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ABSTRACT: The coupled nature of the ocean–atmosphere system frequently makes understanding the direction of cau-
sality difficult in ocean–atmosphere interactions. This study presents a method to decompose turbulent surface heat fluxes
into a component which is directly forced by atmospheric circulation and a residual which is assumed to be primarily
“ocean-forced.” This method is applied to the North Atlantic in a 500-yr preindustrial control run using the Met Office’s
HadGEM3-GC3.1-MMmodel. The method shows that atmospheric circulation dominates interannual to decadal heat flux
variability in the Labrador Sea, in contrast to the Gulf Stream where the ocean primarily drives the variability. An empiri-
cal orthogonal function analysis identifies several residual heat flux modes associated with variations in ocean circulation.
The first of these modes is characterized by the ocean warming the atmosphere along the Gulf Stream and North Atlantic
Current and the second by a dipole of cooling in the western subtropical North Atlantic and warming in the subpolar North
Atlantic. Lead–lag regression analysis suggests that atmospheric circulation anomalies in prior years partly drive the ocean
heat flux modes; however, there is no significant atmospheric circulation response in years following the peaks of the
modes. Overall, the heat flux dynamical decomposition method provides a useful way to separate the effects of the ocean
and atmosphere on heat flux and could be applied to other ocean basins and to either models or reanalysis datasets.

SIGNIFICANCE STATEMENT: Variability of the ocean affects atmospheric circulation and provides a source of
long-term predictability for surface weather. However, the atmosphere also affects the ocean. This makes the separa-
tion of cause and effect in such atmosphere–ocean interactions difficult. This paper introduces a method to separate
“turbulent heat fluxes,” the primary means by which the atmosphere and ocean influence one another, into a compo-
nent driven by atmospheric variability and a component which is primarily related to ocean variability. The method is
tested by applying it to a climate model simulation and is able to identify regions in which the exchange of heat between
the ocean and atmosphere is dominated by atmospheric variability and regions which are dominated by the ocean.

KEYWORDS: Atmospheric circulation; Atmosphere–ocean interaction; Air–sea interaction; North Atlantic Oscillation

1. Introduction

Understanding the two-way interaction between extratropi-
cal sea surface temperature (SST) variability and atmospheric
circulation is a complex problem. It is also an eminently prac-
tical one as ocean variability is a major source of prediction
skill for forecasts of the atmosphere on subseasonal to de-
cadal time scales (Meehl et al. 2021; Merryfield et al. 2020).

Turbulent heat exchange is the primary process by which
the ocean and atmosphere transfer heat between each other
(Cayan 1992). On interannual and shorter time scales, the at-
mosphere largely governs ocean–atmosphere covariability via

modulation of air temperature, specific humidity, and near-
surface wind speed, and these, in turn, modify surface turbu-
lent heat fluxes (Q, i.e., latent plus sensible heat fluxes). At
decadal time scales and longer, the ocean dominates as it inte-
grates atmospheric variability and responds via changes to
ocean circulation and ocean heat transport, hence altering
SSTs andQ (Gulev et al. 2013).

The North Atlantic exhibits large decadal SST variability, and
there has been considerable debate over the extent to which this
is driven by atmospheric circulation (Clement et al. 2015; Cane
et al. 2017), internal ocean variability (Zhang et al. 2019;
O’Reilly et al. 2016), and external forcing (Booth et al. 2012).
Attributing the drivers of low-frequency variability is also com-
plicated by the fact that current climate models likely have an
inadequate representation of relevant mechanisms as they
show too little decadal variability in both atmospheric circu-
lation (Bracegirdle et al. 2018; Simpson et al. 2018; O’Reilly
et al. 2021) and ocean circulation (Kim et al. 2018). On the
other hand, some low-resolution models tend to overestimate
decadal SST variability in the subpolar North Atlantic (Patrizio
et al. 2023).

Relatedly, the atmospheric circulation response to midlati-
tude SST variability in climate models is likely too weak,
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leading to overly weak signals in seasonal to decadal predic-
tions (Eade et al. 2014; Scaife and Smith 2018; Smith et al.
2020). The cause of this problem, termed the “signal-to-noise
paradox,” is not understood, but one leading hypothesis con-
cerns inadequate model representation of ocean–atmosphere
coupling (Scaife and Smith 2018). Consequently, exploring
the fidelity of models when it comes to ocean–atmosphere
coupling may be necessary for making progress on the signal-
to-noise paradox and improving climate predictions. How-
ever, doing so requires evaluation tools which can be applied
to both models and observation-based datasets.

To separate oceanic effects on the atmosphere from atmo-
spheric effects on the ocean, studies use a variety of methods.
These include 1) low-pass filtering data to isolate time scales
at which the ocean dominates, 2) using lagged correlation
analysis, and 3) performing atmosphere-only experiments.
However, as discussed above, current models are deficient at
capturing the response to midlatitude SSTs, which presents
challenges with the latter option. Moreover, the shortness of
the observed record means that low-pass filtering leaves only
a few degrees of freedom and may smooth over the effects of
internal ocean variability, which occurs on short time scales.

This study presents a method to separate the ocean-forced
component of Q from the atmospheric circulation-forced
component. The method has been designed such that it does
not require any low-pass filtering and can be applied to both
models and observation-based datasets. In this study, the
method is only applied to model data as this provides a more
controlled setup in which there is a long data record and there
is no observational uncertainty associated with variables such
as Q. Testing with observation-based datasets, such as reanal-
ysis, is reserved for a future paper. The method involves the
use of circulation analogs to identify the component of Q di-
rectly associated with atmospheric circulation variability, di-
agnosing the ocean-forced component as the residual. We
apply this method to a 500-yr preindustrial control run. We
also test sensitivities of the results by applying it to simula-
tions of the same model with observed external forcings from
1850 to 2014.

The datasets and methods are described in section 2. The
method is then applied to a preindustrial control (piControl)
simulation in section 3, and the variability of the atmospheric
circulation-related and residual Q fields is compared. The
leading modes of the decomposition are then examined in
section 4, followed by an analysis of any atmospheric circula-
tion response to the Q modes in section 5. Discussion and
conclusions are provided in section 6. This is followed by ap-
pendixes in which the sensitivity to the choice of parameter
values (appendix A) and sensitivity to the presence of vari-
able external forcing and length of the dataset (appendix B)
are examined.

2. Data and methods

a. Data

We analyze simulations made using the Met Office (UKMO)
HadGEM3-GC3.1 model (Williams et al. 2018) for which the

North Atlantic ocean–atmosphere coupling has been extensively
analyzed (e.g., Lai et al. 2022; Khatri et al. 2022). The model
consists of coupled ocean, atmosphere, land, and sea ice models.
In this study, we utilize the medium (MM) resolution version,
which is run with an N216 (grid spacing of approximately
60 km) grid in the atmosphere with a horizontal ocean resolution
of 0.258 (ORCA025). The model has 75 vertical levels in the
ocean and 85 in the atmosphere. We analyze a 500-yr piControl
simulation using HadGEM3-GC3.1-MM. This is a fully coupled
simulation which has climatological external forcing. Further de-
tails can be found inMenary et al. (2018). The piControl run sim-
ulates Atlantic multidecadal variability (AMV) with a 60–80-yr
period, consistent with observations, and a slightly weaker Atlantic
meridional overturning circulation (AMOC) at 26.58N and at
subpolar latitudes with respect to RAPID (Menary et al. 2018)
and overturning in the subpolar North Atlantic program
(OSNAP) observations (Menary et al. 2020), respectively.

We also briefly analyze an atmosphere-only experiment,
known as High Resolution SST-present (highresSST-present),
taken from the High Resolution Model Intercomparison Pro-
ject (HighResMIP) (Haarsma et al. 2016). In this experiment,
HadGEM3-GC3.1-MM has been forced with observed SSTs
(taken from HadISST2; Titchner and Rayner 2014) from 1950
to 2014 and with historical greenhouse gas and aerosol forc-
ings. A total of three different ensemble members were run,
all with slightly different initial states. Four members of his-
torical coupled simulations from the same model (Andrews
et al. 2020) are also analyzed in appendix B. These use histori-
cal forcings including greenhouse gas and aerosol variations
spanning 1850–2014.

b. Circulation analogs

To attributeQ anomalies to atmospheric or oceanic forcing,
we apply a circulation analog method similar to that used by
Deser et al. (2016) and O’Reilly et al. (2017). The concept of
comparing similar circulation states was first developed in the
context of statistical weather prediction by Lorenz (1969) and
later van den Dool (1994) and van den Dool et al. (2003).
More recently, it has been used to study the degree to which
atmospheric circulation trends have played a role in observed
temperature trends (Cattiaux et al. 2010; Wallace et al. 2012;
Deser et al. 2016).

The circulation analog method attempts to estimate the
component of a temporally and spatially varying variable,
that is directly and simultaneously associated with changes in
atmospheric circulation. In our case, we decompose Q into
two components,

Q 5 QCIRC 1 QRESIDUAL, (1)

where QCIRC is the atmospheric circulation-related compo-
nent of Q, and QRESIDUAL is the residual. We interpret
QRESIDUAL to be primarily due to ocean variability and the per-
sistence of SST anomalies forced by atmospheric circulation in
previous months. TheQRESIDUAL will also include the effects of
small-scale circulation features that do not project clearly on the
monthly sea level pressure (SLP) fields. However, one can as-
sume that these are random errors that should cancel out over
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large enough samples or over long enough periods. Additionally,
QRESIDUAL will vary due to the radiative warming of the at-
mosphere, for example, through externally forced radiative
changes. There is no variable external forcing in the piControl
run, but we remove the effects of external forcing when apply-
ing the method to historical simulations by regressing out
global-mean SST anomalies from the SLP at each grid point.
We note that removing the global mean can have the effect of
removing internal variability related to the Pacific decadal
oscillation (Deser and Phillips 2023); however, this is less of a
problem here as our focus is the North Atlantic. The historical
runs are discussed further in appendix B. We also perform a
linear detrending of piControl anomalies prior to reconstructing
SLP in order to remove any drifts in the model.

Our method begins by taking the seasonal-mean SLP
anomalies for a particular year, say 1901, and calculating the
area-weighted Euclidian distance between this and all other
years over the North Atlantic region (defined as 208–758N,
908W–08). A subsample of size Ns from the Na most similar
years is then taken, and a weighted sum of this sample of
anomaly maps is used to reconstruct the original (1901) anom-
aly field. That is, we calculate the values of weights ak, which
minimize the following:

∑
j
cos(uj) SLPij 2 ∑

kÞi
akSLPkj

∣
∣
∣
∣

∣
∣
∣
∣
, (2)

where SLPij is the SLP map for year i and grid point j within
the North Atlantic region. In this case, i represents the year
which we are trying to fit to and k is all other years in the sub-
sample. The term uj is the latitude of grid point j; hence,
cos(uj) is the area-weighting factor. Performing this minimiza-
tion gives a set of Ns weights ak for each of the subsampled
years. The term QCIRC is then calculated by summing the Q
anomalies for the same years multiplied by the corresponding
weights calculated for the SLP anomalies, i.e.,

QCIRCj
5∑

k
akQkj: (3)

The resampling procedure is repeated Nr times to obtain Nr

reconstructions of SLP and QCIRC, which are then averaged
to find a best estimate of these two quantities. Here, Ns, Na,

and Nr are taken to be 50, 80, and 100, respectively. This en-
tire process is then repeated for all years in the dataset.

c. Linear decomposition of Q anomalies

The term Q is composed of sensible QS and latent heating
QL terms which can be represented using the bulk formulas
QL 5 rCeLUDH and QS 5 rCpCHUDT, respectively. Here, r
is the air density, U is the near-surface wind speed, Cp is the
heat capacity of water, L is the latent heat of evaporation,
and Ce and CH are the transfer coefficients. The DT 5 Ts 2 Ta

is the air–sea temperature difference, and DH5H∗
s 2Ha is

the difference between the saturation specific humidity at
the sea surface (H∗

s) and the near-surface specific humidity
(Ha). Here, subscript s represents the sea surface and a is
the atmosphere.

A linear decomposition of Q (e.g., Alexander and Scott
1997; Du and Xie 2008; He et al. 2022) yields

Q′ 5 Q′
S 1 Q′

L ’ (QS 1 QL )
U′

U
1 QS

DT′

DT
1 QL

DH′

DH
,

(4)

where overbars represent the time-mean quantities and primes
are the anomalies with respect to the timemean. This decomposi-
tion assumes that U′DH′ ,,UDH andU′DT′ ,,UDT , which
are both good approximations at the monthly time scale
(Alexander and Scott 1997).

d. Indices

The NAO index is calculated as the first empirical orthogo-
nal function (EOF) of December–March (DJFM)-mean SLP
over the regions 208–808N and 608W–08, calculated using the
Python package “eofs” (Dawson 2016). The AMOC index is
defined, following Lai et al. (2022), as the annual-mean Atlantic
overturning streamfunction (in depth space) at 458N and
1000-m depth.

e. Significance testing

Many of the time series considered in this study exhibit se-
rial correlation, which reduces the effective number of de-
grees of freedom. To account for this, following Wilks (2011),
we replace the number of time steps N with the effective num-
ber of time steps, NEff 5N[(12 r)/(11 r)], when calculating
statistical tests. Here, r is the lag-1 autocorrelation.

3. Evaluating the dynamical decomposition of the
Q method

a. Case study year

We now apply the circulation analog method described in
section 2 to the North Atlantic, over a box bounded by lati-
tudes 208–758N and longitudes 908W–08. An example of the
decomposition is shown in Fig. 1 for the winter (DJFM) of
model year 1911 in the HadGEM3-GC31-MM piControl sim-
ulation. The circulation-related SLP field, marked by a posi-
tive NAO-like pattern, is, by construction, almost identical to
the full field over the North Atlantic region (Figs. 1a,c); how-
ever, this is not the case outside of the North Atlantic (not
shown). The Q anomalies (defined as the positive upward
throughout this study) indicate anomalously high heat loss
from the ocean to the atmosphere over a horseshoe-shaped
region involving the subpolar North Atlantic and eastern sub-
tropical North Atlantic (Fig. 1b). The dynamical decomposi-
tion suggests that a substantial proportion of this is related to
the atmospheric circulation, including heat loss over the west-
ern subpolar and subtropical North Atlantic (Fig. 1d). The
QRESIDUAL anomalies are of similar magnitude to QCIRC

anomalies and are characterized by ocean heat loss over the
eastern subpolar region and heat gain over the western sub-
tropics, with a northward shift of the Gulf Stream (Fig. 1f).

We now examine the contributions of different factors
(wind speed, air–sea temperature, and humidity differences)
to Q anomalies via linear decomposition (see section 2). Note

P A T T ER SON E T AL . 379315 JULY 2024

Unauthenticated | Downloaded 01/09/25 01:25 PM UTC



that the sums of the linearized terms explain the vast majority
of the total Q anomalies (Fig. S1f in the online supplemental
material). Strong near-surface wind speeds and air–sea tem-
perature and specific humidity differences all contribute to
the subpolar heat loss in this year (Figs. 2a–c), which is largely
driven by atmospheric circulation (Fig. 1e). The Q anomalies
related to air–sea temperature differences are largest over the
Labrador Sea, where the circulation advects cold air from the
North American continent. In contrast, Q anomalies linked
to wind speed and latent heating are larger in the eastern sub-
polar North Atlantic than in the west. The largest contribu-
tion to the positive Q anomalies in the Gulf Stream region
comes from latent heating, while wind speed variations domi-
nate Q anomalies in the subtropics. Overall, the pattern of
Q anomalies related to latent heating is similar in structure to
QRESIDUAL, suggesting that latent heating is the main contributor

to Q variability, which is not directly related to atmospheric
circulation.

b. Interannual to decadal variability

To test the dynamical decomposition method more system-
atically, we calculate the correlation, at each grid point, be-
tween DJFM–mean SST anomalies and the components of
the Q dynamical decomposition. Consider that if a warm SST
anomaly is primarily the result of warming by the atmosphere,
then the anomalous Q is negative, while a cool SST anomaly
will be associated with a positive upward heat flux anomaly.
Conversely, if the SST anomaly is warming or cooling the
atmosphere, having formed through alterations to ocean cir-
culation or by atmospheric forcing at least a month or two
previous, then the sign of the SST anomaly should be the
same as that of the anomalous heat flux. That is, a negative

FIG. 1. Dynamical decomposition of (a)–(c) SLP and (d)–(f) Q anomalies for the winter (DJFM) of the year 1911 in the HadGEM3-
GC31-MM piControl run. (a),(d) The full fields, (b),(e) the atmospheric circulation-related components, and (c),(f) the residual compo-
nents. Note thatQ is defined as positive from the ocean to the atmosphere.

FIG. 2. Linear decomposition of Q anomalies (W m22) for the winter of model year 1911 in the HadGEM3-GC3.1-MM piControl run.
The Q anomalies associated with (a) surface-wind forcing, (b) air–sea temperature differences, (c) air–sea specific humidity differences,
and (d) the sum of the linearized components. Vectors in (a) show 10-m wind anomalies.
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correlation between SST and Q anomalies indicates a down-
ward influence, while a positive correlation indicates an up-
ward influence (e.g., Gulev et al. 2013; O’Reilly et al. 2016;
Bishop et al. 2017; Blackport et al. 2019; O’Reilly et al. 2023).
As anticipated, the QCIRC component is negatively correlated
with SST across the North Atlantic, suggesting a primarily
downward influence (Fig. 3a). In contrast, SSTs are positively
correlated with the QRESIDUAL (Fig. 3b), suggesting a largely
upward influence of Q anomalies. For reference, the full Q
field shows that over the extratropical North Atlantic, SST
variability tends to warm the atmosphere more than the atmo-
sphere warming the SSTs, whereas the influence is generally
downward on the edge of the tropical Atlantic (Fig. 3c). The
Q variability in the Gulf Stream region stands out as being
particularly dominated by the ocean (Fig. 3c).

Further evidence that QRESIDUAL is forced by the ocean
rather than the atmosphere is given by lagged gridpoint correla-
tions between QRESIDUAL and SSTs in the extended seasons
prior to and following DJFM, respectively, August–November
(ASON) and April–July (AMJJ), see Fig. S2. In particular, SST
anomalies have developed prior to DJFM, suggesting that

QRESIDUAL is driven by persistent ocean variability (Fig. S2a).
In contrast, there is no significant correlation between DJFM
QCIRC and ASON SSTs (Fig. S2d).

In addition to the direct Q response to atmospheric circula-
tion variability, ocean surface currents and, therefore, Ekman
heat transport will change on submonthly time scales in re-
sponse to altered surface winds (e.g., Alexander and Scott
2008). This modifies the SSTs and therefore affectsQ, particu-
larly in regions of strong SST gradients (Deser et al. 2010). To
examine how this process is partitioned in the Q dynamical
decomposition, following Deser et al. (2010), we calculate the
effective Ekman heat flux. This is given as r0cpHUEk ? =T,
where T is the SST, r0 is the water density, cp is the specific
heat capacity of water, andH is the depth of the Ekman layer,
taken as 50 m. The Ekman current anomaly, UEk 5 (UEk, VEk),
is given by UEk 5 (1/r0f )[t(y)s , 2t(x)s ], where t(y)s and t(x)s are the
meridional and zonal components of the surface wind stress, re-
spectively, and f is the Coriolis parameter.

Simultaneous gridpoint correlations between the Ekman heat
flux and QCIRC and QRESIDUAL indicate that the Ekman effect
is incorporated inQCIRC and not inQRESIDUAL (Figs. 4a,b). We

FIG. 3. Interannual (DJFM-mean) gridpoint correlations between SST anomalies and (a) QCIRC, (b) QRESIDUAL, and (c) Q in the
HadGEM3-GC1-MM piControl run. Only correlations with p values less than 0.05 are plotted following the Student’s t test with the null
hypothesis of zero correlation.

FIG. 4. Interannual (DJFM-mean) gridpoint correlations between the effective Ekman heat flux (see the text for
details) and (a) QCIRC and (b) QRESIDUAL. Only correlations with p values less than 0.05 are plotted following the
Student’s t test with the null hypothesis of zero correlation.
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argue that this makes sense on the basis that the anomalous sur-
face Ekman transport is a direct and nearly instantaneous re-
sponse to atmospheric circulation variability. It is worth noting
that this effective Ekman heat flux is a much smaller effect
(’20%–30%) compared to totalQ variability (Fig. S3).

We now examine spatial variations in the magnitude of Q
variability driven by the atmosphere and ocean on different
time scales. The majority of the simulated Q variability on in-
terannual to decadal time scales in the subpolar North Atlantic
and particularly the Labrador Sea is associated with QCIRC

(Figs. 5a,c,d,f). This is likely due to atmospheric circulation
modulating the advection of cold air from the North American
continent over the ocean, raising the air–sea temperature con-
trast (also see Fig. 2b). However, this may not be the only fac-
tor determining the large atmospheric influence on Q in this
region; for instance, this region is also the location of the max-
imum mixed layer depth (Buckley et al. 2019). For the eastern
subpolar North Atlantic, the decadal QRESIDUAL variance is
larger than QCIRC (Figs. 5d,e), likely due to the effects of in-
ternal ocean variability. In contrast, atmospheric circulation
contributes more to Q variance in this region on interannual
time scales (Figs. 5a–c). The QRESIDUAL shows a similar mag-
nitude of variability to QCIRC along the North Atlantic Cur-
rent (NAC) at interannual time scales, and QRESIDUAL shows
larger variability in the Gulf Stream region on both time
scales (Figs. 5b,e). However, while the Gulf Stream Q vari-
ability is not dominated by simultaneous atmospheric circula-
tion variability, it is possible that atmospheric circulation has

a lagged effect on the Gulf Stream through induced changes
in ocean circulation (McCarthy et al. 2018). The next sec-
tion examines the primary modes of Q variability associ-
ated with the components of the Q decomposition and
relates these to simultaneous and lagged patterns of atmo-
spheric circulation.

4. Modes of Q variability

To understand the spatial patterns of variability associated
with the Q decomposition, we perform an area-weighted
EOF analysis separately for Q, QCIRC, and QRESIDUAL over
the same region used to calculate the decomposition (208–758N,
908W–08). The first EOFs of Q and QCIRC are both character-
ized by a tripole pattern (Figs. 6a,e), associated with the positive
phase of the NAO (Figs. 6c,g). The second EOFs of Q and
QCIRC are again very similar to one another and consist of en-
hanced Q over the central North Atlantic (Figs. 6b,f), linked to
the east Atlantic pattern (Figs. 6d,h). The first two EOFs of
QCIRC explain more variance (EOF1: 34.5%, EOF2: 17.5%)
than those of Q (EOF1: 25.0%, EOF2: 12.6%), likely because
Q also includes variability which is unrelated to atmospheric
circulation.

The QRESIDUAL EOF1 is marked by an anomalous positive
Q along the NAC and Gulf Stream with a negative anomaly
south of the Gulf Stream (Fig. 6i). The positive Gulf Stream
anomaly is located slightly to the north of the negative QCIRC

EOF1 anomaly (Fig. 6e). The second EOF has positive Q

FIG. 5. Variance associated with (a)–(c) interannual and (d)–(f) decadal (DJFM) variability of the components of the Q decomposition.
Decadal variance is calculated as the variance of the 10-yr running mean of Q. The variance in (a),(d) QCIRC, (b),(e) QRESIDUAL, and
(c),(f) the ratio of the variance of QRESIDUAL to the variance in total Q. Units for (a), (b), (d), and (e) are (W m22)2 and (c) and (f) are
unitless. Regions in which the totalQ variance falls below 200 (Wm22)2 in (c) and 20 (Wm22)2 in (f) are shown by gray shading.
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anomalies to the southeast of Greenland, with a weaker nega-
tive anomaly in the subtropics (Fig. 6j). The structure of
QRESIDUAL EOF2 bears some resemblance to QCIRC EOF1
except that the subpolar anomaly is located in the eastern
rather than in the western subpolar North Atlantic, and the
positive component west of North Africa is largely absent
(Fig. 6j). The QRESIDUAL EOFs show no simultaneous corre-
lation with SLP by construction (Figs. 6k,l).

The QRESIDUAL EOF1 is somewhat reminiscent of the
“slow” response at 3–4-yr lags to NAO forcing found by
Khatri et al. (2022) using the same model but with decadal
hindcast data (cf. their Fig. 2). They found that the initial
“fast” response to the NAO caused by wind stress and
Q anomalies is followed by a slower adjustment to SSTs in-
volving a strengthened overturning circulation. To investigate
the relationship of QRESIDUAL EOF1 with ocean overturning,
we regress the Atlantic overturning streamfunction onto the
principal component (PC) time series associated withQRESIDUAL

EOF1 in Fig. 7 at various lags. This analysis confirms that
QRESIDUAL EOF1 is associated with a strengthened AMOC
(Fig. 7c). The AMOC appears to strengthen about five years
prior to the peak of QRESIDUAL EOF1 (Fig. 7b) and weakens
following the QRESIDUAL EOF1 peak (Fig. 7d). The QRESIDUAL

EOF2 is also linked to AMOC variability, though the peak
AMOC strengthening occurs a few years prior to theQRESIDUAL

EOF2 peak (Figs. 7e,f). In contrast toQRESIDUAL, the lagged re-
gression of the Atlantic overturning streamfunction onto the

QCIRC EOF modes indicates that these modes are not preceded
by North Atlantic Ocean overturning anomalies (Figs. S4a,b,e,f).
Instead at lag 0, a barotropic Ekman response is observed
(Figs. S4c,d). This difference in regression patterns between
QRESIDUAL andQCIRC provides further evidence thatQRESIDUAL

is associated with slow ocean variability.
The AMOC variability itself is partly driven by the NAO

with slower ocean overturning integrating NAO variations
over multiple years (e.g., McCarthy et al. 2015; O’Reilly
et al. 2019). This can be seen in Fig. 8a, which shows that the
(annual-mean) AMOC is strengthened in the 3 years follow-
ing a positive winter NAO. The QRESIDUAL EOF1 is most
positively correlated with NAO variability when the NAO
leads by 1 year, suggesting that the NAO strengthens the
AMOC (Fig. 8a), which drives the transport of warmer water
poleward and subsequently alters Q (Fig. 8b). The signature
of lower-frequency ocean variability in QRESIDUAL is also
seen in the normalized power spectra of the QRESIDUAL PCs.
TheQRESIDUAL EOF1 shows notable peaks in power for peri-
ods of 20 and 40 years, neither of which is seen for Q and
QCIRC (Fig. 8c). The QRESIDUAL EOF2 also shows a peak at
around 40 years (Fig. 8d). These peaks in QRESIDUAL spectra
are significantly different from a red noise model fitted to the
data at the 95% level. Note that Q and QCIRC show consider-
ably more variability than QRESIDUAL overall, but we exam-
ine normalized power spectra to indicate which frequencies
relatively dominate each of the EOF PCs.

FIG. 6. Leading modes of variability associated with the components of the Q decomposition. Regressions of (a),(b),(e),(f),(i),(j) Q and
(c),(d),(g),(h),(k),(l) SLP onto the first and second EOFs of (a)–(d) Q, (e)–(h) QCIRC, and (i)–(l) QRESIDUAL. Hatching indicates where
regression coefficients are statistically significantly different from zero, with p values below 0.05, following the Student’s t test.
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5. Circulation response to heat flux anomalies

In this next section, we investigate whether or not there is
an atmospheric circulation response to the QRESIDUAL EOF
modes. By construction, the dynamical decomposition re-
moves any internal or remotely forced atmospheric variability
as well as any variability which is a response to local ocean
variability. Hence, it is not possible to infer using simulta-
neous regression analysis whether ocean variability drives an
atmospheric circulation response. However, if we assume that
the atmospheric circulation response to midlatitude ocean vari-
ability is relatively weak compared to internal atmospheric vari-
ability (e.g., Kushnir et al. 2002), the structure of any true ocean
modes of variability will likely be similar to the QRESIDUAL

EOF modes. To assess any impact of the QRESIDUAL EOF
modes on atmospheric circulation, we apply lead–lag regression
analysis.

Figure 9 shows the lagged regressions of the QRESIDUAL

EOFs and summarizes the sequence of events preceding and
following their peak. Positive QRESIDUAL EOF1 events are
preceded by positive NAO forcing in the previous years,
which cools the western subpolar North Atlantic and warms
the Gulf Stream region (as indicated by QCIRC, the unfilled
contours in Figs. 9k–t). These changes drive a stronger
AMOC and warm SSTs along the NAC (Figs. 9a,b). The SST
anomalies subsequently propagate toward the eastern sub-
polar North Atlantic on time scales of 4–6 years (Figs. 9b–d).
The time scale for the propagation of these anomalies is

roughly consistent with observations (Årthun and Eldevik
2016; Årthun et al. 2017) and analysis of an earlier version of
HadGEM3 (Menary et al. 2015). The QRESIDUAL EOF2 is
preceded by negative NAO-like anomalies in the 3 years prior
to the QRESIDUAL EOF2 peak. It is plausible that the anoma-
lous heat associated with SST anomalies in the eastern sub-
polar North Atlantic generated through the atmospheric
modulation of Q is stored in the upper ocean as the ocean
mixed layer becomes shallower in spring and summer. These
heat anomalies then re-emerge with the deepening of the
mixed layer in the autumn and winter of subsequent years
(e.g., Grist et al. 2019).

In terms of an atmospheric circulation response, following
the peak of QRESIDUAL EOF1, there is a weak Atlantic ridge
response (Figs. 9m,n). However, p values are greater than the
0.05 threshold for the Student’s t test when serial correlation
is taken into account. Similarly, there is no statistically signifi-
cant regression pattern for years following QRESIDUAL EOF2.
This suggests that there is no substantial atmospheric circula-
tion response to these modes in this model.

However, the SST patterns associated with QRESIDUAL

EOFs are considerably weaker in subsequent years than at
lag 0 (Figs. 9b–d,g–i) and the method removes any lag 0 re-
sponse by construction. Hence, it is still possible that similar
modes could excite a statistically significant atmospheric re-
sponse. We investigate this further by utilizing a set of high-
resSST-present atmosphere-only simulations. These are run
using the same model as the piControl simulations but forced

FIG. 7. Lagged regressions of the Atlantic, zonal-mean overturning streamfunction (colors) onto QRESIDUAL PC time series’ associated
with (a)–(d) EOF1 and (e)–(h) EOF2 as functions of depth and latitude. The mean overturning streamfunction is shown by unfilled con-
tours, with contours drawn every 4 Sv (1 Sv; 106 m3 s21), beginning at 2 Sv. Hatching indicates the statistical significance of regression co-
efficients, with p values below 0.05, following the Student’s t test. Negative lags indicate the streamfunction state prior to the QRESIDUAL

EOFs’ peaks, and positive lags indicate the streamfunction following theQRESIDUAL EOFs’ peaks.
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with observed SSTs and historical greenhouse gas and aerosol
forcings spanning 1950–2014. The SSTs do not react to
changes in circulation patterns, and hence, the direction of
causality is clear. There are three ensemble members of high-
resSST-present, and we take the ensemble average as the
SSTs are the same in each case. We project the SST patterns
associated with QRESIDUAL EOF1 and EOF2 onto SSTs
in the highresSST-present simulations over a box spanning
(208–608N, 608–158W), which is shown in Figs. 10a–h). We
then regress SSTs, SLP, and zonal wind onto the resulting
time series. It should be noted that the piControl and high-
resSST-present SST patterns are similar but far from identical
(Figs. 10a,be,f) as the highresSST-present simulations are
forced by observed SSTs, which will have different modes of
SST variability and a different mean state. For example, the
QRESIDUAL EOF1 SST projection for highresSST-present is
extended further southward than for the piControl (Figs. 10a,b).
Moreover, the Labrador Sea is substantially more prominent in
the SST pattern in highresSST-present for QRESIDUAL EOF2,
while the region of cool subtropical SSTs is shifted westward rel-
ative to the piControl (Figs. 10e,f).

Like for QRESIDUAL EOF1 in the piControl, there appears
to be a ridge-like response to the QRESIDUAL EOF1 SST pro-
jection onto highresSST-present and a northward shifted jet
stream (Figs. 10c,d). However, this response is not statistically
significant when one accounts for serial correlation. The ridge
is also shifted considerably further equatorward (Fig. 10c)
compared to the ridge following the peak of QRESIDUAL

EOF1 in the piControl (Figs. 9m,n), possibly due to the more
southward extension of the QRESIDUAL EOF1 SST projection

onto highresSST-present (Fig. 10b). The QRESIDUAL EOF2
SST projection appears to show no substantial response
(Figs. 10d,h) in agreement with Figs. 9r–t). Overall, it appears
that the QRESIDUAL modes diagnosed by the dynamical de-
composition either do not affect atmospheric circulation or
the response is weak.

6. Conclusions and discussion

This study has presented a method to separate the turbulent
heat fluxQ into a component directly related to atmospheric cir-
culation QCIRC and a residual component QRESIDUAL, which is
assumed to be primarily forced by ocean variability. The method
uses a circulation analog technique to quantify the circulation-
related component and has been tested using the HadGEM3-
GC3.1-MM preindustrial (piControl) run for the wintertime
North Atlantic. The method identifies the Labrador Sea as a re-
gion where Q variability is dominated by the atmosphere on in-
terannual and decadal time scales, whereas Q variability in the
Gulf Stream region is more ocean-driven on both of these time
scales (Figs. 5c,f). The Q in other regions, such as the eastern
subpolar North Atlantic, shows more of a mix of oceanic and at-
mospheric forcings, depending on the time scale (Figs. 5c,f).

The leading modes of QRESIDUAL are characterized by a
warming of the atmosphere along the Gulf Stream and North
Atlantic Current (NAC) for EOF1 and a dipole of Q anoma-
lies with cooling of the atmosphere in the western subtropical
North Atlantic and warming in the eastern subpolar region
for EOF2. These modes show a substantial low-frequency var-
iability (Figs. 8c,d), and the peak of QRESIDUAL EOF1 is

FIG. 8. Lagged correlations for (a) the NAO index with the AMOC and QRESIDUAL EOF1 PC time series and
(b) the AMOC withQRESIDUAL EOF1 and EOF2 PCs. Filled circles indicate statistically significant correlations with
p values below 0.05, following a t test. Normalized power spectra are also shown for the PCs associated with (c) EOF1
and (d) EOF2 ofQ (black),QCIRC (red), andQRESIDUAL (blue). Dashed curves in (c) and (d) indicate the 95% signif-
icance levels for red noise models fitted to the Q PC time series. The colors of these curves are the same as the corre-
sponding power spectrum they are fitted to.
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closely linked with a strengthening of the AMOC (Figs. 7b–d
and 8b). The QRESIDUAL modes are both driven, at least, in
part, by atmospheric circulation anomalies in the previous
year. These atmospheric circulation anomalies either alter
ocean circulation patterns, as for EOF1, or contribute to SST
anomalies in subsequent years via re-emergence of ocean
heat anomalies. Lead–lag analysis (Figs. 9m,n,r,s) and exami-
nation of atmosphere-only experiments (Figs. 10c,g) suggest
that any response of atmospheric circulation to the QRESIDUAL

modes is weak.
The dynamical decomposition method requires a few choices

of parameters, namely, the number of samples to fit for each
year Ns, the number of similar years to randomly select from
Na, and the number of times that this process is repeated Nr.
However, the results were not found to be overly sensitive to
these parameters and an analysis of variations in these param-
eters is given in appendix A. A larger uncertainty concerns the
length of the time series used to calculate the decomposition
as this affects the number of available analog years, which the
algorithm can fit to (Fig. B1). The leading QRESIDUAL modes
are reproduced when the decomposition is applied to shorter
simulations, which include variable external forcing, as dis-
cussed in appendix B. However, the order of these modes is
flipped in terms of the relative variance that these explain and

the specific details of the patterns differ, suggesting some
sensitivity.

Although beyond the scope of this paper, it could be of in-
terest to modify the method for application to subseasonal
time scales. The Q decomposition method, for instance, could
be used to examine atmosphere–ocean feedbacks related to
the winter NAO (e.g., Kolstad and O’Reilly 2024). It would
also be of interest to apply the Q dynamical decomposition
method to other regions. For example, atmospheric circula-
tion over the North Pacific, like the North Atlantic, is largely
dominated by the internal atmospheric variability and remote
forcing. Applying this method would help to identify the key
modes of ocean-driven Q variability in this region. However,
it may be difficult to interpret results if this method is applied
to regions, such as the tropical Pacific, where the ocean
strongly forces an atmospheric response. This is because the
decomposition may identify the strong atmospheric response
as forcing the ocean, rather than the other way round.

It should be noted that the dynamical decomposition method
is primarily a diagnostic tool for separating atmospheric- and
ocean-driven components of Q. That is to say, the atmosphere
responds to the total Q and not QRESIDUAL. O’Reilly et al.
(2023) identified differences in the sign of Q anomalies in free-
running, coupled model experiments compared with idealized

FIG. 9. Lagged regression with QRESIDUAL EOF1 and EOF2 with DJFM (a)–(j) SST and (k)–(t) SLP are shown in colors and (a)–(j)
QRESIDUAL and (k)–(t) QCIRC are shown by unfilled contours. For QRESIDUAL andQCIRC, contours are only drawn for 63 W m22 for vi-
sual clarity. Regressions are plotted with (a),(f),(k),(p) variables averaged over the 1–3 years preceding the QRESIDUAL EOF peak,
(b),(g),(i),(q) variables at the same time as the QRESIDUAL EOF peak and averaged over the (c),(h),(m),(r) 1–3, (d),(i),(n),(s) 4–6, and
(e),(j),(o),(t) 7–9 years following theQRESIDUAL EOF peak. Hatching indicates where SST and SLP regression coefficients are statistically
significant, with p values below 0.05, following the Student’s t test.
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pacemaker experiments. Specifically, restoring tropical Atlantic
SSTs toward particular patterns often results in positive Q;
though in coupled runs, warm SSTs in this location are usually
linked to negative Q. The dynamical decomposition method
could be of particular use in comparing Q in free-running mod-
els to that in pacemaker experiments and thus establishing
whether the SST restoring primarily occurs through atmospheric
or oceanic adjustment.

Finally, the low amplitude of decadal variability in North
Atlantic atmospheric and oceanic circulation in models com-
pared to observations (e.g., Simpson et al. 2018) suggests
model deficiencies in simulating ocean–atmosphere covari-
ability. This dynamical decomposition could be used to diag-
nose differences between models and observations in the
extent to which different regions of the North Atlantic are
driven by the ocean and atmosphere.
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APPENDIX A

Sensitivity of Circulation Analogs to the Choice of Nr,
Ns, and Na

We test for the sensitivity of the Q dynamical decomposition
to variations in a number of parameters. We alter the number
of closest years Na and the number of years subsampled Ns

each time and calculate the first EOFs. The Q dynamical de-
composition procedure only subsamples from the nearest
Na 5 80 years; however, relaxing this constraint and subsam-
pling from all 500 years make no difference to the structure of
the leading QRESIDUAL modes (cf. Figs. A1a,d with Figs. 6i,j).
The modes also do not appear to be sensitive to the choice of
Ns, with both Ns 5 30 (Figs. A1b,e) and Ns 5 10 (Figs. A1c,f)
giving similar solutions to Ns 5 50 (Figs. 6i,j).

The root-mean-square error (RMSE) in QRESIDUAL when
compared to the original Q dynamical decomposition with
the number of repeats Nr set to 100 levels off from around
Nr 5 30 (Fig. A2). The results are therefore not sensitive to
variations in Nr, apart from for very low values. The lack of
sensitivity to the choice of Nr, Ns, and Na is consistent with
sensitivity tests by Deser et al. (2016).

FIG. 10. Regressions of SSTs onto (a) QRESIDUAL EOF1 and (e) QRESIDUAL EOF2 in the piControl run and regressions of (b),(f) SST,
(c),(g) SLP, and (d),(h) 250-hPa zonal wind (colors) and 850-hPa zonal wind (unfilled contours) onto an index of SST variability in
highresSST-present experiments. The index is the projection of the SSTs in the highresSST-present onto SST patterns associated
with QRESIDUAL EOFs 1 and 2 in the piControl simulation over the boxed region in each panel. Hatching indicates where regres-
sion coefficients have p values below 0.05, following the Student’s t test with the null hypothesis of zero regression slope.
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APPENDIX B

Sensitivity to Period Length and External Forcing

This study has presented the results of applying the circu-
lation analog method to a piControl run with a long time
series and no externally forced variability. It would, how-
ever, be desirable to apply this to historical simulations or
reanalysis datasets which are shorter and are subject to var-
iations in greenhouse gases and aerosols. This appendix
therefore investigates the sensitivity of the method to the
length of the period and the presence of variable external
forcing. We apply the dynamical decomposition to a four-
member ensemble of runs with observed external forcings
spanning 1850–2014 (historical), which have been created
using the same model. In each case, the same values of Ns,
Nr, and Na are used as for the original piControl run. For
the historical simulations, the influence of external forc-
ing is removed by linearly regressing out the global-mean
SST from all variables before performing the dynamical
decomposition.

FIG. A1. As in Fig. 6, but for QRESIDUAL only and for different values of Ns and Na. Shown are results for (a),(d) Ns 5 50, Na 5 500,
(b),(e)Ns 5 30, Na 5 80, and (c),(f)Ns 5 10, Na 5 80.

FIG. A2. The RMSE in QRESIDUAL when compared to the origi-
nal Q dynamical decomposition with Nr 5 100 for different values
of Nr.
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To test the sensitivity to the length of the time period, we
perform the dynamical decomposition using five 100-yr, nono-
verlapping subsets of the piControl run. We then calculate five
sets of gridpoint correlations of QCIRC calculated from each of
the separate 100-yr periods with QCIRC diagnosed from the
full 500-yr period. The average of these five sets of correlations
is shown in Fig. B1a). The 500-yr period has a larger number
of analogs to fit each year to which may affect the magnitude
of Q attributed to atmospheric circulation variability. Broadly
speaking, QCIRC calculated from the shorter 100-yr periods is
highly positively correlated with QCIRC from the full 500-yr pe-
riod Fig. B1a). There is particular agreement in regions which
are dominated by atmospheric circulation variability such as
the Labrador Sea (Fig. B1a). Performing the same procedure
for QRESIDUAL, the correlations are fairly uniformly around
0.6–0.7 across the North Atlantic, i.e., explaining around
40%–50% of the variance (Fig. B1b). Overall, this suggests

that the period length introduces some uncertainty to the
decomposition due to the available years to fit analogs to.

To investigate the role of external forcing, we perform the
EOF analysis of QRESIDUAL as before using the historical sim-
ulations. Each of these shows similar dominant patterns of
QRESIDUAL variability to the piControl, though with the order
of the leading patterns flipped compared to the piControl
(Fig. B2). This suggests that variable external forcing and the
shorter length of the simulations do not prevent identification
of the leading modes. However, it should be noted that the
order of those modes is flipped in terms of variance ex-
plained and the structure of them differs between ensemble
members. Overall, the similarity of these modes suggests
that the Q dynamical decomposition could usefully be ap-
plied to reanalysis datasets, which have the added complex-
ity of external forcing and are considerably shorter than a
typical piControl run.

FIG. B1. Average of gridpoint correlations between dynamical decompositions calculated for the full 500-yr period and
for this same period split into five, nonoverlapping, 100-yr periods. This is shown for (a)QCIRC and (b)QRESIDUAL.

FIG. B2. Regressions ofQ onto PCs associated withQRESIDUAL (a)–(d) EOF1 and (e)–(h) EOF2 for the four historical ensemble mem-
bers (a),(e) r1i1p1f3, (b),(f) r2i1p1f3, (c),(g) r3i1p1f3, and (d),(h) r4i1p1f3. Hatching indicates where regression coefficients are statistically
significant, with p values below 0.05, following the Student’s t test. Units are watts per square meter per standard deviation.
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