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Stochastic thermodynamics and fluctuations in heat released by magnetic
nanoparticles in response to time-varying fields

Patrick Ilg
School of Mathematical, Physical, and Computational Sciences,
University of Reading, Reading, RG6 6AX, United Kingdom

(Dated: April 2, 2024)

Time-varying external magnetic fields can be used to manipulate the dynamics of magnetic
nanoparticles. When suspended in viscous media, external fields not only modify the internal Néel
relaxation dynamics within the magnetic nanoparticles but also the Brownian particle rotation. For
the case of oscillating magnetic fields, Brownian and Néel processes lead to magnetic losses that
are dissipated as heat to the neighborhood of the nanoparticle. The mean value of heat dissipated
has been studied intensively in recent years, not least because of promising biomedical applications
such as magnetic fluid hyperthermia. Here, we use the framework of stochastic thermodynamics to
study fluctuations in the dissipated heat. We find that the dynamics of magnetic nanoparticles as
modelled by a mesoscopic model obeys the detailed fluctuation theorem in terms of the total entropy
production within numerical accuracy. In addition, we observe that the total entropy production
is dominated by the dissipated heat and that fluctuations of dissipated heat are rather strong with
the standard deviation being of the same order as the mean value. We also find that the probability
of observing negative values of dissipated heat to be rather large for typical fields strengths used in
magnetic fluid hyperthermia applications.

I. INTRODUCTION

Colloidal magnetic nanoparticles (MNPs) provide a
fascinating model system for condensed matter physics
and statistical mechanics, where field-induced nonequi-
librium dynamics can conveniently be studied [1]. The
strong response of MNPs to external magnetic fields also
opens up a broad range of applications in smart materi-
als, as well as in recording media, efficient refrigeration
and medicine [2–5]. For many of these applications, the
use of time-varying magnetic fields is of critical impor-
tance. Therefore, this topic has been studied intensively
in recent years, often with a particular view on several
emerging biomedical applications [6].

One prominent example of biomedical applications of
MNPs is Magnetic Fluid Hyperthermia (MFH) [7–9].
Very recently, further developments of MFH have been
investigated to stimulate immune response and in the
area of controlled drug release [10, 11]. In MFH, mag-
netic losses are induced inside MNPs due to externally
applied oscillating magnetic fields. These magnetic losses
are then released as heat which increases the local tem-
perature near the MNP [12].

Many recent studies have investigated the influence of
particle and magnetic field parameters on the work done
and heat released by MNPs subject to oscillating mag-
netic fields [13–15]. Magnetic losses in MNPs result from
two main modes of relaxation, known as internal or Néel
relaxation and Brownian particle rotation, each respond-
ing differently to magnetic fields [16, 17]. With an eye
on MFH applications, a main goal thereby is to find con-
ditions that maximize magnetic losses and heat released
[18, 19]. Corresponding theoretical and simulation works
have helped to understand, interpret and complement ex-
perimental results [20–28]. These studies employed dif-
ferent model systems, focusing on Brownian or Néel re-

laxation or both simultaneously. Some works considered
interacting MNPs and the role of structure formation,
others focus on individual, non-interacting MNPs.

We note that the above mentioned theoretical and sim-
ulation works have all focused exclusively on the mean
values of the work done and heat dissipated by MNPs in
time-dependent magnetic fields. Knowledge about vari-
ations around these mean values, however, is not only of
great theoretical interest but also relevant for MFH ap-
plications. Recent developments in nonequilbrium sta-
tistical physics and stochastic thermodynamics allow us
to study such fluctuations in work and heat, even pro-
viding exact results in the form of detailed and integral
fluctuation theorems that hold under rather general con-
ditions [29–31]. A well-known consequence of fluctuation
theorems is the fact that individual trajectories can cor-
respond to positive or negative values of entropy produc-
tion, with the second law of thermodynamics emerging
in the macroscopic limit. Driven colloidal particles have
been used as paradigmatic model systems to illustrate
these fluctuation theorems [31, 32] and more recently to
test a generalized differential fluctuation theorem [33]. In
this context, also charged particles in magnetic fields [34]
and periodically driven systems [35] have been studied
theoretically. While it is well-established that thermal
fluctuations have pronounced effects on MNPs and the
resulting magnetization dynamics [36], to the best of our
knowledge, the corresponding fluctuations in work and
heat have not been addressed in detail so far.

Here, we use a mesoscopic model [37] to capture
thermal fluctuations in MNP dynamics, including both,
Brownian and Néel relaxation mechanisms. We use
stochastic simulations to numerically solve the model
equations. From a large number of simulated trajecto-
ries, we study fluctuations in the work done and heat dis-
sipated by MNPs that are subject to oscillating magnetic
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fields. Besides verifying the detailed fluctuation theorem
for the total entropy production for the present case, we
also study the variance and skewness of the heat distribu-
tion, deviations from Crooks relation, and evaluate the
probability of observing negative values of heat dissipa-
tion, i.e. where heat is absorbed by the MNP rather than
dissipated.

The paper is organized as follows. We start with a brief
review of stochastic thermodynamics and its application
to field-dependent dynamics of MNPs in Sec. II. In Sec.
III, we provide the stochastic formulation of the model
equations used in this study. The corresponding macro-
scopic and stochastic entropy production is discussed in
Sec. IV. Results for the statistics of dissipated heat of
MNPs in oscillating magnetic fields are presented in Sec.
V and some conclusions are offered in Sec. VI.

II. STOCHASTIC THERMODYNAMICS OF
MAGNETIC NANOPARTICLES

A. Work and heat related to a single nanoparticle

Consider a MNP with magnetic moment µu, where µ
denotes the magnitude and u the orientation defined by a
three-dimensional unit vector. In the presence of a time-
dependent external magnetic field H(t), the MNP gains
the Zeeman potential energy

Φ(u; t) = −µ0µu ·H(t), (1)

where µ0 is the vacuum permeability [1, 38–40]. We here
consider MNPs with magnetic core small enough so that
the magnitude µ of the magnetic moment remains con-
stant. In general, an additional term needs to be added
to Eq. (1) to account for the anisotropy energy associated
with the misalignment of the magnetic moment with the
material’s easy axis. Here, we focus on magnetically hard
MNPs where the magnetic moment can be considered
well aligned with the easy axis of the magnetic material
[39, 40].

Colloidal systems such as MNPs are suspended in a
viscous medium that act as a heat bath. Within stochas-
tic thermodynamics, a single colloidal particle driven by
external fields can be viewed as a mesoscopic nonequi-
librium system to which increments of applied work δŴ
and dissipated heat δQ̂ can be associated [31, 46]. Due
to random thermal motion of the colloid, the quantities
δŴ and δQ̂ show strong fluctuations. The usual macro-
scopic thermodynamic increments of applied work δW
and dissipated hear δQ are obtained from suitable en-
semble averages of these quantities. Let us start with
defining the incremental work δŴ done by the external
magnetic field to a single MNP. By changing the exter-
nal magnetic field H, an amount of work is done to the
system that is given by [31]

δŴ =
∂Φ

∂t
dt = −µ0µu · Ḣdt, (2)

where the second equality applies for the particular case
of the Zeeman energy (1). Next, stochastic thermody-
namics identifies dΦ with the change in internal energy
and uses the analogue to the first law of thermodynam-
ics to define the corresponding heat dissipated into the
medium by [31]

δQ̂ = δŴ − dΦ = µ0µH · du. (3)

From Eqs. (2) and (3), the work done by the external
field and the dissipated heat over the time interval [ti, tf ]
is given by

Ŵ [ut] = −µ0µ

∫ tf

ti

ut · Ḣ(t)dt, (4)

Q̂[ut] = µ0µ

∫ tf

ti

H(t) · dut, (5)

respectively. In thermodynamics, it is well known that
work and heat are not state variables and therefore de-
pend on the particular path. Here, using stochastic ther-
modynamics, the path corresponds to a particular trajec-
tory of the orientation of the MNP and this dependence
is made explicit in Eqs. (4) and (5). For convenience

of notation, in the following we will write Ŵ instead of
Ŵ [ut] and Q̂ instead of Q̂[ut].
For the special case of oscillating magnetic fields that

we consider in this study,

H(t) = H sin(ωt), (6)

and after initial transients, the potential energy (1) is
periodic. In this case, we conclude from Eq. (1) that
the change of potential energy over one period is zero,
∆Φ = 0. Therefore the dissipated heat over one period
equals the amount of work done over the same period,
Q̂ω = Ŵω. Thus

Q̂ω = µ0µ

∮
H(t) · dut = −µ0µ

∮
ut · dH(t). (7)

The identity of stochastic work and heat over one cycle
is a direct consequence of the definition (3).

B. Connection with macroscopic thermodynamics

For the interpretation of stochastic thermodynamics
it is important to note that the MNP is considered as
a magneto-mechanical system as well as a thermal sys-
tem that absorbs energy, while the magnetic field H is
an external system, directly acting onto the MNP but
without any thermal fluctuations. In this setting, con-
sistency with macroscopic thermodynamics is ensured if
the characteristic time scale of the solvent τsol is much
smaller than timescales of the MNP dynamics and mag-
netic field variations [41]. While typical time scales of
non-magnetic colloidal particles are indeed much larger
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than τsol [42], the situation is less clear for the inter-
nal magnetization dynamics within a MNP. Therefore,
we here employ a mesoscopic model which ensures that
not only the viscous but also the internal magnetization
relaxation times are much larger than τsol [37]. In ad-
dition, frequencies of the magnetic field will be chosen
low enough so that the associated time scale is also much
larger than τsol.

To make contact with macroscopic thermodynamics,
we define the macroscopic magnetization as the mean
magnetic moment per unit volume, M = nµ⟨u⟩, where
n = N/V is the number density of N MNPs in a vol-
ume V and angular brackets denote ensemble averages
[36, 40]. The macroscopic potential energy of a system
of N MNPs in a volume V is given by U = −µ0VM·H =
N⟨Φ⟩. Taking ensemble averages of Eq. (2) and multi-
plying with the number N of MNPs in a given volume
we obtain

δW = N⟨δŴ ⟩ = −µ0m · dH, (8)

where m = VM is the ensemble-averaged total magnetic
moment in a volume V . Similarly, the mean heat dissi-
pated into the medium is given by

δQ = N⟨δQ̂⟩ = µ0H · dm, (9)

so that the change in the macroscopic internal energy is
given by dE = δW −δQ. From Eq. (8), we conclude that
the mean work done per unit volume over one cycle is
given by

∆U/V = −µ0

∮
M · dH(t) (10)

which agrees with the commonly used expression [12].
We also note that Eq. (8) agrees with the expression
used in Ref. [43]. There, Eq. (9) was given as an ’alter-
native form’ for δW . Stochastic thermodynamics does
not support such an interpretation. For oscillating mag-
netic fields, the amount of heat dissipated and work done
over one oscillation period are identical. In this context
is worth to point out a common confusion identified by
Callen in that U = N⟨Φ⟩ represents the change in en-
ergy when the material system is introduced and does
not include the vacuum contribution [44].

C. Fluctuation theorem for oscillating magnetic
fields

Arguably some of the greatest achievements in
nonequilibrium statistical mechanics over the past
decades have been the discovery of fluctuation theorems
[29]. These theorems provide exact relations between
changes of work, heat or entropy along forward and back-
ward trajectories when the system is subject to time-
dependent forcings. Here, we are particularly interested
in systems subject to time-periodic and symmetric forc-
ings which is realized by oscillating magnetic fields (6).

For this special case, the time-reversed dynamics coin-
cides with the forward dynamics and the detailed (or
transient) fluctuation theorem simplifies to [30, 31, 45]

p(−∆Ŝtot)

p(∆Ŝtot)
= exp [−∆Ŝtot/kB], (11)

where p(∆Ŝtot) denotes the probability density of observ-

ing the value ∆Ŝtot of the total entropy production over
one cycle when the system has settled into a periodic
steady state and kB Boltzmann’s constant. From the de-
tailed fluctuation theorem (11), one readily derives the
integral fluctuation theorem [31]

⟨exp [−∆Ŝtot/kB]⟩ = 1. (12)

It is interesting to note that Eq. (12) indeed holds more
generally for arbitrary time-dependent fields and lengths
of the process [31, 46].

The total entropy change ∆Ŝtot is composed of the en-
tropy change of the system and the surrounding medium,
∆Ŝtot = ∆Ŝ + ∆Ŝmed. We can define ∆Ŝmed = Q̂ω/T

with Q̂ω the heat dissipated into the medium over one
period, as defined in Eq. (7) and T the temperature of

the surrounding medium. If ∆Ŝ is negligible (on a loga-

rithmic scale) compared to ∆Ŝmed, Eq. (11) can be ap-
proximated by

p(−Q̂ω)

p(Q̂ω)
= exp [−Q̂ω/kBT ]. (13)

Since Ŵω = Q̂ω for periodic magnetic fields considered
here, Eq. (13) can also be considered as a special case of
Crooks relation [30, 31] which holds in case the initial and
final state are equilibrium states. For the long-time limit
approaching a non-equilibrium steady state for constant
fields and forcings, ∆Ŝ is bounded and can therefore ne-
glected in several situations [30, 31]. For the present case
of oscillating magnetic fields, the detailed fluctuation the-
orem (11) is a rigorous result that applies to the situation
considered here, but there is a priori no reason to believe
that Eq. (13) holds to a good approximation. We will
come back to this point and study deviations from the
relation (13) below. In stochastic thermodynamics, Q̂ω is

a random variable with probability density p(Q̂ω). Thus,
the fluctuation relation (13) connects the probability of

finding the value of dissipated heat Q̂ω relative to that
of −Q̂ω.
An immediate consequence of fluctuation theorems of

the kind (11) and (13) is the much-debated finding that
there is a non-zero (albeit possibly very small) probabil-
ity of observing processes where entropy is not increasing
but decreasing, or heat is not dissipated but absorbed.
These results are not in contradiction with macroscopic
thermodynamics since the laws of conventional thermo-
dynamics are recovered for the mean values of work, heat
and entropy change [29].
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III. MESOSCOPIC MODEL FOR DYNAMICS
OF MAGNETIC NANOPARTICLES

In the spirit of stochastic thermodynamics, we consider
a mesoscopic model for the dynamics of MNPs where the
solvent is treated as a viscous medium that also acts as a
heat bath. As mentioned in Sec. II B, we can ensure con-
sistency with macroscopic thermodynamics by a proper
time-scale separation between solvent and the mechano-
magnetic system. Therefore, we here employ the so-
called diffusion-jump model [37] which captures the field-
dependent relaxation arising from Brownian particle ro-
tation and long-time internal (Néel) magnetization rever-
sals. While the Néel relaxation is frequently modeled in
terms of the stochastic Landau-Lifshitz-Gilbert equation,
this approach is rather inefficient and may even blur the
time-scale separation since it includes a microscopic at-
tempt frequency [36]. The coarse-grained diffusion-jump
model eliminates the microscopic time scales but still
provides a rather accurate approximation to the more
detailed model for magnetically hard MNPs [27].

The diffusion-jump model was introduced in Ref. [37]
in terms of the master equation for the time-dependent
probability density f(u; t) of finding the magnetic mo-
ment µu at time t,

∂

∂t
f = (LB + LN)f. (14)

The explicit form of the operators LB and LN are given in
Appendix A. While the formulation (14) in terms of the
probability density is very useful for various reasons, it is
not ideally suited for discussing the stochastic thermody-
namics of MNPs. Therefore, we here provide the corre-
sponding stochastic formulation. The three-dimensional
unit vector ut denotes the stochastic variable that rep-
resents the orientation of the magnetic moment of the
MNP at time t. From Eq. (1), the dimensionless Zeeman
energy can be written as Φ/kBT = −ut · h(t), where we
introduced the dimensionless field h(t) = µ0µH(t)/kBT .
For later use, we also define the Langevin parameter by
h = |h|. With τB the Brownian rotational relaxation time
of the MNP, the dynamics of the diffusion-jump model
can be expressed as the stochastic differential equation

dut = Pt ·
[
h(t)

dt

τB
+ dWt

]
− ut

dt

τB
− 2utdNt, (15)

where Pt = I − utut denotes the orthogonal projector
with I the three-dimensional unit matrix. The three-
dimensional Wiener process with zero mean and variance
1/τB is denoted by Wt.
The first terms in Eq. (15) merely rewrite the classi-

cal model of Martsenyuk et al [40] for the rigid dipole
approximations of the dynamics of MNPs in terms of
a stochastic differential equation and have already been
given earlier (see e.g. Ref. [47]). The last term in Eq. (15)
describes additional Néel relaxation by magnetization re-
versals in terms of a Poisson process Nt. In the absence

of external magnetic fields, the Poisson process is homo-
geneous with a constant rate λ0 = (2τN)

−1, where τN de-
notes the Néel relaxation time. In the presence of an ex-
ternal magnetic field h(t), the Poisson process in Eq. (15)
becomes nonhomogeneous, where the rate function is a
random variable given by λt = (2τN)

−1 exp [−ut · h(t)].
The diffusion-jump model (15) is entirely specified by

the two relaxation times τB and τN and the dimensionless
external magnetic field h(t). For justifications and more
details of the model as well as a discussion of possible
alternatives to the Arrhenius rate function we refer the
reader to Refs. [27, 37].

IV. ENTROPY PRODUCTION IN
TIME-VARYING FIELDS

With the one-particle probability density f(u; t), we
associate the Boltzmann entropy

S(t) = −kB

∫
f(u; t) ln f(u; t) du. (16)

Along solutions of the master equation (14), the Boltz-
mann entropy (16) changes according to

Ṡ = σB + σN + jB + jN, (17)

where σB,N denote the entropy production due to Brow-
nian and Néel processes, respectively, with jB,N the cor-
responding entropy fluxes. Note that Brownian and Néel
contributions to the system’s entropy production are ad-
ditive. The explicit form of these quantities is given in
Appendix A.

In addition to the system entropy S, we follow Ref.
[31] and also introduce the entropy of the surrounding
medium Smed via dSmed = δQ/T , where Q is the dissi-
pated heat given by Eq. (9). Then, the change in the
total entropy can be written as dStot = dS + dSmed or

Ṡtot = Ṡ +
Q̇B

T
+

Q̇N

T
. (18)

The expressions for the heat production Q̇B,N due to
Brownian and Néel processes are given in Appendix A.
Inserting the above expressions (17) we arrive at the time
rate of change of the total entropy

Ṡtot = σN + σB +
kB
τB

[
h2

3
(1− S2)− 2hS1

]
, (19)

with the orientational order parameters defined by Sk =∫
Pk(u · ĥ)f(u; t)du, ĥ the unit vector in the direction

of the applied field and Pk(x) the kth Legendre polyno-
mial [47]. It is interesting to note that for Néel processes
as described here, the entropy flux and heat dissipation
perfectly balance each other, jN = −Q̇N/T . This is not
true for Brownian particle relaxation, where the balance
of entropy flux and heat generation can be expressed in
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terms of an effective Brownian angular velocity to rewrite
Eq. (19) as

Ṡtot = σN + 2τBkB⟨ω2
B⟩ ≥ 0. (20)

Equation (20) verifies that Ṡtot is non-negative, which is
less obvious from Eq. (19). The definition of the angular
velocity ωB as well as details of the derivation are given
in Appendix B. We note that without the Néel contri-
bution, Eq. (20) is analogous to the case of Brownian
translational motion, where ωB is replaced by an effec-
tive Brownian velocity [31].

In stochastic thermodynamics, a trajectory-dependent
entropy of the system is defined by [31, 46]

Ŝ(t) = −kB ln f(ut; t), (21)

where f(u; t) denotes the solution of the kinetic model for
given initial conditions and {ut} a corresponding stochas-
tic trajectory. The instantaneous stochastic entropy pro-
duction is therefore given by [46]

d

dt
Ŝ(t) = −kB

∂
∂tf(u; t)

f(u; t)

∣∣∣∣∣
ut

−kBu̇t ·
(

∂

∂u
f(u; t)

)
ut

(22)

With dŜmed = δQ̂/T the stochastic entropy change of the
surrounding medium, we can write the total stochastic
entropy production as

d

dt
Ŝtot(t) = −kB

∂
∂tf(u; t)

f(u; t)

∣∣∣∣∣
ut

+ 2kBτBωB(t) · ωt, (23)

where the stochastic angular velocity ωt is defined by
u̇t = ωt×ut and the quantity ωB is defined in Eq. (B1).
Note that Eq. (23) is formally similar to the case of trans-
lational Brownian motion. However, due to the jump
processes associated with Néel relaxation, not the total
but only the Brownian part of the probability flux ωB

appears in Eq. (23).
The total stochastic entropy production along a trajec-

tory ∆Ŝtot = ∆Ŝ + ∆Ŝmed over one period of the mag-
netic field Tω = 2π/ω is given by

∆Ŝtot/kB = − ln
f(ut+Tω

; t+ Tω)

f(ut; t)
+

Q̂ω

kBT
. (24)

When the system has reached a steady periodic response,
we have f(u; t+Tω) = f(u; t) and it seems plausible that

∆Ŝtot is dominated by Q̂ω, such that the fluctuation re-
lation for heat (13) might be a reasonable approximation
to the transient fluctuation theorem (11).

V. RESULTS

Here, we consider MNPs that are exposed to oscillating
magnetic fields (6). Figure 1 shows the Brownian (σB)
and Néel (σN) contribution to the entropy production,

Eq. (A4) and (A6), respectively. We observe from Fig.
1(a) that σB oscillates with double the frequency of the
applied field, with the minima occurring near the zeros
of the applied field. The Néel contribution σN, on the
other hand, oscillates with the same frequency as the ap-
plied field, where the minima and maxima of σN occur
near the maxima and minima of the applied field, respec-
tively. For σB, we find that the effect of changing the ra-
tio q = τB/τN of relaxation times is mainly captured by
the effective relaxation time τeff = τBτN/(τB + τN). For
the Néel contribution, however, increasing q leads to a
strong increase of σN. Figure 1(b) shows the entropy pro-
duction averaged over one cycle versus the dimensionless
amplitude h of the applied field. For the Brownian con-
tribution, we find an approximately quadratic increase of
the mean entropy production with h, whereas a stronger
increase is seen for the Néel contribution. In both cases,
we find that the mean entropy production is larger for
ωτB = 1 compared to ωτB = 5 for q = 0.1. It is also
interesting to note that for strong fields, entropy produc-
tion is dominated by Néel processes. For weak fields,
either Brownian or Néel processes dominate depending
on the frequency of the applied field.
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0

0.2

0.4

0.6
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1 10
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100

101

FIG. 1. (a) The transient entropy production due to Brow-
nian (σB) and Néel (σN) processes in response to oscillating
magnetic fields with frequency ω = 1/τB and dimensionless
amplitude h = 1. (b) The entropy production averaged over
one cycle is shown versus the amplitude of the applied field.
Full and open symbols correspond to frequencies ωτB = 1
and ωτB = 5, respectively, with squares and circles represent-
ing σ̄B and σ̄N. The ratio of relaxation times was chosen as
q = 0.1.

Next we turn to the heat dissipated over one cycle,
Q̂ω, as the main quantity of interest in the present study.
From Eq. (7), this quantity is identical to the work done
by the magnetic field and can be calculated from the
associated hysteresis loop.
We start by calculating the mean dissipated heat over

one cycle, Qω = ⟨Q̂ω⟩, where angular brackets denote en-
semble averages. Taking the ensemble average of Eq. (7)
and multiplying by the number density n of MNPs we
arrive at Eq. (10) since N⟨Q̂ω⟩ = ∆U . Instead of ∆U , it
is more common in the literature to consider the specific
loss power defined by ∆U/Tω, where Tω = 2π/ω denotes
the length of the oscillation period of the magnetic field
[8, 12]. Figure 2 shows the mean dissipated heat per unit
time versus the amplitude h of an external oscillating
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field. Different symbols denote different frequencies ω of
the applied field. From Fig. 2, we observe the characteris-
tic quadratic increase of the specific loss power with field
strength (see Eq. (C6)). Strictly speaking, the quadratic
increase is restricted to small amplitudes h that remain
within the linear response regime. Heuristic arguments
are given in Ref. [12] that suggest replacing the factor
h2/3 in Eq. (C6) by hL(h) with L(x) = coth(x)−1/x the
Langevin function. As a quantitative test of our algo-
rithm, we include in Fig. 2 also the results obtained from
solving the kinetic equation for the probability density
[48]. Very good agreement between both approaches is
found. Here and in the following, the size of the symbols
is larger than the numerical uncertainties if not indicated
otherwise.
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FIG. 2. Mean dissipated heat per unit time as a function of
the amplitude h of an oscillating field (6). Different frequen-
cies of the field are applied as indicated in the legend. The
ratio of Brownian and Néel relaxation times was chosen as
q = 0.1. Symbols denote ensemble averages over stochastic
simulations, while lines show reference results obtained from
solution to the corresponding kinetic equation (14).

Within stochastic thermodynamics, the heat dissi-
pated over one cycle defined in Eq. (7) is a stochastic
variable. Therefore, we can study not only the mean
value as in Fig. 2 but its statistics more generally. To do
this, it is convenient to define the centred moments

µn = ⟨(Q̂ω −Qω)
n⟩ (25)

for n = 1, 2, . . .. By definition µ1 = 0 and µ2 = σ2
Q the

variance.
In Fig. 3, we show σQ/Qω, i.e. the standard deviation

normalized with the mean value. This quantity is known
as the coefficient of variation and can be interpreted as
the relative spread of the random variable around its
mean value. Figure 3 shows that σQ/Qω strongly de-
ceases with increasing amplitude h of the applied field

for all frequencies investigated. However, even at rela-
tively large field strengths we find σQ/Qω ∼ 1, indicating

that the typical spread in Q̂ω is comparable to its mean
value. This is an important finding, highlighting the im-
portance of considering fluctuations in this situation. It
is also interesting to note that the variance and the co-
efficient of variation depend non-monotonically on the
frequency ω of the applied field. Appendix C shows that
such a behavior arises already in a weakly driven system
and results from equilibrium magnetization fluctuations.
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FIG. 3. The coefficient of variation σQ/Qω is shown as as
function of the dimensionless amplitude h of an oscillating
magnetic field (6). Various frequencies ω of the field are ap-
plied as indicated in the legend. The ratio of Brownian to
Néel relaxation time was chosen as q = 0.1.

Next, we consider the normalized skewness coefficient
defined as

µ̃3 =
µ3

σ3
Q

=
µ3

µ
3/2
2

. (26)

The skewness vanishes for symmetric distributions, i.e.
if positive and negative deviations from the mean value
are equally likely. Positive values of the skewness µ̃3 im-
ply that the tail towards larger values of Q̂ω is stronger,
whereas the opposite is the case for negative µ̃3. The
normalized skewness coefficient (26) is shown in Fig. 4
for different amplitudes h and frequencies ω of an ap-
plied magnetic field. It is interesting to observe that the
skewness is non-monotonic in the amplitude as well as in
the frequency of the applied field.
Having investigated the mean, variance and skewness

of the dissipated heat, Fig. 5 shows the underlying prob-
ability density p(Q̂ω), estimated from the empirical his-
togram via kernel smoothing

p(Q̂ω) ≈
1

Nb

N∑
j=1

K
(
|Q̂ω − Q̂j |/b

)
, (27)
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FIG. 4. Normalized skewness coefficient µ̃3 defined in Eq. (26)
as function of the dimensionless amplitude h of an oscillating
magnetic field (6). The same conditions and symbols as in
Fig. 3 are used.

where Q̂j denote the numerical value for the dissipated
heat of ensemble member j and b the smoothing length.
We choose the Epanechnikov kernel, K(z) = (3/4)(1−z2)
if z < 1 and K(z) = 0 else. The ensemble size of the
stochastic simulations is chosen as N = 106. For more
accurate estimates of the probability densities, some sim-
ulations were performed with N = 107. Selecting appro-
priate values for b is known as bandwidth selection prob-
lem. For the present case, we choose b = 2∆q̂ with ∆q̂
the bin width obtained from dividing the interval from
minimal to maximal value of Q̂ω/kBT into Nb = 500 bins
of equal width.

First, it is reassuring to notice from Fig. 5 that the
probability density p(Q̂ω) is unimodal as one might have
intuitively expected. Next, as expected from the mean
value shown in Fig. 2, we find that the location of the
maximum of p(Q̂ω) moves to larger Q̂ω with increasing
amplitude h of the applied field. In addition, a significant
broadening of the peak with increasing h is seen. To-
gether with Fig. 3, we learn that the width of the peaks
grows less strong with h compared to the mean value.
From Fig. 5 we also learn that the distribution p(Q̂ω)
depends sensitively on the frequency of the applied field.
Finally, Fig. 5 also shows unequivocally the appearance
of events with the opposite sign of Q̂ω, i.e. where heat is
not dissipated but absorbed by the MNPs.

As mentioned in Sec. II C, the appearance of micro-
scopic events with both signs of total entropy change,
dissipated heat and both signs of work done is implied
by stochastic thermodynamics. The detailed fluctuation
theorem (11) is a very strong result that connects the
probability of observing events with positive and nega-
tive total entropy change. On the other hand, we expect
deviations from the relation (13) since it does not apply

-5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

FIG. 5. The probability density p(Q̂ω) estimated from
stochastic simulations using Eq. (27) for an ensemble size of
N = 107. Different field strengths and frequencies of the ap-
plied field were chosen, as indicated in the legend.

to the present situation.

Having already calculated the trajectory dependent
dissipated heat over one cycle Q̂ω, we use Eq. (24) to find
the corresponding total entropy change for every trajec-
tory. To evaluate the corresponding expression, we use an
accurate and efficient algorithm for the numerical solu-
tion f(u; t) of the kinetic equation (14) of the diffusion-
jump model [48]. Figure 6(a) shows that for all mag-
netic field strengths and frequencies investigated, we find
that all our numerical values fall onto the same master
curve exp [−∆Ŝtot/kB] over three decades within numeri-
cal accuracy. Therefore, our numerical simulations agree
with the predictions from the detailed fluctuation theo-
rem (11) . We also verified that our numerical solution
satisfies the integral fluctuation theorem (12) to within
0.4%. Better accuracies can be obtained by further in-
creasing the ensemble size of the stochastic simulations,
however at a considerable computational cost.

From the data shown in Fig. 5 we plot in Fig. 6(b) the

ratio p(−Q̂ω)/p(Q̂ω) versus Q̂ω. From Fig. 6(b) we find
that our numerical results agree rather well with the ap-
proximate fluctuation relation (13). Upon closer inspec-
tion, however, systematic deviations are clearly seen on
a semi-logarithmic scale, since the dynamics obeys the
detailed fluctuation theorem (11) rather than (13) and
the fluctuation relation (13) holds only approximately.

We have seen above that the fluctuation relation (13)

predicts the existence of trajectories with Q̂ω < 0. To
quantify this phenomenon, we define the probability p−
that heat is not released but absorbed,

p− =

∫ 0

−∞
p(Q̂ω)dQ̂ω. (28)
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FIG. 6. (a) Test of the detailed fluctuation theorem (11)

for the fluctuations of the total entropy change ∆Ŝtot over
one period. Symbols denote simulation results for different
field amplitudes and frequencies, as indicated in the legend,
while the black solid line is the theoretical result. Panel (b)
shows a test of the approximate fluctuation relation (13) for
the dissipated heat over one cycle. The ratio of the probabil-
ities p(−Q̂ω)/p(Q̂ω) is shown versus the dimensionless heat

Q̂ω/kBT . The same color coding as in panel (a) is used.
The inset shows the same data on a linear instead of a semi-
logarithmic scale.

Note that p− can be obtained not only from the prob-
ability density shown in Fig. 5 but is available directly
from the stochastic simulations via the relative frequency
of trajectories with Q̂ω < 0. Figure 7 shows the probabil-
ity p− as a function of the amplitude h of the oscillating
magnetic field. We observe that the probability p− de-
creases with increasing h. This finding is expected since
the mean value increases with h and the relative spread
decreases (see Figs. 2 and 3). Therefore, large enough

fluctuations that lead to negative values of Q̂ω are less
likely to occur. Interestingly, the values of p− depend
non-monotonically on the frequency of the applied field.
From Fig. 4 we find that the skewness is positive for
ωτB = 5 but negative for ωτB = 1, suggesting that the
tail of p(Q̂ω) to negative values of Q̂ω is stronger for the
τBω = 1. However, p− is found to be smaller for ωτB = 1
compared to ωτB = 5, mainly because the mean value is
different in both cases. Therefore, we conclude that the
skewness needs to be interpreted carefully and does not
provide a reliable measure of quantities like p−.

VI. DISCUSSION AND CONCLUSIONS

We studied the stochastic dynamics of MNPs in re-
sponse to oscillating external magnetic fields, taking into
account Brownian particle rotation and internal Néel re-
laxation. Within the framework of stochastic thermody-
namics, we analyze fluctuations in magnetic losses and
the resulting heat dissipated by the MNPs. The corre-
sponding mean value of dissipated heat is related to the
specific loss power or specific absorption rate that has
been studied intensively in recent years due to its impor-
tance for MFH applications.

Here, we find that fluctuations of the dissipated heat
around the mean value are significant, with standard

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

FIG. 7. The quantity p− defined in Eq. (28) as function of
amplitude h of oscillating magnetic field for various frequen-
cies as indicated in the legend. The ratio of the Brownian to
the Néel relaxation time is chosen as q = 0.1.

deviations being of the same order as the mean value.
For driven colloidal systems, fluctuation theorems relate
the probabilities of entropy production, work and heat
in forward and reversed processes under rather general
conditions. We verify quantitatively the validity of the
detailed fluctuation theorem for the total entropy pro-
duction when applied to the present situation. A corre-
sponding fluctuation relation for the dissipated heat does
not apply to oscillating fields, but is found to hold ap-
proximately. A consequence of this fluctuation relation is
the occurrence of microscopic trajectories with negative
values of the dissipated heat, i.e. where heat is absorbed
by MNPs rather than dissipated. While the probability
of these events depends on the frequency of the applied
field, we find them generally to be rather significant for
weak and moderate field strengths. The manipulation of
dissipated heat via external magnetic fields is not only
fascinating from a theoretical point of view, but might
also be highly relevant for applications of MNPs such
as MFH in particular, where local heating needs to be
controlled rather accurately.
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Appendix A: Entropy and heat in the diffusion-jump
model

The explicit form of the master equation (14) of the
diffusion-jump (DJ) model is given by [37]

LBf(u; t) =
1

2τB

[
L2f(u; t)−L · [(u× h)f(u; t)]

]
(A1)

LNf(u; t) =
1

2τN

[
eu·hf(−u; t)− e−u·hf(u; t)

]
, (A2)

where τB and τN denote the Brownian and Néel relax-
ation time, respectively, L = u×∂/∂u the rotational op-
erator and h = µ0µH/kBT the dimensionless magnetic
field. For convenience of notation, we here suppress the
explicit time-dependence of h(t).

Along solutions of the DJ model (14), the rate of
change of the Boltzmann entropy (16) can be written

as Ṡ = ṠB + ṠN, where

Ṡα = −kB

∫
ln[f(u; t)]Lαf(u; t)du, (A3)

with α ∈ {B,N} and we used
∫
Lαfdu = 0 due to the

conservation of the normalization of f .
Inserting the explicit form (A1) for the Brownian con-

tribution and performing partial integration we find ṠB =
σB + jB, where we defined

σB(t) =
kB
2τB

∫
1

f(u; t)
[Lf(u; t)]2du ≥ 0 (A4)

jB(t) = −kB
τB

hS1(t). (A5)

with the orientational order parameter S1 introduced af-
ter Eq. (19). Note that the Brownian contribution to the
entropy flux is given by the Zeeman energy per τB. For
simplicity of notation, potential time-dependence of the
external field is suppressed.
For the Néel contribution to the entropy change, we

find from Eq. (A2) again that the rate of entropy change

can be separated in a production and flux term, ṠN =
σN + jN, with

σN(t) =
kB
4τN

∫ [
eu·hf(−u; t)− e−u·hf(u; t)

]
ln

eu·hf(−u; t)

e−u·hf(u; t)
du ≥ 0 (A6)

and

jN(t) =
kB
τN

∫
u · h e−u·hf(u; t) du. (A7)

Note that the form (A6) of the entropy production due to
Néel relaxation is well-known for Markov processes [29].

Next we calculate the dissipated heat. From Eqs. (9)
and (14), we find that also the dissipated heat can be

separated into Brownian and Néel contributions, Q̇ =
Q̇B + Q̇N, with

Q̇α = NkBT h ·
∫

u Lαf(u; t) du. (A8)

Inserting the explicit form (A1), (A2) of the operators
LB,N into Eq. (A8), we find

Q̇B =
kBT

τB

[
−hS1 +

h2

3
(1− S2)

]
(A9)

Q̇N = −kBT

τN

∫
(u · h)e−u·h f(u; t) du. (A10)

We note that Q̇N(t) = −TjN(t). Moreover, Q̇B and Q̇N

vanish in equilibrium as they should.

Appendix B: Effective Brownian angular velocity

In kinetic theory, it is common to define an effective ve-
locity v from the relation ∂f/∂t = −∇x(vf) [29, 42]. For
the present case, we can define an effective Brownian an-
gular velocity ωB from the Brownian contribution to the
time evolution (14) via the relation LBf = −L · (ωBf).
From the explicit form (A1) of LB we can read off

ωB =
1

2τB
[u× h−L ln f ]. (B1)

Calculating ω2
B from Eq. (B1) and performing averages

with respect to f(u; t), we find after integration by parts

⟨ω2
B⟩ =

1

(2τB)2

[
2h2

3
(1− S2)− 4hS1 +

2τB
kB

σB

]
, (B2)

where we used the definition (A4) and the orientational
order parameters Sk.

Appendix C: Heat fluctuations for weakly driven
system

To better understand fluctuations in heat dissipated
due to oscillatory magnetic fields, we start from Eq. (7)
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and define fluctuations in the heat dissipated over one
period Tω = 2π/ω as

δQ̂ω = −kBThω

∫ Tω

0

[ut − ⟨ut⟩] cosωtdt (C1)

where ut and ⟨ut⟩ are the components of ut and ⟨ut⟩
parallel to the direction of the applied field, respectively.
Then, the variance σ2

Q = ⟨δQ̂2
ω⟩ can be written as

σ2
Q = (kBThω)

2⟨δu2⟩
∫ Tω

0

∫ Tω

0

C(t1, t2) cosωt1 cosωt2dt1dt2

(C2)
with the magnetization auto-correlation function

C(t1, t2) =
⟨[ut1 − ⟨ut1⟩][ut2 − ⟨ut2⟩]⟩

⟨[u− ⟨u⟩]2⟩
. (C3)

After initial transients, we expect time-translational in-
variance, C(t1, t2) = C(t1 − t2). We note that the cor-
relation function (C3) describes non-equilibrium fluctua-
tions in a periodically driven system. Therefore, expres-
sions for C are in general expected to be rather involved.
For sufficiently weak external driving, however, we may
approximate Eq. (C3) with the same form as the equilib-
rium correlation function,

C(t1, t2) = exp [−|t1 − t2|/τ ], (C4)

with an effective relaxation time τ . Inserting Eq. (C4)
into Eq. (C2) we obtain an explicit expression for the
variance,

σ2
Q = 2π(kBT )

2h2⟨δu2⟩ ω/τ

1 + (ωτ)2

[
1− ωτ/π

1 + (ωτ)2

(
1− e−2π/ωτ

)]
(C5)

In general, we expect the relaxation time τ introduced
in Eq. (C4) to depend on the field amplitude h and fre-
quency ω. For weak driving, for which Eq. (C4) is better
justified, τ is approximately constant and can be iden-
tified with the effective relaxation time τeff introduced
above. Even in this regime, the fluctuations (C5) show
an intricate and non-monotonic dependence on the fre-
quency ω of the applied field.

For weak fields, the linear response result for the mean
dissipated heat over one cycle is [12]

⟨Q̂ω⟩ =
π

3
kBTh

2 ωτ

1 + (ωτ)2
. (C6)

The coefficient of variation is defined as σQ/⟨Q̂ω⟩. From
Eq. (C5) and (C6), we find that the coefficient of varia-
tion first decreases with increasing frequency ω, reaching
a minimum near ωτ = 1 before increasing again. This be-
havior is in qualitative agreement with the results shown
in Fig. 3
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and Néel relaxation dynamics of ferrofluids in the pres-
ence of external fields and flow, Physical Review E 100,
022608 (2019).

[38] R. E. Rosensweig, Ferrohydrodynamics (Cambridge Uni-
versity Press, Cambridge, 1985).

[39] E. Blums, A. Cebers, and M. M. Maiorov, Magnetic Flu-
ids (de Gruyter, Berlin, 1997).

[40] M. A. Martsenyuk, Y. L. Raikher, and M. I. Shliomis,
On the kinetics of magnetization of suspension of ferro-
magnetic particles, Sov. Phys. JETP 38, 413 (1974).

[41] Y. Lan and E. Aurell, The stochastic thermodynamics of
a rotating brownian particle in a gradient flow, Scientific
Reports 5, 12266 (2015).

[42] J. K. G. Dhont, An introduction to dynamics of colloids,
Studies in interface science (Elsevier, Amsterdam, 1996).

[43] P. Torche, C. Munoz-Menendez, D. Serantes, D. Bal-
domir, K. L. Livesey, O. Chubykalo-Fesenko, S. Ruta,
R. Chantrell, and O. Hovorka, Thermodynamics of inter-
acting magnetic nanoparticles, Physical Review B 101,
224429 (2020).

[44] H. B. Callen, Thermodynamics and an introduction to
thermostatistics, 2nd ed. (John Wiley & Sons, New York,
1985).

[45] B. H. Shargel and T. Chou, Fluctuation theorems for
entropy production and heat dissipation in periodically
driven markov chains, J Stat Phys 137, 165 (2009).

[46] U. Seifert, Entropy production along a stochastic tra-
jectory and an integral fluctuation theorem, Phys. Rev.
Lett. 95, 040602 (2005), cond-mat/0503686.
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