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Abstract
A method is proposed for resilient and efficient estimation of the states and
time-varying parameters in nonlinear high-dimensional systems through a
sequential data assimilation process. The importance of estimating time-varying
parameters lies not only in improving prediction accuracy but also in deter-
mining when model characteristics change. We propose a particle-filter-based
method that incorporates nudging techniques inspired by optimization algo-
rithms in machine learning by taking advantage of the flexibility of the proposal
density in particle filtering. However, as the model resolution and number of
observations increase, filter degeneracy tends to be the obstacle to implementing
the particle filter. Therefore, this proposed method is combined with the implicit
equal-weights particle filter (IEWPF), in which all particle weights are equal.
The method is validated using the 1000-dimensional linear model with an addi-
tive parameter and the 1000-dimensional Lorenz-96 model, where the forcing
term is parameterized. The method is shown to be capable of resilient and effi-
cient parameter estimation for parameter changes over time in our application
with a linear observation operator. This leads to the conjecture that it applies to
realistic geophysical, climate, and other problems.

K E Y W O R D S

data assimilation, nondegeneracy, parameter estimation, particle filter

1 INTRODUCTION

Online parameter estimation is the process of infer-
ring values that are often included in numerical models
as unobservable quantities using sequentially collected
observations. Since such parameters in numerical models
are simplified representations of the modeled character-
istics, parameter estimation plays an important role in
obtaining accurate and reliable predictions. There are

several approaches to parameter estimation, such as using
an optimization algorithm under given state variables in
the model and using data assimilation (DA) techniques
(Evensen et al., 2022).

DA is known as the procedure to incorporate observa-
tions into numerical models and obtain posteriors of the
state variables, especially in high-dimensional dynami-
cal systems. Although DA usually focuses on generating
an optimal initial state and forecasting the temporal
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evolution of millions of time-varying state variables (Clay-
ton et al., 2013), parameter estimation is often combined to
calibrate the models (i.e., estimate the appropriate model
characteristics). Therefore, parameter estimation is key
to improving the prediction accuracy and is as complex
as state estimation due to nonlinearities, even for linear
dynamical models (Evensen et al., 1998).

Further, parameters can be considered not only as
static but also as time-variant. For example, in hydrological
modeling, parameters are usually assumed to be constant
and calibrated using a particular data record to obtain an
optimal parameter set or stationary parameter distribu-
tions. Still, it is necessary to use time-variant parameters
to accurately simulate state variables wherein the cali-
bration period may contain different climate conditions
and hydrological regimes compared with the simulation
period (Deng et al., 2016). As another example, according
to Zhu et al. (2017), state and parameter estimation plays
an important role in the application of process monitoring,
online optimization, and process control. The difficulty
of these applications is in identifying changes in model
parameters when the operating conditions of the process-
ing system have changed, or some faults have occurred in
the processing system. From the above examples, it can
be seen that estimating time-varying parameters plays
an important role not only in improving prediction accu-
racy but also in determining when model characteristics
change abruptly. However, the challenging issue is to
distinguish whether the cause of the inaccuracy is incor-
rectly estimated state variables or a change in the model
characteristics (i.e., parameters).

A typical method for time-varying state and parameter
estimation in high-dimensional dynamical systems is the
state augmentation technique, in which the parameter
vector is incorporated into the state vector. This technique
is also called joint estimation. Generally, the Kalman
filter-based method is used for linear Gaussian systems,
whilst the particle filter (PF) based method can be applied
to nonlinear non-Gaussian systems. Santitissadeekorn and
Jones (2015) indicate that the state augmentation method
may become ineffective when the impact of parameters
on the state is weak, and they propose a two-stage filter
that combines a PF and an ensemble Kalman filter. This
method estimates the static parameters and the tracking
of the dynamic variables alternatively. Although simi-
lar approaches using an independent dual PF (Cooper
& Perez, 2018) and a nested hybrid filter (Pérez-Vieites
et al., 2018) have been proposed, they are only applica-
ble to the estimation of static parameters. Extension to
time-varying parameters requires identifying whether the
change in observed states originates from state variables
or parameters, but the amenability in practical contexts
depends on the cross-covariance between states and

parameters. In particular, detecting abrupt changes in
characteristics in high-dimensional and partially observed
nonlinear systems may be problematic because of the
relatively low correlation between the observed state and
parameters.

Another issue concerns nonlinearities due to the
temporal evolution of the system and augmented state
vector. As in the example using PF above, the parame-
ter estimation method combined with PF can deal with
nonlinearities, but filter degeneracy might be a critical
obstacle for high-dimensional systems such as geophys-
ical and climate systems. To overcome this problem,
several approaches have been proposed, including the PF
method by hybridizing with the ensemble Kalman filter
(EnKF: Santitissadeekorn & Jones, 2015), as mentioned
above. The approach of the equivalent-weights parti-
cle filter (EWPF: e.g., Van Leeuwen, 2010; Ades & Van
Leeuwen, 2015) allows the proposal density to depend on
all particles at the previous time step and assigns equiv-
alent weights to most particles to avoid filter degeneracy.
Zhu et al. (2016) proposed the implicit equal-weights
particle filter (IEWPF), which combines the method
of EWPF and implicit sampling (Chorin & Tu, 2009)
to eliminate the need for parameter tuning. Skauvold
et al. (2019) proposed a two-stage IEWPF method to cor-
rect the systematic bias in predictions caused by a gap
in the proposal distribution in IEWPF (Zhu et al., 2016).
Other approaches to eliminate filter degeneracy are also
reviewed in Van Leeuwen et al. (2019). However, the above
methods focus on estimating state variables or constant
parameters.

In this article, we focus on a nonlinear time-varying
system where the dimension of the state vector is large,
while that of the model parameters is comparatively
small, with a view to application in geophysical, climate,
and other high-dimensional contexts. Then, we propose
a new PF-based parameter estimation method and assess
the capability of detecting abrupt changes in character-
istics by applying it to the above system. We provide a
methodology and results based on the IEWPF of Zhu
et al. (2016) as an example of avoiding filter degeneracy.
In our application, we assume a linear observation oper-
ator and require partial derivatives with respect to the
parameters depending on the dimension of the parame-
ters, although the methodology does apply to nonlinear
observation operators and can work with approximate
derivatives.

The remainder of the article is organized as fol-
lows. Section 2 describes the methodology for estimating
time-varying parameters. First, to estimate states and
parameters simultaneously, we extend IEWPF to an aug-
mented state-space model with a correlated covariance
matrix. We then propose the IEWPF-based method that
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incorporates an optimization algorithm from machine
learning into the parameter time evolution model by
taking advantage of the flexibility of the proposal density
in particle filtering. In Section 3, the effectiveness and
advantages of the proposed method are evaluated through
comparison with a method without incorporation of an
optimization technique by using the linear model and
the Lorenz-96 model (Lorenz, 1996). A summary and
conclusions are put forward in Section 4.

2 METHODOLOGY

2.1 Correlated perturbation
in augmented state-space model

A typical state-space model for a nonlinear system contain-
ing model parameters is described as

xn = f
(

xn−1
, 𝜃

n−1) + 𝛽n
,

yn = Hx
(

xn) + 𝜖n
, (1)

where xn is the state variable at time step n and yn is the
observation vector at time step n. f is the known possibly
nonlinear function that maps the state from time tn−1 to tn,
and Hx is the known nonlinear observation operator. 𝜃 is
the vector of model parameters, the true values of which
are unknown and possibly time-varying. 𝛽 is a random
model perturbation drawn from the model-error probabil-
ity density function (pdf) (0,Q

𝛽
), while the observation

error 𝜖 is drawn from the observation-error pdf  (0,R).
To estimate time-varying parameters sequentially, the state
vector is updated according to the following dynamical
system by augmenting parameters as artificial states:

(
xn

𝜃

n

)

=

(
f
(

xn−1
, 𝜃

n−1)

𝜃

n−1

)

+

(
𝛽

n

𝜂

n

)

. (2)

Here, 𝜂n is a random parameter perturbation drawn from
the pdf (0,Q

𝜂
), and we require that f is a differentiable

function with respect to the parameter. Then, the above
state updating function f can be approximately expressed
by a first-order Taylor series expansion at the previous
parameter 𝜃n−2:

f
(

xn−1
, 𝜃

n−1) ≃ f
(

xn−1
, 𝜃

n−2) +
𝜕f
𝜕𝜃

||||𝜃n−2

(
𝜃

n−1 − 𝜃n−2)
. (3)

Then, by using the time evolution model in the previ-
ous time step n − 1:

𝜃

n−1 = 𝜃n−2 + 𝜂n−1
, (4)

we can rewrite Equation 2 as

zn ≡

(
xn

𝜃

n−1

)

=

(
f
(

xn−1
, 𝜃

n−2)

𝜃

n−2

)

+
(
𝜕f
𝜕𝜃

|||n−2
𝜂

n−1 + 𝛽n
𝜂

n−1
)

≡ ̃f
(

zn−1) + �̃�n
, (5)

where we introduce the augmented vector zn =
[xnT

, 𝜃

n−1T]T, model ̃f , and perturbation �̃� representation.
We also rewrite the observation operator Hx in Equation 1
as follows:

yn = Hz
(

zn) + 𝜖n
. (6)

The augmented perturbation �̃� can drawn from the error
pdf (0, ̃Qn), which is expressed as

̃Qn =
⎛
⎜
⎜
⎝

cov
[
𝛽

′n
, 𝛽

′n] cov
[
𝛽

′n
, 𝜂

n−1]

(
cov

[
𝛽

′n
, 𝜂

n−1])T cov
[
𝜂

n−1
, 𝜂

n−1]
⎞
⎟
⎟
⎠
, (7)

where 𝛽′n = (𝜕f∕𝜕𝜃)𝜂n−1 + 𝛽n. Since model perturbation
𝛽 and parameter perturbation 𝜂 are independent of each
other and both have zero means, each matrix element in
Equation 7 can be calculated as follows:

cov
[
𝛽

′n
, 𝛽

′n] = E

[(
𝜕f
𝜕𝜃

𝜂

n−1 + 𝛽n
)(

𝜕f
𝜕𝜃

𝜂

n−1 + 𝛽n
)T
]

= E

[
𝜕f
𝜕𝜃

𝜂

n−1(
𝜂

n−1)T
(
𝜕f
𝜕𝜃

)T

+ 𝛽n(
𝛽

n)T
]

=
𝜕f
𝜕𝜃

Qn−1
𝜂

𝜕f
𝜕𝜃

T
+ Qn

𝛽

, (8)

cov
[
𝛽

′n
, 𝜂

n−1] = E
[(

𝜕f
𝜕𝜃

𝜂

n−1 + 𝛽n
)(
𝜂

n−1)T
]

= E
[
𝜕f
𝜕𝜃

𝜂

n−1(
𝜂

n−1)T
]

=
𝜕f
𝜕𝜃

Qn−1
𝜂
, (9)

cov
[
𝜂

n−1
, 𝜂

n−1] = E
[
𝜂

n−1(
𝜂

n−1)T
]

= Qn−1
𝜂
. (10)

Then, Equation 7 can be expressed as

̃Qn =
⎛
⎜
⎜
⎝

𝜕f
𝜕𝜃

Qn−1
𝜂

𝜕f
𝜕𝜃

T
+ Qn

𝛽

𝜕f
𝜕𝜃

Qn−1
𝜂(

𝜕f
𝜕𝜃

Qn−1
𝜂

)T
Qn−1
𝜂

⎞
⎟
⎟
⎠
. (11)
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Note that the Taylor expansion in Equation 3 is used up
to the first-order term, so the augmented perturbation �̃�

from ̃Q includes the linear impact of the parameters on the
model evolution over one time step.

2.2 State and parameter update
with IEWPF

In this section, we explain how to apply the IEWPF to the
update equation Equation 5 and how to avoid filter degen-
eracy. Considering a Markovian system with observational
errors that are independent from one time to another, the
prior pdf can be written as

p
(

zn) =
∫

p
(

zn|zn−1)p
(

zn−1) dzn−1
. (12)

Then, plugging Equation 12 into Bayes Theorem as a prior
pdf, the posterior pdf of the model state given observations
can be written as

p
(

zn|y1∶n) =
p(yn|zn)

p(yn) ∫
p
(

zn|zn−1)p
(

zn−1|y1∶n−1) dzn−1
.

(13)
Suppose we run a particle filter, and the particle weight

for the ensemble at the previous time step n − 1 is given by

p
(

zn−1|y1∶n−1) = 1
N

N∑

i=1
𝛿

(
zn−1 − zn−1

i
)
. (14)

Then plugging Equation 14 into Equation 13, we can
obtain

p
(

zn|y1∶n) = 1
N

N∑

i=1

p(yn|zn)p(zn|zn−1
i )

p(yn)
. (15)

Introducing the proposal density q(zn|Zn−1
, yn), which is

conditioned on all particles at time n − 1, which indicated
by the Zn−1, Equation 15 can be expressed as

p
(

zn|y1∶n) = 1
N

N∑

i=1

p(yn|zn)p(zn|zn−1
i )

p(yn)q(zn|Zn−1
, yn)

q(zn|Zn−1
, yn). (16)

The well-known problem of filter degeneracy means
the weight will concentrate on only some particles, and
most particles will have a negligible weight after a few
propagations. Snyder et al. (2015) described that the par-
ticle filter using the optimal proposal yields minimal
degeneracy and provides performance bounds. This could
be a serious obstacle to implementing the particle filter
when the number of states and observations increases,

that is, a high-dimensional system. Therefore, we use
the IEWPF (Zhu et al., 2016), which can avoid this filter
degeneracy problem. From Equation 14, Equation 16 can
be expressed as

p
(

zn|y1∶n) = 1
N

N∑

i=1
wi𝛿

(
zn−1 − zn−1

i
)
, (17)

where wi is the weight for particle i and is expressed as fol-
lows using the proposal density expressed in Equation 16:

wi =
p(yn|zn

i )
p(yn)

p(zn
i |z

n−1
i )

q(zn
i |Z

n−1
, yn)

. (18)

Instead of drawing directly from proposal density q, we
can draw a standard Gaussian distributed proposal density
q(𝜉), which is related by

q(𝜉) = q(zn|Zn−1
, yn)

‖‖‖‖
dz
d𝜉
‖‖‖‖
, (19)

where ‖dz∕d𝜉‖ denotes the absolute value of the determi-
nant of the Jacobian matrix, which expresses the following
transformation:

zn
i = 𝜁

n
i + 𝛼

1∕2
i P1∕2

𝜉

n
i , (20)

where 𝜁n
i express the mode of q(zn|Zn−1

, yn), P is a mea-
sure of the width of that pdf, and 𝛼i is a scalar factor.
Note that this expression is similar to the original IEWPF
(Zhu et al., 2016), but zn

i denotes the augmented vector
zn = [xnT

, 𝜃

n−1T]T. This means that transformed variable
𝜉 also has the dimension of the augmented vector. Then,
Equation 18 can be expressed as follows:

wi =
p(yn|zn

i )
p(yn)

p(zn
i |z

n−1
i )

q(𝜉)
‖‖‖‖

dz
d𝜉
‖‖‖‖
. (21)

In general, the 𝜁n
i can be obtained via a minimization of

− log q
(

zn|Zn−1
, yn), similar to for example, a 3DVar, and

also the equal weights can be obtained numerically. In
this article, we will follow Zhu et al. (2016) and assume
a linear observation operator, which will allow for an
analytical solution for the equal weights.

2.3 Linear observation model
and Gaussian error

Assuming the linear observation model ̃H and Gaussian
model and observation error as shown in Equations 5
and 6, 𝜁n

i in Equation 20 can be expressed as explained in
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Zhu et al. (2016):

𝜁

n
i = ̃f

(
zn−1

i
)
+ K

(
yn − ̃H ̃f

(
zn−1

i
))
, (22)

where
K = ̃Q ̃HT

(
̃H ̃Q ̃HT + R

)−1
(23)

and P in Equation 20 is

P =
(
̃Q−1 + ̃HTR−1

̃H
)−1

. (24)

Note that ̃Q is the model-error covariance matrix described
in Equation 11 and R is the observation-error covariance
matrix. Therefore, from Equations 20–22, equal-weight
particle zi sampled from posterior pdf Equation 16 can be
constructed using the scalar factor 𝛼i.

The factor 𝛼i needs to be determined so that the weight
of each particle i represented by Equation 21 is the same
target weight for all particles. Introducing wprev

i , which
denotes the weight from previous time steps, we can
express Equation 21 as

wi =
p(yn|zn

i )p(z
n
i |z

n−1
i )

q(𝜉)
‖‖‖‖

dz
d𝜉
‖‖‖‖
⋅ wprev

i . (25)

With the above Gaussian assumption, we can write

p(yn|zn)p(zn|zn−1
i )

∝ exp
[
−1

2
(

yn − ̃Hzn)TR−1(yn − ̃Hzn)

−1
2
(

zn − ̃f
(

zn−1
i

))T
̃Q−1(zn − ̃f

(
zn−1

i
))]

= exp
[
−1

2
(

zn − za
i
)TP−1(zn − za

i
)]

exp
(
−1

2
𝜙i

)
, (26)

where

𝜙i =
(

yn − ̃H ̃f
(

zn−1
i

))T
(
̃H ̃Q ̃HT + R

)−1(
yn − ̃H ̃f

(
zn−1

i
))
.

(27)
Taking the logarithm of Equation 25 leads to

− 2 log wi = −2 log wprev
i

+

[

−2 log

(
p(yn|zn

i )p(z
n
i |z

n−1
i )

q(𝜉)
‖‖‖‖

dz
d𝜉
‖‖‖‖

)]

.

(28)

Substituting Equations 26 and 20 in Equation 28, we find

− 2 log wi = −2 log wprev
i + 𝛼i𝜉

n
i

TP1∕2P−1P1∕2
𝜉

n
i

+ 𝜙i − 𝜉n
i

T
𝜉

n
i − 2 log

(‖‖‖‖
dz
d𝜉
‖‖‖‖

)
. (29)

Using Equation 20 and the simplified expression for the
Jacobian in Zhu et al. (2016), we can rewrite

− 2 log wi = −2 log wprev
i + (𝛼i − 1)𝜉n

i
T
𝜉

n
i

+ 𝜙i − 2 log

(

𝛼

Nx∕2
i

‖‖‖P1∕2‖‖‖

||||||
1 +

𝜕𝛼

1∕2
i

𝜕𝜉

n
i

𝜉

n
i

𝛼

1∕2
i

||||||

)

= −2 log wprev
i + (𝛼i − 1)𝜉n

i
T
𝜉

n
i + 𝜙i

− 2Nx log 𝛼1∕2
i d − 2 log

(‖‖‖P1∕2‖‖‖

)

− 2 log

(||||||
1 +

𝜕𝛼

1∕2
i

𝜕𝜉

n
i

𝜉

n
i

𝛼

1∕2
i

||||||

)

, (30)

where Nx is the dimension of the model state. Setting the
weights of all particles to the target weight is equivalent to
setting all log wi equal to the constant C, which leads to the
following equation for 𝛼i:

(𝛼i − 1)𝜉n
i

T
𝜉

n
i − 2Nx log 𝛼1∕2

i

− 2 log

(||||||
1 +

𝜕𝛼

1∕2
i

𝜕𝜉

n
i

𝜉

n
i

𝛼

1∕2
i

||||||

)

= C −
(
𝜙i − 2 log wprev

i

)
,

(31)

in which constant value 2 log
(‖‖P1∕2‖‖

)
is included in C.

Here, let ci denote the log-weight offsets for each particle i
from the target weight C as

ci = C −
(
𝜙i − 2 log wprev

i

)
. (32)

In practice, this ci can be determined using the values of 𝜙
for all particles as

ci = max
𝑗

{𝜙
𝑗
} − 𝜙i. (33)

Therefore, 𝛼i is obtained as a solution satisfying
Equation 31 with ci determined by Equation 33.

Further assuming that the factor 𝛼i depends on 𝜉n
i only

through gi = 𝜉n
i

T
𝜉

n
i , Equation 31 can be simplified to

exp
(
−
𝛼igi

2

)
(𝛼igi)Nx∕2−1‖‖‖‖

d(𝛼igi)
dgi

‖‖‖‖

= exp
(
−

gi

2

)
gNx∕2−1

i exp
(
−ci

2

)
(34)

(see Appendix in Zhu et al., 2016). For every particle
to reach the target weight, ci ≥ 0 should be satis-
fied, therefore 0 < exp (−ci∕2) ≤ 1 in Equation 34.
Furthermore, since the function of the left-hand
side exp (−𝛼gi∕2)(𝛼gi)Nx∕2−1 has an extremum at
𝛼i = (Nx − 2)∕gi, it is suggested that the solution 𝛼i
of Equation 34 allows two values. According to Zhu
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6 SATOH et al.

et al. (2016), Equation 34 can be integrated from N∕2 to
∞, then yields the following equation:

𝛤

(
Nx

2
,

𝛼igi

2

)
=
⎧
⎪
⎨
⎪
⎩

exp
(
− ci

2

)
𝛤

(
Nx
2
,

gi
2

)
if d(𝛼igi)

dgi
> 0,

exp
(

ci
2

)
𝛤

(
Nx
2
,

gi
2

)
if d(𝛼igi)

dgi
< 0,

(35)

where 𝛤 is the monotonically decreasing upper incom-
plete gamma function. Therefore the solution 𝛼i for every
particle i that satisfies Equation 35 is allowed both 𝛼 ≤ 1
and 𝛼 ≥ 1 theoretically. Although 𝛼 ≥ 1 solutions are
known to lead to systematic bias (Zhu et al., 2016), the bias
decreases when the state-space dimension Nx increases,
that is, the high-dimensional case. As another solution,
Skauvold et al. (2019) proposed the two-stage IEWPF that
can eliminate this bias.

In practice, the following should be considered when
generating the posterior distribution by calculating 𝛼i that
satisfies Equation 35. The first point is the computational
cost of finding 𝛼i numerically for each particle. To avoid
this calculation, Zhu et al. (2016) proposed an approxima-
tion under the limiting case of Nx →∞. Then, the solution
𝛼 can be expressed analytically using the Lambert W func-
tion (Corless et al., 1996), which has two branches: 𝛼 > 1,
which gives a large ensemble spread, and 𝛼 < 1, which
gives the opposite effect. The authors proposed adjusting
the ratio of sampling 𝛼i for each particle i from either
branch in order to bring the shape of the distribution closer
to the ideal one. The results of this 𝛼 dependence will be
shown later. The second point is the guarantee of conver-
gence to the posterior distribution. IEWPF can equalize
the weights of all particles, but the convergence of the filter
distribution to the posterior distribution was only con-
firmed experimentally by Zhu et al. (2016) and not shown
theoretically.

2.4 Parameter nudging with proposal
density

The effectiveness of the method proposed in the pre-
vious section, which augments parameters as artificial
states, depends on the cross-covariance between states
and parameters. To improve the accuracy and resilience
of time-varying parameters, we introduce an optimization
algorithm from machine learning into the parameter time
evolution model using the flexibility of the proposal den-
sity in particle filtering. According to Equation 11, the
model transition density is expressed as

p
(

zn|zn−1) =
(
̃f
(

zn−1)
,
̃Qn)

. (36)

The prior pdf expressed in Equation 12 is allowed to both
divide and multiply the model transition density by a pro-
posal transition density q, leading to

p
(

zn) =
∫

p
(

zn|zn−1)

q
(

zn|Zn−1
, yn

)q
(

zn|Zn−1
, yn)p

(
zn−1) dzn−1

.

(37)
Drawing from p

(
zn|zn−1) corresponds to using the origi-

nal model transition density Equation 36. Still, we could
instead draw from q

(
zn|Zn−1

, yn), which would correspond
to any other model transition that we choose. This allows
us to control the transition of both state and parameters by
choosing proposal density q.

Sequential observation data can be considered as sam-
ples for the stochastic gradient descent (SGD) algorithm
based on the similarity between sequential DA and online
learning or stochastic optimization, in that the data are
given sequentially. The ideas in stochastic optimization
have advanced in recent years in machine learning and
deep learning with large-scale data. The basic problem
structure classification and associated solutions are sum-
marized in Hannah (2015). The effectiveness of SGD
for large-scale learning problems, that is, cases with
large-scale data, is also described in Bottou (2010). The
optimization algorithm used in the proposed method is
described in the next section. Assume an objective func-
tion Ln

i (𝜃) and consider the problem of minimizing this
function, where the parameter 𝜃 minimizes Ln

i (𝜃). The
parameter 𝜃n can be updated by the following iteration:

𝜃

n ← 𝜃

n−1 − 𝜆gn
,

(
gn ∈ ∇Ln

i (𝜃)
)
, (38)

where 𝜆 is the step size, sometimes called the learning rate
in machine learning contexts. The function gn expresses
the update rule for the parameter.

Here, we consider introducing the above parameter
update analogy to the transition density modification. In
the next step of the last observation n, that is, n + 1,
let us assume that instead of original transition density
Equation 12, the proposal density q at time step n + 1 for
augmented state z can described as

q
(

zn+1
i |zn

i , y
n) =

(
̃f
(

zn
i
)
+

(
0

− 𝜆g
(
𝜃

n−1
i , yn)

)

,
̃Qn+1

)

≡ 

(
̃f
(

zn
i
)
+ g̃n

,
̃Qn+1

)
, (39)

where the augmented nudging term is denoted as g̃n.
Therefore, the step size 𝜆 and the function g(𝜃n−1

i , yn) have
the same role as Equation 38 and together express the
nudging term forcing estimated model parameters towards
true values, and yn is the last observed data vector. ̃Qn

is the same augmented model-error covariance matrix as
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SATOH et al. 7

described in Equation 11 with correlated perturbation.
Then updating of the augmented state vector after the
last observation step n is given as follows, instead of the
original updating expressed in Equation 5:

zn+1
i = ̃f

(
zn

i
)
+ �̂�n+1

i , (40)

where
p
(
�̂�

n+1) =
(

g̃n
,
̃Qn+1

)
. (41)

This corresponds to only the modification of aug-
mented perturbation �̂�

n+1, which shifts the mean value
of parameters. Note that sampling from this proposal
transition density instead of the original model is com-
pensated by an extra weight as described in Ades and Van
Leeuwen (2015):

p
(

zn+1
i |zn

i

)

q
(

zn+1
i |zn

i , yn
)

∝ exp
[
−1

2
(

zn+1
i − ̃f (zn

i )
)T
̃Q−1(zn+1

i − ̃f (zn
i )
)

+1
2
(

zn+1
i −

(
̃f (zn

i ) + g̃n))T
̃Q−1(zn+1

i −
(
̃f (zn

i ) + g̃n))
]

= exp
[
−1

2
(
�̂�

n+1
i
)T
̃Q−1

�̂�

n+1
i

+1
2
(
�̂�

n+1
i − g̃n)T

̃Q−1(
�̂�

n+1
i − g̃n)

]
. (42)

2.5 Adam-method-based parameter
nudging

As mentioned above, we introduced a nudging term for the
parameters by taking advantage of the flexibility of the pro-
posal density in particle filtering. One of the main points
in this article is that we can choose any term that forces the
parameters toward the true value. Therefore, our scheme
is combined with a well-known gradient descent optimiza-
tion algorithm that has evolved in recent years as deep
learning progresses (Alom et al., 2018). In general, a task in
machine learning and deep learning is often expressed as
the problem of finding parameters that minimize (or max-
imize) the objective function, and the key is how quickly
the optimal parameters can be found. Typical optimiza-
tion formulations and algorithms are summarized in Sun
et al. (2019).

Regarding gradient-based optimization algorithms,
Ruder (2016) showed a classification of algorithms and a
description of typical examples. Momentum-based algo-
rithms accumulate a decaying sum of the previous gra-
dients into a momentum vector and use that instead of
the true gradients. This method has the advantage of
accelerating optimization along dimensions where the

gradient remains relatively consistent and slowing it along
turbulent dimensions where the gradient is significantly
oscillating. Another approach is norm-based algorithms,
which divide a portion of the gradient by the L2 norm
of all previous gradients. This has the advantage of slow-
ing down along dimensions that have already changed
and accelerating along dimensions that have only changed
slightly. In our method, we use the adaptive moment esti-
mation (Adam) proposed by Kingma and Ba (2014), which
combines the above two approaches.

Our proposed formulation of the function g(𝜃n−1
i , yn)

for the parameter nudging term in Equation 39 is as fol-
lows. First, ̃f (zn−1

i ) can be regarded as the expected value
of zn

i given zn−1
i and is defined by

zn
i = E[zn

i |z
n−1
i ] = ̃f (zn−1

i ). (43)

Next, we chose the log-likelihood of p
(

yn|zn
i
)

as the afore-
mentioned objective function Ln

i in Equation 38 as follows:

Ln
i ≡ −2 log

[
p
(

yn|zn
i
)]
. (44)

Here, Equation 44 can be calculated from the likelihood
with respect to the observed value yn at observation step n
and ensemble member i, given zn

i , as follows:

p
(

yn|zn
i
)
∝ exp

[
−1

2
(

yn − ̃Hzn
i
)TR−1(yn − ̃Hzn

i
)]
. (45)

Then, we define the function g(𝜃n−1
i , yn) in Equation 39

by using the gradient of the objective function Ln
i as fol-

lows. Following Kingma and Ba (2014), we introduce the
moving averages of the gradient and the squared gradient,
and denote them as mn

i and vn
i , respectively. Their update

equations are expressed using the gradient of Ln
i as follows:

mn
i = 𝜇mmn−1

i + (1 − 𝜇m)∇𝜃Ln
i ,

vn
i = 𝜇vvn−1

i + (1 − 𝜇v)
(
∇
𝜃
Ln

i
)2
, (46)

where the hyperparameters 𝜇m and 𝜇v control the decay
rate of these moving averages. Note that the gradient∇

𝜃
Ln

i
requires computing the partial derivatives of the likeli-
hood with respect to the parameters in Equation 45 or an
approximation thereof. Since these moving averages are
initialized (as a vector of zeros), the moment estimates are
biased toward zero, especially during the initial time step
and especially when the decay rates are low (i.e., 𝜇m and
𝜇v are chosen to be close to 1). Therefore, mn

i and vn
i in

Equation 46 are modified as follows to cancel these biases:

m̂n
i =

mn
i

1 − 𝜇m
, v̂n

i =
vn

i

1 − 𝜇v
. (47)
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8 SATOH et al.

Finally, the function g(𝜃n−1
i , yn) expressed in Equation 39

is yielded as follows:

g(𝜃n−1
i , yn) =

m̂n
i√

v̂n
i + 𝛿

. (48)

Here, the factor
√

v̂n
i represents the L2 norm of the

past gradients via the vn−1
i term and current gradient in

Equation 46, and scales the gradient. Note that 𝛿 is a fac-
tor to avoid dividing by zero and set to 1.0 × 10−8 in the
following experiment.

The proposed method contains two procedures depen-
dent on the observation: (1) state and parameter update
by IEWPF and computation of likelihood gradient at the
observation step, and (2) parameter nudging with proposal
density between observations. The algorithm is summa-
rized as follows:

(1) State and parameter update at the observation step
• Sample initial particle for state x0

i and parameter
𝜃

0
i , i = 1, … ,N.

• For every model time step k:
– Perform forecast based on model transition and

error covariance Qk
𝛽

.
– Generate parameter perturbation from parameter

error covariance Qk
𝜂

.
– Compute parameter differentiation using model

and parameter perturbation, then update aug-
mented covariance matrix ̃Qk.

• When the model reaches the observation time t, for
each particle i:
– Compute 𝜙i for all particles by Equation 27, then

determine ci from Equation 33.
– Calculate 𝛼i that satisfies Equation 35 using the

analytical solution of the Lambert W function.
– Update the state and parameter using Equations 20

and 22.
– Normalize and update the weight.

• In preparation for the next forecast step:
– Compute likelihood Lt

i from observation yt and
observation-error covariance R by Equation 45,
then obtain likelihood gradient ∇

𝜃
Lt

i from
Equation 44.

– Compute parameter nudging term 𝜆g
(
𝜃

t−1
i , yt) from

Equation 48, by using hyperparameters 𝜇m, 𝜇v, and
step-size factor 𝜆.

(2) Parameter nudging at the forecast step
• The time step t + 1 in the next step after observation,

for each particle i:

– Generate parameter perturbation using the com-
puted parameter nudging term 𝜆g

(
𝜃

t−1
i , yt) from

Equation 41.
– Compute extra weight in Equation 42.
– Perform forecast using Equation 40.

3 NUMERICAL EXPERIMENTS

The effectiveness of the proposed method is demonstrated
through two synthetic test cases as follows. The first case
is the linear model with additive parameters, where all
model states are observed directly at every time step.
Although this article focuses on a nonlinear system, we
use a linear model to verify that the shape of the poste-
rior pdf is close to the true one. The second case is the
Lorenz-96 model (Lorenz, 1996) with parameterized forc-
ing, where only the model states are observed directly at
every fourth step.

3.1 Linear model with an unknown
parameter

In order to compare the estimates of the proposed method
with the analytically calculated true values, we use the fol-
lowing linear model as the time evolution expressed in
Equation 2:

(
xn

𝜃

n

)

=

(
Fx Fx𝜃

O I

)(
xn−1

𝜃

n−1

)

+

(
𝛽

n

𝜂

n

)

, (49)

where x ∈ RNx is the model state vector with dimension
Nx and 𝜃 ∈ RN

𝜃 is the parameter vector with dimen-
sion N

𝜃
. 𝛽 and 𝜂 are random perturbations drawn from

the model-error pdf  (0,Q
𝛽
) and parameter error pdf

 (0,Q
𝜂
), respectively. The matrix Fx ∈ RNx×Nx and

Fx𝜃 ∈ RNx×N
𝜃 represent the linear model. Here, we define

the matrices ̃F and ̃G as follows:

̃F =

(
Fx Fx𝜃

O I

)

,
̃G =

(
I Fx𝜃

O I

)

. (50)

Then, Equation 49 can be rewritten by using Equation 4
as follows:

(
xn

𝜃

n−1

)

= ̃F

(
xn−1

𝜃

n−2

)

+ ̃G

(
𝛽

n

𝜂

n−1

)

, (51)

When the initial prior pdf is Gaussian, the true poste-
rior pdf should also be Gaussian. Assuming that the
posterior pdf at time n − 1 is Gaussian with covariance
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SATOH et al. 9

matrix Pn−1|n−1, the predicted covariance matrix Pn|n−1 of
the prior pdf expressed in Equation 51 can be calculated
as follows:

Pn|n−1 = ̃FPn−1|n−1 ̃F
T + ̃G ̃Q ̃GT

, (52)

where

̃G ̃Q ̃GT =

(
Fx𝜃Q

𝜂
FT

x𝜃 + Q
𝛽

Fx𝜃Q
𝜂

(
Fx𝜃Q

𝜂

)T Q
𝜂

)

, (53)

and this term is equivalent to Equation 11 when using the
linear model ̃F defined in Equations 50 and 51.

In the following experiments, we choose the dimension
of the model state Nx = 1000 and the parameter N

𝜃
= 1, in

order to consider a simple high-dimensional system with
a parameter. Setting the model Fx = I, Fx𝜃 = 0.1, the time
evolution model described in Equation 51 and observation
model are expressed as

zn =

(
xn
𝑗

𝜃

n−1

)

=

(
xn−1
𝑗

+ 0.1 𝜃n−2

𝜃

n−2

)

+

(
𝛽

n + 0.1𝜂n−1

𝜂

n−1

)

,

yn = ̃Hzn + 𝜖n
, (54)

where index 𝑗 = 1, … ,Nx indicates the elements of the
model states x. Here, the observation model ̃H = (I 0),
assuming that all variables are observed, and 𝜖 is the obser-
vation error drawn from the observation-error pdf (0,R).
Since we assume a time-independent state transition
matrix ̃F, the covariance matrix satisfying the linear sys-
tem defined by Equation 54 converges to the steady-state
matrix P such that Pn|n−1 = Pn−1|n−2 ≡ P, and satisfies the
discrete-time Riccati equation (Wonham, 1968) as follows:

P = ̃FP ̃FT − ̃FP ̃HT
(
̃HP ̃HT + R

)−1
̃HP ̃FT + ̃G ̃Q ̃GT

. (55)

Therefore, the shape of the true posterior pdf of
Equation 54 can be obtained by solving Equation 55
numerically and compared with the distribution obtained
from the proposed IEWPF.

The procedure of the comparison using synthetic
data is as follows. Let us assume the initial ensem-
ble members z0

i are sampled from the background error
 (0,B). First, one member from the ensemble gener-
ated under the model-error covariance matrix Q and
the background-error covariance matrix B is used as the
“truth”. Observations are then created from this “truth”
and the observation error defined by covariance matrix
R. In the following experiments, the true value of the
parameter is 0, and the true model-error covariance matrix
Q is chosen as a diagonal matrix with the main diag-
onal value 0.04 for states and 0 for the parameter. The
background-error covariance matrix B is a diagonal matrix

with the main diagonal values of 1 for states and 0 for the
parameter. The observation-error matrix R is diagonal, and
the main diagonal value is set to 0.01.

Next, for the assimilation, we choose the same matrix
Q
𝛽
, B for states, and R as when the observation was gen-

erated. The matrix Q
𝜂

and B for parameters are set to be
the same as those of the states. The number of particles
is set to N = 20 to demonstrate the validity of the estima-
tion with few particles. Regarding observations, consider
the condition that all model state variables x are observed
at every step. Note that the step size 𝜆 in Equation 39 is
set to 0 to evaluate the parameter augmentation method
of IEWPF described in Section 2.2. In order to investi-
gate the dependence of the aforementioned 𝛼i on the
shape of the posterior pdf, we compare the variance of
pdfs estimated with the values sampled from the 𝛼i ≥ 1
branch at three sampling percentages: 0%, 50%, and 100%.
Note that 50% means sampling from both branches of
𝛼i ≥ 1 and 𝛼i ≤ 1, which is the closest to the true pdf
according to Zhu et al. (2016). Thus, 0% and 100% mean
sampling only from 𝛼i ≤ 1 branch and 𝛼i ≥ 1 branch,
respectively.

Figure 1 shows histograms of variance accumulated
from the 20th to 1000th steps for comparing the two sam-
pling cases of 𝛼 with the diagonal value of R = 0.01. The
variances of both (a) states Var(x) and (b) parameter Var(𝜃)
are averaged over the dimension, that is, Nx = 1000 and
N
𝜃
= 1 for the variables and parameter, respectively, and

the number of particles Np for each dimension, as follows:

Var(xn
𝑗

) = 1
Nx

Nx∑

𝑗=1

1
Np

Np∑

i=1

(
xn

i − xn
)2

𝑗

,

Var(𝜃n) = 1
Np

Np∑

i=1

(
𝜃

n
i − 𝜃n

)2
, (56)

where the index 𝑗 denote the elements of the states x, and
xn and 𝜃n are the ensemble mean. Note that the dimension
of the parameter 𝜃 is one. The true variances based on the
solution of Equation 55 are shown as “True”. From these
comparisons, both the states and parameter variances are
close to the “True” value when sampling 50% from the
𝛼i ≤ 1 branch. On the other hand, when sampling only
from the 𝛼 ≤ 1 branch and the 𝛼 ≥ 1 branch, we see that
the variance becomes smaller and larger with the same
trend as for Zhu et al. (2016), respectively.

Figure 2 compares the posterior pdf obtained in the
50% sampling case with the true pdf for the diagonal value
of R of 0.01. Since the ensemble size is too small compared
with the number of model dimensions, both of the esti-
mated pdfs are shown as the histogram accumulated over
the time evolution from 20th to 1000th steps for the state
and parameter, respectively. From Figure 2a,b, we see that
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10 SATOH et al.

F I G U R E 1 Histogram of cumulative variance comparing the
diagonal values of R = 0.01 for (a) states and (b) parameter,
respectively. Three sampling percentages from the 𝛼 ≤ 1 branch:
100%, 50%, and 0% are compared with the true variance (dashed
line). [Colour figure can be viewed at wileyonlinelibrary.com]

the obtained pdf of the state x1 and parameter 𝜃 is close to
the true pdf.

These results indicate that the method of extending
IEWPF to the proposed augmented state-space model is
valid, and the variance and shape of the posterior pdf for
the parameter are also close to those of true pdf under the
condition that the variance and shape of the posterior pdf
for the state are close to those of true pdf.

3.2 Lorenz-96 model
with parameterized forcing

The Lorenz 1996 model with parameterized forcing is
used as the time evolution expressed in Equation 1 to

F I G U R E 2 Posterior pdf represented by the particles using
the 50% sampling case compared with true pdf (full line) for (a)
state x1 of element one and (b) parameter 𝜃, respectively. [Colour
figure can be viewed at wileyonlinelibrary.com]

explore the validity of the proposed method in a nonlinear
high-dimensional system. The original Lorenz-96 model
(Lorenz, 1996) is the dynamical nonlinear model given by

d
dt

x
𝑗
= (x

𝑗+1 − x
𝑗−2)x𝑗−1 − x

𝑗
+ F

𝑗
, (57)

where index 𝑗 = 1, … ,N
𝑗

with cyclic indices, x
𝑗

is the
state variable of the model at position 𝑗, N

𝑗
is total dimen-

sion, and F
𝑗

is the forcing function parameterized by

F
𝑗
(𝜃0, 𝜃1, 𝜃2) = c0𝜃0 + c1𝜃1 sin

(
2𝜋

c2𝜃2
𝑗

)
, (58)

for which c0, c1, c2 are true values, and 𝜃0, 𝜃1, 𝜃2 are their
scale parameters that have to be estimated. For the eval-
uation of nonlinearity, this value of F

𝑗
, which is typically

chosen to be 8 or more to generate chaotic behavior, is set
as follows. The values of c0, c1 are set to 8, 4 respectively,
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SATOH et al. 11

and c2 is set to the same value as the dimension of the
model state: N

𝑗
. Then, the scale parameters 𝜃0, 𝜃1, 𝜃2 are

estimated, and their true values are 1 each. By introducing
this parameterized forcing term F

𝑗
(𝜃0, 𝜃1, 𝜃2), each state

variable x
𝑗

contains a parameter-dependent chaotic behav-
ior. This model is numerically solved by the fourth-order
Runge–Kutta scheme with a time step of 𝛥t = 0.05.

The procedure for the following experiment is the same
as for the previous linear model. The true model-error
covariance matrix Q

𝛽
for states is chosen as a tridiag-

onal matrix, the main diagonal value being 0.10 and
both sub- and superdiagonal values being 0.025. The
background-error covariance matrix B is a diagonal matrix
with the main diagonal value 1 for states. In the experi-
ments below, the true observation-error matrix R is diag-
onal, with main diagonal values of 0.02. For the assim-
ilation, we choose the same matrix Q

𝛽
,B for states and

R as when the observation was generated, that is, the
true one. The matrices Q

𝜂
,B for parameters are diagonal

matrices with main values 5.0 × 10−6
, 0.001, respectively.

The step size 𝜆 for the Adam method is set to 0.001. The
number of particles is set to N = 20 to demonstrate the
validity of the estimation with few particles. To consider
high-dimensional cases, N

𝑗
is chosen as 1000, the same as

in the linear-model experiment.
In contrast to the previous evaluation using the linear

model and a static parameter, this experiment investi-
gates the ability of the proposed methods for estimating
time-varying (i.e., dynamic) parameters in nonlinear
high-dimensional systems. Regarding observations, con-
sider the condition that all of the model states are observed
every fourth step (i.e., the assimilation interval is 4).
Moreover, this 1000-dimensional evaluation with only 20
particles can validate its feasibility to apply to realistic geo-
physical, climate, and other problems. First, we compare
the methods outlined in Section 2 in terms of the RMSE
and the ensemble spread (Spread). Next, we compare the
impact of the parameter error covariance Q

𝜂
and the step

size factor 𝜆 on the ensemble. The performance indicator
of parameter estimation is not only the RMSE but also
the ratio of the RMSE to the spread in the ensemble, and
it is preferable that their ratio becomes one for Gaussian
variables. Note that, for non-Gaussian variables, this is
only true for the forecast ensemble (Fortin et al., 2014).

3.2.1 Comparison of the methods

Figure 3 compares the true values and particle trajecto-
ries in the three methods mentioned above for the state
x1 and the three scale parameters 𝜃0, 𝜃1, 𝜃2. All variables
are observed every four steps, setting the main diago-
nal value of matrix R to 0.02. Each true parameter is

increased by 30% at the 200th step, as the dashed red
line shows. The figure shows the difference in tracking
performance of the three methods for abrupt parameter
changes and the advantage of the proposed method. The
method shown in Figure 3a MH1 is the conventional
augmented method expressed as Equation 2. There are
some steps where the trajectories of each ensemble devi-
ate from the true trajectory in the state, and the ensemble
spreads out greatly and cannot track abrupt changes in
all three parameters. Then, both of the methods shown
in Figure 3b MH2 and Figure 3c MH3 are based on the
proposed state-space model expressed as Equation 5 with
the covariance matrix ̃Q. The method shown in Figure 3c
MH3 further applies the Adam-method-based nudging
described in Section 2.5 with step-size factor 𝜆 = 0.001.
The results for the state show that the trajectories of each
ensemble are close to the true trajectory. Although both
methods tend to approach the true values for 𝜃0 and 𝜃2,
the Adam-method-based nudging is more accurate and
responsive to abrupt changes, especially for 𝜃1.

Figure 4a,b shows the comparisons of time series
RMSE for the states and parameters, respectively. The
horizontal axis indicates the time steps in the 100th–600th
steps, where the difference between methods is significant
in Figure 3. For the state, since the assimilation interval is
four, each value represents the average of all elements (i.e.,
1000) for the third step, which has the largest prediction
error after filtering, while for the parameter, the average
values of all elements (i.e., 3) for all steps are shown. The
results show that the estimation error of the parameters
after the parameter abrupt change (200th step) increases
the error in the forecast step of the model states, and the
estimation error of the proposed method (MH3) decreases
the fastest for both states and parameters.

Figure 5a,b shows the RMSE and spread comparisons
for the states and parameters, respectively. Each box plot
shows the time-averaged RMSE and spread at the fore-
cast and filtering steps in the 100th–1500th steps shown
in Figure 3, including the abrupt change (at 200th steps).
Therefore, the interquartile range (IQR) of the box plot
indicates the dispersion across the dimensions of the
model states (1000) and parameters (3). Note that outliers
are not plotted, to exclude estimation errors immediately
after abrupt changes in the 200th step. From the result for
the states shown in Figure 5a, the proposed methods (i.e.,
MH2 and MH3) have smaller RMSE values and dispersion
than the conventional methods (i.e., MH1), especially in
the forecast step. The result for the parameters shown in
Figure 5b clearly shows that both the RMSE values and
dispersion of MH3 (i.e., with nudging) are smaller than
the others, and the spread is also smaller. The fact that
the RMSE dispersion of MH3 is smaller than that of MH2
means that the difference in RMSE in the three parameters
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12 SATOH et al.

is small. Thus, the proposed nudging method reduces dif-
ferences in estimation accuracy for each parameter, which
is the effectiveness of combining IEWPF with Adam.

3.2.2 Dependence of parameter error
covariance and step-size factor

In the following, we investigate the impact of the param-
eter error covariance Q

𝜂
and the step-size factor 𝜆

on estimation accuracy (RMSE) and ensemble spread
(spread). Figure 6 shows the true values and the particle
trajectories of the scale parameter 𝜃0 under the combi-
nation of different values of Q

𝜂
and 𝜆, respectively. Note

that Q
𝜂

is chosen as a diagonal matrix and we denote it
as Q

𝜂
= 𝜎2

𝜂

I. The graph shown in Figure 6 as exp2 is the
reference condition with 𝜎2

𝜂

= 5.0 × 10−6, 𝜆 = 0.001, and is
the same graph shown for scale parameter 𝜃0 in Figure 3c.
The other graphs exp1, exp3, and exp4 in Figure 6 show
the cases where 𝜎2

𝜂

is 1.0 × 10−6, 1.0 × 10−5, and 5.0 × 10−5,
respectively, under the same value of 𝜆 = 0.001. These
graphs show that the larger the parameter covariance, the

larger the ensemble spread and the less overshoot after
the parameter abrupt change.

Next, we quantitatively evaluate the impact of the
parameter error covariance Q

𝜂
on the ensemble. Figure 7

shows the dependence of the parameter error covariance
Q
𝜂

on RMSE and spread for (a) states and (b) parame-
ters, respectively. Each box plot shows the time-averaged
RMSE and spread at the forecast and filtering steps in
the 100th–1500th steps. The forecast RMSE and spread
include three cycles of forecast steps, since the filtering
interval is four. The four values of 𝜎2

𝜂

shown on the hori-
zontal axis are for exp1, exp2, exp3, and exp4 in Figure 6.
Note that outliers are not plotted to exclude estimation
errors immediately after abrupt changes in the 200th step.
For the states, we can see from Figure 7a that neither
the value of RMSE nor the value of spread depends on
the diagonal value of the parameter error covariance Q

𝜂
.

In addition, the values of forecast RMSE and spread are
close, that is, their ratio is close to one. On the other hand,
for the parameters, Figure 7b shows that as the diagonal
values 𝜎2

𝜂

increase, the values of spread also increase, and

F I G U R E 3 Comparison of estimated state and parameter trajectories between (a) conventional augmented method (MH1), (b)
without nudging: 𝜆 = 0 (MH2), and (c) with nudging: 𝜆 = 0.001 (MH3). The solid lines show each of the 20 ensemble members, and the
dashed lines show the true parameter value. Only the 1350–1500th steps are shown for the state, and each true parameter is increased by 30%
at the 200th step. [Colour figure can be viewed at wileyonlinelibrary.com]
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SATOH et al. 13

F I G U R E 4 Comparison of time series RMSE after parameter
abrupt change (200th step) between augmented method (MH1),
without nudging: 𝜆 = 0 (MH2) and with nudging: 𝜆 = 0.001 (MH3)
as per Figure 3. The third step after the filtering for the (a) state and
all steps for the (b) parameter are shown. Each value is averaged
over all elements. [Colour figure can be viewed at
wileyonlinelibrary.com]

the values of RMSE decrease. Especially in the case of
𝜎

2
𝜂

= 5.0 × 10−5, the values of forecast RMSE and spread
are close, that is, their ratio is close to one.

Figure 8 shows the true values and the particle tra-
jectories, as in Figure 6. The graph of exp2 is the same
as in Figure 6 exp2 of the reference condition with
𝜎

2
𝜂

= 5.0 × 10−6, 𝜆 = 0.001. The exp5, exp6, and exp7 in
Figure 8 show the cases where 𝜆 is 0.0005, 0.002, and 0.004,
respectively, under the same value of 𝜎2

𝜂

= 5.0 × 10−6.
These graphs show that the larger the step-size factor, the
faster the value approaches the true value after the abrupt
change, but the more likely it is to overshoot.

Figure 9 shows the dependence of the step-size factor
𝜆 on RMSE and spread for (a) states and (b) parameters,
respectively. Each box plot shows the time-averaged RMSE
and spread at the forecast and filtering steps during the
100th–1500th steps, and the forecast RMSE and spread
include three cycles of forecast steps, as in Figure 7. The
four values of 𝜆 shown on the horizontal axis are for exp5,
exp2, exp6, and exp7 in Figure 8. Note that outliers are
not plotted as in Figure 7. Similarly to the trend shown in
Figure 7, there is almost no dependence of the step-size fac-
tor 𝜆 on the RMSE and spread for states. For parameters,

F I G U R E 5 Box plot showing the comparisons of RMSE and
spread for forecast and filtered ensembles between augmented
method (MH1), without nudging: 𝜆 = 0 (MH2) and with nudging:
𝜆 = 0.001 (MH3) as per Figure 3. Each IQR indicates the dispersion
of the (a) state and (b) parameter elements averaged over the
forecast and filtering steps in 100–1500, respectively. Outliers are
not plotted. [Colour figure can be viewed at wileyonlinelibrary.com]

the spread does not increase even as the step-size factor 𝜆
increases, but the RMSE decreases, that is, the ratio of the
forecast RMSE to spread approaches one.

3.2.3 Dependence of observation error
and number of observations

In order to evaluate the dependence of the observation
error and number of observations, we compare the large
step-size condition: 𝜆 = 0.004 (exp7) with two additional
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14 SATOH et al.

F I G U R E 6 Comparison of estimated parameter trajectories between different values of 𝜎2
𝜂

: 1.0 × 10−6 (exp1), 5.0 × 10−6 (exp2),
1.0 × 10−5 (exp3), and 5.0 × 10−5 (exp4) under the same value of 𝜆 = 0.001. The solid lines show each of the 20 ensemble members, and the
dashed lines show the true parameter value. Each true parameter is increased by 30% at the 200th step. [Colour figure can be viewed at
wileyonlinelibrary.com]

F I G U R E 7 Box plot showing the comparison of RMSE and
spread for each of the forecast and filtered ensembles between
different values of 𝜎2

𝜂

= 1.0 × 10−6
, 5.0 × 10−6

, 1.0 × 10−5, and
5.0 × 10−5 as per Figure 6. Each IQR indicates the dispersion of the
(a) state and (b) parameter elements averaged over the forecast and
filtering steps in 100–1500, respectively. Outliers are not plotted.
[Colour figure can be viewed at wileyonlinelibrary.com]

experiments (exp8 and exp9). The first (exp8) is the case
where the main diagonal value of the matrix R is large,
and in the following, the value is set to 0.08. Note that this
experiment (exp8) uses observation data generated at R =
0.08. Hence, R for data generation and assimilation are the
same value. The second (exp9) is when the state is observed
at every other grid point, so that Hxxn =

(
xn

1 , x
n
3 , …

)T. In
both additional experiments, the conditions of the step size
and the diagonal value of the parameter error covariance
are the same as for exp7, that is, 𝜆 = 0.004, 𝜎2

𝜂

= 5.0 × 10−6.
Figure 10 shows a comparison of RMSE and spread

for different observation conditions for (a) state and (b)
parameter. The description of the box plot is the same as
in Figure 9. Figure 10 exp7 shows the results of the refer-
ence condition, that is, R = 0.02, and all model states are
observed. From the comparison of the state in Figure 10a
exp7 and exp8, the change in R from 0.02–0.08 increases
both RMSE and spread, but spread is somewhat more pro-
nounced. For the parameter in Figure 10b, RMSE values
and dispersion tend to increase compared with spread.
From comparison of the state in Figure 10a exp7 and exp9,
because the number of observed variables was reduced to
half, both RMSE and spread are increasing except for the
filtering value of the observed variable. As for the param-
eters, both RMSE and spread show a small increase in
median values, but an increase in dispersion. The results
indicate that increasing observation error and decreas-
ing observation density increase differences in estima-
tion accuracy between parameters. In other words, the
decrease in observed information has reduced the estima-
tion accuracy of parameters with little impact (i.e., low
sensitivity) on the model state. This could potentially be
mitigated by adjusting the step size and the parameter
error covariance.

4 CONCLUSION

This article proposed a resilient and efficient state and
time-varying parameter estimation method for nonlinear
high-dimensional systems through a sequential DA
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SATOH et al. 15

F I G U R E 8 Comparison of estimated parameter trajectories between different values of 𝜆: 0.0005 (exp5), 0.001 (exp2), 0.002 (exp6),
and 0.004 (exp7) under the same value of 𝜎2

𝜂

= 5.0 × 10−6. The solid lines show each of the 20 ensemble members, and the dashed lines show
the true parameter value. Each true parameter is increased by 30% at the 200th step. [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 9 Box plot showing the comparison of RMSE and
spread for each of the forecast and filtered ensembles between
different values of 𝜆 = 0.0005, 0.001, 0.002, and 0.004 as per
Figure 8. Each IQR indicates the dispersion of the (a) state and (b)
parameter elements averaged over the forecast and filtering steps in
100–1500, respectively. Outliers are not plotted. [Colour figure can
be viewed at wileyonlinelibrary.com]

F I G U R E 10 Box plot showing the comparisons of RMSE and
spread for forecast and filtered ensembles between the large
step-size condition (exp7), large observation error: R = 0.08 (exp8),
and partially observed (exp9). Each IQR indicates the dispersion of
the (a) state and (b) parameter elements averaged over the forecast
and filtering steps in 100–1500, respectively. Outliers are not
plotted. “Ob” and “Uo” represent observed and unobserved states.
[Colour figure can be viewed at wileyonlinelibrary.com]
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16 SATOH et al.

process. First, we introduced an extension of IEWPF
to an augmented state-space model with a correlated
covariance matrix. We then proposed the IEWPF-based
method that incorporates the nudging technique inspired
by optimization algorithms in machine learning into the
parameter time evolution model by using the flexibility of
the proposal density in particle filtering.

The performance of the method is examined in the
1000-dimensional linear model and nonlinear Lorenz-96
model. Experiments using the linear model with the static
parameter indicate that the impact of the scalar factor 𝛼
on the variance of the parameter is similar to that on the
variance of the state. Numerically, under the condition
that the variance and shape of the posterior pdf for the
states are close to the true ones, those for the parameter
are also close to the true ones.

The experimental results of the nonlinear Lorenz-96
model with the time-varying parameters show the follow-
ing points. First, the proposed state augmentation method
successfully estimates states and parameters simultane-
ously, even when the number of ensemble members is
much smaller than the model dimension. This result indi-
cates that filter degeneracy is avoided when extending to
an augmented state-space model. Second, the proposed
parameter nudging method inspired by optimization
algorithms accelerates the tracking for abrupt parameter
changes and reduces the difference in estimation accuracy
for each parameter. This result suggests the effectiveness
of combining IEWPF with Adam, one of the optimiza-
tion algorithms. Thirdly, from evaluating the impact of
the parameter error covariance and the step-size factor
on the time-averaged RMSE and the ensemble spread
(spread), the former increases the spread and decreases
the RMSE, while the latter decreases the RMSE. Properly
determining these values so that the ratio of the RMSE
to the spread approaches one will allow for good ensem-
ble generation. However, its systematic method will be
a subject of future research. Finally, from evaluating the
dependence of the observation error and number of obser-
vations, the decrease in observed information has reduced
the estimation accuracy of parameters with little impact
(i.e., low sensitivity) on the model state. This could poten-
tially be mitigated by adjusting the step-size factor and the
parameter error covariance. Alternatively, it may be ben-
eficial to narrow the parameters to be estimated to those
with high sensitivity through a preliminary sensitivity
analysis.

In the numerical experiments in this article, the
Lorenz-96 model with parameterized forcing was used
mainly to evaluate the nonlinearity of time evolution of
the model states, but further investigation of the nonlin-
earity of the parameters is needed. Adam optimization
is a first-order gradient-based method, and it is widely

used to learn the weights in deep neural networks, that is,
nonlinear functions. Thus, our Adam-based nudging term
can work theoretically in nonlinear problems. However,
even for nonlinear convex problems, there are conditions
and limits to convergence, and new methods have been
proposed (Reddi et al., 2018). Furthermore, convergence
for nonconvex problems is still an open question, though
Chen et al. (2019) developed an analysis framework and
a set of sufficient conditions that guarantee convergence.
Therefore, the applicability of the proposed method to var-
ious nonlinear problems in data assimilation needs to be
investigated and is a topic for future research.

In this article, we applied the proposed online param-
eter estimation scheme to IEWPF as an example of a PF
that can avoid filter degeneracy. The method is shown
to be capable of resilient and efficient parameter esti-
mation for time-varying parameters. The results lead
to the conjecture that the proposed method is applica-
ble to realistic geophysical, climate, and other problems.
Since several approaches have been proposed to avoid
filter degeneracy (e.g., Skauvold et al., 2019), the evalu-
ation of another combination will be a subject of future
research.
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