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Crowd Descriptors and Interpretable Gathering
Understanding

Yuxin Zhou, Chenguang Liu, Yulong Ding, Diping Yuan, Jiyao Yin, Shuang-Hua Yang, Senior Member, IEEE

Abstract—Crowd gathering events deeply affect public safety.
To enhance city management and avoid potential risks, many
algorithms are designed for crowd analysis and deployed on
video surveillance. Widely applied deep learning models also
can be trained for crowd analysis. However, there are still few
works focusing on crowd gathering behavior. Furthermore, as
a result of the lack of interpretability of deep learning models,
which also brings potential risk of being rejected by the users.
In this paper, we categorize crowd behaviors into wandering,
merging, walking gathering, standing gathering, and dispersing.
Also, we propose an interpretable framework for crowd gath-
ering understanding based on crowd density estimation model
and proposed crowd descriptors, named Irregularity, Sparsity,
Randomness, and Volatility. The experiments on the PETS2009
dataset demonstrate our method has outperformed the previous
works on the crowd gathering understanding task. Moreover, we
further analyze the framework performance with different crowd
feature extraction models and the relations between our descrip-
tors and crowd behavior. Besides, an ablation study is conducted
to investigate the effectiveness of the descriptors and differences
between density estimation models. The results demonstrate
the effectiveness and the much better interpretability of our
framework. Our descriptors also show significant contributions
to the quantification of crowd gathering behaviors.

Index Terms—Crowd gathering understanding, crowd descrip-
tor, crowd density estimation, interpretable framework.

I. INTRODUCTION

UMAN activities deeply affect public safety in cities,
which may cause stampedes, riots, and other negative
incidents. Many people have lost their lives in these negative
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crowd events in the past decades. Internet of Things (IoT)
development brings many technologies to facilitate crowd
management, including smart video surveillance, which can
monitor pedestrians and help avoid potential risks.

Crowd analysis is an important task for smart video surveil-
lance. Computer vision algorithms are widely adopted to
address crowd analysis tasks, such as crowd counting [1]-[5],
crowd anomaly detecting [6]-[8], pedestrians tracking [9]-
[12]. Crowd anomaly detecting pays attention to abnormal
behaviors, such as fighting [13], robbing [14], and sudden
running [6]. Crowd gathering is also an important type of
anomaly, which usually occurs in advance before crowd events
lead to crowd disasters or accidents. However, very few studies
pay attention to crowd gathering.

There is little consensus on what crowd gathering is in
existing research. The absence of consensus is caused by the
variety of crowd gathering behaviors in various aspects. For
instance, whether a gathering crowd should be well-organized
and how many people should a gathering crowd have. A
definition of crowd gathering is given to clarify the crowd
gathering behavior discussed in this paper. Crowd gathering
is a crowd behavior, in which a group of well-organized
people share a common purpose, and appear in a common
physical location. Besides, we categorize crowd behaviors into
five stages, named wandering, merging, walking gathering,
standing gathering, and dispersing, respectively.

Recently, researchers begin to put their interest in crowd
gathering understanding. Liu et al. [15] proposed foreground
stillness model to detect the crowd gathering behaviors, and
Yang et al. [16] further improved the detection accuracy
by the motion model. Xu et al. [17] addressed the task by
crowd counting model, which detects the crowd gathering
behavior according to the number of people and outperforms
previous works in detection accuracy. Moreover, deep learning
models have been used to address various image and video
analysis tasks and demonstrate a promising pattern recognition
performance [18]-[22]. The models can also be trained to
detect crowd gathering and outperform the models designed
for crowd gathering understanding. A well-functioning crowd
analysis system can inform the users possible accident. How-
ever, as a black-box model, deep learning suffers from the lack
of interpretability [23], which is important for crowd analysis.
The lack of interpretability comes with potential risks of being
rejected by the users. Specifically, the model can be affected by
small perturbations and falsely alert [24], even be embedded
with malwares [25]. For untrustable models, the alert may be
perceived as untrustworthy and could consequently be rejected
by the users, as shown in Fig. 1. The users are generally public
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Fig. 1. The use of crowd analysis model in public management

managers. A powerful interpretable model is more human-
understandable and trustable for the users [26], which is also
required for crowd gathering understanding.

Inspired by the works on measuring crowd collectiveness
[27], [28], we propose a set of crowd descriptors to describe
intra-group properties. Based on the proposed descriptors,
we further build a crowd gathering understanding framework,
which extracts a crowd density map and an optical flow map
for each frame of the input video sequence as the crowd
features. Then the aforementioned descriptors are calculated
based on these features. Finally, a classifier outputs which
stage the crowd is in.

Our contributions can be summarised as below:

e We propose a novel crowd gathering understanding
framework. Our proposed framework considers informa-
tion of crowd density and crowd motion, and further
analyzes the relations between people. It outperforms
the existing methods on the task of crowd gathering
understanding.

e A set of crowd descriptors, Irregularity, Sparsity, Ran-
domness, and Volatility, are proposed to describe intra-
group properties for crowd gathering understanding. To
the best of the author’s knowledge, crowd density map
is first used in crowd property quantification by the
proposed descriptors. Our descriptors can improve the
interpretability of the proposed framework.

o To describe the transition between non-gathering to gath-
ering, we divide the crowd gathering process into five
stages, wandering, merging, walking gathering, stand-
ing, gathering, and dispersing respectively. This method
specifically defines the process of crowd gathering. Based
on the proposed descriptors, we further reveal the crowd
motion patterns of each gathering stage.

The rest of this paper is organized as follows. Section II
briefly reviews the related works on the analysis of crowd
motion patterns, crowd collectiveness measuring, and crowd
behavior understanding. In Section III the proposed descrip-
tors are first introduced. Then in Section IV the proposed
framework based on our descriptors is presented and followed
by an experiment on crowd gathering understanding task in
Section V. Further analysis and ablation study are in Section
VI. Section VII finally summarizes our work and discusses
possible future improvements.

II. RELATED WORK

During the past decades, many researchers have analyzed
the underlying principles of pedestrian movement to prevent
crowd disasters. In this section, we briefly review the previous
works on the analysis of crowd motion patterns, collectiveness
measuring, and behavior understanding.

A. Analysis of Crowd Motion Patterns

In early studies, researchers understand crowd behavior
based on pedestrian dynamics [29]-[33]. In 1995, Helbing et
al. [29] described the patterns of pedestrian motion by their
social force model, which models the dynamics of pedestrian
behavior and formulates the force guiding individual behavior.
They also analyzed the Hajj Stampede in 2006 [30]. In this
study, they tracked the heads of pedestrians to extract their
trajectories and then calculated global and local densities,
speeds, and flows. According to these properties, the motion
states named laminar, stop-and-go wave, turbulence, and tran-
sition among them were discovered. Afterward, an analysis
of the factors leading to the Love Parade disaster in 2010
was conducted [31]. Based on the social force model, Yu et
al. [32] extended its repulsive force term to reproduce the
crowd turbulence phenomenon. Moussaid et al. [33] proposed
a behavioral heuristics based cognitive science approach to
model crowd motion, which overcomes the inconsistency with
observation. However, the error of these methods is still large,
which makes them difficult to be applied.

B. Crowd Collectiveness Measuring

Many biologists and sociologists have studied collective
motion in animal and human society [34]-[37]. Computer
scientists also study the crowd behavior quantitatively [27],
[28], [38]-[42], which is one type of collective motion. Zhou
et al. [27] first proposed a descriptor of collectiveness, which
quantifies crowd collectiveness by its topological relations
among individuals. Shao er al. [28] further proposed their
group descriptors including descriptors of collectiveness, sta-
bility, uniformity, and conflict. Based on Agent-based Motion
Models (AMM) [29], [43], [44], Liu et al. [38] adopted
multiple exemplar-AMMs for recognizing crowd motion. In
this research, they also proposed a crowd movement numerical
measuring framework, which combines all entropy descriptors
from exemplar-AMMs to compute a crowd movement feature.
Furthermore, they proposed individual holistic features to
describe crowd motion [39]. Zou et al. [40] proposed a novel
method that leverages macroscopic and microscopic features to
quantify crowd motion consistency. Wang et al. [41] developed
a structural context descriptor representing crowd motion
dynamics. Pai et al. [42] quantified the structuredness in
crowd scenes by Histogram of Angular Deviations (HAD),
which is a structuredness index proposed by them. Li et al.
[45] designed trajectory-based descriptors profiling the crowd
motions for group detection. Zou et al. [46] proposed a two-
part motion model based on the shortest path principle to
simulate and classify the behaviors of pedestrians. Behera et
al. [47] mapped crowd characterization to a graph classifica-
tion problem to classify movements based on order parameter,
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active force components, and steadiness. Simon et al. [48]
understanded the crowd movements by analysing the dynamics
of motion with the Lagrangian approach. Japar et al. [49]
studied the collectiveness by analysing temporal information
and topological relationship propagation among individuals.

C. Crowd Behavior Understanding

Recently, deep learning obtains great results in many fields
including crowd behavior understanding. Feng et al. [50]
extract event features with PCANet [51] and identify abnormal
events by a deep Gaussian Mixed Model (GMM). Convo-
lutional Neural Network (CNN) based [52] and Generative
Adversarial Networks (GAN) based [53] models are also
proposed for anomalous event detection in crowd scenes. In
[54], the author labeled the video data as eight types of crowd
behaviors and classified the data by their proposed convo-
Iutional Long Short-Term Memory (LSTM) based network.
Gupta et al. [55] proposed a framework for crowd disaster
prediction. The framework adopts random forest [56] as the
classifier and AlexNet [18] as the backbone net with the input
of optical flow and saliency flow. Yang et al. [57] proposed
a novel deep learning based architecture named DeepSDAE
to detect anomalies, which can be trained by reinforcement
learning. Zhang et al. [58] predict trajectory of individuals
and ongoing group behaviors using a novel LSTM-based
framework modeling the interaction between pedestrians and
environments. Su et al. [59] detect social groups according
to interpersonal distances and spatio-temporal trajectories of
pedestrians. Alafif e al. [60] learned a GAN for individual-
level abnormal behavior detection. In this work, they trained
a GAN by inputting normal samples only. The generator of
GAN imitates normal inputs and the discriminator identifies
if its input is a real sample or a generated one. Therefore, the
discriminator could find the abnormal samples when they are
fed in. Some researchers [6], [7] also trained models only with
normal data to make the models overfitted. Besides, several
studies focus on the crowd gathering understanding task [15]-
[17]. Liu et al. [15] proposed an image processing based
framework for crowd gathering detection. The framework
adopts the leaky bucket model and the foreground stillness
model to detect crowd gathering behavior in public with video
surveillance data. Yang et al. [16] improved the frameworks by
introducing the motion model and the improved background
subtraction algorithm. However, the potential misrecognition is
not considered in the stillness-based frameworks. The frame-
works cannot identify whether the target is a human. Xu et
al. [17] overcame the problem by detecting crowd gathering
with the crowd counting model. They calculated the number
of people in a selected region and compared it with that out of
the region to determine the crowd gathering location. However,
the authors assumed that a gathering event had occurred in the
input video in this study.

Most existing collectiveness approaches extract crowd fea-
tures by calculating optical flow or tracking feature points.
However, they only consider the motion of selected feature
points without considering what object these feature points be-
long to. Moreover, deep learning based methods have achieved

Fig. 2. Examples with different values of proposed descriptors. (a) A parade
troop. (b) A jogging crowd, some people are running and others are walking.
(c) A view of a station and people walking in all directions. These examples
are from CUHK Crowd Dataset [28]. The red points denote the pedestrians’
position, the green arrows denote the movement speeds and directions, and
the color blocks indicate different groups.

TABLE 1
THE RELATIVE DESCRIPTOR LEVELS CORRESPONDING TO THE EXAMPLES.
Example | g(Grn) | s(Gn) | 7o(Grn) | 7a(Gn) | v(Gy)
Fig.2(a) Low Low Low Low Low
Fig2(b) | High | High High Low High
Fig.2(c) High High High High High

significant performance for crowd behavior understanding,
whereas the training and inference are treated as a black box,
which cannot be explained by the users.

III. CROWD DESCRIPTORS

To describe the intra-group properties of the crowd, we
propose a set of descriptors to characterize the features of the
crowd behaviors. We focus on capturing the spatial, temporal,
and stability features of crowds when designing the descrip-
tors. Taking these features into consideration, we define the
proposed descriptors as Irregularity g, Sparsity s, Randomness
r, and Volatility v. Besides, the temporal variations of the
descriptors are also considered. This section gives the details
of each descriptor. Before calculating these descriptors, the
crowd should be divided into several groups according to their
motion feature.

A. Irregularity

In crowd behaviors, the degree of regularity indicates
whether a group is strongly organized or not. Specifically, three
examples with different regularity structures are demonstrated
in Fig. 2. As the first example, a military parade group with
a highly regular structure in Fig. 2(a) illustrates that it is
strongly organized. A relatively less regular structure than the
military parade is indicated in Fig. 2(b), which is a group of
joggers. The third example depicts an unorganized group of
wandering pedestrians in Fig. 2(c). To describe the property
of the group’s behavior, we propose the Irregularity descriptor
g(Gy,) to represent the degree of the irregularity for the group
G,. The descriptor is calculated by the variance of the average
distances between each individual in the group and its K
nearest neighbors, which can be formulated as
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where |-| denotes the count operation for the individuals in the
group, and || - || denotes the calculation of the Euclidean dis-

tance. ¢y, ; is the i-th element in group G,,, and knn(cy, ;, K)
denotes a set of the K nearest neighbors of ¢, ;. d,, ; is the
average distance between c, ; and its nearest neighbors, and
d, is the average of d, ;. A greater K can consider more
nearest neighbors. We adopt K = 100 in our experiments.

Irregularity is used to describe the spatial features of the
crowds. A group has a high Irregularity when it is loose and
unorganized. Its structure is not uniform and the distances
between individuals fluctuate. Conversely, when Irregularity
g is low, this demonstrates that the individuals in the group
tend to have a similar mutual distance. For example, in Fig.
2(a), troops show a high degree of uniformity, resulting in a
low level of Irregularity.

B. Sparsity

Normally, people in an organized group demonstrate a dense
distribution, whereas individuals in an unorganized group
with a common destination often show a relatively sparser
distribution. However, Irregularity cannot adequately present
this distribution, and regular structure is not necessary for
a organized gathering group. Therefore, we propose Sparsity
descriptor s(G,,) to address this problem, which is formulated
as below,

Gn
1 |G|

T Ga2 = |Gyl 2 2

i=1 c'€Gn,c'#cn i

5(Gn) chﬂ _'C/” “4)

Sparsity describes the group property as the mean value of
the average distances from each individual to other individuals.
The descriptor measures the sparsity of a group’s position
distribution, which represents the spatial features. A group
might be an unorganized gathering group when it is sparse.
Conversely, a group would raise a potential gathering event
when it has a low Sparsity, which indicates the group has a
dense distribution. For instance, the soldiers in Fig. 2(a) have
a low Sparsity due to their smaller mutual distances than the
other two examples.

C. Randomness

Individuals would be assigned to a common group when
they have the same motion feature. However, this cannot
demonstrate whether or not they are related or organized.
In other words, they may have different destinations and
objectives with overlapped parts on their paths. Generally,

the motion of individuals in a organized group can be more
consistent. Thus, to further investigate the difference between
an organized group and a randomly gathering group, we
propose Randomness 7(G,,). Randomness consists of Veloc-
ity Randomness r,(G,,) and Direction Randomness 74(G»,)
expressed as shown in the following formula,

ro(Gp) = — Z P(x,)logP(z,) (5)
zeC([Gr]

ra(Gn) == > P(za)logP(z4) (6)
z€C{[Gr]

where C}[G,] denotes a set of elements belonging to the
group G,, in the crowd flow map C}. z, and x4 denote the
velocity and direction of z respectively. The two descriptors
are expressed by velocity entropy and direction entropy of
individuals in the group respectively.

The Randomness is used to describe the temporal features
of the crowd group. When two Randomness descriptors have
high values, the group is likely to be randomly gathering. Each
person in the group can have a very different moving speed and
direction. On the contrary, when the values of two Randomness
descriptors are low, the group could be potentially organized.
The individuals in the group tend to move with a similar speed
and direction. For example, the individuals in Fig. 2(c) have
a wide range of movement speeds and directions, leading to
high Randomness levels.

Moreover, the two descriptors can identify whether the
group is standing gathering or walking gathering. For the
standing gathering, individuals move at a very slow speed
in various directions, which can be regarded as vibrating in
the group. Therefore, standing gathering shows a high value
in Direction Randomness due to the constantly changing di-
rections. For the walking gathering, individuals move slightly
faster with less direction changing. Therefore, compared with
standing gathering, walking gathering tends to have a higher
Velocity Randomness and a lower Direction Randomness.

D. Volatility

Usually, a well-organized group shows high stability in a
gathering event by not dispersing within a period. The number
of groups would change in a small range or not change when
a gathering event occurs.

We propose the Volatility descriptor v(G;) to represent this
crowd property, which can be expressed by,

t

vG) =~ Y P(GilogP(IGil) @)

i1=t—m-+1

where |G| denotes the number of groups in Gy, which is the
set of groups in the ¢-th frame. The Volatility descriptor is
expressed as the entropy of the number of groups |G| in the
past m video frames, which indicates the instability of G; in
a period of past time.

Volatility is used to illustrate the stability feature for the
crowd group. A high Volatility indicates that the merging or
dispersing can be frequently happening to the crowd, and the
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number of groups can increase or decrease significantly. In this
state, the crowd might be weakly organized and individuals
join or leave a group freely. Conversely, a low Volatility
demonstrates that there can be less merging and dispersing,
thus the number of crowd groups tends to be constant. This
shows that the crowd is potentially well organized. For exam-
ple, the consistent and stable group structure of the soldiers
in Fig 2(a) leads to a low Volatility.

E. Temporal Variation

Besides the four descriptors, their corresponding variations
are also taken into consideration. The behavior of people is
continuous in the time dimension, i.e. it would not only happen
at a moment or change suddenly. Therefore, we further include
the variations to quantify group behaviors, which can represent
the transition process and the underlying trend. We compute
the variation according to the formula,

AOZOt*Ot—laoG {g,S,TU,T'd,U} (8)

where o represents one of proposed descriptors, and oy, 041
are the corresponding descriptor in ¢-th and ¢ — 1-th frame.

IV. FRAMEWORK FOR CROWD GATHERING
UNDERSTANDING

To address the task of crowd gathering understanding, we
propose a novel framework for crowd gathering understanding
based on the descriptors in Section III. The details of our
method will be introduced in this section. We first introduce
the gathering behavior categories and outline the proposed
framework, and then go into the details of each module
respectively.

A. Gathering Behavior Categories

Generally, a complete crowd gathering process can be
described as follows. People walk towards the destination or
enter the camera sight, and then the size of the gathering group
expands gradually until it stops growing. After gathering for
a while, individuals in the group start to disperse or quit the
camera sight, which indicates that the gathering event ends.
In practical gathering events, the number of people in the
group might grow discontinuously. Moreover, the group might
disperse for a short time and then become larger again. As the
description presents, simply categorizing the crowd behaviors
into non-gathering and gathering comes with the challenge
of data labeling. It is difficult to determine the threshold
between non-gathering and gathering. To overcome this chal-
lenge, crowd behaviors are further categorized into five stages,
wandering, merging, walking gathering, standing gathering,
and dispersing, respectively. The examples are shown in Fig.3.
These stages are described as below:

o Wandering: It refers to a stage where the crowd in
camera sight has different motion features or the crowd
has similar motion patterns without strong organization.
People in this stage usually show inconsistent movement.

o Merging: It refers to a stage where the crowd in sight is
gathering and the gathering group is still growing. People

Dispersing | R

>

Wandering | Merging | Gathering |

Walking
Gathering

Fig. 3. The examples for five stages of crowd gathering process. The
movement of pedestrians is marked by green arrows.

have a common moving direction or destination, and the
group size increases.

o Walking Gathering: It refers to a stage where people
form a group with similar motion features for a common
destination. In this stage, the number of people in the
group stops increasing. People have a common moving
direction or destination, but the number of people in the
gathering group does not show significant change.

« Standing Gathering: It refers to a stage where people form
a group by staying in the same position. In this stage, the
number of people in the group stops increasing. People
gather and stand in a common area. Likewise, the number
of people in the group does not show significant change.

o Dispersing: It refers to a stage where people in the
gathering group start to leave the group and the size of the
group diminishes. The number of people in the gathering
group decreases, and the moving directions radiate from
the center of the gathering area.

Usually, the above stages occur in order and can be recog-
nized by their movement in a video clip. With the above crowd
gathering stages, the challenge of determining the threshold is
avoided.

B. Framework Architecture

The proposed framework consists of three modules, crowd
feature extraction, crowd behavior quantification, and clas-
sification. The outline is shown in Fig.4. According to the
architecture of the proposed framework, the current and the
previous video frame are put into the framework as the input
data to the framework. The framework calculates the crowd
density map and dense optical map for the input data. We
formulate the crowd density estimation as

D, = DE(F,) 9)

where F; denotes the #-th frame of the input video sequence,
and F; € RW*H*3 Dg(.) denotes the operation for crowd
density estimation. D, is the estimated density map, which is
a matrix having the same width and height as the input data,
ie. D e RWxH,

The number of people in the input frame can be obtained
by summing up all elements in the density map, which is
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Fig. 4. The Proposed Crowd Gathering Understanding Framework.

used as a spatial feature in the classification module. For the
calculation of dense optical flow, the current frame and the
previous frame are used. The optical flow calculation module
also outputs a map with the same size as the input data. The
crowd flow map can be obtained by an element-wise product
between the optical flow and the density map. The process can
be formulated as:

O = OF(F;, F;_y)
Cy =D, -0

(10)
(1)

where the OF(-) denotes the function for dense optical flow
calculation. O, denotes the optical flow map calculated from
F, and F,_;, which meets O; € RW>*HX2 The crowd flow
map C; € RW>H*2 ig obtained by an element-wise product
between ﬁt and O;. Oy includes two channels, which represent
the optical flow of each pixel in vertical and horizontal
directions respectively. Likewise, C; contains this information
of the crowd flow.

In the crowd behavior quantification module, we first con-
vert C; from the Cartesian coordinate system to the polar
coordinate system to get the polar crowd flow map Cj.
Therefore, every element in C} is a pair of two values of its
corresponding pixel in the input data. One is the crowd flow
magnitude and the other is the direction. This conversion could
potentially improve the performance of the group division
algorithm. Afterward, the group division algorithm divides the
crowd in the camera sight into IV groups. The set of groups
is G = {G1,G>, -+ ,GN}, in which every group G,, € G
is a set of frame pixels with similar crowd flow values. Then
our proposed descriptors detailed in Section III are calculated
to describe the property of the group. After the calculation,
the classifier determines which stage the crowd is in based
on the descriptors. The crowd behavior quantification and
classification modules can be formulated as below,

6
G ={G1,Gs,--- ,Gn} =GD(C)) (12)
Result = CF(9(G),v(G),r(G), s(G)) (13)

where GD(+) denotes the group division algorithm and CF(-)
denotes the classifier function. The Result is the prediction
of crowd behavior.

C. Crowd Feature Extraction

Existing methods usually extract crowd features by tracking
feature points [27], [28], [40], which is efficient and effective.
However, these methods only extract the movement of feature
points, which causes the information about the object category
to be lost. Therefore, the extracted movement might be a
movement of non-human objects, such as cars and pets. To
address the problem, our framework utilizes a crowd density
estimation model to extract crowd features. Zhang et al. [61]
first proposed counting crowds by crowd density, which trains
a CNN for regressing the density map of the crowd.

In this framework, Context-Aware Network (CAN) [2] is
adopted as the crowd density estimation model. CAN is a
fully convolutional network adopting VGG-16 [62] as the
front-end network followed by a Spatial Pyramid Pooling [63]
to calculate scale-aware features. Finally, seven convolutional
layers are applied to the scale-aware features to compute
the density map corresponding to the input data. For optical
calculation, we adopt Farneback optical flow algorithm [64]
to calculate the optical flow map. Afterward, an element-wise
product is performed between the density map and the optical
flow map to calculate the crowd flow map.

Ideally, the crowd density should be O in no-man areas.
However, these areas usually have a very small density in the
estimated density map due to the error of the model. Therefore,
we revise the formula to remove the error on crowd flow
calculation. The revised formula can be expressed as,

Cy = 0(Dy;0) - O, (14)
>0
O(z;6) = { g z; j (15)

where ©O(-) is a threshold function and 6 denotes the corre-
sponding threshold value. Empirically, an ideal density map is
calculated when 6 = 0.055.

D. Crowd Behavior Quantification

Individuals in a gathering group share highly uniform
motion features when a crowd gathering event occurs. The
individuals having similar moving velocities and directions
would be assigned to a common group. The velocities and
directions of these individuals would vary in a small range
due to the perspective. After extracting crowd features, a group
division algorithm is applied to divide the crowd in the camera
sight into several groups according to their velocities and
directions. The clustering algorithm is adopted as our group
division algorithm. However, for samples in the Cartesian
coordinate system, the algorithm would underperform.
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Fig. 5. Extract crowd features of these three frames, their crowd flow pixels’
distribution in the Cartesian coordinate and polar coordinate.

Every pixel of the crowd flow map can be expressed as
a tuple of (cs,cy), and expressed as (c,,cg) in the polar
coordinate. The pixel scatter diagrams of the crowd flow map
in the Cartesian and the polar coordinate system are shown in
Fig. 5. As shown in the figures, pixels radiate from the origin
in the Cartesian coordinate. For the polar coordinate, every
group demonstrates the shape of one peak.

All types of clustering algorithms cannot distinguish groups
from the whole crowd in the Cartesian coordinate. The samples
for slow individuals in different groups have a short distance
between each other. Therefore, the algorithm tends to assign
all samples into one cluster. The problem can be solved in
the polar coordinate. There are relatively larger gaps between
different groups.

The knowledge of the number of groups is lacked, which is
not required for DBSCAN [65] clustering algorithm. There-
fore, DBSCAN is adopted as the group division algorithm,
which assigns individuals into several groups by their veloc-
ities and directions. However, the individuals in a common
group cannot demonstrate that they are gathering. We further
compute the proposed descriptors to identify the gathering
groups. Then, the extracted features are input to the classi-
fication module to predict the group behavior.

E. Classification

The scales of the descriptors vary due to the perspective
and angle variety of the camera. The descriptors also have
different scales. The scale variety could affect the performance
of the classifier. To address this problem, random forest is
adopted as our classifier. The random forest predicts the crowd
behavior based on the crowd descriptors and the number
of people. More groups provide more features, whereas the
number of input features for the classifier is fixed. To address
this conflict, only the features of the group with the most
people are fed in the random forest. Furthermore, we apply the
mean filter to Randomness descriptors and the median filter
to other descriptors to reduce noise. The classifier outputs

the prediction of whether the group is wandering, merging,
standing gathering, walking gathering, or dispersing.

V. EXPERIMENTS
A. Experiment settings

The crowd behavior dataset we used in the experiments is
PETS2009 Dataset [66]. The dataset was collected for crowd
counting, pedestrian tracking, behavior recognition, and other
crowd analysis tasks. The dataset includes 129 video clips
containing more than 40000 frames in total and varieties of
crowd behaviors. The frames in the dataset have a resolution
of 768 x 576 and a Frame Per Second (FPS) of 7. The videos
were captured in eight different views with different camera
angles. We conduct our experiment in the views of View_001,
View_002 and View_003, as shown in Fig. 6, which are proper
for crowd gathering understanding. We mark each frame as
one of the five labels: wandering, merging, standing gathering,
walking gathering, and dispersing. Moreover, the dataset is
preprocessed by removing duplicate video sequences. The
finally used dataset contains 43 video sequences consisting
of 10832 frames captured in three views.

In this section, the proposed framework is implemented.
Then the experiment of crowd gathering understanding is
conducted on a computer with Intel(R) Xeon(R) CPU E5-2678
V3@2.50GHz and NVIDIA GeForce GTX 1080 Ti.

B. Numerical Result

In this part, the proposed framework is tested on PETS2009,
which has been preprocessed. We train the proposed frame-
work to predict crowd behavior categories in video frames as
their corresponding labels. Besides testing in all views, we
also respectively test our framework in each view. Because
different views are captured by cameras with different cam-
era parameters, the descriptors have different scales, which
make the features more difficult to learn for our classifier.
We compute Micro-F1 scores and Macro-F1 scores of the
experiment results as shown in Table II. The Micro-F1 score
indicates how accurate the prediction result is, which is mainly
affected by the category with more samples. The Macro-F1
score considers the precision and recall of each class, thus,
it represents the comprehensive ability of the framework. The
confusion matrices of the result are shown in Fig. 7, in which
each value in the grids is a rate of classifying vertical label
samples as the horizontal label.

The experiment result demonstrates that the proposed
framework obtains a significant accuracy in all four settings

Fig. 6. The views we adopt in PETS2009: (a) View_001; (b) View_002; (c)
View_003.
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TABLE 11
MICRO-F1 AND MACRO-F1 SCORES OF CLASSIFYING INPUT VIDEO FRAMES EXPERIMENT
Model Name Video View
View_001 View_002 | View_003 | All Views

Micro-F1 921 .92 911 .944
ResNet [19] icro 0.9219 0.9278 0.9110 0.9449
Macro-F1 0.7084 0.8167 0.9156 0.9140

R3D [22] Micro-F1 0.8466 0.9400 0.9163 0.9513
Macro-F1 0.7799 0.8194 0.7879 0.9168
. Micro-F1 0.9781 0.9682 0.9682 0.9849

Swin [20]

Macro-F1 0.9559 0.9557 0.9495 0.9792
Ours Micro-F1 0.9524 0.9645 0.9741 0.9534
Macro-F1 0.8628 0.9197 0.9648 0.9003
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Fig. 7. Normalized confusion matrices of experiments with different test data: (a) View_001; (b) View_002; (c) View_003; (d) All views. The true labels are

on the vertical axis, and the predicted labels are on the horizontal axis.

of test data, especially in the recognition of wandering and
two types of gathering behaviors. Our framework achieves the
purpose of understanding crowd gathering behavior and can

TABLE IIT
EXPERIMENT RESULT AFTER COMBINING BEHAVIORS FOR COMPARISON

Model Name Accuracy
View_001 | View_002 | View_003 | All Views

Liu et al. [15] 0.6837 0.4492 0.6306 0.6031
Yang et al. [16] 0.6646 0.6499 0.6893 0.6403
Xu et al. [17] 0.6036 0.6585 0.6859 0.5882
ResNet [19] 0.9647 0.9523 0.9628 0.9571
R3D [22] 0.8647 0.9504 0.9354 0.9576
Swin [20] 0.9805 0.9706 0.9804 0.9875
Ours 0.9762 0.9786 0.9765 0.9673

o0.02 [

(@) (b) () (d)

Fig. 8. Confusion matrices of experiments with different test data after
combining behaviors: (a) View_001; (b) View_002; (c) View_003; (d) All
views. The true labels are on the vertical axis, the predicted labels are on the
horizontal axis. NG—Non-Gathering; G—Gathering.

identify crowd gathering events accurately with input video
frames. The framework also misclassifies a part of merging
and dispersing samples, which is caused by two reasons. One
is that the end moment of merging and the start moment
of dispersing are difficult to choose when labeling the data.
The other one is that these misclassified behaviors are the
transition process between gathering and wandering, which
have similar features to gathering behavior. Thus, their features
can be confusing for the classifier. Among the four views,
our framework achieves the highest scores in View_003, and
the lowest scores are obtained in View_00I. For All Views
and View_001, the Micro-F1 scores are almost the same, and
the Macro-F1 score in All Views is 0.0375 larger than that
in View_001. Moreover, the Macro-F1 in All Views is 0.0645
lower than in View_003. The most likely reason why All Views
gets intermediate scores is that the classifier trained in All
Views trades off the performance in different views.

There is no available baseline, due to the different catego-
rizing method of crowd behaviors in existing works. There-
fore, we fine-tune three pre-trained deep learning networks
on image classification and video classification respectively,
namely ResNet [19], R3D [22] and Swin Transformer (Swin)
[20] as our baselines. The scores of the baselines are also
shown in Table. II. In comparison to the baseline models, our
method exhibits a slight performance advantage over ResNet
and R3D, with the Swin Transformer achieving the highest
scores. Notably, our approach maintains a higher level of
interpretability when contrasted with the baseline methods.
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Specifically, we model the aspects of crowd gathering be-
haviors we concern as a set of descriptors, which have been
introduced in Section III. These methods are more inter-
pretable and easier to understand for users than deep learning
methods. Furthermore, our proposed framework leverages the
representation capabilities of deep learning based methods.
Therefore, our framework combines the advantages of deep
learning based methods with those of model-based methods. It
emerges as a powerful solution, surpassing most model-based
methods in effectiveness while maintaining a higher level of
interpretability than deep learning based approaches. As a
result, our method achieves comparable performance to deep
learning-based models while concurrently providing enhanced
interpretability.

Moreover, to compare with existing methods, we respec-
tively combine the result of merging, standing gathering, and
walking gathering as gathering behavior, and combine the
result of wandering and dispersing as non-gathering behav-
ior. The performance comparison and confusion matrices are
presented in Table III and Fig. 8. As the result shows, our
framework outperforms the existing methods and the CNN-
based baselines, and is slightly outperformed by the Swin.

VI. ANALYSIS AND ABLATION STUDY

In this section, more experiments are conducted. Afterward,
the effectiveness of each framework component is analyzed.
We select three typical video clips from PETS2009 as our
examples, which contain all types of crowd behavior. The
examples can be described as follows:

o Video 1: In this clip, people enter the camera sight and go
to the center from three directions. Then all people meet
at the center and merge as a standing gathering group.
After having gathered for a period, all people disperse
suddenly and run out of the camera sight. The video clip’s
path in the dataset is S3/High_Level/Time_14-33.

e Video 2: In this clip, people walk into the camera sight
from left to right as a team. When the pedestrian at the
head of the team arrives at the center of sight, he begins
to run and other people follow until the video ends. The
video clip’s path in the dataset is S1/L3/Time_14-17.

e Video 3: In this clip, no gathering event occurs. Some
groups having massive and loose people, appear in the
camera sight, which would confuse detection models. The
video clip’s path in the dataset is S2/L2/Time_14-55.

Besides, we also set three different models for our experi-
ments. The setting details of the models are described below:

e Model 1: The model has similar architecture to our pro-
posed framework, except for the crowd feature extraction
module. The crowd feature extraction module is replaced
with a traditional method. It adopts YOLO [67] to detect
pedestrians and uses Deep SORT [10] to track detected
pedestrians.

e Model 2: The model replaces the proposed framework’s
crowd density estimation model with MCNN [1]. MCNN
has a limited ability compared with CAN.

o Model 3: This model is the same as the model described
in Section IV.

These three models are tested on Video 1, and then Model
3 is tested on Video 2 and Video 3. The curves for the features
in these experiments are shown in Fig. 9. The curves for the
Volatility descriptor start from the twentieth frame due to we
set m = 20 in (7). Moreover, the background is painted in
different colors according to the labels of the crowd behav-
iors. The green background represents the crowd in this part
wandering; the yellow parts represent merging; the red parts
represent walking gathering in Video 1 and represent standing
gathering in Video 2; the blue parts represent dispersing. Fig.
9(a)-9(o) are used to analyze the crowd feature extraction
modules’ effects on the descriptors. Fig. 9(k)-9(y) are used
to analyze the relation between crowd behavior patterns and
the proposed descriptors.

A. Feature Extraction Effects on Descriptors

In our framework, the crowd density estimation model is
adopted as the crowd feature extraction method. Therefore,
the proposed framework can exclude the influence of non-
human objects. Besides, the crowd density estimation model
also enhances the crowd feature extraction ability of our
framework. To investigate how the crowd density estimation
model affects our framework, Model 1, 2, and 3 are tested on
Video 1. The result for different models are compared, and the
effects of the crowd feature extraction models are analyzed.
The result can be found in Fig. 9(a)-9(0).

As shown in the figures, the descriptors output by Model
3 have identifiable features in each part. The curves for the
descriptors of Model 2 present a roughly consistent trend with
those of Model 1. The curves can indicate the crowd behaviors
with small errors. However, more outliers and fluctuations
appear in the curves of Model 2, due to the limited ability of
crowd feature extraction, which demonstrates a noisy curve in
Fig. 9(f)-9(j). For Model 1, only the Irregularity and Sparsity
descriptors have similar trends to other models, and the other
descriptors cannot depict the crowd behaviors. One potential
reason is that Model 1 uses YOLO and Deep SORT together
to extract crowd features. The YOLO model would miss some
objects when people overlap each other. The extracted features
cannot accurately represent the crowd behavior due to the
missing objects. Therefore, the curves contain many biases.

The comparison demonstrates that the crowd feature extrac-
tion module plays a crucial role in the whole framework, and
provides the framework with significant performance.

B. Analysis of Crowd Behavior Pattern

This paper proposes four descriptors for representing crowd
behavior. In this section, we test Model 3 on Video 1, 2,
and 3 respectively, and record the curves for the descriptors.
The background is also colored according to the behaviors.
Experiment results are as shown in Fig. 9(k)-9(y).

According to the figures, the curves for the descriptors of
different behaviors demonstrate different tendencies. For the
crowd, which is not standing gathering or walking gathering,
its Irregularity and Volatility descriptors are great and the num-
ber of people is small. This situation indicates an organized
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Fig. 9. The experiment models are tested on three example video clips. The curves for the descriptors are drawn here. The background is painted in different
colors according to the behavior labels: green—wandering; yellow—merging; red—standing or walking gathering; blue—dispersing. The (a)-(0) are compared in

Section VI-A. The (k)-(y) are analyzed in Section VI-B.

group appears in the camera sight, which has a small number
of people.

For uncrowded scenes, all groups produced by the division
algorithm would have a small number of people, due to
the people in the crowd demonstrating different motions.
Therefore, the Randomness and Sparsity of the groups are
small. On the contrary, for crowded scenes, the group division
algorithm would assign all people into one group, which
has a massive number of people. The people in the group
have different motions, and some people move in opposite
directions. Therefore, the Randomness can be large. Moreover,

the Sparsity of the group is large as a result of the wide
distribution of the group in the camera sight.

When the gathering event occurs, the Irregularity and
Volatility of the group would decrease and become flat.
Meanwhile, the number of people increases. When a standing
gathering event occurs, two peaks would appear before and
after the event respectively in the Sparsity curve. During the
process of people merging, the group size grows gradually.
The group could be loose at the moment some people begin
to be assigned to the gathering group, thus, its Sparsity is
large, which forms the first peak. After a short time, the group
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gathers more closely, and the Sparsity decreases. Likewise, the
group has a large Sparsity at the beginning of dispersing. At
this moment, the group could become loose, but the algorithm
still assigned them to one group. Therefore, the other peak of
the Sparsity is formed.

Furthermore, Randomness can identify gathering types. The
Velocity Randomness and Direction Randomness can be rela-
tively flat and have a parallel trend with small errors when
the group is walking gathering. The Velocity Randomness
would be larger than the Direction Randomness. Standing
gathering demonstrates a small Velocity Randomness and a
large Direction Randomness, which may be caused by the
vibration of individuals in the group. The vibration stems
from the small movement of individuals, such as shaking and
rotating. Therefore, we can identify the behavior of standing
gathering according to the Randomness. For a wandering
crowd, the Randomness shows noisy curves.

In summary, the proposed descriptors can describe crowd
gathering behavior adequately. The crowd behavior can be
identified only with the curves of the descriptors. Conse-
quently, the proposed framework can achieve remarkable per-
formance based on the descriptors.

C. Ablation Study

TABLE IV
F1 SCORE VARIATIONS COMPARED WITH THE ORIGIN MODEL.
Setting Micro-F1(%) | Macro-F1(%)
Without Number Of People -2.74 -5.10
Without Irregularity -0.49 -0.75
Without Volatility -0.59 -247
Without Randomness -4.02 -4.21
Without Sparsity -2.34 -6.17

1) Descriptors: In this part, the effect of each descriptor
on our framework is studied. We set five models by removing
these five features and their corresponding variations respec-
tively. The models are tested with the same experimental
setting as described in Section V and the data of All Views.
The result is shown in Table IV. As shown in Table IV, all
modified frameworks demonstrate a limited prediction ability.
Removing the number of people, Randomness and Sparsity
affect the framework performance the most, and removing
Irregularity and Volatility have relatively small influences.
When a gathering event occurs, the velocity and direction
of the crowd can be highly consistent. Thus, Randomness
descriptors affect the most. Moreover, the gathering group is
tight, which has a small Sparsity and a massive number of
people. Therefore, the Sparsity descriptor and the number of
people also have a large influence on the framework. On the
other hand, not all gathering groups have a large Irregularity,
due to the unnecessity of being like a troop for a gathering
group. Besides, few samples have highly regular groups in the
PETS2009 dataset. Because of this, the test result demonstrates
a small influence when Irregularity is removed. Volatility is
computed by the number of groups. Therefore, Volatility is
also sensitive to the changes of the wandering individuals.

Removing each descriptor shows different performance re-
ductions. All descriptors show significant contributions to the
quantification of the crowd gathering behaviors.

TABLE V
ABLATION STUDY FOR DIFFERENT DENSITY ESTIMATION MODELS.

Model Name Front-end Micro-F1 | Macro-F1
CAN [2] VGG [62] 0.9534 0.9003
CAN [2] ResNet [19] 0.9139 0.8183
CAN [2] Swin [20] 0.8890 0.8487

CCTrans [5] Twins [68] 0.9415 0.8652

SASNet [4] VGG [62] 0.9456 0.8540

2) Density Estimation Model: The CAN originally utilizes
VGG as its front-end network. In recent years, there have been
significant advancements in backbone networks, outperform-
ing the VGG. To assess the impact of the front-end and the
density estimation performance on our framework, we modify
the CAN by replacing its front-end network with ResNet
and Swin Transformer, and train them on the dataset named
ShanghaiTech Part B [1]. The trained model are adopted as
the density estimation model in our proposed framework.

For the CANs with different front-end network, according
to the result, the VGG-based model achieves the highest score,
and the Swin-based model performs the least effectively. The
original CAN (i.e., VGG-based model), using the first ten
convolutional layers of VGG-16 as the front-end network,
is adopted as a benchmark. In order to guarantee a fair
comparison, we only use the first nine convolutional layers
of ResNet-18. Firstly, an output with the same resolution as
the VGG-based model can be obtained in this way. Secondly,
like VGG-16, ResNet-18 has a comparable number of layers,
meaning that removing some layers would result in a similar
reduction of model capability. Meanwhile, due to the similar
number of layers, the ResNet-based and VGG-based CANs
would have comparable numbers of parameters and FLOPs.
Moreover, when the network is shallow, the residual connec-
tion only makes the ResNet more complex, which is designed
to mitigate degradation in deeper networks. As a result, ResNet
cannot fully demonstrate its performance. Conversely, VGG
boasts a simpler and more flexible structure, allowing for easy
customization to suit various applications, and all convolu-
tional layers of VGG can be used. Therefore, the VGG-based
model outperforms the ResNet-based one. As for the Swin-
based model, CAN would underperform when paired with a
Transformer-based front-end network. Transformer-based and
CNN-based models generally employ distinct feature spaces
and methods for encoding spatial features. Thus, when the
CNN-based back-end decoder in CAN attempts to learn from
feature maps encoded by a Swin Transformer, the task can be
more challenging. Furthermore, the Swin-based models often
have a more intricate structure and necessitate larger training
datasets compared to CNN-based models, leading to more
powerful generalization capabilities. However, in cases where
the task involves a limited dataset, CNN-based models would
yield better performance. Therefore, in this specific case, the
VGG-based model can outperform the Swin Transformer-
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based model. Consequently, VGG is the preferred choice for
CAN due to its considerable performance.

Moreover, we also test and compare the frameworks with
CCTrans [5] and SASNet [4] as the density estimation model,
both of which represent the current state-of-the-arts of the
Transformer-based and the CNN-based models. The compar-
isons indicate that the highest score is achieved when the
framework adopts CAN as the density estimation model. One
potential explanation for this superiority is that the CAN
considers the perspective effect, a factor not taken into account
by CCTrans and SASNet. The consideration of information
about the perspective effect proves the beneficial in enhancing
the feature extraction capability of the model. Nevertheless,
the state-of-the-art models significantly contribute to the con-
siderable performance of their respective frameworks.

VII. CONCLUSION

In this paper, we define four crowd descriptors Irregularity,
Sparsity, Randomness, and Volatility, respectively. Besides, we
further divide the crowd gathering behavior into wandering,
merging, standing gathering, walking gathering, and dispersing
to improve the crowd gathering understanding. Based on the
crowd descriptors, we propose a novel framework for crowd
gathering understanding, which consists of three modules. The
crowd feature extraction estimates the crowd flow map by per-
forming an element-wise product between the extracted crowd
density map and the dense optical flow map. The crowd be-
havior quantification calculates the crowd descriptors based on
the groups divided according to their motion. The classification
predicts the crowd behavior based on the descriptors and the
number of people. To verify our framework for crowd gather-
ing understanding, we conduct experiments on the PETS2009
dataset. The experiments demonstrate the effectiveness and
the much better interpretability of the proposed framework.
Moreover, to compare with existing methods, we process the
results of the experiments by integrating the five behaviors
into two most commonly used states of non-gathering and
gathering, and then compute the accuracy score to compare
with other methods. The numerical results of the experiments
demonstrate our framework outperforms the existing works
on the crowd gathering understanding. The framework also
achieves a further understanding of crowd gathering behavior.

Our method has shown considerable performance, nev-
ertheless, there are still some limitations to be addressed.
Our framework cannot deal with large-scale scenes such as
railway stations and other occasions with a large number of
groups. The framework only considers the group with the
most people, whereas complex scenes usually contain many
groups having different states. Therefore, in future work, its
performance would be improved in more complex scenes.
Also, the group division algorithm works currently based on
the motion features of pedestrians. However, the density based
clustering algorithm (the DBSCAN algorithm we used) tends
to cluster all people into one group in complex scenes. A
general clustering can not adequately complete the work. Thus,
a specific group division algorithm is required in future work.
Finally, non-human objects are ignored, such as backgrounds

and banners. To understand crowd gathering behavior better,
future work could further mine more semantic information
conveyed by video frames.
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