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ABSTRACT

The thalamus and its constituent nuclei are critical for a broad range of cognitive, linguistic, and sensorimotor pro-
cesses, and are implicated in many neurological and neurodegenerative conditions. However, the functional involve-
ment and specificity of thalamic nuclei in human neuroimaging work is underappreciated and not well studied due, in 
part, to technical challenges of accurately identifying and segmenting nuclei. This challenge is further exacerbated by 
a lack of common nomenclature for comparing segmentation methods. Here, we use data from healthy young (Human 
Connectome Project, n = 100) and older healthy adults, plus those with mild cognitive impairment and Alzheimer’s 
disease (Alzheimer’s Disease Neuroimaging Initiative, n = 540), to benchmark four state-of-the-art thalamic segmen-
tation methods for T1 MRI (FreeSurfer, histogram-based polynomial synthesis [HIPS]-THOMAS, synthesized contrast 
segmentation [SCS]-convolutional neural network [CNN], and T1-THOMAS) under a single segmentation framework. 
Segmentations were compared using overlap and dissimilarity metrics to the Morel stereotaxic atlas, a widely 
accepted thalamic atlas. We also quantified each method’s estimation of thalamic nuclear degeneration across Alz-
heimer’s disease progression, and how accurately early and late mild cognitive impairment, and Alzheimer’s disease 
could be distinguished from healthy controls. We show that the HIPS-THOMAS approach produced the most effective 
segmentations of individual thalamic nuclei relative to the Morel atlas, and was also most accurate in discriminating 
healthy controls from those with mild cognitive impairment and Alzheimer’s disease using individual nucleus volumes. 
This latter result was different when using whole thalamus volumes, where the SCS-CNN approach was the most 
accurate in classifying healthy controls. This work is the first to systematically compare the efficacy of anatomical 
thalamic segmentation approaches under a unified nomenclature. We also provide recommendations of which seg-
mentation method to use for studying the functional relevance of specific thalamic nuclei, based on their overlap and 
dissimilarity with the Morel atlas.
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1.  INTRODUCTION

Accurate identification of thalamic nuclei across spatial 
scales is important due to their widespread involvement 
in an array of functions, including sensory perception, 
motor control, sleep and arousal, and linguistic, memory, 
and cognitive processes (Boeken et al., 2023; Chakraborty 
et  al., 2016; Greene et  al., 2020; Setzer et  al., 2022; 
Williams & Christakou, 2021; Wolff & Vann, 2019; Yang 
et al., 2020). Aberrant thalamic structure and function are 
also implicated in a broad range of neurological, neuro-
psychiatric, developmental, and neurodegenerative con-
ditions, including epilepsy, schizophrenia, autism spectrum 
disorder, multiple sclerosis, and Alzheimer’s disease 
(Aggleton et al., 2016; DeNicola et al., 2020; Elvsåshagen 
et al., 2021; Fu et al., 2019; Giraldo-Chica et al., 2018; 
Liebermann et  al., 2013; Maximo & Kana, 2019; 
Papathanasiou et  al., 2015; Shao et  al., 2013; Smith 
et  al., 2014; Whiting et  al., 2018). However, most MRI-
based analyses treat the thalamus as a homogenous 
entity, reducing sensitivity to thalamic nuclei-specific 
effects. Furthermore, thalamic nuclei segmentation from 
anatomical T1- and T2-weighted MRI data has been 
hampered by suboptimal image contrast, resulting in 
poor delineation of intrathalamic and whole thalamus 
boundaries. Instead, most thalamic nuclei segmentation 
methods, to date, have been based on Diffusion Tensor 
Imaging (DTI), which is limited by the lack of anisotropy in 
the largely grey-matter dominant thalamus, and func-
tional MRI, which is limited by poor spatial resolution and 
distortion of the underlying echoplanar imaging acquisi-
tion (Behrens et  al., 2003; Johansen-Berg et  al., 2005; 
Kim et al., 2013; Kumar et al., 2017; Wiegell et al., 2003; 
Zhang et  al., 2008). As a result, these methods do not 
resolve small structures such as lateral and medial genic-
ulate nuclei (LGN/MGN), and the anteroventral (AV) nucleus, 
which are critical for sensory and cognitive processing.

Due to its inclusion in most publicly available data-
sets and neuroimaging protocols, alongside its high iso-
tropic spatial resolution (usually 1 mm or better), there 
has been a renewed interest in thalamic segmentation 
based on anatomical T1-weighted (T1w) MRI, despite 
its poor contrast in the thalamus. Recently introduced 
thalamic segmentation methods like the FreeSurfer 
Bayesian inference (Iglesias et  al., 2018), and the 
THOMAS multi-atlas (Su et al., 2019) approaches have 
been used to analyze data in disease states like Alzhei-
mer’s disease, alcohol use disorder, and multiple sclerosis 
(Abuaf et al., 2022; Bonham et al., 2023; Forno et al., 
2023; Zahr et  al., 2020). While FreeSurfer primarily 
works on T1 Magnetization Prepared RApid Gradient 
Echo (MPRAGE) data with the ability to incorporate sec-
ondary images with different image contrast (Tregidgo 

et  al., 2023), the original THOMAS algorithm (Su et  al., 
2019) was optimized and validated using white-matter-
nulled (WMn) MPRAGE, a special pulse sequence that 
nulls white-matter instead of cerebrospinal fluid (CSF) 
as in standard MPRAGE. THOMAS was recently adapted 
for conventional T1w MRI in a modified method (T1-
THOMAS), using a mutual information (MI) metric for non-
linear registration and a majority voting (MV) algorithm for 
label fusion. However, T1-THOMAS was not as accurate 
compared to segmentations based on WMn-MPRAGE for 
several small nuclei, presumably due to loss of intratha-
lamic contrast and poor delineation of thalamic boundar-
ies in T1w MPRAGE contrast (Bernstein et al., 2021). To 
leverage the improved intrathalamic contrast of WMn 
imaging, a deep learning-based approach has been pro-
posed using a first convolutional neural network (CNN) to 
synthesize WMn-MPRAGE-like images from T1w-MRI 
and a second CNN to perform segmentation on the syn-
thesized WMn images. This method, called synthesized 
contrast segmentation (SCS), was shown to be much 
more accurate than direct CNN segmentation of T1w-MRI 
data (Umapathy et al., 2022). Another recent method uses 
a robust histogram-based polynomial synthesis (HIPS) 
approach instead of a CNN for the synthesis of WMn-
MPRAGE-like images, and those synthesized images are 
then identically processed as in the original THOMAS 
method for thalamic nuclei segmentation (Vidal et al., 
2024). This method also showed significant improvement 
in Dice and reduction in volume errors compared to T1-
THOMAS and was demonstrated to be more robust than 
the SCS-CNN when applied to data from higher field 
strengths or scanner manufacturers that were not part of 
the CNN training process (Vidal et al., 2024).

A widely used reference guide for identifying thalamic 
nuclei is the Morel stereotaxic atlas (Morel, 2007; Morel 
et  al., 1997), which was developed using histological 
staining of five post-mortem brains from healthy older 
adults for the calcium binding proteins parvalbumin, cal-
bindin D-28k, and calretinin to identify cyto- and mye-
loarchitectural features. Functional relevance was also 
considered during the development of the Morel atlas. 
More recently, the Morel atlas has been digitized (Krauth-
Morel atlas) and made available in MNI-space for use as 
a potential reference in a wide variety of neuroimaging 
applications (Krauth et al., 2010). However, despite their 
claims of conformity with the Morel atlas, both FreeSurfer 
and THOMAS use slightly different nomenclatures and 
definitions for thalamic nuclei (Freesurfer follows Jones 
(2012) nomenclature while THOMAS follows Morel 
nomenclature) and produce parcellations which, at first 
glance, differ qualitatively from each other. As a result, 
direct comparisons of these segmentation methods on 
the same datasets have not been reported. Here, we 
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systematically compare four state-of-the-art methods for 
thalamic nuclei segmentation of T1w MRI: FreeSurfer, 
HIPS-THOMAS, SCS-CNN, and T1-THOMAS. We used 
data from healthy younger adults in the Human Connec-
tome Project (HCP) to quantitatively compare segmenta-
tions from these methods against the Krauth-Morel atlas 
(Krauth et  al., 2010) in subject-space as well as MNI-
space. We then analyzed data from older adults from the 
Alzheimer’s Disease Neuroimaging Initiative (ADNI) data-
base to characterize thalamic atrophy as a function of 
disease status and assessed the accuracy of each of the 
methods in predicting Alzheimer’s disease status using a 
receiver operating characteristic (ROC) analysis.

2.  METHODS

2.1.  Participants

Anatomical T1w-MRI data were sourced from two 
publicly available neuroimaging datasets: the Human 
Connectome Project (HCP) (Van Essen et al., 2013) and 
Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
(http://adni​.loni​.usc​.edu). 100 subjects were pseudo-
randomly selected from the HCP dataset as in previous 
work (Williams et  al., 2022). A subset of 540 subjects 
were selected from the ADNI dataset, comprising partici-
pants who had undergone a Montreal Cognitive Assess-
ment (MoCA) test and were scanned on 3T MRI using 
MPRAGE followed by successful image registration and 
segmentation (see Bernstein et  al., 2021 for further 
details). Subjects were classified as either healthy control 
(HC, 119 subjects), early mild cognitive impairment (EMCI, 
208 subjects), late mild cognitive impairment (LMCI, 116 
subjects), or Alzheimer’s disease (AD, 97 subjects). EMCI 
and LMCI were classified based on subjective memory 
concern scores (either themselves, their partner, or a 
clinician) from the logical memory II subscale of the 
Wechsler Memory Scale—Revised (16+ years in educa-
tion: EMCI scores 9–11, LMCI > 4 & ≤ 8; 8–15 years in 
education: EMCI scores 5–9, LMCI > 2 & ≤4; 0–7 years in 
education: EMCI scores 3–6, LMCI  >  0 & ≤2), a Mini-
Mental State Examination Score between 24–30, a Clinical 
Dementia Rating of 0.5 in the memory box, and sufficient 
cognitive and functional performance that would not make 
threshold for an AD diagnosis (Bernstein et al., 2021).

2.2.  Data processing

2.2.1.  Pre-processing

HCP data (n = 100) were pre-processed using the HCP 
minimal preprocessing pipelines (Glasser et  al., 2013). 
Firstly, T1w images were corrected for gradient distortions 
using a customized version of gradient_nonlin_unwarp in 

FreeSurfer, then each subject’s two T1w scans were 
aligned using FSL FLIRT and averaged. The averaged 
T1w image was then registered to MNI-space using a 12 
DOF affine registration with FLIRT, and a subset of 6 DOF 
transforms were used to align the anterior commissure, 
the anterior commissure–posterior commissure line, and 
the inter-hemispheric plane, while preserving the size and 
shape of the brain in native space. The skull was removed 
by inverting linear (FLIRT) and nonlinear (FNIRT) warps 
from anatomical to MNI-space, applying the warp to the 
MNI-space brain mask, and then applying the mask to the 
averaged T1w image. Finally, the image was corrected for 
readout distortion and biases in B

1 and B1
+ fields. T1w 

MPRAGE datasets from ADNI (n = 540) were directly pro-
cessed using the different thalamic nuclei segmentation 
methods with no extra pre-processing steps. Note that 
the N4 bias correction to remove shading is incorporated 
inside the THOMAS and SCS-CNN pipelines.

2.2.2.  Thalamic nuclei segmentation

The four main thalamic segmentation schemes compared 
in this work are summarized in Figure  1 and described 
below.

2.2.2.1.  Freesurfer.  HCP and ADNI data were segmented 
following methods described previously (Iglesias et  al., 
2018; Williams et  al., 2022). Data processing was run 
using a Nipype pipeline integrating FSL (version 6.0.4) 
and FreeSurfer (version 7.1.1). Anatomical T1w images 
were first processed and parcellated using recon-all in 
FreeSurfer; the output of recon-all was used to initialize 
the parcellation of thalamic nuclei for anatomical data 
using the algorithm described by Iglesias et  al. (2018). 
The parcellated thalamus was converted from FreeSurfer 
space to native anatomical space and changed from mgz 
to nii file format using mri_label2vol and mri_convert in 
FreeSurfer, respectively.

2.2.2.2.  THOMAS variants.  T1w MRI datasets from both 
the HCP and ADNI databases were segmented using 
three THOMAS variants. The first, T1-THOMAS, is an 
adaptation of the original THOMAS method for T1w-MRI 
that uses a mutual information metric for nonlinear regis-
tration and majority voting for label fusion (Bernstein et al., 
2021). The second, a synthesized contrast segmentation 
convolutional neural network (SCS-CNN), uses two CNNs 
to generate segmentations (Umapathy et al., 2022). The 
first CNN was trained using patches from contemporane-
ously acquired T1w and WMn-MPRAGE data and is used 
to synthesize WMn-like images from T1w data. The sec-
ond CNN was trained using WMn-MPRAGE data labeled 
using THOMAS and is used to segment the synthesized 

http://adni.loni.usc.edu
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Table 1.  Method for combining FreeSurfer and Krauth-Morel nuclei to match the Morel nomenclature used by THOMAS, 
producing a unified space for thalamic segmentation comparison.

THOMAS nuclei FreeSurfer nuclei Krauth-Morel nuclei

AV AV AV
VA VAmc + VApc VAmc + VApc
Vla Vla Vla
VLp VLp VLpd + VLpv + VLp
VPL VPL VPLa + VPLp
Pul PuA + PuI + PuL+ PuM PuA+ PuI+ PuL+ PuM
LGN LGN LGNmc + LGNpc
MGN MGN MGN
CM CM CM
MD-Pf MDl+ MDm + Pf Pf + sPf + MDmc + MDpc

WMn-like image generated by the first CNN. The third, 
HIPS-THOMAS, incorporates a histogram-based polyno-
mial synthesis preprocessing step using information from 
the histograms and a plot of each voxel’s intensities of 
T1w and WMn-MPRAGE images to compute a polyno-
mial approximation from a small subset of training images 
used to synthesize WMn-like images from T1w (Vidal 
et  al., 2024). More information and schematics can be 
found in the Supplementary Methods and Supplementary 
Figure 1. Importantly, the original THOMAS algorithm was 
developed using manual segmentations of WMn-MPRAGE 
data guided using the Morel atlas (Su et al., 2019).

2.3.  Label synthesis and segmentation preparation

For FreeSurfer outputs and the Krauth-Morel atlas,  
thalamic nuclei were combined to match the Morel 

nomenclature used by THOMAS to generate 10 thalamic 
nuclei for subjects in both the HCP and ADNI datasets 
(Table  1). Note that habenula and mammillothalamic 
tract (MTT) were omitted as FreeSurfer did not segment 
those structures. Similarly, lateral nuclei such as lateral 
dorsal and intralaminar nuclei such as centrolateral 
which are not segmented by THOMAS were omitted. For 
the HCP subjects, rigid and affine transformations, and 
non-linear warps between native subject space and 
MNI-space were generated with the Advanced Normal-
ization Tools (ANTs) package (Version 2.3.5, Ecphorella) 
(Avants et al., 2008). These image transformations and 
warps were used to generate subject space versions of 
Krauth-Morel nuclei, and MNI-space versions of Free-
Surfer, SCS-CNN, and HIPS-THOMAS segmented nuclei 
for comparison using nearest neighbour interpolation in 

Fig. 1.  Overview of thalamic nuclei segmentation used for HCP and ADNI T1w-MRI datasets showing the FreeSurfer, 
HIPS-THOMAS, SCS-CNN, and T1-THOMAS schemes.
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ANTs. The MNI-space versions of the segmented nuclei 
were used to generate group-level probabilistic atlases 
(Najdenovska et al., 2018).

2.4.  Segmentation metrics

Dice similarity coefficients (Dice) were used to compare 
the 10 segmented thalamic nuclei per hemisphere 
from each approach with the Krauth-Morel atlas in both 
subject space and MNI-space for the HCP data. Dice is a 
widely used measure in image processing for assessing 
overlap, and is defined as:

	
Dice Sx ,Sy( ) =  2 Sx ∩Sy

Sx + Sy �

where Sx ∩Sy  is the cardinality of the intersection 
between the segmentation and ground truth (this is 
equal to the number of true positives, or overlapping 
voxels), divided by the sum of the cardinality of the 
ground truth Sx  and the segmentation Sy  (equal to the 
sum of true positives, false positives, and false nega-
tives) (Williams et al., 2022). Using subject space data, 
we ranked each segmentation approach from best to 
worst (1 to 4) for each of the nuclei using paired-sample 
t-test results. For the MNI-space analysis, a threshold of 
0.25 was used to binarize the group-level probabilistic 
atlas. We used the following cut-offs to compare seg-
mentations: Dice = 0 no agreement, 0 < Dice < 0.2 slight 
agreement, 0.2 ≤ Dice < 0.4 fair agreement, 0.4 ≤ Dice 
< 0.6 moderate agreement, 0.6 ≤ Dice < 0.8 substantial 
agreement, and 0.8 ≤ Dice ≤ 1 almost perfect agreement 
(Pajula et al., 2012).

We also calculated the Average Hausdorff Distance 
(AHD) to compare the 10 segmented thalamic nuclei with 
the Krauth-Morel atlas. The Average Hausdorff Distance 
is used as a measure of dissimilarity and can account 
for differences in isometry. Distance-based metrics are 
advantageous relative to overlap-based metrics in situa-
tions where segmentations are small because overlap-
based metrics disproportionately penalize errors for 
smaller versus larger segmentations, as is the case with 
thalamic nuclei segmentations (Taha & Hanbury, 2015). In 
relation to image segmentation, the Hausdorff Distance 
can be defined as the minimum number of voxels 
between a point in segmentation X and a point in seg-
mentation Y. Therefore, the Average Hausdorff Distance 
is the average minimum distance between all points in 
segmentation A and segmentation B in voxels. The Aver-
age Hausdorff Distance is defined as:

Average Hausdorff Distance A,B( ) =max d A,B( ),d B,A( )( )

d A,B( ) = 1
N

a∈A
∑min

b∈B
a− b

where d A,B( ) is the average minimum distance 
(min a− b ) from voxels in the ground truth (A) to the 
segmentation (B), d B, A( ) is the average minimum dis-
tance (min a− b ) from voxels in the segmentation (B) 
to the ground truth (A). The Average Hausdorff Distance  
is then the maximum of either of these two average 
distance measures in voxels. Although—to the best of 
our knowledge—no consensus guidelines exist for AHD 
thresholds, any segmentation with a coefficient < 1 voxel 
distance could be considered as a “good” segmentation 
since segmented voxels, on average, have at least partial 
overlap with voxels in the ground truth.

2.4.1.  Identifying nucleus-wise “best” 
segmentation methods

We initially defined the best segmentation approach for 
each nucleus based on subject-space and MNI-space 
results. A single segmentation was defined as the best for 
a given nuclei if it had the highest MNI-space Dice coeffi-
cient and had a significantly higher Dice coefficient in the 
subject-space analysis than other approaches. Two seg-
mentations were defined jointly as being the best if they 
(a) had non-significant differences at the subject level and 
different directions of Dice coefficients results for subject- 
and MNI-space data, or (b) had significantly different 
scores at the subject level but the direction for the group 
Dice coefficient showed the inverse effect to the result of 
the null hypothesis significance test. If more than two seg-
mentations met the previous criteria, then no segmenta-
tion approach was defined as the best overall. We then 
corroborated Dice coefficient results with AHD measures.

2.5.  Statistical analysis

We performed statistical analyses using R and jamovi. 
We used two-way ANOVAs to compare segmentation 
metrics (Dice coefficient and Average Hausdorff Dis-
tance) between different segmentation methods in sub-
ject space, testing for main effects of segmentation 
methods (FreeSurfer, HIPS-THOMAS, SCS-CNN, and 
T1-THOMAS), hemisphere (left and right), and for inter-
actions between segmentation methods and hemispheres. 
Post hoc t-tests (Bonferroni corrected) were used to 
compare between segmentation methods for each 
nucleus. We used ANCOVAs to compare nuclei volumes 
for each segmentation method using the ADNI dataset 
to test for main effects of group (HC, EMCI, LMCI, AD), 
and included age and intracranial volume (eTIV output 
of FreeSurfer) as covariates. Dunnett’s test was used for 
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Fig. 2.  Violin plots of Dice overlap between left hemisphere nuclei segmented from Human Connectome Project data 
using FreeSurfer, HIPS-THOMAS, CNN-SCS, and T1-THOMAS approaches. Post hoc t-test results (Bonferroni corrected) 
are presented to show pairwise difference between segmentation approaches for each nucleus (*p < 0.05, **p < 0.01, and 
***p < 0.001).

post hoc analyses to compare HC with EMCI, LMCI, 
and AD groups. We obtained least-squares estimates 
for volumes after adjusting for covariates, and effects 
with adjusted p < 0.05 were considered statistically sig-
nificant. To calculate effect sizes for each pairwise com-
parison, we computed Cohen’s d. Lastly, we performed 
a Receiver Operating Characteristic (ROC) analysis for the 
ADNI dataset using logistic regression to quantify the 
ability of each segmentation method (nuclei volumes) to 
discriminate EMCI, LMCI, and AD from HC. We calcu-
lated area under the curve (AUC) values for each of the 
three scenarios for the different segmentation methods. 
AUCs were also computed using whole thalamus vol-
umes alone for comparison.

3.  RESULTS

3.1.  Human connectome project

3.1.1.  Subject-space analysis

Two-way ANOVAs found significant main effects of seg-
mentation approach and hemisphere for all nuclei (except 
for VPL, which had a non-significant main effect of hemi-
sphere), and a significant interaction between the seg-
mentation approach and hemisphere for all nuclei 
(Supplementary Table  1). Post hoc t-tests (Bonferroni 

corrected) for main effects of segmentation approach on 
Dice coefficients are summarized in Figure 2 for left tha-
lamic nuclei and Figure  3 for right thalamic nuclei.  
To compare segmentation approaches based on the 
subject-space Dice coefficients, we ranked each seg-
mentation approach from best (1) to worst (4) based on 
the post hoc t-tests for main effects of segmentation 
approach. Overall, HIPS-THOMAS had the best (lowest) 
mean ranking (L 1.9, R 1.8), followed by the FreeSurfer  
(L 2.1, R 2.5) and SCS-CNN approaches (L 2.2, R 2.5), 
and then THOMAS (L 3.3, R 3). HIPS-THOMAS also 
had the lowest overall variation in ranking (L SD = 0.899, 
R SD = 0.934), as shown by a smaller standard deviation 
compared to the other approaches (FreeSurfer L SD = 
1.164, R SD = 0.879; SCS-CNN L SD = 0.934, R SD = 
1.066; T1-THOMAS L SD = 0.958, R SD = 0.953). We 
calculated the Average Hausdorff Distance in voxels 
between the segmented nuclei and the corresponding 
nuclei from the Krauth-Morel atlas in subject-space for 
left and right nuclei. We also used two-way ANOVAs to 
compare Average Hausdorff Distances between seg-
mentation approaches and hemisphere for each thalamic 
nucleus. We found a significant main effect of the seg-
mentation approach for VA (F(1, 98.15) = 9.886, p = 0.002, 
η

g
2  =  0.037), VLp (F(1, 98.26)  =  4.052, p  =  0.047, 

ηg
2  =  0.015), LGN (F(1.01, 98.89)  =  5.02, p  =  0.027, 
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ηg
2 = 0.019), MGN (F(1.02, 99.95) = 10.816, p = 0.001, 

ηg
2 = 0.04), CM (F(1, 98.32) = 6.062, p = 0.015, ηg

2 = 0.023), 
and MD-Pf (F(1, 98.17) = 4.28, p = 0.041, ηg

2 = 0.016), but 
no significant main effects of the segmentation approach 
for AV, VLa, VPL, or Pul. We found a significant main 
effect of hemisphere for LGN (F(1, 98) = 5.674, p = 0.019, 
ηg

2  =  0.007) and MGN (F(1, 98)  =  11.223, p  =  0.001, 
ηg

2 = 0.014), but not for other thalamic nuclei (Supple-
mentary Figs. 2 & 3). We found no significant interactions 
between the segmentation approach and hemisphere. 
Post hoc t-tests (Bonferroni corrected) for main effects 
of the segmentation approach on Average Hausdorff 
Distances are summarized in Supplementary Figures  2 
and 3 for left and right thalamic nuclei, respectively. Like 
for Dice, we ranked each segmentation approach from 
best (lowest AHD) to worst (highest AHD). Using only 
nuclei where there was a main effect of the segmentation 
approach on AHD, HIPS-THOMAS had the best (lowest) 
mean ranking (L & R 1.67), followed by FreeSurfer in the 
left hemisphere (1.83) and SCS-CNN in the right hemi-
sphere (2). Both FreeSurfer and SCS-CNN had rankings 
of 2.3 in the right and left hemispheres, respectively. 
Bilaterally, THOMAS had the worst mean ranking (L 3.83, 
R 3.3). The lowest variation in rankings was found for 
THOMAS in the left hemisphere (SD  =  0.37); the next 
lowest variation (SD  =  0.75) was found bilaterally for 

HIPS-THOMAS, and in the left and right hemispheres for 
SCS-CNN and THOMAS, respectively. Bilaterally, Free-
Surfer had the greatest variation in rankings (L SD = 1.21, 
R SD = 0.94).

3.1.2.  MNI-space analysis

Dice and Hausdorff-distance metrics computed in MNI-
space are tabulated for the left and right hemispheres 
for each of the four methods and are summarized in 
Figures 4 and 5, respectively. Although SCS-CNN was the 
only method to have a nucleus with the “almost perfect 
agreement” classification, it had a wider distribution of 
classifications. Similar distributions were seen for Free-
Surfer and T1-THOMAS, while HIPS-THOMAS was the 
only approach to have eight of 10 nuclei in the “substantial 
agreement” classification group. For the left hemisphere, 
HIPS-THOMAS had the highest Dice coefficient for 4 
nuclei (VLp, VPL, LGN, and CM), FreeSurfer for 4 nuclei 
(AV, VA, MGN, and MD-Pf), and SCS-CNN for 2 nuclei 
(VLa, Pul). For the right hemisphere, HIPS-THOMAS had 
the highest Dice coefficient for 5 nuclei (AV, VA, VLp, 
VPL, and MD), FreeSurfer for 2 nuclei (VLa, CM), and 
SCS-CNN for 2 nuclei (MGN, Pul). Nuclei had smaller 
Average Hausdorff Distances along the diagonal (same 
nuclei) across segmentation approaches, except for left 

Fig. 3.  Violin plots of Dice overlap between right hemisphere nuclei segmented from Human Connectome Project data 
using FreeSurfer, HIPS-THOMAS, CNN-SCS, and T1-THOMAS approaches. Post hoc t-test results (Bonferroni corrected) 
are presented to show pairwise difference between segmentation approaches for each nucleus (*p < 0.05, **p < 0.01, and 
***p < 0.001).
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Fig. 4.  Group-level Dice overlap coefficients for nuclei segmented from Human Connectome Project data using 
FreeSurfer, HIPS-THOMAS, CNN-SCS, and T1-THOMAS approaches in MNI-space.
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Fig. 5.  Group-level Average Hausdorff Distance for nuclei segmented from Human Connectome Project data using 
FreeSurfer, HIPS-THOMAS, CNN-SCS, and T1-THOMAS approaches in MNI-space.
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VLa for FreeSurfer, which bilaterally was closer to VLp, 
suggesting FreeSurfer is not able to distinguish well 
between VLa and VLp.

3.1.3.  Interim summary: Human  
connectome project

The “best” method for each nucleus based on subject- 
and MNI-space Dice and AHD coefficients is graphically 
depicted in Figure 6 (see “identifying nucleus-wise ‘best’ 
segmentation methods” for a detailed definition). The 
best performing methods were broadly similar for both 

subject- and MNI-space analyses, as reflected by the 
selection of a single nucleus in the right hemisphere, and 
all but three nuclei in the left hemisphere. In the left hemi-
sphere, HIPS-THOMAS and FreeSurfer/SCS-CNN were 
joint best for CM and LGN respectively, while HIPS-
THOMAS, FreeSurfer, and T1-THOMAS had comparable 
Dice coefficients for AV.

3.2.  Alzheimer’s disease neuroimaging initiative

Figure 7 shows thalamic nuclei atrophy colorized using 
Cohen’s d for the left and right hemispheres respectively, 

Fig. 6.  Best segmentation approach for each of the thalamic nuclei in each hemisphere, based on subject-space and 
group Dice and AHD coefficients.

Fig. 7.  Thalamic nuclei atrophy as a function of AD stage (early mild cognitive impairment (EMCI), late mild cognitive 
impairment (LMCI), and Alzheimer’s disease (AD)) for the 4 segmentation methods. Nuclei with statistically significant 
different volumes between AD stage and healthy controls are colorized using effect size (Cohen’s d).
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for HC-EMCI, HC-LMCI, and HC-AD comparisons. Only 
nuclei with statistically significant differences in the 
ANCOVA tests are coloured. The Cohen’s d provides a 
dimensionless metric for comparisons across methods. 
The progression of atrophy from EMCI to LMCI is cap-
tured nicely by SCS-CNN and HIPS-THOMAS, while 
FreeSurfer and T1-THOMAS do not exhibit a clear pro-
gression from EMCI to LMCI. Note that while SCS-CNN 
displays the progression, it was with reduced effect sizes.

The results of the ROC analyses are summarized in 
Table 2, and ROC curves are visualized in Figure 8. AUC 
values for discrimination of AD and HC for FreeSurfer, 
HIPS-THOMAS, SCS-CNN, and T1-THOMAS using all 
the individual thalamic nuclei volumes (adjusted for ICV/
age) and whole thalamus volumes (for comparison) are 
shown. Classification accuracy using thalamic nuclei vol-
umes was most accurate using HIPS-THOMAS while 

SCS-CNN was the most accurate when classifying using 
whole thalamus volumes, albeit with smaller AUCs for all 
three disease stages.

4.  DISCUSSION

To date, several thalamic nuclei segmentation methods 
based on diffusion MRI, resting-state fMRI, and, more 
recently, structural MRI have been reported, but compar-
isons across different segmentation methods are almost 
non-existent. While Iglehart et  al. (2020) qualitatively 
compared a method from each of those 3 classes (i.e., 
diffusion, functional, and structural MRI) on a small cohort 
of 20 healthy subjects, this is the first work—to the best 
of our knowledge—that quantitatively compares state-
of-the-art structural imaging-based thalamic nuclei seg-
mentation methods, using two large cohorts to benchmark 

Fig. 8.  Receiver operating characteristic curves for the logistic regression used to quantify discriminability between those 
who are healthy and those with EMCI, LMCI, and AD using either whole thalamus or individual thalamic nuclei volumes. 
Discrimination using whole thalamus volume was best using SCS-CNN, while HIPS-THOMAS was best using individual 
nuclei volumes.

Table 2.  Receiver operating characteristics analysis results.

Freesurfer HIPS-THOMAS SCS-CNN T1-THOMAS

HC-EMCI Nuclei: 0.70
Whole Thal: 0.60

Nuclei: 0.74*
Whole Thal: 0.58

Nuclei: 0.69
Whole Thal: 0.62†

Nuclei: 0.73
Whole Thal: 0.61

HC-LMCI Nuclei: 0.69
Whole Thal: 0.62

Nuclei: 0.82*
Whole Thal: 0.63

Nuclei: 0.76
Whole Thal: 0.66†

Nuclei: 0.73
Whole Thal: 0.65

HC-AD Nuclei: 0.77
Whole Thal: 0.66

Nuclei: 0.93*
Whole Thal: 0.74

Nuclei: 0.85
Whole Thal: 0.76†

Nuclei: 0.81
Whole Thal: 0.72

AUC values for discriminating healthy controls from early MCI, late MCI, and AD using either individual nuclei or whole thalamus volumes 
are presented. The highest AUC value for each comparison is denoted for nuclei (*) and whole thalamus (†) segmentation.
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segmentation approaches using Dice and AHD coeffi-
cients, as well as AUC scores in a clinical context. For the 
HCP cohort, using both Dice and AHD as quantitative 
metrics, HIPS-THOMAS displayed the best perfor-
mance (4/10 nuclei on left, 5/10 nuclei on right). These 
results were consistent across subject-space and MNI-
space analyses. For the ADNI cohort, HIPS-THOMAS 
achieved the best AUC scores for discrimination between 
controls and all three AD disease stages—early MCI, 
late MCI, and AD—using individual thalamic nuclei vol-
umes. While SCS-CNN achieved the best AUC scores 
using whole thalamic volumes for discrimination, these 
AUC values were lower than those achieved using 
thalamic nuclei, a result also observed for controls-AD 
discrimination by Iglesias et  al. (2018) using the Free-
Surfer Bayesian parcellation.

One of the main issues hampering accurate segmen-
tation of thalamic nuclei from standard T1w MRI data is 
the lack of intrathalamic contrast as well as the poor 
delineation of whole thalamic boundaries. Novel sources 
of contrast such as white-matter nulled contrast provided 
by FGATIR (Sudhyadhom et al., 2009) or WMn-MPRAGE 
(Tourdias et al., 2014) significantly improve intra-thalamic 
contrast. They also provide a good depiction of whole 
thalamus boundaries, especially the ventral boundaries 
which are adjacent to white-matter tracts. WMn contrast 
optimized at 7T was exploited by the original THOMAS 
method (Tourdias et al., 2014). The idea of synthesizing 
WMn-MPRAGE contrast in the absence of acquired 
WMn-MPRAGE data was first proposed by Datta et al. 
(2021), who showed that WMn-MPRAGE data synthe-
sized from the T1 maps derived from the MP2RAGE 
acquisition improved Dice compared to direct segmenta-
tion of the MP2RAGE ratio image. Since MP2RAGE is still 
not commonly used at 3T and not available in public 
databases like HCP and ADNI, methods which directly 
synthesize WMn-MPRAGE-like images from T1w MRI 
like the SCS-CNN and HIPS-THOMAS used in this work 
were proposed. In our analyses, both SCS-CNN and 
HIPS-THOMAS showed significantly improved Dice com-
pared to FreeSurfer or T1-THOMAS for the ventral nuclei, 
suggesting the utility of improved delineation of the ven-
tral thalamic borders enabled by the WMn contrast. The 
geniculate nuclei also showed significant improvements. 
FreeSurfer showed better Dice performance in the medial 
thalamus, specifically in the left mediodorsal nucleus and 
bilateral centromedian nucleus. One plausible reason for 
this difference is that because the medial thalamus shares 
a boundary with the third ventricle, the contrast between 
grey matter and CSF would be greater for traditional 
CSF-nulled contrast (i.e., standard MPRAGE) than WMn-
MPRAGE where CSF is grey and not black. In turn, this 
contrast may make delineating nuclei more efficacious 

using standard MPRAGE as for FreeSurfer, than methods 
using (synthesized) WMn-MPRAGE as is the case for 
the SCS-CNN and HIPS-THOMAS methods. Both the 
WMn-synthesis-based methods (HIPS-THOMAS and 
SCS-CNN) achieved larger effect sizes and captured 
the progress of atrophy from EMCI to AD better than T1-
THOMAS or Freesurfer. One major advantage HIPS-
THOMAS offers over SCS-CNN (besides the larger AUC 
for nuclei-based discrimination) is its robustness. CNNs 
are very sensitive to training data and that was the case 
for SCS-CNN, which performed sub-optimally on Philips 
3T and Siemens 7T data relative to the Siemens and GE 
3 T data it was trained on (Umapathy et al., 2022). In con-
trast, the simpler polynomial-based method performed 
more robustly on all data inputs, something which is crit-
ical when analyzing large public databases which often 
contain a mixture of field strengths and scanner types.

Iglesias et al. (2018) compared thalamic nuclei volumes 
from their Freesurfer probabilistic atlas-based parcella-
tion against volumes segmented using the Krauth-Morel 
atlas as a sort of first-level validation. Six representative 
nuclei were used to make qualitative comparisons of vol-
ume distributions on 66 subjects, and a qualitative visual 
overlap with Krauth-Morel atlas was described. A more 
quantitative comparison using Dice and AHD was 
reported by Williams et al. (2022) on 100 HCP subjects. In 
this work, we followed the same approach as both of 
these works with a further harmonization of nuclei across 
Freesurfer and THOMAS to enable direct comparisons of 
these methods against the Krauth-Morel atlas. A replica-
tion of the Dice and AHD analyses comparing THOMAS 
variants against FreeSurfer (instead of Krauth-Morel) is 
presented in Supplementary Figures  4–7. Both sets of 
analyses have to be interpreted with caution. The Free-
surfer nuclei labeling is based on the Jones (2012) 
nomenclature, which, while largely similar to the Morel 
nomenclature, has slight differences (anterior medial and 
dorsal merged with ventral for example). Even though 
Freesurfer is one of the most commonly used methods 
for thalamic nuclei segmentation of T1 data, as pointed 
above, it has not been validated rigorously against man-
ual segmentation ground truth. A limited analysis against 
manual segmentation ground truth showed poor results 
in several nuclei such as LGN and MGN compared to 
THOMAS (Su et  al., 2019) and inconsistencies when 
compared to Krauth-Morel (Williams et al., 2022). The rel-
ative performance of three THOMAS variants was similar 
whether using Krauth-Morel or Freesurfer.

Our work had several limitations. Firstly, although indi-
vidual manual segmentation should be considered as the 
“gold” standard for creating a reference for benchmark-
ing automated thalamic segmentation approaches, due 
to the impracticalities of manually labeling 640 subjects, 
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we instead used the Krauth-Morel atlas as a surrogate 
“silver” standard. Secondly, due to the differences in 
nomenclature as well as the nuclei segmented by Free-
Surfer and THOMAS plus its variants, we created a set of 
10 common nuclei by merging some nuclear subdivisions 
such as within pulvinar and mediodorsal nuclei, to enable 
equivalent comparisons across methods. Thirdly, this 
work evaluated four of the main anatomical-based seg-
mentation methods, but did not consider all anatomical 
methods, or functional- or diffusion-based approaches. 
However, functional- and diffusion-based approaches 
produce segmentations that are based on statistical and 
diffusivity properties, respectively, and therefore are fun-
damentally different approaches to generating segmen-
tations. Despite these aforementioned limitations, many 
published segmentation approaches make qualitative 
and semi-quantitative comparisons with respect to the 
Morel atlas. Therefore, unifying the principle anatomical 
segmentation methods under a single nomenclature and 
comparison with the Krauth-Morel atlas provides greater 
insight into which methods are the most similar to the 
Morel atlas as a standard reference space.

Future work should aim to investigate how to best com-
bine and make use of the information generated by both 
SCS-CNN and HIPS-THOMAS approaches, since they 
have complementary advantages with respect of accuracy 
of segmentation for different nuclei, and overall robustness. 
This is of particular importance for enquiries into the func-
tional role of thalamic nuclei in both health and disease 
(Shine et al., 2023). For instance, existing large datasets, 
such as the Human Connectome Project (Van Essen et al., 
2013), Adolescent Brain Cognitive Development study 
(Casey et al., 2018), and the UK Biobank (Sudlow et al., 
2015), provide opportunities for statistically well-powered 
work with high-quality data from many subjects. However, 
large neuroimaging datasets often only include T1 struc-
tural images. Therefore, it is important to continue develop-
ing our understanding of using the T1 signal for thalamic 
segmentation to enhance the utility of datasets without 
optimized acquisitions such as WMn for thalamic function 
research. Future work would also benefit from developing 
tools that include information from other imaging modali-
ties, as is the case for the recent improvement to the Free-
Surfer based segmentation approach, which combines 
diffusion data with T1 images (Tregidgo et al., 2023). For 
example, other imaging contrasts which may benefit tha-
lamic segmentation include magnetization transfer, which 
improves thalamic contrast (Gringel et al., 2009), and pro-
ton density, which enhances contrast between the lateral 
geniculate and surrounding white matter (Fujita et al., 2001). 
Lastly, though we identify volumetric changes in thalamic 
nuclei volume that are associated with Alzheimer’s disease 
progression, discussing its relevance to the aetiology of 

Alzheimer’s pathophysiology is beyond the scope of this 
work. However, recent work has demonstrated that individ-
uals with prodromal autosomal dominant Alzheimer’s dis-
ease have differential associations between thalamic nuclei 
volume and amyloid/tau pathology when compared with 
healthy controls (Pardilla-Delgado et al., 2021). These dif-
ferences exist in spite of a lack of aging-related pathology, 
and demonstrate the importance of understanding how 
changes to thalamic nuclei volume and function contribute 
towards Alzheimer’s disease and its progression (Forno 
et al., 2023).
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