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Abstract. The risk posed by Arctic cyclones to ships has
seldom been quantified due to the lack of publicly avail-
able historical Arctic ship track data. This study investigates
Arctic ship tracks derived from automatic identification sys-
tem (AIS) transponders from September 2009 to December
2016. These are analysed with historical synoptic-scale cy-
clone tracks derived from ERA-5 reanalysis data and reports
of past Arctic shipping incidents. We determine the number
of ship tracks that intersected with intense Arctic cyclones
tracks and how many of these intersections resulted in a re-
ported shipping incident.

The number of ships operating in the Arctic has increased
year-on-year from 2010 to 2016. The highest density of ships
occurs year-round in the Barents Sea. Trans-Arctic shipping
transits via the Northern Sea Route and the Northwest Pas-
sage are limited to summer and autumn months, when sea
ice extent has retreated sufficiently from the coastlines. Ship
track density along these trans-Arctic routes is far less than
the thousands of ships travelling in the Barents Sea year-
round. Between 2010 and 2016, 158 Arctic shipping inci-
dents were reported, but only 6 % of these reported incidents
occurred following the passage of an intense Arctic cyclone.
Arctic cyclones with significant wave heights greater than
6 m are found to frequently intersect ships, but only 0.1 % of
these intersections resulted in a reported shipping incident.
Results from this study indicate that ships are frequently im-
pacted by Arctic cyclones, but cyclones were not a dominant
cause of reported Arctic shipping incidents between 2010
and 2016. This suggests that ships are resilient to the rough
sea conditions that past Arctic cyclones have caused, there-
fore mitigating and reducing risk.

1 Introduction

As a consequence of global warming, the Arctic Ocean is be-
coming increasingly accessible to ships as Arctic sea ice con-
tinues to decline (Stroeve et al., 2007, 2012, 2014). Annual
mean Arctic sea ice extent has declined from 12.3 x 10 km?
in 1979 to 10.5 x 10 km? in 2022, a decline of 15 % (Fetterer
and Windnagel, 2017). The fastest decline in Arctic sea ice
extent occurred in September: from 7.1 x 10° km? in 1979 to
4.4 x 10°km? in 2022, a decline of 38 % (Fetterer and Wind-
nagel, 2017). Arctic sea ice is projected to decline further
in the future as global surface temperatures are projected to
increase further (Stroeve et al., 2012; Wei et al., 2020).

This reduction in Arctic sea ice extent could have detri-
mental consequences for the Arctic (Serreze and Barry,
2011) and for mid-latitude climate systems (Coumou et al.,
2018), which may include larger and more frequent Siberian
wildfires, stress on local wildlife and ecosystems, and the
enhanced release of greenhouse gases into the atmosphere
through melting permafrost. However, reduced Arctic sea ice
extent does also provide beneficial opportunities for indus-
tries such as shipping, oil exploration, and tourism, which
could include shorter journeys between ports in North Amer-
ica, Europe, and Asia (Smith and Stephenson, 2013; Melia
et al., 2016, Table 1); access to previously inaccessible natu-
ral resources (Harsem et al., 2015); and new destinations for
tourism (Mabher, 2017). These benefits may lead to greater
shipping traffic in the Arctic Ocean over the coming decades,
consequently increasing the number of ships exposed to ex-
treme weather and other Arctic hazards (Browse et al., 2013;
Lasserre, 2014; Melia et al., 2016; Lasserre, 2019).
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Table 1. Approximate distances between major ports in Europe and North America to major ports in Asia using Arctic routes (the Northern
Sea Route between Europe and Asia or the Northwest Passage between North America and Asia) or mid-latitude routes (the Suez Canal
route between Europe and Asia and the Panama Canal route between North America and Asia). The distances have been measured on
Google Earth, 2023, and are given to the nearest 100 nautical miles (nm).

Departure Destination ~ Distance using Distance using Arctic route Arctic minus mid-latitude

port port mid-latitude route  (using 1979-2020 mean route (using 1979-2020 mean
September Arctic sea ice extent)  September Arctic sea ice extent)

Rotterdam Tokyo 11300 nm 7000 nm —4300nm (—38 %)

Rotterdam Shanghai 10500 nm 7900 nm —2600 nm (—25 %)

New York and o ) 9700 nm 7400 nm —2300nm (—24 %)

New Jersey

New Yorkand g 0ohai 10700nm 8300 nm —2400 nm (—22 %)

New Jersey

The shipping routes of the Northern Sea Route (NSR)
and Northwest Passage (NWP) are much shorter than tradi-
tional tropical shipping routes. Transits between major ports
in Asia, Europe, and North America could be shortened by as
much as approximately 38 % if these trans-Arctic routes are
used rather than the more traditional mid-latitude routes such
as those travelling through the Suez and Panama canals (Ta-
ble 1). When Arctic sea ice has sufficiently retreated north-
ward from the Eurasian and Canadian coastlines, the NSR
running north of the Eurasian coastline can connect Europe
and Asia, whilst the NWP running through the Canadian Arc-
tic Archipelago can connect North America with Asia. These
trans-Arctic shipping routes are becoming increasingly ice-
free and feasible for shipping for longer periods in summer
and autumn months (Melia et al., 2016) as Arctic sea ice
extent has continued to decline (National Snow & Ice Data
Centre, 2023).

However, the Arctic is a challenging and hazardous en-
vironment for such human activity. Cold temperatures can
make working conditions difficult and can cause equipment
failure (Larsen et al., 2016), and sea ice can force ships to
travel through the shallow and perilous coastlines around the
boundaries of the Arctic Ocean (Arctic Monitoring & As-
sessment Programme: Working Group of the Arctic Coun-
cil, 2020). Conditions can be made even more dangerous by
the passage of a cyclone or a polar low, which can cause
rough sea conditions due to high winds and high ocean waves
(Thomson and Rogers, 2014; Liu et al., 2016; Waseda et al.,
2018, 2021). Such conditions could endanger a ship’s crew,
potentially capsize the ship with its cargo, or cause delays in
transit. Arctic cyclones can also enhance the breakup of sea
ice (Simmonds and Keay, 2009; Asplin et al., 2012; Parkin-
son and Comiso, 2013; Peng et al., 2021), which can drive
the ice into shipping lanes where it becomes an additional
hazard for ships to navigate. Given the numerous hazards in
the Arctic, it is important to assess their relative threat to hu-
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man activity to inform decision-makers and the public and
to ultimately increase the awareness of and resilience to the
most threatening Arctic hazards.

Some recent Arctic shipping disasters highlight how per-
ilous the Arctic can be for shipping. On 23 March 2019, the
MV Viking Sky cruise ship with 1373 people on board lost
power whilst trying to contend with extremely high wind and
ocean waves caused by the passage of an Arctic cyclone (Ib-
rion et al., 2021). Ocean waves were reported to be in ex-
cess of 15m in height as the cruise ship started to drift to-
ward the shallow coastline of Norway. After a full evacua-
tion, the cruise ship was salvaged, but some damage had to be
repaired and subsequent trips were consequently cancelled.
Other Arctic cruise ship incidents unrelated to the passage of
a cyclone have been documented, such as the MV Akademik
loffe running aground on 24 August 2018 and spilling 80L
of fuel (Transportation Safety Board of Canada, 2018; Jo-
hannsdottir et al., 2021) and the MV Clipper Adventurer be-
ing damaged whilst running aground on 27 August 2010 (Jo-
hannsdottir et al., 2021). Understanding these shipping inci-
dents and whether they were driven by a particular natural
hazard that could be mitigated is fundamental to direct re-
search to understand and ultimately reduce the risks to ship-
ping.

The spatial distribution and intensity of Arctic cyclones
has been found to vary seasonally, with the highest density
of winter (DJF) Arctic cyclones typically occurring over the
Norwegian, Greenland, and Barents seas, and the highest
density of summer (JJA) cyclones typically occurring over
the coastline of Eurasia and the Arctic Ocean (Reed and
Kunkel, 1960; Serreze et al., 2001; Simmonds et al., 2008;
Crawford and Serreze, 2016; Vessey et al., 2020). Vessey
et al. (2022) showed that this seasonal spatial distribution is
also seen in the maximum intensity locations of the most in-
tense winter and summer Arctic cyclones. Arctic cyclones
in winter are also generally more intense than summer Arc-
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tic cyclones (Zhang et al., 2004; Sorteberg and Walsh, 2008;
Simmonds et al., 2008; Vessey et al., 2020, 2022). Although
synoptic-scale Arctic cyclones have been the focus of many
studies in the past, the exposure of ships to intense Arctic
cyclones has seldom been reported on.

In December 2004, it became mandatory for all large ships
with a gross tonnage greater than 300t and all passenger
ships regardless of size to have automatic identification sys-
tem (AIS) transponders, which transmit the ships’ locations
to satellites in real time (International Maritime Organiza-
tion, 2020). This regulation was established by the Interna-
tional Maritime Organization to increase the safety of ships
in often-busy shipping lanes. Due to their safety benefits, AIS
transponders have increasingly been fitted to smaller vessels
(U.K. Gov., 2014). This has allowed for the monitoring of
ships and recording of past ship tracks. However, archived
historical ship track data are often privately owned and diffi-
cult or costly to obtain publicly.

Consequently, there are few publicly available studies that
describe past Arctic shipping activity (e.g. Corbett et al.,
2010; Eguiluz et al., 2016; Hreinsson, 2020; Berkman et al.,
2020b, 2022; Miiller et al., 2023), likely due to the lack of
open-source Arctic shipping datasets. These studies show
that there is typically a high density of ships in the Barents
Sea year-round and that trans-Arctic shipping along the NSR
and the NWP is currently limited to months when sea ice
is near its minimum extent, typically from August to Octo-
ber. However, these previous studies have not combined the
past ship tracks with past Arctic cyclone tracks to assess the
risk that Arctic cyclones pose to shipping, nor do they com-
bine these past ship tracks with past shipping incident re-
ports to quantify the number of past shipping incidents and
those incidents caused by the passage of Arctic cyclones. It
is therefore unclear whether the number of ships and ship-
ping incidents in the Arctic are increasing as the Arctic be-
comes increasingly more accessible due to declining sea ice
extent, how many ships are presently impacted by hazardous
weather conditions caused by Arctic cyclones, and how many
Arctic shipping incidents have occurred following the pas-
sage of a cyclone.

The lack of publicly available historic ship track data has
been addressed somewhat by Berkman et al. (2020a), who
published an open-source Arctic ship track dataset. This con-
tains the transmitted AIS-derived ship location data of ships
that travelled north of the Arctic Circle (north of 66.5° N) but
is only available for a limited period, from September 2009
to December 2016. Berkman et al. (2020b, 2022) used this
dataset and showed that the number of ships in the Arctic
has increased between 2010 and 2016. Arctic shipping inci-
dents from 2005 to 2017 have been collated and made pub-
licly available from the Protection of the Arctic Maritime En-
vironment Agency (2023). This database includes incidents
occurring due to various causes (collision, grounding, etc.)
and describes the ships impacted (e.g. name and tonnage), the
incident itself (e.g. if the ship was lost or only partially dam-

https://doi.org/10.5194/nhess-24-2115-2024

2117

aged), and the consequences of the incident (marine casualty,
cargo damage, etc.). Combining past ship tracks and shipping
incident reports with past cyclone tracks could provide new
insights into quantifying the risk of cyclones to Arctic ship-
ping.

This study aims to describe past Arctic shipping activity
and incidents and to quantify the number of Arctic ships that
have intersected with intense cyclones using publicly avail-
able ship track, ship incident, and weather data. This will be
achieved by answering the following research questions.

— Does the spatial distribution of Arctic shipping vary
with the seasonal changes in Arctic sea ice extent?

— Given recent reductions in Arctic sea ice extent, is there
evidence of any trend in the number of ships and ship-
ping incidents in the Arctic?

— How many Arctic ships have intersected with past in-
tense cyclones, and how many of these intersections led
to a reported shipping incident?

The methods used in this study are described in Sect. 2, in-
cluding a description of the data and storm tracking method
used. In Sects. 3 to 8, the results from this study are de-
scribed, detailing the trends and seasonal spatial distribu-
tion of past Arctic ship tracks, past intense Arctic cyclone
tracks, and past Arctic shipping incidents. The number of
ship tracks that intersected with passing intense Arctic cy-
clone tracks and the proportion of these intersections that
resulted in a reported shipping incident are also quantified
and described. Finally, a summary of the main conclusions is
given in Sect. 9.

2 Methodology
2.1 Arctic shipping data

Berkman et al. (2020a) published Arctic ship location data
between September 2009 and December 2016 from AIS
transponders over a domain that includes areas north of the
Arctic Circle (66.5°N). This dataset includes information
such as the timestamp of the AIS transmission, the unique
Maritime Mobility Service Identity (MMSI) number of each
ship, the draught (vertical distance between the waterline and
the bottom of the hull, which can indicate the ship’s size and
weight), and the coordinates of the transmission in latitude
and longitude.

The Berkman et al. (2020a) data need to be transformed
into ship tracks per ship (each unique MMSI). Ships are re-
quired to transmit their locations at a high temporal resolu-
tion (i.e. minutes) to ensure safety within the busy network of
mobile ships. This high temporal resolution is reduced from
minutes to the point nearest every hour to match the tempo-
ral resolution of the atmospheric dataset used in this study,
ERA-5. To account for ships having multiple tracks within
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each month, a new track from each ship is determined if there
is a break in the AIS transmission of more than 48 h. This
break in transmission may be due to the ship being docked
and the engine being switched off, causing no AIS transmis-
sion, which signifies the end of the ship’s current journey and
track.

Past Arctic shipping incident and accident data are doc-
umented by the Arctic Council (Protection of the Arctic
Maritime Environment Agency, 2023). This database reports
Arctic shipping incidents from 2005 to 2017 and includes
information on the longitude and latitude coordinates of the
incident, time of the incident, and type of incident (marine
casualty, cargo damage, etc.). It also indicates whether the
vessel was completely lost or only partially damaged follow-
ing the incident. Incidents south of the Arctic Circle are in-
cluded, so this dataset can be filtered to retain only shipping
incidents that occurred north of 66.5° N between September
2009 to December 2016 to match period of the Berkman et al.
(2020a) ship track dataset. Shipping incidents with no loca-
tion data are omitted.

2.2 Historic atmosphere and ocean data

This study uses atmospheric data from the most recent re-
analysis dataset of the European Centre for Medium-Range
Weather Forecasts (ECMWF), ERA-5 (Hersbach et al.,
2018, 2020). Reanalysis datasets have been developed over
recent decades to provide a consistent global perspective on
past atmospheric conditions, created by assimilating histor-
ical observations from a range of sources into state-of-the-
art numerical weather prediction (NWP) models. Although
there are multiple reanalysis datasets available from various
institutions, ERA-5 was chosen here as it is the most recent
and has the highest spatial and temporal resolution of all the
reanalysis datasets available (Vessey et al., 2020).

The ERA-5 dataset contains atmospheric data from 1940—
present at a 1 h temporal resolution and at an approximately
31km (TL639) spatial resolution with 137 vertical levels
up to 0.01 hPa. Historical observations are assimilated into
the ECMWF Integrated Forecasting System (IFS) version
CY41R2 using a 4-dimensional variation data assimilation
scheme (4D-Var; Hersbach et al., 2020). Prior to 1979, satel-
lite observations were not available, so the reanalysis datasets
may be less constrained. So, data from ERA-5 are used
from 1979-2021 in this study to identify past Arctic cyclone
tracks.

The ERA-5 atmospheric variables used in this study are
the 850 hPa relative vorticity and the 10 m u- and v- compo-
nent winds. The IFS model is also coupled to the ECMWF
WAM (WAve Model) and gives information of past ocean
states at a lower spatial resolution of 0.5°. The ECMWF
WAM can determine past wave heights over the open ocean
but cannot capture waves within sea ice. To assess how Arctic
cyclones influence the ocean state and cause hazardous rough
sea conditions, the ERA-5 ocean field of significant wave
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height including tide and surge is also used. These ERA-5
variables are used at 1 h intervals each day.

In this study, historic Arctic shipping activity is also re-
lated to past Arctic sea ice extent. For this purpose, the Met
Office Hadley Centre Sea Ice and Sea Surface Temperature
version 2.1 dataset (HadISST2.0; Titchner and Rayner, 2014)
is used to indicate past Arctic sea ice extent. This dataset was
created by combining various Arctic sea ice records to pro-
duce a best estimate of past sea ice extent globally at a 1°
horizontal resolution and 6 h time resolution from 1850 to
present (Titchner and Rayner, 2014). There are various Arc-
tic sea ice data products available from various institutions,
and Berkman et al. (2020a, 2022) had previously only used
Arctic sea ice data from the National Snow and Ice Data
Center (NSIDC; Fetterer and Windnagel, 2017). However,
Comiso et al. (2017) found that the historical Arctic sea ice
extent and trends from HadiSST2.0 are very similar to those
of other sea ice datasets such as the NSIDC (Fetterer and
Windnagel, 2017).

2.3 Storm tracking

Arctic cyclones are identified in 1h ERA-5 data, which
are at a different temporal resolution than the sub-hourly
Arctic shipping data and the 6h Arctic sea ice data, us-
ing the storm tracking algorithm developed by Hodges
(1994, 1995, 1999, 2021). This storm tracking algorithm has
been used in numerous studies to identify past Arctic cy-
clones in reanalyses (e.g. Day and Hodges, 2018; Day et al.,
2018; Gray et al., 2021; Vessey et al., 2022). Vessey et al.
(2020) showed that this storm tracking algorithm captures
more Arctic cyclones when based on 850 hPa relative vortic-
ity than on mean sea level pressure (MSLP), so in this study
850 hPa relative vorticity is used as the storm tracking vari-
able.

This field is first spectrally truncated to a spectral resolu-
tion of T42 and is filtered to remove the planetary scales for
total wavenumbers less than or equal to 5. This ensures that
synoptic-scale systems that are independent of large-scale
forcings are focused on. Cyclone features are then identified
at each time step as maxima in the T42 850 hPa relative vor-
ticity field. Feature points between consecutive 1 h time steps
within a minimum displacement factor of 2° in all regions
north of 30°N are then linked to create cyclone tracks. This
is achieved by optimizing a cost function for track smooth-
ness, which is subject to adaptive constraints on displacement
and smoothness (Hodges, 1999).

Once all cyclone tracks have been identified between 1979
and 2021, they are then filtered to only retain those that
last more than 2d and travel more than 1000 km. This fur-
ther ensures that only mobile and synoptic-scale cyclones
are focused on, but it means that smaller mesoscale cyclones
such as polar lows are not retained. Arctic cyclone tracks are
then filtered by those that travel north of the Arctic Circle
(66.5° N) at any point during their lifetime. To assess the haz-
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ardous weather conditions that may impact ships, the maxi-
mum full resolution ERA-5 10 m wind speed and significant
wave height (including tide and swell) within a 5° radius of
the cyclone’s centre are then identified and added to the cy-
clone tracks.

Ships are typically built to withstand moderately intense
weather conditions, and more intense Arctic cyclones are
more likely to pose a significant threat to ships operating in
the Arctic. The Beaufort wind scale and Douglas sea state
scale can be used to gauge the severity of cyclones and
whether their intensity can cause hazardous ocean condi-
tions that could threaten a ship and its crew (Simpson, 1906;
Schule, 1966; Met Office, 2010). These scales indicate when
rough sea conditions are likely to occur depending on sur-
face wind speed or wave height. The thresholds that result
in rough sea conditions are marked as 17ms~! for surface
wind speeds (Beaufort wind scale 8 and higher) and 2.5m
for significant wave heights (Douglas sea state scale 5 and
higher). The identified ERA-5-derived Arctic cyclone tracks
are then filtered to obtain the cyclone tracks that cause rough
sea conditions in the Arctic and have a maximum 10 m wind
speed and significant wave heights within the Arctic exceed-
ing these thresholds. Although the exceedance of these in-
tensity thresholds does not guarantee that every ship will be
damaged or affected, these thresholds do provide an objective
measure to filter out cyclones that may be intense enough to
be hazardous for ships.

2.4 Past Arctic ship tracks intersecting with past
cyclone tracks

The number of past ship tracks that intersected with an in-
tense cyclone is quantified to determine the number of ship
tracks impacted by past cyclones. The highest wind speeds
do not occur at the centre of a cyclone but often occur in
the southern half of a cyclone due to near-surface air streams
(Browning, 2004; Vessey et al., 2022). Vessey et al. (2022)
showed that in the composite structure of the 100 most in-
tense winter and summer Arctic cyclones, the maximum
10 m wind speeds within these cyclones occur in an area ap-
proximately 5° south of the composite cyclone’s centre rela-
tive to the direction of propagation (see Vessey et al., 2022,
Fig. S3).

High surface wind speeds tend to cause tall ocean waves
and high significant wave heights. Tall ocean waves are per-
haps more hazardous to ships than high surface wind speeds,
as they have a greater ability to make the ship unstable. So, in
this study, an intersection between a ship track and a cyclone
track occurs if the Arctic ship track longitude and latitude co-
ordinates at the same time step are within 3° (approximately
333 km) of the longitude and latitude coordinates of the cy-
clone’s maximum significant wave height, and the significant
wave height at the ship’s location is greater than 2.5 m. This
ensures that the ship is impacted by extreme wave heights
and that the extreme wave height conditions are related to the

https://doi.org/10.5194/nhess-24-2115-2024

2119

passage of an Arctic cyclone. This intersection methodology
is shown in Fig. 8.

If there are multiple intersections between a ship’s coor-
dinates and a particular cyclone, this ship and cyclone inter-
section is only counted once to avoid double counting ship
and cyclone intersections. A similar procedure is followed
to connect the time and coordinates of a past reported ship-
ping incident with the passage of a cyclone. To account for
a time lag between an intersection occurring and the inci-
dent being reported, incident reports within the next 48 h af-
ter the passage of an Arctic cyclone are counted as being
related to a cyclone. The sensitivity to this 3° (approximately
333 km) distance threshold is also tested, and intersections
between the ship track and cyclone and the shipping incident
are also determined within a 6° (approximately 666 km) of
the longitude and latitude coordinates of the cyclone’s maxi-
mum significant wave height, and the significant wave height
at the ship’s location is greater than 2.5 m. For some cases,
cyclones may cause less-extreme significant wave heights
that are still greater than the 2.5m threshold outside a 3
and 6° distance radius from the cyclone’s maximum signif-
icant wave height, so the number of intersections between
ship track and cyclone (and shipping incident and cyclone)
may be underestimated. However, this approach should iden-
tify the ship tracks and shipping incidents impacted by the
most extreme significant wave height conditions caused by
the passage of a past Arctic cyclone.

3 Trends in Arctic shipping and in Arctic cyclones

Between September 2009 and December 2016, 176 961 ships
with a unique identification number (MMSI) travelled north
of the Arctic Circle (Fig. 1a). The number of ships that
travelled in the Arctic increased year-on-year from 2010
to 2016 (Fig. la). This is also shown by Berkman et al.
(2020b, 2022). In 2010, 15666 ships with a unique MMSI
transmitted an AIS location in the Arctic, whereas in 2016
the number ships operating in the Arctic was +122 % higher
(more than 2 times greater), and approximately 34 780 ships
transmitted an AIS location (Fig. 1). This shows that the
number of ships operating in the Arctic and transmitting their
locations increased between 2010 and 2016.

There was a greater increase in the number of small ships
with a draught of less than 4.55m, from 7261 in 2010 to
12193 in 2016 (4+68 % increase), than the increase in the
number of large ships with a draught of more than 4.55m,
from approximately 8611 in 2010 to 10 117 in 2016 (+17 %
increase; Figs. 1b and 1c). The draught threshold of 4.55m
represents the mean draught of all ships that travelled in the
Arctic between September 2009 and December 2016. Since
2004, when large ships were mandated to be fitted with AIS
transponders, such devices have increasingly been fitted to
smaller vessels. In May 2012, it became mandatory for all
fishing vessels with a length greater than 24 m to have AIS
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transponders (U.K. Gov., 2014). Such a change in regulation
may have artificially increased the number of ships reporting
their position when in the Arctic. However, given that the in-
crease in the number of ships shown in Fig. 1 is so great and
that there is a strong increase in the number of large ships that
were required to have an AIS transponder starting in 2004, it
is highly likely that the number of ships operating in the Arc-
tic has increased.

The number of Arctic ships per month varies seasonally
with changes in Arctic sea ice extent, which is also shown
by Berkman et al. (2020b, 2022). The maximum number of
ships in the Arctic per year generally occurs in the late sum-
mer and early autumn months when Arctic sea ice is typi-
cally at its annual minimum extent (Fig. 1). The minimum
number of Arctic ships generally occurs in winter months
(Fig. 1). For example, in 2012 Arctic sea ice extent was
15.2 x 10%km? in March but had reduced to 3.6 x 10% km?
in September (National Snow & Ice Data Centre, 2023). So,
the number of ships operating in the Arctic appears to be cor-
related with Arctic sea ice extent, where lower sea ice extent
coincides with a higher number of ships operating in the Arc-
tic. This is consistent with Berkman et al. (2020a, 2022).

The number of ships operating in the Arctic per year more
than doubled between 2010 and 2016 (Fig. 1). However,
there is some evidence to suggest that the increasing num-
ber of ships in the Arctic slowed between 2017 and 2019
(NOAA, 2022). Although they used a different data source,
the NOAA (2022) showed that the maximum number of
ships per month travelling in the Arctic in 2018 was simi-
lar to 2016, with a maximum of approximately 4000 ships
travelling in the Arctic in late summer in both years. So the
increase in the number of ships operating in the Arctic be-
tween 2010 and 2016 (Fig. 1) may have slowed from 2016 to
2018. However, given the lack of up-to-date publicly avail-
able ship track data, there is insufficient evidence to describe
shipping behaviour up to the present day.

Since 1979, surface temperatures in the Arctic have
warmed approximately 4 times more than the global average
(Rantanen et al., 2022), due to Arctic amplification (Smith
et al., 2019). Despite this, there are no evident trends in the
frequency of intense Arctic cyclones with significant wave
heights greater than 2.5 m (Fig. 2). Despite some inter-annual
variability leading the annual average of intense Arctic cy-
clones to vary by approximately 38 %, from a maximum of
219 cyclones to a minimum of 150, an average of 182 Arc-
tic cyclones with significant wave heights higher than 2.5 m
occurred each year between 1979 and 2022 (Fig. 2).

The frequency of intense Arctic cyclones does appear to
vary seasonally, with the frequency of intense Arctic cy-
clones being highest in winter and lowest in summer (Fig. 2).
This seasonality in Arctic cyclone intensity was also shown
in Zhang et al. (2004), Sorteberg and Walsh (2008), Sim-
monds et al. (2008), and Vessey et al. (2020, 2022). Although
in this study, the seasonality in Arctic cyclone frequency and
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intensity is shown in terms of cyclones with extreme signifi-
cant wave heights.

4 Seasonality in Arctic ship tracks and Arctic cyclone
tracks

The number of ship tracks in the Arctic varies per month
and is highest in summer months when Arctic sea ice is typ-
ically at its minimum extent. Between 2010 and 2016, there
were a total of approximately 44 000 Arctic ship tracks in
winter (DJF) months and 46000 in spring (MAM) months
(Fig. 3a and b). But in all summer (JJA) and autumn (SON)
months between 2010 and 2016, there were more than double
the number of Arctic ship tracks compared to in winter and
spring months, with approximately 95000 and 122 000 Arc-
tic ship tracks occurring in all summer and autumn months
respectively (Figs. 1c and 3d). This further shows that the
number of ships operating in the Arctic is highest when the
Arctic sea ice extent is lowest.

The highest density of Arctic ship tracks in all seasons oc-
curs in the Barents Sea and just north of northern Norway in
every season, with more than 200 ship tracks in this region
in all seasons (Fig. 3e—h). The highest density of ships in the
Barents Sea is also shown when examining Arctic ship tracks
over annual timescales (Fig. S1 in the Supplement). Other re-
gions of high Arctic ship track density occur around Iceland
and in Baffin Bay, where ship track density is approximately
50 to 200 tracks per season (Fig. 3e—f). This result is simi-
lar to that of Eguiluz et al. (2016), who also showed that the
highest density of ships in the Arctic between 2010 and 2014
was in these areas.

There is also seasonal variation in the spatial distribution
of Arctic ship tracks, which shows that in winter and spring,
shipping is confined to the Greenland, Norwegian and Bar-
ents seas (Fig. 3a—f). However, in summer and autumn, ship
tracks are more widespread across the Arctic, and there are
many more ships travelling across the trans-Arctic shipping
routes of the Northern Sea Route (NSR; along the coastline
of Eurasia) and the Northwest Passage (NWP; through the
Canadian Arctic Archipelago). Although, when considering
the density of Arctic ship tracks, the number of ships in sum-
mer and autumn is much greater in the Barents Sea than in
these trans-Arctic shipping routes (Fig. 3a—f). This spatial
distribution in Arctic ship tracks is consistent with the Arctic
ship tracks described by Corbett et al. (2010), Eguiluz et al.
(2016), and Hreinsson (2020). So, despite large reductions in
Arctic sea ice extent since 1979, trans-Arctic shipping along
the NSR and the NWP was limited to summer and autumn,
when Arctic sea ice was at its minimum extent. Moreover,
the density of trans-Arctic shipping appears much lower than
the density of ships in the Barents Sea (Fig. 3a—f).

The highest track density of intense Arctic cyclones with
10 m wind speeds greater than 17 ms~! and significant wave
heights greater than 2.5m is also in the Barents Sea and
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Figure 1. Trends per year and per month, from September 2009 to December 2016, in the frequency of (a) all ships with a unique identi-
fication number (MMSI) that travelled north of the Arctic Circle (66.5° N), (b) only small ships with a draught less than the mean draught
across all ships (4.55 m), and (c) only large ships with a draught more than the mean draught across all ships (4.55 m). Data were taken from

the Berkman et al. (2020a) Arctic shipping dataset.
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Figure 2. The total number of Arctic cyclones per year and per season (winter — DJF, spring — MAM, summer — JJA, and autumn — SON)
with significant wave heights greater than 2.5 m from 1979 to 2022 based on ERA-5 reanalysis data.

around Iceland, the same regions where ship track density
is highest (Fig. 3). In summer, the track density per season
of intense Arctic cyclones appears to extend from the Bar-
ents Sea to over the Kara Sea (Fig. 3i—p), perhaps due to the
difference in the spatial distribution of summer Arctic cy-
clones, which is highest over the Eurasian coastline (Reed
and Kunkel, 1960; Serreze et al., 2001; Simmonds et al.,
2008; Crawford and Serreze, 2016; Vessey et al., 2020).
Overall, there is higher track density in winter intense Arc-
tic cyclones than in summer intense Arctic cyclones (Fig. 3i—
p), with winter Arctic cyclones having significant wave
heights as high as 13 m (Fig. S2 in the Supplement). When
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applying more extreme intensity thresholds of 10 m wind
speeds greater than 25 ms™! and significant wave heights of
4 m, the Barents Sea is still identified as the region with the
highest track density of intense Arctic cyclones (Figs. S3 and
S4 in the Supplement). So, the highest density of ship tracks
is also where there is the highest density of intense Arctic
cyclone tracks (Fig. 3).
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Figure 3. (a—d) All ship tracks (red lines) from 2010 to 2016 per season. (e=h) Ship track density from 2010 to 2016 per season per grid box
(2.0°N x 5.0°E). (i-1) Arctic cyclone track density from 1979 to 2021 per season per unit area (5° spherical cap) of cyclones with 10 m wind
speeds greater than 17 m s~1. Panels (g-h) show the same as (i-1) but for the track density of Arctic cyclones with significant wave heights
greater than 2.5 m. Panels (a, e, i, and m) — winter (DJF), panels (b, {, j, and n) — spring (MAM), panels (c, e, k, and 0) — summer (JJA), and
panels (d, h, I, and p) — autumn (SON). Ship track densities are smoothed using a Gaussian filter equal to 1.0. The mean HadISST2.0 Arctic
sea ice extent greater than 15 % over each period is shown in white. The solid black line indicates the Arctic Circle (66.5° N).
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5 Trans-Arctic shipping trends through the Northern
Sea Route and Northwest Passage

One benefit of reduced Arctic sea ice extent is that it offers
shorter routes between ports in North America, Europe, and
Asia than traditional mid-latitude routes through the Suez
and Panama canals (see Table 1). The number of ships trav-
elling through the NSR increased significantly from 2010 to
2016 (Fig. 4). In 2010, approximately 150 ships travelled
along the NSR between the Kara and Laptev seas and along
the coastline of Eurasia (see red box in Fig. 4a), whereas
in 2016, approximately 460 ships (4200 % increase) trav-
elled through these seas (Fig. 4b). This increase in ship traf-
fic through the NSR was similarly shown by Miiller et al.
(2023).

Fewer ships travelled through the NWP (through the Cana-
dian Arctic Archipelago) from 2010 to 2016 than through the
NSR (see blue box in Fig. 4a). Fewer than 40 ships trav-
elled through the NWP between 2010 and 2013, but this
number was higher in 2014, 2015, and 2016 (Fig. 4b). In
2016, approximately 240 ships travelled through the Cana-
dian Archipelago (4500 % increase; Fig. 4b). However, con-
sidering that there were tens of thousands of ship tracks
north of the Arctic Circle each year between 2010 and 2016
(Fig. 3), the hundreds of ships travelling through the trans-
Arctic shipping routes of the NSR and NWP each year
(Fig. 4) were significantly fewer than the thousands, even
tens of thousands, of ships travelling in the Barents Sea each
year.

Arctic sea ice in the Canadian Arctic Archipelago and in
the NWP is much thicker than the sea ice located north of
the Eurasian continent and in the NSR (Sallila et al., 2019).
Therefore, sea ice in the NSR is more susceptible to melting
in summer and autumn months, and the NSR has a greater
likelihood than the NWP of being navigable for ships. Hence,
there is a higher number of ships in the NSR than in the
NWP between 2010 and 2016 (Fig. 4). However, the number
of ships travelling through the NSR per year does not show
a consistent increase year-on-year, with approximately 300
and 210 ship tracks occurring in 2014 and 2015 respectively
(Fig. 4b). So, the annual variation in the minimum Arctic sea
ice extent may still influence the number of ships travelling
through these trans-Arctic shipping routes.

6 Trends in past Arctic shipping incidents

Between 2005 and 2017, there were a total of 250 reported
shipping incidents north of the Arctic Circle (Fig. 5a), with
158 occurring between 2010 and 2016 (Fig. 5b). This is only
0.09 % of all ships (176 961) that travelled north of the Arctic
Circle between 2010 and 2016 (Fig. 1). These incidents re-
sulted in damage and disruption to the ship and its crew and
include 83 various types of incidents, including capsizing,
allision, equipment failure, fire, flooding, grounding, loss of
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control and/or propulsion, and personnel overboard (Protec-
tion of the Arctic Maritime Environment Agency, 2023).

The ship with the highest tonnage to report an incident
north of the Arctic Circle between 2005 and 2017 was the
Stride tanker ship on 9 September 2013, the incident pertain-
ing to which occurred in Murmansk, Russia. This ship is a
large tanker with a tonnage of 60325t and a horizontal size
of approximately 240 m. The incident report shows that this
ship experienced contact with a fixed object in the Barents
Sea (Protection of the Arctic Maritime Environment Agency,
2023). The report of this incident aligns with other media re-
ports (e.g. Shipwreck Log, 2014). Another large oil tanker
with a tonnage of 29 844 t, the SKF Enisey/SCF Yenisei, re-
ported an incident on 26 September 2014. The incident report
shows that this ship experienced contact with a fixed object in
the Kara Sea, consequently leading to marine casualties (Pro-
tection of the Arctic Maritime Environment Agency, 2023).
The report of this incident aligns with other media reports
(e.g. Shipwreck Log, 2014). Most reported Arctic shipping
incidents between 2005 and 2017 were from fishing vessels,
and those ships have a tonnage less than 1000 t (Fig. S5 in the
Supplement). However, the cause of these incidents is not re-
ported, and it is not indicated whether these events occurred
due to bad weather such as Arctic cyclones. This requires
matching the position and time information with past Arctic
cyclone tracks.

The number of Arctic shipping incidents is generally high-
est in summer months (Fig. 5a), which is when the number
of ships operating in the Arctic is generally highest (Fig. 1).
Up to 36 Arctic shipping incidents were reported per year,
with the maximum occurring in 2016 (Fig. 1). The spatial
distribution of reported Arctic shipping incidents also shows
that the majority of incidents occur very close to coastlines
(Fig. 6). In fact, very few incidents occur in the open Arctic
Ocean (Fig. 6).

Although there is an increasing trend in the number of re-
ported shipping incidents in the Arctic, these numbers are
far less than the total number of ships travelling in the Arc-
tic per year, which in 2016 was approximately 34 780 ships
(Fig. 1). In 2016, of the 34 780 ships that travelled across the
Arctic Ocean, only 36 ships (approximately 0.1 %) reported
a shipping incident. Similarly in other years, less than ap-
proximately 0.1 % of all ships travelling in the Arctic Ocean
reported a shipping incident (Fig. 5b). This shows that it is
very uncommon for shipping incidents to occur despite the
very high number of ships travelling in the Arctic Ocean.

7 Number of Arctic ships intersected with and
impacted by past intense Arctic cyclones

Between 2010 and 2016, a total of 32103, 15246, and
4633 ship tracks intersected with an Arctic cyclone, where
each ship’s longitude and latitude coordinates were within
3° (approximately 333 km) of the longitude and latitude co-
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Figure 4. (a) All trans-Arctic ship tracks (red lines) that travelled through the Northern Sea Route (NSR; along the coastline of Eurasia and
through the purple box) and the ship tracks that travelled through the Northwest Passage (NWP; through the Canadian Arctic Archipelago
and through the blue box) from January 2010 to December 2016 from the Berkman et al. (2020a) Arctic shipping dataset. The total number
of ship tracks across the NSR and NWP are also indicated. The mean HadISST2.0 Arctic sea ice concentration greater than 15 % is shown
in white. The solid black line indicates the Arctic Circle (66.5° N). (b) The annual number of trans-Arctic ship tracks that travelled through
the NSR (purple line) and NWP (blue line) from January 2010 to December 2016.

ordinates of a cyclone’s maximum significant wave height
at the same time step, and the significant wave height at
the ship track coordinates was greater than 2.5 m (Fig. 7a),
4.0m (Fig. 7b), and 6.5 m (Fig. 7c) respectively. These in-
tensity thresholds are typically considered to lead to rough
to very rough sea conditions using the Douglas sea state
scale. However, between 2010 and 2016 only 9 shipping inci-
dents (0.2 % of all intersections with significant wave height
greater than 6.0 m and 6 % of all reported Arctic shipping in-
cidents) were reported within 2 d following the intersection
between a ship and an intense Arctic cyclone (Fig. 7d). So
ships frequently intersect with and are impacted by intense
Arctic cyclones with significant wave heights exceeding 6 m,
but only a handful of these intersections resulted in a reported
shipping incident.

All of the shipping incidents following the intersection of
a ship and cyclone are described as causing only partial dam-
age to the ship, and none of these intersections resulted in the
ship being lost (Table 2). These shipping incidents included
fire, allision and/or collision, equipment failure, loss of elec-
trical power, and loss of control (Table 2). The consequences
of these incidents included marine casualties (Table 2). All
but one of the ships to report an incident had a tonnage of
approximately 1000t or lower. As larger ships (e.g. cargo
ships) often have a tonnage greater than 10 000 t (UNCTAD,
2022), the ships that reported a shipping incident following
the passage of an Arctic cyclone were likely smaller ships,
e.g. fishing vessels.

There are reports of other fishing vessels being impacted
by the passage of Arctic cyclones that are not included in
the Protection of the Arctic Maritime Environment Agency
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(2023) shipping incidents database, which is limited to in-
cidents that occurred between 2005 and 2017. For example,
the Arctic Rose fishing vessel sank in the Bering Sea in April
2001 after being impacted by high wind and waves that could
have resulted from the passage of an Arctic cyclone (Bor-
lase, 2003). Another example includes the Gaul fishing ves-
sel, which sank in 1974 after being impacted by the passage
of an intense cyclone (BBC News, 2014).

When searching for shipping incidents within a 6.0° (ap-
proximately 666 km) area from the location of an Arctic cy-
clone’s maximum significant wave height, only 10 Arctic
shipping incidents were reported within 48 h of the passage
of an Arctic cyclone (Fig. S6 in the Supplement). This is still
only a very small percentage (less than approximately 0.02 %
of all the intersections with significant wave height greater
than 6.0 m) of the total number of intersections between ship
tracks and Arctic cyclone tracks, as a total of 47 327, 26 530,
and 6661 ship tracks were found to intersect within a 6.0° ra-
dius of a past Arctic cyclone track, causing significant wave
heights at the ships’ locations to be greater than 2.5, 4.0,
and 6.0 m respectively (Fig. S6 in the Supplement). So, even
when altering the ship and cyclone intersection method, in-
tersections between ships and intense Arctic cyclones were
found to be very common from 2010 to 2016, with a very
low percentage of these intersections resulting in a reported
shipping incident.
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Figure 5. (a) The total number of ships that reported an incident north of the Arctic Circle (66.5°N) per month and per year between
September 2009 and December 2016 from the Protection of the Arctic Maritime Environment Agency (2023) dataset. (b) The percentage of
ships that travelled north of the Arctic Circle (66.5° N) per month and per year between September 2009 and December 2016 that reported a
shipping incident.
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Figure 6. The total number of reported shipping incidents in the Arctic (north of 66.5° N) between (a) 2005 and 2017 and between (b) 2010
and 2016 from the Protection of the Arctic Maritime Environment Agency (2023) database.
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Figure 7. The annual number of Arctic ship and cyclone intersections from 2010 to 2016, where a ship’s longitude and latitude coordinates
are within 3° (approximately 333 km) of the longitude and latitude coordinates of the cyclone’s maximum significant wave height at the
same time step and where the significant wave height at the ship track coordinates is greater than (a) 2.5m, (b) 4.0m, and (¢) 6.0m. (d)
The number of intersections that led to a reported shipping incident within 48 h of an Arctic ship and cyclone intersection. Note: multiple
intersections between a cyclone and the same ship track are not double counted.

Table 2. Summary of all reported incidents between 2010 and 2016 following an intersection between a ship track and an Arctic cyclone
track, where a ship’s longitude and latitude coordinates are within 3° (approximately 333 km) of the longitude and latitude coordinates of
the cyclone’s maximum significant wave height at the same time step and where the significant wave height at the ship track coordinates is
greater than 2.5 m. Shipping incident data are from Protection of the Arctic Maritime Environment Agency (2023).

Date of incident ~ Vessel name Type of incident Vessel lost Vessel ~ Consequences
(yyyy/mm/dd) or damaged  tonnage (t)

2011/07/04 Arctic Hawk Fire Damaged 17  Marine casualty
2011/07/22 Barge 210 Allision Damaged 1255 Marine casualty
2011/09/11 Barge 211 Equipment failure Damaged 1016  Marine casualty
2012/08/31 Aivig Flooding Damaged 12892  Marine casualty
2013/07/26 Tony Saganna Set adrift Damaged 40  Marine casualty
2013/10/12 Beauty Bay Fire Damaged 196  Marine casualty
2013/11/15 AP 1-88-8701 Equipment failure Damaged 18  Marine casualty
2015/08/23 Capt Frank Moody  Collision Damaged 166  Marine casualty
2016/01/02 Arctic Hawk Loss of electrical power  Damaged 17  Marine casualty
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8 How do Arctic ships respond to the passage of an
intense Arctic cyclone?

To gauge how ships respond to the passage of intense Arctic
cyclones, the most intense cyclones between 2010 and 2016
that travelled through the busiest cluster of Arctic ships (in
the Barents Sea; Fig. 3) were identified within the ERA-5
dataset. According to ERA-5, the five most intense Arctic
cyclones that caused the highest and most intense significant
wave heights in the Barents Sea between 2009 and 2016 oc-
curred in December 2012, December 2014, February 2015,
March 2015, and March 2016, when significant wave heights
in the Barents Sea exceeded 10 m (Fig. 8).

We would expect ships to avoid the paths of these most
intense Arctic cyclones, given that ships have been provided
with weather forecasts. This, however, does not seem to be
the case as ship tracks were located within the regions of the
tallest waves, even in regions where waves exceeded 10 m
(Fig. 8). As many as 103 intersections between these cy-
clones and ships occurred, but no shipping incidents were
reported up to 48 h after these intersections (Fig. 8). Ships ap-
pear able to withstand and even travel through the passage of
the most intense historical Arctic cyclones. Furthermore, af-
ter consulting the shipping incident reports, none of the most
intense Arctic cyclones resulted in a reported shipping inci-
dent (Table 2).

So perhaps the risk of total loss of the ship and its cargo
is low and mitigated by the ship’s ability to withstand the
roughest sea conditions caused by an intense Arctic cyclone.
However, other than direct damage to the ship and its cargo,
the ship could experience business interruption due to the
passage of intense Arctic cyclones. This could lead to a delay
in the ship’s transit if the ship has to slow down and prepare
for the cyclone’s approach. Other damage could occur to port
facilities, which is not considered here. So indirect damage
could occur following the passage of an intense Arctic cy-
clone, leading to financial losses.

9 Conclusions

The risk posed by Arctic cyclones to ships has seldom been
quantified due to the lack of publicly available past Arctic
ship track data. Such data are often privately owned and diffi-
cult and costly to obtain. However, the lack of publicly avail-
able historic ship track data has been somewhat reduced by
Berkman et al. (2020a), who published Arctic ship track data
derived from automatic identification system (AIS) transpon-
ders over a limited time period (September 2009—December
2016). This publicly available dataset is used in this study
with past shipping incident reports and past cyclone tracks
to quantify how many ships were impacted by hazardous
weather conditions caused by Arctic cyclones and how many
Arctic shipping incidents occurred following the passage of
a cyclone.
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Overall, the number of ships operating in the Arctic (north
of 66.5°N) and exposed to intense Arctic cyclones has
greatly increased between 2010 and 2016. Intense Arctic
cyclones are found to very frequently intersect Arctic ship
tracks, with tens of thousands of intersections occurring each
year. But only a very small percentage of these intersections
caused a reported shipping incident, suggesting that past Arc-
tic cyclones were not hazardous to ships, and ships are in-
stead able withstand the weather conditions caused by the
most hazardous Arctic cyclones.

— The number of ships operating in the Arctic and trans-
mitting their locations using AIS transponders has more
than doubled from 2010 to 2016, and the highest track
density of ships and intense cyclones in the Arctic oc-
curs in the Barents and Norwegian seas and around Ice-
land.

Arctic sea ice extent has declined greatly over the last few
decades due to global warming. It is shown in this study that
the annual number of ships operating in the Arctic has in-
creased year-on-year from 2010 to 2016, from 15666 ships
in 2010 to 34780 ships in 2016. Arctic ship track density
and intense cyclone track density are greatest year-round in
the Barents and Norwegian seas and around Iceland. This
is especially the case in winter and spring, when ships are
rarely found in trans-Arctic shipping routes and there is a
higher density of intense Arctic cyclones in these regions.
In summer and autumn, Arctic ship tracks are found more
widely across the southern Arctic and also in the trans-Arctic
shipping routes of the Northern Sea Route (NSR) and the
Northwest Passage (NWP), which run along the coastline
of Eurasia and through the Canadian Arctic Archipelago re-
spectively.

The number of ships operating in the Arctic correlates
with Arctic sea ice extent, with a higher monthly and sea-
sonal number of ships operating in the Arctic coinciding with
lower Arctic sea ice extent in late summer and early autumn
months. The number of ships travelling through the NSR and
NWP has increased from 2010 to 2016, with the NSR typi-
cally having more ship transits than the NWP per year. This
is likely due to the NSR being typically more ice-free in sum-
mer and autumn months than the NWP, where sea ice tends
to be thicker and less susceptible to melting.

— The number of reported shipping incidents has in-
creased from 2010 to 2016, but the total number of re-
ported shipping incidents is approximately 0.1 % of the
total number of ships operating in the Arctic.

Between 2010 and 2016, a total of 176 961 ships travelled
in the Arctic, but there were only a total of 158 reported
Arctic shipping incidents, which is approximately 0.1 % of
the total number of ships. Most ships that reported an inci-
dent had a gross tonnage of less than 1000t, suggesting that
smaller vessels, such as fishing vessels, are more prone to

Nat. Hazards Earth Syst. Sci., 24, 2115-2132, 2024



2128 A. F. Vessey et al.: The risk of synoptic-scale Arctic cyclones to shipping

Most Intense Cyclone 1800UTC on 12/Marf2015

# Intersections: 3
# Incidents: 0

Most Intense Cyclone: 0600UTC on 13/Mar/2015

Most Intense Cyclone OOOOUTC on 13.’Mar/201 5

# Intersections: 74
# Incidents: 0

# Intersections: 103
# Incidents: 0

# Intersections: 93 |7~ \, 2 # Intersections: 103 ‘ 2 # Intersections: 86
# Incidents: 0 . / # Incidents: 0 y . N # Incidents: 0

# Intersections: 1 > . \ _— # Intersections: 22 |° , - # Intersections: 65
# Incidents: 0 ’ \ # Incidents: 0 o = # Incidents: 0

# Intersections; 47 |- ) J ‘- # Intersections: 77 |- ‘," ( *‘ ~_| | # Intersections: 77
# Incidents: 0 - + - ) # Incidents: 0 - 3 / > # Incidents: 0

# Intersections: 0 i — # Intersections: 15 |7~
# Incidents: 0 7 Y # Incidents: 0 -

4
ERA-5 Significant Wave Height (m) ERA-5 Significant Wave Height (m) ERA-5 Significant Wave Height (m)

Figure 8. Tracks of the five most intense Arctic cyclones with the highest maximum significant wave heights in the Barents Sea (between
20-30°E and 71-77° N) from 2009 to 2016 based on ERA-5 data. The cyclone 850 hPa relative vorticity centre is denoted by the red cross
and its track by the solid red line. The location of the cyclone’s maximum significant wave height is denoted by the red dot marker, with
the 3° radius around this point denoted by the dashed red line. Significant wave height is given by the colour contours, and the sea level
pressure is given by the grey contours. Arctic sea ice extent (sea ice concentration > 15 %) is indicated in white. The black “+4” markers
denote AIS-derived ship coordinates at each time step, with ships that intersected with the cyclone track denoted by the black “x” markers.
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incidents than larger ships, such as cargo vessels. Most re-
ported shipping incidents occurred near the coastlines of the
Arctic, and fewer incidents were located in the open Arctic
Ocean. The increasing number of reported shipping incidents
from 2010 to 2016 is likely a consequence of the number of
ships travelling in the Arctic increasing year-on-year, but the
number of reported incidents remains a very small percent-
age of all ships operating and travelling in the Arctic.

— Despite Arctic ships very frequently intersecting with
the track of an intense Arctic cyclone, only a handful of
these intersections resulted in a reported shipping inci-
dent.

Between 2010 and 2016, a total of 32103, 15246, and
4633 ship tracks intersected with and were located within 3°
(approximately 333 km) of an Arctic cyclone, with the sig-
nificant wave height at the ship’s location being greater than
2.5, 4.0, and 6.5 m respectively. But only 9 reported ship-
ping incidents (0.2 % of the all intersections with significant
wave height greater than 6.0 m) were found to have occurred
within 2 days of the intersection between an Arctic ship and
an intense cyclone. So, the vast majority of past reported
shipping incidents appear unrelated to the passage of intense
Arctic cyclones.

It is surprising how frequently Arctic ship tracks inter-
sected with an intense Arctic cyclone. The track of an in-
tense Arctic cyclone would likely be communicated through
weather forecasts, allowing ships to avoid the forecasted
paths of the intense Arctic cyclones. In this study, numerous
ships were found to be positioned within and impacted by
the tracks of the most intense Arctic cyclones but were able
to withstand the severe weather conditions, and no shipping
incidents were reported.

This study suggests that cyclones are not a dominant cause
of reported Arctic shipping incidents in the present climate,
even though ships are frequently impacted by intense Arc-
tic cyclones. However, ships could also experience conse-
quences other than damage to the ship and crew, such as busi-
ness interruption and delays in transit, and damage could also
occur to port facilities. Although we conclude that synoptic-
scale cyclones pose a low risk to Arctic shipping, other severe
weather phenomena not considered in this study such as po-
lar lows, which have been found to impact normal shipping
operations (Rasmussen, 2003) and to have caused the loss of
numerous small vessels (Rasmussen, 2003), could threaten
shipping in the Arctic.

This study exemplifies the capabilities of open-access risk
analysis and quantifies the risk of past Arctic cyclones im-
pacting Arctic shipping and the number of past shipping in-
cidents caused by Arctic cyclones, which could be useful for
decision-making institutions, the insurance industry, and the
public. This study relies on open-access atmospheric, ship
track, and shipping incident data repositories. Whilst there
are considerable amounts of freely available atmospheric
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data from various institutions, open-access social data such
as ship tracks and shipping incidents are much less attainable
and are often privatized. Consequently, this study was lim-
ited to investigating the risk of Arctic cyclones to shipping in
a short time period between 2010 and 2016. As global warm-
ing continues to change the Arctic rapidly, extensive and up-
to-date ship track and incident data need to be more publicly
available so that the risks to shipping can be monitored and
ultimately mitigated.

Code and data availability. The ERA-5 reanalysis data (Hersbach
et al., 2020) (https://doi.org/10.1002/qj.3803) were downloaded
from the Copernicus Climate Change Service (C3S) Climate
Data Store (https://doi.org/10.24381/cds.bd0915c6, Hersbach et al.,
2023). The TRACK algorithm is available from the University of
Reading’s Git repository (GitLab) at https://gitlab.act.reading.ac.
uk/track/track/-/releases (Hodges, 2021).
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