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Abstract
Previous studies that inferred the observation error statistics from the innovation
statistics can only provide the second moment of the error probability density
function (pdf). However, the observation errors are sometimes non-Gaussian,
for example, for observation operators with unknown representation errors,
or for bounded observations. In this study, we propose a new method, the
Deconvolution-based Observation Error Estimation (DOEE), to infer the full
observation error pdf. DOEE does not rely on linear assumptions on the obser-
vation operator, the optimality of the data assimilation algorithm, or implicit
Gaussian assumptions on the error pdf. The main assumption of DOEE is
the availability of an ensemble of background forecasts following the inde-
pendent and identically distributed (i.i.d.) assumption. We conduct idealized
experiments to demonstrate the ability of the DOEE to accurately retrieve a
non-Gaussian (bimodal, skewed, or bounded) observation error pdf. We then
apply the DOEE to construct a state-dependent observation error model for
satellite radiances by stratifying the observation errors based on cloud amount.
In general, we find that the observation error pdfs in many categories are
skewed. By adding a new predictor, total column water vapor (TCWV), into the
state-dependent model, we find that for cloudy pixels, when TCWV is small,
the observation error pdfs are quite similar and Gaussian-like, whereas when
TCWV is large, the observation error pdfs differ for different cloud amount,
while all of them are positively biased. This result suggests that exploring other
predictors, like cloud type, might improve the stratification of the observation
error model. We also discuss ways to include a non-parametric observation
error pdf into modern data assimilation schemes, including a consideration of
the strong-constraint 4D-Var perspective, as well as the implications for other
observation types including observations with bounded range.
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1 BACKGROUND

Data assimilation (DA) is a method to sequentially esti-
mate the probability density function (pdf) or the first and
second moment of the model state, given an imperfect
model forecast and noisy observations. DA is based on
Bayes’ theorem, which states how we can update the pdf
from before knowing the observations (prior pdf) to after
knowing the observations (posterior pdf). This update
depends not only on the value of the observations, but
also on the uncertainty of the observations via the likeli-
hood function. Therefore, an accurate specification of the
uncertainties of the observations is essential to any DA
framework.

We note that the uncertainty of the model forecast, or
the background error, is equally important in DA. Roughly
speaking, the relative magnitude of the background and
the observation error determines how much information
from the observation is assimilated into the model. How-
ever, it is difficult to accurately estimate the background
error for several reasons. For example, when the back-
ground error is quantified by the spread of an ensemble,
an insufficiently large ensemble size can lead to sampling
errors in the background error. In addition, failure to suf-
ficiently address the model errors within the ensemble
can result in an underestimation of the background error.
There are some methods to tackle this issue by adaptively
inflating the background error (e.g., Anderson, 2007, 2009;
Minamide & Zhang, 2019), but how to accurately spec-
ify a flow-dependent background error is still an active
research area. While careful specification of the back-
ground error is important, the main focus of this work is
on the observation error.

The observation error not only includes the uncer-
tainty due to the measurement error, but also the
uncertainty due to the representation error. The mea-
surement error is related to the measurement instrument
design, which is often thought well known. The rep-
resentation error is defined as the misfit between the
observation and the simulated observation resulting from
different representations of reality (see e.g., Hodyss &
Nichols, 2015; Janjić et al., 2017; van Leeuwen, 2015) and
hence is associated with the observation operator that we
have access to, and the variability of the truth that is not
represented by our model grid. However, the representa-
tion error is typically not well understood. We often do not
know the true mapping between the model space and the
observation space. For example, for radar simulators, we
typically assume an empirical drop size distribution (e.g.,
Bringi & Chandrasekar, 2001), which is not always realis-
tic. Furthermore, observations and models can represent
different spatial scales, which is especially problematic if
the observations represent smaller scales than the model

can simulate. Nevertheless, there are some strategies to
estimate the representation errors. For example, one is
by conducting field campaigns and collecting extensive
observations to estimate the relationship between obser-
vations at different scales, or perform high-resolution
model runs to infer the observation operator (e.g., Hodyss
& Nichols, 2015; Janjić et al., 2017; van Leeuwen, 2015).
However, these methods are often less practical to esti-
mate the representation error for every kind of observation
operator.

Instead of having to estimate the measurement error
and the representation error separately, there are some
statistical approaches to quantify the total observation
error by comparing the observations with several other
collocated reference datasets. The reference could most
typically be another observation type, or fields from a
DA system (background or analysis). It is, however, still
difficult to estimate the observation error this way since
the reference against which we compare the observation
will also have errors. The problem is ill-posed if we do not
know the errors in the reference.

One solution is to make the problem well posed is
to first estimate the errors in the reference, and then to
subtract them. For example, if the reference is the model
background, then its errors are already estimated as part
of the DA system. Note that this is based on a standard
relation (see Section 2.2 for detail) that has been used to
diagnose the consistency of a DA system (e.g., Ruther-
ford, 1972; Hollingsworth & Lönnberg, 1989; Daley, 1993;
Andersson, 2003, etc.), while it has been named differently
in the previous literature, for example, moment-based
method, innovation covariance consistency, and so forth.
Nevertheless, we will refer to this method as the “back-
ground subtraction method” in this paper, as we consider
this nomenclature to be more intuitive.

In addition, Desroziers et al. (2005) showed how the
product of the analysis and background departures can
form an alternative approach to diagnose the observa-
tion error (their equation 3; this will be referred to as
“DBCP method” hereafter). The DBCP method is an
iterative approach that can jointly estimate the observa-
tion error and the background error covariance (in the
observation space) at the same time. Note that although
the DBCP method does not rely on the prior knowl-
edge of the background error, it relies on the optimality
in the DA algorithm. The DBCP method has become a
popular method for estimating observation errors in the
DA community (e.g. Bormann et al., 2016; Bormann &
Bauer, 2010).

The other approach to make the problem well posed
is the three-cornered hat (3CH) method (Anthes &
Rieckh, 2018; Gray & Allan, 1974; Grubbs, 1948; Rieckh
& Anthes, 2018; Sjoberg et al., 2021), which compares
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HU et al. 3

the observation to two independent references. The 3CH
method can estimate the error variances of the three
datasets simultaneously, without any prior knowledge of
the errors in the reference. Although the 3CH method
seems unrelated to the DBCP method, Semane et al. (2022)
and Todling et al. (2022) have recently shown the equiva-
lence between the two methods, when the analysis and the
background (along with the observations) are used as the
reference datasets.

Unfortunately, all of the methods mentioned pre-
viously can only estimate the second moment of the
observation error pdf. This is fine when the true observa-
tion error pdf is Gaussian. However, the second moment
is not enough to represent the full non-Gaussian obser-
vation error pdf. There are many observations that have
non-Gaussian observation errors. For example, for obser-
vations with complicated representation errors, there
is no reason to assume their observation errors are still
Gaussian. Furthermore, when the observed value is close
to the boundary for bounded observations, for example,
precipitation or the concentration of some variables,
the observation error can be skewed, and hence clearly
non-Gaussian (e.g., Bishop, 2016; Lien et al., 2013).

Note that in general, if the background error is inde-
pendent of the observation error, the innovation pdf is
the convolution of the observation error pdf and the
background error pdf, following a standard statistic rela-
tionship. If we have access to the possibly non-Gaussian
background error and innovation pdf, then in principle it
is possible to solve the non-Gaussian observation error pdf
by deconvolution. Note that deconvolution is a standard
technique in signal processing, but in the DA context here
it could be applied to recover the observation error pdf
from the innovation pdf.

Therefore, the goal of this study is to propose a new
method, the Deconvolution-based Observation Error
Estimation (DOEE) method, that can estimate the full
observation error pdf by solving the deconvolution
equation. Note that DOEE does not rely on the linear
approximation for the observation operator, the optimality
of the DA algorithm, or the implicit Gaussian assumption
for the error pdf (see Section 2.2 for details). In addition,
we will also discuss ways to construct a state-dependent
observation error pdf model using DOEE. Note that the
focus of this study is on the theoretical aspect and the
demonstration of the new method. We will briefly discuss
some ways to apply this method for different DA schemes
in Section 5, while the actual implementation of this new
method in a real DA system is left for future work.

The remainder of this paper is organized as follows.
In Section 2, we provide the mathematical background
for estimating the observation error, and introduce the
new framework DOEE. In Section 3, we conduct a series

of idealized experiments to justify the new method. In
Section 4, we apply DOEE to construct a state-dependent
observation error model for satellite radiances. Finally,
in Section 5 we conclude the findings in this paper and
propose the use of DOEE in several applications.

2 METHODOLOGY

2.1 Definitions and notations

For clarity, we use capital letters and 𝜀 (with different
superscripts) to denote random variables (vectors) and
lower-case letters to denote non-random variables (vec-
tors) in the following. Since the true atmosphere is a
continuum, the true atmospheric state lives in a space of
infinite dimension. Let’s define x̃t as the truth in this infi-
nite dimension space (hereafter, “continuous space”), and
define xt as a vector representing the discretized truth in
the “model space.” Let r be the transformation from the
continuous space to the model space:

xt = r
(

x̃t)
. (1)

Note that we consider the model space variable given
as soon as the truth is given. One could argue that xt is
a random variable as the transformation is not unique, in
the sense that the averaging operation can be defined in
many ways, and none of them satisfactorily, given notions
as ‘effective model resolution’. Our choice does not change
any of the results discussed below. The “true observation”
yt can be related to x̃t as follows:

yt = H̃t(x̃t)
, (2)

where H̃t is the true observation operator that maps from
the continuous space to the observation space. Since the
measurement noise is unavoidable in every measurement
process, the “actual observed value” Y can be written as

Y = yt + 𝜀
m = H̃t(x̃t) + 𝜀

m
, (3)

where 𝜀m is the measurement error. Note that 𝜀m is treated
as a random variable here, and so is Y . Denote the observa-
tion operator that we have access to as H. We can rewrite
Equation (3) as

Y = H
(

xt) +
[

H̃t(x̃t) −H
(

xt)
]
+ 𝜀

m
, (4)

and note the difference between H̃t and H in Equation (4):
H̃t is the true mapping (which we do not know) from
the continuous state to the observation space, while H is
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4 HU et al.

the imperfect observation operator (which we have access
to) from the model space to the observation space, which
can include some unrealistic assumptions. We define this
representation error 𝜀r as:

𝜀
r =

[
H̃t(x̃t) −H

(
xt)

]
. (5)

Based on the likelihood function in Bayes’ theorem, the
observation error is defined as

𝜀
o = Y −H

(
xt)

, (6)

such that the observation error can also be written as

𝜀
o = 𝜀

r + 𝜀
m
. (7)

2.2 The background subtraction
method

Based on the discussions in the introduction, estimating
the representation error directly can be challenging. Nev-
ertheless, the background subtraction method is one of
the methods that can estimate the total observation error
based on the innovation statistics, which will be described
below. First consider the following random variable, the
innovation Db as:

Db = Y −H
(

Xb)
, (8)

where Xb represents the background model state in the
model space. As in the Kalman filter we assume that Xb

is unbiased, and has error covariance B. We can write
Equation (8) as:

Db =
[
Y −H

(
xt)] +

[
H
(

xt) −H
(

Xb)]

= 𝜀
o +

[
H
(

xt) −H
(

Xb)]
. (9)

Here we have used the definition of the observation
error in Equation (6). We can further linearize the obser-
vation operator as follows:

H
(

xt) −H
(

Xb) ≈ H
(

xt − Xb)
, (10)

where H denotes the linearized H. Therefore, we can
rewrite Equation (9) as:

Db = 𝜀
o +

[
H
(

xt) −H
(

Xb)]

≈ 𝜀
o −H

(
Xb − xt) = 𝜀

o −H𝜀
b
, (11)

where 𝜀
b
≡ Xb − xt is the background error. Assume 𝜀

o

and 𝜀
b are independent, then we can estimate the second

moment of the pdf of 𝜀o based on

E
[(

Y −H
(

Xb))(Y −H
(

Xb))T
]
= R +HBHT

, (12)

where E[… ] is the expectation operator, T is the tranpose
of a matrix, R is the observation error covariance, and B is
the background error covariance.

Without relying on the optimality assumption (i.e.,
DBCP), there are two possibilities for inferring R. If B is
known, then Equation (12) can be used to estimate R by
subtracting HBHT from E

[(
Y −H

(
Xb))(Y −H

(
Xb))T

]
.

When B is not available, one can use an ensemble to
provide a flow-dependent estimate of the background
covariance Be. In this case the ensemble mean takes the
role of Xb, and we find, see e.g. Bonavita et al. (2020):

E
[
(Y −H(x))(Y −H(x))T

]
≈ R +HBeHT

. (13)

There are two major limitations of the background
subtraction method: the linear approximation in
Equation (11) and the implicit Gaussian assumption for
the observation error pdf. First, for nonlinear observa-
tions, the linear assumption can only be used when either
the background error is small or the observation operator
is weakly nonlinear. This assumption might not be true
for some observations, for example, satellite radiances
(e.g., Bauer et al., 2010; Bonavita et al., 2018). Second, the
second moment is not enough to provide the full obser-
vation error when the observation error is non-Gaussian
(e.g., Pires et al., 2010).

2.3 A new non-parametric method
for estimating the observation error — The
DOEE method

In the following, we propose a new method that can esti-
mate the full non-parametric observation error pdf. It is
based on the commonly used assumption that each ensem-
ble member can be seen as an independent draw from the
same distribution from which the true state xt is drawn.
This is referred to as the “i.i.d. assumption” in statistics,
and is the basics behind the use of rank histograms (e.g.,
Anderson, 1996; Hamill, 2001).

We explain the algorithm in the following three
steps:

1. We consider a random variable D related to a random
forecast vector X , defined via

D = Y −H(X) = 𝜀
o +

[
H
(

xt) −H(X)
]
. (14)
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HU et al. 5

Instead of linearizing Equation (14), we define 𝜀 =
H
(

xt) −H(X) and rewrite Equation (14) as

D = 𝜀
o + 𝜀. (15)

2. Analogous to the assumption that 𝜀o and 𝜀
b are inde-

pendent, we assume 𝜀o and 𝜀 are independent. We now
use a general result from statistics that the pdf of a
sum of two independent variables is the convolution
of the pdfs of those two variables. Therefore, based on
Equation (15), we have:

fD(d) =
∫

∞

−∞
f𝜀o
(
εo)f𝜀

(
d − 𝜀

o)d𝜀o
, (16)

where fD, f𝜀, and f𝜀o are the pdfs of the random variables
D, 𝜀, and 𝜀

o, respectively. If the pdfs f𝜀 and fD are known,
we can estimate f𝜀o by deconvolution. In our method we
derive f𝜀 and fD from an ensemble of model forecasts.

The ensemble members can be used directly to gener-
ate samples from fD as

di = y −H
(

xi) (17)

in which y is the actual observation (obtained from the
true state), and the ensemble members are xi, with i ∈
{1, 2 … ,Ne}.

3. To find samples from f𝜀 we use the i.i.d. assumption.
Specifically, we assume that the pdf from which the
true state xt is drawn (by nature), is the same as the
pdf from which the ensemble members are drawn.
Consequently, fH(X t) = fH(X). In other words, the sam-
ple distribution of H

(
xi) −H

(
xt) should be the same

as the sample distribution of H
(

xi) −H
(

x𝑗
)

for arbi-
trary i ≠ 𝑗. Therefore, to estimate the distribution of 𝜀,
we can randomly pick one ensemble member as “the
truth” and project it into the observation space. The dif-
ferences between this reference member and the other
ensemble members in the observation space then pro-
vide us independent samples of f𝜀. The above estima-
tion of f𝜀 could be sensitive to which member we pick
as the truth member. However, we find that when the
sample size is large enough, the result does not change
much when we pick a different member (as will be veri-
fied in the sensitivity experiments in Section 3.2). When
the sample size is small, we can mitigate the sampling
error by using the pairwise differences of the ensemble
members as samples drawn from f𝜀. Therefore, we will
also call f𝜀 the ensemble difference pdf in the following.

The method described above is called the
“Deconvolution-based Observation Error Estimation
(DOEE)” method. Note that Equation (16) is completely

general: we neither require a linear (or weakly nonlinear)
observation operator, nor a Gaussian (or any prescribed
distribution) distributed model or truth state. Further-
more, DOEE can provide us the full observation error
pdf, instead of just the second moment of the observation
error pdf. We will discuss how to solve Equation (16) in
Section 2.5 and in the Appendix A.

It is interesting to understand the meaning behind
Equation (16). The convolution relationship states that fD
is a smoothed version of f𝜀o , in which the smoothing ker-
nel is pdf f𝜀. The smoothness depends on the width and
the shape of f𝜀. In general, the wider f𝜀, the stronger the
smoothing effect is on fD. Similarly, for the same inno-
vation pdf fD, if the pdf f𝜀 (i.e., the smoothing kernel) is
narrower, we can expect a wider observation pdf f𝜀o .

2.4 State-dependent observation errors

Deconvolution-based observation error estimation can
also be used to estimate state-dependent observation
errors. Suppose the observation error pdf depends on a pre-
dictor c, which is a function of the true state, c

(
xt). We can

rewrite Equation (16) when c
(

xt) = c̃ as

D∣c(xt)=c̃ = Y∣c(xt)=c̃ −H(X) = 𝜀
o
∣c(xt)=c̃

+
[
H
(

xt
|c(xt)=c̃

)
−H(X)

]
. (18)

To estimate the pdf of D∣c(xt)=c̃, we only use the obser-
vations with cobs = c̃, where cobs is the predictor associated
with the observation. Note that in real cases, since we do
not know the true predictor, we assume that the observa-
tion predictor is a good approximation to the true predictor
cobs ≈ c

(
xt). On the other hand, we can also leverage the

i.i.d. assumption to estimate H
(

xt
|c(xt)=c̃

)
−H(X). Specifi-

cally, since the pdf of H
(

X t
|c(Xt)=c̃

)
is assumed to be equal to

the pdf of H
(

X|c(X)=c̃
)
, we draw from a subset of ensemble

whose predictor satisfies c
(

xi) = c̃ to sample H
(

X t
|c(X t)=c̃

)
,

instead of arbitrarily picking one from the whole ensem-
ble. We call this subset of ensemble the “indistinguishable
subset.” Similarly, when the sample size is small, we can
average the histograms of the differences between each
member in the indistinguishable subset and the other
ensemble members to approximate the pdf.

For example, for all-sky satellite radiances we could
assume the predictor c to be the cloud amount. Then,
we can use DOEE to estimate the observation error pdf
for each cloud amount. Note that it can be very diffi-
cult to identify the exact predictor. In practice, one could
propose a predictor based on the knowledge of possible
error sources associated with the observation operator.
The observation error model can also depend on multiple
predictors. See Section 4.2 for examples.
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6 HU et al.

2.5 The way to solve the deconvolution
equation in the DOEE method

In this section, we present some of the mathematical
details of how we solve the deconvolution equation in
Equation (16) in DOEE. Note that we consider a univariate
pdf in the following. Although the convolution relation in
Equation (16) is valid for multivariate pdfs as well, solving
the multivariate deconvolution can be more complicated.
We leave the extension of DOEE to multivariate pdfs as a
future work.

We express the pdfs fD and f𝜀o using histograms with
bins centered at [−n,−n + 1, … ,n]Δx, where Δx is the
bin width. We chooseΔx based on the Freedman–Diaconis
rule (Freedman & Diaconis, 1981), which is designed to
select the bin width that minimizes the squared differ-
ence between the histogram generated by the samples and
the underlying true pdf. Specifically, the bin width Δx is
chosen based on

Δx = 2 IQR
3
√

N
, (19)

where IQR is the interquartile range of the data, and N is
the sample size. Then, we choose n so that nΔx is large
enough and we can make sure the values of pdf close to
the boundaries are all zeros. If we discretize Equation (16)
using histograms defined by the bins above, the value of
pdf fD at mΔx can be written as:

fD(mΔx) =
n∑

𝑗=−n
f𝜀((m − 𝑗)Δx)f𝜀o (𝑗Δx). (20)

Note that we have totally 2n + 1 equations (with
m = −n, … ,n in Equation (20)) and 2n + 1 unknowns
(f𝜀o (𝑗Δx), 𝑗 = −n, … ,n), and therefore we can form a lin-
ear system of equations. For convenience, we can write the
linear system of equations into a matrix form:

fD = Af𝜀o , (21)

where fD and f𝜀o are column vectors with the values from
fD(𝑗Δx) and f𝜀o (𝑗Δx), 𝑗 = −n, … ,n, respectively, and A
is a matrix containing the values of f𝜀(𝑗Δx) that fulfills
Equation (20).

Although the number of equations and the unknowns
is the same, it turns out that directly solving Equation (21)
by A−1fD does not give us a desirable solution. Specifi-
cally, the pdf can have negative values, and the solution
tends to be very noisy. Therefore, we try to seek the solu-
tion from a constrained minimization problem, in which
we formulate a cost function with a penalty term to make
the solution smooth, and also constrain the solution to be
non-negative. There is a “smoothness parameter” in the

cost function to control the smoothness of the solution.
Please see the Appendix A for details of the cost function
and how we determine the smoothness parameter.

Finally, we summarize how the DOEE method works
in the following:

1. Collect samples of observations and the collocated
ensemble of model equivalences in observation space.
Calculate the histograms of fD and f𝜀. Define the indis-
tinguishable subset if constructing a state-dependent
error model (we will give an example in Section 4.1).

2. Form the cost function with the optimal smoothness
parameter (see the Appendix A).

3. The observation error pdf f𝜀o is the solution that min-
imizes the cost function with the optimal smoothness
parameter.

3 IDEALIZED EXPERIMENTS

In this section, we conduct a series of idealized exper-
iments to demonstrate and justify the DOEE method.
In Section 3.1, we will first show that DOEE not only
can retrieve a Gaussian observation error pdf, but also
a non-Gaussian one (bimodal, skewed), which is the
strength of DOEE. In Section 3.2, we will examine the
sensitivity of DOEE to the sample size, the quality of
the ensemble, and the member we pick as the reference
member.

3.1 Estimate of Gaussian
and non-Gaussian observation error
distribution

The setup for the idealized experiments is as follows. First,
we generate the truth from a given distribution, and then
add noise drawn from an (assumed unknown) observation
error pdf, which we would like to estimate, to the truth
to generate the observation. We generate the ensemble by
drawing from the same distribution as we draw the truth
from. Then, we use the observation and the ensemble as
input to the methodology, and try to estimate the unknown
observation error pdf. We then compare the estimated
observation error pdf with the true observation error pdf to
evaluate the performance of DOEE. If not mentioned dif-
ferently, the number of observations (grid points) is 10,000,
and the ensemble size is 100 in the following experiments.

For all the experiments, we generate the truth and
the ensemble by drawing from a Gamma distribution
Gamma(2 + Sh, 2 + Sc), where Sh and Sc are independent
draws from Uniform(−0.5, 0.5). The reason we choose a
Gamma distribution is that it is often used to simulate
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HU et al. 7

the distribution of variables in the geophysical mod-
els, for example, the precipitation-related variables (e.g.,
Bishop, 2016). In addition, it is skewed, which can mimic
the situation when the observation operator is non-linear,
which could transform a symmetric background error in
state space (e.g., Gaussian) into a skewed distribution in
the observation space. Note that we choose the distribu-
tion of the truth differently at different grid points, and
this is designed to mimic the realistic situation as well. In
addition, the method should be based on the collection of
observations whose observation errors are sampled from
the same pdf at different grid points.

We first examine cases where the observation error
is Gaussian but with non-zero mean, specifically,
Normal

(
2, 22) or Normal

(
−2, 22). These cases are con-

ducted to mimic situations where there is a bias in the
prediction of the observation operator. The results show
that we can well reproduce the true observation error
(Figure 1a,b), suggesting this method can also be applied
for bias correction, if the i.i.d. assumption for the ensemble
is valid.

Next, we turn to some more difficult cases where
the observation error is non-Gaussian. Specifically,
Figure 1c shows the result when the true observa-
tion error is drawn from a bi-Gaussian distribution
1
2

[
Normal

(
−4, 12) +Normal

(
4, 12)], and Figure 1d is

when the observation error is from Gamma(2, 2). We can
see the estimated error pdfs are very close to the true error
pdfs. These results are encouraging, since they suggest that

DOEE has the ability to well capture non-Gaussianities
in the observation error. Especially, we can accurately
retrieve the error pdf when the true error is bounded and
skewed (Figure 1d). For example, for semi-positive def-
inite observations, when the observed value is zero, the
realization of the observation error can only be either neg-
ative or zero. In this case, the observation error pdf has
to be skewed if the error variance does not vanish. Previ-
ous methods are not able to provide any information of
the skewness for this kind of observation error, while our
method can quite accurately capture the full pdf.

We examine all the pdfs from Equation (16) in Figure 2.
As discussed before, the innovation pdf (red curve) is the
smoothed observation error pdf (blue curve), where the
smoothing kernel is the ensemble difference pdf (orange
curve). We also calculate the convoluted pdf (brown
dashed curve) from the estimated observation error pdf
from DOEE (blue curve) and the ensemble difference
pdf (orange curve). The convoluted pdf almost overlaps
with the innovation pdf, which suggests that the esti-
mated observation error pdf from DOEE well satisfies
Equation (16).

3.2 Sensitivity tests

Recall that one of the assumptions in the method is that
the ensemble is indistinguishable from the truth (the i.i.d.
assumption). However, in practice, it is difficult to know

F I G U R E 1 The true
observation error pdf (black
dashed line), and the estimated
(blue solid line) observation error
pdf from DOEE method. These
are the cases where the
observation error pdf is (a)
Gaussian with a negative mean,
(b) Gaussian with a positive
mean, (c) bimodal Gaussian and
(d) Gamma. [Colour figure can
be viewed at
wileyonlinelibrary.com]
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8 HU et al.

F I G U R E 2 The
decomposition of the pdfs in
Equation (16). The blue line is the
estimated observation error pdf f

𝜀
o

(the same as the blue lines in
Figure 1), the orange line is the
ensemble difference pdf f

𝜀
, the

solid red line is the innovation pdf
fD, and the dashed brown line is
the estimated innovation pdf
given by the convolution between
the estimated observation error
pdf f

𝜀
o and the ensemble

difference pdf f
𝜀
. These are the

cases where the observation error
pdf is (a) Gaussian with a negative
mean, (b) Gaussian with a positive
mean, (c) bimodal Gaussian and
(d) Gamma. [Colour figure can be
viewed at wileyonlinelibrary.com]

if this assumption is correct. Therefore, here we examine
how the estimates change when the i.i.d. assumption is
not true. First, we examine the case that the ensemble is
underdispersive. Specifically, we generate the truth and
the ensemble based on the following distributions:

H
(

X t) ∼ Gamma(2 + Sh, 2 + Sc) +Normal
(
0, 1.52)

,

H(X) ∼ Gamma(2 + Sh, 2 + Sc).

The ensemble is generated from the same distribution
as in the previous sections, while the truth is generated by
a wider distribution. We take all the observation errors to
be Gaussian in this section. We conduct a similar exper-
iment as described in Section 3.1, but in this case the
estimation of f𝜀 is based on the underdispersive ensem-
ble. Figure 3a shows that the estimated observation error
becomes overdispersive. We conduct another experiment
when the ensemble is overdispersive (by swapping the
distribution of the truth and the ensemble from the pre-
vious experiment), and the estimated observation error
becomes underdispersive (Figure 3b).

Figure 3c,d show the results when the ensemble is
biased from the truth state. When the ensemble has a pos-
itive bias, we can expect there is a negative bias in the
estimated observation error (Figure 3c), and vice versa
(Figure 3d). Recall that in Figure 1a,b we have also seen an
observation error pdf that is not centered at zero. However,
note that in Figure 1a,b, the ensemble is drawn from

the same distribution as the truth, while that is not the
case for Figure 3c,d. The biases in Figure 1a,b are totally
attributed to the errors in the observation operator (or the
measurement noise, although less likely), while the biases
in Figure 3c,d are totally attributed to the poor quality
of the ensemble, and hence the errors in the model. In
theory, we should deal with these two kinds of biases dif-
ferently: when the error comes from the observation oper-
ator (like in Figure 1a,b), we should include them into the
observation error. In contrast, if the error comes from the
ensemble, we should include them into the background
error (like in Figure 3c,d), that is, remove the bias in the
prior ensemble model state. In practice, however, since
we do not know if the truth observation error is biased
or not, we cannot distinguish which is the case when we
obtain a biased observation error pdf like in Figure 1a,b or
Figure 3c,d.

Finally, we examine the sensitivity of DOEE to the
sample size. Specifically, we are trying to answer the ques-
tion: how does the choice of the reference member affect
the estimation of the ensemble difference pdf f𝜀 and the
observation error pdf f𝜀o . Here we examine three ways
to estimate the ensemble difference pdf: (1) We always
choose the first member as the reference. (2) Every time
we randomly pick a different ensemble member as the
reference. (3) We calculate the pdf of the pairwise ensem-
ble differences (there is in total Ne(Ne−1)

2
number of pairs

where Ne is the ensemble size). We compare the true
ensemble difference pdf and the estimated one from the
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HU et al. 9

F I G U R E 3 Similar to
Figure 1, but when the i.i.d.
assumption for the ensemble is
invalid. (a) When the ensemble is
too narrow, (b) when the
ensemble is too wide, (c) when
the ensemble has a positive bias,
and (d) when the ensemble has a
negative bias. [Colour figure can
be viewed at
wileyonlinelibrary.com]

three methods with 100 ensemble members and 10,000
observations in Figure 4a,c. It is hard to tell the differences
between the true pdf and the three estimated pdfs, suggest-
ing that all of the methods provide an accurate estimate of
f𝜀. Since the ensemble difference pdfs are very similar, it
is not surprising that the estimated observation error pdfs
are also very similar for the three methods (not shown).
We redo the experiment, but now reduce the ensemble
size from 100 to 10, and the number of observations from
10,000 to 100. The results are shown in Figure 4d–f. We
do see some minor differences in the fine structure of
the estimated ensemble difference pdfs, while the overall
shape of the pdfs are still very similar, as are the estimated
observation error pdfs (not shown).

We conclude that the estimated observation error pdf
is not sensitive to the choice of the reference member,
and DOEE works well even for small ensemble sizes and
number of observations.

4 AN APPLICATION OF DOEE TO
REAL DATA

4.1 Background and data descriptions

In this section, we apply DOEE to a real dataset. We will
look at the observation at 37 GHz vertical polarization
measured by the Special Sensor Microwave Imager/
Sounder (SSMIS) (Kunkee et al., 2008). SSMIS is onboard

the DMSP (Defense Meteorological Satellite Program)
satellite, which is polar-orbiting and provides global cov-
erage about twice per day. We collect the observations
during September 2015. The observations are paired with
an ensemble, which is from the local ensemble transform
Kalman Filter (LETKF) from the European Centre for
Medium-Range Weather Forecasts (ECMWF) (Bonavita
et al., 2020), and the ensemble size is 100. Due to the limita-
tion of the radiative transfer model, observations over land
and over the regions where the latitude is over 60 degrees
are excluded from the analyses. After data screening, there
are in total around 900,000 pixels, which should provide
enough samples for the analysis.

Previous studies have suggested that the observation
error for the all-sky radiance observations can depend on
the cloud amount (e.g., Geer & Bauer, 2011). Specifically,
we assume that f𝜀o depends on the cloud amount c, which
in this study is defined as,

c = 1 −
TB;19V − TB;19H

TBclear;19V − TBclear;19H
∈ [0, 1], (22)

where TB;19V, TB;19H are the vertical and horizontal polar-
ized brightness temperatures at 19 GHz, and TBclear;19V,
TBclear;19H are the vertical and horizontal polarized bright-
ness temperatures at 19 GHz assuming the cloud is absent.
The advantage of using Equation (22) is that we can
have a consistent definition for the cloud amount among
the ensemble members and the observations. TBclear;19V,
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10 HU et al.

F I G U R E 4 The true (black dashed line) and the estimated ensemble difference pdf f
𝜀

(blue solid line) for the sensitivity experiments
in Section 3.2. To estimate f

𝜀
, (a, d) the first member is always chosen as the truth (b, e) the truth is randomly chosen from the ensemble

members (c, f) the ensemble differences are used for the estimation. The ensemble size Ne and the number of observation Ns are (a–c)
Ne = 100, Ns = 10000 and (d–f) Ne = 10, Ns = 100. [Colour figure can be viewed at wileyonlinelibrary.com]

TBclear;19H are estimated using a high-resolution control
run and they are assumed to be the same among the obser-
vation and all the ensemble members at the same grid
point. Although TBclear;19V and TBclear;19H depend on varia-
tions in temperature, specific humidity and skin temper-
ature, which can be different for each ensemble member
and the control run, the ensemble spread in these vari-
ables only cause minor variations in simulated brightness
temperature across the ensemble, when compared to the
variations caused by the cloud amount. This supports our
approximations for TBclear;19V, TBclear;19H using the control
run. However, since the approximation is still not perfect,
especially for the clear-sky end of the cloud amount predic-
tor (e.g., see Lonitz & Geer, 2020), sometimes it could lead
to a negative cloud amount. Therefore, here we impose a
lower bound of zero on the calculated cloud amount. Note
that the 19 GHz cloud predictor used here differs from
the 37 GHz predictor used in e.g. Geer and Bauer (2011).
This is because the 37 GHz h-polarized channel is not
actively assimilated and prior brightness temperatures for
this channel are not available in the LETKF.

Since the cloud amount is a continuous variable,
we discretize the cloud amount when building the
cloud-amount-dependent observation error pdf. In prac-
tice, we assume that the observation error pdf f𝜀o is
the same pdf within a finite range of cloud amount.

Recall Section 2.4 summarizes the way to estimate
this cloud-amount-dependent error model. For example,
assume we would like to estimate the observation error
when cloud amount is within [0.2, 0.3]. We collect the
observations with observed cloud amount cobs ∈[0.2, 0.3]
and calculate the difference between the observations
and all of the ensemble members (regardless of their
cloud amount), to estimate the pdf of Y∣c(xt)∈[0.2,0.3] −H(X).
To estimate the pdf of H

(
xt

|c(xt)∈[0.2,0.3]
)
−H(X), we pick

an ensemble member from the indistinguishable subset,
which in this case is the subset of the ensemble with
cloud amount within [0.2, 0.3], and calculate the differ-
ences between the member in the indistinguishable subset
and the other ensemble members. Note that a partly sim-
ilar idea was used by Chambon et al. (2014) to estimate
the biases of all-sky microwave radiances using a sample
in which both observations and background had similar
cloud amounts.

To have an idea of the relation between the observed
cloud amount and the ensemble cloud amount, we
first examine the logarithm of their joint distribution in
Figure 5. It Is interesting to see that the joint histogram is
not symmetric. Although it seems that the ensemble has
too large cloud amount in general (e.g., compare the val-
ues along the 1–4 line and the 4–1 line in Figure 5), the
ensemble has too small cloud amount in the bin with cloud
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HU et al. 11

F I G U R E 5 The logarithm of the joint distribution of the observed cloud amount and the ensemble cloud amount. The bin size of the
joint histogram is 0.02. The black dashed lines are the 1–4, 1–2, 1–1, 2–1, and 4–1 line for reference. (a) for all ensemble members (b) for the
ensemble members in the indistinguishable subset (see text) [Colour figure can be viewed at wileyonlinelibrary.com]

amount less than 0.1. In summary, the observed cloud
amount can sometimes be very different from the ensem-
ble cloud amount, and the spread of the ensemble cloud
amount can be very large (we can see, for example, by
looking at the marginal pdf of the ensemble cloud amount
given a value of the observed cloud amount in Figure 5a).

4.2 A non-parametric state-dependent
observation error model

We examine the cloud-amount-dependent observation
error model constructed based on Equation (18) in this
section. We divide the cloud amount into 10 categories,
from 0 to 1 and with bin size 0.1. Figures 6 and 7 show
the pdf f𝜀o for each cloud amount category, and all the
pdfs used in DOEE in Equation (16). Note that for the
mostly-clear-sky case (i.e., the cloud amount being [0.0,
0.1]), the pdf is right-skewed and the tail is long at the pos-
itive values (Figure 6a). We attribute this right-skewness
to the cloud amount asymmetry between the observation
and the ensemble in this category. (Note that this asym-
metry only occurs in the mostly-clear-sky category.) In
this category, the joint histogram has larger mass in the
region where the observed cloud amount is larger than the
ensemble cloud amount (Figure 5b). In addition, in this
channel, the brightness temperature in general increases
with the increasing cloud amount (Figure 8). Therefore,
if the observation has larger cloud amount compared to
the ensemble, the brightness temperature of the observa-
tion will be larger than the ensemble, leading to positive
observation errors.

In general, the standard deviation of the observa-
tion error pdf increases with cloud amount when the

cloud amount is between 0.0 and 0.5 (Figure 6a–e),
and it remains constant or slightly decreases with cloud
amount when the cloud amount is between 0.5 and 1.0
(Figure 6f–j). This result is qualitatively consistent with
Geer and Bauer (2011), but quantitatively the standard
deviations are smaller here (around 5 K here compared to
15–20 K there). The reason is that Geer and Bauer (2011)
estimate the errors from the strong-constraint 4D-Var
perspective, where the observation error includes the
errors in the forecast model during the assimilation
window, while here our estimations do not account
for the errors in the forecast model. We will elabo-
rate on the differences between these two errors in
Section 5.

The mean of the observation error pdf, in general,
increases with cloud amount as well. Most of the pdfs
are not Gaussian-like, and especially some are skewed, for
example, [0.0, 0.1], [0.2, 0.3], and [0.4, 0.5]. This suggests
that Gaussian assumption for the observation errors used
in many current DA schemes can be problematic when
assimilating the satellite radiances.

We note that the cloud amount is just one choice for
the predictor for the state-dependent observation error
model for satellite radiances. However, we realize that the
true observation error model can be more complicated.
Therefore, we also examine a slightly more complicated
state-dependent observation error model by adding the
total column water vapor (TCWV) as a new predictor. In
other words, we have two predictors for the observation
error model: the cloud amount defined in Equation (22)
and the TCWV. Specifically, we further divide the pixels in
each category of cloud amount into two: the TCWV being
larger or smaller than 40 kg⋅m−2 in the high-resolution

 1477870x, 0, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/qj.4710 by T
est, W

iley O
nline L

ibrary on [18/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://wileyonlinelibrary.com


12 HU et al.

F I G U R E 6 The cloud-amount-dependent observation error model for satellite radiance at 37 GHz vertical polarization, for cloud
amount (a) [0.0, 0.1], (b) [0.1, 0.2], (c) [0.2, 0.3], (d) [0.3, 0.4], (e) [0.4, 0.5], (f) [0.5, 0.6], (g) [0.6, 0.7], (h) [0.7, 0.8], (i) [0.8, 0.9], and (j) [0.9,
1.0]. [Colour figure can be viewed at wileyonlinelibrary.com]

control run. (Since TCWV for each ensemble member and
the observation are not available in the current dataset,
we only use TCWV in the high-resolution control run.
However, the variations of TCWV are believed to be small,

so the TCWV in the control run should be representative
enough.) The reason for choosing 40 kg⋅m−2 as the
criterion is based on the previous studies showing that
40–60 kg⋅m−2 is the threshold for tropical convection (e.g.,
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HU et al. 13

F I G U R E 7 Similar to Figure 2, but for the cloud-amount-dependent observation error model for satellite radiance at 37 GHz vertical
polarization. The blue line in each subplot is exactly the same as in Figure 6. [Colour figure can be viewed at wileyonlinelibrary.com]

Bretherton et al., 2004; Schiro et al., 2016), which we
believe could have very different observation error proper-
ties compared to other cloud types.

Figure 9 shows the observation error pdfs as a func-
tion of cloud amount and TCWV. We first note that if the

observation error pdf is only a function of cloud amount,
then we can expect that the pdfs for TCWV< 40 (blue
curves in Figure 9) be similar to the pdfs for TCWV> 40
(red curves in Figure 9) in each category, which is however
not the case here. On the other hand, the observation error
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14 HU et al.

F I G U R E 8 The relation between the observed cloud amount
defined by the 19 GHz normalized polarization difference in
Equation (22) and the observed radiance at 37 GHz vertical
polarization brightness temperature. [Colour figure can be viewed
at wileyonlinelibrary.com]

pdf is not only a function of TCWV either. If it is only
a function of TCWV, then all the red curves in Figure 9
should be similar, and the same for all the blue curves. This
suggests that the true state-dependent observation error

model for radiances at this channel is indeed more com-
plicated. Constructing a more accurate state-dependent
observation error model is important as we can better
utilize the information from the observations.

It is interesting to find that the positive tail of the
observation errors in the mostly-clear-sky category (cloud
amount [0.0, 0.1]) is largely associated with pixels with
smaller TCWV. Specifically, Figure 9a shows that when
TCWV< 40, there is a similar right-skewness in the obser-
vation error pdf (Figure 6a), while when TCWV> 40, the
observation error pdf is symmetric and close to Gaussian
(Figure 9a). For cloud amount [0.1, 0.2], the observation
error pdf for TCWV<40 is wider than TCWV> 40, and
both of their means are slightly larger than 0 (Figure 9b).
This is consistent with Figure 6b.

The difference between the pdfs for TCWV< 40 and
TCWV> 40 becomes clear when the cloud amount is
larger than 0.2 (Figure 9c–f). It is interesting to see that,
when TCWV< 40, the pdfs for cloud amount larger than
0.2 (blue curves in Figure 9c–f) are very similar: they are
symmetric, Gaussian-like, and centered close to 0, whereas
when TCWV> 40, the pdfs (red curves in Figure 9c–f) are
very different but all of them have mean larger than 0.
Note that the pixels with cloud and TCWV> 40 are likely

F I G U R E 9 Similar to Figure 6, but the samples in each cloud amount category are further divided into two based on the total column
water vapor (TCWV). The blue curve is the observation error pdf when TCWV< 40 kg⋅m−2, and the red curve is when TCWV> 40 kg⋅m−2.
Note that only the pdfs for cloud amount smaller than 0.6 are shown, since there are less than 10 samples for TCWV< 40 kg⋅m−2 in the cloud
amount category when the cloud amount is larger than 0.6. The error model for cloud amount being (a) [0.0,0.1], (b) [0.1,0.2], (c) [0.2,0.3], (d)
[0.3,0.4], (e) [0.4,0.5], (f) [0.5,0.6]. [Colour figure can be viewed at wileyonlinelibrary.com]
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HU et al. 15

to be associated with convective clouds. These results at
least suggest two things: first, the non-Gaussianity and
skewness in the observation error for cloud amount larger
than 0.2 (Figure 6c–f) can be mostly attributed to the pixels
with larger TCWV. Second, there are biases in the pix-
els with TCWV> 40 when cloud amount is larger than
0.2. As discussed in Section 3.2, we cannot distinguish
where the biases originate by simply looking at the results:
they might either come from the model biases, or from
the errors in the observation operators. Note that we only
examine the pdfs up to cloud amount being 0.6 in Figure 9
since the sample size for the sub-category TCWV<40
becomes too small when cloud amount is larger than 0.6.

5 DISCUSSIONS AND
CONCLUSIONS

In this study, we propose a new methodology, the
Deconvolution-based Observation Error Estimation
(DOEE), to estimate the full probability density function
(pdf) of the observation error. DOEE does not rely on the
linear approximation for the observation operator, the
optimality of the DA algorithm, or the Gaussian assump-
tions for the error pdf. DOEE can theoretically retrieve any
form of the observation error pdf based on the statistics
of the observations and an ensemble of model equiva-
lences. We demonstrate a series of idealized experiments
in Section 3, and find that DOEE can successfully retrieve
the observation error pdf when it is either a Gaussian or a
non-Gaussian (bimodal, bounded or skewed) distribution.

The key equations we use in the DOEE are
Equation (16). To have an estimate of the pdf of the differ-
ence between the true state and a random forecast state
in observation space, we propose to randomly pick an
ensemble member as a sample for H

(
xt). This is based

on the assumption that the ensemble is indistinguishable
from the truth (the i.i.d. assumption). In addition, we
can construct a state-dependent observation error model
based on Equation (18). In this case, instead, we propose
to select the ensemble member from the “indistinguish-
able subset”, which is a subset of the ensemble with a
certain value or a certain range of the predictor c(x) ∈ ,
to sample H

(
Xt

|c(X t)∈
)
.

We applied the DOEE method to construct
state-dependent observation error models for the satel-
lite radiances at 37 GHz vertical polarization. We first
construct a cloud-amount-dependent observation error
model (see Figure 6). The results suggest that: (1) the
standard deviation of the pdf generally increases with
cloud amount. (2) Many of the pdfs are skewed and
non-Gaussian. Furthermore, we examine a slightly more
complicated state-dependent observation error model by

adding the TCWV as a second predictor (see Figure 9).
What we can learn from this slightly more complicated
model is: (1) the cloud amount alone may not be the
optimal predictor for the observation error model, since
the pdfs for TCWV< 40 and TCWV> 40 at the same
cloud amount category can be very different. (2) For the
mostly-clear-sky category (cloud amount [0.0, 0.1]), the
non-Gaussianity in the observation error pdf is associated
with the pixels with TCWV< 40, whereas for the cloudy
categories (cloud amount 0.2–0.6), the non-Gaussianities
are associated with the pixels with TCWV> 40. (3) For
cloudy categories (cloud amount 0.2–0.6), the pdfs for
TCWV< 40 are similar, which might suggest the observa-
tion errors in these pixels come from the same distribution.
In contrast, the pdfs for TCWV> 40 differ for different
cloud amount categories, while all of them have positive
mean. This suggests there are some biases in the sim-
ulated radiances from these cloudy pixels with TCWV
>40. Exploring other predictors for the observation error
models, like cloud type, would be an interesting topic for
the future work. Note that with a better set of predictors
for the state-dependent observation error model, we can
better utilize the information from the observations.

We should emphasize that, as in Section 4, we concen-
trate on the observation operator from a filter perspective.
When DOEE is applied for a strong-constraint 4D-Var,
the representation errors will also include errors in the
model equations. Specifically, we denote the radiative
transfer model (RTM) as H and the model forecast from
the beginning of the window to the observation time as
M. For the observation error of RTM alone, we are looking
at the errors in H, while for the observation error from
the strong-constraint 4D-Var perspective, we are looking
at the errors in the composite function H◦M. There is
no fundamental difference in estimating the observation
error for either H or H◦M using DOEE. However, when
constructing a state-dependent model in Equation (18),
we need to be cautious about the assumption c

(
xt) ≈ cobs.

For example, when it applies to constructing a similar
cloud-amount- (but at the observation time) dependent
error model for H◦M, the assumption that c

(
M
(

xt)) ≈ cobs
becomes less appropriate because we do recognize that
the model M typically has large errors in predicting
clouds. Therefore, it becomes difficult to construct a
state-dependent observation error model for H◦M when
the predictor is the cloud amount at the observation time.
Instead, we may choose the TCWV at the observation time
as a predictor and assume that TCWV

(
M
(

xt)) ≈ TCWVobs
since the model will typically predict TCWV more accu-
rately than the cloud amount. Exploring a proper predictor
for the state-dependent observation error models from
the strong-constraint 4D-Var perspective is left for future
work.
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In this work, DOEE is applied to estimate the uni-
variate pdf for each scalar observation, which provides
enough information if the observation errors are indepen-
dent. When the observation errors are not independent,
e.g., due to interchannel or spatial correlations for satellite
radiances, we can still apply DOEE to estimate the full joint
pdf of the observation error pdf. This can be achieved by
generalizing Equations (20) and (21) for the multivariate
pdf. We also leave this exploration as future work.

It is also important to note the limitations of
the assumptions in DOEE. First, although the i.i.d.
assumption is commonly used in ensemble methods, it
may not always be appropriate, for example, when the
model error is significant but not (sufficiently) accounted
for in the ensemble. DOEE becomes suboptimal when the
i.i.d. assumption is compromised (e.g., see Figure 3). To
address this issue, we could discard the samples in which
the ensemble is considered to violate the i.i.d. assumption
in the DOEE estimate. We could also modify the ensem-
ble before the ensemble data are used in DOEE. For
example, if the ensemble is considered underdispersive
in some cases, model error can be added to the ensemble
before DOEE. We may explore using anchor observations,
or cross-validation methods (e.g., Marseille et al., 2016;
Ménard & Deshaies-Jacques, 2018; Tandeo et al., 2020)
to justify the output from DOEE, when there are doubts
about the validity of the i.i.d. assumption. Second, the
assumption that the background error and the observation
error are independent can be problematic for some cases,
especially for the observation error model of the all-sky
radiances from the strong-constraint 4D-Var perspective.
While it is possible in principle to include dependent
background and observation errors, the innovation pdf
will not be a simple convolution anymore, and more work
is needed to extend DOEE to this case.

Finally, we briefly comment on ways to include the
non-parametric observation errors in some current DA
methods. DA methods that do not require a parametric
form of the observation error, for example, particle filters
and particle flow filters (e.g., Ades & van Leeuwen, 2015;
Daum & Huang, 2011; Hu & Van Leeuwen, 2021;
Poterjoy, 2016; Pulido & van Leeuwen, 2019; van
Leeuwen et al., 2019) or the quantile-conserving filter
(Anderson, 2022), would be natural choices to assimilate
observations with non-parametric observation errors. For
methods that require a parametric form for the observa-
tion error, we may, for example, locally approximate the
non-parametric pdf by the required parametric pdf. If the
observation error is state-dependent and we are using a
variational method, we may need to re-approximate the
non-parametric pdf by a different Gaussian in each outer
loop. In ensemble Kalman filters, the observation error
variance should be the expected value of (𝜀o)2 over the

prior distribution (Bishop, 2019). In this case, we have
to estimate (𝜀o)2 for the pdf in each category, and aver-
age these values based on the prior distribution of the
predictors.

In summary, DOEE is an important methodological
step forward in diagnosing the non-Gaussianity of the
observation error. In addition to the non-Gaussianity, the
state-dependent error, spatial and temporal correlations of
the error, and the separability of the background and the
observation error are also important aspects of the obser-
vation error. Although it is not clear that whether the
non-Gaussianity is the main challenge that needs priority
to be addressed in a numerical weather prediction (NWP)
system, the diagnosed non-Gaussianity in real observa-
tions is clear. We are currently implementing DOEE and
testing the inclusion of the non-Gaussian observation
error in a full-scale NWP system. The impact of the
non-Gaussianity on the DA and NWP will be explored in
future studies.
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APPENDIX A. THE COST FUNCTION AND
THE SMOOTHNESS PARAMETER IN DOEE

In order to find a smooth pdf that can best satisfy
Equation (21), we introduce prior information in the
problem formulation as follows:

q(f𝜀o) = ‖Af𝜀o − fD‖2 + (Ff𝜀o)TS−1(Ff𝜀o ), (A1)

min q(f𝜀o) with f𝜀o ≥ 0, (A2)

where F is a finite difference operator which calculates
the derivative of f𝜀o . Condition (A2) ensures that all pdf
estimates are non-negative, while the constraint with the
derivatives (second term on the RHS of Equation A2)
enforces a smooth solution. The derivative matrix F can be
written as:

F =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− 1 1 0 · · · · · · 0
0 −1 1 ⋱ ⋱ ⋮

⋮ ⋱ ⋱ ⋱ ⋱ ⋮

⋮ ⋱ ⋱ ⋱ ⋱ 0
0 · · · · · · 0 −1 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (A3)

which is a one-sided derivative. S is a covariance matrix
that controls the smoothness of Ff𝜀o and is constructed as:

S = 𝛼

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 r1 r2 · · · · · · · · · r2n

r1 1 r1 r2 · · · · · · r2n−1

r2 r1 1 r1 r2 · · · r2n−2

⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮

⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮

r2n−1 · · · · · · r2 r1 1 r1

r2n · · · · · · · · · r2 r1 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (A4)
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F I G U R E A1 The statistical properties of the observation
error pdf f

𝜀
o that minimizes the cost-function q(f

𝜀
o ) in

Equation (A1) when q(f
𝜀

o ) is constructed by different values of the
smoothness parameter 𝛼. The blue line is the value of ‖Af

𝜀
o − fD‖,

the brown solid line is the noise level of f
𝜀

o , which is defined as 50
times of the root-mean-square of the derivative of f

𝜀
o , and the

brown dashed line is the interquartile range (IQR) of f
𝜀

o . [Colour
figure can be viewed at wileyonlinelibrary.com]

where 𝛼 is a scalar controlling the magnitude of S,
which is called the “smoothness parameter”, and

ri = exp
(
−
(

iΔx
rcorr

)2
)

in which rcorr is chosen as Δx here

and it is the correlation length scale for the matrix S. Note
that the DOEE result is not sensitive to the choice of rcorr
as long as it is of the order of Δx.

The first term ‖Af𝜀o − fD‖2 in the cost function in
Equation (A1) is a measure of the difference between the
estimated innovation pdf based on a solution of f𝜀o and
the true innovation pdf, which we would like to mini-
mize. The second term (Ff𝜀o )TS−1(Ff𝜀o) is a penalty term,
which is analogous to a prior constraint in the cost func-
tion of the variational methods. Therefore, the inverse of

FTS−1F is analogous to the prior covariance matrix, where
𝛼 determines the prior variance. When 𝛼 is larger, the con-
straint from the penalty term is weaker, so we can expect
a less smooth f𝜀o , which can, however, fit ‖Af𝜀o − fD‖2

better.
Unfortunately, there is no physically based way to

determine the size of the smoothness parameter 𝛼. In
order to determine an optimal 𝛼, we seek the following
criteria for a good solution for f𝜀o . First, the solution f𝜀o

should make ‖Af𝜀o − fD‖ as small as possible. Second, f𝜀o

is expected to be smooth. Of course, the second criterion
is a little ad-hoc and can be problematic when the true
underlying distribution is rugged. However, we believe
that most of the error distributions that we are looking at
are smooth. Based on the two criteria, we examine the rela-
tion between the minimum ‖Af𝜀o − fD‖ that we can obtain
for each value of 𝛼, which is shown in Figure A1. We can
see that ‖Af𝜀o − fD‖ decreases with increasing 𝛼. This is
because as 𝛼 increases, the penalty term becomes smaller
(the penalty term vanishes as 𝛼 → ∞), and minimizing the
cost function becomes almost equivalent to minimizing
‖Af𝜀o − fD‖ as 𝛼 → ∞. Note that ‖Af𝜀o − fD‖ never really
goes to zero because we also have the constraint f𝜀o ≥ 0
in Equation (A2). Most importantly, Figure A1 shows that
when 𝛼 is larger than a certain threshold, ‖Af𝜀o − fD‖
almost “saturates” and does not decrease much if we fur-
ther increase 𝛼. At the same time, the noise level of f𝜀o

increases if we further increase 𝛼. This motivates us to
heuristically choose the optimal smoothness parameter
𝛼optimal to be around this threshold, since this should be the
smoothest f𝜀o that best fits the equation fD = Af𝜀o , which
satisfies both criteria. For example, this threshold should
be around 1–100 in Figure A1.

We demonstrate how the smoothness parameter can
affect the solution in an idealized experiment where the
true observation error is Gaussian. See Section 3 for the
details of the experiment setup. Figure A2 shows the pdf of

F I G U R E A2 The true observation error pdf (black dashed line), which is a Gaussian Normal
(
0, 22), and the estimated (blue solid line)

observation error pdf when the estimate is based on (a) a too small smoothness parameter 𝛼 (b) an appropriate smoothness parameter and (c)
a too large 𝛼. [Colour figure can be viewed at wileyonlinelibrary.com]
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F I G U R E A3 The decomposition of the pdfs in Equation (16) when the true observation error is drawn from Normal
(
0, 22). The blue

line is the estimated observation error pdf f
𝜀

o (the same as the blue lines in Figure A2), the orange line is the ensemble difference pdf f
𝜀
, the

solid red line is the innovation pdf fD, and the dashed brown line is the estimated innovation pdf given by the convolution between the
estimated observation error pdf f

𝜀
o and the ensemble difference pdf f

𝜀
. The estimate is obtained based on (a) a too small smoothness

parameter 𝛼 (b) an appropriate smoothness parameter and (c) a too large 𝛼. [Colour figure can be viewed at wileyonlinelibrary.com]

the actual draws for the observation errors (black dashed
line) and the estimated observation errors (blue solid line)
using different smoothness parameters 𝛼. We can see that
when we choose an 𝛼 that is too small (Figure A2a), the
estimated distribution is too smooth, whereas a too large
𝛼 leads to a noisy distribution (Figure A2c). When we pick
an appropriate smoothness parameter (which is chosen
based on the example in Figure A1), the estimated pdf is
a smooth bell-shaped curve that is similar to the true dis-
tribution (Figure A2b). To understand how 𝛼 affects the
estimation in detail, we plot each of the pdfs in the convo-
lution equation from Equation (16) when using a different
𝛼 in Figure A3. Note that the innovation pdf (solid red line)
and the ensemble difference pdf (orange line) are the input
to this methodology and therefore are the same for all
the subplots in Figure A3. We also plot the reconstructed
innovation pdf (dashed brown line) obtained from the

convolution of the estimated observation error pdf (blue
line) and the ensemble difference pdf (orange line). With
a small 𝛼 (Figure A3a), the difference between the recon-
structed innovation pdf and the actual innovation pdf
and is large, which corresponds to the large value of
‖Af𝜀o − fD‖ in Figure A1. In contrast, when 𝛼 is larger
than the 𝛼optimal, the reconstructed innovation pdf becomes
very similar to the actual innovation pdf (Figure A3b,c),
which corresponds to the small values of ‖Af𝜀o − fD‖ in
Figure A1. Note that although both of the reconstructed
innovation pdfs in Figure A3b,c fit the actual innovation
pdf very well, the observation error pdf in Figure A3c is
rugged, which seemingly manages to fit the noise in the
actual observation error (black dashed line in Figure A2).
The results here justify that the way we choose 𝛼optimal
tends to give us good estimates, as long as the true obser-
vation error pdf is smooth.

 1477870x, 0, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/qj.4710 by T
est, W

iley O
nline L

ibrary on [18/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://wileyonlinelibrary.com

	A non-parametric way to estimate observation errors based on ensemble innovations 
	1 BACKGROUND
	2 METHODOLOGY
	2.1 Definitions and notations
	2.2 The background subtraction method
	2.3 A new non-parametric method for estimating the observation error&thinsp;---&thinsp;The DOEE method
	2.4 State-dependent observation errors
	2.5 The way to solve the deconvolution equation in the DOEE method

	3 IDEALIZED EXPERIMENTS
	3.1 Estimate of Gaussian and non-Gaussian observation error distribution
	3.2 Sensitivity tests

	4 AN APPLICATION OF DOEE TO REAL DATA
	4.1 Background and data descriptions
	4.2 A non-parametric state-dependent observation error model

	5 DISCUSSIONS AND CONCLUSIONS

	ACKNOWLEDGEMENTS
	DATA AVAILABILITY STATEMENT
	ORCID
	REFERENCES
	APPENDIX A. THE COST FUNCTION AND THE SMOOTHNESS PARAMETER IN DOEE

