another QE method called 

QMEANDisCo are currently the leading public QA method for producing local scores. 

 

 

Figure 2.4. Dot plot demonstrating a six-month performance summary for competitive local QA 

programs including the previous version of our program (ModFOLD4) and ModFOLD6. The 

evaluation was carried out using the receiver operating characteristic (ROC) and Precision vs Recall 

analysis. This comparison is performed continuously and can be checked anytime at: 

http://cameo3d.org/qe/.  
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Such results indicate that the correlation scores of the selected combinations have reached their 

maximum optimisation in terms of both linear and multiple linear regression. However, this is still 

the beginning of this research study. Further investigation and analysis will be performed in order 

to find the way to improve the accuracy and consistency of ModFOLD6. One suggested way is by 

using machine learning techniques with the help of the advanced deep artificial neural network. 

Alongside with energy/scoring functions and consensus methods, DANNs has been addressed to 

be another supportive method for improving the QA of model prediction (Nguyen et al., 2014). 

Deep learning is a branch of machine learning techniques that has made major advances in solving 

many problems including the ones in image recognition (LeCun et al., 2015).  

 

2.4.3. New approach to update ModFOLD6 

Since CASP7 first included the Quality Assessment (currently termed as Estimate of Model 

Accuracy or EMA) category, predictors have been persevering to develop the best Model Quality 

Assessment Programs (MQAPs) for estimating the absolute quality of protein 3D models with the 

highest accuracy. Numerous strategies and methods have been devised in order to increase the 

accuracy of the best model selection as well as the consistency of MQAP output scores with 

observed scores. Accuracy of selection was often found to be better with the methods that follow 

the pure-single approaches whereas consistency of scores has historically been greater to be with 

the consensus/clustering methods. Since its development, ModFOLD6 was used as our latest 

version of EMA method in every MQAP competition. The program was designed to balance both 

model selection accuracy and score consistency. Such a balance can be achieved by combining the 

pure-single model with consensus/clustering-based methods. However, in this study, the current 

version of ModFOLD6 can be updated with a suggested hybrid pure-single/quasi-single strategy 

that can be adopted and swapped with the clustering method. 

 

2.4.3.1. Suggested component of per-residue/local similarity scoring methods for ModFOLD6 

Our initial emphasis was on increasing the accuracy of per-residue assessments for single models. 

Three pure-single model methods were suggested to be parts of ModFOLD6 components, these 

methods include ProQ2 (Wallner & Elofsson, 2007) and 2 newly developed methods, the Contact 

Distance Agreement (CDA) score using MetaPSICOV (Jones et al., 2015) and the Secondary 
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Structure Agreement (SSA) score using PSIPRED (Buchan et al., 2013). Additionally, a set of 130 

reference 3D models (generated by IntFOLD4) were also suggested to score models using three 

alternative quasi-single model methods, the newly developed Disorder B-factor Agreement (DBA) 

score using DISOPRED3 (Jones & Cozzetto, 2015), the ModFOLDclust_single_res score (Mcs) 

and the ModFOLDclustQ_single_res score (McQs). A simple neural network was then used to 

combine the component per-residue/local quality scores from each of the six alternative scoring 

methods, resulting in a final consensus of per-residue quality scores for each model (Figure 2.4). 

 

 

Figure 2.5. Flowchart simplifying the procedure of the local/per-residue similarity scoring method 

suggested for ModFOLD6. The process used three pure single model methods and three quasi-single 

model methods (130 reference models are generated from sequence using IntFOLD4). 

 

2.4.3.2. Suggested component of global scoring methods for ModFOLD6 

Global scores were calculated by taking the mean per-residue scores (the sum of the per-residue 

similarity scores divided by sequence lengths) for each of the 6 individual component methods, 

described before, and the consensus output (ModFOLD6). Furthermore, 3 additional quasi-single 
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global model quality scores were generated for each model based on the original ModFOLDclust, 

ModFOLDclustQ and ModFOLDclust2 global scoring methods (in a similar vein to the 

ModFOLD4_single and ModFOLD5_single global scores, tested in CASP10 and CASP11 

respectively). Thus, we ended up with a total of 10 alternative global QA scores, which could be 

combined in various ways in order to optimise for the different aspects of quality estimation.  

 

 

Figure 2.6. Diagram representing the three suggested options of ModFOLD6 global scoring variants. 

 

Three ModFOLD6 global scoring variants were suggested for evaluation (Figure 2.5). (1) 

Balanced, The ModFOLD6 mean local scores considered alone which have a good balance of 

performance based on correlations of predicted and observed scores and rankings of the top models; 

(2) Correlation, The ModFOLD6_cor global score variant was found to be an optimal combination 

for producing consistent correlations with the observed scores, i.e. the predicted global quality 

scores should produce closer to linear correlations with the observed global quality scores; (3) 

Ranking, The ModFOLD6_rank global score variant was found to be an optimal combination for 

ranking, i.e. the top ranked models (top 1) should be closer to the highest accuracy, but the 

relationship between predicted and observed scores may not be so linear. 
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2.5. Conclusion 

An initial study was undertaken to evaluate ten performing model quality assessment methods 

including ModFOLD6. Statistical analysis showed that some methods like ModFOLD6 were 

giving high scores individually.  

However, it was seen that some combinations of the ten MQAP methods were producing better 

scoring results than single methods. Thus, the methods were benchmarked as combinations, and 

the results showed that ModFOLD6 method were able to provide some improvement in terms of 

accuracy as well as consistency when combining the three pure-single methods (ProQ2, CDA and 

SSA) as well as the three quasi-single methods (DBA, ModFOLDclust_single_res and 

ModFOLDclustQ_single_res) to the component of per-residue/local similarity scoring methods. It 

was also noticed that the method can be improved by using different weightings. Combining some 

methods can improve ModFOLD6 in selecting the top 1 model and combining some other methods 

can improve ModFOLD6 in correlating predictions with observed scores. Therefore, it was 

suggested that we provide 3 alternatives (ModFOLD6, ModFOLD6_rank and ModFOLD6_cor) 

for ModFOLD6 accordingly. 

Finally, we found that some ranking techniques, such as regressions, have helped us in finding 

some increase in the scores of our methods. We managed to gain ~ 2% improvement from our 

method by combining and then benchmarking them using linear regressions. Such an improvement 

led us to suggest a new strategy for updating ModFOLD6 which is to hybridise it to become a pure-

single/quasi-single EMA method.  

However, as different weightings were found to be effective, we can then look for a way to calculate 

scores more accurately. Instead of calculating only the mean scores from all combinations together, 

we need to find an approach that can take the needed number of scores from some methods and 

neglect another number of scores from others. We need ModFOLD6 to be able to calculate its input 

scores based on which of the component MQAP methods are more important in certain times in 

order to output some more accurate scores. One suggested technique that can apply this approach 

is the Deep Artificial Neural Network, which was our focus in the next parts of this research project.
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3.1. Background 

The invention of aeroplanes was an inspiration of birds, Velcro was also invented by the inspiration 

of burdock plants, and many other innovations have been inspired by nature. When researchers 

looked at drawing inspiration from the workings of the brain nervous systems, novel machine 

learning algorithms were designed and termed as Artificial Neural Networks (ANNs) (Hecht-

Nielsen, 1988). However, although some researchers argued that we should drop exactly the whole 

biological analogy altogether, inspiring something does not mean copying the exact same thing, 

for example the invented airplanes do not have to flap their wings (Cao, 2014).  

The simplest definition of Artificial Neural Networks (ANNs) was provided by the inventor of one 

of the first neurocomputers, Dr Robert Hecht-Nielsen. He defines ANNs as: "...a computing system 

made up of a number of simple, highly interconnected processing elements, which process 

information by their dynamic state response to external inputs” (Caudill, 1987). ANNs can be 

identified as computing systems in their very core of Deep Learning which have been versified and 

became a very powerful and scalable technique that can make them ideal in tackling large and 

highly complex Machine Learning tasks, such as powering speech recognition services like Google 

Assistant and Apple Siri, classifying billions of images like Google images, recommending the 

best videos to watch to millions of users like YouTube, or learning a machine to be able to beat the 

world champion at a game like the GO champion who lost against the DeepMind’s AlphaGo 

machine. 

 

3.1.1. History 

The development of these computing systems began in the 1940s, when Artificial Neural Networks 

emerged by McCulloch and Pitts who came up with the idea after their analysis of how human 

brains works (McCulloch and Pitts, 1943). Since that time, researchers in this field started to mimic 

the mechanism of neurons in the brain by modelling simple neural networks using electrical 

circuits. After McCulloch and Pitts hypothesis by 7 years, a work was published by Donald Hebb 

pointing out the fact that neural pathways are strengthened when they are in the usage status by the 

human body (Hebb, 1949). His argument was stating that having 2 nerves fire at the same time can 

enhance the connection between them. Such a concept was fundamentally essential as it gave an 

insight to the ways in which humans learn. 



Chapter 3 

 

 
54 

In the 1950’s, computers became more advanced, and it was finally possible for scientists to test 

the Artificial Neural Networks (ANNs) (Priddy and Keller, 2005). The first attempt was conducted 

by Nathaniel Rochester from the IBM research laboratories. Nathanial’s trial was stepping towards 

building a simulated human brain, but unfortunately, that attempt was failed in doing so. Later in 

1959, two models were developed by Bernard Widrow and Marcian Hoff, they called them 

"MADALINE" and “ADALINE” relating to the use of the Multiple Adaptive Linear elements 

(Widrow, 1960). These two models were the first ANNs being applied to solve real-world 

problems. “MADALINE" was developed for using an adaptive filter which eliminates echoes on 

phone lines, while “ADALINE” was developed for recognising binary patterns so that it can predict 

the next parts of a read streaming section from phone lines.  

In 1962, another model was developed by Windrow and Hoff, it was a learning procedure technique 

which examines the value before the weight adjusts it (i.e. 0 or 1) according to the rule: Weight 

Change = (Pre-Weight line value) * (Error / (Number of Inputs)). The model was developed based 

on the assumption that while one active perceptron may receive a big error, one can adjust the 

weight values to distribute it across the network, or at least to adjacent perceptrons. The results of 

this equation still show an error whenever the line before the weight is 0, and eventually the error 

gets corrected automatically. However, the error gets eliminated when it is conserved which means 

it is distributed to all the weights. Although these models were developed using old fashion 

techniques, they are still in commercial use. 

After such revolutionary achievements, the success in applying the ANNs technique started to 

expand more and more until the beginning of the 1970s, when it was confronted with the traditional 

von Neumann architecture which took over the computing scene leaving the neural networks 

technique behind (D’Addona, 2016). Ironically, one of the suggestions that John von Neumann 

gave it himself was the imitation of neural functions by using telegraph relays or vacuum tubes. In 

the same period, a number of other works reported that there could not be an extension from the 

single layered neural network to a multiple layered neural network. Such suggestions at that time 

have led to a sharp decrease in funding the ANNs research. 

After funding flew elsewhere, ANNs entered a long dark era until the early 1980s when new 

network architectures were invented, and better training techniques were developed. A paper was 

presented to the National Academy of Sciences by John Hopfield showing a renewal interest in the 

neural networks field (Hopfield, 1982). The approach was focusing on creating more useful 
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machines by using bidirectional lines rather than having only one way in the connections between 

neurons as the previous methods. Following that approach, a “Hybrid network” was utilised by 

Reilly and Cooper with the feature having multiple layers and each layer uses a different problem-

solving strategy (Reilly et al., 1982). In the same year also, a great conference on 

Cooperative/Competitive Neural Networks was held by USA and Japan (Amari and Arbib, 1982) 

announcing a new fifth generation effort on neural networks as this technique went through 4 states 

before. The first state when NNs used switches and wires, the second state used the transistor, the 

third generation used solid-state technology such as integrated circuits and higher-level 

programming languages, and the fourth state was the use of code generators. The fifth generation 

announced in the joint US-Japan conference was from Japan, and it involved the artificial 

intelligence. This announcement from Japan made US worries about being left behind, and 

therefore, funding started to flow once again. In 1985, an American institute in Physics began an 

annual meeting in Neural Networks for Computing, and in the third time the meeting was held in 

the IEEE as the first international conference on NNs drawing more than 1800 attendees. 

During the following years, the multiple layered NNs concept was spread, and the main issue at 

that time was in finding the way to extend the Windrow-Hoff rule to multiple layers. In 1986, a 

group of researchers from Stanford’s psychology school came up with similar ideas which are now 

called propagation networks as it distributes pattern recognition errors throughout the network 

(Tanaka et al., 1986). In contrast to Hybrid networks which used only two layers, the back-

propagation networks were able to use more than two layers. However, at that time, back-

propagation networks were found to be a “slow learner” which needed possibly thousands of 

iterations to learn, and that was one of the problems which NNs faced during that time. 

By the 1990s, other powerful machine learning techniques such as Support Vector Machines started 

to show up, making researchers changing their minds in using NNs as they seemed to offer better 

results and stronger theoretical foundations with other techniques (Gholami and Fakhari, 2017). 

However, another wave of interest in ANNs has been witnessed recently, and it seems that this 

wave is not going to disappeared like the previous waves. Few reasons to believe that Artificial 

Neural Networks are not going to put down again. Firstly, the huge quantity of available data that 

can be used for training neural networks making ANNs frequently outperform all other ML 

techniques on very large and complex problems. Secondly, the tremendous increase in computing 

power that can now make it possible for computers to train large NNs in a reasonable amount of 
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time. Thirdly, the improvement in the training algorithms which has a huge positive impact. 

Fourthly, solving many ANNs limitations such as the worries of getting stuck in local optima when 

it turns out that this is rather rare in practice. Fifthly, the huge amount of funding and progress that 

this technique is having in the many different areas. Up until now, the NNs technique has been 

evolving through various applications which have been practicing it thoroughly (Géron, 2017). 

 

3.1.2. Biological Neurons  

Before discussing artificial neurons, we should have a look at the biological structure of neuron 

itself (Figure 3.1). The biological neuron is an unusual-looking cell which is found in animal 

cerebral cortexes composing of a cell body which contains the nucleus and most of the cell’s 

complex components, and many branching extensions called dendrites, plus a longer extension 

called the axon. The axon splits off into branches called telodendria, the tips of these branches are 

to a minuscule structure called synaptic terminals, these are connected to the dendrites of other 

neurons. When a biological neuron receives a sufficient number of an electrical impulse (called a 

signal) from another neuron via these synapses within a few milliseconds, the neuron fires its own 

signals as well (Seikel et al., 2018). 

 

Figure 3.1. 3D drawing of the biological structure of a neuron. Adapted from Géron, (2017).  
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The behaviours of an individual biological neuron seem to be simple. However, biological neurons are 

organised in a vast network of billions of neurons connecting with each other building an architecture of 

biological neural networks (BNNs) that can solve highly complex computations. The architecture of BNNs 

is still the subject of active research. However, studies have managed to map some parts of the brain showing 

that neurons are often organised in consecutive layers (Figure 3.2) (Géron, 2017). 

 

Figure 3.2. Drawing represents the consecutive layers construction of neurons in the brain. Adapted 

from Géron, (2017). 

 

3.1.3. Artificial Neurons 

The first simple model of the biological neuron was proposed by Warren McCulloch and Walter 

Pitts, the model has one or more binary (on/off) inputs and one binary output. When more than a 

certain number of the model’s inputs are active, the model simply activates its output. This model 

was seen to mimic the biological neuron (Figure 3.3), and therefore, it was later termed as an 

artificial neuron. By this simple architecture of the artificial neuron, McCulloch and Pitts showed 

that it is possible to build a complex Artificial Neural Networks which can compute any logical 

proposition we want (Browne, 1997). 

 

Figure 3.3. Schematic drawing representing an analogy of Biological Neuron and Artificial Neuron. Adapted 

from Géron, (2017). 
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The building block unit and the first implementation of an ANNs was known as the perceptron 

(Rosenblatt, 1957), a single layer of linear threshold units with nodes (neurons) connected to all 

the inputs. Each node contains an activation function turns to be activated once that node receives 

enough number of signals from the previous interconnected nodes. In a perceptron network, each 

neuron is a linear threshold unit, and the inputs and output are considered as numbers rather than 

on/off binary values. Each input is connected with other outputs of previously located neurons 

(except the first inputs). Between these neurons there are connections associated with weights. The 

linear threshold unit computes the weighted sum of its inputs as 𝑧 = 𝑤1𝑥1 + 𝑤2𝑥2 + ⋯ + 𝑤𝑛𝑥𝑛 =

𝑤𝑇 . 𝑥 and then applies a step function for that sum to be outputted as ℎ𝑤(𝑥) = 𝑠𝑡𝑒𝑝(𝑧) =

𝑠𝑡𝑒𝑝(𝑤𝑇 . 𝑥). An example in Figure 3.4 clarifies the architecture of this feedforward technique. 

This example has 3 inputs, each of which has its own weight. These inputs are summed by the 

linear combiner ∑ and then put through a function. 

 

Figure 3.4. A diagram representing a linear threshold unit.  

 

There are several step functions that can be used in Perceptrons, the most common ones are the sgn 

step function and the Heaviside step function, they are calculated as: 

 

𝑠𝑔𝑛 (𝑧) = {

−1 𝑖𝑓 𝑧 < 0
0    𝑖𝑓 𝑧 = 0
+1 𝑖𝑓 𝑧 > 0

           ℎ𝑒𝑎𝑣𝑖𝑠𝑖𝑑𝑒 (𝑧) = {
0 𝑖𝑓 𝑧 < 0
1 𝑖𝑓 𝑧 ≥ 0
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3.1.4. Deep Neural Networks 

A single linear threshold unit can be used for simple linear binary classification. It can compute a 

linear combination of the inputs and if the result exceeds a threshold, it outputs the positive class 

or else outputs the negative class as similar as a Logistic Regression classifier or a linear SVM. 

However, processing multiple linear threshold units in many layers of perceptrons constructing 

what we may call it Deep Artificial Neural Networks. DANNs can compute more advanced 

problems with several techniques and architectures to be formulated, the multilayer perceptron 

(MLP) has been the best feedforward neural network class that has the ability to map a set of inputs 

which pass it through hidden layers and send the calculated data to an output unit (Rosenblatt, 

1962). MLP networks have been considered as a powerful technique in a large number of 

applications from different fields of research. The benefits of MLPs come from the appropriateness 

in dealing with most of the problems involving function approximation, pattern classification, 

process control and time series forecasting (Efendigil et al., 2009).  

Intuitively, we can expect that having more hidden layers would make our networks more powerful. 

The single layer can be changed to multiple-layered artificial neural networks. This approach was 

built up and found to have more complex intermediate layers which can have multiple layers of 

abstraction (Ba and Caruana, 2014). Having multiple layers can give neural networks the ability to 

solve more advanced challenges such as visualising pattern recognition. Eventually, this type of 

NNs was referred as the Deep Artificial Neural Networks (DANNs). 

 

The DANNs was found to spot the correct mathematical manipulation more accurately and turn 

the input into the output whether in a linear or a non-linear relationship. Unlike ANNs, the multiple 

layers in the DANNs give it the ability to process more complicated problems (Toth et al., 1996). 

By testing the visualising pattern recognition example using DANNs, the neurons in the first layer 

could learn recognising edges, then the neurons in the second layer would learn recognising more 

shapes like triangles or rectangles which are built up from edges which already been learnt in the 

first layer. The third layer could then recognize static more complex shapes, and the fourth learns 

animatic shapes, and so on. This reminds us by how children start to learn basic shapes around 



Chapter 3 

 

 
60 

them when their brains which contain multiple layers of neurons give them a compelling advantage 

in starting to learn complexes pattern. 

The differences between ANNs and DANNs lies in the depth of the model. The phrase Deep 

learning is a term that has been used for more advanced artificial neural networks which contain 

multiple processing layers. With this level of layers, networks will be able to create more space for 

processing a huge amount of data. Figure 3.5 can show an example of how DANNs architectures 

are highly complicated compared to ANNs. Such a complexity in DANNs is attributed by elaborate 

patterns of how data can flow throughout the model. 

 

Figure 3.5. Two diagrams illustrating the differences between ANNs (left panel) and DANNs (right 

panel). 

 

3.2. Objectives 

The 6th version of ModFOLD described in the previous chapter is powered with different model 

quality assessment programs (MQAPs) which produce a combination of model quality scores. 

These scores are usually averaged to assign an Optimal Mean Score (OMS) for evaluating the 

quality of a model. The OMS is a simple equal weighting consensus approach, which means that 

ModFOLD6 assumes that all EMA scores used in the combination are equal under all 

circumstances, however this can seem practically inaccurate. Sometimes, some EMA methods 

scores can be relied on more than other scores. In the free modelling situation for example, the 

scores produced by the pure-single methods such as CDA, SSA and ProQ2 should be more 

considered than the scores produced from the quasi-single methods. Therefore, it was important to 
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look for a way to overcome such an issue. 

This chapter demonstrates an introduction to the Deep Artificial Neural Networks for a try to 

combine scores more accurately than OMS by using different weightings for different score 

combinations. The training process was automated in a way which allowed training with multiple 

combinations and neural networks parameters in a short amount of time. Two packages were 

utilised for constructing DANNs. For a “shallow” DANNs, we used the RSNNS package from the 

statistical computing software, R v3.2.3 (Bergmeir and Benítez, 2012). While for a more advanced 

DANNs, we used Google's TensorFlow v1.0 package in Python v2.7.5 (Abadi et al., 2016). The 

results from this study show that both DANN packages are useful at different levels, RSNNS 

derived networks were found to be the best method when testing for correlations with observed 

scores while the TensorFlow deep neural networks outperformed all other techniques when testing 

the method’s ability to pick the top ranked model. 

Indeed, like all predicted scores, the Quality Assessment (QA) scores vary in accuracy when 

compared to the true score of the predicted model. The OMS technique does not take this into 

account as it assumes that all scores being combined are of the same accuracy. The work in this 

chapter aims to create and train a deep neural network that can produce global scores which are 

more accurate at model ranking/selection and produce more consistent output scores than the 

standard ModFOLD6 global score. This will be achieved by exploring different feed forward deep 

neural network architectures for combining scores using various optimal weightings. This Chapter 

also aims to compare the performance of the deep learning NNs to the standard NNs in order to 

discover which technique can produce the optimum combined QA scores. 

 

3.3. Materials and Methods 

3.3.1 Inputs and Outputs 

Ten individual MQAPs scores were chosen to be the MLPs inputs while the output data were the 

GDT-HA (Mirjalili and Feig, 2013) scores. Additionally, for benchmarking purposes, the GDT 

(Zemla et al., 1999), MaxSub (Siew et al., 2000) or TM-scores (Zhang and Skolnick, 2004), were 

also chosen as the observed quality measures. The initial MLP construction was basic, consisting 

of 3 layers; an input layer, a hidden layer and an output layer. More complex systems can have 

multiple hidden layers. The number of nodes (similar to neurons in biology) within a layer can also 
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vary. Much like in the nervous system, NNs worked by feeding information into the input layer 

which can be seen as the sensory neurons (Rosenblatt, 1962). The inputted data was then fed into 

the hidden layers in which the information was interpreted; this is where weights were assigned 

and could be seen as the interneurons. The interpreted information was then moved on and collected 

at the output layer (which could be analogous to a motor neuron) where all the data was then 

interpreted to be ready for outputting as results. MLPs also utilise a supervised learning technique 

called backpropagation for the training of the network. Learning occurs through the changing of 

the weights after each piece of data is processed in accordance with the amount of error in the 

output compared to the observed scores (Rumelhart, et al., 1986). 

In this section, two alternative NN packages were investigated. Both were MLPs however, they 

varied in complexity. The first was an MLP from the RSNNS package in R (Appendix 2) (Bergmeir 

& Sánchez, 2012) while the second was a shallow networks version of MLP which was created for 

the specific task of QA score combination using tools from Google’s TensorFlow package 

(Appendix 3). While the TensorFlow DANNs itself is built in python, the python script also utilises 

two R scripts for data management and analysis (Appendix 4). 

 

3.3.2. RSNNS 

The Stuttgart Neural Network Simulator (SNNS) library (Zell, et al., 1994) with its many standard 

implementations of neural networks contained was brought through the RSNNS package into R 

script. The RSNNS MLP is a basic single hidden layer MLP (Bergmeir & Sánchez, 2012). It takes 

multiple parameters; training inputs, training outputs (GDT-HA), size (which defines the number 

of nodes in the hidden layer), iteration number, initialisation function, learning function, test inputs 

and test outputs. These parameters were varied during this project except for the initialisation 

function as it was unnecessary to change this value from its default when performing a high-level 

function. 

 

  



Chapter 3 

 

 
63 

3.3.3. TensorFlow 

For implementing Deep Artificial Neural Networks, Google’s TensorFlow was utilised. 

TensorFlow is a software library which contains tools for numerical computations using data flow 

graphs. TensorFlow was developed with the aim of creating advanced tools for pattern prediction 

and correlation (Abadi, et al., 2016). TensorFlow uses nodes or tensors which are formed in 

multidimensional arrays in its DANNs. Our TensorFlow based MLP was designed with 2 hidden 

layers, however, more can be used. In addition, multiple neural networks parameters were 

configurable including training/testing inputs (number), training/testing outputs (e.g. GDT-HA), 

the learning rate, iterations, size of the first hidden layer, size of the second hidden layer. These 

parameters were varied and evaluated. With the utility of TensorFlow we used optimisation 

algorithms and activation functions in order to mitigate several DANNs problems including hidden 

layers and units separation and activation. One optimising algorithm used in our DANNs was the 

AdaGrad (Duchi et al., 2011), an algorithm which adaptively scales the learning rate for each 

dimension. The equation for the parameter update which have been used in practice was: θ𝑡+1 =

 θ𝑡 −
η

√εI+diag(Gt)
 . 𝑔𝑡, where θ is the parameter to be updated, η is the initial learning rate, ε is a 

small quantity which are used to avoid the division of zero, I is the identity matrix, 𝐺𝑡 is the gradient 

estimate in time-step 𝑡 that can be solved in further equations. The dropout function was also used 

in our DANNs. This regularising tool is often very effective at reducing overfitting. It works by 

dropping neurons based on the probability, which is defined by the user (a 90% keep probability 

was used in this study), that a neuron's output is kept during dropout. This allows for dropout to be 

turned on during training and turned off during testing. 

 

3.3.4. Neural Networks insertion using Multi-Layer Perceptron machine learning method 

After obtaining results from all the ten baseline MQAP methods, the Multi-Layer Perceptron 

techniques were then inserted. Two types of MLPs were utilised, a basic MLP which was obtained 

from the RSNNS package in R, and a more advanced MLP using TensorFlow. Both techniques 

were evaluated and parameterised in order to find a suitable NNs pipeline for EMA scoring.  
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3.3.4.1. Neural Networks Setup 

The NN scripts were written using the programming language, Python v2.7.5. The initial scripts 

were able to run the NNs with manually adjustable parameters. Subsequently, the parameterisation 

was automated using an updated DANNs script (Appendix 5) for the purpose of accelerating the 

research speed.  

 

3.3.4.2. Neural Networks Parameterisations 

When we managed to automate our DANN script, it became possible for us then to parameterising 

the iterations and number of hidden nodes per layer. Each of the selected combinations from the 

previous step was then run through a neural network parametrisation stage. The DANNs parameters 

were changed, hidden node numbers ranged from 1 to 20 in RSNNS and 1 to 5 in TensorFlow (due 

to time constraints) while iterations ranged from 50 to 950, all of these adjustments were proceeded 

with each run (thorough investigations on DANNs parameterisation will be studied in Chapter 5). 

After the DANNs parameterisation stage completed, we analysed our results to look for the best 

combination with its optimal DANNs adjustment for both ranking and correlation scoring methods. 

 

3.3.4.3. Data searching 

After DANNs parameterisation, the script was then used to run through every possible combination 

for the ten MQAPs using six different sets of iterations and numbers of hidden nodes (Table 3.1). 

After running several DANN scripts of the six different sets for both MLPs, we ended up having a 

huge amount of data which was outputted as tables showing the resulted top 10 ranking and 

correlation methods scores of each run. However, the top 10 scores of the EMA combinations 

produced from these DANNs runs were varied. Some scores of methods appeared to take the 1st 

rank in some runs but lower ranks in some others. To exploit such an output, all tables were 

analysed to look for the best methods in most of the resulted data. The methods which appeared to 

produce ranking as well as correlation scores within the top 10 more often was chosen. The best-

chosen combinations with their optimal parameters for each of the 6 sets were then run through a 

looped NN script (Appendix 6) aiming to achieve the highest possible model quality score. In this 

part of study, GDT-HA was used as the observed scoring measurement control for most of the 

conducted tests as it was showing better results in correlations. 
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Set 

Number 

RSNNS TensorFlow 

Hidden 

neurons 
Iterations 

1st layer – number of 

hidden neurons 

2st layer – number of 

hidden neurons 
Iterations 

1 3 100 2 3 550 

2 Input number 100 3 2 550 

3 
Half Input 

number 
100 Half input number 2 550 

4 2x input number 100 3 2 100 

5 3 300 2 1 100 

6 2x input number 300 6 2 100 

Table 3.1. The parameters used in each set for both RSNNS and TensorFlow. There are 6 sets of 

parameters. There are 2 parameters to vary for RSNNS as it only has a single hidden layer, while 

TensorFlow has 3 parameters to vary as it has two hidden layers. 

 

3.3.4.4. Data analysis 

All the best outputted data of scores resulted from the combinations of the 10 MQAP methods 

through RSNNS and TensorFlow using the correlation and ranking scales were collected and 

analysed in order to look for any possible improvement to our EMA score. 

 

3.4. Results and Discussion 

In this study, the effect of implementing RSNNS and TensorFlow on our MQAP method was 

analysed. RSNNS and TensorFlow were applied separately to our selected combinations of MQAP 

methods, and an evaluation was carried out to search for any improvement through NNs process. 

GDT-HA, GDT, MaxSub and TM-score were the observed scoring measurements which were used 

as controls for all the following benchmarking analysis. Both benchmarking tests provided a 

number of interesting results in the local as well as the global scoring level. 

 

3.4.1. MQAP score optimisation using RSNNS and TensorFlow 

Similarly as in the study done in Section 2.3.4, all combinations of the original 10 MQAPs were 

considered for benchmarking individually and in combinations using the same measurements but 

with the integration of the MLP technique. The resulted scores from MLP integration were then 
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compared with the previously yielded scores from Chapter 2 in order to look for any improvement. 

For guidance, the following key numbers will be used to describe each of the ten EMA methods as 

described in Table 3.2. 

Key MQAP method 

3 ModFOLD5_single_orig_global 

4 ModFOLDclustQ_single_orig_global 

5 ModFOLDclust2_single_orig_global 

6 ModFOLD5_single_res_global 

7 ModFOLDclustQ_single_res_global 

8 ProQ2_res_global 

9 CDA_res_global 

10 DBA_res_global 

11 SSA_res_global 

12 ModFOLD6_single_res_global 

Table 3.2. List of key numbers used to label the 10 MQAP methods. 

 

3.4.1.1. Correlation benchmarking through RSNNS and TensorFlow 

Firstly, the 6 sets of neural network parameters (Table 3.1) from RSNNS and TensorFlow were 

adapted to benchmark the ten MQAP methods following the correlation scale. The results of this 

benchmarking were then analysed to rank the best combination of MQAP methods which can 

produce the optimum QA score. The analysis was carried out based on the performance consistency 

between the ranked combinations throughout the 6 sets of NNs parameters. This means that with 

the RSNNS inclusion, the combined methods which produced the highest scores in most of the six 

parameters were selected. These methods were ranked and denoted as the highest combination of 

methods in appearance (Figure 3.6).  

 

Figure 3.6. Bar chart representing the top 10 MQAP combinations for correlation through RSNNS. 

The ranking was carried out based on the appearances in each set of the NNs. 
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Further, all combinations were subjected to the same statistical analysis again, but this time for 

finding only the combination of MQAP methods which produce the highest correlation scores. 

Table 3.3 represents the output of this analysis showing differences in the correlation scores. From 

these results, it can be noticed that the top combinations were diversified due to the variations of 

the used correlation coefficients as well as our measuring controls. However, such a diversity did 

not occur when the predicted scores were correlated against GDT-HA. This can indicate the 

likelihood that the neural network was trained on the GDT-HA scores, thus making it a more 

reliable measurement for correlation. Therefore, further evaluations in this section focused more 

on regarding GDT-HA as a control, but also considering the other observed measurements.  

Correlation 

Coefficients 

Observed 

Measure 

Correlation 

Score 
Combination 

R 

GDT-HA 

0.9223 4_8_9_10_12 

Rho 0.9374 4_8_9_10_12 

Tau 0.7769 4_8_9_10_12 

R 

GDT 

0.9305 6_7_8_9_10_12 

Rho 0.9391 3_5_9_10_12 

Tau 0.7847 3_5_9_10_12 

R 

MaxSub 

0.9343 5_8_9_10_12 

Rho 0.9393 6_8_9_10_12 

Tau 0.7841 5_10_12 

R 

TM-score 

0.9289 5_8_9_10_12 

Rho 0.9375 3_5_9_10_12 

Tau 0.7861 5_10_12 

Table 3.3. The top combinations and their scores for each testing method in the combination stage in 

RSNNS. 

 

Additionally, by looking at the results, we can notice that one of the top combinations 

(6_8_9_10_12) did not appear within the selected highly performing combination methods in most 

of the six sets of the RSNNS parameters demonstrated in Figure 3.6. However, 6_8_9_10_12 was 

still one of the combinations which gave the highest correlation scores, thus it will be taken with 

the selected methods to be tested in the NNs parameterisation stage. 
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In the parameterisation stage, the selected combinations of MQAP methods were tested through 

several RSNNS runs to look for the most suitable NNs parameters that can give the highest 

correlation scores. As can be seen in Table 3.4, 12 MQAP combinations were chosen as the highest 

RSNNS correlation scoring methods. The optimum combination was for 6_8_9_10_12 with it 

achieving the top score in 6 of the 12 selected methods, while 4_8_9_10_12 correlated best with 

GDT-HA achieving the top score in all 3 correlation coefficients. For combination 6_8_9_10_12 

the parameters of 2 hidden units and 800 iterations were chosen as it was the top performer in 5 of 

the 6 times in which 6_8_9_10_12 was the highest scoring combination. For the 4_8_9_10_12 

combination, the parameters of 2 hidden units and 100 iterations were chosen due to the large 

increase in Pearson’s R. These selected combinations with their suitable NNs parameters were then 

taken forward for a further analysis. 

Correlation 

Coefficient 

Observed 

Measure 

Correlation 

Score 
Combination 

Parameters 

Hidden 

units 
Iterations 

R 

GDT-HA 

0.9234691 4_8_9_10_12 2 100 

Rho 0.937887 4_8_9_10_12 6 100 

Tau 0.7773133 4_8_9_10_12 6 100 

R 

GDT 

0.9312651 4_8_9_10_12 2 100 

Rho 0.9410867 6_8_9_10_12 2 800 

Tau 0.7867924 6_8_9_10_12 2 800 

R 

MaxSub 

0.9340363 5_8_9_10_12 2 150 

Rho 0.9425893 6_8_9_10_12 2 800 

Tau 0.7861622 6_8_9_10_12 2 800 

R 

TM-score 

0.9317801 6_8_9_10_12 2 250 

Rho 0.9408387 6_8_9_10_12 2 800 

Tau 0.7871806 5_10_12 4 500 

Table 3.4. The top combinations and the respective parameters for each correlation testing methods 

for RSNNS. 

 

For TensorFlow, the same steps of NNs runs using the 6 sets of parameters were used in the 

combination stage. As with RSNNS, the top 10 combinations were benchmarked based on the 

methods performance consistency which led them toward the appearances in the top 10 scores in 

most of the results, the top 10 combinations can be seen in Figure 3.7. 
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Figure 3.7. Bar chart representing the top 10 MQAP combinations for correlation through 

TensorFlow. The ranking was carried out based on the appearances in each set of the NNs. 

 

As the RSNNS procedure, statistical analysis was applied for all combinations to look for the 

optimal EMA combinations with can produce the highest scores. The top correlation scores for 

each of the selected combinations are represented in Table 3.5. Similarly as in the RSNNS results, 

one combination (4_10) from the TensorFlow ranked methods was found to disappear in the top 

correlated TensorFlow combinations. Yet, the combination method was also used in the 

parameterisation stage along with the top correlated methods. 
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Correlation 

Coefficient 

Observed 

Measure 
Correlation Score Combination 

R 

GDT-HA 

0.9103466 4_10 

Rho 0.9307373 4_7_10_12 

Tau 0.7708717 4_7_10_12 

R 

GDT 

0.9260703 7_10_12 

Rho 0.9321401 7_10_12 

Tau 0.7820457 7_10_12 

R 

MaxSub 

0.9295573 7_10_12 

Rho 0.9347715 7_10_12 

Tau 0.7807776 7_10_12 

R 

TM-score 

0.9302162 10_12 

Rho 0.9319469 10_12 

Tau 0.7839458 7_10_12 

Table 3.5. The top combinations and their scores for each testing method in the combination stage in 

TensorFlow. 

 

The top combinations were benchmarked using several parameters of TensorFlow DANNs this 

time. The benchmarked MQAP combinations were then subjected to the correlation analysis to 

find the optimal correlated methods. By including the TensorFlow, two combinations were found 

to be of interest as can be seen in Table 3.6. The combination of 4_7_10_12 MQAP methods had 

the best performance with GDT-HA (it came second in Pearson’s Rank) but in the majority of the 

other observed measures 7_10_12 had the top correlation score. For this reason, both combinations 

were taken into the data analysis stage. For 4_7_10_12 combination, the parameter of 2 hidden 

units in the first layer, 2 units in the second and 50 iterations was chosen as it was the top performer 

in most of the times in which 4_7_10_12 was showing the highest scoring combination. For 

combination 7_10_12, the parameter of 4 hidden units in the first layer, 3 units in the second and 

50 iterations was chosen as it was one of the top performing parameters for 7_10_12. 
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Correlation 

Coefficient 

Observed 

Measure 

Correlation 

Score 
Combination 

Parameters 

Hidden units 
Iterations 

Layer 1 Layer 2 

Pearson 

GDT-HA 

0.91435 4_10 5 1 50 

Spearman 0.9330322 4_7_10_12 2 2 50 

Kendal 0.7742101 4_7_10_12 2 3 50 

Pearson 

GDT 

0.9299396 7_10_12 4 3 50 

Spearman 0.9343262 7_10_12 4 3 50 

Kendal 0.7847976 4_10_12 1 4 50 

Pearson 

MaxSub 

0.9321558 7_10_12 1 1 100 

Spearman 0.9363999 7_10_12 1 1 100 

Kendal 0.7826315 10_12 2 2 50 

Pearson 

TM-score 

0.9322891 10_12 5 1 50 

Spearman 0.933866 7_10_12 1 1 100 

Kendal 0.7857452 10_12 2 2 50 

Table 3.6. The top MQAP combinations and the respective parameters for each correlation testing 

methods for TensorFlow. 

 

It can be seen from the data presented in Table 3.7 that a “shallow” single layer MLP from RSNNS 

was clearly the superior method when attempting to get the optimal correlations from a 

combination of scores. The two RSNNS combinations had between them all the top correlation 

scores with each getting 6 of the possible 12 top scores. 6_8_9_10_12 was selected as the top 

combination as it had an average improvement of 0.76% when considering all 12 forms of testing 

correlation compared to 4_8_9_10_12’s 0.63%. However, 4_8_9_10_12 showed an improvement 

of 2% in Pearson’s R when correlated with GDT-HA, and an average of 1% improvement when 

using all techniques to correlate to GDT-HA, these are the largest improvements found in the study 

for correlation.  
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Correlation 

Coefficient 

Observed 

Score 
ModFOLD6 

RSNNS TensorFlow 

6_8_9_10_12 4_8_9_10_12 4_7_10_12 7_10_12 

Pearson 

GDT-HA 

0.9058867 0.9186586 0.9253479 0.9122147 0.9112993 

Spearman 0.9305616 0.9366413 0.9375623 0.9328477 0.9330121 

Kendal 0.7700707 0.7750816 0.7755898 0.7734703 0.7734843 

Pearson 
GDT 

 

0.9263458 0.9309587 0.9323503 0.927651 0.9300441 

Spearman 0.9321835 0.9406859 0.9395187 0.9331065 0.9344475 

Kendal 0.7819467 0.7854926 0.7821959 0.7812008 0.7833844 

Pearson 

MaxSub 

0.9297004 0.9338626 0.9344752 0.9298453 0.9319266 

Spearman 0.9349359 0.9421471 0.9397281 0.9341264 0.9360434 

Kendal 0.7810229 0.7849646 0.7796613 0.7778905 0.7811618 

Pearson 

TM-score 

0.9279442 0.9303009 0.9291652 0.9267494 0.930639 

Spearman 0.9320759 0.9405161 0.9378111 0.9313664 0.9335525 

Kendal 0.7841708 0.7858688 0.7801108 0.7800309 0.7835955 

Table 3.7. Results of the data searching stage for correlation along with the ModFOLD6 scores. Green 

represents the best score and red the worst score for each respective testing methods. 

 

On the other hand, TensorFlow showed improvements in comparison to ModFOLD6 when testing 

using GDT and GDT-HA. However, the pipeline failed to perform well in the majority of tests 

when MaxSub and TM-score were used for comparisons. When looking at the regression plots in 

Figure 3.8 it can be noticed that RSNNS provided a better correlation as its formed trendlines were 

linear and almost intersects (0,0) and (1,1). Whereas both plots for TensorFlow show a similar 

shape to ModFOLD6 and they seem to better fit an exponential trendline other than a linear line. 
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Figure 3.8. Regression plots comparing ModFOLD6 with the ranked RSNNS and TensorFlow MQAP 

combinations. Plot 1 shows the regression plot for ModFOLD6, Plot 2 shows the regression plot for 

6_8_9_10_12 in RSNNS, Plot 3 shows the regression plot for 4_8_9_10_12 in RSNNS, Plot 4 shows the 

regression plot for 4_7_10_12 in TensorFlow and Plot 5 shows the regression plot for 7_10_12 in 

TensorFlow. All predicted scores were compared to GDT-HA. 
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3.4.1.2. Ranking/Selection benchmarking through RSNNS and TensorFlow 

The same 6 sets of neural network parameters were implied through RSNNS and TensorFlow when 

benchmarking the MQAP methods using the ranking/selection scale. 

Firstly, the selected combinations were benchmarked with the inclusion of the RSNNS networks. 

The outputted scores of this benchmarking were analysed, and the results were ranked based on 

the performance consistency through the 6 sets of NNs parameters. Unlike the correlation section, 

all the top-ranking scores came from the combination 8_9 as seen in Table 3.8, and thus only the 

10 combinations found in Figure 3.9 will be used in the parameterisation step.  

Observed 

Measures 
Cumulative Score Combination 

GDT-HA 31.76354231 8_9 

GDT 44.01783111 8_9 

MaxSub 40.69864599 8_9 

TM-score 46.77266494 8_9 

Table 3.8.  The top combinations and their scores for each Observed method in the combination stage 

in RSNNS. 

 

 

Figure 3.9. Bar chart representing the top 10 MQAP combinations for correlation through RSNNS. 

The ranking was carried out based on the appearances in each set of the NNs. 

 

The parameterisation stage showed clear results as to which combination was best for ranking 

scores. As seen in Table 3.9, the combination 8_9_11 produced the top score in each observed 

score other than TM-score where it placed second. The top combination for ranking in TM-score 

was 8_9 however this exact score was achieved 19 times by 8_9 during the parameterisation stage 
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and is thus likely to be an upper limit of this combination. For this reason, the combination 8_9_11 

was selected and used in the further optimisation stage. The parameters chosen in the data searching 

stage was 2 hidden units and 550 iterations as these parameters worked best when selecting the top 

model using GDT-HA. 

Observed score Sum of Top Model Scores Combination 
Parameters 

Hidden units Iterations 

GDT-HA 31.98587951 8_9_11 2 550 

GDT 44.05480416 8_9_11 2 550 

MaxSub 40.88442186 8_9_11 2 1000 

TM-score 
46.77266494 8_9 Multiple Multiple 

46.75706769 8_9_11 2 300 

Table 3.9. The top combinations and the respective parameters for each Observed score in RSNNS. 

 

The 6 sets of parameters used for ranking in TensorFlow were the same as those used in correlation. 

All the combinations shown in Figure 3.10 were used in the next stage, parameterisation. The 

results in Table 3.10 showed that 9_11_12 outperformed all other combinations except for 

8_9_11_12 according to the TM-score. The top scores shown already outperformed the results at 

the end of the parameterisation step of RSNNS. As all the top-ranking combinations, shown in 

Table 3.10, were included in the combinations in Figure 3.10, no extra combinations passed to the 

parameterisation step.  

 

Figure 3.10. Bar chart representing the top 10 MQAP combinations for correlation through 

TensorFlow. The ranking was carried out based on the appearances in each set of the NNs. 
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Observed 

Measure 

Cumulative 

Score 
MQAP Combination 

GDT-HA 32.40589837 9_11_12 

GDT 44.54382173 9_11_12 

MaxSub 41.55411428 9_11_12 

TM-score 47.25694338 8_9_11_12 

Table 3.10. The top combinations and their scores for each observed method in the combination stage 

in TensorFlow. 

 

Table 3.11 shows the top scoring combinations for each observed score in TensorFlow along with 

the respective parameters used. 9_11_12 was clearly the best combination at ranking as it 

performed well according to all the observation scores, except the scores from TM-score where 

8_9_11_12 was the top performing combination. However, 8_9_11_12 scored the same score of 

47.28648181 using various parameters, and thus meaning this score is likely the upper limit of this 

combination. This made picking the best combination easy, however, the results in Table 3.11 

made it difficult to pick the parameters to use along with the combination 9_11_12. 4 hidden units 

in layer 1, 2 hidden units in layer 2 and 300 iterations was the model parameter as it was best for 

both GDT and TM-score. While 5 hidden units in layer 1, 4 hidden units in layer 2 and 100 

iterations only achieved a top score in GDT-HA and MaxSub. Ultimately, 5 hidden units in layer 

1, 4 hidden units in layer 2 and 100 iterations was chosen to be used in the data searching stage. 

This set of parameters was chosen for two reasons: firstly, the NN is trained using GDT-HA thus 

making it the primary focus of this study and secondly the methodology behind data searching uses 

a set GDT-HA to loop over the NN. 
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Observed 

Measure 

Cumulative 

Score 
Combination 

Parameters 

Hidden units in layer 1 Hidden units in layer 2 Iterations 

GDT-HA 32.42876369 9_11_12 5 4 100 

GDT 44.60932707 9_11_12 4 2 300 

MaxSub 41.57506947 9_11_12 5 4 100 

TM-score 
47.28648181 8_9_11_12 various* various* various* 

47.2269774 9_11_12 4 2 300 

Table 3.11. The top combinations and their respective parameters for each Observed score in 

TensorFlow. *The various parameters were 2, 3, 5 hidden units in layer 1, 3, 5 in layer 2, and 100, 400 

iterations. 

 

3.4.2. Data Analysis 

After running the 10 MQAP methods through the 6 sets of parameters of NN pipelines with the 

built-in RSNNS and TensorFlow and then benchmarking them using the ranking/selection and 

correlation scales, a massive amount of data was collected. The data was analysed, and impressive 

improvements were found when comparison. As can be seen in Figure 3.11, all differences in 

scores between the new RSNNS and TensorFlow techniques were whatever outside the margin of 

errors thus showing that the improvements are likely to be reliable. 

 

 

Figure 3.11. Bar chart representing the top-ranking combination score for each technique using GDT-

HA. 
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The results of analysed from the data searching stage were also shown in Table 3.12. While RSNNS 

technique scores were an improvement to that of ModFOLD6, RSNNS underperformed when 

compared to TensorFlow as well. However, TensorFlow technique achieved the highest score for 

every observational method. The largest improvement was in GDT-HA with an overall 

improvement of 0.88% compared to ModFOLD6.  

Observed Score 
Cumulative Score 

ModFOLD6 RSNNS TensorFlow 

GDT-HA 32.34630537 32.4621495 32.62412141 

GDT 44.53946127 44.65405679 44.67576979 

MaxSub 41.53627352 41.30589405 41.63982609 

TM-score 47.18034881 47.28185714 47.26613235 

Table 3.12. The results of the data searching stage for ranking along with the ModFOLD6 scores. 

Green represents the best score for each Observed score while red represents the worst score for the 

respective Observed score.  

 

The study of both Correlation and Ranking scales gave opposing results. The correlation study tells 

us that RSNNS using 6_8_9_10_12 is the superior method as TensorFlow was not even able to 

outperform MODFOLD6 in certain tests. However, the ranking scores showed that TensorFlow 

was the superior technique. In the Ranking scale, RSNNS also showed an improvement compared 

to ModFOLD6. However, when statistical analyses were conducted using the Wilcoxon sign test, 

the improvements were not statistically significant (p-value = 0.4836, N = 84), thus RSNNS could 

not give any improvement when combining multiple global scores. On the other hand, TensorFlow 

was found to be slightly better with a p-value of 0.0000000000000004064 (N = 84). 

During the entirety of this study it became apparent that combinations were either good at ranking 

or correlation, this may seem counterintuitive as the expected efficient MQAP method would be a 

combination of methods which are accurate at assigning scores and also good at picking out the 

top-ranking model. This may be due to the negatively skewed data set (Figure 3.12) thus meaning 

combinations which were accurate at assigning scores to bad models score higher in the correlation 

analysis than combinations which were only accurate at scoring good models. To resolve this issue, 

future projects could use positively skewed data, this would mean that the NN is more accurate at 

assigning scores to good models and worse at assigning scores to bad models. Being inaccurate at 

assigning scores to bad models is not as much of a problem as the models themselves are inaccurate. 
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Figure 3.12. Distribution of Model Quality in the data set, measured using GDT-HA. 

 

The poor correlation for TensorFlow could be due to an error in the training methodology or a lack 

of a specialised activation function. Indeed, this could be the case because as can be seen in the 

regression plots in Figure 3.8, the highest prediction score made by TensorFlow was 0.46 which is 

half the value of the highest true score. A change in methodology or a different activation function, 

such as Rectified linear unit (ReLU) may solve this issue (Abadi, et al., 2016). ReLU uses a ramp 

function to add linearity to the model which allows it to improve the training of the NN especially 

when presented with a large data set (Arora, et al., 2016). Other activation functions can also be 

considered such as sigmoid, softplus and tanh, however these functions seem to be of less use for 

ModFOLD compared to the potential of ReLU Relu due to their non-linearity (Abadi, et al., 2016). 

There are further improvements that can be made in TensorFlow, which may improve the accuracy 

for both correlation and ranking. One improvement would be to use biases when training the NN. 

Biases are used to manipulate the prediction scores and thus can be used to make the prediction 

scores more linear. While this won’t improve correlation scores, it will improve the regression 

plots. Batch training can also be implemented. In batch training, the training step for the NN uses 

smaller batches of the training data, and the models in the batch are changed with each iteration. 

Batch training could potentially allow for the increase in learning rate and iteration number without 

overfitting the NN, thus this technique could improve accuracy of prediction. 
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3.5. Conclusion 

In this study we have sought to optimise combinations of the ten global model quality assessment 

methods, including ModFOLD6. The methods were benchmarked firstly through different 

regressions, individually as well as in combinations, using 2 scales of measurements, 

Ranking/Selection and Correlation. The second benchmarking was conducted after the inclusion 

of a simple MLPs (RSNNS) and a deep MLPs (TensorFlow) to the MQAP methods pipeline 

separately. After benchmarking, the outputted data were analysed to find the optimum scores that 

was achieved from the including these two neural networks. It was found that both NNs were useful 

for different reasons. The MLPs from RSNNS outperformed the other techniques when testing for 

correlation between the predicted score and the true score while the deep MLPs using TensorFlow 

outperformed the others when testing for the ability to pick out the highest ranked models. This 

study shows the potential in using deep learning techniques for combining scores from MQAPs 

and offers suggestions as to how deep learning methodology could be modified (e.g. using different 

activation functions and positively skewing training data) to improve the predictive ability of the 

neural networks. 
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Work presented in this chapter has been published in the following papers: 

Maghrabi, A.H.A., McGuffin, L.J., 2017. ModFOLD6: an accurate web server for the global and 

local quality estimation of 3D protein models. Nucleic Acids Res 45, W416–W421. 

https://doi.org/10.1093/nar/gkx332 (Both authors contributed equally to the paper as first authors. 

Figures and tables are adapted from Maghrabi & McGuffin 2017, unless otherwise indicated). 

 

Elofsson, A., Joo, K., Keasar, C., Lee, J., Maghrabi, A.H.A., Manavalan, B., McGuffin, L.J., 

Hurtado, D.M., Mirabello, C., Pilstål, R., Sidi, T., Uziela, K., Wallner, B., 2018. Methods for 

estimation of model accuracy in CASP12. Proteins: Structure, Function, and Bioinformatics 86, 

361–373. https://doi.org/10.1002/prot.25395 (All authors contributed equally to this study and the 

list is sorted alphabetically.) 
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4.1. Background 

Methods which predict the three-dimensional (3D) models of proteins are now routinely relied 

upon to drive research across the life sciences. The reason behind that lies in the expense of the 

protein structures determination experiments, and also their time limitations. Predicting a 3D model 

is comparatively quick and can often be of sufficiently high quality. However, with all predictions 

there is some level of uncertainty, and therefore accurate methods for model quality assessment 

have become necessary for driving the acceptance of structure prediction methods. Essentially, 

relying on a 3D model of a protein without an estimate of its accuracy is tantamount to relying on 

a sequence alignment without an E-value. Thus, the development of 3D model Quality Assessment 

(QA) tools has become an important area of research in itself. Numerous methods have been 

developed over the years in an attempt to provide users with scores that will give them confidence 

in their 3D models and allow them to identify any potentially suspect regions. 

The model quality assessment field has its roots in early structure validation tools (Laskowski et 

al., 1996) (Hooft et al., 1996) (Wiederstein and Sippl, 2007). Such tools can be used to perform 

basic stereochemical checks, and they are very useful in identifying unusual geometric features in 

a model. However, such methods are not able to produce a single global score that can be used for 

ranking alternative models or discriminating good models from bad (often bad models will still 

have good stereochemistry). Modern methods for QA can be classified into three broad categories: 

pure-single model methods, which consider only information within an individual model 

(Eisenberg et al., 1997) (Wiederstein and Sippl, 2007) (Zhou and Zhou, 2002) (McGuffin, 2007) 

(Uziela and Wallner, 2016) (Uziela et al., 2017) (Benkert et al., 2008) (McGuffin, 2008), 

clustering/consensus approaches (McGuffin, 2009) (Larsson et al., 2009) (Benkert et al., 2009) 

(Cheng et al., 2009) (McGuffin and Roche, 2010), which can only be used if you have multiple 

alternative models built for the same protein target, and quasi-single model methods (McGuffin et 

al., 2013) (Roche et al., 2014), which can score an individual model against a pool of alternative 

models generated from the target sequence. Each approach has its advantages and disadvantages. 

Clustering methods have been far more accurate than pure single-model methods but are more 

computationally intensive and do not work when very few similar models are available, which is 

often the case in real life research scenarios. Pure-single model methods are less accurate overall, 

but they are more rapid, they produce consistent scores for single or few models at a time and they 

often perform better at model ranking and selection. 
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Quasi-single model methods attempt to provide comparable accuracy to clustering methods, while 

addressing real-life needs of researchers with few/single models. We initially implemented a quasi-

single model approach with our ModFOLD3 method (Roche et al., 2014), which generated 

reference sets of models from the target sequence, using IntFOLD-TS (McGuffin and Roche, 

2011), for comparison with the submitted model using ModFOLDclust2 (McGuffin and Roche, 

2010). The method has since undergone a number of updates: ModFOLD4 (McGuffin et al. 2013), 

which makes use of IntFOLD2-TS (Buenavista et al., 2012) models, and ModFOLD5, which 

makes use of IntFOLD3-TS (McGuffin et al., 2015) models. Each of these quasi-single model 

versions of ModFOLD have been ranked among the top performing methods in the quality 

assessment categories of the recent CASP experiments (Kryshtafovych et al., 2014) 

(Kryshtafovych et al., 2016) and have undergone incremental improvements in accuracy. By some 

measures, the quasi-single model methods have been competitive with the predictive power offered 

by clustering-based methods, as well as being capable of making predictions for a single model at 

a time. While the ModFOLD server has been a pioneer of the quasi-single model approach and a 

leader in terms of prediction performance, it has fallen short in some aspects, such as model 

selection. Furthermore, there is still significant room for improvement in many aspects of quality 

assessment. 

In this chapter, we describe significant major updates to the ModFOLD server. The server has been 

popular with modellers around the world, having completed ∼200 000 quality assessment jobs for 

∼9000 unique users. The latest version, ModFOLD6, operates solely in single model mode, 

deploying a novel hybrid pure/quasi-single model QA algorithm. In addition to interface updates, 

in this chapter we will also briefly describe the major modifications to the prediction algorithm, 

which have led to significant performance gains in both local and global model quality predictions, 

allowing us to maintain our position as a leading prediction group. The main changes under the 

hood have been the addition of several new local scoring inputs, a new neural network (NN) 

architecture and alternative optimized global scores for different use cases. On the front end 

submission page, users are now given three alternative choices for optimized global model quality 

scoring, depending on whether their preference is for optimal model selection (the best models are 

ranked at the very top), predicting absolute values (the predicted scores closely reflect the observed 

scores) or more balanced performance for the two use cases. We also report on the independent 

benchmarking of the server for the recent CASP12 experiment and ongoing CAMEO project. 
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4.2. Materials and methods 

4.2.1. Architecture and pipeline of the optimised ModFOLD6 

The ModFOLD6 server combines a pure-single and quasi-single model strategy for improved 

accuracy, which was originally developed for the CASP12 experiment. For ModFOLD version 6, 

our initial emphasis was on increasing the accuracy of per-residue assessments for single models. 

Each model was considered individually using three pure-single model methods, ProQ2 (Uziela 

and Wallner 2016) and two newly developed methods: The Contact Distance Agreement (CDA) 

score and the Secondary Structure Agreement (SSA) score. Additionally, a set of 130 reference 3D 

models (generated using the latest version of IntFOLD (McGuffin and Roche, 2011) (Buenavista 

et al., 2012) (McGuffin et al., 2015)) was used to score models using three alternative quasi-single 

model methods: the Disorder B-factor Agreement (DBA) score, the ModFOLD5_single residue 

score and the ModFOLDclustQ_single residue score (Figure 4.1). An NN was then used to combine 

the component per-residue quality scores from each of the six alternative scoring methods, resulting 

in a final consensus of per-residue quality scores for each model. 

 

Figure 4.1. Flow of data for local quality assessment scoring in ModFOLD6. The target sequence and 

3D model were evaluated with three pure-single model scoring methods (Secondary Structure Agreement 

(SSA), Contact Distance Agreement (CDA) and ProQ2) and three quasi-single model methods (Disorder 

B-factor Agreement (DBA), ModFOLD5_single (MF5s) and ModFOLDclustQ_single (MFcQs)). The new 

methods developed for ModFOLD6 are highlighted in green. The per-residue scores from all six methods 

were combined into a single residue score using an artificial neural network. Adapted from Maghrabi and 

McGuffin, (2017). 

 



Chapter 4 

 

 
86 

We used a standard neural network architecture (a Multi-Layer Perceptron, or MLP) for 

ModFOLD6 in order to strengthen the accuracy of local quality assessment scoring (Figure 4.2). 

Scores for each residue in the model were fed into the input layer, taken from the 6 local scoring 

methods using a sliding window of 5 residues (30 inputs). The hidden layer was made up of 15 

hidden neurons and the network was trained to learn the output 𝑆𝑖 score of the residue in the model 

compared to the native structure according to the TM-score structural superposition: 𝑆𝑖  =  1/(1 +

(𝑑𝑖/𝑑0)2, where 𝑆𝑖 ranges from 0 to 1, 𝑑𝑖 is the distance between structurally aligned residues and 

𝑑0 is the distance threshold = 3.9. Using 30 inputs and 15 hidden neurons was found to be an 

optimal architecture. No significant improvement was gained by further increasing the number of 

hidden neurons. The MLP function from RSNNS was used to build and train the network in R 

(https://cran.r-project.org/web/packages/RSNNS/). This part of the research was taken into 

consideration, and further studies were carried out later with the focus on the implementation of 

neural network and deep neural network into our method. 

  

https://cran.r-project.org/web/packages/RSNNS/
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Figure 4.2. Pipeline showing details of neural network architecture and flow of data for local quality 

assessment scoring in ModFOLD6. Scores for each residue in the model are fed into the input layer, taken 

from the 6 local scoring methods using a sliding window of 5 residues (30 inputs). The hidden layer was 

made up of 15 hidden neurons and the network was trained to learn the output 𝑆𝑖 score of the residue in the 

model compared to the native structure according to the TM-score structural superposition (𝑆𝑖  =  1/(1 +

(𝑑𝑖/𝑑0)2), where 𝑆𝑖 ranges from 0 to 1, 𝑑𝑖 is the distance between structurally aligned residues and 𝑑0 is 

the distance threshold (3.9). 30 inputs and 15 hidden neurons was found to be an optimal architecture. No 

significant improvement was gained by further increasing the number of hidden neurons. The multilayer 

perceptron (MLP) function from RSNNS was used to build and train the network in R (https://cran.r-

project.org/web/packages/RSNNS/). Adapted from Maghrabi and McGuffin, (2017). 

 

The ModFOLD6 component per-residue/local quality scoring methods were as follows: (1) CDA 

is new pure-single model local QA method that relates to the agreement between the predicted 

residue contacts according to MetaPSICOV (Jones et al., 2015) and the model contacts, which are 

measured by the Euclidean distance (in Å) between residues in the 3D model. All pairs of residues 

in a model that were measured to be 8 Å apart or less were considered to be in contact and the CDA 

score for each residue was calculated by the mean MetaPSICOV score for those model contacts. 

In other words, if residue i was measured to be in contact with both residue j and residue k in the 
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model, and MetaPSICOV scores also existed for ij and ik, then the CDA score for residue i was 

taken as the mean MetaPSICOV score for ij and ik. Thus, CDA = (∑p)/c, where p is the 

MetaPSICOV score and c is simply the number of contacts for the residue in the model where a 

value for p also exists. (2) SSA is a simple new pure-single model local QA method that relates to 

the agreement between the predicted secondary structure of each residue according to PSIPRED 

(Buchan et al. 2013) and the secondary structure state of the residue in the model according to 

DSSP (Kabsch and Sander 1983). Thus, SSA = PCHE, where, PCHE is simply the p-value from 

PSIPRED for the secondary structure state — coil (C), helix (H) or strand (E) — of the residue in 

the model according to DSSP. The eight DSSP states (H, I, G, E, B, S, T, -) were reduced to three 

states such that E (strand) and H (helix) were preserved and all other states were treated as C (coil). 

(3) The local scores were also taken from the ProQ2 (Uziela and Wallner 2016) method. (4) The 

ModFOLD5_single local QA scores were calculated from the comparison of each model with the 

reference set of 130 models built by IntFOLD version 4, in a similar way to the ModFOLD4 

(McGuffin et al. 2013) method acting in quasi-single model mode, with the predicted 

distances d converted back into residue similarities Sr, thus: Sr = 1/(1 + (d/3.9)2). (5) The 

ModFOLDclustQ_single local QA scores were calculated in a similar way to ModFOLD5_single, 

however, in this case individual models were compared against the reference IntFOLD4 set using 

the local Q-score approach (McGuffin and Roche, 2010) (Ben-David et al., 2009). (6) DBA is a 

new quasi-single model QA method that relates to the agreement between the predicted disordered 

residues in the sequence according to DISOPRED3 (Jones and Cozzetto, 2015) and the 

ModFOLD5_single predicted per-residue error. Thus, 𝐷𝐵𝐴 = 1 − |𝑆𝑟 − (1 − 𝑃𝑑)|, where, 𝑆𝑟 is 

the ModFOLD5_single accuracy of the predicted residue for the model and 𝑃𝑑 is the probability of 

disorder according to DISOPRED3. 

Global scores were then calculated by taking the mean per-residue scores (the sum of the per-

residue similarity scores divided by the target sequence lengths) for each of the six individual 

component methods described above and the NN consensus output (ModFOLD6). Furthermore, 

three additional quasi-single global model quality scores were generated (Figure 4.3) for each 

model based on the original ModFOLDclust, ModFOLDclustQ and ModFOLDclust2 global 

scoring methods (McGuffin and Roche, 2010) (in a similar vein to the ModFOLD4_single and 

ModFOLD5_single global scores, which were previously tested in CASP10 (Kryshtafovych et al., 

2014) and CASP11 (Kryshtafovych et al. 2016) respectively).  
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Figure 4.3. Flowchart outlining the principal stages of the ModFOLD6 server prediction pipeline. The initial input data are the target sequence and a single 

3D model. The output data are the local/per‐residue scores from the ModFOLD6 NN and the global score variants—ModFOLD6, ModFOLD6_rank, and 

ModFOLD6_cor. The ModFOLD6 pipeline is dependent on the following methods PSIPRED,31 DISOPRED,36 and MetaPSICOV37. Adapted from Elofsson 

et al., (2018). 
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4.2.2. ModFOLD6 variants 

Thus, we ended up with 10 alternative global QA scores, which could be combined in various ways 

in order to optimise for the different aspects of quality estimation (QE) (Figure 4.4). The 

ModFOLD6 global score (the mean per-residue NN output score) considered alone was found to 

have a good balance of performance based on correlations of predicted and observed scores and 

rankings of the top models. The ModFOLD6_cor global score variant (calculated as: 

(ModFOLDclustQ_single_global + DBA_global + ModFOLD6_global)/3) was found to be an 

optimal combination for producing good correlations with the observed scores, i.e. the predicted 

global quality scores produced should produce closer to linear correlations with the observed global 

quality scores. The ModFOLD6_rank global score variant (calculated as: 

ModFOLDclustQ_single_global + ProQ2_global + CDA_global + DBA_global + SSA_global + 

ModFOLD6_global)/6) was found to be an optimal combination for ranking, i.e. the top ranked 

models (top 1) should be closer to the highest accuracy, but the relationship between predicted and 

observed scores may not be linear. 

 

Figure 4.4. Summary of global score benchmarks for the 3 ModFOLD6 alternatives using CASP11 

data. ModFOLD6_rank, ModFOLD6 and ModFOLD6_cor are the three optimised global accuracy scores 
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that may be selected by users on the ModFOLD6 server submission page. They were benchmarked and 

visualised for comparison. Adapted from Maghrabi and McGuffin, (2017). 

 

4.3. Results and Discussion 

4.3.1. Server inputs and outputs 

The only required inputs to the ModFOLD6 server are the amino acid sequence for the target 

protein and a single 3D model (in PDB format) for evaluation. However, users may optionally 

upload multiple alternative models (as a compressed archive of PDB files), a name for their protein 

sequence and their email address. The server provides a clean and simple interface so that results 

can be easily interpreted by non-experts at a glance. The results page consists of a single table 

summarising the quality assessment scores for each submitted model (Figure 4.5a). The prediction 

data in the table are represented graphically, with thumbnail images of the local error plots and 

annotated 3D models. Users can click through the images in the table in order to drill down into 

individual results and visualize annotated 3D models interactively in using the JSmol/HTML5 

framework (Figure 4.5b and c). No plugins are required and, conveniently, interactive results may 

also be viewed on mobile devices. 

Each row in the results table includes: a global score for the model, a P-value indicating the 

likelihood that the observed similarity between the model and native structure is random (TM-

score < 0.2) and a plot of the local errors in the model (the predicted distance in Ångströms of each 

residue from the native structure) (Figure 4.5a). Conveniently, the server also inserts the predicted 

local quality scores into the B-factor column of the ATOM records for each submitted model and 

makes them available to download, either individually or as a compressed archive. The results table 

also includes a graphical view of each model coloured by predicted B-factors using the temperature 

scheme (Figure 4.5a and b). The raw machine-readable data files for each set of predictions are 

also provided for developers, which comply with the CASP data standards. 
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Figure 4.5. ModFOLD6 server results for models submitted to CASP12 generated for target T0859 

(PDB ID: 5jzr). (a) An example of the graphical output from the server showing the main results page with 

a summary of the results from each method (truncated here to fit page). Clicking on the thumbnail images 

in the main table allows results to be visualized in more detail. (b) A histogram of the local or per-residue 

errors for the top ranked model, with the residue number on the x-axis and the predicted residue error 

(distance of the Cα atom from the native structure in Å) on the y-axis, which may be downloaded. (c) 

Interactive views of models, which can be manipulated in 3D using the JSmol/HTML5 framework and/or 

downloaded for local viewing. Adapted from Maghrabi and McGuffin, (2017). 

 

4.3.2. Independent benchmarking of global scoring with official CAMEO and CASP12 data 

The ModFOLD6 server is continuously independently benchmarked for local QE performance 

using the CAMEO resource (Haas et al., 2013). At the time that the original work was published 

(July 2017), the CAMEO public QE data (http://www.cameo3d.org/) showed that ModFOLD6, 

and another unpublished method (QMEANDisCo), were the leading public QA methods for 

producing local (per-residue) quality scores, according to the lDDT (Mariani et al., 2013) measure 

over 6 months. Our common subset analysis using 6 months of CAMEO data prior to CASP12, 
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verifies that the ModFOLD6 server is a significant improvement on our previous leading public 

ModFOLD4 method (McGuffin et al., 2013). Furthermore, these data show that ModFOLD6 also 

outperforms the top publicly available published methods in terms of local quality (Table 4.1 & 

4.2 and Figure 4.6). 

Method AUC StdErr AUC 0–0.1 AUC 0–0.1 rescaled 

ModFOLD6 (server18)  0.8748 0.00096 0.0508 0.5081 

ModFOLD4 (server7)  0.8638 0.00099 0.0467 0.4669 

ProQ2 (server 8)  0.8374 0.00107 0.0428 0.4283 

Verify3d (server0)  0.7020 0.00134 0.0208 0.2081 

Dfire v1.1 (server1)  0.6606 0.00138 0.0168 0.1675 

Table 4.1. Independent benchmarking of local scoring publicly available published EMA methods 

with CAMEO comparing. A 26-weeks data was collected between 29 April 2016 and 21 October 2016 

from http://www.cameo3d.org/. AUC = Area Under the ROC Curve. StdErr = Standard Error in AUC score. 

AUC 0-0.1 = Area Under the ROC curve with False Positive Rate ≤ 0.1. The table is sorted by the AUC 

score. Adapted from Maghrabi and McGuffin, (2017). 

 

Independent benchmarking of local scoring with CAMEO using 6 months of common data 

comparing five publicly available published methods (177 025 common residues, 725 common 

models, 113 650 high quality residues, 63 375 low quality residues). 

Method AUC StdErr AUC 0-0.1 AUC 0-0.1 rescaled 

ModFOLD6 (server18) 0.8921 0.002 0.0525 0.5249 

ModFOLD4 (server7) 0.883 0.00207 0.0519 0.5189 

ProQ2 (server 8) 0.8552 0.00229 0.0437 0.4369 

VoroMQA_v2 (server17) 0.7925 0.00267 0.0247 0.2472 

VoroMQA_sw5 (server15) 0.7657 0.0028 0.0304 0.3036 

Verify3d (server0) 0.7157 0.003 0.02 0.2003 

EQuant 2 (server16) 0.7014 0.00305 0.0185 0.1848 

Prosa2003 (server2) 0.7007 0.00305 0.0215 0.2148 

Naive PSIBlast (server3) 0.6769 0.00312 0.0171 0.1712 

Dfire v1.1 (server1) 0.6332 0.00322 0.0156 0.1564 

Table 4.2. Independent benchmarking of the top local scoring EMA methods. The data was collected 

from CAMEO using 6 months including all 10 publicly available published methods (126 common models, 

31076 common residues, 17984 high quality residues, 13092 low quality residues). 26 weeks of data 

between 2016-04-29 and 2016-10-21 downloaded from http://www.cameo3d.org/. AUC = Area Under ROC 
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curve. StdErr = Standard Error in AUC score. AUC 0-0.1 = Area Under the ROC curve with False Positive 

Rate <= 0.1. Table is sorted by the AUC score. Adapted from Maghrabi and McGuffin, (2017). 
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Figure 4.6. Line graph representing independent benchmarking of local scoring EMA methods. The 

data was collected from CAMEO using 6 months - ROC plots for data shown in Table 4.2 and Table 4.3. A 

true positive is defined as a residue correctly identified to be low quality, with local LDDT <= 60. (A) Full 

ROC plot for common subset with 5 publicly available published methods. (B) ROC plot with False Positive 

Rate (FPR) <= 0.1 for common subset including 5 publicly available published methods. (C) Full ROC plot 

for common subset including all 10 publicly available published methods. (D) ROC plot with FPR <= 0.1 

for common subset including all 10 publicly available published methods. Adapted from Maghrabi and 

McGuffin, (2017). 
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The ModFOLD6 server was also subjected to independent blind testing during the CASP12 

experiment in 2016. We were invited to speak at the CASP12 meeting in Gaeta as one of the leading 

groups in the Estimation of Model Accuracy category. The ModFOLD6 server performed 

particularly well in terms of differentiating between good and bad models (Table 4.3), local scoring 

(Table 4.4 & 2.5) and assigning absolute global accuracy values (Tables 4.6 – 4.9). The CASP12 

data indicates that: ModFOLD6 ranks in top 10 in every benchmark of local score performance, it 

is the overall leading single model approach, it is competitive with the consensus/clustering 

approaches and it outperforms all pure-single model methods (Table 4.2 – 4.5). In terms of global 

scores, the ModFOLD6 variants were ranked within the top three for nearly every global 

benchmark using LDDT and CAD (Olechnovič et al., 2013) scores, as well as ranking within the 

top 10 according to other scores. (Table 4.1 and 4.6 – 4.9). The server was also a key factor 

contributing to our success in the Template Based Modelling category, where our group ranked in 

second position according to the assessors formula (http://www.predictioncenter.org/casp12/). 

   GDT-TS LDDT CAD(AA) SG 

Rank Gr.Name Gr.Model AUC AUC AUC AUC 

1 ModFOLD6_rank QA072_1 0.993 0.99 0.926 0.962 

2 ModFOLD6_cor QA360_1 0.995 0.988 0.885 0.949 

3 ModFOLD6 QA201_1 0.994 0.988 0.878 0.944 

4 qSVMQA QA120_1 0.982 0.983 0.862 0.937 

5 ProQ3 QA213_1 0.985 0.978 0.892 0.916 

6 ProQ3_1_diso QA095_1 0.982 0.978 0.891 0.922 

7 ProQ3_1 QA302_1 0.981 0.977 0.889 0.917 

8 ProQ2 QA203_1 0.944 0.971 0.921 0.932 

9 MUfoldQA_S QA334_1 0.977 0.968 0.898 0.913 

10 MULTICOM-CLUSTER QA287_1 0.956 0.968 0.893 0.921 

Table 4.3. Independent benchmarking of global scoring EMA methods in CASP12. The ability of 

methods to separate good models (accuracy score ≥ 50) from bad (<50) according to GDT-TS (Li et al., 

2016), LDDT, CAD and SG scores is evaluated using the Areas Under the Curve (AUC) 

(see http://predictioncenter.org/casp12/doc/presentations/CASP12_QA_AK.pdf). Only the top 10 methods 

are shown, and the table is sorted using LDDT scores. The scores are calculated over all models for all 

targets (QA stage 1–select 20). The table is sorted by the LDDT AUC score. Data are 

from http://predictioncenter.org/casp12/qa_aucmcc.cgi. Adapted from Maghrabi and McGuffin, (2017). 

http://www.predictioncenter.org/casp12/
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Rank Gr.Name Gr.Model MCC(3.8) MCC(5.0) Corr. 

 

Rank Gr.Name Gr.Model MCC(3.8) MCC(5.0) Corr. AUC(3.8) 

1 ModFOLD6_rank QA072_1 0.536 0.54 0.513 1 Wallner QA073_2 0.756 0.745 0.697 0.946 

2 ModFOLD6 QA201_1 0.536 0.54 0.513 2 Pcons QA089_2 0.755 0.76 0.688 0.945 

3 ModFOLD6_cor QA360_1 0.536 0.54 0.513 3 Pcons-net QA432_2 0.738 0.737 0.67 0.935 

4 Pcons-net QA432_1 0.457 0.511 0.381 4 ModFOLDclust2 QA214_2 0.748 0.785 0.669 0.949 

5 Wallner QA073_1 0.27 0.379 0.301 5 ModFOLD6_cor QA360_2 0.73 0.719 0.657 0.938 

6 Pcons QA089_1 0.22 0.307 0.275 6 ModFOLD6_rank QA072_2 0.73 0.719 0.657 0.938 

7 ProQ3 QA213_1 0.332 0.313 0.216 7 ModFOLD6 QA201_2 0.73 0.719 0.657 0.938 

8 ProQ3_1 QA302_1 0.342 0.34 0.204 8 DavisEMAconsensus QA034_2 0.717 0.773 0.635 0.948 

9 ProQ3_1_diso QA095_1 0.341 0.34 0.203 9 Pcomb-domain QA411_2 0.717 0.744 0.642 0.939 

10 Wang1 QA132_1 0.188 0.164 0.198 10 ProQ3_1_diso QA095_2 0.601 0.579 0.512 0.885 

Table 4.4. Independent benchmarking of Corr. local scoring EMA methods in CASP12. The top 10 groups are shown. Table is sorted by the Corr. score. Data are from 

http://predictioncenter.org/casp12/qa2_aucmcccorr.cgi. Adapted from Maghrabi and McGuffin, (2017). 

Rank Gr.Name Gr.Model ASE 

 

 

 

 

 

 

Rank Gr.Name Gr.Model ASE 

1 DavisEMAconsensus QA034_1 85.831 1 ModFOLDclust2 QA214_2 87.032 

2 ModFOLDclust2 QA214_1 84.808 2 DavisEMAconsensus QA034_2 86.832 

3 Pcons-net QA432_1 84.805 3 Pcons QA089_2 86.679 

4 Pcons QA089_1 84.182 4 Pcons-net QA432_2 84.178 

5 ModFOLD6 QA201_1 83.475 5 Wallner QA073_2 84.17 

6 ModFOLD6_cor QA360_1 83.473 6 ModFOLD6 QA201_2 83.852 

7 ModFOLD6_rank QA072_1 83.473 7 ModFOLD6_cor QA360_2 83.851 

8 Pcomb-domain QA411_1 83.146 8 ModFOLD6_rank QA072_2 83.851 

9 Wallner QA073_1 81.845 9 Pcomb-domain QA411_2 83.634 

10 ZHOU-SPARKS-X QA452_1 80.188 10 ProQ3_1_diso QA095_2 79.158 

Table 4.5. Independent benchmarking of ASE local scoring EMA methods in CASP12. The top 10 groups are shown. Table is sorted by the ASE score. Data are from 

http://predictioncenter.org/casp12/qa2_ase.cgi. Adapted from Maghrabi and McGuffin, (2017). 

  

http://predictioncenter.org/casp12/qa2_aucmcccorr.cgi
http://predictioncenter.org/casp12/qa2_ase.cgi
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Rank Gr.Name Gr.Model GDT-TS LDDT CAD(AA) SG  Rank Gr.Name Gr.Model GDT-TS LDDT CAD(AA) SG 

1 ModFOLD6_cor QA360_1 6.697 4.249 17.461 9.931  1 ModFOLD6_rank QA072_2 9.754 6.019 9.751 12.732 

2 ModFOLD6_rank QA072_1 10.578 4.877 13.368 12.2  2 ModFOLD6_cor QA360_2 6.748 8.248 14.423 12.319 

3 Pcomb-domain QA411_1 8.56 4.987 17.031 10.413  3 MULTICOMCLUSTER QA287_2 11.445 8.472 12.658 13.161 

4 QASproCL QA267_1 9.107 5.432 16.59 11.624  4 ModFOLD6 QA201_2 7.087 8.565 14.35 12.292 

5 ModFOLD6 QA201_1 5.883 5.813 19.241 9.005  5 Pcomb-domain QA411_2 9.839 8.842 11.312 13.275 

6 MULTICOMCLUSTER QA287_1 10.222 5.835 14.943 12.013  6 qSVMQA QA120_2 11.608 8.879 12.336 13.642 

7 Wang2 QA206_1 8.021 5.874 18.213 9.836  7 ProQ3_1 QA302_2 10.155 8.91 14.32 12.213 

8 Deepfold-Contact QA219_1 8.507 6.313 20.421 10.464  8 ProQ3_1_diso QA095_2 10.159 8.931 14.778 12.088 

9 naive QA109_1 8.507 6.313 20.421 10.464  9 MUfoldQA_S QA334_2 8.898 9.053 16.343 12.268 

10 DeepFold-Boom QA223_1 8.507 6.313 20.421 10.464  10 ProQ3 QA213_2 11.418 9.14 15.006 12.622 

Table 4.6. Independent benchmarking of LDDT global scoring EMA methods in CASP12. The top 10 groups are shown. Table is sorted by the LDDT score. 

Data are from http://predictioncenter.org/casp12/qa_diff_mqas.cgi. Adapted from Maghrabi and McGuffin, (2017). 

   GDT-TS LDDT CAD(AA) SG 

Rank Gr.Name Gr.Model 
MCC 

(40) 

MCC 

(50) 
AUC 

MCC 

(40) 

MCC 

(50) 
AUC 

MCC 

(40) 

MCC 

(50) 
AUC 

MCC 

(40) 

MCC 

(50) 
AUC 

1 ModFOLD6_rank QA072_1 0.613 0.814 0.993 0.685 0.686 0.99 0.382 0.502 0.926 0.572 0.523 0.962 

2 ModFOLD6_cor QA360_1 0.694 0.863 0.995 0.668 0.686 0.988 0.314 0.472 0.885 0.538 0.483 0.949 

3 ModFOLD6 QA201_1 0.676 0.708 0.994 0.665 0.578 0.988 0.343 0.489 0.878 0.551 0.504 0.944 

4 qSVMQA QA120_1 0.521 0.579 0.982 0.587 0.562 0.983 0.399 0.541 0.862 0.544 0.525 0.937 

5 ProQ3 QA213_1 0.579 0.625 0.985 0.611 0.53 0.978 0.314 0.524 0.892 0.491 0.524 0.916 

6 ProQ3_1_diso QA095_1 0.516 0.572 0.982 0.556 0.509 0.978 0.337 0.503 0.891 0.481 0.476 0.922 

7 ProQ3_1 QA302_1 0.522 0.584 0.981 0.557 0.526 0.977 0.343 0.511 0.889 0.473 0.483 0.917 

8 ProQ2 QA203_1 0.366 0.455 0.944 0.456 0.459 0.971 0.48 0.522 0.921 0.451 0.443 0.932 

9 MUfoldQA_S QA334_1 0.716 0.764 0.977 0.561 0.568 0.968 0.228 0.432 0.898 0.43 0.416 0.913 

10 MULTICOMCLUSTER QA287_1 0.45 0.465 0.956 0.504 0.457 0.968 0.348 0.456 0.893 0.407 0.423 0.921 

Table 4.7. Independent benchmarking of stage 1 global scoring EMA methods in CASP12. The top 10 groups are shown. Table is sorted by the LDDT-AUC 

score. Data are from http://predictioncenter.org/casp12/qa_aucmcc.cgi. Adapted from Maghrabi and McGuffin, (2017). 

 

http://predictioncenter.org/casp12/qa_diff_mqas.cgi
http://predictioncenter.org/casp12/qa_aucmcc.cgi
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   GDT-TS LDDT CAD(AA) SG 

Rank Gr.Name Gr.Model 
MCC 

(40) 

MCC 

(50) 
AUC 

MCC 

(40) 

MCC 

(50) 
AUC 

MCC 

(40) 

MCC 

(50) 
AUC 

MCC 

(40) 

MCC 

(50) 
AUC 

1 Wallner QA073_2 0.721 0.734 0.988 0.707 0.745 0.966 0.351 0.592 0.923 0.665 0.665 0.936 

2 Pcomb-domain QA411_2 0.735 0.801 0.984 0.717 0.692 0.963 0.531 0.668 0.925 0.632 0.654 0.932 

3 ModFOLD6_rank QA072_2 0.763 0.843 0.983 0.74 0.773 0.962 0.486 0.679 0.925 0.639 0.675 0.929 

4 QASproCL QA267_2 0.788 0.783 0.987 0.733 0.676 0.958 0.493 0.635 0.906 0.629 0.635 0.928 

5 MUfoldQA_C QA318_2 0.812 0.844 0.982 0.746 0.727 0.958 0.442 0.65 0.902 0.652 0.654 0.927 

6 Pcons QA089_2 0.662 0.703 0.985 0.644 0.712 0.957 0.322 0.567 0.903 0.642 0.643 0.928 

7 FDUBio QA237_2 0.835 0.872 0.984 0.773 0.741 0.957 0.437 0.66 0.91 0.673 0.664 0.928 

8 ModFOLD6 QA201_2 0.774 0.835 0.983 0.723 0.735 0.955 0.471 0.664 0.903 0.614 0.657 0.919 

9 ModFOLDclust2 QA214_2 0.761 0.851 0.985 0.72 0.751 0.954 0.393 0.644 0.901 0.639 0.677 0.924 

10 Pcons-net QA432_2 0.66 0.66 0.979 0.633 0.662 0.954 0.324 0.537 0.923 0.612 0.616 0.925 

Table 4.8. Independent benchmarking of stage 2 global scoring EMA methods in CASP12. The top 10 groups are shown. Table is sorted by the LDDT-AUC 

score. Data are from http://predictioncenter.org/casp12/qa_aucmcc.cgi. Adapted from Maghrabi and McGuffin, (2017). 

   GDT-TS LDDT CAD(AA) SG 

Rank Gr.Name Gr.Model No. Targets Score No. Targets Score No. Targets Score No. Targets Score 

1 MUfoldQA_C QA318_1 47 0.82 45 0.129 66 0.304 43 0 

2 ModFOLD6_rank QA072_1 47 1.077 45 0.129 66 0.39 43 0.25 

3 qSVMQA QA120_1 47 1.186 45 0.129 65 0.487 43 0.325 

4 ModFOLD6_cor QA360_1 47 1.279 45 0.434 66 0.806 43 0.871 

5 ModFOLD6 QA201_1 47 1.279 45 0.434 66 0.557 43 0.871 

6 MUfoldQA_S QA334_1 47 2.558 45 1.417 66 0.903 43 2.755 

7 Pcons-net QA432_1 42 2.949 41 1.434 57 0.767 40 1.973 

8 QASproCL QA267_1 47 3.644 45 1.619 66 1.502 43 1.938 

9 SVMQA QA208_1 47 3.557 45 1.723 65 0.739 43 2.93 

10 ProQ3 QA213_1 47 4.244 45 2.148 66 1.113 43 3.103 

Table 4.9. Independent benchmarking of global scoring EMA methods using specific targets from CASP12. For each score, only the targets with the best 

model scoring above the threshold (GDT-TS, SG: 40.0; LDDT, CAD(AA): 0.4) were considered. The top 10 groups shown. Table is sorted by the LDDT score. 

Data are from http://predictioncenter.org/casp12/qa_diff2best.cgi. Adapted from Maghrabi and McGuffin, (2017). 

http://predictioncenter.org/casp12/qa_aucmcc.cgi
http://predictioncenter.org/casp12/qa_diff2best.cgi
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4.3.3. Further benchmarking and cross-validation with official CASP11 data 

Prior to CASP12, the ModFOLD6 methods were also cross-validated using the CASP11 data to 

gauge performance versus the component methods, in terms of local (Tables 4.10 – 4.12) and global 

scores (Table 4.13 and 4.14). In all target categories, the ModFOLD6 local scores significantly 

outperform the component methods. Similarly, significant performance gains can be made from 

combining component global scores, both in terms of cumulative GDT-TS of the top ranked models 

(with ModFOLD_rank) and in terms of assigning absolute accuracy values (with ModFOLD6_cor) 

(Figure 4.7). 

Method Pearson Spearman AUC AUC 0-0.1 StdErr 

ModFOLD6 0.6657 0.5478 0.856 0.0505 0.00064 

ModFOLD5_single 0.6472 0.5285 0.8357 0.0479 0.00067 

ModFOLDclustQ_single 0.6062 0.5225 0.7975 0.045 0.00072 

DBA 0.5543 0.3709 0.7856 0.0408 0.00074 

ProQ2 0.3848 0.3642 0.7512 0.025 0.00077 

SSA 0.1571 0.1506 0.6242 0.0109 0.00084 

CDA 0.1769 0.2012 0.6187 0.0114 0.00084 

Table 4.10. FM Cross-validation of ModFOLD6 versus its component methods using CASP11 data. 

local scores evaluated on stage1 and stage 2 models for targets with FM domains (861605 residues, 147428 

high quality, 714177 low quality). A 3.5Å CA atom cut-off was used to define high quality residues (<=3.5Å 

are high quality, >3.5 Å low quality). Pearson = Pearson’s r. Spearman - Spearman’s rho. AUC = Area 

Under ROC Curve. AUC 0-0.1 = Area Under the ROC curve with False Positive Rate <= 0.1. StdErr = 

Standard Error in AUC score. Table is sorted by the AUC score. Adapted from Maghrabi and McGuffin, 

(2017). 

Method Pearson Spearman AUC AUC 0-0.1 StdErr 

ModFOLD6 0.7111 0.6782 0.8736 0.0482 0.00088 

ModFOLD5_single 0.6664 0.6704 0.8512 0.0444 0.00094 

ModFOLDclustQ_single 0.6212 0.6694 0.815 0.0383 0.00102 

DBA 0.5929 0.5839 0.8122 0.0374 0.00103 

ProQ2 0.4653 0.4514 0.7888 0.0257 0.00107 

CDA 0.2599 0.2808 0.6825 0.0154 0.0012 

SSA 0.1697 0.1671 0.6226 0.011 0.00123 

Table 4.11. TBM Cross-validation of ModFOLD6 versus its component methods using CASP11 data. 

- local scores evaluated on stage1 and stage 2 models for targets with TBM hard domains (344169 residues, 

70689 high quality, 273480 low quality). The same criteria in Table 4.10 was applied. Adapted from 

Maghrabi and McGuffin, (2017). 
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Method Pearson Spearman AUC AUC 0-0.1 StdErr 

ModFOLD6 0.8337 0.7975 0.934 0.0645 0.00017 

ModFOLD5_single 0.8192 0.7982 0.9282 0.063 0.00017 

DBA 0.7674 0.7411 0.9037 0.0524 0.0002 

ModFOLDclustQ_single 0.7687 0.7494 0.9032 0.0526 0.0002 

ProQ2 0.6467 0.6342 0.8496 0.0374 0.00026 

CDA 0.3848 0.4024 0.7186 0.022 0.00036 

SSA 0.1835 0.1625 0.604 0.0097 0.00041 

Table 4.12. Cross-validation of ModFOLD6 versus its component methods using CASP11 data. Local 

scores evaluated on stage1 and stage 2 models for targets without FM or TBM hard domains (2036888 

residues, 1367703 high quality, 669185 low quality). A 3.5 Å cut-off was used to define high quality 

residues (<=3.5Å are high quality, >3.5 Å low quality). Pearson = Pearson’s r. Spearman - Spearman’s rho. 

AUC = Area Under ROC Curve. AUC 0-0.1 = Area Under the ROC curve with False Positive Rate <= 0.1. 

StdErr = Standard Error in AUC score. Table is sorted by the AUC score. Adapted from Maghrabi and 

McGuffin, (2017). 

 

QA method used for model ranking ΣGDT-TS StdErr in GDT-TS 

Maximum possible GDT-TS 48.4655 0.0273 

ModFOLD6_rank 44.4149 0.0277 

ModFOLD6 43.1859 0.028 

ProQ2 42.9578 0.027 

ModFOLDclust2 42.6768 0.0294 

CDA 40.4575 0.0281 

ModFOLD5_single 40.059 0.0291 

DBA 40.0457 0.029 

ModFOLDclust2_single 40.0328 0.0292 

ModFOLDclustQ_single 39.9194 0.0291 

SSA 39.3166 0.0268 

Random 37.87 0.0284 

Table 4.13. Ranking/selection global score benchmarks using CASP11 data. ModFOLD6_rank versus 

component global scoring methods. Cumulative GDT scores and standard error. 84 targets with structures, 

models from QA round1 and round2 combined. The maximum possible GDT-TS is the cumulative score 

obtained by selecting the best model available for every target. The StdErr in GDT-TS is σ/√n, where σ is 

the standard deviation and n is the number of targets (84). Table is sorted by the ΣGDT-TS. Adapted from 

Maghrabi and McGuffin, (2017). 
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Table 4.14. Correlation global score benchmarks using CASP11 data. Correlations between predicted and observed global scores. ModFOLD6_cor versus 

component global scoring methods. R = Pearson’s r. Rho - Spearman’s rho. Tau = Kendall’s tau. The analysis is carried out on all of the 84 targets with known 

structures. The models from QA stage 1 and stage 2 were combined and all duplicate models (models from stage 1 occurring also in stage 2) were removed. 

The table is sorted by the TM-score R value. Adapted from Maghrabi and McGuffin, (2017).

  
GDT-HA  

(Mirjalili and Feig, 2013) 

GDT  

(Zemla et al., 1999) 

MaxSub  

(Siew et al., 2000) 

TM-score  

(Zhang and Skolnick, 2004) 

Method R Rho Tau R Rho Tau R Rho Tau R Rho Tau 

ModFOLD6_cor 0.9045 0.9288 0.7675 0.925 0.9303 0.7793 0.9285 0.9335 0.7789 0.9266 0.9302 0.7816 

DBA_res_global 0.8962 0.9157 0.7405 0.9177 0.9192 0.7526 0.923 0.9245 0.7585 0.9216 0.9212 0.7586 

ModFOLD6_single_res_global 0.8793 0.9143 0.7451 0.9121 0.9181 0.7591 0.9133 0.9221 0.7608 0.9178 0.9196 0.7644 

ModFOLDclust2_single_orig_global 0.899 0.9234 0.7595 0.9152 0.922 0.7649 0.9205 0.9256 0.7652 0.9157 0.9209 0.7647 

ModFOLD5_single_orig_global 0.886 0.9155 0.7469 0.9098 0.9155 0.7539 0.916 0.9223 0.7618 0.9144 0.9162 0.757 

ModFOLD5_single_res_global 0.8905 0.9198 0.754 0.91 0.9203 0.7625 0.9186 0.9263 0.7682 0.9137 0.9211 0.765 

ModFOLDclustQ_single_res_global 0.8996 0.92 0.7524 0.9054 0.9165 0.7536 0.9094 0.9161 0.7481 0.9003 0.9122 0.749 

ModFOLDclustQ_single_orig_global 0.8995 0.92 0.7524 0.9053 0.9165 0.7536 0.9094 0.9161 0.748 0.9003 0.9122 0.749 

ProQ2_res_global 0.6878 0.7319 0.5272 0.7182 0.7417 0.5404 0.7174 0.7427 0.5404 0.7239 0.7446 0.5452 

CDA_res_global 0.6354 0.7192 0.527 0.6703 0.731 0.5407 0.6727 0.73 0.5369 0.6746 0.7333 0.5431 

SSA_res_global 0.517 0.5595 0.3838 0.5348 0.5585 0.384 0.5318 0.5601 0.386 0.5324 0.5539 0.3816 
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Figure 4.7. Line graphs representing cross-validation of ModFOLD6 local scores versus its 

component methods using CASP11 data. ROC plots for the data shown in Tables 12 - 14. A true positive 

is defined as a residue correctly identified to be of low quality (> 3.5Å from the native structure). The full-

length chains were used for the official CASP11 QA analysis, and so they contain multiple domains of 

varying difficulty, with each domain being officially classified as either FM, TBM-hard or just TBM (easy). 

In order to demonstrate the performance of ModFOLD6 on easy, medium and hard CASP11 targets, we 

compare ROC plots for 3 different subsets of full length models: 1. Targets without any TBM-hard or FM 

domains (i.e. the models for easy targets), 2. Targets with TBM-hard domains (i.e. models for medium/hard 

targets) and 3. Targets with FM domains (i.e. models for hard targets). The analysis is carried out on all of 

the 84 targets with known structures. The targets with FM domains are: T0761, T0763, T0767, T0771, 

T0775, T0777, T0781, T0785, T0789, T0790, T0791, T0793, T0794, T0799, T0802, T0804, T0806, T0808, 

T0810, T0814, T0820, T0824, T0826, T0827, T0831, T0832, T0834, T0836, T0837, T0855. The targets 

with TBM-hard domains are: T0774, T0781, T0793, T0799, T0800, T0812, T0814, T0830, T0831, T0848. 

The targets without FM or TBM-hard domains include all remaining targets. Domain definitions are from: 

http://www.predictioncenter.org/casp11/domains_summary.cgi. The models from QA stage 1 and stage 2 

were combined and all duplicate models (models from stage 1 occurring also in stage 2) were removed. (A) 

The full ROC plot for targets without FM or TBM-hard domains. (B) ROC plot with FPR <= 0.1 for targets 

without FM or TBM domains. (C) Full ROC plot for targets with TBM-hard domains. (D) ROC plot with 

FPR <= 0.1 for targets with TBM-hard domains. (E) Full ROC plot for targets with FM domains. (F) ROC 

plot with FPR <= 0.1 for targets with FM domains. Adapted from Maghrabi and McGuffin, (2017).  
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4.3.4. Comparisons between the top CASP12 EMA methods 

An independent detailed analysis of the CASP12 EMA methods is provided in the official EMA 

assessment paper (Kryshtafovych et al., 2018). In this section, we refer to the results provided 

pertaining to our methods and we also show an additional analysis based on the correlation between 

different scores for different types of competing methods. A summary of the top EMA methods in 

CASP12 are shown in Table 4.15.  

Methods Type 
Comment about global 

performance 

Comment about 

local performance 

MESHI (Amir et al., 2008) Single Top model selection N/A 

MESHI_con (Amir et al., 2008) Singlea Top model selection N/A 

ProQ2 (Ray et al., 2012) Single Good model selection 
Acceptable local 

scores 

ProQ3 (Uziela et al., 2016) Single Top model selection Good local scores 

SVMQA (Manavalan and Lee, 
2017) 

Single Top model selection N/A 

ModFOLD6 (Maghrabi and 

McGuffin, 2017) 
Quasi‐
single 

Balanced performance 
Good assignment of 

local scores 

ModFOLD6_rank (Maghrabi 

and McGuffin, 2017) 
Quasi‐
single 

Acceptable model selection 
Identical to 

ModFOLD6 

ModFOLD6_cor (Maghrabi and 

McGuffin, 2017) 
Quasi‐
single 

Best absolute but suboptimal model 

selection 

Identical to 

ModFOLD6 

qSVMQA (Manavalan and Lee, 

2017) 
Quasi‐
single 

Assignment of the absolute score is 

not accurate. 
N/A 

ModFOLDclust2 (McGuffin 

and Roche, 2010) 
Clustering 

Good assignment of absolute global 
scores but suboptimal model 

selection 

Top assignment of 

local scores 

Pcons (Lundström et al., 2001) Clustering 
Good assignment of absolute global 

scores 

Top assignment of 

local scores 

Pcomb‐domain (Lundström et 

al., 2001) 
Combined 

Good assignment of absolute global 

scores, requires good domain 

prediction 

Top assignment of 
local scores 

Wallner (Wallner and Elofsson, 

2007) 
Combined 

Good assignment of absolute global 

scores 

Top assignment of 

local scores 

Table 4.15. Summary of the best performing QA methods in CASP12 and comments about their 

strength and weaknesses. Note: MESHI_con is not pure single methods but requires multiple models to 

average the predictions. Adapted from Elofsson et al., (2018). 
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4.3.4.1. Estimation of global accuracy 

The results above showed that 3 single EMA methods were ranked highest when identifying the 

best model. These methods were ProQ3, SVMQ and MESHI. The average error which means the 

difference between the GDT-TS of the selected model and the best GDT-TS was around 5 GDT-

TS units. Each EMA method was ranked individually depending on the evaluation criteria. 

According to the assessment results, there was not a noticeable difference between the top methods 

(Kryshtafovych et al., 2018). When using these criteria, the best consensus and quasi-single 

methods were only marginally worse than the pure single methods. However, since CASP11, these 

results interpret a significant progress in single model method performance. 

 

4.3.4.2. Distinguishing good models from bad 

The results also showed that the best EMA approaches according to GDT-TS usually use consensus 

or quasi-single methods and combine them with single model approaches. The top ranking 3 EMA 

methods were Wallner, Pcomb-domain and ModFOLD6_rank. They all use the single model 

method ProQ2 as part of their scoring. The Wallner and Pcomb‐domain scores are weighted sums 

of ProQ2 and Pcons scores, while our ModFOLD6_rank method uses ProQ2 together with many 

other scores. Although such methods are statistically better (Kryshtafovych et al., 2018), the much 

simpler pure consensus methods Pcons and ModFOLDclust2 were not far behind, ranked sixth and 

ninth respectively when using lDDT (Table 4.8). 

 

4.3.4.3. Ranking of models 

All targets were evaluated individually in order to test the methods ability in ranking the top models 

for each target.  This evaluation was carried out using the per target correlation (i.e. the correlation 

of predicted and observed accuracy for each target). By looking at Figure 4.8, we can see the 

distribution of per target correlations for all of the top CASP12 methods with the 3 different model 

accuracy estimation measures (lDDT, CAD, and GDT-TS) as well. This ranking was sorted 

according to the median correlations. The results showed that individual rankings of the methods 

are quite different depending on the accuracy measure which was used. I can also be seen that 

consensus and quasi-single based methods clearly outperformed the single model accuracy 

estimation methods when using GDT-TS (Zemla, 2003). Contrarily, we can see that the best 
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correlation was obtained with ProQ3 when using CAD (Olechnovič et al., 2013) or lDDT (Mariani 

et al., 2013), and all the top methods were single model accuracty estimations. Similar differences 

in ranking could be found in the AUC analysis on the CASP homepage 

(http://predictioncenter.org/casp12/qa_aucmcc.cgi). Moreover, when using GDT-TS we can see 

that ProQ3 was ranked 20th, but it jumped up to the 7th when CAD was used instead of GDT-TS. 

On the other side, Pcons was ranked the 4th using GDT-TS but the 12th when using CAD. Such 

results are interesting as they showed that “pure” consensus methods such Pcons and 

ModFOLDclust2 only show a modest per target correlation with CAD and lDDT. 

http://predictioncenter.org/casp12/qa_aucmcc.cgi
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Figure 4.8. Boxplots of per target correlation for the top CASP12 EMA method versus GDT-TS, CAD, and lDDT, (A‐C) global evaluations, (D, E) local 

evaluations. To avoid bias from bad models only models with Z > 0 are included in the global analysis. For local correlation CAD values were not available so only 

the distances, turned into S‐scores, and lDDT values are compared. Single‐model methods are colored blue, quasi green, clustering light gray and combination 

models dark gray. Using GDT-TS the clustering‐based methods are slightly better than the single‐model predictors, while this is not the case using the alternative 

measures CAD and lDDT. Clustering methods benefit from having low‐quality models in the pool while the single model methods appear better at ranking higher 

quality models. For both local measures the single‐model evaluation methods have lower correlation than the superposition-based ones, but the difference in 

correlation is smaller when using lDDT. Adapted from Elofsson et al., (2018).
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4.3.4.4. Similarities in model accuracy estimation scores  

It was also important to know how different EMA methods produced similar model accuracy 

estimation scores. Figure 4.9 shows the correlations between predicted accuracy estimates from all 

the EMA servers. The methods were then clustered using WPGMC with the median correlation as 

linkage. The results showed that all methods which use some sort of consensus (quasi-single or 

consensus) were clustered except qSVMQA. The separation within this group was not between 

quasi-single and consensus methods, but rather between the methods that primarily use consensus 

and those which combine the consensus score with ProQ2 (Pcomb‐domain, ModFOLD6_rank, 

Wallner, and ModFOLD6). It can be seen that ModFOLD6_cor was more similar to the pure 

consensus methods (Pcons and ModFOLDclust2) than the other combined methods. The method 

did not use ProQ2 global scores directly in its classification. The combined EMA methods results 

are also closer to all the single methods than the pure consensus methods, that may be due to 

including single methods to their pipelines as well. 
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Figure 4.9. Pairwise correlations between predicted global accuracy scores from different methods 

and actual accuracy scores according to 3 measures. The methods are clustered hierarchically using 

WPGMC algorithm with the median correlation as similarity measure. Methods are coloured as follows. 

Dark grey, pure consensus methods; light grey, combined single/consensus methods; green, quasi‐single 

methods; and blue pure single methods. It can be noted that both quasi, pure, and combined consensus 

methods are very similar (cc > 0.94), while the single model quality methods are more different (cc < 0.90 

between the groups). ProQ2 is the real outlier having a cc < 0.82 to most methods. Interestingly ProQ2 and 

ProQ3 are less similar to each other than any pair of consensus‐based methods. It can also be noted that the 

combined methods are more similar to the single‐model methods than the pure consensus methods (Pcons, 

ModFOLDClust2). Adapted from Elofsson et al., (2018). 

 



Chapter 4 
 

 
111 

When looking at the performance of the single model accuracy estimation methods we found that 

they have the largest performance diversity. The least method in showing similarities to the others 

was SVMQA, it showed a more similar scores to the consensus methods than to any other single 

model accuracy estimation method. The other 3 methods were more correlated, with the newer 

methods ProQ3 and MESHI showing the highest correlation. It can also be noted that in general 

ProQ2 showed the lowest correlation with the consensus methods, being by that the outlier. 

The 3 different quality measurements (GDT-TS, CAD, and lDDT) were also compared together, 

showing that they do not correlate with each other better than the consensus methods with GDT-

TS as seen in Figure 4.9. The correlation between the quality measures CAD and GDT-TS was 

0.88; while the correlation of the predicted values from the consensus methods to GDT-TS is 0.92 

or higher. It was clear that the accuracy of model quality estimation is getting close to a point where 

they challenge the notion of measuring the quality of model given a known native structure even 

when some of the problems might origin from domain division, as mentioned in Wallner sections 

in Elofsson et al., 2018. 

 

4.3.4.5. Comparison of local accuracy estimations 

With regards to the estimation of local accuracy, we saw that the pure consensus methods were the 

best performers, followed by quasi-single model approaches (Kryshtafovych et al., 2018). A heat 

map in Figure 4.10 showed the correlation between all local predictions by the EMA methods 

discussed in this section. Unfortunately, ProQ2 and ProQ3 from all the evaluated single predictors 

were the only methods which produced local predictions, nevertheless the trend was similar as for 

the global methods. All the consensus and quasi‐single methods provided very similar accuracy 

estimates, while the 2 single model methods were outliers. It was clear from this analysis that the 

consensus methods correlated better with S‐score (cc ∼0.85) than with lDDT (cc ∼0.77). As the 

consensus methods are based on superposition algorithms, similar to those used when calculating 

the S‐score, this might not come as a surprise. Interestingly both ProQ2 and ProQ3 correlated better 

with lDDT (cc ∼0.71) than with S‐score (cc ∼0.65). It can also be noted that ProQ3 correlated 

better than ProQ2 with both lDDT and S‐score. This highlights the improvements achieved in 

single model quality estimates since CASP11. 
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Figure 4.10. Pairwise correlation between local predicted S‐scores. The correlation was calculated using 

the predicted distance using S‐score formula (see above) with d0 = 5 and local lDDT values (unfortunately 

local CAD scores were not available). Only methods that predicted local quality are included. As the 

ModFOLD6 methods only differ in their global scores and provide identical local estimates they were all 

represented by the ModFOLD6 method. Methods are coloured as follows. Dark grey, pure consensus 

methods; light grey, combined single/consensus methods; green, quasi‐single methods; and blue pure single 

methods. Adapted from Elofsson et al., (2018). 
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4.4. Conclusions 

The ModFOLD6 series of methods (ModFOLD6, ModFOLD6_rank and ModFOLD6_cor) 

perform particularly well in terms of assigning absolute global accuracy values. As expected, the 

ModFOLD6_cor variant is the best of these as it was optimized for this task. The ModFOLD6 

series of methods also perform competitively with clustering approaches for differentiating 

between good and bad models; the ModFOLD6_rank method being the best of these, which is only 

outperformed by 2 clustering groups (Wallner and Pcomb‐domain). Furthermore, as we 

anticipated, the ModFOLD6_rank variant is better at selecting the top models than the ModFOLD6 

and ModFOLD6_cor variants; however, it is outperformed by the latest pure‐single model 

methods. Overall, in terms of global scores, the ModFOLD6 variants rank within the top 3 methods 

for nearly every global benchmark according to lDDT and CAD scores, as well as ranking within 

the top 10 according to other scores. The ModFOLD6 server provides users with intuitively 

presented, high accuracy estimates of local and global quality of 3D protein models and it 

implements each of the methods tested in the CASP12 experiment. The ModFOLD6 server has 

also been independently verified, via the CAMEO project, showing a significant improvement on 

our previous published server as well as taking the lead over other public published methods, in 

terms of local accuracy estimates. 

It is gratifying to see progress in CASP12 from many groups in both pure‐ and quasi‐single model 

approaches to estimate model accuracy. However, it is also clear there is still room for 

improvement of our methods. For instance, we are outperformed in terms of model selection by 

the newer pure single model methods. Further integration of methods is probably needed. Different 

methods are clearly better suited for different aspects of model accuracy estimation, therefore all 

approaches to the problem are still important to pursue. Perhaps the most difficult problem faced 

by all groups is how to optimize a global score for all aspects of model accuracy estimation, as 

there seems to be no one‐size‐fits‐all solution presently. One potential solution to this might be to 

use a deep learning approach that outputs multiple scores depending on the intended use case. A 

global score for ranking models on a per‐target basis, irrespective of the observed model‐target 

similarity scores, is clearly very useful, if it can consistently select the better models. On the other 

hand a global score that can produce a near 1:1 mapping between predicted and observed scores, 

that is consistent across all targets, will allow us to assign accurate confidence scores to individual 

models (which is arguably more useful to an experimentalist than a top ranked, but nevertheless 
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poor quality, model). As model accuracy estimation methods continue to improve and approach 

perfect optimisation for each use case, eventually the scores may possibly converge on a single 

answer. 

It is clear from the CASP12 results that there has been progress in single model accuracy 

estimations since CASP11. 3 new methods, SVMQA, MESHI, and ProQ3, are all better than the 

best single model method in CASP11 (ProQ2). These methods are also better at selecting the top‐

ranked model compared to consensus‐based methods. However, quasi‐single model method and 

consensus methods are still superior when it comes to distinguishing correct and incorrect models 

as well as for local predictions. In those targets that have a wide spread of quality there is a clear 

distinction between the correlations of single and consensus methods with the later performing 

better. These are typically subunit of protein complexes, for which templates are available. Here, 

estimating the accuracy of a single model might not make sense without taking the entire complex 

into account. In CASP12 this is most dramatic for target T0865, where correlations for consensus‐

based methods are high and correlations for all single model methods are negative. By comparing 

the predictions to each other it is seen that all consensus and quasi‐single methods actually are very 

similar, while there is larger variation between the single methods, hence combining them may 

provide additional value in the future. 

During this evaluation we noted issues for multi‐domain targets where the individual domains are 

correct but not their relative arrangement. Here, the GDT-TS score (and any superposition‐based 

score) is based on the superposition of the largest domain. This causes problems when the 

evaluation is not domain based. For model quality estimations the problem is most notable when 

evaluating local QAs. It could therefore be useful, in future CASPs, to also use CAD or lDDT in 

order to evaluate the quality of a model without using domain division. We do also notice that 

single model estimation methods perform better when assessed with CAD or lDDT. 

Training to lDDT scores, rather than the S-scores as the target function is one option to 

improvement in both local and global scores if lDDT scores are to be used for evaluation (more 

details about lDDT impacts will be described in Chapter 6). However, other optimisation strategies 

can also be pursued to gain more improvement in terms of global and local accuracy, one of which 

is to go beyond the simple OMS by combining scores using Deep Artificial Neural Networks. This 

technique has been testified in recent years to dominate several areas of studies making significant 

improvements in many researches, which attracted our interest towards it in the later studies. 
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5.1. Background 

In Chapter 3, we had a glance at Deep Artificial Neural Networks technique. We saw how this 

learning model can process information via networks in order to solve problems, the same way that 

a biological brain does. Such networks have been remarkably useful in solving problems in 

different fields. They have been used in classifying handwritten digits with better than 98% 

accuracy (McDonnell et al., 2015). However, there are more difficult computing problems that 

need more advanced DANNs. 

The revolution in Deep Artificial Neural Networks began in the last decade when deep learning 

was considered as the key component. Its popularity started in the beginning of 2006 (Hinton et 

al., 2006) (Hinton and Salakhutdinov, 2006). The first major breakthrough in deep learning was 

achieved in speech recognition, when the DANNs designed model outperformed a technique called 

HMM-GMM used to dominate this field for many years (Hinton et al., 2012).  

The success behind this technology was due to the rapid improvement of hardware resources such 

as GPGPUs, as well as the improved theory, starting with unsupervised pre-training and deep belief 

nets. Nowadays, DANNs have become popularly used with impressive results in many areas such 

as pattern recognition, image analysis, and object detection to name a few areas (Wang, 2016). 

Although the impressive results that DANNs have achieved in several important application areas, 

the parameterisation step of this technique is still challenging. Deciding what number of layers to 

choose, how many neurons per layer, and how much time should the training iterate, all of these 

parameters and others need training and testing which consume computing time and effort.  

DANNs excel at classification problems, such as with the famous MNIST dataset of handwritten 

digits (Deng, 2012), where the inputs are placed into one of several categories. The other usage is 

regression, where the output is a number on a continuous scale.  

 

5.2. Objectives 

For the purposes of this experiment, DANNs were applied for scoring protein model quality 

generated by different methods and comparing the output to the observed model quality scores 

(measured by GDT-HA, GDT-TS, MaxSub or TM-score). The primary aim of this experiment is 

to determine optimal hyperparameters to get the best possible network for ranking the top models, 

and the best correlation between the network output and the observed model quality score. 
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Examples of the various hyperparameters which were used within this experiment are given in 

Table 5.1. 

Hyperparameter Datatype Range Notes 

Number of Neurons 

per Hidden Layer 
Integer 1 -> ∞ 

Each layer in the network can have different 

numbers of neurons. Adding neurons slows down 

the network but increases processing power. 

Number of Hidden 

Layers 
Integer 1 -> ∞ 

Adding layers should increase the processing power, 

but considerably slows down the network. 

Number of Training 

Cycles 
Integer 1 -> ∞ 

Training loss is reduced with higher numbers of 

cycles unless overfitting occurs, but training time is 

also increased. 

Learning Rate Real Number 0 -> 1 
This value controls how much weights and biases 

change during training. 

Dropout Real Number 0 -> 1 

Represents the probability for each neuron to be 

“dropped” during training. This prevents overfitting 

of the data. 

Regularisation 

Parameter 
Real Number 0 -> ∞ 

Helps prevent overfitting by preventing weights 

from growing too large. 

Identity of Inputs 
List of input 

scores 
N/A 

While using all 10 inputs gives the network access 

to the most information, large number of internal 

parameters and conflicting information may result in 

a loss of accuracy. 

Identity of Training 

Target Score 

Output score 

identity string 
N/A 

Learning via backpropagation of a different score 

could improve the generalisation of the network. 

Table 5.1. List of the various hyperparameters within our neural network. The data type for each 

parameter, their range of values and a brief description of what aspect of the network they control are 

presented.  

 

To determine the hyperparameters of DANNs, several broad strategies can be conducted. One of 

the simplest available strategies is the grid search where all possible combinations of values for the 

network hyperparameters are explored, and then a comparison is performed over the network 

accuracies in order to determine the optimal combinations (Hsu et al., 2003). This strategy has a 

disadvantage with the amount of time required to run the network on all possible combinations. 

Assuming that the network will take 10 minutes to run, by looking at only 10 values for each 

hyperparameter listed in Table 5.1 a grid search would take over 1900 years to be completed! A 

far more time-efficient method is called the random search. This is similar to a grid search, except 

a far smaller number of values for each hyperparameter are chosen using random or quasi-random 
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methods. Random searches work effectively as long as there are enough datapoints to provide good 

coverage of the range of values for each hyperparameter. The main advantage is that it is 

considerably faster than a full grid-search (Bergstra and Bengio, 2012). Hand-tuning 

hyperparameters is another option, which makes use of the human ability to analyse and learn from 

results but is also the least automated option. Hand-tuning can also be combined with grid searches 

and random searches to make a semi-automated method which takes advantage of the human 

analytical ability and the good coverage of the automated methods (Bergstra and Bengio, 2012). 

Bayesian optimisation is a more advanced method of hyperparameter determination. A Gaussian 

process model is used to predict new values for hyperparameters. These models assume that similar 

inputs give similar outputs, they are particularly useful for predicting relationships where little prior 

knowledge is available (Snoek et al., 2012). 

 

5.3. Materials and Methods 

5.3.1. Raw Data 

For DANNs training and testing, raw data were obtained by assessing 16483 models from the QA 

category of CASP11 using the QA programs listed in Table 5.2 to obtain 10 quality scores for each 

model. Observed quality scores were also included in the collected data, they were used as training 

targets for the network. After removing models for which there was no native structure, 14103 

models remained, of which there were 84 unique protein targets. 

5.3.2. Neural Network Inputs 

The inputs for the DANNs were protein global quality scores generated by 10 different prediction 

servers. For the purpose of simplicity during the project, each input was assigned a short key which 

are summarised in Table 5.2. The DANNs inputs could be changed so that different numbers and 

combinations of inputs could be utilised. 
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Table 5.2. Summary of the ten protein QA programs used as inputs during the experiments 

along. The short names V3-V12 refer to the default column vector names used in R data. 

 

Input Program Name Program Description 
Short 

Name 

ModFOLD5_single_orig_global 

(McGuffin et al., 2015) 

Quasi-single model technique. Submitted models 

are compared to those predicted by the IntFOLD3 

server. 

V3 

ModFOLDclustQ_single_orig_global 

(McGuffin and Roche, 2010) (Eastwood et 

al., 2001) 

Another quasi-single model program which uses 

the Q score for model comparisons. 
V4 

ModFOLDclust2_single_orig_global 

(McGuffin and Roche, 2010) 

Integrates the scores of V3 and V4 into a single 

score. 
V5 

ModFOLD5_single_res_global 

(McGuffin et al., 2015) 

The per-residue errors, predicted by 

ModFOLDclust are summed and divided by 

sequence length. 

V6 

ModFOLDclustQ_single_res_global 

(McGuffin and Roche, 2010) 

The per-residue errors, predicted by 

ModFOLDclustQ are summed and divided by the 

sequence length. 

V7 

ProQ_res_global 

(Uziela and Wallner, 2016) 

ProQ2 uses a support vector machine to predict 

model accuracy by combining different features 

of the model. 

V8 

CDA_res_global 

(Jones et al., 2015) 

Predictions are made by the MetaPSICOV 

method based on contact distance agreement. 
V9 

DBA_res_global 

(Jones and Cozzetto, 2015) (Maghrabi and 

McGuffin, 2017) 

Disorder B-factor agreement compares the 

predicted disordered regions between 

DISOPRED3 and ModFOLDclust. 

V10 

SSA_res_global 

(Maghrabi and McGuffin, 2017) (Buchan 

et al., 2013) (Kabsch and Sander, 1983) 

Secondary Structure Agreement is a pure-single 

model method which compares the secondary 

structures predicted by PSIPED to those in the 

Dictionary of Secondary Structures of Proteins. 

V11 

ModFOLD6_single_res_global 

(Maghrabi and McGuffin, 2017) 

A neural network which combines scores from 

V3, V4, V8, V9, V10 and V11 to generate local 

scores. The sum of the scores is divided by the 

sequence length. 

V12 
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5.3.3. DANNs Training Targets. 

The DANNs were built to output one of four different model quality scores. These were the 

possible training targets for the networks. The first measure is Global Distance Test – Total Score 

(GDT-TS), it is one of the most common measures of protein model quality. GDT-TS is calculated 

by finding the percentage of superimposed residues in the model and true structure within specified 

threshold distances of 1, 2, 4 and 8 Å (Li et al., 2011). Secondly, Global Distance Test – High 

Accuracy (GDT-HA), this is a more stringent version of GDT-TS which has been used in CASP 

experiments since CASP7 (Moult et al., 2007). The threshold distances for GDT-HA are half the 

size of those for GDT-TS, being 0.5, 1, 2 and 4 Å. The third measure is MaxSub, which is a scoring 

method which looks at how well the α-carbon atoms of the predicted model superimpose over the 

experimentally determined structure (Siew et al., 2000). Fourthly, Template Modeling Score (TM-

score), this measure was developed as an extension to GDT and MaxSub. The scoring function 

uses a scale to eliminate the effect of protein size, and rather than using threshold cut-offs, all 

superimposed residue pairs are included in the score (Zhang and Skolnick, 2004). 

 

5.3.4. Three-Fold Cross-Validation. 

In order to maximise the amount of training and test data available, cross-validation was used. The 

Rscript program ParaPart1.R divided the raw data up into three training and testing sets, then 

randomised the sample order. Each testing set contains data for unique models not included in the 

testing set of the other two cross-validation sets. The overall result is that over the three validation 

sets all of the data were used for testing and all were used for training, but the same data was never 

used for training and testing on the same cross-validation set. All three sets were used to train and 

test independent DANNs and the results were re-integrated by ParaPart2.R in order to calculate the 

correlation and sum of top model scores (rank) for the network as a whole. Both Rscript programs 

were identical to those used in Chapter 2 and can be found in Appendix 2. 

 

5.3.5. Neural Network Parameters 

The DANNs software used for this experiment was TensorFlow 1.0 (Rampasek and Goldenberg, 

2016), an open source software library which provides tools for the construction of flexible deep 

artificial neural networks in Python v2.7.5. The network architecture being used was that of a 
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multilayer perceptron feedforward neural network (Ruck et al., 1990). The version of the DANNs 

program used for parameterisation was designed to allow easy iteration over multiple values for a 

single hyperparameter in sequence. 

The inputs and training targets of the DANNs can be defined by changing the “inputs” list variable 

and the “output” list variable within the program. Adding multiple training targets to the list will 

cause the program to iterate over each target in turn. Other standard parameters (hidden neuron 

number in each layer, initial training rate, number of training epochs, dropout probability and L2 

regularisation parameter) can be changed by modifying their specific variables. Alternatively, the 

program can iterate over multiple values of any standard parameter by replacing the x, y and z 

variables with the parameter variable name and changing their range to either a range or list of 

desired values to test. Using this method, it was also possible to test every combination of values 

from two or three variables, although doing so was extremely time-consuming. This is equivalent 

to a grid search using one, two or three parameters at a time. 

Advanced parameters (number of layers, loss function, optimiser and activation function) cannot 

be altered by simply changing a variable and involve making changes to the program. These 

parameters cannot be iterated over and must be changed manually each time. 

 

5.3.6. Solutions to Overfitting 

Overfitting can be an issue when the network learns the unique features of the dataset itself rather 

than the general pattern. When the training set is predicted extremely well by the DANNs, but the 

testing set is predicted very poorly, that is a typical sign of overfitting. 

Several ways can be used to solve this issue, one way was by using the “Dropout” activation 

function.  In TensorFlow, Dropout is a variable between 0 and 1, which indicates the probability 

that any neuron in the hidden layers will be temporarily removed during any single round of 

training (but not during testing). The same Dropout variable was applied to all hidden layers of the 

network. The random removal of neurons in the network is designed to prevent the neurons from 

co-adapting to complex patterns in the data and encourage generalisation instead (Srivastava et al., 

2014). The Dropout activation function tool was implemented in the para.py (Appendix 3) program 

using tensorflow’s tf.nn.Dropout method, and can be easily iterated over multiple values.  
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Another potential solution to overfitting, which is implemented in para.py was L2 regularisation 

(Schmidhuber, 2015). This is defined by the following formula: 𝑪 =  𝑪𝟎 + 
𝝀

𝟐𝒏
 ∑ 𝒘𝟐

𝒘  

Regularisation alters the loss or cost function, where 𝑪𝟎 is the unregularised cost, and 𝒘 are the 

weights in the model. 𝒏 is the number of samples in the training set, and 𝝀 is the regularisation 

factor, a variable which determines the strength of the regularisation. The purpose of L2 

regularisation is to prevent the model from generating excessively large weights, which are not 

significantly changed by feeding the network conflicting data. A high value of 𝝀 places more 

emphasis on retaining low weights in the cost function while a high value of 𝝀 puts more emphasis 

on minimising the original cost function. 𝝀 is a simple variable within the para.py program, and 

can be iterated over multiple values, a value of 0 disables L2 regularisation. 

 

5.3.7. Outcome Metrics 

The two ways (correlation and ranking) of optimisation evaluation were conducted to assess and 

compare the performance of the hyperparameterised DANNs. Correlation was measured by 

Pearson’s Correlation Coefficient between the network’s predicted quality scores for the test set 

and the true quality score. The sum of top model scores is a metric to assess how well the network 

ranks the top models of the same protein structure to their observed quality score ranking. It is 

calculated by taking the sum of the GDT-HA score of each top predicted model and will herein be 

referred to as the “Rank Score”. Ideally there should be a close relationship between the ranking 

score and correlation, but this is not necessarily the case. ModFOLD6, for example, uses a 

completely different set of parameters to get a good correlation and a good top model score, then 

uses another set to obtain a balanced result (Maghrabi and McGuffin, 2017). 
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5.4. Results and Discussion 

5.4.1. Deep Artificial Neural Networks for Correlation (DANNs C) 

5.4.1.1. Inputs and Training Targets 

Most of the network hyperparameters were given placeholder values to start with. We began by 

looking at the different combinations of inputs which can be used for the networks as well as 

alternative training targets. The earlier studies indicated that using all the 10 MQAP methods 

together as a combined input does not give the best results for rank or correlation. We tested the 

top 10 combinations of inputs which were identified in Chapter 2 as producing the highest Pearson 

correlations (Figure 5.1). The combination which produced the highest correlation was V4+V10, 

with scores which were generally lower than the scores produced by our current optimum 

correlation scoring method (ModFOLD6_cor). The identity of the training target score also had an 

effect on the correlation for most input/target combinations. For most combinations, using GDT-

HA as the training target score produced the best correlation. However, when using the V4+V10 

input combination, MaxSub gives the highest correlation. The results in Figure 5.1 have clearly 

showed that using all 10 inputs is inferior to using a smaller selection despite the network having 

much more information available to it when using more inputs. This could be due to the different 

input scores providing conflicting information, making the predicted scores less reliable. 

Alternatively, co-adaptations between multiple scores could be occurring during training, resulting 

in the network identifying inappropriate patterns and applying this to the testing set (Hinton et al., 

2012). While less information being input into the network means less processing is required, it 

also makes it harder to improve the network in the future when more quality-scoring methods are 

available as inputs. Instead of adding a new score into the network, it will have to be tested in all 

possible combinations with the other scores to identify any benefit of using it. 
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Figure 5.1. The effect of using different combinations of inputs scores and training targets scores on 

the results of the neural networks. Histogram showing the Pearson correlations produced by DANNs C 

for the top 10 input combinations. The results of using all 10 inputs is also shown for comparison. The 

clustered bars represent different network training targets. Error bars are calculated by re-sampling each 

network ten times with the same parameters and taking the standard deviation.  

 

5.4.1.2. Optimiser and Loss-Function 

The effect of the DANNs optimiser algorithms and loss-function were tested on the networks 

correlations as the next stage of the chapter project. The optimisation algorithm is what enables the 

neural network to learn by calculating the updates to the weights and biases of all nodes within the 

network in order to minimise loss. Adagrad was used repeatedly as in Chapter 3, a variant on the 

simple gradient descent optimiser, which varies the size of weight updates based on the sparsity of 

the data. Additionally, in this chapter, we tested the Adadelta optimiser (Zeiler, 2012), an extension 

of Adagrad, which does not decay the learning rate as aggressively as Adagrad. Adam optimiser, 

which takes into account past gradients (Kingma and Ba, 2014) in a similar way to a momentum 

optimiser was also used. Each of the three optimisers were tested at initial learning rates of 0.1, 

0.01 and 0.001, and the results of the comparison can be seen in Figure 5.2a. There was relatively 

little difference in the correlations achieved except for Adadelta and also little difference between 
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using different initial learning rates. The highest correlation was from Adagrad at an initial learning 

rate of 0.001 (0.9088 ± 6.88E-5). The difference between using a learning rate of 0.01 and 0.001 

was not quite statistically significant (p = 0.0567 in an unpaired two-tailed t-test, N = 10). However, 

the difference between using Adagrad with a learning rate of 0.001 and using Adam at 0.001 was 

statistically significant (p < 0.001, N=10). 

 

Figure 5.2. The effects of using different optimiser algorithms and loss functions on the performance 

of the networks. All error bars are derived from the standard deviation of 10 repetitions of each experiment. 

a) A comparison of the effect of the three different optimiser algorithms on correlation in DANNs C with 

different learning rates. The result for Adadelta with a learning rate of 0.001 is not shown because the 

correlation is significantly below that of the other optimisers (0.166 ± 0.066). b) A comparison of the effect 

of using different loss functions on the mean correlation in DANNs C. Each loss function was tested at three 

different learning rates. 

 

The loss function of a neural network determines how far the neural network’s predictions are from 

the observed values during training. The optimiser algorithms make updates to the network 

variables in order to minimise loss as defined by the loss function. In Chapter 3, we made use of a 

cross-entropy loss function throughout (used as a default). We also investigated the effect of using 

RMSE, MSE, absolute difference (abs. diff.) and SCE. Similar to the optimiser algorithm, each of 

these loss functions were tested at learning rates of 0.1, 0.01 and 0.001, the results are shown in 

Figure 5.2b. The highest correlation observed was when using the original cross-entropy loss 

function with a learning rate of 0.001 (0.9088 ± 6.88E-5), which was the same result observed in 
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the previous test. RMSE, MSE and SCE all produced results lower than 0.902, Abs. Diff. came 

close with a Pearson correlation of 0.9086 ± 1.24E-5. However, the difference between the two 

mean correlations was still significant (p < 0.0001). 

It turned out that both the optimiser and loss-function used throughout the experiments in Chapter 

3 proved superior to the other ones tested (at least with the placeholder parameters used in these 

experiments). Learning rate was varied in these experiments in order to gauge whether its effect on 

the different optimisers was significant or not. The lower learning rate produced a better result with 

almost all of the optimisers and loss-functions tested, the only exception being with MSE. All of 

the optimisers were designed to dynamically modify the learning rate (typically decaying the 

learning rate as training proceeds) which should make the initial learning rate less important, 

despite this, some difference is still seen between the optimisers at different learning rates. All the 

later experiments on DANNs C made use of the Adagrad optimiser with the cross-entropy loss 

function. 

 

5.4.1.3. Learning Rate and Training Cycles 

For our DANNs, several optimising parameters such as the learning rate and training cycles have 

been evaluated in this study. The learning rate acts as a multiplier to the scale of updates, which 

the optimiser applies to the network variables. By minimising the scale of learning rate, the risk of 

not updating the weights and biases enough will be high. Contrarily, a large learning rate risks 

over-compensating for small “quirks” of the training data. From the previous experiments, we have 

already determined that a smaller training rate slightly improves the correlation of DANNs C. 

Figure 5.3a shows the results of varying the training rate between 0.000001 and 1.0. There was a 

little observable change in the correlation between a rate of 0.1 and 0.00001, beyond these points 

there was a marked decrease in correlation and increase in standard deviation. The highest mean 

correlation was 0.9088 ± 6.54E-5 at a learning rate of 0.0001. Further testing between rates of 

0.0005 and 0.00005 resulted in a mean correlation of 0.9089 ± 1.37E-4 at a rate of 0.00006 

(Appendix 7). 
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Figure 5.3. The effects of changing the number of training cycles and the learning rate on the results 

of the neural networks. Error bars represent the standard deviation of 10 repetitions of the network using 

the same parameters. a) Plot showing how the correlation of DANNs C varies as the learning rate is changed. 

The result for 0.000001 is excluded from the chart because it is significantly lower than the other results 

(0.316). b) Plot showing how the correlation of DANNs C varies as the number of training cycles change. 

 

The other DANNs optimising parameter which was evaluated in our study was the number of 

training cycles. Results showed that there was a slight effect when varying the number of training 

cycles on the correlation between 50 and 1000 cycles (Figure 5.3b). The peak occurs at 100 training 

cycles and then gradually drops as the number of cycles increases (although the standard deviation 

decreases). The peak correlation was 0.9088 ± 6.65E-5. 

The lack of variation between the different learning rates used, except at the high and low extremes, 

is probably once again due to the dynamic updates which the optimiser makes to the rate which 
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makes the initial rate far less important than if using a simple gradient descent optimiser. The 

gradual drop-off in correlation as the number of training cycles increase was somewhat more 

unexpected. Logically one would expect a network, which is provided with more opportunities to 
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analyse the training data and update its weights, to make better predictions. The fact that this is not 

the case is an indicator that the network is over-fitting the training data to an extent. 

 

5.4.1.4. Regularisation 

For DANNs regularisation, the hyperparameters, Dropout, and L2 regularisation were included in 

our evaluation. For the Dropout, the outputted data showed that implementing varying levels of 

this activation function on the Pearson correlation and during training has different effects (Figure 

5.4a). The indicated level of Dropout was applied evenly to both hidden layers of the network 

throughout training with no dynamic updates. The results indicated that using any level of Dropout 

on the network produces lower correlations, the highest correlation was found when there was 0 

chance of Dropout. 

 

Figure 5.4. The effect of Dropout and L2 regularisation on the results of the networks. All error bars 

represent the standard deviation of 10 repetitions of the neural network using the same parameters. a) A 

scatter chart showing how different levels of Dropout probability effect the correlations generated by 
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DANNs C. b) Plot showing how different levels of L2 regularisation effect the correlations generated by 

DANNs C. 

 

On the other hand, L2 regularisation was found to be able to improve the correlation as shown in 

Figure 5.4b. The highest correlation of an initial test (results not shown) of L2 hyperparameters 

between 100 and 0.0000001 found to be when L2 = 100. The results in Figure 5.4b shows the 

second test with L2 values between 10 and 1000. The highest correlation in this figure is 0.9105 ± 

3.94E-4. Further testing found a more precise optimal L2 value of 170 where the correlation was 

0.9107 ± 2.05E-4 (Appendix 8). L2 values less than that resulted in a gradual drop-off in the 

Pearson correlation while using greater L2 values resulted in a steeper drop-off and increase in 

result variance. Compared to the best correlation obtained from testing the number of training 

cycles, the increase was 0.209% with a p-value of > 0.0001. 

The fact that Dropout did not improve the results was surprising, since it is a commonly used and 

effective method of regularisation (Srivastava et al., 2014). The preliminary tests indicated that 

Dropout had a beneficial effect on rank score when applied at low levels (results not shown), but 

evidently this does not carry over to correlation. Applying Dropout to DANNs with higher numbers 

of training cycles may have a more beneficial effect since overfitting is more likely. Another option 

was to introduce an individual Dropout probability for each node in the network which are updated 

during training, just like the weights and biases. Another possibility for future research is to use 

multiple methods of regularisation, this approach has been shown to improve results in other 

networks (Phaisangittisagul, 2016). 

 

5.4.1.5. Architecture 

The architecture of a neural network refers to the number of layers in the network and the number 

of neurons in each layer. The network in Chapter 3 used two layers for all tests, which is also our 

starting point. Figure 5.5a is a heatmap showing how the correlation of the network varies as the 

number of nodes in hidden layers 1 and 2 are changed between 10 and 100. The highest mean 

correlation was found when there were 20 nodes in both hidden layers (0.9128 ± 6.69E-4) while 

using 10 nodes in both layers was the least correlated combinations. Scores of 0.910 and higher 

form a “stripe” across the heatmap, favouring low numbers of nodes in one layer. Furthermore, a 
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total node number of around 150 is associated with lower correlations, forming a secondary stripe 

across the heatmap. 

 

Figure 5.5. Results from testing different network architectures of DANNs C. All error bars represent 

the standard deviation of 10 repeats of the neural network using the same parameters. a) A heatmap showing 

the effect of different numbers of nodes in a 2-hidden layer network on the correlation. Results are colour-

coded on a scale from low (red) to intermediate (white) to high (blue). Results are all the mean of 10 network 

runs with the same hyperparameters. b) A bar chart showing how the correlation varies with the number of 

nodes in a single-layer network. c, d and e) Bar charts showing how correlation varies in a three hidden-
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layer network using 20 nodes in two layers and then a varying number in a third layer before, between and 

after the previous two. 

 

Figure 5.5b shows how the number of nodes in a single-hidden layer network affects the 

correlation, it did not manage to improve on the score of the two-layered network. Figure 5.5c, 

4.6d and 4.6e show the effect of using a three-layer network where one of the layers, designated 

layer X in the figures, has a variable number of neurons. The other two layers of the network both 

had 20 neurons, which was shown to be the optimal configuration of a 2-layer network. None of 

the three-layer networks make an improvement upon the optimal correlation of the 2-layer network. 

Most preliminary tests up till this point used 200 nodes in each layer, a small number of nodes is 

the optimal configuration is probably because only two inputs are used, therefore additional 

network complexity is not required and only leads to overfitting. Using less than the optimal 

number of nodes means that the networks processing capacity is impaired while learning, leading 

to poor correlation. Using more nodes introduces needless complexity and leads to greater 

overfitting. Tests of the three-layer network were far from comprehensive, largely due to the time 

required to run a grid-search with three variables is an order of magnitude greater than a grid-search 

with two variables. However, given that introducing additional complexity to a two-layer network 

reduced the correlation, using a more complex three-layer network will probably never out-perform 

the optimal 2-layer network. 

 

5.4.2. Deep Artificial Neural Networks for Ranking (DANNs R) 

5.4.2.1. Inputs and Training Targets 

The starting point for determination of network inputs and training targets is identical to what has 

been proceeded in Chapter 3, which identified 10 combinations of inputs that were partially better 

at ranking models than using all 10 inputs. The results of using these 10 combinations compared 

with using all 10 inputs while changing the network’s training target are shown in Figure 5.6. All 

10 combinations tested produced slightly higher rank scores than using all 10 inputs. Compared to 

the input/output testing on DANNs C, the identity of the output had much less effect on the rank 

score than on the correlation. The highest rank score was achieved by the combination: V9, V11, 

and V12 while using the GDT-HA output (32.409 ± 0.019). 
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Figure 5.6. Histogram showing the rank scores produced by DANNs R for the top 10 input 

combinations. The results of using all 10 inputs is also shown for comparison. 

 

Once again, using all 10 inputs was shown to be inferior than using a smaller number, certain inputs 

were seen far more frequently than others during this test, specifically V9 (occurs in all 10 

combinations) and V11 (occurs in 8 of the top 10 combinations). This demonstrates that certain 

inputs were of considerably more value than others when the objective was model ranking. 

 

5.4.2.2. Optimiser, Loss Function and Learning Rate 

An initial test was done using the three optimiser functions similar to the one done on DANNs C 

with learning rates from 0.1 to 0.0001 (results not shown). In order to get a better idea of how the 

correlation and rank score both change with the learning rate, a further test was performed, looking 

at a more precise range of learning rates where the correlation began to fall below the target of 0.8. 

The results of this test are shown in Figure 5.7. For Adagrad and Adadelta, the optimal rank scores 

occur when the correlation dropped below the target value. However, when using the Adam 

optimiser algorithm, the peak rank score (32.407 ± 0.028) occurred while the correlation was still 

0.8231 at a learning rate of 0.0006. 
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Figure 5.7. Plot comparing the rank scores for three optimiser algorithms over different learning 

rates in DANNs R. The corresponding Pearson correlations for each network are plotted on the secondary 

Y-axis. Error bars were excluded from this chart for clarity. 

 

The five different loss functions were also tested over a more precise range of learning rates than 

in DANNs C. However, although the correlation scores still dropped off as the learning rate was 

13 reduced, none of the top rank scores were associated with a correlation of less than 0.80. The 

top rank score from each loss function are shown in Figure 5.8. There was no significant difference 

between the top mean rank scores for Cross-entropy, Abs. Diff., MSE and RMSE. The top score 

was achieved by Cross-entropy (32.414 ± 0.029) at a learning rate of 0.006. 
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Figure 5.8. A comparison of the different loss functions on the rank scores. Only the top score loss 

function of each method is plotted. 

 

From the results of these experiments, it seems that the cause of the issue with correlation is a 

combination between optimiser and learning rate. Although the correlation also dropped off while 

testing the loss-functions at different learning rates (data not shown), it did so in a pattern consistent 

with that observed while testing the Adam optimiser which was also used for the loss function 

experiment. This shows that the Adam optimiser and learning rates were the main factors in 

determining correlation drop-off during the loss-function experiments. Future experiments with 

this network will use the Adam optimiser in combination with cross-entropy as the loss function 

with a learning rate of 0.0006. 

 

5.4.2.3. Training Cycles and Regularisation 

Since learning rate was changed extensively while investigating the optimiser and loss function, 

further experimentation with this hyperparameter was deemed unnecessary. Figure 5.9 shows the 

effect of changing the number of training cycles between 50 and 1000 on the rank score. The 

optimal rank score was achieved at 100 training cycles (32.408 ± 0.081) and dropped off as the 

number of training cycles increased. Once the lowest rank score was achieved at 550 training 

cycles, it began to improve again incrementally as the number of training cycles increased further. 
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Figure 5.9.  Plot showing how the rank score of DANNs R varies as the number of training 

cycles are changed. 

 

In order to identify any potential effect of regularisation on overfitting within the network, different 

levels of Dropout between 0 and 0.9 were tested using the 100-cycle network, 500 cycle network 

and 1000 cycle network. The results of this test are shown in Figure 5.10a. There was no significant 

effect of using any level of Dropout on the 100-cycle network. In the 500-cycle network, the usage 

of any level of Dropout caused a slight reduction in the rank score. The 1000-cycle network proved 

to be the exception and showed a slight improvement in rank score when the Dropout probability 

reached 0.5 or higher. Overall, the application of Dropout did not manage to get any improvement 

upon the rank score. 
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Figure 5.10. The effect of Dropout and L2 regularisation on the results of the networks. All error bars 

represent the standard deviation of 10 repetitions of the neural network using the same parameters. a) The 

effect of Dropout on the rank score of DANNs R. Results of Dropout are shown on a 100, 500 and 1000 

training cycle network. b) The effect of L2 regularisation on the rank score of DANNs R. Results of L2 are 

shown for 100, 500 and 1000 training cycle networks. 

 

Different levels of L2 regularisation were also tested on the same three network sizes. The results 

of the experiment are shown in Figure 5.10b. The effect of L2 regularisation was least apparent on 

the 100-cycle network although it still managed to improve upon the unregularised network’s score 

with an L2 hyperparameter of 1000 (32.462 ± 0.043). Unfortunately, at this point, the correlation 
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also dropped below the 0.8 threshold (0.758). Although the 500-cycle and 1000 cycle networks did 

not manage to improve upon this rank score, applying an L2 hyperparameter of 1000 + resulted in 

a steep increase in the rank score although the correlation also dropped below the threshold in both 

cases. Further testing with levels of L2 regularisation between 100 and 1000 (Appendix 9) found 

that using an L2 regularisation hyperparameter of 200 produced the highest rank score without 

violating the correlation threshold (32.415 ± 0.011). Using an L2 hyperparameter of 500 or greater 

resulted in the correlation dropping below 0.80. 

Dropout did cause an improvement; however, it only improved the performance of the 100-cycle 

network causing it to surpass the performance of the 500-cycle network. The effect on the 100- 

cycle network was negligible potentially because it was not over fitting the data. Introducing L2 

regularisation slightly improved the performance of the 500 and 1000-cycle networks, but it also 

dropped the correlation below the threshold. The results of all three networks converged when the 

L2 hyperparameter reaches 10000. This is because the L2 hyperparameter acts as a balancing 14 

factor within the loss function between the original loss function, and the size of the weights in the 

matrix. A very large value of L2 skewed the balance so that most of the final loss function result 

was composed of the weights matrix, and the original loss function became irrelevant. Overall a 

slight improvement in the rank score was obtained when an L2 hyperparameter of 200 was used. 

 

5.4.2.4. Architecture 

Figure 5.11a shows the results of a grid-search using two hidden layers with between 10 and 100 

nodes in each layer. The highest rank scores were achieved with less than around 100 nodes total 

within the network. Using more than 100 total nodes resulted in the rank score degrading. The 

highest score was with 40 nodes in the first hidden layer and 30 nodes in the second (32.422 ± 

0.039). 
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Figure 5.11. Results from testing different network architectures of DANNs R. All error bars represent 

the standard deviation of 10 repeats of the neural network using the same parameters. a) A heatmap showing 

the effect of different numbers of nodes in a 2-hidden layer network on the rank score. Results are colour 

coded on a scale from red (low) to intermediate (white) to high (blue). Results are the mean of 10 network 

runs with the same hyperparameters. b) A bar chart showing how the rank scores varies with the number of 

nodes in a single-layer network. c, d and e) Bar charts showing how the rank scores vary in a three hidden-

layer network using 30 nodes in two layers and then adding a varying number in a third layer before, between 

and after the previous two. 
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Using only a single hidden layer in the network did not improve the rank score (Figure 5.11b). A 

third layer was added to the network by using the optimal combination for a two hidden-layer 

network from Figure 5.11a and adding a third layer between 10 and 100 nodes. The results from 

these DANNs are shown in Figures 5.11c, d and e. Using three layers did not improve upon the 

optimal results from the two layered networks. The optimal number of nodes in DANNs R was 

higher than in DANNs C, this was not surprising since the amount of input data was greater.  

 

5.4.3. Significance of Results 

Both DANNs were run a further 100 times with the optimal parameters in order to compare the 

performance to existing EMA methods. The final hyperparameters for both networks are shown in 

Table 5.3.  

Hyperparameter DANNs C DANNs R 

Input Combination V4, V10 V9, V11, V12 

Training Target MaxSub GDT-HA 

Optimiser Adagrad Adagrad 

Loss Function Cross-Entropy Cross-Entropy 

Learning Rate 0.00006 0.0006 

Number of Training Cycles 100 100 

Dropout 0 0 

L2 Regularisation 170 200 

Number of Layers 2 2 

Number of Nodes per Layer 20/20 40/30 

Table 5.3. A summary of the final hyperparameters for DANNs C and DANNs R. 

 

Figure 5.12a shows the network predictions plotted against the observed GDT-HA scores. Figure 

5.12b shows the mean of V4 and V10 plotted against the observed GDT-HA scores. DANNs C 

produced a top correlation of 0.913971 using the V4 and V10 inputs. Taking the average of the 

two inputs gave a correlation of 0.910036. The network performed marginally better (0.43%) than 

simply taking the average of the network inputs. The results from the network described a clearer 

relationship with fewer outliers, however the networks results mostly lied between 0.3 and 0.6, 

leading to a more compressed scatter. This compressed scale of network output may limit its 

performance in other CASP benchmarks, e.g. absolute differences in predicted versus observed 

score. 
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Figure 5.12. The final results of DANNs C and DANNs R compared to using an average of the input 

scores. a) Plot with the predicted scores of DANNs C plotted against the observed GDT-HA scores. b) Plot 

with the average of the V4 and V10 inputs plotted against the observed GDT-HA scores. c) A bar chart 

comparing the results of DANNs R to the average of Inputs V9, V11 and V12 for ranking models. Error 

bars are standard error. 

 

DANNs R produced a top rank score of 32.473 using the V9, V11 and V12 combination of inputs. 

Taking the average predictions of servers V9, V11 and V12 using the same data, gave a rank score 

of 32.346, meaning that DANNs R achieved an improvement of 0.39% over averaging the inputs. 

Comparing the top-ranked GDT-HA results for each model reveals that out of the 84 different 

modelling targets, only 17 had a different model picked by the two methods. Figure 5.12c shows 

both rank scores with the standard error included as error bars. Testing for significance by 

Wilcoxon’s signed rank test (2-tailed) gives a p-value of 0.246, indicating that the improvement is 

not significant.  

Grid search combined with hand-tuning has proved to be an effective, time-saving method of 

hyperparameter determination. However, the time investment in this project was still considerable. 
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Furthermore, only a small number of all possible combinations of hyperparameters were tested, 

using a random grid search would allow a greater number of combinations to be explored. Bayesian 

optimisation on the other hand uses the results from previous attempts to inform as to potential 

parameters for the next attempt. Using this method should save a considerable amount of time. 

While both the model ranking and correlation of the results have been shown to be improved by 

employing a neural network, what does this mean in terms of real-world applications? A network 

which produces good correlations makes good estimations as to the quality of the models. This is 

useful in the case where a quality estimate on one or a few models are required. A network which 

produces good rank scores is capable of picking out the top model from a group of alternate models. 

This is most useful when you must discriminate between multiple models of the same protein 

target. 

 

5.5. Conclusion 

Using Deep Artificial Neural Networks, we have made marginal improvements in correlation and 

ranking ability. DANNs show promise in improving the area of protein structure quality 

assessment, but the amount of time and effort required to find the optimal hyperparameters is 

prohibitive. The use of random grid searches or Bayesian optimisation could improve this in the 

future. Another goal is to create a DANNs which is capable of getting high correlations and 

effectively ranking the models without the necessity for two separate networks. In theory a network 

which produces extremely high-quality predictions should produce good correlation and rank 

scores. 

With the large amount of protein structural data available, and the CASP experiment acting as a 

catalyst, more and more software is being written to predict protein structure. The need for useful 

EMA programs is increasing as more protein models are generated. DANNs have the potential to 

learn how to combine scores from QA programs in ways that maximise their usefulness. The ability 

of DANNs to learn, means that even very situational QA scores have the potential to be used as 

inputs for any model, given that the DANNs can learn the situations where each individual score 

is of most use. 
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Work presented in this chapter has been published in the following papers: 

Maghrabi, A.H.A., McGuffin, L.J., 2019. Estimating the quality of 3D protein models using the 

ModFOLD7 server. Submitted to Springer. 
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6.1. Background 

Since researchers from different fields of biological sciences started relying on the three-dimension 

structural models of proteins, prediction programs have been improving rapidly. One of the major 

components of structure prediction pipelines is the evaluation or assessment of the predicted model 

accuracy. It is possible to generate many hundreds of alternative 3D models for any give protein 

target using many different algorithms. Often the best modelling method is not always the most 

accurate for a given target, so it is problematic to choose rank and select the models that are most 

likely to be the closest to the native structure. Furthermore, local regions of models may differ in 

quality and so it may help a biologist to know whether their specific regions of interest are 

accurately modelled e.g. predicted interface/interacting residues. Such problems have been 

recognised by the field of structural bioinformatics and many developers have focused their 

attention towards improving methods for model QA that support their prediction pipelines. Such 

tools and servers are also currently referred to as the Estimates of Model Accuracy (EMA) methods.  

The EMA (a.k.a. MQA) methods and servers were included for evaluation as a category in two 

major worldwide organisations that are specialised in the protein structure prediction field. The 

first organisation conducts independent blind testing with the Critical Assessment of Techniques 

for Protein Structure Prediction (CASP) (Moult et al., 2014) experiments, which are held every 

other year. The second organisation is the continuously automatic model evaluation project called 

CAMEO (Haas et al., 2018). Both organisations have highlighted the importance of the EMA 

development for the improvement of protein structure prediction and have helped to encourage 

progress in the field. 

Modern methods of EMA can be classified into three broad categories. (1) The pure-single model 

methods, which can score the data from the information of an individual model - they are featured 

by their rapid processing and their strong performance at model ranking and selection, but they 

often produce less consistent global scores. (2) The clustering/consensus approaches, which use 

multiple alternative models build for the same protein target - these types of methods have the 

opposite features of the single-model methods, they have been far more accurate but are more 

computationally intensive and do not work when very few similar models are available. (3) The 

quasi-single model methods, which can score an individual model against a pool of reference 

alternative models that are generated from the same target sequence. Quasi-single model methods 
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attempt to provide comparable accuracy to clustering methods, while addressing real-life needs of 

researchers with few/single models.  

ModFOLD (McGuffin, 2007) is our EMA protocol and various successive versions have been 

competing with the top leading model quality assessment programs throughout the past 10 years. 

ModFOLD was built in the beginning as two separate methods.  The original single-model method 

was called by its own original name, ModFOLD. Additionally, we developed a clustering-based 

method, called ModFOLDclust (McGuffin and Roche, 2010). Over the years, both methods have 

been merged with the adoption of a number of other methods to develop a new ModFOLD program 

which was a pioneer of the quasi-single model approach. 

The quasi-single model approach was firstly implemented with the 3rd version of ModFOLD  

(Roche et al., 2014). By using this approach, ModFOLD3 was able to generate reference sets of 

models from the target sequence, using the IntFOLD-TS (McGuffin and Roche, 2011) method 

which were used for comparison with the submitted model using ModFOLDclust2 (McGuffin and 

Roche, 2010). ModFOLD has since undergone a number of updates through versions 4 (McGuffin 

et al., 2013), 5 (McGuffin et al., 2015) and 6 (Maghrabi and McGuffin, 2017), which have 

maintained the use of a quasi-single model approach. Each successive version has been ranked 

among the top performing EMA methods of the recent CASP experiments. The implementation of 

quasi-single method has helped our ModFOLD pipeline keep its competitiveness using the 

predictive power offered by clustering-based methods, as well as being capable of making 

predictions for a single model at a time. While we have made significant progress in performance 

over the years with our ModFOLD methods, there is still room for improvement in many aspects 

of EMA. 

Here we describe significant major updates to the ModFOLD server. The server has been popular 

with modellers around the world, having completed hundreds of thousands of EMA jobs for 

thousands of unique users over the past decade. In 2018, the ModFOLD7 server variant methods 

participated in the latest world-wide Critical Assessment of Techniques for Protein Structure 

Prediction competition (CASP13). The goal of this competition was to help advance the methods 

which identify protein structure from sequence by testing them objectively via the process of blind 

prediction. The competition includes many subcategories, one of them is the EMA where our 

ModFOLD7 methods are independently evaluated. The CASP assessors provide sequences of 

proteins whose structures have never been observed before. Participants uses their prediction 
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servers in order to generate the 3D models of the target structures. Once server models have been 

generated for a given target, they are then used for the EMA category; participants use their model 

quality assessment methods in order to estimate the accuracy of the predicted models for each 

target. 

 

6.2. Objectives 

In this chapter, we describe our latest upgrade of ModFOLD. ModFOLD7 is our leading resource 

for EMA, which has been upgraded by integrating a number of the pioneering pure-single and 

quasi-single model approaches. Such an integration has given our latest version the strengths to 

accurately score and rank predicted models, with higher consistency compared to older EMA 

methods. Additionally, the server provides three options for producing global score estimates, 

depending on the requirements of the user: (i) ModFOLD7_rank, which is optimised for 

ranking/selection, (ii) ModFOLD7_cor, which is optimised for correlations of predicted and 

observed scores and (iii) ModFOLD7 global for balanced performance. ModFOLD7 has been 

ranked among the top few EMA methods according to independent blind testing by the CASP13 

assessors. Another evaluation resource for ModFOLD7 is the CAMEO project, where the method 

is continuously automatically evaluated, showing a significant improvement compared to our 

previous versions. The ModFOLD7 server is freely available at: 

http://www.reading.ac.uk/bioinf/ModFOLD/. 

http://www.reading.ac.uk/bioinf/ModFOLD/
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We will also compare the improvement in our methods with all improvements gained from 

CASP12 to CASP13 in the field of EMA as seen from the progress of the most successful methods 

in CASP13. We show small but clear progress, i.e. several methods perform better than the best 

methods from CASP12. Some progress is driven by applying deep learning and residue-residue 

contacts to model quality prediction. We show that there has been measurable progress since 

CASP12. Although direct comparisons are difficult, as the targets and underlying methods that 

generate the targets change between CASP seasons, it is clear that progress has been made as novel 

methods outperform the best methods in CASP12. Further, we show that the best EMA methods 

marginally outperform the best servers when it comes to selecting one model per target. 

 

6.3. Materials and Methods 

The latest version of our server, ModFOLD7, uses a new quality assessment technique which 

combines the strengths of multiple pure-single and quasi-single model methods for the 

improvement of prediction accuracy. The server comprises a single model approach which 

combines 10 scoring methods. Six of the methods are pure-single model inputs methods, these 

include: 1- Contact Distance Agreement (CDA) which uses MetaPSICOV (Jones et al., 2015) to 

relate to the agreement between the predicted residue contacts and the contacts in model; 2- 

Secondary Structure Agreement (SSA) which uses PSIPRED (Buchan et al., 2013) to relate to the 

agreement between the predicted secondary structure of each residue and the secondary structure 

state of the residue in model according to Dictionary of Secondary Structures of Proteins (DSSP); 

3- ProQ2 (Uziela and Wallner, 2016); 4- ProQ2D (Uziela et al., 2017); 5- ProQ3D (Uziela et al., 

2017); and 6- VoroMQA (Olechnovič and Venclovas, 2017). The remaining four methods are 

quasi-single model input methods, these are: 1- ModFOLDclust_single (MFcs)  which uses input 

model against the 130 IntFOLD5 reference models; 2- Disorder “B-factor” Agreement (DBA) 

which compares DISOPRED (Jones and Cozzetto, 2015) scores against the MFcs score; 3- 

ModFOLDclustQ_single (MFcQs) (McGuffin and Roche, 2010) which uses input model against 

the IntFOLD5 reference models; and 4- ResQ (Yang et al., 2016) which estimates the residue-

specific quality and B-factor, and it compares the input model against LOMETS (Wu and Zhang, 

2007) models. The combination of the component per-residue/local quality scores from each of the 

10 methods are processed using Neural Networks resulting in a final consensus of per-residue 
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quality scores for each model. A flowchart of the data and processes used in the ModFOLD7 server 

is shown in Figure 6.1. 
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Figure 6.1. Flow of data illustrating the local and global estimates of model accuracy in ModFOLD7. The method pipeline starts with 2 inputs, the target 

sequence and a single model. The target sequence is evaluated with 5 pre-processing methods. The resulting data from the pre-processing methods with the input 

single model then are evaluated with 10 scoring methods resulting in local score input data. Next, the local scores are processed using 2 neural networks trained to 

two target functions, the S-score and the lDDT score, resulting in the final local score outputs. Lastly, the mean local scores from each method are used to form 12 

global scores, which are then optimally combined in the different ways indicated to form the 3 variants of ModFOLD7. Figure from Cheng et al., (2019).
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6.3.1. The ModFOLD7 component per-residue/local quality scoring methods 

The ModFOLD7 NNs were trained using two separate target functions for each residue in a model: 

the residue contacts based lDDT score and the superposition-based S-score which has been used 

in previous versions of ModFOLD. The RSNNS package for R was used to construct the NNs, 

which were trained using data derived from the evaluation of CASP11 & 12 server models versus 

native structures. The per-residue similarity scores were calculated using a simple multilayer 

perceptron (MLP). For the method trained using the lDDT score (ModFOLD7_res_lddt), the MLP 

input consisted of a sliding window (size=5) of per-residue scores from all 10 of the methods 

described above, and the output was a single quality score for each residue in the model (50 inputs, 

25 hidden, 1 output). For the method trained using the S-score (ModFOLD7_res), this time only 7 

of the 10 methods were used as inputs - all apart from the ProQ2, CDA and SSA scores - with a 

sliding window (size=5), therefore 35 inputs, 18 hidden, 1 output. For both of the per-residue 

scoring methods, the similarity scores, s, for each residue were converted back to distances, d, with 

d = 3.5√((1/s) −1). 

 

6.3.2. The ModFOLD7 global scoring methods 

Global scores were calculated by taking the mean per-residue scores (the sum of the per-residue 

similarity scores divided by sequence lengths) for each of the 10 individual component methods, 

described above, plus the NN output from ModFOLD7_res and ModFOLD7_res_lddt. 

Furthermore, 3 additional quasi-single global model quality scores were generated for each model 

based on the original ModFOLDclust, ModFOLDclustQ and ModFOLDclust2 global scoring 

methods (in a similar vein to the ModFOLD4_single and ModFOLD5_single global scores, tested 

in CASP10 and CASP11 respectively). Thus, we ended up with 15 alternative global QA scores, 

which could be combined in various ways in order to optimize for the different facets of the quality 

estimation problem. For the CASP13 experiment, we registered three ModFOLD7 global scoring 

variants: 1. The ModFOLD7 global score, which used the mean per-residue NN output score from 

ModFOLD7_res, this score considered alone was found to have a good balance of performance 

both for correlations of predicted versus observed scores and rankings of the top models. 2. The 

ModFOLD7_cor global score variant ((MFcQs + DBA + ProQ3D + ResQ + ModFOLD7_res)/5) 

was found to be an optimal combination for producing good correlations with the observed scores, 

i.e. the predicted global quality scores produced should produce closer to linear correlations with 
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the observed global quality scores. 3. The ModFOLD7_rank global score variant ((CDA + SSA + 

VoroMQA + ModFOLD7_res + ModFOLD7res_lDDT)/5) was found to be an optimal 

combination for ranking, i.e. the top ranked models (top 1) should be closer to the highest accuracy, 

but the relationship between predicted and observed scores may not be linear. The local scores of 

the ModFOLD7 and ModFOLD_rank variants used the output from the ModFOLD7_res NN, 

whereas the ModFOLD_cor variant used the local scores from the ModFOLD7_res_lddt NN. 

 

6.3.3. Server inputs  

Like the previous versions, the ModFOLD server version 7.0 requires the amino acid sequence 

(Figure 6.2) of your target protein and either a single 3D model file in PDB format or a tarball 

containing a directory of multiple separate files in PDB format. To produce a tarball file for your 

own 3D models, for Linux/OSX/other Unix users: (a) Tar up the directory containing your PDB 

files e.g. type the following at the command line: tar cvf my_models.tar my_models/ (b) Gzip the 

tar file e.g. gzip my_models.tar (c) Upload the gzipped tar file (e.g. my_models.tar.gz) to the 

ModFOLD server, for Windows users: (a) Download a file archiver application such as 7-zip (b) 

Select the directory (folder) of model files to add to the .tar file, click "Add", select the "tar" option 

as the "Archive format:" and save the file as something memorable e.g. my_models.tar (c) Select 

the tar file, click "Add" and then select the "GZip" option as the "Archive format:" - the file should 

then be saved as my_models.tar.gz (d) Upload the the gzipped tar file (e.g. my_models.tar.gz) to 

the ModFOLD server. Providing the email address will give the permission to send a link with the 

graphical results and machine-readable results directly after the predictions are completed. 

However, if the user does not provide the email address then s/he must bookmark the results page 

in order to view and refer to it when it is available. In the text box labelled “Input sequence of 

protein target”, users should carefully paste in the full amino acid for the interested target protein 

in single letter format. 

It is important that the user provides the full sequence that corresponds to the sequence of residue 

coordinates in the model file. If the model does not contain numbering which corresponds directly 

to the order of residues in the sequence file, then the server will attempt to renumber the residues 

in the model files accordingly. However, submitting a model file with residues that are not 

contained in the provided sequence will not complete the prediction for that model. Users must 

ensure that each PDB file contains the coordinates for one model only. The coordinates for multiple 
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models should always be uploaded as a tarred and gzipped directory of separate files. Assigning a 

short memorable name to user’s prediction jobs is useful for identifying and distinguishing them, 

because ModFOLD will not necessarily return the results in the order the user submitted them. 

 

 

Figure 6.2. ModFOLD7 server inputs and outputs pages. Inputs page: containing a text box to paste the 

amino acid sequence of protein target in single letter code, a push button to upload model/models (either a 

single PDB file or a tarred and gzipped directory of PDB files) of the protein target, three options to select 

the global accuracy score optimisation preference, and two optional text boxes to input the user E-mail 

address and to give a short name for protein target. Outputs page: showing the result page for models 

submitted to CASP13 generated for target T0959. The main output page is shown with summary tables of 

the results for each model. Results can also be visualised in more detail by clicking on the thumbnail images 

in the main table. 
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6.3.4. Server outputs  

The outputted results are provided in a clean and simple user interface so that it can be interpreted 

easily by non-experts at a glance. Once the prediction process is complete a results page is 

generated containing a single table summarising the quality assessment scores for each submitted 

model. Each assessed model is represented in the table graphically, with thumbnail images of the 

local error plots and annotated 3D models. Images in the table are clickable for detailed 3D 

visualisation using the JSmol/HTML5 framework. Conveniently, interactive 3D results can also be 

viewed on mobile devices without any plugin requirement. The results table shows a global score 

for each model, a P-value indicating the likelihood that the model is incorrectly folded and a plot 

of the local errors in the model in Ångströms. Users can also download the models annotated with 

the ModFOLD7 predicted local quality scores, which have been inserted into the B-factor column 

of the ATOM records for each submitted model. The raw machine-readable data files for each set 

of predictions, which comply with the CASP data standards, are also provided for developers and 

more advanced users. An overview of the ModFOLD7 interface is shown in Figure 6.2. 

The results table is ranked according to decreasing global model quality score. The global model 

quality scores range between 0 and 1. In general, scores less than 0.2 indicate there may be 

incorrectly modelled domains and scores greater than 0.4 generally indicate more complete and 

confident models, which are highly similar to the native structure. If the global model quality scores 

are low, then the per-residue scores can give you an idea of specific domains or regions in your 

protein that might be correctly modelled. From the global scores, the p-value which represents the 

probability that each model is incorrect can be calculated. In other words, for a given predicted 

model quality score, the p-value is the proportion of models with that score that do not share any 

similarity with the native structure (TM-score < 0.2). Each model is also assigned a colour coded 

confidence level depending on the p-value: p < 0.001 = blue = CERT = Less than a 1/1000 chance 

that the model is incorrect, p < 0.01 = green = HIGH = Less than a 1/100 chance that the model is 

incorrect, p < 0.05 = yellow = MEDIUM = Less than a 1/20 chance that the model is incorrect, p 

< 0.1 = orange = LOW = Less than a 1/10 chance that the model is incorrect, p > 0.1 = red = POOR 

= Likely to be a poor model with little or no similarity to the native structure.  

The per-residue scores indicate the predicted distance (in Angstroms) between the CA atom of the 

residue in the model and the CA atom of the equivalent residue in the native structure. Thumbnail 

images of plots depicting the per-residue error versus residue number are included in each row in 
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the results table. Each of the thumbnails links to a page that displays a larger view of the plot and 

contains a further link to download a PostScript version. Each row in the table also displays a 

thumbnail of the 3D cartoon view of the model which is colour coded with the residue error 

according to the RasMol temperature colouring scheme. Each small image also links to a page that 

shows a larger image of the 3D view and contains a link to download a PDB file of the model with 

residue accuracy predictions (Angstroms) in the B-factor column. The model is also loaded into 

JSmol for convenient interactive viewing of per-residue errors within the browser. The time taken 

for a prediction will depend on the length of sequence, the number of models submitted and the 

load on the server. For a new run on single model the user should typically receive his/her results 

back within 24 hours, once the job is running. Large batches of models (several hundred) for a 

single target may take several days to process. If the user has already submitted a model for the 

same target sequence within the same week, then the reference model library for that sequence will 

already be available to the server (the results will be cached) and so s/he will receive the results 

back much more quickly (within a few hours).  

 

6.3.5 Benchmarking ModFOLD7 within the top ranked EMA methods in CASP13 

ModFOLD7 has been evaluated with a number of EMA predictors from six top-performing labs in 

CASP13. Each EMA method has its own input and output approach which features it from the 

other EMAs. In terms of input, EMA methods can be classified as single‐model methods (Wallner 

and Elofsson, 2003) (Olechnovič and Venclovas, 2017) (Ray et al., 2012) (Sippl, 1990) and multi‐

model (or consensus) methods (Ginalski et al., 2003) (Lundström et al., 2001). The former takes a 

single structural model as input to predict its accuracy, while the latter uses multiple structural 

models of a protein as input to estimate their accuracy, often leveraging the similarity between the 

models. In terms of output, EMA methods can be categorised as global accuracy assessment 

methods (Zhang and Skolnick, 2005) (Zemla, 2006) and local accuracy assessment methods 

(Wallner and Elofsson, 2006), see Table 6.1. The global methods predict a single global score (eg, 

GDT‐TS score) measuring the global accuracy of a whole model, whereas the local methods 

estimate the local accuracy (e.g., the distance deviation from the native position) for each residue 

in a model. The vast majority of local accuracy methods also produce a global estimate of the 

accuracy. This is often done by using the average local accuracy.
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Group Name Method Local/Global Inputs 
Sequence 

features 
Structure features 

Predicted 

Features 

Target 

Function 

Machine 

Learning 

method 

Studer 

(Waterhouse 
et al., 2018) 

FaeNNz 
Local (Global is 

avg. Local) 

Model and full-

length target 

sequence 

 

Statistical Potentials of Mean 

Force + Distance Constraints 

from Templates + Solvent Acc. 

Sec. Str and 

Surface Area 

LDDT 

(local) 

Multi‐Layer 

Perceptron 

McGuffin 

(Maghrabi 

and 

McGuffin, 

2019)  
(McGuffin et 
al., 2019) 

ModFOLD7 
Local (Global is 
avg. of local) 

Model and full-
length target 

sequence 

PSSM 
Pairwise comparisons of 
generated reference models, 

residue contacts 

Contacts, 
Sec. Str and 

Disorder 

S‐score 

(local) 

Multi‐Layer 

Perceptron 

ModFOLD7_cor 

Local and 

optimised 

composite global 

score 

Model and full-

length target 

sequence 

PSSM 

Pairwise comparisons of 

generated reference models, 

residue contacts 

Contacts, 

Sec. Str and 

Disorder 

lDDT 

(local) 

GDT-TS 

(global) 

Multi‐Layer 

Perceptron 

ModFOLD7_ran
k 

Local and 

optimised 
composite global 

score 

Model and full-
length target 

sequence 

PSSM 
Pairwise comparisons of 
generated reference models, 

residue contacts 

Contacts, 
Sec. Str and 

Disorder 

S‐score 

(local) 

GDT-TS 

(global) 

Multi‐Layer 

Perceptron 

Elofsson 

(Wallner and 

Elofsson, 

2003) 

ProQ2 
Local (Global is 

sum of local) 

Profile + model + 

predictions 
PSSM Atom contacts, residue contacts 

Sec. Str and 

Surface Area 
S‐score 

(local) 
Linear SVM 

ProQ3 
Local (Global is 

sum of local) 

Profile + model + 

predictions + 
energies 

PSSM 
Atom contacts, residue 

contacts + Energy terms 

Sec. Str and 

Surface Area 

S‐score 

(local) 
Linear SVM 

ProQ3D 
Local (Global is 

sum of local) 

Profile + structure 

+ predictions + 

energies 

PSSM 
See Atom contacts, residue 

contacts + Energy terms 

Sec. Str and 

Surface Area 
S‐score 

(local) 

Multi‐Layer 

Perceptron 

ProQ3D‐TM 
Local (Global is 

sum of local) 

Profile + model + 

predictions + 

energies 

PSSM 
Atom contacts, residue 

contacts + Energy terms 

Sec. Str and 

Surface Area 
TM‐score 

(local) 

Multi‐Layer 

Perceptron 

ProQ3D‐lDDT 
Local (Global is 

sum of local) 

Profile + model + 

predictions + 

energies 

PSSM 
Atom contacts, residue 

contacts + Energy terms 

Sec. Str and 

Surface Area 

lDDT(loc

al) 
Multi‐Layer 
Perceptron 

ProQ3D‐CAD 
Local (Global is 

sum of local) 

Profile + model + 

predictions + 

energies 

PSSM 
Atom contacts, residue 

contacts + Energy terms 

Sec. Str and 

Surface Area 

CAD‐
score 

(local) 

Multi‐Layer 

Perceptron 

        (Continues) 
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Group Name Method Local/Global Inputs 
Sequence 

features 
Structure features 

Predicted 

Features 

Target 

Function 

Machine 

Learning 

method 

Elofsson 

(Wallner and 

Elofsson, 2003) 

ProQ4 

(ProQ4) 

Local (Global is 

sum of local) 
Profile + DSSP PSSM 

DSSP (sec. Str and surface 

area) 

Internally 

DSSP. 

lDDT 

(local) 

Deep 

Network 

Han 

(Cheng et al., 

2005) 

 

SART_G Global 

Model + 

predictions + 
energies 

 

Statistical Potentials + Solvent 

Acc + Sec. Str + Residue 
Contact 

Sec. Str, 

Solvent Acc 

and Residue 
Contact 

GDT-TS 
Linear 

Regression 

SART_L Local 

Model + 

predictions + 

energies 

 

Statistical Potentials + Solvent 

Acc + Sec. Str + Residue 

Contact 

Sec. Str, 

Solvent Acc 

and Residue 

Contact 

S‐score 
Linear 

Regression 

SARTclust_G Global 

Model + 

predictions + 

energies 

 

Statistical Potentials + Solvent 

Acc + Sec. Str + Residue 

Contact 

Sec. Str, 

solvent acc 

and residue 

contact 

GDT-TS 
Linear 

Regression 

Venclovas 

(Olechnovič 

and Venclovas, 

2014) 

VoroMQA‐A, 

VoroMQA‐B 
Local and global Model Not used 

Voronoi tessellation‐based 

contact areas. 
Not used Not used 

Statistical 

potential 

Cheng 

(Wang et al., 

2010) 

MULTICOM‐
CLUSTER 

Global 
Model and full‐
length sequence 

Not used 
Secondary structure, Solvent 

accessibility, residue contacts 

Contacts, 

Sec. Str, 
surface area 

and structural 

scores 

GDT-TS 

(global) 

Deep network 

+ ensemble 

MULTICOM‐ 
CONSTRUCT 

Global 
Model and full‐
length sequence 

Not used 
Secondary structure, solvent 

accessibility, residue contacts 

Contacts, 

Sec. Str, 

surface area 

and structural 

scores 

GDT-TS 

(global) 

Deep network 

+ ensemble 

MULTICOM 

NOVEL 

Local (Global is 

sum of local) 
Model and full‐
length sequence 

PSSM, 

Amino acid 

encoding 

Secondary structure, Solvent 

accessibility, Energy terms 

Disorder, 

Sec. Str and 

surface area 

S‐score 

(local) and 

GDT-TS 

(global) 

Deep network 

Table 6.1. Overview of EMA methods discussed in this study and the way they were developed. Adapted from Cheng et al., (2019).
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Different EMA methods utilise different descriptions of the models. Historically, EMA methods 

were often divided into single and consensus methods. Here, single methods only use a single 

model and predict the accuracy of that model (or regions of that model), while consensus methods 

compared a set of models and (often) assumed that the more similar they were the more likely they 

were to be correct. In earlier CASPs a category of “quasi‐single” methods also existed. These 

methods do not require a set of models, as for the consensus methods, instead they compare the 

model with a set of internally generated models, assuming that the more similar the model is to the 

internally generated models the better it is. Now, many methods combine many of the methods 

making it hard to exactly classify each method, but we have tried to describe the most important 

features of all EMA methods in Table 6.1. 

 

6.3.6. Relative performance of EMA methods depending on evaluation metric 

Using different reference‐based scores (evaluation metrics) may lead to different rankings of 

models and different best models. Some EMA methods are trained to predict specific reference‐

based scores, for example, GDT‐TS or TM‐score. Therefore, it might be expected that the relative 

performance of EMA methods may depend on the use of specific evaluation scores. To test whether 

this is the case, we asked how successful different EMA methods are in selecting models according 

to four different scores: two superposition‐based scores (GDT‐TS and TM‐score) and two 

superposition‐free scores (lDDT and CAD‐score). To make the comparison straightforward, for 

every reference‐based score we used Z‐scores instead of raw values. For every CASP13 target, we 

derived z‐score values using the procedure typically used in CASP assessments: calculate z‐scores 

for all models; exclude models with z‐scores lower than −2 and recalculate Z‐scores; assign −2 to 

every Z‐score lower than −2. For each EMA method, we then summed Z‐scores of selected models 

for all CASP13 targets. The evaluation was done separately for GDT‐TS, TM‐score, lDDT and 

CAD‐score. If a given EMA method is equally successful in selecting models according to each of 

the four reference‐based scores, then the contribution of each type of z‐score would be 

approximately the same, or ~25% of the total sum of z‐scores for GDT‐TS, TM‐score, lDDT, and 

CAD‐score (100%). We tested whether this is the case by computing the actual deviation from 

25% for each type of z‐scores. The positive and negative values indicate correspondingly that the 
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EMA method is either relatively more or less successful according to that score, but not its absolute 

performance. 

6.4. Results and Discussion 

The value and potential of EMA methods can be seen when selecting the top model for each target, 

see Figure 6.3. Here a small improvement can be obtained when using the best EMA methods 

compared with using the best server alone. The average GDT-TS for the best server on the 80 full-

length targets used in the evaluation of the EMA methods is 56.3. When the best EMA method is 

used to select the best model the average GDT-TS score is 57.6. Moreover, in total nine EMA 

methods select models better than the best individual server. However, the potential for 

improvement is quite significant. If the best model for each target were selected, the average GDT-

TS would increase by 10% to 63.3%. Using any other measure, similar numbers appear. 

Unfortunately, no EMA method is close to always identifying the best model yet. The value of 

EMA methods seems slightly bigger for hard targets (2.5%-6.0%) compared with easier targets 

(0.8%-3.5%). Also, as expected there is more room for improvement for the harder targets, see 

Figure 6.3. 
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Figure 6.3. A new approach of evaluation for benchmarking the top ranked EMA methods in CASP13 

including ModFOLD7. A, Comparison of average score of the first ranked model for each target in 

relationship to the score of the best model made by any server using different evaluation measures. In blue 

the best server and in red the model selected by the best EMA method. In darker colours easy targets 

(average GDT-TS > 0.5) and in lighter colours the harder targets. In (B) the number of EMA methods that 

are better than the best server is shown. C, Boxplot of per target loss for the top group methods based on the 

GDT‐TS score. The rectangular box shows the median, 25% percentile, 75% percentile of the loss on 80 

targets. Dots of different shapes/colours denote the loss of individual targets of different types 

(MultiDomain, SingleDomain, FM, FM/TBM, TBM‐easy, and TBM‐hard). The mean of the loss is also 

listed next to the name of each method. D, Boxplot of per target correlation for the top group methods based 

on the GDT‐TS score. Adapted from Cheng et al., (2019). 
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6.4.1. Evaluation metric analysis 

Results of the four different reference‐based evaluation are presented in Figure 6.4. Several 

inferences can be drawn from these results. First, the relative success of most EMA methods indeed 

depends on the evaluation metric. Only some consensus‐based methods were relatively balanced 

in this regard. Strikingly, all the ModFOLD7 alternatives and the absolute majority of EMA 

methods showed relatively better performance according to the superposition‐free scores, lDDT, 

and CAD‐score (the latter in particular). It is interesting that even an EMA method trained using 

TM‐score as a target function (ProQ3D‐TM) was still relatively more successful according to the 

superposition‐free scores. The results suggest that for single‐model EMA methods, it is generally 

easier to predict superposition‐free scores than the superposition‐based scores. In turn, this might 

be interpreted as the ability of superposition‐free scores to provide a more objective definition of 

model accuracy. 

 

Figure 6.4. Relative success of different EMA methods in predicting four reference‐based evaluation 

scores. The relative success according to each of the four scores is expressed as the difference between the 

actual percentage and 25%. Positive values indicate relatively higher success, negative values indicate 

relatively lower success. For each method positive values balance out negative ones (their sum is zero). 

EMA methods are ordered by increasing disbalance, which is unrelated to the absolute performance. The 

methods that are not classified as single‐model are indicated with the bold italic font. Adapted from Cheng 

et al., (2019). 
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6.4.2 Correlation of top N models 

When choosing an evaluation metric for EMA methods, it is essential that this metric rates the 

methods based on whether they accurately estimate the correctness of high‐quality models, but it 

is less important to rate them based on whether they accurately estimate the correctness of low‐

quality models. For that reason, it has been argued that the correlation between the predicted and 

real scores of models is not a useful metric when evaluating EMA methods, as it gives equal 

importance to all models. As a result, one of the evaluation metrics that are currently most 

employed is the first‐ranked score loss, as it takes into account only the best ranked model for each 

target, so gives more importance on how the EMA methods evaluate the high-quality models. 

However, the first ranked score loss has its disadvantages, because it might be somewhat noisy 

when the differences between the predicted scores are tiny. 

Here, we suggest a novel way to evaluate the EMA methods, see Figure 6.5. We calculate the 

average per target Pearson correlation and first ranked lDDT loss for Top N models, where Top N 

models are selected based on their lDDT scores. In such a way we evaluate how the EMA methods 

perform when all the models are high quality, but also when they are of varying qualities. 
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Figure 6.5. Line charts representing the top ranking EMA methods based on the top N models evaluation. (A) Average per target Pearson correlations 

between lDDT and the predicted accuracy scores of our EMA methods for top N models. (B) First ranked lDDT loss for top N models. Top N models are selected 

based on lDDT scores. For example, top 10 models are the 10 models that have the best lDDT scores. The methods in the legend are sorted according to Area 

Under the Curve (AUC) values. Adapted from Cheng et al., (2019)
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The output of the top N models correlation is shown in Figure 6.5. The results show that 

ModFOLD7_rank had the highest correlation with an Area Under the Curve (AUC) of 0.56. The 

method also showed the lowest first ranked loss after MULTICOM_CLUSTER with an AUC of 

0.04. 

One important thing that we learn from this analysis is that the performance of different EMA 

methods depends a lot on how many of the top models we choose as the evaluation data set. 

Recently it has been a standard in CASP to evaluate all the methods on 150 models per target that 

are selected by an arbitrary consensus method (ie, the “stage 2” evaluations). We believe that the 

evaluation would be more independent if we evaluate the methods on a range of different data set 

sizes. 

 

6.4.3 ModFOLD7 variants 

Looking at global scoring evaluations on the CASP13 data, as expected the ModFOLD7_rank 

method was the best variant at ranking or selecting the best models and the ModFOLD7_cor variant 

was better at reflecting observed accuracy scores or estimating the absolute error, while the 

ModFOLD7 method was more balanced in terms of performance. For local scoring, the 

ModFOLD7_rank and ModFOLD7 variants performed better according to S‐score and 

ModFOLD7_cor method according to lDDT. 

ModFOLD7 is also one of the EMA servers that are continuously independently benchmarked for 

local EMA performance by the evaluating organisation, CAMEO (identified as server 28). The 

method has been independently verified to be an improvement on our previous methods 

(ModFOLD4 and ModFOLD6). At the time of writing, the ModFOLD7_(res)_lDDT method ranks 

among the top few QE servers on CAMEO. For the last year, the CAMEO public EMA data 

(https://www.cameo3d.org/) shows that ModFOLD7 is one of the leading public EMA methods 

for producing local (per-residue) quality scores. The results from CAMEO also show that 

ModFOLD7 is performing significantly better than its previous versions, ModFOLD6 and 

ModFOLD4 (Maghrabi and McGuffin, 2017) (McGuffin et al., 2013) (Table 6.2).  

 

 

https://www.cameo3d.org/
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Server 

Structural models ROC 
ROC 

normalised 
PR 

PR 

normalised 

Submitted Received % 
AUC 

0,1 

AUC 

0,0.2 

AUC 

0,1 

AUC 

0,0.2 

AUC 

0,1 

AUC 

0.8,1 

AUC 

0,1 

AUC 

0.8,1 

QMEANDisCo 10388 10329 99.4 0.94 0.8 0.94 0.79 0.91 0.69 0.91 0.69 

ModFOLD7_lDDT 10388 8442 81.3 0.91 0.71 0.74 0.58 0.87 0.6 0.71 0.49 

ModFOLD6 10388 7375 71.0 0.89 0.65 0.63 0.46 0.84 0.57 0.59 0.41 

QMEAN 3 10388 9544 91.9 0.87 0.61 0.8 0.56 0.81 0.53 0.74 0.49 

ProQ2 10388 9695 93.3 0.86 0.59 0.8 0.55 0.8 0.51 0.74 0.47 

ModFOLD4 10388 6009 57.8 0.85 0.58 0.49 0.34 0.78 0.5 0.45 0.29 

Table 6.2. Top EMA methods in CAMEO. 1 year of data downloaded from http://www.cameo3d.org/. 1-

year – (2018-07-20 - 2019-07-13) - "All" dataset. The table is sorted by the ROC AUC score. ROC = 

Receiver Operating Characteristic. AUC = Area Under the ROC Curve. PR = Precision and Recall. Adapted 

from Cheng et al., (2019). 

 

6.4.4 ModFOLD7 vs ModFOLD6 

Specific improvements over ModFOLD6 from our in‐house analysis using CASP11, CASP12, and 

CASP13 data were calculated for global and local scoring, and a summary of selected key results 

are shown in Figure 6.6. The ModFOLD7 variants showed small but significant improvements in 

both local scoring and selection of best models across all three datasets (CASP11‐13), compared 

with the equivalent ModFOLD6 variants. The plots on top panels of the figure demonstrate the 3 

alternative optimised scoring methods of the ModFOLD7 server being benchmarked against their 

respective previous versions from the ModFOLD6 server. For the cumulative GDT-TS of top 

ranked model, ModFOLD6_rank method was giving a score below 44.5 as their highest, whereas 

ModFOLD7_rank was able to cross the 45 and go higher. For the Pearson correlation comparing 

the predicted score versus the observed score (GDT-TS), ModFOLD6_cor achieved a correlation 

0.9250 while for ModFOLD7_cor the correlation was found to be over 0.9300. For the evaluation 

of local model quality prediction accuracy using the Area Under the ROC Curve (AUC) (where, 

residues with lDDT scores <= 0.6 = 0), ModFOLD6 could not reach an AUC score of 0.93, whereas 

ModFOLD7 was closer to 0.95.  

The plots on left panels of Figure 6.6 also showed that ModFOLD7 rank outperformed 

ModFOLD6_rank in terms of selecting the best models measured by cumulative GDT-TS; a 

http://www.cameo3d.org/
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significant improvement on all three data sets. In the middle panels, the ModFOLD7_cor method 

outperforms ModFOLD6_cor in terms of the correlation of the global output score vs the GDT-TS 

score on some data sets. However, no consistent improvement in global correlations was observed 

for ModFOLD7_cor over ModFOLD6_cor across all data sets, and any improvements seen were 

dependent on the chosen data set and/or the observed score (eg, ModFOLD7 outperforms 

ModFOLD6_cor according to the lDDT score on the CASP13 set, but not by GDT-TS). Finally, 

in terms of local accuracy estimates, based on both the lDDT scores (Figure 6.6, right panels) and 

S‐scores, we also observed a significant improvement with the newer ModFOLD7 variants vs our 

older ModFOLD6 method. 

 

Figure 6.6. Histograms summarising the improvements in ModFOLD7 variants vs ModFOLD6 

variants on CASP11‐13 datasets. Model data from EMA stages 1 and 2 are combined with duplicate 

models removed. Left panels show the ranking/model selection performance measures by cumulative GDT-

TS scores of the top selected models by each method. Middle panels show Pearson correlation coefficients 

of global predicted accuracy vs observed accuracy according to GDT‐TS. Right panels show performance 

of local accuracy estimates as measured by the area under the curve (AUC) scores from ROC analysis using 

the lDDT observed local scores. Adapted from Cheng et al., (2019). 
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Such results indicate that our latest version, ModFOLD7 has demonstrated progress in performance 

compared to ModFOLD6 and according to many measures the improvements are significant. The 

consistent performance improvements of ModFOLD7 variants over ModFOLD6 were due to; (a) 

The addition of more input scores and correspondingly more input and hidden layer neurons to the 

neural network, (b) Training to different local target functions (the lDDT score and the S‐score), 

and (c) Optimising for different evaluation metrics using a higher number of global scoring metrics. 

 

6.6. Conclusions 

We show that there has been a marginal but significant improvement since CASP12 in ModFOLD7 

and the other EMA methods over the previous versions of methods. It can be noted that many of 

the improved methods use deep learning, but in different ways. The rapid development of deep 

learning models as exemplified here might indicate that the best way to use machine learning for 

model accuracy evaluations is still not developed. We also notice that on average the best EMA 

methods select models that are better than those provided by the best server. However, still, much 

more significant improvements could be achieved if there were possible ways to always select the 

best model for each target. Finally, we do notice systematic differences when using different model 

evaluation methods. Single model methods perform relatively better when using superposition free 

evaluation methods.
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7.1. Background 

The application of accurate methods for producing EMA has become a principal focus for 

researchers who need to establish the utility of their 3D protein models. Having any percentage of 

improvement in the EMA scoring methods can lead directly to improved quality and higher 

accuracy of 3D modeling. Therefore, relying on the model quality assessment has always been at 

the core of our modeling strategy in both CASP and real-world use cases. IntFOLD is our main 

server of predicting 3D protein models. The method has developed tremendously over the past 

years, and that is due to the relative development of the integrated MQA which has been inspired 

by previous research with the nFOLD (Jones, 1999) and GenTHREADER (McGuffin and Jones, 

2003) methods. Focused development on methods for EMA was initiated from the 7th round of 

CASP when the QA category was introduced. In CASP7, the ModFOLD method (McGuffin, 

2007) was developed purely to tackle to the QA problem, and it was utilised in parallel with the 

third version of nFOLD. A further improvement in scoring 3D models was achieved after 

integrating the clustering-based variant (ModFOLDclust) (McGuffin, 2008). The improvement 

was independently verified when the method was used subsequently in CASP8 for the predictions 

in the quality assessment category (Buenavista et al., 2012), and also for ranking of server models 

for the manual predictions of the Tertiary Structure (TS) category. 

In the 9th season of CASP, assessors requested that predictors should include error estimates for 

every submitted 3D model, which were scaled in Angstroms in place of the temperature factor (B-

factor) field for each atom record. After applying that request in CASP9, a change of performance 

was noticed. The assessors then began to emphasize the value of the “B-factor errors” or what has 

now been termed the ASE scores. The importance of assessing the quality of a 3D predicted protein 

model has become as important as considering the E‐value when using BLAST. 

The first integration of ModFOLD with the original IntFOLD server method, was in 2011, when 

ModFOLDclust2 was integrated for ranking and providing the ASE scores for single template 

modeling (Roche et al., 2011). The output from ModFOLDclust2 included ASE scores for each 

generated IntFOLD model which were included in the “B-factor” columns of all atom coordinate 

files. The high performance of the IntFOLD-TS method (McGuffin and Roche, 2011) in CASP9 

gained attention in the consideration of model reliability, and the “B-factor” scores were 

independently evaluated in the TBM category (McGuffin and Roche, 2011). 
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In CASP10, our group aimed to exploit the strengths in ASE scoring by using our QA methods in 

multiple-template modeling protocols rather than just in single-template modeling (Buenavista et 

al., 2012). Some extra sequence-structure alignment methods were added for IntFOLD3‐TS 

(McGuffin et al., 2015), and it was evaluated in CASP11 while using the same multiple-template 

modeling ranking and ASE scoring protocols of IntFOLD2. 

In every CASP experiment since CASP8, the McGuffin group has used the ModFOLD variants for 

both ranking server models and adding ASE scores for all of their manual target model 

submissions. The IntFOLD server has shown incremental improvements cumulative GDT-TS 

scores and consistent success in the server category, however the main strengths gained have been 

through developments in the ASE scores achieved by ModFOLD. 

In this chapter, we describe each of the major applications of the ModFOLD versions and variants 

throughout the period of this study; we describe the projects where ModFOLD has been involved, 

the way it has been integrated, and the improvements that ModFOLD has made to our 

understanding of protein structures. 

Finally, in this chapter we describe the application of our method in the investigation of the 

Connexin62 complex, which is a new orphan hexametric hemichannel protein that has been found 

to have a fundamental role in the thrombi mechanism in platelets. The protein was uncovered using 

several techniques including ModFOLD. 

 

7.2. IntFOLD 

Over the past 20 years, the community of structure prediction has achieved great advances with 

several major improvements in the TBM, FM and EMA coming in the last few CASP experiments 

(Kryshtafovych et al., 2018) (Abriata et al., 2018). The IntFOLD server components along with 

their upgraded versions have been independently benchmarked in every CASP from CASP9 to the 

latest CASP13 experiments. The methods have also been benchmarked continually by the CAMEO 

project (Haas et al., 2018). Over the years, the improvements of the ModFOLD methods 

specifically have led to our own advances in the IntFOLD server performance, and particularly in 

the ranking of 3D models and ASE scoring improvements (Kryshtafovych et al., 2018) (McGuffin 

et al., 2018). 
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Successive IntFOLD versions have been described and benchmarked in several publications. The 

initial versions were described in the Nucleic Acid Research journal (Roche et al., 2011) and 2015 

(McGuffin et al., 2015). Over the years the IntFOLD server has served more than 15k unique users, 

and it has completed more than 200k predictions since its inception. The component methods of 

IntFOLD server have been developed in order to model the 3D structure of proteins as well as the 

interactions for a diverse range of specialisations across the life sciences. Numerous studies have 

been carried out by researchers using our tools to help them investigate their own proteins of 

interest. For example, modelling novel proteins in the Drosophila melanogaster genome (Dunwell 

et al., 2013); revealing new interactions and mechanisms for the regulation of mammalian GCKIII 

kinases (Fuller et al., 2012) (Sugden et al., 2013), explaining the evolutionary resurrection of 

flagellar motility in Pseudomonas fluorescens (Taylor et al., 2015), annotating the proteome of 

barley powdery mildew structurally and functionally (Blumeria graminis f. sp. hordei) 

(Bindschedler et al., 2011) and understanding the effect of the missense mutation associated with 

dermatosparaxis (Monteagudo et al., 2015). 

There are six component methods that are integrated and can be accessed through the single 

interface of the IntFOLD server. Firstly, IntFOLD-TS, the main tool which predicts the tertiary 

structure of proteins (McGuffin et al., 2018) (Roche et al., 2011) (McGuffin et al., 2015) (McGuffin 

and Roche, 2011) (Buenavista et al., 2012). Secondly, ModFOLD, and this is the key stone for 3D 

model selection and ASE scoring (McGuffin et al., 2018) (Maghrabi and McGuffin, 2017). Thirdly, 

ReFOLD, the tool which refines the proteins after being predicted and quality assessed by 

ModFOLD (Shuid et al., 2017) (Adiyaman and McGuffin, 2019). Fourthly, DISOclust - this tool 

is for predicting the disordered regions in the modelled proteins (McGuffin, 2008) (Atkins et al., 

2015). Fifthly, DomFOLD - this tool predicts the structural domains of the predicted protein models 

(Roche et al., 2011) (McGuffin et al., 2015). Finally, FunFOLD, a tool for ligand binding site 

prediction (Roche et al., 2011) (Roche et al., 2013). Each component method has its own category 

in CASP and has been tested independently with the other competitors of its kind. 

Since its inception, IntFOLD has been through many enhancements to the server methodology, but 

the foundation has always been the TS prediction algorithm with integrated model quality 

assessment at its core (McGuffin et al., 2015). The world leading quality self-estimates and ranking 

have been the key contributing factors to the historical success of the component methods 

(Kryshtafovych et al., 2018) (Kryshtafovych et al., 2018) (McGuffin et al., 2018) (McGuffin and 
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Roche, 2011) (Noivirt-Brik et al., 2009) (Schmidt et al., 2011) (Kryshtafovych et al., 2014) 

(McGuffin, 2009) (Kryshtafovych et al., 2016). 

 

7.2.1. ModFOLD6 in IntFOLD4 

The IntFOLD method (Version 4) integrates the ModFOLD6 (Maghrabi and McGuffin, 

2017) variant, ModFOLD6_rank, for improved selection and ASE scoring. Such an integration has 

given IntFOLD4 significant improvements to be able to compete with and rank among the best 

other servers in the protein prediction field. 

 

7.2.1.1. Methods 

In 2016, the McGuffin group participated in CASP12 with an updated version of IntFOLD, version 

4. This version was developed with the feature of producing results for the TS prediction category 

(including the now mandatory built–in ASE scores). For the local quality assessment predictions, 

each TS model file included predicted distances in the B-factor column. These ASE scores were 

produced by the ModFOLD6 (Maghrabi and McGuffin, 2017) EMA method. (N.B. predictions in 

the EMA/QA category of CASP12 were all also returned by our ModFOLD6 and ModFOLDclust2 

servers, see Chapter 4 for more details). 

The aim of developing the updated IntFOLD4-TS was to gain the ability to identify and then to 

attempt to fix the local errors in an initial pool of single template models via iterative multi-template 

modeling. The technique of this method was built upon our previous CASP successful results in 

accurately predicting local errors in our models (McGuffin and Roche, 2011) - we took the global 

and local per‐residue errors into consideration during the multiple template selection stage 

(Buenavista et al., 2012).The IntFOLD4 pipeline can be broken down into two major stages: (1) 

single template modeling with ASE scoring and (2) QA guided multiple template modeling with 

ASE scoring (Figure 7.1)
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Figure 7.1. Flowchart outlining the principal stages of stages of the IntFOLD4-TS prediction pipeline. Rectangles show processes, parallelograms show 

datasets. The only input is the target sequence. The initial single-template modelling stages start with 14 sequence-structure alignment methods (eight from the 

LOMETS (Wu and Zhang, 2007) package and six others as described in the main text (Zhou and Zhou, 2005) (Söding, 2005) (Margelevicius and Venclovas, 2010) 

(Yang et al., 2011) (Ma et al., 2013). Single‐template models are built from the various alignment methods using MODELLER (Uziela and Wallner, 2016) (creating 

the IntFOLD60, IntFOLD140 model datasets) and then ranked with ModFOLDclust2 (McGuffin and Roche, 2010). LOMETS4.4 is also used to rank the backbone 

models produced by its own component threading methods. The multiple template modelling stages include QA guided multi‐template modelling (using the scores 

from ModFOLDclust2) in order to generate a set of multi‐template models. Additionally, models from HHpred (Meier and Söding, 2015) and I‐TASSER_LIGHT 

(Roy et al., 2010) are added to the final IntFOLD4_multi set for evaluation. The ModFOLD6_rank method (Maghrabi and McGuffin, 2017) is used for ASE and 

final model selection. Adapted from McGuffin et al. (2018).



 

In the first major stage of the single template modelling, the server ran 14 different fold recognition 

methods (in-house), generating up to 10 sequence-to-structure alignments for each method and 

resulting in up to 140 alternative single-template-based models being generated for each CASP 

target. The following fold recognition methods used were: SP3 (Zhou and Zhou, 2005), SPARKS2 

(Zhou and Zhou, 2005), HHsearch (Söding, 2005), COMA (Margelevicius and Venclovas, 

2010), SPARKSX (Yang et al., 2011), CNFsearch (Ma et al., 2013), and the eight alternative 

threading methods that are integrated into the current LOMETS package (Wu and Zhang, 

2007) (PPA, dPPA, dPPA2, sPPA, MUSTER, wPPA, wdPPA, and wMUSTER). In order to assign 

global and local model quality scores at the end of the first stage, all single-template models were 

assessed using ModFOLDclust2 (McGuffin and Roche, 2010). 

For the second major stage, sequence-structure alignments are selected using the single-template 

model quality scores, and other criteria involving template coverage in order to build multiple-

template models (Buenavista et al., 2012). Our overall aim here is selecting appropriate target-

template alignments that would minimise local errors in the final models. There are four main 

alternative alignment selection methods that are included in the MTM stage, they are termed as 

multi1, 2, 3, and 4, and worked mainly in building the 3D model. Firstly, multi1, and this method 

simply used the top 2 alignments according to the template ranking. Secondly, multi2, this used 

the top ranked alignment and any subsequent alignments if there were no less than 40 new residues 

covered, and 20 residues were overlapping. The third method, multi3, used the top ranked 

alignment and any subsequent alignment, but only if the overlapping region was predicted to 

increase local model quality. The fourth method is multi4, and it used the top ranked alignment and 

any subsequent alignments, but only if the coverage was increased by at least once residue. 

Additionally, four variants on these methods (multi5-multi8) repeated multi1-multi4, respectively. 

However, the alignments for each of the single-template methods were firstly reranked based on 

the ModFOLDclust2 predicted global model quality scores. These methods which uses MTM 

approaches were first introduced in our IntFOLD2-TS method. All the methods were described and 

benchmarked in our article which was published in 2012 (Buenavista et al., 2012). The result of 

having these alternative MTM alignment selection methods is generating a new population of up 

to 124 multi-template models for each target. In addition, I-TASSER_LIGHT20 (I-TASSER 4.4 

run in “light mode” with wall-time restricted to 5 h; for sequences < 600 residues) and HHpred21 

were used to generate three models each, which were then added into the final pool of alternative 

multi-template models for ranking. In the final stage, the ~130 models in the final reference set 
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were then evaluated using our ModFOLD6_rank1 (Maghrabi and McGuffin, 2017) QA method, 

and the top five ranked models were submitted as the final IntFOLD4-TS predictions.  

 

7.2.1.2. Results 

Before subjecting IntFOLD4 to blind testing in CASP12, the new method components were 

benchmarked locally in order to confirm the level of their performance as well as consistency. 

Another intention was to check if the new methods were performing better than the older versions 

of server TS methods: IntFOLD2‐TS (Buenavista et al., 2012) and IntFOLD3‐TS (McGuffin et al., 

2015), and QA methods: ModFOLD4 (McGuffin et al., 2013) and ModFOLD5. In CASP11, the 

IntFOLD3‐TS method was used for our server TS predictions and ModFOLD5 (which was similar 

in performance to ModFOLD4) was used in order to select the top server models for our manual 

submissions. 

ModFOLD6_rank was evaluated via in-house benchmarking (Figure 7.2). The method was 

compared with other EMA methods for model selection using data collected from the previous 

CASP. From the results it can be seen that ModFOLD6_rank showed higher cumulative GDT-TS 

scores (∑GDT = 44.42) for model selection than its component methods (Maghrabi and McGuffin, 

2017) (Uziela and Wallner, 2016). ModFOLD6_rank also outperformed the previous versions 

(ModFOLD5_single with ∑GDT-TS = 40.06 and ModFOLDclust2 with ∑GDT-TS = 42.68) of 

ModFOLD which were used in CASP11 for EMA and model selection. 
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Figure 7.2. Benchmarking the performance of QA methods for model selection using CASP11 data, 

prior to CASP12. ModFOLD6_rank versus other global scoring methods: SSA, Secondary Structure 

Agreement; DBA, Disorder B‐factor Agreement; CDA, Contact Distance Agreement (Maghrabi and 

McGuffin, 2017). Cumulative GDT scores for the top selected models from the QA targets (models from 

QA round1 and round2 combined, 84 targets with structure). The maximum possible GDT-TS (MaxGDT-

TS) is the cumulative score obtained by selecting the best model available for every target. The error bars 

show the Standard Error in GDT-TS (σ/√n, where σ is the standard deviation and n is the number of targets 

(84)). Adapted from McGuffin et al. 2018. 

 

After integrating ModFOLD6_rank method within the IntFOLD4-TS pipeline, the server was 

benchmarked against the other prediction methods as well as the previous versions of IntFOLD 

using the CAMEO resource (Haas et al., 2013). Table 7.1 shows a direct comparison of the 

performance between all servers including the previous IntFOLD versions. The results of 12 

months of data and a common subset of 500 targets from CAMEO-3D shows that IntFOLD4-TS 

outperformed all servers except Robetta. (more comparisons between IntFOLD4-TS and Robetta 

are shown in Appendix 10. The 6 months of data from CAMEO analysis also shows the same 

server performance ranking (Appendix 11). Additionally, ModFOLD6 server is benchmarked 

separately with CAMEO-QE in terms of ASE/local score predictions. This continuous 

benchmarking confirms that ModFOLD6 outperformed the older versions of ModFOLD as well as 

most other EMAs. 
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 Average lDDT Average CAD score Average lDDT‐BS 

Server Name Dif. Ref. Dif. Ref. Dif. Ref. 

Robetta −1.63 70.9 −0.02 0.7 2.73 68.86 

IntFOLD4‐TS 0 69.27 0 0.68 0 71.6 

RaptorX 0.82 68.45 0 0.67 4.36 67.24 

IntFOLD3‐TS 1.74 67.53 0.02 0.66 3.02 68.57 

IntFOLD2‐TS 1.98 67.28 0.02 0.66 2.64 68.96 

HHpredB 2.09 67.17 0 0.67 2.59 69.01 

SWISS‐MODEL 3.82 65.44 0.04 0.64 1.1 70.5 

SPARKS‐X 5.26 64.01 0.03 0.64 5.54 66.06 

Princeton_TEMPLATE 9.36 59.91 0.09 0.59 15.14 56.46 

NaiveBLAST 11.57 57.7 0.12 0.56 11.15 60.45 

Table 7.1. Performance of IntFOLD4‐TS versus other servers. CAMEO‐3D: Common Subset 

Comparison, 1‐year Performance (2016–05‐13 to 2017–05‐06) (500 targets to 10 methods). IntFOLD4-TS 

is the reference server. Data are from http://www.cameo3d.org/. The table is sorted by difference in Average 

lDDT score. Adapted from McGuffin et al. (2018). 

 

7.2.2. ModFOLD7 in IntFOLD5 

For version 5 of the IntFOLD server, the algorithms for both 3D model selection and ASE scoring 

have been upgraded via the integration of our new ModFOLD7_rank method. 

 

7.2.2.1. Methods 

For CASP13, the newly upgraded IntFOLD5-TS was developed and prepared to be working via 

iterative multi-template-based modelling (Buenavista et al., 2012) using the target-template 

alignments from the 14 alternative methods, SP3 (Zhou and Zhou, 2005), SPARKS2 (Zhou and 

Zhou, 2005), HHsearch (Söding, 2005), COMA (Margelevicius and Venclovas, 2010), SPARKSX 

(Yang et al., 2011), CNFsearch (Ma et al., 2013), and the eight alternative threading methods that 

are integrated into the current LOMETS package (Wu and Zhang, 2007), identical to the IntFOLD4 

server first stage. The ASE scoring via ModFOLD7_rank method (rather than ModFOLD6_rank) 

then was used to select the multiple target-template alignments for 3D modelling with the aim of 

minimising local errors in final generated models. In addition, the HHpred method (Meier and 

Söding, 2015) and the template free method I-TASSER light (Roy et al., 2010) (for sequence <500 

residues; run in ‘light mode’ with wall-time restricted to 5h) were utilised to contribute models for 

http://www.cameo3d.org/
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ranking. All the final decoy models then were then pooled, scored and ranked using the 

ModFOLD7_rank method. The outputted data then presented to the user in descending order 

showing the global model quality. The produced PDB formatted model files then incorporated the 

ASE scores in the temperature factor column. By integrating ASE scores directly into the PDB 

formatted model files, users are able to view the local model quality as a temperature gradient that 

can be mapped onto their 3D models conveniently using their favourite molecular viewing 

software, such as PyMOL (http://www.pymol.org/). 

The main factor behind the improvement in the IntFOLD5 prediction accuracy lies in the latest 

update to the QA method, ModFOLD7_rank, which combines the strengths of multiple pure-single 

and quasi-single model methods together - the same successful approach that led to the success of 

ModFOLD6 (Elofsson et al., 2018) (McGuffin et al., 2018) (Maghrabi and McGuffin, 2017). The 

major emphasis for the IntFOLD5 server was the noticeable increase in the performance of per-

reside accuracy prediction for our own models, as well as improving our model ranking and score 

consistency for our models. Each IntFOLD5 model was considered individually using 6 pure-single 

model methods:CDA (Maghrabi and McGuffin, 2017), SSA (Maghrabi and McGuffin, 2017), 

ProQ2 (Uziela and Wallner, 2016), ProQ2D (Uziela et al., 2017), ProQ3D (Uziela et al., 2017) and 

VoroMQA (Olechnovič and Venclovas, 2017); and four alternative quasi-single model methods: 

DBA (Maghrabi and McGuffin, 2017), MF5s (Maghrabi and McGuffin, 2017), MFcQs (Maghrabi 

and McGuffin, 2017) and ResQ (Yang et al., 2016). Neural networks were then used for combining 

the component per-residue/local quality scores from each of the 10 alternative scoring methods. 

The combination resulted in a final consensus of per-residue quality scores for each model. To 

produce the global score outputs, several variants which combined the mean global scores from the 

different methods were made, and each were optimised for different aspects of the quality 

estimation problem. Obtaining the most accurate selection of top models produced by IntFOLD5 

was the main objective. Therefore, the integration of the ModFOLD7_rank variant was applied in 

order to support optimisation for ranking.  

Additionally, several new user interface upgrades were implemented for IntFOLD in parallel with 

the performance enhancement. The upgrades included a streamlined submission form, recalibrated 

P-values for confidence scoring of model quality estimates, the ability to download compressed 

archives of all annotated models, and the ability to interact with models and then further refine 

them with a few clicks via simple push buttons. 

http://www.pymol.org/
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7.2.2.2. Results 

By analysing the results produced from CASP9 until CASP13, it can be noticed that the 

performance for the major versions of the IntFOLD component methods in each of the relevant 

categories has remained competitive throughout (McGuffin et al., 2018) (McGuffin and Roche, 

2011). The recent results showed that the component methods of IntFOLD have ranked among the 

top independent servers in the TS prediction category, the EMA category (Kryshtafovych et al., 

2018), and historical categories of intrinsic disorder structure and function prediction (Noivirt-Brik 

et al., 2009) (Schmidt et al., 2009). A significant boost in performance was obtained over 

DISOPRED (McGuffin, 2008) by designing the DISOclust component method and integrating its 

latest version with the IntFOLD server. The IntFOLD5 server and its components have also been 

benchmarked continuously using the CAMEO resource (Haas et al., 2018), which has 

demonstrated high performance in each respective category (see results from the 3D, QE and LB 

categories at https://www.cameo3d.org/). The FunFOLD component has also been benchmarked 

during the most recent CAFA experiment (https://www.biofunctionprediction.org/cafa/, paper in 

preparation) 

Principally, the CAMEO project focuses on the continuous evaluation of the TS predictions from 

publicly available servers. The TS predictions of the IntFOLD versions have shown a consistent 

ranking among the top few public servers according to lDDT_BS scores and lDDT scores. From a 

3-month data for all targets represented in Table 7.2, it can be seen that IntFOLD5-TS ranked as 

the top publicly available method. Also, another evaluation based on pairwise comparisons using 

a common subset of targets over the last year (Appendix 12 and 13) showed that IntFOLD5-TS 

ranks as the second-best 3D server according to the lDDT scores. 

  

https://www.cameo3d.org/
https://www.biofunctionprediction.org/cafa/
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 Average lDDT Average lDDT-BS 

Server name  All targets Modelled targets All targets Modelled targets 

IntFOLD5-TS  68.04  68.04  70.94  70.94  

RaptorX  67.38  67.38  68.45  68.45  

Robetta  65.51  69.1  63.24  66.11  

HHpredB  64.06  64.06  68.59  68.59  

SWISS-MODEL  62.22  62.97  64.85  65.56  

IntFOLD4-TS  55.02  68.1  58.12  73.25  

SPARKS-X  54.63  60.7  58.07  66.78  

M4T-SMOTIF-TF  54.45  60.77  62.92  65.78  

IntFOLD3-TS  53.75  66.85  55.76  69.33  

PRIMO  51.74  57.48  58.32  64.65  

PRIMO_BST_CL  51.71  57.45  58.32  64.65  

NaiveBLAST  50.34  55.69  60.08  62.11  

PRIMO_BST_3D  49.83  55.86  57.99  63.51  

PRIMO_HHS_3D  48.27  55.87  56.49  62.62  

PRIMO_HHS_CL  46.73  56.43  55.55  61.58  

Princeton_TEMPLATE  24.46  54.61  25.63  58.95  

Phyre2  24.06  52.77  29.27  67.31  

Table 7.2. Independent benchmarking of tertiary structure predictions with CAMEO 3D data.  

Performance results for 3 months of data (26 October 2018 to 19 January 2019) are shown for all 250 targets 

and all 17 public methods. Data are sorted by average lDDT score for all targets. The scores for the 

IntFOLD-TS methods are indicated in bold. Data are taken from the CAMEO 3D front 

page http://www.cameo3d.org/ on 19 January 2019. Adapted from McGuffin et al. (2018). 

 

From the represented results above, we can see that IntFOLD5-TS has been improved in 3D protein 

modelling performance. The recent progress in the server has given it the strength to significantly 

perform better than all the competitive servers in the predicting field. The IntFOLD5-TS was also 

evaluated with its previous versions and was verified to be an improvement over both IntFOLD3-

TS and IntFOLD4-TS (Table 7.3).  

  

http://www.cameo3d.org/
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 Avg. lDDT Avg. CAD-score Avg. lDDT-BS 

Server Name  Dif.  Ref.  Dif.  Ref.  Dif.  Ref.  

IntFOLD5-TS  0  67.72  0  0.67  0  71.86  

IntFOLD4-TS  0.53  67.18  0  0.66  0.23  71.62  

IntFOLD3-TS  2.11  65.61  0.02  0.65  1.9  69.96 

Table 7.3. Independent benchmarking of IntFOLD versions with CAMEO 3D data. The data shows 

the sequential improvement in server performance since the last webserver paper describing IntFOLD3. 

Performance results for 1 year of data (26 January 2018 to 19 January 2019) are shown for a common subset 

of 581 targets. The reference method is IntFOLD5-TS, and the table is sorted by average lDDT. Data are 

downloaded from http://www.cameo3d.org/ . Adapted from McGuffin et al. (2018). 

 

7.3. WeFold 

A large number of web-based efforts were initiated to promote collaboration within and outside 

the community of CASP, so that it will be an attraction for researchers from other fields to 

contribute new ideas to it, one of these efforts was called WeFold. It is a coopetition (cooperation 

and competition) organisation found in 2012, and its goal is to build a mixed pipeline by recruiting 

members who have already been participating in CASP as individual teams. By attracting 

predictors to WeFold they can share components of their methods with other teams in one hybrid 

pipeline to actively contribute to this project. The organisation asserts that the scale and diversity 

of integrative prediction pipelines could not have been achieved by any individual lab or even by 

any collaboration among a few partners. All the models contributed and generated through the 

created pipelines from all the participating groups are publicly available at the WeFold website. 

Such a collaboration has created a huge amount of information and a wealth of data that remains 

to be tapped. 

 

7.3.1. Methods 

The main objective for WeFold is to provide a flexible infrastructure for prediction experts to be 

able to create hybrid pipelines, which may have different approaches of their model quality 

assessment, refinement and other components of methods (e.g. Figure 7.3 shows the pipelines that 

start with Rosetta decoys). After creating these hybrid pipelines, they participate in CASP as groups 

to allow the overall performance to be submitted under an objective and coherent manner of 

evaluation along with all the other CASP participants. Thereby, the developed methods can be 

http://www.cameo3d.org/
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applied to a variety of inputs sources and the utility of its outcome can be tested within a variety of 

pipelines.  Furthermore, the project aims to document the entire information flow through this 

infrastructure, to have a result of a data source for the development of methods, which tackle sub-

problems of proteins structure prediction. The WeFold community is still growing, and its 

infrastructure needs a community of users in order to accomplish its goals. Up until now, the 

organisation pursued an inclusive approach, which brought different protein modelling groups who 

have already participated in CASP. This approach makes WeFold inclusive and allows predictors 

to reach out to raise awareness and excitement, beyond the CASP community. The WeFold project 

also aims to act as an incubator for new ideas. In fact, a number of non-CASP groups have been 

recruited to the WeFold efforts and have been co-authors of our manuscripts. Some other members 

have been working on more blue-sky innovative methods for the upcoming CASP exercises 

(Mirzaei et al., 2016) (Corcoran et al., 2018). 
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Figure 7.3. An illustration of the WeFold pipeline concept. The figure presents a schematic 

depiction of 5 of the WeFold3 pipelines, which share their first components and differ in the final 

stages.  Rounded rectangles represent information and plain rectangles represent basic tasks, each 

of which is an open computational problem. A prediction process starts with a protein sequence, 

passes at least once through a set of decoys (structural models of proteins), and ends with a short 

list, ideally one, of high score decoys. Adapted from Keasar et al., (2018). 
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The protein structure prediction category in CASP was the main focus for the WeFold project. 12 

different pipelines were recruited to take part in the 3rd iteration of WeFold protein structure 

prediction project (Figure 7.3). The groups participated with their main components which 

included: three major model (or decoy) generators (Rosetta, UNRES, and the CASP12 servers) 

(Rojas et al., 2008) (Song et al., 2013) (Bradley et al., 2005), two contact prediction methods 

(GREMLIN and Floudas) (Kamisetty et al., 2013), one secondary structure prediction method 

(conSSert) (Kieslich et al., 2016), one clustering algorithm (Murtagh, 1985), three refinement 

methods (Princeton_TIGRESS, GalaxyRefine, and 3Drefine) (Khoury et al., 2014) (Lee et al., 

2016) (Bhattacharya and Cheng, 2013), and seven QA/selection methods (APOLLO, MESHI-

score, MESHI-MSC, ModFOLD6, MUFold, ProQ2, and Seder (Mirzaei et al., 2016) (Wang et al., 

2011) (McGuffin, 2008) (Ray et al., 2012) (Faraggi and Kloczkowski, 2014) (Maghrabi and 

McGuffin, 2017) (Zhang et al., 2011). The WeFold organisers then decided to compare QA/scoring 

methods fairly by applying them to the same decoys sets. Thus, wfRosetta-MUfold, wfRosetta-

ProQ-MESHI, wfRosetta-ProQ-MESHI-MSC, wfRosetta-ProQ-ModF6, wfDB_BW_SVGroup, 

and wfRosetta-Wallner started with the same set of Rosetta decoys and wfMESHI-

Seok and wfMESHI-TIGRESS started with the same subsets of server decoys selected by MESHI. 

Moreover, wfRosetta-ProQ-MESHI and wfRosetta-ProQ-MESHI-MSC also used the same set of 

decoys and features to strictly compare two scoring functions (Mirzaei et al., 2016). With regards 

to decoys reduction needed to reduce the large set of Rosetta decoys to a manageable size for 

refinement and QA, the organisers replaced the filtering and clustering procedure that we had used 

in WeFold2 for the Foldit decoys, by ProQ2. 

 

7.3.2. Results 

Several WeFold3 pipelines of methods were developed, built and prepared for the participation in 

the CASP12 experiment. Each pipeline method was then independently benchmarked against the 

top protein predictors in CASP12. Several pipelines were competitive in the different target 

categories, giving an impressive scoring compared to most of the participating groups. 
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Figure 7.4. Average z-scores (>−2.0) of the 20 top CASP12 groups. WeFold pipelines are marked with 

asterisks (Black = wfAll-Cheng; Red = wfMESHI-TIGRESS; Orange = wfMESHI-Seok; Light 

green = wfRstta-PQ2-seder; Dark green = wfRstta-PQ-ModF6; Light blue = wfRosetta-MUFOLD; Dark 

blue = wfRstta-PQ-MESHI-MSC; Purple = wfRosetta-PQ-MESHI). The results of MESHI and BAKER-

ROSETTASERVER are marked by black circle and triangle respectively. Only those groups that submitted 

models for at least half of the targets are considered. Chart on the left shows top 20 groups/servers when 

considering the best model submitted by each group for each target. Chart on the right shows top 20 

groups/servers when considering Model 1 only. CASP assessors used GDT-HA + ASE only for TBM targets 

hence the double depicting of that category. 

Source: http://www.predictioncenter.org/casp12/zscores_final.cgi. Adapted from Keasar et al., (2018). 

 

http://www.predictioncenter.org/casp12/zscores_final.cgi
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Following a benchmarking analysis, the results showed significant scores in 4 groups of WeFold 

among the top 20 CASP12 groups/servers, as shown in the top panel of Figure 7.4. The comparison 

was carried out according to average GDT-TS z-scores > -2 when considering all 3 categories 

(template-based modelling, template-based modelling/free modelling, and free modelling), and 

only those groups that submitted models for at least half of the targets. The chart on the left-hand 

side shows the top 20 groups/servers when considering the best model submitted by each group for 

each target and the chart on the right-hand side shows top 20 groups/servers when considering 

Model 1 only. 

Many WeFOLD3 pipelines gained a better performance than the original pipelines that they were 

built from. Such these pipelines are those which were built based on MESHI selection, wfMESHI-

TIGRESS and wfMESHI-Seok. These methods benefited from the top performance of the MESHI 

group and one of them (wfMESHI-TIGRESS) slightly outperformed MESHI when considering the 

best model submitted by each group. Another group called wfAll-Cheng, which used all the models 

shared by all the WeFold3 groups but usually selected models from the MESHI-based groups (as 

shown in Appendix 14) ranked 13th in both cases, when considering the best model and model 1 

only. This method showed a significant improvement with respect to its own performance in 

CASP11 when it ranked 47th. Of the Rosetta-based teams, none ranked among the top 20 when 

considering the best model submitted. Finally, group wfRstta-PQ2-Seder, which uses a mix of 

Rosetta and server models, also ranked among the top 20. In the next sections, we analyze the 

performance of the WeFold3 pipelines in the 3 subcategories TBM, TBM/FM, and FM. 

In the TBM category, the target proteins are those for which a relationship could be detected by 

distant sequence similarity searches providing one or more-fold templates. Panel 2 and 3 in Figure 

7.4 shows the top 20 ranking CASP12 groups/servers when considering the average z-scores of 

both the assessors formula and GDT-TS, respectively. The CASP12 assessors used GDT-HA + ASE 

for the assessment of models in this category. ASE is defined as 𝐴𝑆𝐸 = 100.0 ∗ (1 −

𝑀𝑒𝑎𝑛(|𝑆(𝑡𝑓𝑖 |𝑑0) − 𝑆((𝑑𝑖|𝑑0)|) where 𝑡𝑓𝑖  is the temperature factor of i-th residue in the model, 

and 𝑑𝑖  is the distance between i-th residues in lga alignment (sequence dependent mode) 𝑆(𝑥) =

1/(1 + 𝑥2), and 𝑑0  is the scaling factor, set 𝑑0 = 5.0 

(http://www.predictioncenter.org/casp12/doc/help.html#ASE). 

The results from the above charts illustrate that focusing on either GDT-TS or ASE produced 

different results. In fact, when considering the assessors formula, two WeFold pipelines ranked 

http://www.predictioncenter.org/casp12/doc/help.html#ASE
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among the top 20: wfRosetta-ProQ-ModF6 and wfAll-Cheng. It can be noticed that wfRosetta-

ProQ-ModF6 selected best 5 models among the models generated by the BAKER-

ROSETTASERVER and neither the BAKER-ROSETTASERVER nor the BAKER group are 

among the top 20 in this category. The high performance of the wfRosetta-ProQ-ModF6 group was 

mainly due to accurate ranking and ASE using the ModFOLD6_rank method (Maghrabi and 

McGuffin, 2017). On the other hand, when using GDT-TS values, the two MESHI-based groups 

and wfAll-Cheng ranked among the top 20 when considering both the best model among the 5 

submitted and model 1. wfMESHI-Seok showed better results in TBM category than in other 

categories probably because the refinement method was originally trained to improve template-

based models. 

 

7.4. Modelling Connexin62 to understand the haemostasis mechanism in platelets 

In numerous mammalian cells, 1536 proteins have been found to be expressed in their plasma 

membrane, 297 of them are oligomerising into hexameric hemichannels making what we call it 

“cellular gap junctions” (Giepmans and van IJzendoorn, 2009). A large family of these types of 

proteins is called Connexins. Connexin proteins (a.k.a. Cx) are constructed as hexameric 

hemichannels on adjacent cells dock together to form gap junctions (GJs). These gap junctions 

facilitate the direct trafficking of molecules whose size are approximately less than 1 kDa. This 

trafficking occurs between cells, so the molecules would travel from one cell to another through 

these Connexins, they also serve in allowing coordinated responses between cells in tissues. For 

example, the human platelets have the C37 and Cx40 from the connexin family. They are expressed 

in human platelets for the function of selective inhibition. Several studies have reported that the 

presence of connexins in platelets is essential for the formation of gap junctions within platelet 

thrombi as they are required for the control of clot retraction. The same species are having another 

function which is the selective deletion in transgenic mice attenuates platelet (Vaiyapuri et al., 

2012). 

In this study, the expression of an orphan connexin termed Cx62 in human and mouse platelets 

(Cx57, mouse homologue) was identified by our collaborators by using two techniques, the 

Western Blot and the Immunocytochemistry. A mimetic peptide, called 62Gap27, was developed 

that targets the second extracellular loop of Cx62 to reduce the hemichannel permeability and GJ-

mediated intercellular communication.  In the study, we applied an in silico 3D modelling of the 
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hemichannel and prediction of the 62Gap27 peptide interaction site. The 3D models corroborate the 

experimental observations and suggest a structural explanation for the observed changes in 

permeability caused by the mimetic peptide. Several features of agonist-induced platelet activation, 

including aggregation, degranulation, fibrinogen binding to integrin αIIbβ3, Ca2+ mobilisation and 

integrin αIIbβ3 outside-in signalling (which controls clot retraction and spreading), were inhibited 

by 62Gap27 compared to scrambled peptide control. Thrombus formation (in vitro and in vivo) and 

tail bleeding were also significantly inhibited by 62Gap27 when it was injected via femoral vein 5 

minutes before 1mm of tail tip was removed using a scalpel blade, and the tail tip was placed in 

sterile saline at 37°C. The time to cessation of bleeding was measured up to 10 min. Anti-platelet 

and anti-thrombotic activity of the 62Gap27 peptide was found to be associated with reduced 

platelet signalling events, including tyrosine phosphorylation of key platelet signalling components 

and inhibition of PKC activity. Analysis of VASP phosphorylation identified that treatment of 

62Gap27 was found to increased PKA activation in both resting and activated platelets in a cAMP-

independent manner. This study identifies Cx62 and Cx57 are expressed in human and mouse 

platelets, respectively, where they play a fundamental role in platelet function, thrombus formation. 

 

7.4.1. Methods 

Obtaining the complete sequence of Cx62 was through the online server GenBank (Sayers et al., 

2019), and ProPram (Wilkins et al., 1999) was utilised for the physio-chemical analysis. State-of-

art structure prediction tools were employed due to the absence of the experimental structures. 

From the IntFOLD server (McGuffin et al., 2015), IntFOLD4-TS method (McGuffin et al., 2018) 

was utilised for the tertiary structure models prediction of the Cx62 protomer (monomeric subunit).  

In addition, the new conformations of the full-length Cx62 protein model were evaluated in terms 

of its stereochemical quality assessment using ModFOLD6 (Maghrabi and McGuffin 2017). The 

evaluation and validation were performed firstly after designing the first model, and then before 

and after the assembling and refinement steps to check the quality of its structure giving the local 

and global scores. The designed Cx62 hemichannel was superposed with the reference to test the 

construction accuracy using TM-align algorithm (Zhang and Skolnick 2005). The docked 

hemichannels model output from PISA was edited by rotating the hemichannels against each other 

in order to correct their positions so that it matches the same design of the 12-mer structure of other 

studies (Maeda et al., 2009) (Nakagawa et al. 2010). 



Chapter 7 

 

 
190 

Due to the lack of an existing Cx62 targeting peptide, a mimetic peptide Gap27 was designed so 

that it can target the second external loop of Cx62 specifically. Moreover, the second external loop 

for most of the hemichannels has been commonly targeted while designing Gap27 mimetic peptide. 

Therefore, a multiple sequence alignment of human connexin sequences was performed using 

ClustalW (Larkin et al. 2007) in order to prevent any cross-reactivity of the designed mimetic 

peptide with other Cx molecules. Post multiple sequence alignments, a selective 62Gap27 was 

designed with the feature of preventing the possibility in targeting any connexin member except 

Cx62. To exclude any false positive data, a negative control (scrambled peptide) was designed 

using a web-server tool based on the Mimotopes method (Geysen et al., 1986). Blast (Altschul et 

al., 1990) test was also performed to ensure that the designed 62Gap27 is not present in proteins 

other than Cx62. The structure of the inhibitor 62Gap27 was predicted using PEP-FOLD3 

(Lamiable et al., 2016).  

Subsequently, protein-ligand docking was performed to predict the most likely interactions that 

could occur between Cx62 and the 62Gap27 inhibitor, this step was carried out using the SwissDock 

server (Grosdidier et al., 2011). The FullFitness and Gibbs free energy (ΔG) score of each run of 

the docking were evaluated and the final ranking of each cluster was based on the FullFitness 

scores. 

The Cx62 hemichannels (2x 6-mers) were successfully modelled using the PDB entry 2zw3 as a 

template. The docked hemichannel assembly (12-mer) template for PDB ID 2zw3 was downloaded 

from PISA (Krissinel and Henrick, 2007) service at the EBI 

(http://www.ebi.ac.uk/pdbe/prot_int/pistart.html). For each hemichannel, the template was used to 

orientate six of the modelled protomers by a six-fold symmetry axis perpendicular to the membrane 

plane and build the complete model of the docked hemichannel (12-mer) complex. Residues in the 

modelled protein-protein and protein-ligand complexes were considered to be interacting if the 

distance between the closest heavy atoms (i.e. non-hydrogen) in the residues belonging to different 

chains was <= 5Å. 

 

7.4.2. Results 

The Cx62 sequence has 543 amino acid residues, with a calculated molecular mass of 62 kDa and 

a pI of 7.89. The instability index of Cx62 is computed to be 60.31 (ProtParam), which classifies 

http://www.ebi.ac.uk/pdbe/prot_int/pistart.html
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it as an unstable protein overall. This is due to a long C-terminal disordered region revealed by the 

structure prediction results presented below.  

The 3D model of Cx62 predicted using the IntFOLD server reveals a protomer (monomer subunit) 

consisting of four transmembrane helices, two extracellular loops, a small bended N-terminal helix, 

cytoplasmic and C-terminus loops, forming a typical four-helical bundle in which any pair of 

adjacent helices are antiparallel (Figure 7.5a and 7.5b). The ModFOLD6 global 3D model quality 

score for the full-length protein was calculated as 0.43 (p < 0.01; less than a 1 in 100 chance of an 

incorrect model). The ModFOLD6 quality score increases to 0.57(p < 0.001; less than a 1 in 1000 

chance of an incorrect model) when the long-disordered C-terminal loop is excluded. The 

calculated local (or per-residue) errors from ModFOLD6 were mapped onto the model using the 

temperature colouring scheme ranging from blue (indicating residues modelled with high quality) 

to red (indicating residues with lower model quality, which are often more flexible or disordered) 

(Figure 7.5a). Such results indicate that the ordered regions of the Cx62 structure were generally 

modelled with high confidence.  
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Figure 7.5. Design of the 62Gap27 mimetic peptide and its role in the regulation of intercellular 

communication. (A) Predicted 3D model of the Cx62 tertiary structure. The cartoon view of the structure 

is coloured using the temperature colouring scheme, where blue indicates ordered regions with low 

ModFOLD predicted per-residue errors and red indicates high per-residue errors and more flexibility. (B) 

Schematic representation of the designed 62Gap27 binding site on Cx62. Topological diagram of the Cx62 

protomer, the predicted binding site (BS) is highlighted in orange. (C) Structural representation of the target 

region where the 62Gap27 mimetic peptide was designed, and the putative binding site of the inhibitor on 

Cx62. (D) Surface representation of Cx62 hemichannels being targeted by 62Gap27 showing the pore cross 

section and side views respectively. (E) The efflux of calcien was calculated using flow cytometric analysis. 

Calcein loaded platelets incubated with 62Gap27 or scrambled peptide (100 μg/ml) were stimulated with 

thrombin (0.1 U/ml). Histograms of calcein fluorescence for unstimulated (green), and thrombin-stimulated 

platelets in the presence of scrambled (blue) or 62Gap27 (100µg/ml) (orange) (n=4). (F) Calcein efflux 

following thrombin stimulation for varying time periods was measured by the rate of fluorescence reduction 

in platelets. Median fluorescence intensity for unstimulated and stimulated samples treated with scrambled 

or 62Gap27 was analysed (n=4). (G) Calcein loaded platelets were treated with scrambled or 62Gap27 

(100µg/ml) for 5 minutes prior to their stimulation on fibrinogen and collagen-coated coverslips and FRAP 

analysis was performed. Representative images represent fluorescence recovery (Pre-bleach, At-bleach and 

Post-bleach) in samples treated with scrambled or 62Gap27. (H) Quantified data shows mean fluorescence 

recovery intensity of scrambled and 62Gap27 treated samples and normalised to the level of fluorescence 

at bleach point (shown in red circle) (n=5). (I) Inter-protomer interactions. The hemichannel formed by six 

protomers of Cx62 is shown in grey cartoon view, the sidechains in the zoomed views are shown as sticks 

with brown and yellow colours to differentiate between the residues of interacting protomer pairs. (J) 

Modelled intercellular interactions between docked hemichannels. In the left-hand panel, a Cx62 gap 

junction channel is shown. The region enclosed by dashed lines is sectioned perpendicular to the pore axis 

and is viewed from the pore axis (right-hand panel). The interactions between the 2 docked hemichannels 

(the first external loop (E1) and the second external loop (E2) regions) are depicted in the close-up images. 

In region E1, Gln58 forms symetrical hydrogen bonds with the same residue from the opposite protomer 

while Asn55 forms a hydrogen bond with Arg57 in the opposite protomer. In region E2, Asn196 and Asp199 

form hydrogen bonds with the same residues on the opposite protomer. Data represent Mean ± SEM, 

****P˂0.0001 was calculated by two-way ANOVA. 
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The tertiary structure models of Cx62 were subsequently used as targets for in silico docking of 

the designed mimetic peptide and for quaternary structure assembly of the docked hemichannel 

complex (Figure 7.5D, 7.5I and 7.5J). To confirm the molecular interactions that occur between 

Cx62 and 62Gap27 inhibitor, single ligand docking prediction was performed using SwissDock. 

The protein-ligand docking results from SwissDock revealed a number of alternative sites for the 

62Gap27 inhibitor binding to Cx62. The output showed the most favourable binding locations for 

the 62Gap27 inhibitor based on FullFitness score and cluster formation. Six clusters contained 

ligand poses in approximately the same location at the end of the second external loop (Figure 7.5B 

and 7.5C), corroborating the experimental results. For the most favourable interaction, the docking 

results gave a FullFitness score of -3210.54 kcal/mol and an estimated Gibbs free energy (ΔG) of 

-6.27 kcal/mol. 

While Gap27 peptides are used widely to explore connexin function, the exact mode of action was 

not clearly understood. It is believed that they induce a conformational change in hemichannel (or 

gap junctions) and also modulate the docking of two complementary hemichannels to form a gap 

junction, thereby regulating permeability of the pore  (Leybaert et al., 2003; Vaiyapuri et al., 2015; 

Vaiyapuri et al., 2012). Professor Jon Gibbin’s team performed flow cytometry to investigate this 

in calcein-loaded platelets where efflux of calcein (anionic 0.62 kDa fluorescent dye) from the 

platelet cytosol was measured (Figure 7.5E, 7.5F). Upon stimulation with thrombin, calcein 

associated fluorescence decreased in scrambled peptide treated cells by ~50%, indicating a release 

of dye. The treatment of platelets with 62Gap27 prevented this loss of fluorescence. This indicates 

a role for Cx62 hemichannels in regulating platelet permeability and/or platelet activation. 

 

7.5. Conclusion 

In this chapter, we have presented the applications of ModFOLD6 and ModFOLD7 during the 

project of this Ph.D. study. IntFOLD was the method which gained the largest benefits from this 

application. It was seen that after integrating ModFOLD6 and ModFOLD7 to our latest versions 

of IntFOLD, the predicting methods has been noticeably improved. When ModFOLD6 was applied 

in IntFOLD4, the method showed a significant improvement over the previous versions as well as 

its other competitive predicting methods. With IntFOLD5, the integration of ModFOLD7 has 



Chapter 7 

 

 
195 

strengthen the method making it more maintained in terms of competitiveness, and more 

confidence in terms of model scores and ranking. 

Another application of our EMA methods was for the success in the participation with WeFold3. 

Official scoring exams have showed that WeFold3 pipelines were ranked among the top 10 

predicting methods in the TBM category. They performed well with most of the targets, and the 

credits went to the quality assessment part of the methods led by ModFOLD6. 

Finally, we saw that ModFOLD also helped in the huge project of Connexin62. The method with 

its integration to IntFOLD has managed to reveal the closest-to-native structure of the Cx62 despite 

that the protein structure was challenging since having too many disordered regions in it. Our 

methods have also succeeded in predicting the structure of the ligand 62Gap27 which was used for 

further studies in the project showing some interesting results. 

Such applications in the latest versions of IntFOLD4 and IntFOLD5, the participation in WeFold 

version 3, and the confirmation of the novel orphan Cx62 has also given us the opportunity to study 

our method more practically, knowing by that the strong and confident sides as well as the 

weaknesses in order find a better way of improving it. ModFOLD has also got its popularity 

through such applications, and therefore, became more famous for use internationally.
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8.1. Synopsis of studies 

8.1.1. ModFOLD6 optimisation and the participation in CAMEO and CASP12 

This study focused on the importance of having methods that reliably estimate the likely similarity 

between the predicted and native structures of proteins for driving the acceptance and adoption of 

3D protein models by life science community. The main aim of the initial study was to gain an 

improvement in the performance of the currently available model quality assessment method, 

ModFOLD6. It was the latest version of the leading resource for Estimates of Model Accuracy. 

The ModFOLD6 method was benchmarked in the first step of the study with a number of the top 

ranked model quality assessments programs, which were selected and revised to reflect the actual 

performance of ModFOLD6. For the initial part of the study, a correlation analysis was carried out 

between predicted quality scores from the selected methods, including ModFOLD6, and standard 

observed scores from four measuring methods, and the correlation was carried out using three 

correlation coefficients. 

Further, ModFOLD6 was optimised to use a pioneering hybrid quasi-single model approach. The 

server was designed to be able to integrate scores from three pure-single model methods and three 

quasi-single model methods using a neural network for the estimation of local quality scores. 

Moreover, the ModFOLD6 server interface was designed to provide three options for producing 

global score estimates, depending on the requirements of the users: (i) ModFOLD6_rank, which is 

optimised for ranking/selection, (ii) ModFOLD6_cor, which is optimised for correlations of 

predicted and observed scores and (iii) ModFOLD6 global for balanced performance.  

When the ModFOLD6 method was optimised and was ready for testing, the server was registered 

for participation in the biggest independent blind testing experiment, CASP. It was the 12th season 

of CASP (in 2016) at the time of ModFOLD6 development. The ModFOLD6 variants were tested 

and ranked among the top few for EMA methods. The CASP12 experiment showed us some very 

interesting results, which were then used for the next parts of this study. 

The ModFOLD6 server was also continuously automatically evaluated as part of a large-scale 

protein structure prediction project called CAMEO. The results showed significant improvements 

after optimisation, and performance gains were observed compared to the other EMA methods as 

well as our previous versions of ModFOLD. The ModFOLD6 server is freely available at: 

https://www.reading.ac.uk/bioinf/ModFOLD/ModFOLD6_form.html. 

https://www.reading.ac.uk/bioinf/ModFOLD/ModFOLD6_form.html
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8.1.2. RSNNS and TensorFlow DANNs 

For the third chapter of this thesis, two different deep neural network tools were trialled (each tool 

at a time) in order to combine the selected EMA methods for the purpose of gaining further 

improvements in the ModFOLD6 method. Both NN techniques used the MLPs class of 

feedforwarding artificial neural networks, and they differed in terms of their complexity.  

Previously, the selected methods including ModFOLD6 were evaluated individually as well as in 

combinations using simple mean scores and multiple linear regression. Subsequently, the two 

different NN packages, RSNNS and TensorFlow were deployed in separate pipelines in order to 

explore the efficiency that could occur when integrating these different tools. 

The results showed that integrating the simple MLPs effected our method when it was tested for 

correlation between the predicted score and the true score. ModFOLD6 with the integration of the 

RSNNS neural networks outperformed the other top selected methods. 

However, it was noticed that the ModFOLD6 method was not showing any better performance 

with the deep MLPs in the correlation measurement. Contrarily, when we look at the highest ranked 

models a measurement, we can see that integrating TensorFlow to our method increases its 

performance making ModFOLD6 able to outperform most of the other EMA methods. 

The study showed the potential in using standard shallow as well as deep artificial neural networks, 

and the effects of learning techniques in optimising model quality assessment programs. It also 

offered suggestions as to how the deep learning methodology could be modified in order to improve 

the NN ability of predictions. 

 

8.1.3. DANNs parameterisation 

In the next study, we focused on exploring the use of DANNs to combine multiple quality 

assessment scores. Numerous different QA programs exist which all use different methods of 

scoring model quality. Therefore, it was suggested to use DANNs in order to regularise these 

methods so that we can achieve a better prediction of model quality, and to pick the top ranked 

model from a group of alternatives.  

A DANN was built using the TensorFlow python software library in order to determine the 

hyperparameters for rank-optimised as well as correlation-optimised networks. The constructed 



Chapter 8 

 

 
199 

deep network was built and underwent several modifications. The network then was subjected to 

alternative parameterisations in an attempt to obtain the most suitable DANNs for our EMA 

method. 

The results show that the DANNs used can improve both the ranking (0.39% improvement) as well 

as the correlation (0.43% improvement) beyond that of taking the average of networks input scores. 

However, the improvement is marginal, and future research should focus more on alternative 

methods of hyperparameter optimisation. 

 

8.1.4. ModFOLD7 upgrade and the participation in CAMEO and CASP13 

For the CASP13, we managed to make some improvement to our method by combining further 

pure and quasi-single model methods. Such a combination has given the method further 

performance boost and enabled better prediction accuracy. The method was built on the successful 

strategy that was used in ModFOLD6, but with the additional training to an alternative target 

function (lDDT) for accuracy self-estimates and scoring. 

The upgraded ModFOLD7 then was tested for stability having noticed that this version showed the 

same strengths and accuracy score in the ranking and correlation assessments, but with higher 

consistency compared to ModFOLD6. The server also provides the three alternative options based 

on the users interest whether they are looking for a ranking/selection, correlations or a balanced 

performance. 

After testing and preparation, ModFOLD7 was ready for the participation to the 13th season of the 

worldwide independent blind testing experiment, CASP. The results in CASP13 showed that our 

method was ranked among the top few EMA methods according to several of the official 

benchmarks. The method also showed relatively better performance in accordance with the 

superposition-free scores, lDDT, and CAD-score. 

Another evaluation resource for ModFOLD7 was the CAMEO project, where the method was 

continuously automatically evaluated, showing a significant improvement compared to the 

previous versions as well as the other EMA competitors. The ModFOLD7 server is also freely 

available at: https://www.reading.ac.uk/bioinf/ModFOLD/ModFOLD7_form.html. 

 

https://www.reading.ac.uk/bioinf/ModFOLD/ModFOLD7_form.html
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8.1.5. ModFOLD6 and ModFOLD7 applications 

The first application of our method was the integration of ModFOLD6 with the 4th version of 

IntFOLD. The ModFOLD6_rank variant was chosen for this integration for the purpose of 

improving the selection and ASE scoring. As a result, IntFOLD4 became more powerful, 

significantly outperforming IntFOLD3, and competitive with the best publicly available 3D 

prediction methods. Details about this work can be found in the following article: 

https://onlinelibrary.wiley.com/doi/abs/10.1002/prot.25360 

ModFOLD6 was also part of the web-based efforts community, WeFold. With diversified 

integrative prediction pipelines, our method was allocated to be included with the constructed 

WeFold3 pipelines, with the aim of increasing the model quality estimation of the modelled 3D 

structure of proteins. The prepared WeFold pipelines were benchmarked against the top performing 

methods in CASP12. According to several official analyses, the results showed that some WeFold3 

pipelines ranked among the top 20 methods. One of these methods was wfRosetta-ProQ-

ModF6 which included ModFOLD6 as the final stage of its pipeline. Details about this work can 

be found in the following article: https://www.nature.com/articles/s41598-018-26812-8 

ModFOLD7 was developed in the latter part of this doctoral study. The method was integrated with 

the fifth version of IntFOLD prediction method, leading to improved performance over previous 

versions. IntFOLD5 method participated in CASP13 in 2018, showing such impressive results in 

most of the formula in the TS category. Details about this work can be found in the following 

article: https://academic.oup.com/nar/article/47/W1/W408/5482507 

Alongside and within the period of processing and improving ModFOLD6 and ModFOLD7, a 

number of experimental applications were carried out. One of the successful applications our 

developed methods was the collaboration with the study of identifying the expression of the orphan 

Connexin62 in the human and mouse platelets. It was a cooperative project which combined a 

number of in vivo, in vitro, and in silico methods. The study was completed, and it is currently on 

the process of submission to the Cell journal to be reviewed. 

 

8.2. Conclusion 

Overall, it is clear that the ModFOLD method has been incrementally but significantly improved 

during the course of this study. The first progressive step occurred when the method was optimised, 

https://onlinelibrary.wiley.com/doi/abs/10.1002/prot.25360
https://www.nature.com/articles/s41598-018-26812-8
https://academic.oup.com/nar/article/47/W1/W408/5482507


Chapter 8 

 

 
201 

and a combination of pure-single and quasi-single scoring methods were added, leading to an 

improvement of about 2%. Subsequently, DANNs were implemented in attempt to optimise the 

integration of component methods in the ModFOLD pipelines. Such an implementation showed an 

incomplete improvement which then led us to work on parameterising these Neural Networks. The 

second progressive step occurred after DANNs parameterisations and when the lDDT scores were 

used for training instead of the S-scores, this development led to a further marginal improvement 

(≈ 1%). Lastly, further improvements (≈ 2%) were gained after combining additional pure-single 

as well as quasi-single scoring methods, making ModFOLD7 one of the leading EMA methods in 

the field thus far. 

 

8.3. Future directions 

Although, our newly developed ModFOLD has shown some impressive results in different areas 

of studies, there are still a considerable room for gaining more improvement to our method’s 

pipeline. Here are several ways that can be considered as our future goals to improve ModFOLD 

method: 

a) Further optimisation needs to be carried out for the ranking/selection as well as the correlation 

scoring methods in order to achieve more accurate measuring techniques, and to try merging 

the two scoring methods into one single input. 

b) More studies in the Deep Artificial Neural Networks are needed for the purpose of achieving 

an optimal network. These studies include: the type of DANNs to be used as there are different 

types (e.g. Recurrent neural networks, Convolutional neural networks) of Deep Neural 

Networks depending on the user’s interest; the use of activation functions (such as sigmoid, 

tanh, RdLu, ReLU6, dropout) which provide forms of non-linearities for nodes in the Neural 

Networks; the use of optimisers (such as Adam, Adagrad) which calculate and apply gradients 

to variables, and some utilise the exponentially decaying average of past gradients and past 

squared gradients (Walia, 2018). 

c) A more focus on contact predictions as recent studies showed that contact features have 

improved the performance of EMA methods. In the last season of CASP, a number of new 

CDA scores based on the contact prediction measures were reported to provide high impacts 

in scoring the EMA more accurately showing by that some significant results which has been 

considered. 



Chapter 8 

 

 
202 

d) Integration of further pure single model methods such as the ones which have been powered 

with more features in their upgraded versions (e.g. ProQ4 (Hurtado et al., 2018)). 
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Appendix 1 

 

Correlation 

Coefficient 

Observed 

Measure 
Combination 

Correlation 

Score 
Improvement 

R 

GDT-HA 

GDT-HA~Mcqso+Mcqsr+D+M6 0.911 0.00129 

Rho GDT-HA~Mcqso+Mcqsr+D+M6 0.931 -0.00067 

Tau GDT-HA~Mcqso+Mcqsr+D+M6 0.771 -0.00121 

R 

GDT 

GDT~Mcqso+Mcqsr+D+M6 0.927 0.00068 

Rho GDT~Mcqso+Mcqsr+D+M6 0.932 -0.00029 

Tau GDT~Mcqso+Mcqsr+D+M6 0.782 -0.00078 

R 

MaxSub 

MaxSub~Mcqso+Mcqsr+D+M6 0.931 0.00108 

Rho GDT~Mcqso+Mcqsr+D+M6 0.935 0.00025 

Tau GDT~Mcqso+Mcqsr+D+M6 0.781 0.00047 

R 

TM-score 

TM-score~Mcqso+Mcqsr+D+M6 0.93 0.00025 

Rho GDT~Mcqso+D+M6 0.932 0.00032 

Tau GDT~Mcqso+Mcqsr+D+M6 0.784 0.00028 

Table S1. List of the top ranked combinations for the ten MQAP methods based on predicted 

versus observed scores using multiple linear regression. The top correlated combined methods are 

measured using Pearson’s (R), Spearman’s (Rho) and Kendall’s (Tau) correlation coefficients. and 

the topmost correlated combinations are listed with the improvement over the scores of the single linear 

regression optimised method. 
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Appendix 2 

 

# RSNNS_for_R 

library(RSNNS) 

library(data.table) 

all1 <- fread("Global_QA_round1_all.out") 

all2 <- fread("Global_QA_round2_all.out") 

all <- rbind( all1, all2 )#combine data from both rounds 

#remove data for where no native structures are available 

DT <- subset( all, V1!="T0775" & V1!="T0779" & V1!="T0793" & V1!="T0795" & V1!="T0799" 

& V1!="T0802" & V1!="T0804" & V1!="T0826" & V1!="T0828" & V1!="T0839" & V1!="T0842" & 

V1!="T0844" & V1!="T0846" & V1!="T0850" ) 

 

training_set1 <- subset( DT, V1!="T0834" & V1!="T0798" & V1!="T0816" & V1!="T0845" & 

V1!="T0822" & V1!="T0784" & V1!="T0833" & V1!="T0857" & V1!="T0763" 

& V1!="T0782" & V1!="T0820" & V1!="T0854" & V1!="T0800" & V1!="T0840" & V1!="T0832" & 

V1!="T0810" & V1!="T0827" & V1!="T0766" 

& V1!="T0771" & V1!="T0858" & V1!="T0765" & V1!="T0855" & V1!="T0847" & V1!="T0796" & 

V1!="T0778" & V1!="T0761" & V1!="T0764" 

& V1!="T0821" ) 

#nrow(training_set1)  

#9517 patterns/residues/rows in table 

testing_set1 <-subset( DT, V1=="T0834" | V1=="T0798" | V1=="T0816" | V1=="T0845" | 

V1=="T0822" | V1=="T0784" | V1=="T0833" | V1=="T0857" | V1=="T0763" 

| V1=="T0782" | V1=="T0820" | V1=="T0854" | V1=="T0800" | V1=="T0840" | V1=="T0832" | 

V1=="T0810" | V1=="T0827" | V1=="T0766" 

| V1=="T0771" | V1=="T0858" | V1=="T0765" | V1=="T0855" | V1=="T0847" | V1=="T0796" | 

V1=="T0778" | V1=="T0761" | V1=="T0764" 

| V1=="T0821" ) 

#4586 patterns/residues/rows in table 

#nrow(training_set1) + nrow(testing_set1) = 14103 

 

training_set2 <- subset( DT, V1!="T0781" & V1!="T0829" & V1!="T0769" & V1!="T0836" & 

V1!="T0759" & V1!="T0777" & V1!="T0852" & V1!="T0792" & V1!="T0818" 

& V1!="T0772" & V1!="T0794" & V1!="T0811" & V1!="T0787" & V1!="T0762" & V1!="T0825" & 

V1!="T0773" & V1!="T0801" & V1!="T0812" 

& V1!="T0831" & V1!="T0760" & V1!="T0853" & V1!="T0815" & V1!="T0856" & V1!="T0788" & 

V1!="T0805" & V1!="T0808" & V1!="T0835" 

& V1!="T0843") 

#9344 patterns/residues/rows in table 

testing_set2 <- subset( DT, V1=="T0781" | V1=="T0829" | V1=="T0769" | V1=="T0836" | 

V1=="T0759" | V1=="T0777" | V1=="T0852" | V1=="T0792" | V1=="T0818" 
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| V1=="T0772" | V1=="T0794" | V1=="T0811" | V1=="T0787" | V1=="T0762" | V1=="T0825" | 

V1=="T0773" | V1=="T0801" | V1=="T0812" 

| V1=="T0831" | V1=="T0760" | V1=="T0853" | V1=="T0815" | V1=="T0856" | V1=="T0788" | 

V1=="T0805" | V1=="T0808" | V1=="T0835" 

| V1=="T0843") 

#4759 patterns/residues/rows in table 

#nrow(training_set2) + nrow(testing_set2) = 14103 

 

training_set3 <- subset( DT, V1!="T0819" & V1!="T0851" & V1!="T0790" & V1!="T0789" & 

V1!="T0823" & V1!="T0813" & V1!="T0770" & V1!="T0803" & V1!="T0841" 

& V1!="T0807" & V1!="T0848" & V1!="T0768" & V1!="T0785" & V1!="T0817" & V1!="T0838" & 

V1!="T0797" & V1!="T0767" & V1!="T0780" 

& V1!="T0837" & V1!="T0774" & V1!="T0786" & V1!="T0824" & V1!="T0814" & V1!="T0830" & 

V1!="T0783" & V1!="T0849" & V1!="T0776" 

& V1!="T0806") 

#9345 patterns/residues/rows in table 

testing_set3 <- subset( DT, V1=="T0819" | V1=="T0851" | V1=="T0790" | V1=="T0789" | 

V1=="T0823" | V1=="T0813" | V1=="T0770" | V1=="T0803" | V1=="T0841" 

| V1=="T0807" | V1=="T0848" | V1=="T0768" | V1=="T0785" | V1=="T0817" | V1=="T0838" | 

V1=="T0797" | V1=="T0767" | V1=="T0780" 

| V1=="T0837" | V1=="T0774" | V1=="T0786" | V1=="T0824" | V1=="T0814" | V1=="T0830" | 

V1=="T0783" | V1=="T0849" | V1=="T0776" 

| V1=="T0806") 

#4758 patterns/residues/rows in table 

#nrow(training_set3) + nrow(testing_set3) = 14103 

#  

# #randomise each training set 

training_set1_ran <- training_set1[sample(1:nrow(training_set1), replace=FALSE),] 

training_set1_inputs_ran <- training_set1_ran[, 3:12, with=FALSE] 

training_set1_outputs_GDT-HA <- training_set1_ran[, 13, with=FALSE] 

training_set1_outputs_GDT <- training_set1_ran[, 14, with=FALSE] 

training_set1_outputs_MaxSub <- training_set1_ran[, 15, with=FALSE] 

training_set1_outputs_TM-score <- training_set1_ran[, 16, with=FALSE] 

 

testing_set1_inputs <- testing_set1[, 3:12, with=FALSE] 

testing_set1_outputs_GDT-HA <- testing_set1[, 13, with=FALSE] 

testing_set1_outputs_GDT <- testing_set1[, 14, with=FALSE] 

testing_set1_outputs_MaxSub <- testing_set1[, 15, with=FALSE] 

testing_set1_outputs_TM-score <- testing_set1[, 16, with=FALSE] 

 

training_set2_ran <- training_set2[sample(1:nrow(training_set2), replace=FALSE),] 

training_set2_inputs_ran <- training_set2_ran[, 3:12, with=FALSE] 

training_set2_outputs_GDT-HA <- training_set2_ran[, 13, with=FALSE] 
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training_set2_outputs_GDT <- training_set2_ran[, 14, with=FALSE] 

training_set2_outputs_MaxSub <- training_set2_ran[, 15, with=FALSE] 

training_set2_outputs_TM-score <- training_set2_ran[, 16, with=FALSE] 

 

testing_set2_inputs <- testing_set2[, 3:12, with=FALSE] 

testing_set2_outputs_GDT-HA <- testing_set2[, 13, with=FALSE] 

testing_set2_outputs_GDT <- testing_set2[, 14, with=FALSE] 

testing_set2_outputs_MaxSub <- testing_set2[, 15, with=FALSE] 

testing_set2_outputs_TM-score <- testing_set2[, 16, with=FALSE] 

 

training_set3_ran <- training_set3[sample(1:nrow(training_set3), replace=FALSE),] 

training_set3_inputs_ran <- training_set3_ran[, 3:12, with=FALSE] 

training_set3_outputs_GDT-HA <- training_set3_ran[, 13, with=FALSE] 

training_set3_outputs_GDT <- training_set3_ran[, 14, with=FALSE] 

training_set3_outputs_MaxSub <- training_set3_ran[, 15, with=FALSE] 

training_set3_outputs_TM-score <- training_set3_ran[, 16, with=FALSE] 

 

testing_set3_inputs <- testing_set3[, 3:12, with=FALSE] 

testing_set3_outputs_GDT-HA <- testing_set3[, 13, with=FALSE] 

testing_set3_outputs_GDT <- testing_set3[, 14, with=FALSE] 

testing_set3_outputs_MaxSub <- testing_set3[, 15, with=FALSE] 

testing_set3_outputs_TM-score <- testing_set3[, 16, with=FALSE] 

 

GDT-HA <- rbind( testing_set1_outputs_GDT-HA, testing_set2_outputs_GDT-HA, 

testing_set3_outputs_GDT-HA) 

GDT <- rbind( testing_set1_outputs_GDT, testing_set2_outputs_GDT, 

testing_set3_outputs_GDT) 

MaxSub <- rbind( testing_set1_outputs_MaxSub, testing_set2_outputs_MaxSub, 

testing_set3_outputs_MaxSub) 

TM-score <- rbind( testing_set1_outputs_TM-score, testing_set2_outputs_TM-score, 

testing_set3_outputs_TM-score) 

 

#try a NN with the ModFOLD6_rank combo of global score inputs 

#target_id, actualfilename, ModFOLDclustscore, ModFOLDclustQscore, ModFOLDclust2, 

ModFOLDclustres, ModFOLDclustQres, ProQ2res, CDAres, DBAres, SSAres, ModFOLD6res 

#mean of ModFOLDclustQres+ProQ2res+CDAres+DBAres+SSAres+ModFOLD6res gives good top model 

score (for each round and FM models) and reasonable correlations 

cat( "7_8_9_10_11_12-0_5_100it_3_hidden\n", file = 

"Global_NN_both_rounds_correlations.dat",append = TRUE) 

training_set1_inputs_ran <- training_set1_ran[, c(7,8,9,10,11,12), with=FALSE] 

training_set2_inputs_ran <- training_set2_ran[, c(7,8,9,10,11,12), with=FALSE] 

training_set3_inputs_ran <- training_set3_ran[, c(7,8,9,10,11,12), with=FALSE] 

testing_set1_inputs <- testing_set1[, c(7,8,9,10,11,12), with=FALSE] 
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testing_set2_inputs <- testing_set2[, c(7,8,9,10,11,12), with=FALSE] 

testing_set3_inputs <- testing_set3[, c(7,8,9,10,11,12), with=FALSE] 

 

#train to GDT-HA score 

model <- mlp(training_set1_inputs_ran, training_set1_outputs_GDT-HA, size = 3, 

learnFuncParams = c(0.5, 0.01), maxit = 100, inputsTest = testing_set1_inputs, 

targetsTest = testing_set1_outputs_GDT-HA) 

save(model, file="Global_7_8_9_10_11_12-0_5_100it_3_hidden.model.train_window_set1") 

predictions_set1 <- predict(model, testing_set1_inputs) 

 

model <- mlp(training_set2_inputs_ran, training_set2_outputs_GDT-HA, size = 3, 

learnFuncParams = c(0.5, 0.01), maxit = 100, inputsTest = testing_set2_inputs, 

targetsTest = testing_set2_outputs_GDT-HA) 

save(model, file="Global_7_8_9_10_11_12-0_5_100it_3_hidden.model.train_window_set2") 

predictions_set2 <- predict(model, testing_set2_inputs) 

 

model <- mlp(training_set3_inputs_ran, training_set3_outputs_GDT-HA, size = 3, 

learnFuncParams = c(0.5, 0.01), maxit = 100, inputsTest = testing_set3_inputs, 

targetsTest = testing_set3_outputs_GDT-HA) 

save(model, file="Global_7_8_9_10_11_12-0_5_100it_3_hidden.model.train_window_set3") 

predictions_set3 <- predict(model, testing_set3_inputs) 

 

predictions <- rbind(predictions_set1, predictions_set2, predictions_set3) 

 

#test correlations pred v obs 

cat( "ModFOLD7_NN_test_GDT-HA", 

cor(predictions, GDT-HA, method="pearson"), cor(predictions, GDT-HA, method="spearman"), 

cor(predictions, GDT-HA, method="kendall"), 

cor(predictions, GDT, method="pearson"), cor(predictions, GDT, method="spearman"), 

cor(predictions, GDT, method="kendall"), 

cor(predictions, MaxSub, method="pearson"), cor(predictions, MaxSub, method="spearman"), 

cor(predictions, MaxSub, method="kendall"), 

cor(predictions, TM-score, method="pearson"), cor(predictions, TM-score, 

method="spearman"), cor(predictions, TM-score, method="kendall") 

, "\n", sep=" ", file = "Global_NN_both_rounds_correlations.dat",append = TRUE) 

 

#test ranking - cumulative scores of top ranked models 

cat( "7_8_9_10_11_12-0_5_100it_3_hidden\n", file = 

"Global_NN_both_rounds_ranks.dat",append = TRUE) 

 

DT2 <- rbind( testing_set1, testing_set2, testing_set3) 

DT2[,V17 := predictions ]#add predictions as last column (V17) 

target_ids <- unique(DT2$V1)#get all IDs in data (unique variables in column $V1) 
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#setup empty arrays 

NNtest <- c() 

 

for(i in 1:length(target_ids) ) 

{ 

 #print(target_ids[i]) 

 set1 <-subset( DT2, V1==target_ids[i]) 

  

 #mean of ModFOLDclustQ_single_res_global_all, ProQ2_res_global_all, 

CDA_res_global_all, DBA_res_global_all, SSA_res_global_all and 

ModFOLD6_single_res_global_all #<--- 3rd BEST COMBO FOR RANKING 

 NNtest <- rbind( NNtest, c( set1[which.max(set1$V17), ]$V1, 

set1[which.max(set1$V17), ]$V2, set1[which.max(set1$V17), ]$V13, 

set1[which.max(set1$V17), ]$V14, set1[which.max(set1$V17), ]$V15, 

set1[which.max(set1$V17), ]$V16 )) 

} 

 

#standard error function for error bars 

std_err <- function(x) sd(x)/sqrt(length(x)) 

 

#cumlative GDT-HA, GDT-TS, MaxSub & TM-scores of top models for each target ranked by 

each global QA score 

cumulativescores <- c() 

cumulativescores <-  rbind( cumulativescores, c( "Method", "GDT-HA", "GDT-TS", "MaxSub", 

"TM-score", "Std_err_GDT-HA", "Std_err_GDT-TS", "Std_err_MaxSub", "Std_err_TM-score" )) 

cumulativescores <-  rbind( cumulativescores, c( "NNtest", sum(as.numeric(NNtest[,3])), 

sum(as.numeric(NNtest[,4])), sum(as.numeric(NNtest[,5])), sum(as.numeric(NNtest[,6])), 

std_err(as.numeric(NNtest[,3])), std_err(as.numeric(NNtest[,4])), 

std_err(as.numeric(NNtest[,5])), std_err(as.numeric(NNtest[,6])) )) 

#output table to a file 

cat( "Round1+Round2\n", file = "Global_NN_both_rounds_ranks.dat", append = TRUE) 

write.table( cumulativescores, file = "Global_NN_both_rounds_ranks.dat", sep = " ", quote 

= FALSE, row.names = FALSE, col.names = FALSE, append = TRUE) 
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Appendix 3 

 

# DANNs_for_TensorFlow 

import os 

import tensorflow as tf 

import numpy 

import pandas as pd 

sess = tf.InteractiveSession() 

  

# Create a list containing the methods which are too be combined. 

# Key: ModFOLD5_single_orig_global (3), ModFOLDclustQ_single_orig_global (4), 

ModFOLDclust2_single_orig_global (5), ModFOLD5_single_res_global (6), 

ModFOLDclustQ_single_res_global (7), ProQ2_res_global (8), CDA_res_global (9), 

DBA_res_global (10), SSA_res_global (11), ModFOLD6_single_res_global (12). 

combination_choice = ["V5", "V6", "V7", "V8", "V9", "V10"] 

 

#Create a text file containing the wanted combination, this file is fed into R_Part1 

file = open("combination.txt","w")  

file.write("5,6,7,8,9,10") 

file.close() 

 

# Runs the R script, R_Part1.R through the terminal. 

os.system("Rscript R_Part1.R") 

 

# A function which aims to extract all the data produced from R_Part1 and stores them 

in arrays to be used in the NN. 

def run(set_num, combination, observation, learning_rate, training_epochs, n_hidden1, 

n_hidden2, n_input): 

    # Read files produced by R_Part1 and stores the data into a Data Frame. 

    df_train = pd.read_csv("training_set%d_inputs_ran.csv" % set_num) 

    df_GDT-HA = pd.read_csv("training_set%d_outputs_GDT-HA.csv" % set_num) 

    df_test_inputs = pd.read_csv("testing_set%d_inputs.csv" % set_num) 

    df_test_output = pd.read_csv("testing_set%d_outputs_GDT-HA.csv" % set_num) 

    # Extracts the wanted data from the Data Frames above and converts the frame into a 

Numpy-array. 

    trainer = df_train.as_matrix(combination) 

    label = df_GDT-HA.as_matrix(observation) 

    test_inputs = df_test_inputs.as_matrix(combination) 

    test_outputs = df_test_output.as_matrix(observation) 

    h = my_mlp(set_num, trainer, label, learning_rate, training_epochs, n_hidden1, 

n_hidden2, n_input, test_inputs, test_outputs) 

    return h 
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def multilayer_perceptron(x, w1, w2, drop, out): 

    # the first hidden layer 

    layer_1 = tf.matmul(x, w1) 

    layer_1 = tf.nn.dropout(layer_1, drop) 

    # the second hidden layer 

    layer_2 = tf.matmul(layer_1, w2) 

    layer_2 = tf.nn.dropout(layer_2, drop) 

    # Output layer with linear activation 

    out_layer = tf.matmul(layer_2, out) 

    return out_layer 

     

def my_mlp (num, trainer, trainer_awn, learning_rate, training_epochs, n_hidden1, 

n_hidden2, n_input, test_inputs, test_outputs): 

    trX, trY= trainer, trainer_awn 

    #create placeholders 

    x = tf.placeholder(tf.float32, shape=[None, n_input]) 

    y_ = tf.placeholder(tf.float32, shape=[None, ]) 

    keep_prob = tf.placeholder("float")  

    #create initial weights 

    w1 = tf.Variable(tf.truncated_normal([n_input, n_hidden1], stddev=0.01)) 

    w2 = tf.Variable(tf.truncated_normal([n_hidden1, n_hidden2], stddev=0.01)) 

    out = tf.Variable(tf.truncated_normal([n_hidden2, 1], stddev=0.01)) 

    #predicted class and loss function 

    y = multilayer_perceptron(x, w1, w2, keep_prob, out) 

    # Reshapes the observational data. 

    y_ = tf.reshape(y_, [-1, 1]) 

    # Cost function, aims to reduce the difference between the predictions and the 

observational data. 

    cross_entropy = tf.reduce_sum(tf.abs(y - y_)) 

    #training 

    train_step = 

tf.train.AdagradOptimizer(learning_rate=learning_rate).minimize(cross_entropy) 

    correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1)) 

    accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) 

    init_op = tf.initialize_all_variables() 

    saver = tf.train.Saver() 

    # Start training. 

    with tf.Session() as sess: 

        # you need to initialize all variables 

        sess.run(init_op) 

 #training session, it is run multiple times equal to the set iterations/epochs. 

        for i in range(training_epochs + 1): 
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      #feeds the training data, both combination data and observation data, into 

the placeholders. 

            sess.run([train_step, cross_entropy], feed_dict={x: trX, y_: trY, 

keep_prob: 0.9}) 

        print("Accuracy:", accuracy.eval({x: test_inputs, y_: test_outputs, keep_prob: 

1})) 

 #Creates a Numpy array containing the final model predictions. 

        best = sess.run(y, feed_dict={x: test_inputs, keep_prob: 1}) 

 #Saves the weights for each set seperatly. 

        saver.save(sess, 

'/home/filipe/Documents/Disseration/tensorflow/Data_searching/dropout/Rank/Model%d/mode

l' % num) 

    return best 

 

#train each data set to GDT-HA score (V13) 

prediction1 = run(1, [combination_choice], ["V13"], 0.01, 550, 2, 3, 

len(combination_choice)) 

numpy.savetxt('prediction_set1.out', prediction1) 

 

prediction2 = run(2, [combination_choice], ["V13"], 0.01, 550, 2, 3, 

len(combination_choice)) 

numpy.savetxt('prediction_set2.out', prediction2) 

 

prediction3 = run(3, [combination_choice], ["V13"], 0.01, 550, 2, 3, 

len(combination_choice)) 

numpy.savetxt('prediction_set3.out', prediction3) 

 

# Runs the R script, R_Part2.R through the terminal. 

os.system("Rscript R_Part2.R") 
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Appendix 4 

 

 

# R_Part1 

library(RSNNS) 

library(data.table) 

 

all1 <- fread("Global_QA_round1_all.out") 

all2 <- fread("Global_QA_round2_all.out") 

all <- rbind( all1, all2 )#combine data from both rounds 

#remove data for where no native structures are available 

DT <- subset( all, V1!="T0775" & V1!="T0779" & V1!="T0793" & V1!="T0795" & V1!="T0799" 

& V1!="T0802" & V1!="T0804" & V1!="T0826" & V1!="T0828" & V1!="T0839" & V1!="T0842" & 

V1!="T0844" & V1!="T0846" & V1!="T0850" ) 

 

training_set1 <- subset( DT, V1!="T0834" & V1!="T0798" & V1!="T0816" & V1!="T0845" & 

V1!="T0822" & V1!="T0784" & V1!="T0833" & V1!="T0857" & V1!="T0763" 

                         & V1!="T0782" & V1!="T0820" & V1!="T0854" & V1!="T0800" & 

V1!="T0840" & V1!="T0832" & V1!="T0810" & V1!="T0827" & V1!="T0766" 

                         & V1!="T0771" & V1!="T0858" & V1!="T0765" & V1!="T0855" & 

V1!="T0847" & V1!="T0796" & V1!="T0778" & V1!="T0761" & V1!="T0764" 

                         & V1!="T0821" ) 

#nrow(training_set1)  

#9517 patterns/residues/rows in table 

testing_set1 <-subset( DT, V1=="T0834" | V1=="T0798" | V1=="T0816" | V1=="T0845" | 

V1=="T0822" | V1=="T0784" | V1=="T0833" | V1=="T0857" | V1=="T0763" 

                       | V1=="T0782" | V1=="T0820" | V1=="T0854" | V1=="T0800" | 

V1=="T0840" | V1=="T0832" | V1=="T0810" | V1=="T0827" | V1=="T0766" 

                       | V1=="T0771" | V1=="T0858" | V1=="T0765" | V1=="T0855" | 

V1=="T0847" | V1=="T0796" | V1=="T0778" | V1=="T0761" | V1=="T0764" 

                       | V1=="T0821" ) 

#4586 patterns/residues/rows in table 

#nrow(training_set1) + nrow(testing_set1) = 14103 

 

training_set2 <- subset( DT, V1!="T0781" & V1!="T0829" & V1!="T0769" & V1!="T0836" & 

V1!="T0759" & V1!="T0777" & V1!="T0852" & V1!="T0792" & V1!="T0818" 

                         & V1!="T0772" & V1!="T0794" & V1!="T0811" & V1!="T0787" & 

V1!="T0762" & V1!="T0825" & V1!="T0773" & V1!="T0801" & V1!="T0812" 

                         & V1!="T0831" & V1!="T0760" & V1!="T0853" & V1!="T0815" & 

V1!="T0856" & V1!="T0788" & V1!="T0805" & V1!="T0808" & V1!="T0835" 

                         & V1!="T0843") 

#9344 patterns/residues/rows in table 



 Appendices 

 

 
233 

testing_set2 <- subset( DT, V1=="T0781" | V1=="T0829" | V1=="T0769" | V1=="T0836" | 

V1=="T0759" | V1=="T0777" | V1=="T0852" | V1=="T0792" | V1=="T0818" 

                        | V1=="T0772" | V1=="T0794" | V1=="T0811" | V1=="T0787" | 

V1=="T0762" | V1=="T0825" | V1=="T0773" | V1=="T0801" | V1=="T0812" 

                        | V1=="T0831" | V1=="T0760" | V1=="T0853" | V1=="T0815" | 

V1=="T0856" | V1=="T0788" | V1=="T0805" | V1=="T0808" | V1=="T0835" 

                        | V1=="T0843") 

#4759 patterns/residues/rows in table 

#nrow(training_set2) + nrow(testing_set2) = 14103 

 

training_set3 <- subset( DT, V1!="T0819" & V1!="T0851" & V1!="T0790" & V1!="T0789" & 

V1!="T0823" & V1!="T0813" & V1!="T0770" & V1!="T0803" & V1!="T0841" 

                         & V1!="T0807" & V1!="T0848" & V1!="T0768" & V1!="T0785" & 

V1!="T0817" & V1!="T0838" & V1!="T0797" & V1!="T0767" & V1!="T0780" 

                         & V1!="T0837" & V1!="T0774" & V1!="T0786" & V1!="T0824" & 

V1!="T0814" & V1!="T0830" & V1!="T0783" & V1!="T0849" & V1!="T0776" 

                         & V1!="T0806") 

#9345 patterns/residues/rows in table 

testing_set3 <- subset( DT, V1=="T0819" | V1=="T0851" | V1=="T0790" | V1=="T0789" | 

V1=="T0823" | V1=="T0813" | V1=="T0770" | V1=="T0803" | V1=="T0841" 

                        | V1=="T0807" | V1=="T0848" | V1=="T0768" | V1=="T0785" | 

V1=="T0817" | V1=="T0838" | V1=="T0797" | V1=="T0767" | V1=="T0780" 

                        | V1=="T0837" | V1=="T0774" | V1=="T0786" | V1=="T0824" | 

V1=="T0814" | V1=="T0830" | V1=="T0783" | V1=="T0849" | V1=="T0776" 

                        | V1=="T0806") 

#4758 patterns/residues/rows in table 

#nrow(training_set3) + nrow(testing_set3) = 14103 

#  

# #randomise each training set 

training_set1_ran <- training_set1[sample(1:nrow(training_set1), replace=FALSE),] 

training_set1_inputs_ran <- training_set1_ran[, 3:12, with=FALSE] 

training_set1_outputs_GDT-HA <- training_set1_ran[, 13, with=FALSE] 

training_set1_outputs_GDT <- training_set1_ran[, 14, with=FALSE] 

training_set1_outputs_MaxSub <- training_set1_ran[, 15, with=FALSE] 

training_set1_outputs_TM-score <- training_set1_ran[, 16, with=FALSE] 

 

testing_set1_inputs <- testing_set1[, 3:12, with=FALSE] 

testing_set1_outputs_GDT-HA <- testing_set1[, 13, with=FALSE] 

testing_set1_outputs_GDT <- testing_set1[, 14, with=FALSE] 

testing_set1_outputs_MaxSub <- testing_set1[, 15, with=FALSE] 

testing_set1_outputs_TM-score <- testing_set1[, 16, with=FALSE] 

 

training_set2_ran <- training_set2[sample(1:nrow(training_set2), replace=FALSE),] 
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training_set2_inputs_ran <- training_set2_ran[, 3:12, with=FALSE] 

training_set2_outputs_GDT-HA <- training_set2_ran[, 13, with=FALSE] 

training_set2_outputs_GDT <- training_set2_ran[, 14, with=FALSE] 

training_set2_outputs_MaxSub <- training_set2_ran[, 15, with=FALSE] 

training_set2_outputs_TM-score <- training_set2_ran[, 16, with=FALSE] 

 

testing_set2_inputs <- testing_set2[, 3:12, with=FALSE] 

testing_set2_outputs_GDT-HA <- testing_set2[, 13, with=FALSE] 

testing_set2_outputs_GDT <- testing_set2[, 14, with=FALSE] 

testing_set2_outputs_MaxSub <- testing_set2[, 15, with=FALSE] 

testing_set2_outputs_TM-score <- testing_set2[, 16, with=FALSE] 

 

training_set3_ran <- training_set3[sample(1:nrow(training_set3), replace=FALSE),] 

training_set3_inputs_ran <- training_set3_ran[, 3:12, with=FALSE] 

training_set3_outputs_GDT-HA <- training_set3_ran[, 13, with=FALSE] 

training_set3_outputs_GDT <- training_set3_ran[, 14, with=FALSE] 

training_set3_outputs_MaxSub <- training_set3_ran[, 15, with=FALSE] 

training_set3_outputs_TM-score <- training_set3_ran[, 16, with=FALSE] 

 

testing_set3_inputs <- testing_set3[, 3:12, with=FALSE] 

testing_set3_outputs_GDT-HA <- testing_set3[, 13, with=FALSE] 

testing_set3_outputs_GDT <- testing_set3[, 14, with=FALSE] 

testing_set3_outputs_MaxSub <- testing_set3[, 15, with=FALSE] 

testing_set3_outputs_TM-score <- testing_set3[, 16, with=FALSE] 

 

GDT-HA <- rbind( testing_set1_outputs_GDT-HA, testing_set2_outputs_GDT-HA, 

testing_set3_outputs_GDT-HA) 

GDT <- rbind( testing_set1_outputs_GDT, testing_set2_outputs_GDT, 

testing_set3_outputs_GDT) 

MaxSub <- rbind( testing_set1_outputs_MaxSub, testing_set2_outputs_MaxSub, 

testing_set3_outputs_MaxSub) 

TM-score <- rbind( testing_set1_outputs_TM-score, testing_set2_outputs_TM-score, 

testing_set3_outputs_TM-score) 

 

#Creates data sets containing the data for the specified combination 

combination <- fread("combination.txt") 

if (1 <= length(combination)){ 

  q = data.matrix(combination[[1]]) 

  if (2 <= length(combination)){ 

    w = data.matrix(combination[[2]]) 

    if (3 <= length(combination)){ 

      e = data.matrix(combination[[3]]) 

      if (4 <= length(combination)){ 
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        r = data.matrix(combination[[4]]) 

        if (5 <= length(combination)){ 

          t = data.matrix(combination[[5]]) 

          if (6 <= length(combination)){ 

            y = data.matrix(combination[[6]]) 

            if (7 <= length(combination)){ 

              u = data.matrix(combination[[7]]) 

              if (8 <= length(combination)){ 

                i = data.matrix(combination[[8]]) 

                if (9 <= length(combination)){ 

                  o = data.matrix(combination[[9]]) 

                  if (10 <= length(combination)){ 

                    p = data.matrix(combination[[10]]) 

                    training_set1_inputs_ran <- training_set1_ran[, c(q, w, e, r, t, y, 

u, i, o, p), with=FALSE] 

                    training_set2_inputs_ran <- training_set2_ran[, c(q, w, e, r, t, y, 

u, i, o, p), with=FALSE] 

                    training_set3_inputs_ran <- training_set3_ran[, c(q, w, e, r, t, y, 

u, i, o, p), with=FALSE] 

                    testing_set1_inputs <- testing_set1[, c(q, w, e, r, t, y, u, i, o, 

p), with=FALSE] 

                    testing_set2_inputs <- testing_set2[, c(q, w, e, r, t, y, u, i, o, 

p), with=FALSE] 

                    testing_set3_inputs <- testing_set3[, c(q, w, e, r, t, y, u, i, o, 

p), with=FALSE] 

                  } else { 

                    training_set1_inputs_ran <- training_set1_ran[, c(q, w, e, r, t, y, 

u, i, o), with=FALSE] 

                    training_set2_inputs_ran <- training_set2_ran[, c(q, w, e, r, t, y, 

u, i, o), with=FALSE] 

                    training_set3_inputs_ran <- training_set3_ran[, c(q, w, e, r, t, y, 

u, i, o), with=FALSE] 

                    testing_set1_inputs <- testing_set1[, c(q, w, e, r, t, y, u, i, o), 

with=FALSE] 

                    testing_set2_inputs <- testing_set2[, c(q, w, e, r, t, y, u, i, o), 

with=FALSE] 

                    testing_set3_inputs <- testing_set3[, c(q, w, e, r, t, y, u, i, o), 

with=FALSE] 

                  } 

                } else{ 

                  training_set1_inputs_ran <- training_set1_ran[, c(q, w, e, r, t, y, 

u, i), with=FALSE] 
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                  training_set2_inputs_ran <- training_set2_ran[, c(q, w, e, r, t, y, 

u, i), with=FALSE] 

                  training_set3_inputs_ran <- training_set3_ran[, c(q, w, e, r, t, y, 

u, i), with=FALSE] 

                  testing_set1_inputs <- testing_set1[, c(q, w, e, r, t, y, u, i), 

with=FALSE] 

                  testing_set2_inputs <- testing_set2[, c(q, w, e, r, t, y, u, i), 

with=FALSE] 

                  testing_set3_inputs <- testing_set3[, c(q, w, e, r, t, y, u, i), 

with=FALSE] 

                } 

              } else { 

                training_set1_inputs_ran <- training_set1_ran[, c(q, w, e, r, t, y, u), 

with=FALSE] 

                training_set2_inputs_ran <- training_set2_ran[, c(q, w, e, r, t, y, u), 

with=FALSE] 

                training_set3_inputs_ran <- training_set3_ran[, c(q, w, e, r, t, y, u), 

with=FALSE] 

                testing_set1_inputs <- testing_set1[, c(q, w, e, r, t, y, u), 

with=FALSE] 

                testing_set2_inputs <- testing_set2[, c(q, w, e, r, t, y, u), 

with=FALSE] 

                testing_set3_inputs <- testing_set3[, c(q, w, e, r, t, y, u), 

with=FALSE] 

              } 

            } else { 

              training_set1_inputs_ran <- training_set1_ran[, c(q, w, e, r, t, y), 

with=FALSE] 

              training_set2_inputs_ran <- training_set2_ran[, c(q, w, e, r, t, y), 

with=FALSE] 

              training_set3_inputs_ran <- training_set3_ran[, c(q, w, e, r, t, y), 

with=FALSE] 

              testing_set1_inputs <- testing_set1[, c(q, w, e, r, t, y), with=FALSE] 

              testing_set2_inputs <- testing_set2[, c(q, w, e, r, t, y), with=FALSE] 

              testing_set3_inputs <- testing_set3[, c(q, w, e, r, t, y), with=FALSE] 

            } 

          } else { 

            training_set1_inputs_ran <- training_set1_ran[, c(q, w, e, r, t), 

with=FALSE] 

            training_set2_inputs_ran <- training_set2_ran[, c(q, w, e, r, t), 

with=FALSE] 

            training_set3_inputs_ran <- training_set3_ran[, c(q, w, e, r, t), 

with=FALSE] 
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            testing_set1_inputs <- testing_set1[, c(q, w, e, r, t), with=FALSE] 

            testing_set2_inputs <- testing_set2[, c(q, w, e, r, t), with=FALSE] 

            testing_set3_inputs <- testing_set3[, c(q, w, e, r, t), with=FALSE] 

          } 

        } else { 

          training_set1_inputs_ran <- training_set1_ran[, c(q, w, e, r), with=FALSE] 

          training_set2_inputs_ran <- training_set2_ran[, c(q, w, e, r), with=FALSE] 

          training_set3_inputs_ran <- training_set3_ran[, c(q, w, e, r), with=FALSE] 

          testing_set1_inputs <- testing_set1[, c(q, w, e, r), with=FALSE] 

          testing_set2_inputs <- testing_set2[, c(q, w, e, r), with=FALSE] 

          testing_set3_inputs <- testing_set3[, c(q, w, e, r), with=FALSE] 

        } 

      } else { 

        training_set1_inputs_ran <- training_set1_ran[, c(q, w, e), with=FALSE] 

        training_set2_inputs_ran <- training_set2_ran[, c(q, w, e), with=FALSE] 

        training_set3_inputs_ran <- training_set3_ran[, c(q, w, e), with=FALSE] 

        testing_set1_inputs <- testing_set1[, c(q, w, e), with=FALSE] 

        testing_set2_inputs <- testing_set2[, c(q, w, e), with=FALSE] 

        testing_set3_inputs <- testing_set3[, c(q, w, e), with=FALSE] 

      } 

    } else { 

      training_set1_inputs_ran <- training_set1_ran[, c(q, w), with=FALSE] 

      training_set2_inputs_ran <- training_set2_ran[, c(q, w), with=FALSE] 

      training_set3_inputs_ran <- training_set3_ran[, c(q, w), with=FALSE] 

      testing_set1_inputs <- testing_set1[, c(q, w), with=FALSE] 

      testing_set2_inputs <- testing_set2[, c(q, w), with=FALSE] 

      testing_set3_inputs <- testing_set3[, c(q, w), with=FALSE] 

    } 

  } else { 

    training_set1_inputs_ran <- training_set1_ran[, c(q), with=FALSE] 

    training_set2_inputs_ran <- training_set2_ran[, c(q), with=FALSE] 

    training_set3_inputs_ran <- training_set3_ran[, c(q), with=FALSE] 

    testing_set1_inputs <- testing_set1[, c(q), with=FALSE] 

    testing_set2_inputs <- testing_set2[, c(q), with=FALSE] 

    testing_set3_inputs <- testing_set3[, c(q), with=FALSE] 

  } 

} 

 

#Creates files containing all the data sets need to for the NN in python and also the 

data needed for R_Part2 

write.csv(training_set1_inputs_ran, file="training_set1_inputs_ran.csv") 

write.csv(training_set2_inputs_ran, file="training_set2_inputs_ran.csv") 

write.csv(training_set3_inputs_ran, file="training_set3_inputs_ran.csv") 
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write.csv(training_set1_outputs_GDT-HA, file="training_set1_outputs_GDT-HA.csv") 

write.csv(training_set2_outputs_GDT-HA, file="training_set2_outputs_GDT-HA.csv") 

write.csv(training_set3_outputs_GDT-HA, file="training_set3_outputs_GDT-HA.csv") 

write.csv(testing_set1_inputs, file="testing_set1_inputs.csv") 

write.csv(testing_set2_inputs, file="testing_set2_inputs.csv") 

write.csv(testing_set3_inputs, file="testing_set3_inputs.csv") 

write.csv(testing_set1_outputs_GDT-HA, file="testing_set1_outputs_GDT-HA.csv") 

write.csv(testing_set2_outputs_GDT-HA, file="testing_set2_outputs_GDT-HA.csv") 

write.csv(testing_set3_outputs_GDT-HA, file="testing_set3_outputs_GDT-HA.csv") 

write.csv(GDT-HA, file="GDT-HA.csv") 

write.csv(GDT, file="GDT.csv") 

write.csv(MaxSub, file="MaxSub.csv") 

write.csv(TM-score, file="TM-score.csv") 

write.csv(testing_set1, file="testing_set1.csv") 

write.csv(testing_set2, file="testing_set2.csv") 

write.csv(testing_set3, file="testing_set3.csv") 

 

#R_Part2 

library(RSNNS) 

library(data.table) 

 

predictions_set1 <- fread("prediction_set1.out") 

predictions_set1 <- data.matrix (predictions_set1) 

predictions_set2 <- fread("prediction_set2.out") 

predictions_set2 <- data.matrix (predictions_set2) 

predictions_set3 <- fread("prediction_set3.out") 

predictions_set3 <- data.matrix (predictions_set3) 

GDT <- read.csv("GDT.csv") 

GDT$X <- NULL 

GDT-HA <- read.csv("GDT-HA.csv") 

GDT-HA$X <- NULL 

MaxSub <- read.csv("MaxSub.csv") 

MaxSub$X <- NULL 

TM-score <- read.csv("TM-score.csv") 

TM-score$X <- NULL 

testing_set1 <- read.csv("testing_set1.csv") 

testing_set1$X <- NULL 

testing_set2 <- read.csv("testing_set2.csv") 

testing_set2$X <- NULL 

testing_set3 <- read.csv("testing_set3.csv") 

testing_set3$X <- NULL 

 

#Combine all prediction data 
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predictions <- rbind(predictions_set1, predictions_set2, predictions_set3) 

 

#test correlations pred v obs 

cat( 

     cor(predictions, GDT-HA, method="pearson"), cor(predictions, GDT-HA, 

method="spearman"), cor(predictions, GDT-HA, method="kendall"), 

     cor(predictions, GDT, method="pearson"), cor(predictions, GDT, method="spearman"), 

cor(predictions, GDT, method="kendall"), 

     cor(predictions, MaxSub, method="pearson"), cor(predictions, MaxSub, 

method="spearman"), cor(predictions, MaxSub, method="kendall"), 

     cor(predictions, TM-score, method="pearson"), cor(predictions, TM-score, 

method="spearman"), cor(predictions, TM-score, method="kendall") 

     , "\n", sep=" ", file = "Global_NN_both_rounds_correlations.dat",append = TRUE) 

 

DT2 <- rbind( testing_set1, testing_set2, testing_set3) 

DT2$V17 <- predictions #add predictions as last column (V17) 

target_ids <- unique(DT2$V1)#get all IDs in data (unique variables in column $V1) 

 

#setup empty arrays 

NNtest <- c() 

 

for(i in 1:length(target_ids) ) 

{ 

  #print(target_ids[i]) 

  set1 <-subset( DT2, V1==target_ids[i]) 

   

  #mean of ModFOLDclustQ_single_res_global_all, ProQ2_res_global_all, 

CDA_res_global_all, DBA_res_global_all, SSA_res_global_all and 

ModFOLD6_single_res_global_all #<--- 3rd BEST COMBO FOR RANKING 

  NNtest <- rbind( NNtest, c( set1[which.max(set1$V17), ]$V1, set1[which.max(set1$V17), 

]$V2, set1[which.max(set1$V17), ]$V13, set1[which.max(set1$V17), ]$V14, 

set1[which.max(set1$V17), ]$V15, set1[which.max(set1$V17), ]$V16 )) 

} 

 

#standard error function for error bars 

std_err <- function(x) sd(x)/sqrt(length(x)) 

 

#cumlative GDT-HA, GDT-TS, MaxSub & TM-scores of top models for each target ranked by 

each global QA score 

cumulativescores <- c() 

cumulativescores <-  rbind( cumulativescores, c( sum(as.numeric(NNtest[,3])), 

sum(as.numeric(NNtest[,4])), sum(as.numeric(NNtest[,5])), sum(as.numeric(NNtest[,6])), 
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std_err(as.numeric(NNtest[,3])), std_err(as.numeric(NNtest[,4])), 

std_err(as.numeric(NNtest[,5])), std_err(as.numeric(NNtest[,6])) )) 

#output table to a file 

write.table( cumulativescores, file = "Global_NN_both_rounds_ranks.dat", sep = " ", 

quote = FALSE, row.names = FALSE, col.names = FALSE, append = TRUE) 
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Appendix 5 

 

 

# RSNNS_Para 

library(RSNNS) 

library(data.table) 

all1 <- fread("Global_QA_round1_all.out") 

all2 <- fread("Global_QA_round2_all.out") 

all <- rbind( all1, all2 )#combine data from both rounds 

#remove data for where no native structures are available 

DT <- subset( all, V1!="T0775" & V1!="T0779" & V1!="T0793" & V1!="T0795" & V1!="T0799" 

& V1!="T0802" & V1!="T0804" & V1!="T0826" & V1!="T0828" & V1!="T0839" & V1!="T0842" & 

V1!="T0844" & V1!="T0846" & V1!="T0850" ) 

 

#seperate training and testing data into 3 subsets. 

training_set1 <- subset( DT, V1!="T0834" & V1!="T0798" & V1!="T0816" & V1!="T0845" & 

V1!="T0822" & V1!="T0784" & V1!="T0833" & V1!="T0857" & V1!="T0763" 

                         & V1!="T0782" & V1!="T0820" & V1!="T0854" & V1!="T0800" & 

V1!="T0840" & V1!="T0832" & V1!="T0810" & V1!="T0827" & V1!="T0766" 

                         & V1!="T0771" & V1!="T0858" & V1!="T0765" & V1!="T0855" & 

V1!="T0847" & V1!="T0796" & V1!="T0778" & V1!="T0761" & V1!="T0764" 

                         & V1!="T0821" ) 

#nrow(training_set1)  

#9517 patterns/residues/rows in table 

testing_set1 <-subset( DT, V1=="T0834" | V1=="T0798" | V1=="T0816" | V1=="T0845" | 

V1=="T0822" | V1=="T0784" | V1=="T0833" | V1=="T0857" | V1=="T0763" 

                       | V1=="T0782" | V1=="T0820" | V1=="T0854" | V1=="T0800" | 

V1=="T0840" | V1=="T0832" | V1=="T0810" | V1=="T0827" | V1=="T0766" 

                       | V1=="T0771" | V1=="T0858" | V1=="T0765" | V1=="T0855" | 

V1=="T0847" | V1=="T0796" | V1=="T0778" | V1=="T0761" | V1=="T0764" 

                       | V1=="T0821" ) 

#4586 patterns/residues/rows in table 

#nrow(training_set1) + nrow(testing_set1) = 14103 

 

training_set2 <- subset( DT, V1!="T0781" & V1!="T0829" & V1!="T0769" & V1!="T0836" & 

V1!="T0759" & V1!="T0777" & V1!="T0852" & V1!="T0792" & V1!="T0818" 

                         & V1!="T0772" & V1!="T0794" & V1!="T0811" & V1!="T0787" & 

V1!="T0762" & V1!="T0825" & V1!="T0773" & V1!="T0801" & V1!="T0812" 

                         & V1!="T0831" & V1!="T0760" & V1!="T0853" & V1!="T0815" & 

V1!="T0856" & V1!="T0788" & V1!="T0805" & V1!="T0808" & V1!="T0835" 

                         & V1!="T0843") 

#9344 patterns/residues/rows in table 
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testing_set2 <- subset( DT, V1=="T0781" | V1=="T0829" | V1=="T0769" | V1=="T0836" | 

V1=="T0759" | V1=="T0777" | V1=="T0852" | V1=="T0792" | V1=="T0818" 

                        | V1=="T0772" | V1=="T0794" | V1=="T0811" | V1=="T0787" | 

V1=="T0762" | V1=="T0825" | V1=="T0773" | V1=="T0801" | V1=="T0812" 

                        | V1=="T0831" | V1=="T0760" | V1=="T0853" | V1=="T0815" | 

V1=="T0856" | V1=="T0788" | V1=="T0805" | V1=="T0808" | V1=="T0835" 

                        | V1=="T0843") 

#4759 patterns/residues/rows in table 

#nrow(training_set2) + nrow(testing_set2) = 14103 

 

training_set3 <- subset( DT, V1!="T0819" & V1!="T0851" & V1!="T0790" & V1!="T0789" & 

V1!="T0823" & V1!="T0813" & V1!="T0770" & V1!="T0803" & V1!="T0841" 

                         & V1!="T0807" & V1!="T0848" & V1!="T0768" & V1!="T0785" & 

V1!="T0817" & V1!="T0838" & V1!="T0797" & V1!="T0767" & V1!="T0780" 

                         & V1!="T0837" & V1!="T0774" & V1!="T0786" & V1!="T0824" & 

V1!="T0814" & V1!="T0830" & V1!="T0783" & V1!="T0849" & V1!="T0776" 

                         & V1!="T0806") 

#9345 patterns/residues/rows in table 

testing_set3 <- subset( DT, V1=="T0819" | V1=="T0851" | V1=="T0790" | V1=="T0789" | 

V1=="T0823" | V1=="T0813" | V1=="T0770" | V1=="T0803" | V1=="T0841" 

                        | V1=="T0807" | V1=="T0848" | V1=="T0768" | V1=="T0785" | 

V1=="T0817" | V1=="T0838" | V1=="T0797" | V1=="T0767" | V1=="T0780" 

                        | V1=="T0837" | V1=="T0774" | V1=="T0786" | V1=="T0824" | 

V1=="T0814" | V1=="T0830" | V1=="T0783" | V1=="T0849" | V1=="T0776" 

                        | V1=="T0806") 

#4758 patterns/residues/rows in table 

#nrow(training_set3) + nrow(testing_set3) = 14103 

#  

# #randomise each training set 

training_set1_ran <- training_set1[sample(1:nrow(training_set1), replace=FALSE),] 

training_set1_inputs_ran <- training_set1_ran[, 3:12, with=FALSE] 

training_set1_outputs_GDT-HA <- training_set1_ran[, 13, with=FALSE] 

training_set1_outputs_GDT <- training_set1_ran[, 14, with=FALSE] 

training_set1_outputs_MaxSub <- training_set1_ran[, 15, with=FALSE] 

training_set1_outputs_TM-score <- training_set1_ran[, 16, with=FALSE] 

 

testing_set1_inputs <- testing_set1[, 3:12, with=FALSE] 

testing_set1_outputs_GDT-HA <- testing_set1[, 13, with=FALSE] 

testing_set1_outputs_GDT <- testing_set1[, 14, with=FALSE] 

testing_set1_outputs_MaxSub <- testing_set1[, 15, with=FALSE] 

testing_set1_outputs_TM-score <- testing_set1[, 16, with=FALSE] 

 

training_set2_ran <- training_set2[sample(1:nrow(training_set2), replace=FALSE),] 
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training_set2_inputs_ran <- training_set2_ran[, 3:12, with=FALSE] 

training_set2_outputs_GDT-HA <- training_set2_ran[, 13, with=FALSE] 

training_set2_outputs_GDT <- training_set2_ran[, 14, with=FALSE] 

training_set2_outputs_MaxSub <- training_set2_ran[, 15, with=FALSE] 

training_set2_outputs_TM-score <- training_set2_ran[, 16, with=FALSE] 

 

testing_set2_inputs <- testing_set2[, 3:12, with=FALSE] 

testing_set2_outputs_GDT-HA <- testing_set2[, 13, with=FALSE] 

testing_set2_outputs_GDT <- testing_set2[, 14, with=FALSE] 

testing_set2_outputs_MaxSub <- testing_set2[, 15, with=FALSE] 

testing_set2_outputs_TM-score <- testing_set2[, 16, with=FALSE] 

 

training_set3_ran <- training_set3[sample(1:nrow(training_set3), replace=FALSE),] 

training_set3_inputs_ran <- training_set3_ran[, 3:12, with=FALSE] 

training_set3_outputs_GDT-HA <- training_set3_ran[, 13, with=FALSE] 

training_set3_outputs_GDT <- training_set3_ran[, 14, with=FALSE] 

training_set3_outputs_MaxSub <- training_set3_ran[, 15, with=FALSE] 

training_set3_outputs_TM-score <- training_set3_ran[, 16, with=FALSE] 

 

testing_set3_inputs <- testing_set3[, 3:12, with=FALSE] 

testing_set3_outputs_GDT-HA <- testing_set3[, 13, with=FALSE] 

testing_set3_outputs_GDT <- testing_set3[, 14, with=FALSE] 

testing_set3_outputs_MaxSub <- testing_set3[, 15, with=FALSE] 

testing_set3_outputs_TM-score <- testing_set3[, 16, with=FALSE] 

 

GDT-HA <- rbind( testing_set1_outputs_GDT-HA, testing_set2_outputs_GDT-HA, 

testing_set3_outputs_GDT-HA) 

GDT <- rbind( testing_set1_outputs_GDT, testing_set2_outputs_GDT, 

testing_set3_outputs_GDT) 

MaxSub <- rbind( testing_set1_outputs_MaxSub, testing_set2_outputs_MaxSub, 

testing_set3_outputs_MaxSub) 

TM-score <- rbind( testing_set1_outputs_TM-score, testing_set2_outputs_TM-score, 

testing_set3_outputs_TM-score) 

 

#loops NN over all possible combinations of parameters, hidden units from 1-20 and 

hidden units from 50-950 

t = seq(1, 20, 1) 

f = seq(50, 950, 50) 

n = 1 

while(n <= length(t)){ 

  r = t[n] 

  h = 1 

  n = n +1 
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  while(h <= length(f)){ 

    c = f[h] 

    h = h + 1 

    print(c(r,c)) 

    #try a NN with the ModFOLD6_rank combo of global score inputs 

    #target_id, actualfilename, ModFOLDclustscore, ModFOLDclustQscore, ModFOLDclust2, 

ModFOLDclustres, ModFOLDclustQres, ProQ2res, CDAres, DBAres, SSAres, ModFOLD6res 

    #mean of ModFOLDclustQres+ProQ2res+CDAres+DBAres+SSAres+ModFOLD6res gives good top 

model score (for each round and FM models) and reasonable correlations 

    #cat( "3,5,9,10,12-0_5_100it_3_hidden\n", file = 

"Global_NN_both_rounds_correlations.dat",append = TRUE) 

    training_set1_inputs_ran <- training_set1_ran[, c(3,5,9,10,12), with=FALSE] 

    training_set2_inputs_ran <- training_set2_ran[, c(3,5,9,10,12), with=FALSE] 

    training_set3_inputs_ran <- training_set3_ran[, c(3,5,9,10,12), with=FALSE] 

    testing_set1_inputs <- testing_set1[, c(3,5,9,10,12), with=FALSE] 

    testing_set2_inputs <- testing_set2[, c(3,5,9,10,12), with=FALSE] 

    testing_set3_inputs <- testing_set3[, c(3,5,9,10,12), with=FALSE] 

     

    set1 = paste0("Global_-

0_5_3,5,9,10,12_",c,"it_",r,"_hidden.model.train_window_set1") 

    #train to GDT-HA score 

    model <- mlp(training_set1_inputs_ran, training_set1_outputs_GDT-HA, size = r, 

learnFuncParams = c(0.5, 0.01), maxit = c, inputsTest = testing_set1_inputs, 

targetsTest = testing_set1_outputs_GDT-HA) 

    save(model, file = set1) 

    predictions_set1 <- predict(model, testing_set1_inputs) 

     

    set2 = paste0("Global_-

0_5_3,5,9,10,12_",c,"it_",r,"_hidden.model.train_window_set2") 

    model <- mlp(training_set2_inputs_ran, training_set2_outputs_GDT-HA, size = r, 

learnFuncParams = c(0.5, 0.01), maxit = c, inputsTest = testing_set2_inputs, 

targetsTest = testing_set2_outputs_GDT-HA) 

    save(model, file= set2) 

    predictions_set2 <- predict(model, testing_set2_inputs) 

     

    set3 = paste0("Global_-

0_5_3,5,9,10,12_",c,"it_",r,"_hidden.model.train_window_set3") 

    model <- mlp(training_set3_inputs_ran, training_set3_outputs_GDT-HA, size = r, 

learnFuncParams = c(0.5, 0.01), maxit = c, inputsTest = testing_set3_inputs, 

targetsTest = testing_set3_outputs_GDT-HA) 

    save(model, file= set3) 

    predictions_set3 <- predict(model, testing_set3_inputs) 
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    predictions <- rbind(predictions_set1, predictions_set2, predictions_set3) 

     

    #test correlations pred v obs 

    cat( r, c, cor(predictions, GDT-HA, method="pearson"), cor(predictions, GDT-HA, 

method="spearman"), cor(predictions, GDT-HA, method="kendall"), 

         cor(predictions, GDT, method="pearson"), cor(predictions, GDT, 

method="spearman"), cor(predictions, GDT, method="kendall"), 

         cor(predictions, MaxSub, method="pearson"), cor(predictions, MaxSub, 

method="spearman"), cor(predictions, MaxSub, method="kendall"), 

         cor(predictions, TM-score, method="pearson"), cor(predictions, TM-score, 

method="spearman"), cor(predictions, TM-score, method="kendall") 

         , "\n", sep=" ", file = "Global_NN_both_rounds_correlations.dat",append = 

TRUE) 

     

    #test ranking - cumulative scores of top ranked models 

    #doh = paste0("3,5,9,10,12-0_5_",c,"it_",r,"_hidden\n") 

    #cat( doh, file = "Global_NN_both_rounds_ranks.dat",append = TRUE) 

     

    DT2 <- rbind( testing_set1, testing_set2, testing_set3) 

    DT2[,V17 := predictions ]#add predictions as last column (V17) 

    target_ids <- unique(DT2$V1)#get all IDs in data (unique variables in column $V1) 

     

    #setup empty arrays 

    NNtest <- c() 

     

    for(i in 1:length(target_ids) ) 

    { 

      #print(target_ids[i]) 

      set1 <-subset( DT2, V1==target_ids[i]) 

       

      #mean of ModFOLDclustQ_single_res_global_all, ProQ2_res_global_all, 

CDA_res_global_all, DBA_res_global_all, SSA_res_global_all and 

ModFOLD6_single_res_global_all #<--- 3rd BEST COMBO FOR RANKING 

      NNtest <- rbind( NNtest, c(set1[which.max(set1$V17), ]$V1, 

set1[which.max(set1$V17), ]$V2, set1[which.max(set1$V17), ]$V13, 

set1[which.max(set1$V17), ]$V14, set1[which.max(set1$V17), ]$V15, 

set1[which.max(set1$V17), ]$V16 )) 

    } 

     

    #standard error function for error bars 

    std_err <- function(x) sd(x)/sqrt(length(x)) 
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    #cumlative GDT-HA, GDT-TS, MaxSub & TM-scores of top models for each target ranked 

by each global QA score 

    cumulativescores <- c() 

    cumulativescores <-  rbind( cumulativescores, c( c, r, sum(as.numeric(NNtest[,3])), 

sum(as.numeric(NNtest[,4])), sum(as.numeric(NNtest[,5])), sum(as.numeric(NNtest[,6])), 

std_err(as.numeric(NNtest[,3])), std_err(as.numeric(NNtest[,4])), 

std_err(as.numeric(NNtest[,5])), std_err(as.numeric(NNtest[,6])) )) 

    #output table to a file 

    #cat( "Round1+Round2\n", file = "Global_NN_both_rounds_ranks.dat", append = TRUE) 

    write.table( cumulativescores, file = "Global_NN_both_rounds_ranks.dat", sep = " ", 

quote = FALSE, row.names = FALSE, col.names = FALSE, append = TRUE) 

  } 

} 

 

#Tensorflow_Para 

 

import os 

import tensorflow as tf 

import numpy 

import pandas as pd 

sess = tf.InteractiveSession() 

 

# A function which aims to extract all the data produced from R_Part1 and stores them 

in arrays to be used in the NN. 

def run(set_num, combination, observation, learning_rate, training_epochs, n_hidden1, 

n_hidden2, n_input): 

 # Read files produced by R_Part1 and stores the data into a Data Frame. 

        df_train = pd.read_csv("training_set%d_inputs_ran.csv" % set_num) 

        df_GDT-HA = pd.read_csv("training_set%d_outputs_GDT-HA.csv" % set_num) 

        df_test_inputs = pd.read_csv("testing_set%d_inputs.csv" % set_num) 

        df_test_output = pd.read_csv("testing_set%d_outputs_GDT-HA.csv" % set_num) 

 # Extracts the wanted data from the Data Frames above and converts the frame 

into a Numpy-array. 

        trainer = df_train.as_matrix(combination) 

        label = df_GDT-HA.as_matrix(observation) 

        test_inputs = df_test_inputs.as_matrix(combination) 

        test_outputs = df_test_output.as_matrix(observation) 

        h = my_mlp(set_num, trainer, label, learning_rate, training_epochs, n_hidden1, 

n_hidden2, n_input, test_inputs, test_outputs) 

        return h 

         

def multilayer_perceptron(x, w1, w2, drop, out): 

    # the first hidden layer 
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    layer_1 = tf.matmul(x, w1) 

    layer_1 = tf.nn.dropout(layer_1, drop) 

    # the second hidden layer 

    layer_2 = tf.matmul(layer_1, w2) 

    layer_2 = tf.nn.dropout(layer_2, drop) 

    # Output layer with linear activation 

    out_layer = tf.matmul(layer_2, out) 

    return out_layer 

     

def my_mlp (num, trainer, trainer_awn, learning_rate, training_epochs, n_hidden1, 

n_hidden2, n_input, test_inputs, test_outputs): 

    trX, trY= trainer, trainer_awn 

    #create placeholders 

    x = tf.placeholder(tf.float32, shape=[None, n_input]) 

    y_ = tf.placeholder(tf.float32, shape=[None, ]) 

    keep_prob = tf.placeholder("float")  

    #create initial weights 

    w1 = tf.Variable(tf.truncated_normal([n_input, n_hidden1], stddev=0.01)) 

    w2 = tf.Variable(tf.truncated_normal([n_hidden1, n_hidden2], stddev=0.01)) 

    out = tf.Variable(tf.truncated_normal([n_hidden2, 1], stddev=0.01)) 

    #predicted class and loss function 

    y = multilayer_perceptron(x, w1, w2, keep_prob, out) 

    # Reshapes the observational data. 

    y_ = tf.reshape(y_, [-1, 1]) 

    # Cost function, aims to reduce the difference between the predictions and the 

observational data. 

    cross_entropy = tf.reduce_sum(tf.abs(y - y_)) 

    #training 

    train_step = 

tf.train.AdagradOptimizer(learning_rate=learning_rate).minimize(cross_entropy) 

    correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1)) 

    accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) 

    init_op = tf.initialize_all_variables() 

    saver = tf.train.Saver() 

    # Start training. 

    with tf.Session() as sess: 

        # you need to initialize all variables 

        sess.run(init_op) 

 #training session, it is run multiple times equal to the set iterations/epochs. 

        for i in range(training_epochs + 1): 

      #feeds the training data, both combination data and observation data, into 

the placeholders. 
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            sess.run([train_step, cross_entropy], feed_dict={x: trX, y_: trY, 

keep_prob: 0.9}) 

        print("Accuracy:", accuracy.eval({x: test_inputs, y_: test_outputs, keep_prob: 

1})) 

 #Creates a Numpy array containing the final model predictions. 

        best = sess.run(y, feed_dict={x: test_inputs, keep_prob: 1}) 

 #Saves the weights for each set seperatly. 

        saver.save(sess, 

'/home/filipe/Documents/Disseration/tensorflow/Data_searching/dropout/Rank/Model%d/mode

l' % num) 

    return best 

 

# Create a list containing the methods which are too be combined. 

# Key: ModFOLD5_single_orig_global (3), ModFOLDclustQ_single_orig_global (4), 

ModFOLDclust2_single_orig_global (5), ModFOLD5_single_res_global (6), 

ModFOLDclustQ_single_res_global (7), ProQ2_res_global (8), CDA_res_global (9), 

DBA_res_global (10), SSA_res_global (11), ModFOLD6_single_res_global (12). 

combination_choice = ["V9", "V11", "V12"] 

 

#Create a text file containing the wanted combination, this file is fed into R_Part1 

file = open("combination.txt","w")  

file.write("9, 11, 12") 

file.close()             

 

# Runs the R script, R_Part1.R through the terminal. 

os.system("Rscript Data_searching_Part1.R") 

 

#loops NN over all possible combinations of parameters, hidden units from 1-20 and 

hidden units from 50-950 

for inter in range(50, 1000, 50): 

    for hidden1 in range(1, 6, 1): 

        for hidden2 in range(1, 6, 1):  

     #train each data set to GDT-HA score (V13) 

            prediction1 = run(1, [combination_choice], ["V13"], 0.01, inter, hidden1, 

hidden2, len(combination_choice)) 

            numpy.savetxt('prediction_set1.out', prediction1) 

             

            prediction2 = run(2, [combination_choice], ["V13"], 0.01, inter, hidden1, 

hidden2, len(combination_choice)) 

            numpy.savetxt('prediction_set2.out', prediction2) 

             

            prediction3 = run(3, [combination_choice], ["V13"], 0.01, inter, hidden1, 

hidden2, len(combination_choice)) 
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            numpy.savetxt('prediction_set3.out', prediction3) 

             

     # Runs the R script, R_Part2.R through the terminal. 

            os.system("Rscript Para_part2.R") 
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Appendix 6 

 

# RSNNS_Data_search 

 

library(RSNNS) 

library(data.table) 

all1 <- fread("Global_QA_round1_all.out") 

all2 <- fread("Global_QA_round2_all.out") 

all <- rbind( all1, all2 )#combine data from both rounds 

#remove data for where no native structures are available 

DT <- subset( all, V1!="T0775" & V1!="T0779" & V1!="T0793" & V1!="T0795" & V1!="T0799" 

& V1!="T0802" & V1!="T0804" & V1!="T0826" & V1!="T0828" & V1!="T0839" & V1!="T0842" & 

V1!="T0844" & V1!="T0846" & V1!="T0850" ) 

 

#seperate training and testing data into 3 subsets. 

training_set1 <- subset( DT, V1!="T0834" & V1!="T0798" & V1!="T0816" & V1!="T0845" & 

V1!="T0822" & V1!="T0784" & V1!="T0833" & V1!="T0857" & V1!="T0763" 

                         & V1!="T0782" & V1!="T0820" & V1!="T0854" & V1!="T0800" & 

V1!="T0840" & V1!="T0832" & V1!="T0810" & V1!="T0827" & V1!="T0766" 

                         & V1!="T0771" & V1!="T0858" & V1!="T0765" & V1!="T0855" & 

V1!="T0847" & V1!="T0796" & V1!="T0778" & V1!="T0761" & V1!="T0764" 

                         & V1!="T0821" ) 

#nrow(training_set1)  

#9517 patterns/residues/rows in table 

testing_set1 <-subset( DT, V1=="T0834" | V1=="T0798" | V1=="T0816" | V1=="T0845" | 

V1=="T0822" | V1=="T0784" | V1=="T0833" | V1=="T0857" | V1=="T0763" 

                       | V1=="T0782" | V1=="T0820" | V1=="T0854" | V1=="T0800" | 

V1=="T0840" | V1=="T0832" | V1=="T0810" | V1=="T0827" | V1=="T0766" 

                       | V1=="T0771" | V1=="T0858" | V1=="T0765" | V1=="T0855" | 

V1=="T0847" | V1=="T0796" | V1=="T0778" | V1=="T0761" | V1=="T0764" 

                       | V1=="T0821" ) 

#4586 patterns/residues/rows in table 

#nrow(training_set1) + nrow(testing_set1) = 14103 

 

training_set2 <- subset( DT, V1!="T0781" & V1!="T0829" & V1!="T0769" & V1!="T0836" & 

V1!="T0759" & V1!="T0777" & V1!="T0852" & V1!="T0792" & V1!="T0818" 

                         & V1!="T0772" & V1!="T0794" & V1!="T0811" & V1!="T0787" & 

V1!="T0762" & V1!="T0825" & V1!="T0773" & V1!="T0801" & V1!="T0812" 

                         & V1!="T0831" & V1!="T0760" & V1!="T0853" & V1!="T0815" & 

V1!="T0856" & V1!="T0788" & V1!="T0805" & V1!="T0808" & V1!="T0835" 

                         & V1!="T0843") 

#9344 patterns/residues/rows in table 
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testing_set2 <- subset( DT, V1=="T0781" | V1=="T0829" | V1=="T0769" | V1=="T0836" | 

V1=="T0759" | V1=="T0777" | V1=="T0852" | V1=="T0792" | V1=="T0818" 

                        | V1=="T0772" | V1=="T0794" | V1=="T0811" | V1=="T0787" | 

V1=="T0762" | V1=="T0825" | V1=="T0773" | V1=="T0801" | V1=="T0812" 

                        | V1=="T0831" | V1=="T0760" | V1=="T0853" | V1=="T0815" | 

V1=="T0856" | V1=="T0788" | V1=="T0805" | V1=="T0808" | V1=="T0835" 

                        | V1=="T0843") 

#4759 patterns/residues/rows in table 

#nrow(training_set2) + nrow(testing_set2) = 14103 

 

training_set3 <- subset( DT, V1!="T0819" & V1!="T0851" & V1!="T0790" & V1!="T0789" & 

V1!="T0823" & V1!="T0813" & V1!="T0770" & V1!="T0803" & V1!="T0841" 

                         & V1!="T0807" & V1!="T0848" & V1!="T0768" & V1!="T0785" & 

V1!="T0817" & V1!="T0838" & V1!="T0797" & V1!="T0767" & V1!="T0780" 

                         & V1!="T0837" & V1!="T0774" & V1!="T0786" & V1!="T0824" & 

V1!="T0814" & V1!="T0830" & V1!="T0783" & V1!="T0849" & V1!="T0776" 

                         & V1!="T0806") 

#9345 patterns/residues/rows in table 

testing_set3 <- subset( DT, V1=="T0819" | V1=="T0851" | V1=="T0790" | V1=="T0789" | 

V1=="T0823" | V1=="T0813" | V1=="T0770" | V1=="T0803" | V1=="T0841" 

                        | V1=="T0807" | V1=="T0848" | V1=="T0768" | V1=="T0785" | 

V1=="T0817" | V1=="T0838" | V1=="T0797" | V1=="T0767" | V1=="T0780" 

                        | V1=="T0837" | V1=="T0774" | V1=="T0786" | V1=="T0824" | 

V1=="T0814" | V1=="T0830" | V1=="T0783" | V1=="T0849" | V1=="T0776" 

                        | V1=="T0806") 

#4758 patterns/residues/rows in table 

#nrow(training_set3) + nrow(testing_set3) = 14103 

#  

# #randomise each training set 

training_set1_ran <- training_set1[sample(1:nrow(training_set1), replace=FALSE),] 

training_set1_inputs_ran <- training_set1_ran[, 3:12, with=FALSE] 

training_set1_outputs_GDT-HA <- training_set1_ran[, 13, with=FALSE] 

training_set1_outputs_GDT <- training_set1_ran[, 14, with=FALSE] 

training_set1_outputs_MaxSub <- training_set1_ran[, 15, with=FALSE] 

training_set1_outputs_TM-score <- training_set1_ran[, 16, with=FALSE] 

 

testing_set1_inputs <- testing_set1[, 3:12, with=FALSE] 

testing_set1_outputs_GDT-HA <- testing_set1[, 13, with=FALSE] 

testing_set1_outputs_GDT <- testing_set1[, 14, with=FALSE] 

testing_set1_outputs_MaxSub <- testing_set1[, 15, with=FALSE] 

testing_set1_outputs_TM-score <- testing_set1[, 16, with=FALSE] 

 

training_set2_ran <- training_set2[sample(1:nrow(training_set2), replace=FALSE),] 
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training_set2_inputs_ran <- training_set2_ran[, 3:12, with=FALSE] 

training_set2_outputs_GDT-HA <- training_set2_ran[, 13, with=FALSE] 

training_set2_outputs_GDT <- training_set2_ran[, 14, with=FALSE] 

training_set2_outputs_MaxSub <- training_set2_ran[, 15, with=FALSE] 

training_set2_outputs_TM-score <- training_set2_ran[, 16, with=FALSE] 

 

testing_set2_inputs <- testing_set2[, 3:12, with=FALSE] 

testing_set2_outputs_GDT-HA <- testing_set2[, 13, with=FALSE] 

testing_set2_outputs_GDT <- testing_set2[, 14, with=FALSE] 

testing_set2_outputs_MaxSub <- testing_set2[, 15, with=FALSE] 

testing_set2_outputs_TM-score <- testing_set2[, 16, with=FALSE] 

 

training_set3_ran <- training_set3[sample(1:nrow(training_set3), replace=FALSE),] 

training_set3_inputs_ran <- training_set3_ran[, 3:12, with=FALSE] 

training_set3_outputs_GDT-HA <- training_set3_ran[, 13, with=FALSE] 

training_set3_outputs_GDT <- training_set3_ran[, 14, with=FALSE] 

training_set3_outputs_MaxSub <- training_set3_ran[, 15, with=FALSE] 

training_set3_outputs_TM-score <- training_set3_ran[, 16, with=FALSE] 

 

testing_set3_inputs <- testing_set3[, 3:12, with=FALSE] 

testing_set3_outputs_GDT-HA <- testing_set3[, 13, with=FALSE] 

testing_set3_outputs_GDT <- testing_set3[, 14, with=FALSE] 

testing_set3_outputs_MaxSub <- testing_set3[, 15, with=FALSE] 

testing_set3_outputs_TM-score <- testing_set3[, 16, with=FALSE] 

 

GDT-HA <- rbind( testing_set1_outputs_GDT-HA, testing_set2_outputs_GDT-HA, 

testing_set3_outputs_GDT-HA) 

GDT <- rbind( testing_set1_outputs_GDT, testing_set2_outputs_GDT, 

testing_set3_outputs_GDT) 

MaxSub <- rbind( testing_set1_outputs_MaxSub, testing_set2_outputs_MaxSub, 

testing_set3_outputs_MaxSub) 

TM-score <- rbind( testing_set1_outputs_TM-score, testing_set2_outputs_TM-score, 

testing_set3_outputs_TM-score) 

 

#loops over the NN as until score is higher than the score specified 

while(sum(as.numeric(NNtest[,3])) < 32.2){ 

  #try a NN with the ModFOLD6_rank combo of global score inputs 

  #target_id, actualfilename, ModFOLDclustscore, ModFOLDclustQscore, ModFOLDclust2, 

ModFOLDclustres, ModFOLDclustQres, ProQ2res, CDAres, DBAres, SSAres, ModFOLD6res 

  #mean of ModFOLDclustQres+ProQ2res+CDAres+DBAres+SSAres+ModFOLD6res gives good top 

model score (for each round and FM models) and reasonable correlations 

  cat( "8,9,11-0_5_100it_3_hidden\n", file = 

"Global_NN_both_rounds_correlations.dat",append = TRUE) 
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  #create variables containing a matrix of only the methods included in the combination 

  training_set1_inputs_ran <- training_set1_ran[, c(8,9,11), with=FALSE] 

  training_set2_inputs_ran <- training_set2_ran[, c(8,9,11), with=FALSE] 

  training_set3_inputs_ran <- training_set3_ran[, c(8,9,11), with=FALSE] 

  testing_set1_inputs <- testing_set1[, c(8,9,11), with=FALSE] 

  testing_set2_inputs <- testing_set2[, c(8,9,11), with=FALSE] 

  testing_set3_inputs <- testing_set3[, c(8,9,11), with=FALSE] 

   

  #train to GDT-HA score 

  model <- mlp(training_set1_inputs_ran, training_set1_outputs_GDT-HA, size = 2, 

learnFuncParams = c(0.5, 0.001), maxit = 550, inputsTest = testing_set1_inputs, 

targetsTest = testing_set1_outputs_GDT-HA) 

  save(model, file="Global_8,9,11-0_5_550it_2_hidden.model.train_window_set1") 

  predictions_set1 <- predict(model, testing_set1_inputs) 

   

  model <- mlp(training_set2_inputs_ran, training_set2_outputs_GDT-HA, size = 2, 

learnFuncParams = c(0.5, 0.001), maxit = 550, inputsTest = testing_set2_inputs, 

targetsTest = testing_set2_outputs_GDT-HA) 

  save(model, file="Global_8,9,11-0_5_550it_2_hidden.model.train_window_set2") 

  predictions_set2 <- predict(model, testing_set2_inputs) 

   

  model <- mlp(training_set3_inputs_ran, training_set3_outputs_GDT-HA, size = 2, 

learnFuncParams = c(0.5, 0.001), maxit = 550, inputsTest = testing_set3_inputs, 

targetsTest = testing_set3_outputs_GDT-HA) 

  save(model, file="Global_8,9,11-0_5_550it_2_hidden.model.train_window_set3") 

  predictions_set3 <- predict(model, testing_set3_inputs) 

   

  predictions <- rbind(predictions_set1, predictions_set2, predictions_set3) 

   

  #test correlations pred v obs 

  cat( "ModFOLD7_NN_test_GDT-HA", 

       cor(predictions, GDT-HA, method="pearson"), cor(predictions, GDT-HA, 

method="spearman"), cor(predictions, GDT-HA, method="kendall"), 

       cor(predictions, GDT, method="pearson"), cor(predictions, GDT, 

method="spearman"), cor(predictions, GDT, method="kendall"), 

       cor(predictions, MaxSub, method="pearson"), cor(predictions, MaxSub, 

method="spearman"), cor(predictions, MaxSub, method="kendall"), 

       cor(predictions, TM-score, method="pearson"), cor(predictions, TM-score, 

method="spearman"), cor(predictions, TM-score, method="kendall") 

       , "\n", sep=" ", file = "Global_NN_both_rounds_correlations.dat",append = TRUE) 

   

  #test ranking - cumulative scores of top ranked models 
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  cat( "8,9,11-0_5_100it_3_hidden\n", file = "Global_NN_both_rounds_ranks.dat",append = 

TRUE) 

   

  DT2 <- rbind( testing_set1, testing_set2, testing_set3) 

  DT2[,V17 := predictions ]#add predictions as last column (V17) 

  target_ids <- unique(DT2$V1)#get all IDs in data (unique variables in column $V1) 

   

  #setup empty arrays 

  NNtest <- c() 

   

  for(i in 1:length(target_ids) ) 

  { 

    #print(target_ids[i]) 

    set1 <-subset( DT2, V1==target_ids[i]) 

     

    #mean of ModFOLDclustQ_single_res_global_all, ProQ2_res_global_all, 

CDA_res_global_all, DBA_res_global_all, SSA_res_global_all and 

ModFOLD6_single_res_global_all #<--- 3rd BEST COMBO FOR RANKING 

    NNtest <- rbind( NNtest, c( set1[which.max(set1$V17), ]$V1, 

set1[which.max(set1$V17), ]$V2, set1[which.max(set1$V17), ]$V13, 

set1[which.max(set1$V17), ]$V14, set1[which.max(set1$V17), ]$V15, 

set1[which.max(set1$V17), ]$V16 )) 

  } 

   

  #standard error function for error bars 

  std_err <- function(x) sd(x)/sqrt(length(x)) 

   

  #cumlative GDT-HA, GDT-TS, MaxSub & TM-scores of top models for each target ranked by 

each global QA score 

  cumulativescores <- c() 

  cumulativescores <-  rbind( cumulativescores, c( "Method", "GDT-HA", "GDT-TS", 

"MaxSub", "TM-score", "Std_err_GDT-HA", "Std_err_GDT-TS", "Std_err_MaxSub", 

"Std_err_TM-score" )) 

  cumulativescores <-  rbind( cumulativescores, c( "NNtest", 

sum(as.numeric(NNtest[,3])), sum(as.numeric(NNtest[,4])), sum(as.numeric(NNtest[,5])), 

sum(as.numeric(NNtest[,6])), std_err(as.numeric(NNtest[,3])), 

std_err(as.numeric(NNtest[,4])), std_err(as.numeric(NNtest[,5])), 

std_err(as.numeric(NNtest[,6])) )) 

  #output table to a file 

  cat( "Round1+Round2\n", file = "Global_NN_both_rounds_ranks.dat", append = TRUE) 

  write.table( cumulativescores, file = "Global_NN_both_rounds_ranks.dat", sep = " ", 

quote = FALSE, row.names = FALSE, col.names = FALSE, append = TRUE) 

} 
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# TensorFlow_Data_search 

 

import itertools 

import os 

import os.path 

import tensorflow as tf 

import numpy 

import pandas as pd 

sess = tf.InteractiveSession() 

 

# A function which aims to extract all the data produced from R_Part1 and stores them 

in arrays to be used in the NN. 

def run(set_num, combination, observation, learning_rate, training_epochs, n_hidden1, 

n_hidden2, n_input): 

 # Read files produced by R_Part1 and stores the data into a Data Frame. 

        df_train = pd.read_csv("training_set%d_inputs_ran.csv" % set_num) 

        df_GDT-HA = pd.read_csv("training_set%d_outputs_GDT-HA.csv" % set_num) 

        df_test_inputs = pd.read_csv("testing_set%d_inputs.csv" % set_num) 

        df_test_output = pd.read_csv("testing_set%d_outputs_GDT-HA.csv" % set_num) 

 # Extracts the wanted data from the Data Frames above and converts the frame 

into a Numpy-array. 

        trainer = df_train.as_matrix(combination) 

        label = df_GDT-HA.as_matrix(observation) 

        test_inputs = df_test_inputs.as_matrix(combination) 

        test_outputs = df_test_output.as_matrix(observation) 

        h = my_mlp(set_num, trainer, label, learning_rate, training_epochs, n_hidden1, 

n_hidden2, n_input, test_inputs, test_outputs) 

        return h 

         

def multilayer_perceptron(x, w1, w2, drop, out): 

    # the first hidden layer 

    layer_1 = tf.matmul(x, w1) 

    layer_1 = tf.nn.dropout(layer_1, drop) 

    # the second hidden layer 

    layer_2 = tf.matmul(layer_1, w2) 

    layer_2 = tf.nn.dropout(layer_2, drop) 

    # Output layer with linear activation 

    out_layer = tf.matmul(layer_2, out) 

    return out_layer 

     

def my_mlp (num, trainer, trainer_awn, learning_rate, training_epochs, n_hidden1, 

n_hidden2, n_input, test_inputs, test_outputs): 
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    trX, trY= trainer, trainer_awn 

    #create placeholders 

    x = tf.placeholder(tf.float32, shape=[None, n_input]) 

    y_ = tf.placeholder(tf.float32, shape=[None, ]) 

    keep_prob = tf.placeholder("float")  

    #create initial weights 

    w1 = tf.Variable(tf.truncated_normal([n_input, n_hidden1], stddev=0.01)) 

    w2 = tf.Variable(tf.truncated_normal([n_hidden1, n_hidden2], stddev=0.01)) 

    out = tf.Variable(tf.truncated_normal([n_hidden2, 1], stddev=0.01)) 

    #predicted class and loss function 

    y = multilayer_perceptron(x, w1, w2, keep_prob, out) 

    # Reshapes the observational data. 

    y_ = tf.reshape(y_, [-1, 1]) 

    # Cost function, aims to reduce the difference between the predictions and the 

observational data. 

    cross_entropy = tf.reduce_sum(tf.abs(y - y_)) 

    #training 

    train_step = 

tf.train.AdagradOptimizer(learning_rate=learning_rate).minimize(cross_entropy) 

    correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1)) 

    accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) 

    init_op = tf.initialize_all_variables() 

    saver = tf.train.Saver() 

    # Start training. 

    with tf.Session() as sess: 

        # you need to initialize all variables 

        sess.run(init_op) 

 #training session, it is run multiple times equal to the set iterations/epochs. 

        for i in range(training_epochs + 1): 

      #feeds the training data, both combination data and observation data, into 

the placeholders. 

            sess.run([train_step, cross_entropy], feed_dict={x: trX, y_: trY, 

keep_prob: 0.9}) 

        print("Accuracy:", accuracy.eval({x: test_inputs, y_: test_outputs, keep_prob: 

1})) 

 #Creates a Numpy array containing the final model predictions. 

        best = sess.run(y, feed_dict={x: test_inputs, keep_prob: 1}) 

 #Saves the weights for each set seperatly. 

        saver.save(sess, 

'/home/filipe/Documents/Disseration/tensorflow/Data_searching/dropout/Rank/Model%d/mode

l' % num) 

    return best 
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#End file created by TensorFlow_Data_searching_Part2 when the NN is score higher than 

the score specified 

while os.path.exists("end.csv") == False: 

    # Create a list containing the methods which are too be combined. 

    # Key: ModFOLD5_single_orig_global (3), ModFOLDclustQ_single_orig_global (4), 

ModFOLDclust2_single_orig_global (5), ModFOLD5_single_res_global (6), 

ModFOLDclustQ_single_res_global (7), ProQ2_res_global (8), CDA_res_global (9), 

DBA_res_global (10), SSA_res_global (11), ModFOLD6_single_res_global (12). 

    combination_choice = ["V9", "V11", "V12"] 

     

    #Create a text file containing the wanted combination, this file is fed into 

R_Part1 

    file = open("combination.txt","w")  

    file.write("9, 11, 12") 

    file.close()  

     

    # Runs the R script, R_Part1.R through the terminal. 

    os.system("Rscript Data_searching_Part1.R") 

     

    #train each data set to GDT-HA score (V13) 

    prediction1 = run(1, [combination_choice], ["V13"], 0.001, 100, 5, 4, 

len(combination_choice)) 

    numpy.savetxt('prediction_set1.out', prediction1) 

     

    prediction2 = run(2, [combination_choice], ["V13"], 0.001, 100, 5, 4, 

len(combination_choice)) 

    numpy.savetxt('prediction_set2.out', prediction2) 

 

    prediction3 = run(3, [combination_choice], ["V13"], 0.001, 100, 5, 4, 

len(combination_choice)) 

    numpy.savetxt('prediction_set3.out', prediction3) 

 

    # Runs the R script, R_Part2.R through the terminal. 

    os.system("Rscript Data_searching_Part2.R") 
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Appendix 7 

 

 

Figure S7. Scatter chart showing how the correlation changes with learning rate where the 

rate is between 0.00005 and 0.0005. Error bars are calculated by taking the standard deviation 

of 10 runs of the network using the same hyperparameters. 

 

 

Appendix 8 

 

 

Figure S8. Scatter chart showing how the correlation changes with L2 regularisation, where 

the L2 parameter is between 100 and 300. Error bars are calculated by taking the standard 

deviation of 10 runs of the network using the same hyperparameters. 
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Appendix 9 

 

 

Figure S9. Line chart showing how rank score and correlation change with the L2 

parameter between values of 100 and 1000. Error bars are excluded for clarity. 

 

Appendix 10 

 

 Average lDDT Average CAD score Average lDDT-BS 

Server Name Dif. Ref. Dif. Ref. Dif. Ref. 

Robetta -2.15 69.04 -0.03 0.69 2.66 67.81 

IntFOLD4-TSb 0 66.89 0 0.66 0 70.47 

Table S10. Performance of IntFOLD4-TS versus Robetta. CAMEO-3D: Common Subset Comparison, 

1-year Performance (2016-07-01 - 2017-06-24) (891 targets - 2 methods). IntFOLD4_TS is the reference 

server (listed as server58, or IntFOLD4-TSb on CAMEO). Data are from http://www.cameo3d.org/. The 

table is sorted by difference in Average lDDT score. 

 

  

http://www.cameo3d.org/
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Appendix 11 

 

 Average lDDT Average CAD score Average lDDT-BS 

Server Name Dif. Ref. Dif. Ref. Dif. Ref. 

Robetta -2.43 71.88 -0.03 0.7 3.53 70.45 

IntFOLD4-TSb 0 69.45 0 0.68 0 73.98 

RaptorX 0.11 69.34 0 0.68 5.54 68.43 

IntFOLD3-TS 1.55 67.9 0.02 0.66 3.52 70.45 

IntFOLD2-TS 1.74 67.71 0.02 0.66 4.33 69.64 

HHpredB 2.37 67.08 0 0.67 4.07 69.91 

SWISS-MODEL 3.45 66 0.03 0.64 2.86 71.12 

SPARKS-X 6.19 63.26 0.04 0.64 7.19 66.78 

Princeton_TEMPLATE 9.84 59.61 0.09 0.59 17.92 56.06 

NaiveBLAST 11.74 57.71 0.12 0.56 10.69 63.29 

Table S11. Performance of IntFOLD4-TS versus other servers. CAMEO-3D: Common 

Subset Comparison, 6-months Performance (2016-12-30 - 2017-06-24) (304 targets - 10 

methods). IntFOLD4_TS is the reference server (listed as server58, or IntFOLD4-TSb on 

CAMEO). Data are from http://www.cameo3d.org/. The table is sorted by difference in Average 

lDDT score. 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.cameo3d.org/
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Appendix 12 

 

 Avg. lDDT Avg. CAD-score Avg. lDDT-BS 

Server Name Dif. Ref. Dif. Ref. Dif. Ref. 

Robetta -1.67 72.45 -0.02 0.7 5.54 71.32 

IntFOLD5-TS 0 70.78 0 0.69 0 76.85 

RaptorX 0.18 70.6 0 0.68 4.84 72.01 

IntFOLD4-TS 0.45 70.33 0 0.68 0.27 76.58 

IntFOLD3-TS 1.82 68.96 0.02 0.67 1.43 75.42 

SWISS-MODEL 2.64 68.14 0.03 0.66 0.47 76.38 

HHpredB 3.64 67.14 0.01 0.67 6.26 70.6 

M4T-SMOTIF-TF 5.46 65.32 0.05 0.64 1.79 75.07 

SPARKS-X 6.39 64.38 0.04 0.64 5.94 70.92 

PRIMO 7.17 63.61 0.06 0.63 5.02 71.83 

PRIMO_BST_CL 7.17 63.61 0.06 0.63 5.02 71.83 

PRIMO_BST_3D 8.47 62.3 0.07 0.61 6.92 69.93 

PRIMO_HHS_3D 8.86 61.92 0.08 0.61 6.95 69.91 

PRIMO_HHS_CL 9.31 61.47 0.08 0.61 9.26 67.59 

NaiveBLAST 9.74 61.04 0.1 0.59 4.37 72.49 

Princeton_TEMPLATE 10.26 60.52 0.09 0.59 18.63 58.22 

Phyre2 13.15 57.62 0.06 0.63 4.74 72.12 

Table S12. Independent benchmarking of tertiary structure predictions with CAMEO 3D data. 

Performance results for 1 year of data (2018-01-26 to 2019-01-19) are shown for a common subset of 199 

targets for all the 17 public methods. The reference method is IntFOLD5-TS and the table is sorted by 

average lDDT. Data are downloaded from http://www.cameo3d.org/. 

 

 

 

http://www.cameo3d.org/
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Appendix 13 

 

 
Avg.  

lDDT 

Avg. 

CAD-score 

Avg. 

lDDT-BS 

Server Name Dif. Ref. Dif. Ref. Dif. Ref. 

Robetta -1.32 69.07 -0.02 0.68 5.8 66 

IntFOLD5-TS 0 67.75 0 0.67 0 71.81 

IntFOLD4-TS 0.52 67.23 0 0.66 0.24 71.57 

RaptorX 0.58 67.17 0 0.66 4.85 66.95 

IntFOLD3-TS 2.1 65.65 0.02 0.65 1.9 69.9 

Table S13. Intensive independent benchmarking of tertiary structure predictions with CAMEO 3D 

data. Performance results for 1 year of data (2018-01-26 to 2019-01-19) are shown for a common subset of 

575 targets for the top 3 public methods plus the older versions of IntFOLD. The reference method is 

IntFOLD5-TS and the table is sorted by average lDDT. Data are downloaded from 

http://www.cameo3d.org/. 
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Appendix 14 

 

 

Figure S13. The wfAll-Cheng pipeline selected its model 1 among all models contributed by the 

WeFold pipelines as well as servers models. (Top left) Of the 67 CASP12 domains released so far, the 

wfAll-Cheng pipeline selected 22 models submitted by pipeline wfMESHI_TIGRESS and 18 models 

submitted by pipeline wfMESHI-Seok as model 1. (Top right) Of the 39 FM CASP12 domains released so 

far, the wfAll-Cheng pipeline selected 14 models submitted by pipeline wfMESHI_TIGRESS and 9 models 

submitted by pipeline wfMESHI-Seok as model 1. (Bottom left) Of the 16 TBM/FM CASP12 domains 

released so far, the wfAll-Cheng pipeline selected 6 models submitted by pipeline wfMESHI_TIGRESS 

and 5 models submitted by pipeline wfMESHI-Seok as model 1. (Bottom right) Of the 12 TBM CASP12 

domains released so far, the wfAll-Cheng pipeline selected 4 models submitted by pipeline wfMESHI_Seok 

and 2 models submitted by pipeline wfMESHI-TIGRESS as model 1. 




