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Abstract: Humic substances (HSs) constitute a primary component of soil organic matter (SOM) and
play a crucial role in soil formation and fertility. However, comprehensive information regarding
quantitative and qualitative changes in HS following biochar’s application to soil still needs to be
improved. This study reports on the impact of biochar application at rates of 0, 10, and 20 t ha−1 (B0,
B10, B20), both with and without nitrogen fertilisation at varying levels (N0, N1, N2), on SOM and
HS contents throughout the cropping seasons between 2014 and 2019. The findings reveal changes
in SOM and HS contents due to biochar addition and fertilisation. Notably, the most substantial
increase in soil organic carbon content was observed in the B20N1 and B10N1 treatments, in stark
contrast with the reference B0N0 treatment. A decrease in humification of SOM was noted across all
treatments involving biochar, whether alone or combined with different N fertilisation levels. An
interesting positive change in HS contents was observed in B10N2, where an increase in humic acids
and a decrease in fulvic acids enhanced HS stability and improved HS quality. These findings shed
light on the intricate dynamics of SOM and HSs in response to biochar application and nitrogen
fertilisation over multiple vegetation seasons of crops on loamy Haplic Luvisols in Central Europe.

Keywords: soil organic carbon; humic substances; biochar; Luvisols

1. Introduction

The increase in food production and progress toward the elimination of malnutrition
since the 1950s has been driven by the mechanisation of ploughing and other farm opera-
tions, the introduction of input-responsive varieties, the use of chemical fertilisers along
with herbicides and pesticides, the increase in supplemental irrigation, and reliance on
information and communications technology [1]. However, the reverse side of this coin is
increased soil degradation, which threatens the long-term sustainability of food produc-
tion and is intricately tied to the application of many agricultural practices. Addressing
these challenges requires concerted efforts and innovation to adapt agricultural practices
to safeguard current and future food safety and uphold the principles of environmental
sustainability [2,3].

Over recent decades, numerous papers have reported on the existence and properties
of Terra Preta Anthrosols, renowned for their high fertility [4]. These soils most likely
originate from the low-fertility soils of the Amazon Basin region, improved by purposeful
human activity in the distant past [5]. The Terra Preta soils are mainly Oxisols, Ultisols, and
Inceptisols, with an anthropic A horizon. Terra Preta soils result from a substantial addition
of organic waste materials, including kitchen leftovers, excrements, biomass waste, and
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charred residues resembling biochar. Soil organisms and fauna partially decompose this
organic material, while a significant part remains in the soil for centuries, enhancing its
carbon content [6,7]. Terra Preta soils are not the only examples of agricultural soils where
humans have increased, rather than degraded, their organic matter content; C-enriched
soils with a history of biochar application are found worldwide [8–10].

With the established potential for enhancing the fertility of soils by prolonged supply
of charred organic materials, ongoing research aims to derive soil amendments from a
diverse range of waste biomass [11]. Driven by the increasing effort to divert human waste
away from landfills and energy recovery facilities [12], the supply of organic waste will
likely increase in future. Biogenic waste represents a promising feed source for charring
and subsequent deposition to soils [11]. Biochar, undergoing testing globally under diverse
soil-climatic conditions, is now a promising soil additive. Originating from the pyrol-
ysis process—thermal degradation of organic material without oxygen—biochar holds
potential for agronomic and environmental applications [13]. Applying biochar to soil has
consistently demonstrated benefits for crop growth [14,15] by enhancing fundamental soil
properties relevant to plant growth.

Biochar application directly increases the stable organic carbon content in the soil [16,17].
However, any additional C source added to the soil affects the mineralisation of organic
matter that is already present. Known as the priming effect, biochar’s addition can enhance
or slow down the existing mineralisation rate [18], with varied impacts on the soil environ-
ment. Due to its alkaline pH, biochar effectively increases the soil pH, positively influencing
its nutrient storage capacity and fostering plants’ growth and development [14,19]. Biochar
has emerged as a valuable tool for agroecosystem management, offering a plausible means
to effectively elevate soil pH in acidic soils [20]. Furthermore, biochar positively affects
soil sorption parameters [21], enhancing soil’s water-holding capacity, influencing the air
exchange between the soil and the atmosphere, and elevating its cation-exchange capac-
ity [22]. The positive impacts extend to supporting microbial biomass and composition,
with reciprocal alterations as microbes interact with the biochar [23]. Key studies high-
light biochar’s role in reducing emissions of CO2 and N2O from agricultural soils to the
atmosphere [24–26].

Limited knowledge exists regarding the impact of biochar on the properties of hu-
mus in the soil [27,28]. The study of humus, a pivotal component of soil, spans over
two centuries [29], yet considerable knowledge gaps persist, especially in explaining the
humus formation process. Various theories offer differing perspectives, such as Waksman’s
lignin-protein theory, Trus’s theory, microbial synthesis, and carbohydrate-amine conden-
sation theory [29]. However, a recent study by Lehmann and Kleiber [30] challenges the
conventional understanding, suggesting that humus exists but is an ephemeral property
emerging from soil’s interaction with its solution. In this paper, we adhere to the traditional
view and consider humus as an integral part of soil organic matter (SOM). Here, humus
forms during humification, wherein dead remains transform, lose their original features,
and acquire novel, distinct properties [29,31]. Humic substances within humus perform
critical functions in soil formation and its physical, nutritional, chemical, biological, and
environmental aspects [32–34]. Greenland et al. [35] emphasised that optimal conditions for
plant growth arise in soils with organic substance contents exceeding 2%, which are well
humified and mature, with high contents of condensed aromatic compounds. The influence
of biochar on quantitative and qualitative humus parameters and the humification process
in the soil remains a significant and unanswered question. Understanding changes in
humus parameters following the application of biochar is crucial. For example, biochar
may accelerate soil nitrogen dynamics, with direct implications for plant productivity [36].
Notably, soil management practices, including nitrogen fertilisation, impact the properties
of humus. Jagadamma et al. [37] highlighted that nitrogen application increases mineral-
isation, negatively affecting the stability of organic substances and overall SOM quality,
including humic substances.
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As previously noted, humus is generally considered to be stable in soil, compared to
freshly deposited or undecomposed soil organic matter [38,39]. However, we posit that
introducing biochar into the soil may disrupt the humus formation process, ultimately
impacting its content in the soil. Upon incorporation into the soil, biochar becomes involved
in the formation of humic substances, thereby altering the quality of the humus. This
field study aimed to quantify the effects of applying biochar, with and without nitrogen
fertilisation, on soil organic matter (SOM) and humus parameters over six years. We
hypothesise that (H1) a higher biochar application rate will result in a larger increase in
humus content, and (H2) an interaction of biochar and nitrogen fertiliser will impact the
humification process. Lastly, we hypothesise (H3) that the effect of biochar’s addition on
the humification process would diminish over time.

2. Materials and Methods
2.1. Site Description

The field experiment took place at the Dolná Malanta Experimental Station of the Slo-
vak University of Agriculture in Nitra, Slovakia (latitude 48◦19′00′′; longitude 18◦09′00′′).
Situated east of Nitra, on the Žitavská upland, the experimental area is flat terrain with
a slight southward incline. This location features a warm lowland climate, warm sum-
mers, and brief, dry winters. The long-term average air temperature and precipitation
(1991–2020) were 10.7 ◦C and 559 mm, respectively. The geological substratum comprises
earlier rocks rich in fine materials. Young Neogene deposits include diverse clays, loams,
and sand gravels overlaid with loess in the Pleistocene epoch. The soil in the experimental
field is classified as a Haplic Luvisol according to the World Reference Base for Soil Re-
sources, based on the whole soil morphology profile [40]. The properties of the 0–20 cm
soil layer before the experiment setup, on average, were as follows: clay—249 g kg−1,
silt—599 g kg−1, sand—152 g kg−1, soil organic carbon—9.13 g kg−1, CEC—142 mmol kg−1,
base saturation—85%, and soil pHKCl—5.71.

2.2. Experimental Design

The field experiment was initiated in March 2014, comprising three replicate plots for
each treatment. The 27 plots, each measuring 4 × 6 m (24 m2), were randomly distributed
across the experimental field (Figure 1). The soil addition treatments were established
as follows: application of biochar at rates of 0, 10, and 20 t ha−1 without N fertilisation
(B0N0, B10N0, and B20N0, respectively), biochar at the same rates of 0, 10, and 20 t ha−1 in
combination with the lower level of N fertilisation (B0N1, B10N1, and B20N1, respectively),
and finally, biochar at 0, 10, and 20 t ha−1 with higher N fertilisation (B0N2, B10N2, and
B20N2, respectively).
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In 2014, biochar was applied manually to the soil surface using rakes in all relevant
plots and then incorporated into the 0–10 cm soil layer using a combinator. The three rates
of N fertilisation (N0, N1, and N2) were applied separately from the biochar, annually
added to the soil surface of each fertilised plot, as relevant for the crop rotation. The biochar
utilised in the experiment was produced from a mixture of paper fibre sludge and grain
husks (1:1 w/w) through pyrolysis at 550 ◦C for 30 min in a Pyreg reactor (Pyreg GmbH,
Dörth, Germany). The final biochar, as declared by the company (Sonnenerde, Austria),
contained an average of 531 g kg−1 of total organic C, 14 g kg−1 of total N, a C:N ratio of
37.9, 57 g kg−1 of Ca, 3.9 g kg−1 of Mg, 15 g kg−1 of K, and 0.77 g kg−1 of Na. It had a
specific surface area of 21.7 m2 g−1, an ash content of 38.3%, a pH of 8.8, and particle sizes
ranging from 1 to 5 mm. In N-fertilised treatments, a standard N fertiliser, calc-ammonium
nitrate with dolomite (LAD 27), was used at the two N fertilisation levels mentioned above
(N1 and N2). LAD 27 is a granular mineral fertiliser containing 27% N (13.5% NO3

– and
13.5% NH4

+), 7% CaO, and 5% MgO. The pellets had a size range of 2–5 mm. Using the
balance method, the N doses for the first level were calculated based on the average crop
nutrient demand. The second N level added a further 100%, 50%, 50%, 50%, 100%, and
50% N in 2014, 2015, 2016, 2017, 2018, and 2019, respectively (Table 1). The field experiment
followed an annual crop rotation sequence: spring barley (Hordeum vulgare L.), maize (Zea
mays L.), spring wheat (Triticum aestivum L.), maize (Zea mays L.), spring barley (Hordeum
vulgare L.), and maize (Zea mays L.) in 2014, 2015, 2016, 2017, 2018, and 2019, respectively.

Table 1. An overview of the application of biochar and N fertiliser in all combinations of soil
amendment treatments across the six years of the experiment.

Year and Sown Crop 2014
Spring Barley

2015
Maize

2016
Spring Wheat

2017
Maize

2018
Spring Barley

2019
Maize

Soil Amendment Biochar
(t ha−1)

Fertiliser
(kg ha−1)

Fertiliser
(kg ha−1)

Fertiliser
(kg ha−1)

Fertiliser
(kg ha−1)

Fertiliser
(kg ha−1)

Fertiliser
(kg ha−1)

Treatments
No fertilisation: N0

B0N0 0 0 0 0 0 0 0
B1N0 10 0 0 0 0 0 0
B2N0 20 0 0 0 0 0 0

Fertilisation: N1

B0N1 0 40 160 100 160 40 108
B1N1 10 40 160 100 160 40 108
B2N1 20 40 160 100 160 40 108

Fertilisation: N2

B0N2 0 80 240 150 240 80 162
B1N2 10 80 240 150 240 80 162
B2N2 20 80 240 150 240 80 162

2.3. Soil Sampling and Analysis

Soil samples were collected from depths of 0–20 cm across all treatments. Sampling
occurred monthly throughout the growing season of planted crops from 2014 to 2019.
Specifically, sampling took place in 2014 at 1, 2, 3, and 4 months after biochar application;
in 2015 at 13, 14, 15, 16, 17, and 18 months; in 2016 at 26, 27, 28, and 29 months; in 2017 at
38, 39, 40, 41, 42, and 43 months; in 2018 at 50, 51, and 52 months; and in 2019 at 64, 65, 66,
67, and 68 months. Standard soil analysis methods were employed to measure SOM and
humus parameters. Soil organic carbon (Corg) was determined using the wet combustion
method, involving the oxidation of SOM by a mixture of 0.07 mol L−1 H2SO4 and K2Cr2O7,
followed by titration using Mohr’s salt [41]. The group and fraction composition of humic
substances (HSs) were determined using a method reported by Belchikova and Kononova,
involving extraction with a mixture of 0.01 mol L−1 Na4P2O7, 10 H2O, and 0.1 mol L−1

NaOH [41]. The light absorbance of HSs and humic acids (HAs) at 465 and 650 nm was
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measured with a Jenway 6400 Spectrophotometer to calculate the colour quotients of humic
substances (Q4/6

HS) and humic acids (Q4/6
HA).

2.4. Statistical Analysis

The data analysis utilised ANOVA tests implemented in the software package Stat-
graphics Centurion XV.I (Statpoint Technologies, Inc., Washington, DC, USA). Comparisons
between samples were conducted using Tukey’s test at a probability level of p = 0.05. Single
linear regression analyses were employed to assess trends in SOM and humus parameters
during the vegetation seasons of planted crops from 2014 to 2019.

3. Results and Discussion
3.1. Effect of Biochar on Soil Organic Matter

The local soil type is Haplic Luvisol, which represents about 11% (265.4 thousand ha) of
the total agricultural land in Slovakia [42] and approx. 500–600 mil. ha [40] worldwide; this
experiment is thus informative for a substantial proportion of arable soils. Biochar stands
out as a widely employed soil ameliorant, recognised for its role in elevating soil organic
carbon (Corg) levels [43,44], a trend substantiated by our 6-year study results (Figure 2).
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columns indicate that treatment means are significantly different at p < 0.05 according to Tukey’s test.

Observations over the six years revealed a significant increase in Corg in non-fertilised
treatments, with the B20N0 treatment experiencing a significant increase of 2.46 g kg−1

compared to its control (B0N0). Corg shows an increasing trend with higher biochar
application rates, as reported by numerous studies. The accumulation of Corg in soil is
influenced by soil management practices and is generally a gradual process, primarily
noticeable in the long term, albeit with variations across experimental sites [45]. About
90% of non-pyrolysed carbon entering tilled soil is typically released within a year [46].
However, given that biochar is a source of stabilised organic carbon [43], Corg contents
will substantially increase following its addition; this effect is typically observable even
after a single application treatment. We saw partial evidence of this process, with our
results revealing that the B0N0 and B20N0 treatments significantly increased Corg by 80
and 222 mg kg−1 year−1 over the six years of vegetation seasons, respectively (Table 2).
Interestingly, changes in Corg can also occur as a result of changes in soil pH, such as
after applying alkaline biochar to an acidic soil. As reported Aydin [14] in a paper on the
same experiment, the soil was acidic to start with, and after biochar application its pH
significantly increased to neutral. The range of pH observed in this experiments, from
slightly acidic to neutral, is likely suitable for most soil microorganisms [47], and SOM
increases as a result of plant material deposition and microbial activity.
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Table 2. Trends of SOM parameters’ distribution in the biochar treatments for the vegetation seasons
of 2014–2019.

Treatments Equations R2 Trend Probability Treatments Equations R2 Trend Probability

Corg HS ration in Corg

B0N0 y = 0.08x + 11.6 0.2940 increase ** B0N0 y = −0.38x + 44.5 0.4944 decrease ***
B10N0 y = 0.04x + 12.5 0.0982 increase n.s. B10N0 y = −0.26x + 41.9 0.2995 decrease **
B20N0 y = 0.22x + 12.5 0.5375 increase *** B20N0 y = −0.54x + 40.0 0.5178 decrease ***
B0N1 y = −0.04x + 13.4 0.0667 decrease n.s. B0N1 y = 0.02x + 39.1 0.0019 increase n.s.

B10N1 y = −0.01x + 15.2 0.0015 decrease n.s. B10N1 y = −0.02x + 33.1 0.0020 decrease n.s.
B20N1 y = −0.03x + 18.0 0.0323 decrease n.s. B20N1 y = 0.002x + 28.7 0.0004 increase n.s.
B0N2 y = −0.16x + 16.2 0.2589 decrease ** B0N2 y = 0.29x + 35.3 0.1592 increase *

B10N2 y = −0.08x + 17.1 0.1062 decrease n.s. B10N2 y = 0.10x + 30.7 0.0418 increase n.s.
B20N2 y = −0.06x + 16.8 0.1337 decrease * B20N2 y = 0.14x + 28.5 0.1332 increase *

Share of HA in Corg Share of FA in Corg

B0N0 y = −0.33x + 25.6 0.6211 decrease *** B0N0 y = −0.05x + 19.0 0.0216 decrease n.s.
B10N0 y = −0.28x + 24.6 0.5315 decrease *** B10N0 y = 0.02x + 17.1 0.0050 increase n.s.
B20N0 y = −0.40x + 22.7 0.6655 decrease *** B20N0 y = −0.14x + 17.3 0.1080 decrease n.s.
B0N1 y = 0.05x + 19.6 0.0206 increase n.s. B0N1 y = −0.03x + 19.7 0.0030 decrease n.s.

B10N1 y = −0.05x + 18.7 0.0303 decrease n.s. B10N1 y = 0.03x + 14.5 0.0086 increase n.s.
B20N1 y = −0.03x + 15.8 0.0109 decrease n.s. B20N1 y = 0.03x + 12.8 0.0166 increase n.s.
B0N2 y = 0.15x + 17.8 0.1178 increase n.s. B0N2 y = 0.14x + 17.4 0.0987 increase n.s.

B10N2 y = 0.06x + 16.4 0.0291 increase n.s. B10N2 y = 0.04x + 14.3 0.0114 increase n.s.
B20N2 y = 0.08x + 14.6 0.0865 increase n.s. B20N2 y = 0.06x + 13.9 0.0456 increase n.s.

Notes: n.s.—non-significant; * p < 0.05; ** p < 0.01; *** p < 0.001; y = Corg, share of HS in Corg, share of HA in Corg,
and share of FA in Corg distribution with time x = months during the vegetation seasons of 2014–2019 (n = 30).

Combining biochar addition with nitrogen fertilisation may be a promising practice for
improving the sustainability of agriculture. One of the reasons for this is a decrease in the
soil’s carbon-to-nitrogen (C:N) ratio observed elsewhere [48]. Accordingly, we explored the
effects of varying nitrogen fertilisation intensity in conjunction with biochar addition. Corg
exhibited significant increases in B10N1 (15.1 ± 1.38 g kg−1) and B20N1 (17.5 ± 1.02 g kg−1)
compared to B0N1 (12.8 ± 1.25 g kg−1), as well as in B10N2 (15.9 ± 1.11 g kg−1) and B20N2
(15.9 ± 1.48 g kg−1) compared to B0N2 (13.7 ± 1.75 g kg−1) (Figure 2). While the first
level of nitrogen fertilisation, both alone and in combination with biochar, showed no
significant linear trend in Corg changes over the six years of vegetation seasons (Table 2),
the second level of N fertilisation resulted in a noteworthy linear decline in Corg in the B0N2
and B20N2 treatments. Our results indicate that the B0N2, B10N2, and B20N2 treatments
reduced Corg by 159, 78, and 61 mg kg−1 year−1 over the six years of vegetation seasons,
respectively. This means that a high dose of N alone or in combination with a higher dose
of biochar contributes to more intensive use of SOM or more labile fractions of the organic
matter of the biochar itself by soil microorganisms [49], resulting in SOM transformation.
The distinctive impact of nitrogen fertilisation on Corg changes after biochar’s application
suggests a dependency on the application rates. Notably, a higher biochar rate combined
with the second nitrogen level more effectively suppressed Corg mineralisation in the soil
than lower biochar rates under the same nitrogen level (N2). This is consistent with findings
by Yang et al. [50], who concluded that higher nitrogen fertilisation levels, especially when
applied as manure, accelerated the decline of soil organic matter compared to lower
nitrogen levels. This effect can be attributed to priming effects, where nitrogen fertilisation
stimulates microbial activity, allowing the use of the most labile organic fraction of biochar
by microbes, temporarily replacing native Corg as a C source and, eventually, reducing
native Corg mineralisation [51].

Overall, the application of biochar in 2014 at a rate of 20 t ha−1 without nitrogen
fertilisation (B20N0) led to a significant decrease in extractable humic substances (HSs)
in soil organic matter (SOM), compared to the B0N0 and B10N0 treatments (Figure 3).
The reduction in HSs in the B20N0 treatment was linked with a significant decrease in
the amounts of both humic acids (HAs) and fulvic acids (FAs) in SOM within the same
treatment. The most substantial decline in extractable HSs over the six years, including
HAs and FAs in SOM, was evident in the B20N0 treatment, followed by B0N0 and B10N0
(Table 2). Significant negative linear relationships were observed between Corg and HSs
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in SOM (Figure 4), and the strength of the mutual relationship decreased in the following
order: B20N0 > B0N0 > B10N0. These results predominantly indicate mineralisation of
SOM and elimination of humification between Corg and CHS, but no significant linear
trend was determined. These findings imply that a higher dose of biochar, rather than a
lower dose, decelerates the humification of SOM after biochar is applied to the soil. This is
consistent with the findings of Aydin et al. [14], who observed a similar decreasing trend in
the extraction of HSs in SOM after applying 20 t ha−1 of biochar without nitrogen fertiliser.
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Figure 3. Soil organic matter parameters (average for 2014–2019, ±standard deviation). The letters
indicate homogeneous groups according to Tukey’s procedure at a 0.05 significance level. Differ-
ent letters between slices in graphs of the same colour in rows indicate that treatment means are
significantly different at p < 0.05.

Combining a higher rate of biochar with both the first and second levels of nitrogen
(B20N1 and B20N2, respectively) resulted in a significant decrease in the extraction of
HSs, including HAs and FAs (Figure 3). Higher Corg contents corresponded to lower
extraction of HSs, HAs, and FAs in SOM in biochar treatments combined with both levels
of nitrogen fertilisation (Figure 4). The mineralisation of soil organic carbon can also be
inhibited through the sorption of labile carbon onto the biochar surface, subsequently
forming relatively stable organic substances [52]. Overall, the extraction of HAs in SOM
across all nine treatments did not exceed 40% and ranged from 16.5 to 20.4%. A level of 40%
indicates a very high degree of SOM humification, while the range of 10–20% suggests a low
level of humification [53]. In our soils, even after applying biochar, organic matter primarily
prevailed over humus, meaning that most of the SOM mineralised at the expense of humus
formation. Even in unfertilised soil (control), it was constantly replenished through root
exudates, plant and root residues, the biomass of microorganisms, etc. [39].
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3.2. Effects of Biochar on Humic Substances

Applying organic matter to arable soils, including biochar, has great potential to
increase, stabilise, and improve the amount and quality of humic substances in the soil.
Predicting the effects of biochar’s addition on HSs is challenging due to its wide-ranging
properties [54] and its application to diverse soil types under different climatic conditions.
For this reason, little is known about its effects on the speed of humification and the
creation of humic substances or their stabilisation in the soils. Several authors have stated
that biochar application holds significant potential for forming and stabilising soil humic
substances [27,28,55–60]—a conclusion supported by our research, but only in the case of
both biochar doses combined with the second level of nitrogen fertilisation (Table 3).

Table 3. Humus parameters (average for 2014–2019, ±standard deviation).

Treatments
CHS CHA CFA

CHA:CFA Ratio QHS
4/6 QHA

4/6
g kg−1

B0N0 4.96 ± 0.34 a 2.62 ± 0.37 a 2.38 ± 0.37 a 1.15 ± 0.29 a 4.63 ± 0.46 a 3.88 ± 0.35 a
B10N0 4.99 ± 0.31 a 2.67 ± 0.35 a 2.29 ± 0.35 a 1.21 ± 0.35 a 4.54 ± 0.44 a 3.85 ± 0.29 a
B20N0 4.85 ± 0.37 a 2.51 ± 0.39 a 2.33 ± 0.42 a 1.17 ± 0.44 a 4.61 ± 0.41 a 3.90 ± 0.31 a
p-value 0.2702 0.2742 0.7033 0.8181 0.6685 0.8597

B0N1 5.01 ± 0.35 a 2.58 ± 0.33 a 2.44 ± 0.48 a 1.12 ± 0.33 a 4.76 ± 0.53 a 3.95 ± 0.38 a
B10N1 4.95 ± 0.25 a 2.70 ± 0.35 a 2.25 ± 0.37 a 1.26 ± 0.38 a 4.61 ± 0.41 a 3.93 ± 0.33 a
B20N1 4.95 ± 0.35 a 2.62 ± 0.33 a 2.42 ± 0.66 a 1.19 ± 0.28 a 4.67 ± 0.45 a 3.96 ± 0.40 a
p-value 0.7221 0.3888 0.3026 0.2529 0.4505 0.9628

B0N2 5.28 ± 0.28 c 2.68 ± 0.34 ab 2.60 ± 0.12 b 1.05 ± 0.23 a 4.88 ± 0.48 b 4.07 ± 0.38 a
B10N2 5.07 ± 0.30 b 2.75 ± 0.43 b 2.33 ± 0.43 a 1.23 ± 0.27 b 4.63 ± 0.28 a 3.98 ± 0.39 a
B20N2 4.82 ± 0.29 a 2.50 ± 0.30 a 2.32 ± 0.15 a 1.11 ± 0.26 ab 4.66 ± 0.21 a 3.94 ± 0.36 a
p-value 0.0000 0.0235 0.0034 0.0534 0.0327 0.4408

Notes: CHS—carbon of humic substances, CHA—carbon of humic acids, CFA—carbon of fulvic acids,
QHS

4/6—colour quotient of humic substances, QHA
4/6—colour quotient of humic acids. The letters indicate

homogeneous groups according to Tukey’s procedure at a 0.05 significance level. Different letters between rows
indicate that treatment means are significantly different at p < 0.05.
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However, if it is applied at a dose of 10 or 20 t ha−1 alone, or in combination with
the lower level of N fertilisation, to Haplic Luvisols in a mild climate, it has no significant
effect on the humic substances in the soil. On the other hand, the B10N2 and B20N2
treatments resulted in significantly lower contents of humic substances (5.07 ± 0.30 and
4.82 ± 0.29 g kg−1, respectively) and fulvic acids (2.33 ± 0.43 and 2.32 ± 0.15 g kg−1,
respectively), compared to the reference B0N2 treatment (CHS: 5.28 ± 0.28 g kg−1, CFA
2.60 ± 0.12 g kg−1). The B10N2 treatment contributed to a higher content of humic acids
than the B20N2 treatment. In B10N2 and B20N2, the CFA content was significantly reduced
by 10 and 9%, respectively, compared to B0N2, which is positive because higher fulvic acid
contents may contribute to faster leaching of heavy metals and alkaline cations from soil,
compared to situations when the share of CHA predominates. Fulvic acids are very easily
soluble, with high levels of migration in soil profiles; they dissociate in solutions much
more strongly than humic acids and show a strongly acidic pH [29,31,61]. This suggests
that biochar, in conjunction with the higher nitrogen level, decreased the contents of humic
substances. However, nitrogen fertilisation at the second level was a stabilising element for
humic substances in the soil. By stabilising humic substances after applying both doses
of biochar with the higher nitrogen level, the quality of humus in the soil was increased,
more strongly in the B10N2 than the B20N2 treatment (Table 3). In all treatments, the
colour quotient values indicated more humified and mature organic matter in the soil, with
high contents of condensed aromatic compounds and a low representation of aliphatic
compounds [31,62]. The molecular weight and degree of condensation of humic substances
increased after applying biochar, but this was only statistically significant in the cases of
B10N2 and B20N2 compared to B0N2.

4. Conclusions

Our research highlights the potential of biochar to enhance soil organic carbon con-
tents, representing a significant step towards sustainable agriculture. The investigation
emphasised that biochar, especially at higher application rates, influences the composition
of humic substances, contributing to the complex formation mechanisms of stable soil
organic substances. Moreover, this study demonstrates the intricate relationship between
biochar, nitrogen fertilisation, and the soil’s ability to form humic substances, albeit po-
tentially impacted by the specific soil and climate conditions. The biochar treatment at
the rate of 10 t ha−1 with an increased level of N fertilisation was the optimal solution for
reducing mineralisation and supporting humification, thus increasing the quality of humic
substances and their stabilisation in Luvisols. In the future, it will be essential to observe
the evolution of the biochar’s effects over the years after its application to the soil, as the
extent of the effects of biochar and its combination with N fertilisation on SOM and humus
may change over time.
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