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Abstract
Specification of the observation-error covariance matrix for data assimila-
tion systems affects the observation information content retained by the
analysis, particularly for observations known to have correlated observa-
tion errors (e.g., geostationary satellite and Doppler radar data). A widely
adopted approach for estimating observation-error covariance matrices uses
observation-minus-background and observation-minus-analysis residuals,
which are routinely produced by most data assimilation systems. Although this
approach is known to produce biased and noisy estimates, due to sampling
and misspecification errors, there has been no systematic study of sampling
errors with this approach to date. Furthermore, the eigenspectrum of the esti-
mated observation-error covariance matrix is known to influence the analysis
information content and numerical convergence of variational assimilation
schemes. In this work, we provide new theorems for the sampling error and
eigenvalues of the estimated observation-error covariance matrices with this
approach. We also conduct numerical experiments to illustrate our theoretical
results. We find that this method produces large sampling errors if the true
observation-error standard deviation is large, while the other error characteris-
tics, including the true background-error standard deviation and observation-
and background-error correlation length-scales, have a relatively small effect.
We also find that the smallest eigenvalues of the estimated matrices may be
smaller or larger than the true eigenvalues, depending on the assumed and true
observation- and background-error statistics. These results may provide insights
for practical applications: for example, in deciding on appropriate sample sizes
and choosing parameters for matrix reconditioning techniques.
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2 HU and DANCE

1 INTRODUCTION

Data assimilation is a technique used in numerical
weather prediction (NWP) to provide initial conditions for
weather forecasting models. Such models are sensitive to
initial conditions and therefore we should provide initial
conditions that are as close to the true atmospheric state
as possible (e.g., Dance et al., 2019; Hu et al., 2022). These
initial conditions are referred to as analyses in data assim-
ilation systems and are created using short-range model
forecasts, observational data, and their error statistics.

Observation-error covariance matrices are used in
data assimilation to take account of the observation
uncertainty. How well the observation-error covariance
matrices represent the true error statistics affects the
results of the data assimilation and hence the quality of
any subsequent weather forecasts. In some practical NWP
applications, observation errors are assumed to be uncor-
related and so the observation-error covariance matrices
are diagonal. The assumption of uncorrelated observa-
tion errors is a pragmatic strategy when we do not have a
good understanding of the characteristics of observation
uncertainty (e.g., Liu & Rabier, 2003). Observation-error
correlations can be accounted for indirectly by artificially
enlarging the observation-error variance. However, this
is suboptimal and results in reduced analysis accuracy
compared with including observation-error correlations
explicitly (Stewart et al., 2008, 2013; Weston et al., 2014).
Spatial error correlations can be removed by observation
thinning, but this prevents us from making full use of the
information from high-resolution observations (e.g., Cor-
doba et al., 2017; Fowler et al., 2018; Rainwater et al., 2015;
Waller et al., 2016c). Many studies show that, when assim-
ilating observations that are known to have correlated
observation errors, there are significant benefits in explic-
itly including the correlated observation-error statistics
in the observation-error covariance matrix by using a
non-diagonal matrix (e.g., Bédard & Buehner, 2020; Fujita
et al., 2020; Healy & White, 2005; Simonin et al., 2019;
Stewart et al., 2008, 2013; Weston et al., 2014). The inclu-
sion of spatially correlated observation-error statistics in
data assimilation systems increases the computational
cost of matrix inversion, matrix–vector multiplication,
and communication costs in parallel computations. This
computational issue can be addressed by, for example,
adopting a pragmatic strategy for the distribution of obser-
vations between processors (Simonin et al., 2019) and
using numerical approximation techniques (e.g., Guillet
et al., 2019; Hu & Dance, 2021; Michel, 2018).

A number of methods have been developed to
estimate correlated observation-error statistics in
practical applications (see the reviews by Janjić
et al., 2018; Tandeo et al., 2020; Satterfield et al., 2022).

A popular approach is to use diagnostics based
on the observation-minus-background (O−B) and
observation-minus-analysis (O−A) statistics derived by
Desroziers et al. (2005). These statistics can be easily
obtained from a data assimilation system with almost
no additional cost. We refer to this approach as the
Desroziers et al. method, which is essentially a sam-
pling approach that uses finite samples of the O−B and
O−A differences to estimate observation-error covariance
matrices. The Desroziers et al. method has been success-
fully used in operational data assimilation systems to
estimate spatial error correlations for observations such
as geostationary satellite observations (e.g., Michel, 2018;
Waller et al., 2016a) and Doppler radial winds (e.g., Waller
et al., 2016c, 2019; Yeh et al., 2022), and to estimate
satellite interchannel error covariances (e.g., Bormann
et al., 2016; Campbell et al., 2017; Stewart et al., 2014;
Weston et al., 2014).

Despite the successful operational use of diagnosed
observation-error covariance matrices obtained using this
approach, there have only been limited theoretical and
applied studies into the accuracy of the observation-error
covariance estimates obtained. Waller et al. (2017) studied
the use of the diagnostic for ensemble assimilation and
found that it is only appropriate to apply the diagnos-
tic to certain subsets of observations, depending on the
choice of domain localization length. Waller et al. (2016b),
Ménard (2016), and Bathmann (2018) carried out theoret-
ical studies for variational assimilation methods (with no
sampling error) and found that the diagnosed estimates
are highly dependent on the background- and
observation-error covariances assumed in the data assim-
ilation system. The assumed error statistics refer to those
used in the assimilation system, which are approxima-
tions of the true error statistics. Nevertheless, empirical
metrological studies by Chun et al. (2015) and Mirza
et al. (2021) have found good qualitative and quantitative
agreement with diagnosed estimates, respectively. None
of these studies has considered the effects of statistical
sampling error on the diagnosed estimates, although noisy
estimates have been observed (Waller et al., 2019). For
estimation of covariance matrices using direct sampling,
Ledoit and Wolf (2004) found that the sampling error is
larger if the ratio of the number of observations to the
sample size is larger. In this article, we will demonstrate
that this ratio (number of observations/sample size) is also
an important factor in controlling the size of the sampling
error with the Desroziers et al. method. Previous stud-
ies estimating the observation-error covariance matrices
using the Desroziers et al. approach show quite a wide
variation for this ratio, often for practical reasons. For
example, in experiments estimating spatial correlations
for Doppler radar winds, the maximum possible number
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HU and DANCE 3

of observations in a scan is 1920 and the correlation coef-
ficients are estimated using a sample size larger than 500
(Waller et al., 2016c), giving a maximum ratio of number
of observations/sample size of 3.8. For satellite interchan-
nel error correlation estimation, these ratios are typically
much smaller (Stewart et al., 2014 use ratios between
0.007 and 0.07).

There are numerous studies on the use of sample
covariance matrices to estimate large-dimensional covari-
ance matrices (e.g., Dey & Srinivasan, 1985; Haff, 1980;
Ledoit & Wolf, 2004). However, most of the literature
uses direct sampling methods, in which the sample rep-
resents the statistics of the covariance matrix to be esti-
mated. In contrast, the Desroziers et al. method is an
indirect sampling method, where assimilation residuals
in observation space (not observation errors) are sam-
pled and used to estimate the observation-error covari-
ance matrices. In practice, the sample covariance matrix
is often regularised to ensure a better estimate (Bickel
& Levina, 2008; Furrer & Bengtsson, 2007). Common
methods for covariance regularization in data assimila-
tion include localization for the background-error covari-
ance matrix (e.g., Hamill et al., 2001; Houtekamer &
Mitchell, 2001) and ridge regression (RR) and the mini-
mum eigenvalue (ME) method for the observation-error
covariance matrix (e.g., Tabeart et al., 2020b). In this work,
we investigate the raw sample observation-error covari-
ance (before regularization), as the nature of the sampling
errors can help inform the choice of localization method.
It should also be noted that, in operational applications
with spatially correlated observation errors, the covariance
has been estimated by fitting the samples to a specified
form of correlation function (Simonin et al., 2019). In
this case, additional matrix regularization has not been
needed.

In this work, we provide some novel adaptions of
Ledoit and Wolf’s (2004) theorems on direct sampling
errors to give theorems on indirect sampling errors. We
investigate how sampling errors grow as the ratio of
the number of observations to sample size, observation,
and background-error standard deviations and correlation
length-scales changes. We also examine the eigenvalues of
the estimated observation-error covariance matrices, since
the smallest eigenvalues of these matrices were found to
affect the speed of convergence of the least-squared min-
imisation in variational data assimilation (e.g., Tabeart
et al., 2018, 2021; Weston et al., 2014). Very small mini-
mum eigenvalues may increase the number of iterations
required for convergence. In addition, when assimilating
satellite observations, small interchannel biases can be
amplified by very small eigenvalues (Geer, 2019). Previ-
ous work has shown that modifying the eigenvalues of
the observation-error covariance matrices by using matrix

reconditioning techniques, such as ME and RR meth-
ods, can improve the condition number of the matrix
(e.g., Tabeart et al., 2020b) and convergence speed of the
variational minimization (e.g., Tabeart et al., 2020a). Our
investigation on sample eigenvalues may provide some
guidance on how to choose the parameters of these recon-
ditioning methods for practical applications.

We organise our article as follows. In Section 2, we
introduce some key mathematical concepts that will be
used later in our analysis of sampling error, including
eigenvalue value decomposition, the Frobenius norm, and
the matrix trace. In Section 3, we introduce the notation
and terminology of data assimilation. In Section 4, we
describe how to use the Desroziers et al. method to esti-
mate observation-error covariance matrices. In Section 5,
we present previous work on sampling error with a direct
sampling approach, which will be used in our analy-
sis of sampling error with the Desroziers et al. method.
In Section 6, we show our new theoretical results on
sampling error with the Desroziers et al. method. In
Section 7, we examine how well the true eigenvalues of the
observation-error covariance matrices are approximated
by those of the estimated matrices. In Section 8, we con-
duct a number of numerical experiments to illustrate our
theoretical analysis. Finally, in Section 9, we summarise
our work and discuss how our findings may provide use-
ful information for practical applications of the Desroziers
et al. method.

2 MATHEMATICAL
PRELIMINARIES

In this section, we introduce some key mathematical con-
cepts and notation that are used in this study.

2.1 Eigendecomposition

Eigendecomposition factorises a diagonalizable matrix
into eigenvalues and eigenvectors (e.g., Golub & Van
Loan, 1996, chapter 8). The eigenvalues obtained will be
used later in our analyses of sampling errors (Sections 5
and 6). In addition, we are interested in the eigenval-
ues of the observation-error covariance matrices, because
the smallest eigenvalue is considered to be a key factor
affecting the numerical convergence of variational data
assimilation methods (e.g., Tabeart et al., 2018, 2021). New
results on eigenvalues are discussed in Section 7.

Let A ∈ Rm×m be any covariance matrix, which is sym-
metric and positive semi-definite by definition. It can be
decomposed as

A = U𝚲U⊤
, (1)
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4 HU and DANCE

where 𝚲 ∈ Rm×m is a diagonal matrix with diagonal ele-
ments that are the eigenvalues 𝜆1(A) ≥ 𝜆2(A) ≥ … ≥

𝜆m(A), and U ∈ Rm×m is a matrix with columns that are
the corresponding eigenvectors u1,u2, … ,um. The eigen-
vectors are orthonormal, that is, U⊤U = I.

2.2 The Frobenius norm, Frobenius
inner product, and matrix trace

The Frobenius norm is defined as the square root of the
sum of the absolute squares of the matrix elements (e.g.,
Bernstein, 2009, chapter 9),

||A||F =

√
√
√
√

m∑

i=1

m∑

𝑗=1
|ai,𝑗|2, (2)

where ai,𝑗 denotes the element in the ith row and 𝑗th
column of A. The Frobenius norm will be used later to
measure the elementwise difference between the true and
sample covariance matrices. The Frobenius norm pro-
vides a standard way to measure the difference between
two matrices and is easier to compute than the matrix
norms induced by vector p-norms (e.g., Golub & Van
Loan, 1996, chapter 2). Furthermore, our work builds on
the work of Ledoit and Wolf (2004), and their calcula-
tions depend on the properties of the Frobenius norm
(e.g., Bernstein, 2009, chapter 9), but it would be straight-
forward to extend them to a weighted Frobenius norm
(Higham, 2002).

We also need to introduce the Frobenius inner product,
which is defined as the sum of entries of the Hadamard
product for real-valued matrices,

⟨A1,A2⟩F =
m∑

i,𝑗
ai,𝑗 âi,𝑗 , (3)

where ⟨⋅, ⋅⟩F denotes the Frobenius inner product of any
two matrices of the same dimension. The Frobenius inner
product will be used in Theorems 1 and 4. Finally, the trace
of the matrix A is defined to be the sum of its diagonal
entries,

tr(A) =
m∑

i=1
ai,i, (4)

which is equal to the sum of the eigenvalues

tr(A) =
m∑

i=1
𝜆i(A). (5)

The trace will be used in the definition of a quantity that
affects sampling error in Section 5.

3 SOME BASIC DATA
ASSIMILATION CONCEPTS

Data assimilation blends information from observations
and short-range model forecasts by taking account of their
uncertainties. The symbol y ∈ Rm is used to denote the
observation vector and the symbol xb ∈ Rn is used to
denote the vector given by the short-range model forecast,
which is referred to as the background model state vector.
In data assimilation, observation and background errors
are typically assumed to be Gaussian-distributed and
unbiased. Let xt ∈ Rn be the true system state, then we
may write

y = H(xt) + 𝝐o
, (6)

where H ∶ Rn → Rm is the nonlinear observation oper-
ator and 𝝐o ∈ Rm is a vector containing the observation
errors. The observation errors are assumed to follow a
Gaussian distribution with zero mean and covariances
given by the observation-error covariance matrix, R ∈
Rm×m, that is, 𝝐o ∼ (0,R). It should be noted that, in
Equation (6), the observation operator is not assumed to
be perfect. Observation-operator uncertainty is included in
the definition of the matrix R (Janjić et al., 2018). Similar
to Equation (6), we have

xb = xt + 𝝐b
, (7)

where 𝝐
b ∈ Rn is a vector containing the background

errors and 𝝐b ∼ (0,B). The matrix B ∈ Rn×n is known as
the background-error covariance matrix.

The analysis equation is given by for example, Bouttier
and Courtier (2002) and Nichols (2010)

xa = xb + K̃db
, (8)

where xa ∈ Rn is the analysis state vector, K̃ ∈ Rn×m

the Kalman gain matrix assumed in a data assimi-
lation system, and db ∈ Rm the observation-minus-
background (O−B) residual (defined in Equation (10)
below). The assumed Kalman gain matrix is calculated as

K̃ = B̃H⊤(HB̃H⊤ + R̃)−1
, (9)

where B̃ ∈ Rn×n and R̃ ∈ Rm×m are assumed background
and observation-error covariance matrices, respectively,
and H ∈ Rm×n is the observation operator linearised about
the current state. We have used a tilde here in order
to help distinguish these assumed matrices from the
exact statistics. The assumed error covariance matrices are
the matrices used in a data assimilation system, which
may not be exact, that is, they may not describe the
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HU and DANCE 5

true error statistics completely correctly. The distinction
between the assumed and true error covariance matri-
ces is needed in the analysis of the Desroziers et al.
method. The O−B residual is computed as the difference
between the observations and background model state in
observation space,

db = y −H(xb). (10)

Another quantity used in the Desroziers et al. method is
the observation-minus-analysis (O−A) residual, given as
the difference between the observations and analysis in
observation space,

da = y −H(xa). (11)

4 THE ESTIMATION OF
OBSERVATION-ERROR
COVARIANCE MATRICES

A straightforward way of estimating the true
observation-error covariance matrix would be to use sam-
ples of observation errors. This approach is described in
Section 4.1. However, direct sampling is not always pos-
sible in practice. Instead, the Desroziers et al. method is
often used, which can be considered as an indirect sam-
pling approach, as it does not use samples of observation
errors. The Desroziers et al. approach is described in
Section 4.2.

4.1 Direct estimation
of observation-error covariance matrices

The true observation-error covariance matrices
(
R =

E
[
𝝐

o(𝝐o)⊤
])

can be estimated directly using samples of 𝝐o

(e.g., Huber, 2004):

R̂ = 1
N − 1

N∑

i=1
(𝝐o

i − 𝝐
o)(𝝐o

i − 𝝐
o)⊤

= 1
N − 1

N∑

i=1
𝝐

o
i (𝝐

o
i )
⊤ − 𝝐o(𝝐o)⊤, (12)

where R̂ denotes the sample observation-error covariance
matrix, 𝝐o

i the ith sample of the observation errors, and
𝝐

o = 1
N

∑N
i=1𝝐

o
i the sample mean. In this work, any matrix

with a hat is a sample estimate of the matrix denoted by
the same letter (without a hat). Since the observation error
is assumed to be unbiased, the statistical expectation of the
sample mean is zero, that is, 𝝐o converges asymptotically
to zero as N increases.

4.2 The Desroziers et al. method

To distinguish it from the direct sampling method given in
Section 4.1, we refer to the Desroziers et al. method as the
indirect sampling approach in this study. To introduce this
method, we first derive an expression for the innovation
covariance matrix D = E[db(db)⊤]. The O−B residual given
by Equation (10) is also known as the innovation, which
can be rewritten as (Desroziers et al., 2005)

db = (y −H(xt)) − (H(xb) −H(xt))
≈ 𝝐o −H(xb − xt)
= 𝝐o −H𝝐b (13)

using Equations (6) and (7). Then, we obtain

D = E
[
𝝐

o(𝝐o)⊤
]
+HE

[
𝝐

b(𝝐b)⊤
]
H⊤

= R +HBH⊤
, (14)

assuming that 𝝐b and 𝝐
o are uncorrelated and thus

E
[
𝝐

o(𝝐b)⊤
]
= E
[
𝝐

b(𝝐o)⊤
]
= 0. The innovation covariance

matrix can also be estimated directly using a finite number
of samples using the method of Equation (12) as

D̂ = 1
N − 1

N∑

i=1
db

i (d
b
i )
⊤ − d

b
(d

b
)⊤, (15)

where D̂ denotes the sample innovation covariance matrix,
db

i the ith innovation sample, and d
b
= 1

N

∑N
i=1db

i the sam-

ple mean. Since E[𝝐o] and E
[
𝝐

b] are zero, E
[
db] and E

[

d
b]

are zero.
Following the derivation from Desroziers et al. (2005),

we then substitute Equation (8) into Equation (11) and
obtain

da = y −H(xb + K̃db), (16)

which can be expanded using a Taylor series for a
perturbation 𝛿x = K̃db about point xb,

da = y −H(xb) −H𝛿x − (||𝛿x||2)

≈ y −H(xb) −HK̃db

= (I −HK̃)db

= R̃(HB̃H⊤ + R̃)−1db
. (17)

Taking the statistical expectation of the outer product of
the O−A and O−B residuals gives

E
[
da(db)⊤

]
= R̃(HB̃H⊤ + R̃)−1

E
[
db(db)⊤

]

= R̃(HB̃H⊤ + R̃)−1(HBH⊤ + R)
= Re

, (18)
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6 HU and DANCE

where Re is the estimated observation-error covariance
matrix (e.g., Janjić et al., 2018; Waller et al., 2016b). When
the assumed error covariance matrices (R̃ and B̃) are
equal to the exact covariance matrices R and B, then
Re = R. When the assumed matrices do not equal the
true matrices, the difference between Re and R is highly
dependent on the assumed error statistics. For example,
Waller et al. (2016b) showed in idealized systems that,
when the assumed observation-error covariance matrix R̃
is diagonal but the actual errors have spatial correlations,
the estimated observation-error standard deviation and
correlation length-scale will be smaller than the true
statistics.

The matrix Re can be estimated by replacing the
expected value on the left-hand side of Equation (18) with
a sample average (Cordoba et al., 2017; Stewart, 2010, eq.
(7.6)),

R̂
e
= 1

N

N∑

i=1

(
da

i − d
a)(

db
i − d

b)⊤

= 1
N

N∑

i=1
da

i
(
db

i
)⊤ − d

a(
d

b)⊤
, (19)

where R̂
e

denotes the indirect sample observation-error
covariance matrix, da

i the ith sample of O−A residuals, and
d

a
= 1

N

∑N
i=1da

i the sample mean.
We refer to Equation (19) as the indirect sampling

approach used to estimate the observation-error covari-
ance matrix. There are a few things to be aware of
when using this equation in practice. First, the standard
definition of the Desroziers et al. method (Equation 18)
does not guarantee that the estimated observation-error
covariance matrix is symmetric. In practice, it may be
appropriate to symmetrize the estimated matrix by 1

2

(

R̂
e
+

(
R̂

e)⊤
)

. For the purposes of our theoretical analysis, con-
sideration of the symmetrized form would not change
any of the results fundamentally, as the Frobenius norm
is invariant under matrix transposition. Second, theoreti-
cally, the population means of the vectors da and db are
zero vectors. However, this may not be the case in prac-
tice if, for example, the observations are biased. Regardless
of the population means, the sample means of the two
vectors are not necessarily zero. Therefore, to obtain unbi-
ased results, the sample means are typically subtracted
as done in Equation (19) (Waller et al., 2016a). Third, we
follow previous literature and use N as the denominator
((Cordoba et al., 2017; Stewart, 2010, eq. (7.6))). How-
ever, it is also possible to use N − 1 because one degree
of freedom is taken to calculate the sample mean d

b
(e.g.,

Field, 2018, p. 106) and the vector da is a function of the

vector db (Equation 17). Nevertheless, in practical use of
the Desroziers et al. method, the value of N is generally
large so that the difference between using N and N − 1 may
be neglected. Fourth, the Desroziers et al. method can be
used iteratively in a cycling data assimilation system. Bath-
mann (2018) has shown that the result of the Desroziers
et al. method converges quickly (after a few iterations), and
the result of the first iteration does not differ much from
the result of the last iteration. Therefore, we do not con-
sider the iteration of the Desroziers et al. method in our
analysis. Fifth, the vectors da and db are often assumed to
be stationary in time (e.g., a season Waller et al., 2016a,
2016c) or space (e.g., Cordoba et al., 2017). These types
of assumption are often made pragmatically using expert
opinion, without formal justification, allowing us to use
samples taken from different analysis steps or different
observation locations to approximate the expected value.
Last, the Desroziers et al. diagnostic has been applied
successfully in operational systems with nonlinear obser-
vation operators (e.g., Michel, 2018; Waller et al., 2019),
although the diagnostic derivation assumes that the lin-
ear approximation of the observation operator is appro-
priate. In this study, we address sampling error only
in the case of linear observation operators, and further
research is needed to determine whether our analysis also
holds qualitatively in the case of nonlinear observation
operators.

5 SAMPLING ERROR WITH
DIRECT SAMPLING METHOD

In this section, we describe the previous results given by
Ledoit and Wolf (2004), where direct sampling error is for-
mulated in terms of key quantities such as the ratio of the
number of observations to the number of samples and the
average size of the diagonal elements of the matrix. Fol-
lowing Ledoit and Wolf (2004), we measure the size of
the sampling error by the expected quadratic loss (EQL),
defined as

EQL(Â,A) = 1
m

E

[

||Â −A||2F
]

. (20)

Under three weak assumptions (Assumptions 1-3 of Ledoit
& Wolf, 2004), EQL(Â,A) can be reformulated in terms of
four quantities (Appendix A.2 of Ledoit & Wolf, 2004),

1
m

E

[

||Â −A||2F
]

= 𝛼
[

𝜇
2(A) + 𝜃(Â,A)

]

− 𝛽(A). (21)

We note that the assumptions used to form Equation (21)
are verified for normally or even elliptically distributed
random variables, but they are actually much weaker
(Ledoit & Wolf, 2004). In addition, Equation (21) holds
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HU and DANCE 7

only if Â is obtained by sampling directly from A. This
means that in our context it can only be used to esti-
mate quantities such as EQL(D̂,D), but not EQL(R̂

e
,R) or

EQL(R̂
e
,Re).

The first quantity on the right-hand side of
Equation (21),

𝛼 = m∕N, (22)

is the ratio of the length of the observation-error vector
(m) to the sample size (N). We can see from Equation (21)
that EQL(Â, A) increases with 𝛼, so, in order to estimate
the covariance matrix accurately, the number of samples
needs to be much larger than the matrix column
dimension (m). The second quantity,

𝜇
2(A) =

[
tr(A)

m

]2

, (23)

is the square of the average size of the diagonal ele-
ments of A. For the case of A = R, the diagonal elements
of the true covariance matrix are variances of the
observation errors. Therefore, 𝜇(R) describes the magni-
tude of the observation error. The quantity 𝜇(A) can also
be given by the average size of the eigenvalues of A, that
is, 𝜇(A) = 1

m

∑m
i 𝜆i(A) by Equation (5).

To define the third quantity, 𝜃(Â,A), we first need to
introduce another matrix 𝚪Â,A ∈ Rm×N , which is obtained
by projecting N samples drawn from A onto the basis
given by the eigenvectors of A. In the case of A = R,
we have

𝚪R̂,R = U⊤

R
[
𝝐

o
1, 𝝐

o
2, … , 𝝐

o
N
]
, (24)

where UR is a matrix containing the eigenvectors of R
and 𝝐o

i is defined in Section 4.1. The matrix 𝚪R̂,R can be
interpreted as a matrix comprising N samples of m uncor-
related observation errors, and it spans the same space as
the matrix given by the samples of correlated observation
errors, 𝝐o

1, 𝝐
o
2, … , 𝝐

o
N . Using Equation (12) and considering

the sample mean to be zero, we may write

1
N − 1

[
𝝐

o
1, 𝝐

o
2, … , 𝝐

o
N
][
𝝐

o
1, 𝝐

o
2, … , 𝝐

o
N
]⊤ ≈ R. (25)

Then, we have

1
N − 1

𝚪R̂,R𝚪
⊤

R̂,R
≈ U⊤

RRUR = 𝚲R. (26)

How close the two quantities on either side of the approx-
imation sign are depends on two things: (1) how well the
eigenvectors of the sample covariance matrix match the
eigenvectors of the true matrix and (2) how well the eigen-
values of the sample covariance match the eigenvalues
of the true matrix. Now, let 𝛾i1(Â,A) denote the ith

element of the first column of matrix 𝚪Â,A, then the
third quantity on the right-hand side of Equation (21) is
defined as

𝜃(Â,A) = Var

[

1
m

m∑

i=1
𝛾

2
i1(Â,A)

]

, (27)

which measures the variance of m−1∑m
i=1𝛾

2
i1(Â,A) in the

following equality:

E

⎡
⎢
⎢
⎣

(

1
m

m∑

i=1
𝛾

2
i1

)2⎤
⎥
⎥
⎦

=

(

E

[

1
m

m∑

i=1
𝛾

2
i1

])2

+ Var

[

1
m

m∑

i=1
𝛾

2
i1

]

.

(28)

In our experiments, the variance is estimated over
one thousand realisations of m−1∑m

i=1𝛾
2
i1(Â,A). As noted

by Ledoit and Wolf (2004), in general 𝜃(Â,A) is a
non-negligible, positive quantity. However, if the samples
are (perfectly) normally distributed, then 𝜃(Â,A) is zero.
The last quantity,

𝛽(A) = 1
mN

m∑

i=1
𝜆

2
i (A), (29)

is the sum of the squares of the eigenvalues of A divided by
mN. For any given m, this quantity should be finite, as A is
a finite-dimensional matrix. Thus, it converges to zero as
N goes to infinity (Appendix A.2 of Ledoit & Wolf, 2004).
However, since we attempt to study sampling error in prac-
tical applications where the sample size N is finite, we
investigate the variation of 𝛽(A), as the characteristics of A
change in numerical experiments.

6 SAMPLING ERROR WITH THE
DESROZIERS ET AL. METHOD

In this section, we present our new theoretical results
for the sampling error with the Desroziers et al. method,
which we refer to as an indirect sampling error. As shown
by the following theorem, the indirect sampling error is
comprised of three terms.

Theorem 1. The EQL(R̂
e
,R) can be

calculated by

1
m

E

[

||R̂
e
− R||2F

]

= 1
m

E

[

||R̂
e
− Re||2F

]

+ 1
m
||Re − R||2F

+ 2
m

⟨

E
[
R̂

e
− Re]

,Re − R
⟩

F
.

(30)
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8 HU and DANCE

The proof of Theorem 1 is provided in Appendix A.
The first term on the right-hand side of Equation (30),
which can be denoted by EQL(R̂

e
,Re), measures an indi-

rect sampling error, where the matrix Re is calculated by
Equation (18) and matrix R̂

e
is calculated by Equation (19).

We remind the reader that Re and R̂
e

are both estimates
from the Desroziers et al. method, but Re is a theoreti-
cal estimate in exact arithmetic (no sampling error) and
R̂

e
is calculated from samples of O−A and O−B resid-

uals. We note that EQL(R̂
e
,Re) does not measure direct

sampling errors because R̂
e

is not obtained using the sam-
ples that are directly drawn from Re. How to estimate
this term can be found below in Theorem 3. The sec-
ond term on the right-hand side of Equation (30), 1

m
||Re −

R||2F, measures the difference between the estimated and
true observation-error covariance matrices, which is deter-
mined by the accuracy of the assumed background and
observation-error statistics and is invariant to sample size.
These errors were investigated by Waller et al. (2016b).
Experiments with real data (e.g., Waller et al., 2016c)
have shown qualitatively similar results. The last term,
2
m

⟨

E
[
R̂

e
− Re]

,Re − R
⟩

F
, is expected to be zero because

E

[

R̂
e]
= Re. In practice, however, this term may not be

negligible, since R̂
e

is estimated using a finite sample size.
We note that, in a special case where the assumed

background and observation-error covariances are exactly
the same as the true background and observation-error
covariances, respectively (i.e., B̃ = B and R̃ = R), we
have Re = R and thus the second and third terms on the
right-hand side of Equation (30) vanish.

Since the third term on the right-hand side of
Equation (30) may be expensive to calculate in practi-
cal applications, we further provide an upper bound on
EQL(R̂

e
,R) that is determined only by the first two terms

on the right-hand side of Equation (30).

Theorem 2. The EQL(R̂
e
,R) can be bounded

by the following inequality

1
m

E

[

||R̂
e
− R||2F

]

⩽ 1
m

E

[

||R̂
e
− Re||2F

]

+ 1
m
||Re − R||2F

+ 2
√

1
m

E

[

||R̂
e
− Re||2F

]

⋅
1
m
||Re − R||2F. (31)

The proof of Theorem 2 is given in Appendix B. We now
provide a theorem that can be used to estimate the size
of 1

m
E

[

||R̂
e
− Re||2F

]

. As shown by Equation (17), the O−A
residual vector, da, is a function of the O−B innovation
vector, db. Thus, we may write

Re = W̃D (32)

and
R̂

e
= W̃D̂, (33)

where W̃ = R̃(HB̃H⊤ + R̃)−1 is an m ×m matrix, which is
not necessarily symmetric, and the true innovation covari-
ance matrix, D, and its sample matrix, D̂, are defined by
Equations (14) and (15), respectively. Using Equations (32)
and (33), we obtain the following theorem:

Theorem 3. The EQL(R̂
e
,Re) can be bounded

by the following inequality

1
m

E

[

||R̂
e
− Re||2F

]

= 1
m

E

[

||W̃(D̂ −D)||2F
]

⩽ s2
1(W̃) ⋅ 1

m
E

[

||D̂ −D||2F
]

, (34)

where s2
1(W̃) is the square of the largest singular

value of W̃.

More details on singular-value decomposition (SVD)
and the properties of singular values can be found in Bern-
stein (2009, chapter 5). The proof of the upper bound
shown in Theorem 3 is shown in Appendix C. The
term 1

m
E

[

||D̂ −D||2F
]

in Equation (34) is a measure of
direct sampling errors, which can be calculated using
Equation (21). In practical applications, we cannot calcu-
late 1

m
E

[

||D̂ −D||2F
]

exactly, as the true innovation covari-
ance matrix (D) is unknown, but we know that this term
decreases as the sample size increases, regardless of the
structure of the matrix D. The term, s2

1(W̃), has an upper
bound given by the following inequality:

s2
1(W̃) ⩽

(
𝜆1(R̃)

𝜆m(R̃) + 𝜆m(HB̃H⊤)

)2

. (35)

For a proof of this inequality see Appendix D. In addi-
tion to Equation (35), if the matrices R̃, HB̃H⊤, and W̃ are
circulant, then the size of s2

1(W̃) can be calculated easily
without forming the matrix W̃. (The definition of circu-
lant matrices and their properties as well as the calculation
of s2

1(W̃) are provided in Appendix E.) More generally,
for many observation types assimilated operationally, the
observation-error covariance matrix (R̃) is assumed diag-
onal and its eigenvalues are simply the diagonal elements
of this matrix. For observation types where the matrix R̃
has a more complex structure, these matrices are usually
relatively small (e.g., satellite interchannel error covari-
ances of order 100 × 100) and so the eigenvalues can be
calculated directly. The term 𝜆m(HB̃H⊤) depends on the
background-error covariance, which is not typically avail-
able in explicit form in variational assimilation. However,
it can be approximated using a “randomisation” method
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HU and DANCE 9

(Anderson et al., 2000; Tabeart et al., 2020a) in order to
provide an estimate of the bound in Equation (35).

Corollary 1. Theorem 3 can also be applied
to a particular case where the assumed error
statistics are exact (i.e., B̃ = B and R̃ = R). In
this case, we have W̃ = W and Re = R, which
gives

1
m

E

[

||R̂
e
− R||2F

]

= 1
m

E

[

||W(D̂ −D)||2F
]

⩽ s2
1(W) ⋅ 1

m
E

[

||D̂ −D||2F
]

. (36)

We will use simple numerical experiments to illustrate
these theoretical analyses of the sampling error with the
Desroziers et al. method (Section 8).

7 EIGENVALUES OF THE
ESTIMATED OBSERVATION-ERROR
COVARIANCE MATRICES

Several studies have shown that the eigenspectrum of the
estimated observation-error covariance matrix influences
the numerical convergence of variational assimilation
schemes (e.g., Campbell et al., 2017; Tabeart et al., 2018,
2020a, 2021; Weston et al., 2014). We therefore investi-
gate how the sampling error affects the eigenvalues of the
estimated matrices in this section. Let

𝛿(A) = 1
m

m∑

i=1
(𝜆i(A) − 𝜇(A))2 (37)

denote the spread of the eigenvalues of A, where 𝜇(A) =
1
m

∑m
i 𝜆i(A) is the same quantity defined by the trace in

Equation (23). Following Ledoit and Wolf (2004), we then
define

E

[

𝛿(Â)
]

= 1
m

E

[ m∑

i=1
(𝜆i(Â) − 𝜇(A))2

]

(38)

as the cross-sectional dispersion of sample eigenvalues,
which describes the spread of the eigenvalues of Â around
the mean of the eigenvalues of A. Ledoit and Wolf (2004,
eq. (12)) showed that the cross-sectional dispersion of sam-
ple eigenvalues is equal to the sum of 𝛿(A) and EQL(Â,A)
under the assumption that E

[

Â
]

= A, that is,

E

[

𝛿(Â)
]

= 𝛿(A) + 1
m

E

[

||Â −A||2F
]

. (39)

Since the expected quadratic loss, 1
m

E

[

||Â −A||2F
]

, is pos-

itive, Equation (39) indicates that the eigenvalues of Â

are expected to be more dispersed around 𝜇(A) than the
eigenvalues of A, and the excess dispersion is given by
the sampling error of Â. In the case of direct sampling,
we have

E

[

𝛿(R̂)
]

= 𝛿(R) + 1
m

E

[

||R̂ − R||2F
]

(40)

and the excess dispersion implies that the largest sample
eigenvalues are bigger than the corresponding true eigen-
values, while the smallest sample eigenvalues are less than
the corresponding true eigenvalues (for an illustration see
Figure 10). In the case of indirect sampling with exact
assumed error statistics, we still have

E
[
𝛿(R̂

e
)
]
= 𝛿(R) + 1

m
E

[

||R̂
e
− R||2F

]

. (41)

In the above two cases, the cross-sectional dispersion of
the eigenvalues of the estimated observation-error covari-
ance matrices is always larger than the spread of the true
eigenvalues, and their difference increases as the sam-
pling error increases. This is undesirable, as the larger
dispersion will result in a higher condition number of
the matrix and a larger condition number will slow down
the convergence of the variational minimisation (e.g.,
Campbell et al., 2017; Tabeart et al., 2018, 2020a, 2021;
Weston et al., 2014).

In the case of indirect sampling with inexact assumed
error statistics, E

[
R̂

e]
is equal to Re rather than R. There-

fore, we need to derive a more general expression than
Equation (39), where the assumption of E

[
Â
]
= A is not

needed.

Theorem 4. In general, the cross-sectional
dispersion of sample eigenvalues is given by

E

[

𝛿(Â)
]

= 𝛿(A) + 2
m

⟨

E

[

Â −A
]

,A − 𝜇(A) ⋅ I
⟩

F

+ 1
m

E

[

||Â −A||2F
]

, (42)

where 𝛿(A) and E
[
𝛿(Â)
]

are defined by
Equations (37) and (38), respectively.

The proof of Theorem 4 can be found in Appendix F.
Comparing Equations (39) and (42), we see that
Equation (42) has an extra Frobenius inner-product term
given by 2

m

⟨

E
[
Â −A

]
,A − 𝜇(A) ⋅ I

⟩

F
. In the particular

case where E
[
Â
]
= A, the Frobenius inner-product term

is zero and Equations (39) and (42) are equivalent. More
generally, this term could be positive or negative, and,
depending on its value, could lead to underdispersion or
excess dispersion of the eigenvalues (as will be seen in
our numerical results shown by Figure 9). In our case, we
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10 HU and DANCE

have the following corollary of Theorem 4:

E
[
𝛿(R̂

e
)
]
= 𝛿(R) + 2

m
⟨E
[
R̂

e
− R
]
,R − 𝜇(R) ⋅ I⟩F

+ 1
m

E

[

||R̂
e
− R||2F

]

. (43)

In Section 8.5, we examine the cross-sectional dispersion
of eigenvalues in cases of direct and indirect sampling
using simple numerical experiments. We also investi-
gate the difference between the eigenvalue spectra of the
sample and true observation-error covariance matrices.

8 NUMERICAL EXPERIMENTS

We now carry out some numerical experiments. These
experiments cannot cover every situation that arises in
practice. For example, our assumed background-error
covariance matrices are always identical to the true
ones (see Equation (50)). The purpose of these exper-
iments is twofold: firstly, to illustrate some of the key
features of the theoretical analysis; secondly, to present
some examples of the potential use of the theoretical
results in practical applications. Since we focus on the
sampling error in the estimation of observation-error
covariance matrices, it is not necessary to conduct a com-
plete data assimilation experiment. Our experimental
design is described in Section 8.1. We note that in our
experiments the matrices R, R̃, HBH⊤, and HB̃H⊤ are
circulant by the way we construct them and thus our
interpretation of the experimental results is based on the
properties of circulant matrices (for details on circulant
matrices see e.g., Gray, 2006). However, the theorems
presented in Sections 6 and 7 do not require the matrices
to be circulant.

8.1 Experimental design

We assume our n = 2000 model state grid points (where
xt, xb, and xa are located) to be equally spaced on a circle
with radius 6371 km (e.g., Tabeart et al., 2018) and our
m = 1000 observations (y) to be taken at alternate grid
points. This leads to the observation operator H becoming
an m × n matrix containing only zeroes and ones, where
n = 2m, that is,

Hi,𝑗 =

{
1, if 𝑗 = 2i − 1 for i = 1, … ,m,
0, otherwise.

(44)

In this case, HBH⊤ is the matrix formed by deleting every
second row and column of the matrix B.

The observation errors are taken from a multivariate
Gaussian distribution with zero mean and covariance R,

𝝐
o
i ∼ (0,R), for i = 1, … ,N. (45)

Similarly, the samples of the O−B residual defined by
Equation (10) are drawn from a multivariate Gaus-
sian distribution with zero mean and covariance
R +HBH⊤,

db
i ∼ (0,R +HBH⊤) for i = 1, … ,N. (46)

We used the Python function numpy.random.
multivariate_normal to generate 𝝐

o
i and db

i (Harris
et al., 2020). This function produces pseudo-random num-
bers using the Mersenne Twister method (e.g., Haramoto
et al., 2008) and uses a SVD to factorise the covariance
matrix. Finally, the samples of the O−A residual defined
by Equation (11) are calculated from the samples of the
O−B residual using Equation (17) to give

da
i = R̃(HB̃H⊤ + R̃)−1db

i , for i = 1, … ,N. (47)

We generate true observation-error covariance matrices
using the first-order auto-regressive (FOAR) correlation
function, which is used in practical applications to model
Doppler radar wind observation-error statistics (Simonin
et al., 2019). The formula is

R(i, 𝑗) = 𝜎2
o exp

(
−|Δy

i,𝑗|

lo

)

, (48)

where 𝜎o denotes the observation-error standard devi-
ation, Δy

i,𝑗 denotes the distance between the ith and
𝑗th observations, and lo denotes the observation-error
correlation length-scale. The distance between two
observations is calculated using chordal distance rather
than great-circle distance, as the former ensures that
the resulting covariance matrix is positive-definite
(Haben, 2011, p. 52; Jeong & Jun, 2015; Tabeart, 2019,
p. 34; Yaglom, 1987). Since, in operational NWP data
assimilation, correlated observation errors are some-
times assumed to be uncorrelated, we create the assumed
observation-error covariance matrix as a diagonal
matrix with diagonal elements that are the assumed
observation-error variance 𝜎2

o:

R̃ = 𝜎2
oI. (49)

The true and assumed background-error covariance matri-
ces are formed using the second-order auto-regressive
(SOAR) correlation function, which is sometimes used
to model background-error covariance matrices in
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HU and DANCE 11

practical applications (e.g., Ballard et al., 2016). The
equation is

B(i, 𝑗) = B̃(i, 𝑗) = 𝜎2
b

(

1 +
|Δx

i,𝑗|

lb

)

exp

(
−|Δx

i,𝑗|

lb

)

, (50)

where 𝜎b denotes the background-error standard devi-
ation, lb denotes the background-error correlation
length-scale, and Δx

i,𝑗 denotes the chordal distance
between the ith and 𝑗th model state grid points.

In our experiments, the values of 𝜎o, 𝜎o, and 𝜎b vary
from 0.4–1.6 with an interval of 0.2, and the values of lo
and lb range from 20–140 km with 20-km intervals. These
values are selected by considering those estimated for real
geostationary satellite observations (Waller et al., 2016a)
or used in an operational km-scale NWP system (Bal-
lard et al., 2016). When lo = 20 km, the observation-error
covariance matrix obtained is close to the diagonal matrix;
the off-diagonal elements drop to almost zero at an offset
of 2 from the main diagonal. The specific parameter val-
ues used for each experiment are listed in Table 1. The
result of each experiment is averaged over 1000 realisa-
tions of that experiment. It should also be noted that, in
our experiments, the matrix R̂

e
is symmetrized by taking

the average of itself and its transpose (see discussion in the
last paragraph of Section 4.2).

8.2 Direct sampling error experiments

The direct sampling approach (Equation 12) cannot
be applied in practical applications, as the true

observation-error covariance matrix (R) is unknown.
Thus, the numerical results for direct sampling shown in
this section are for illustrative purposes only. They may
assist the reader in understanding the later results on indi-
rect sampling error better. In the following experiments,
we show how the expected quadratic loss of the sam-
ple observation-error covariance matrix (R̂), EQL(R̂,R),
varies with the true observation-error standard devia-
tion (𝜎o) and correlation length-scale (lo). As discussed
in Section 5, the size of EQL(R̂,R) is determined by four
quantities: (1) the ratio of the number of observations
(m) to sample size (N), 𝛼 = m∕N; (2) the square of the
average size of the diagonal elements of the matrix R,
𝜇

2(R); (3) a variance term, 𝜃(R̂,R) (see Equation 27 for
more information); and (4) the sum of the squares of the
eigenvalues of the matrix R divided by mN, 𝛽(R). We
also show how the last three quantities vary with the
true observation-error standard deviation and correlation
length-scale for different values of the ratio 𝛼.

8.2.1 Varying observation-error standard
deviation

Figure 1 shows direct sampling error, EQL(R̂,R)
(Equation 20), and three quantities 𝜇2(R), 𝜃(R̂,R), and
𝛽(R) (Equations 23–29) as a function of observation-error
standard deviation (𝜎o). Each panel uses a different
ratio (𝛼) of the number of observations (m) to sam-
ple size (N). EQL(R̂,R) is calculated as a standalone
term by Equation (20) rather than from the quantities
on the right-hand side of Equation (21). These two

T A B L E 1 The values of the ratio of the number of observations to sample size (𝛼), observation-error standard deviation (𝜎o), assumed
observation-error standard deviation (𝜎o), background-error standard deviation (𝜎b), observation-error correlation length-scale (lo), and
background-error correlation length-scale (lb) used in each figure in Section 8.

𝜶 𝝈o 𝝈b lo lb 𝝈o

Figure 1 0.1, 1, 10 0.4, 0.6, … , 1.6 — 80 — —

Figure 2 0.1, 1, 10 1.0 — 20, 40, … , 140 — —

Figure 3 0.1, 1, 10 0.4, 0.6, … , 1.6 0.6 80 20 —

Figure 4 0.1, 1, 10 1.0 0.4, 0.6, … , 1.6 80 20 —

Figure 5 0.1 1.0 0.6 20, 40, … , 140 20, 40, … , 140 —

Figure 6 0.1 1.0 0.6 80 20 0.4, 0.6, … , 1.6

Figure 7 0.1 1.0 0.6 20, 40, … , 140 20 1.0

Figure 8 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1.0, 2, 5, 10 1.0 0.6 80 20 1.0

Figure 9 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1.0, 2, 5, 10 1.0 0.6 80 20 1.0, 4.0

Figure 10 0.1 1.0 0.6 80 20 —

Figure 11 0.1 1.0 0.6 80 20 0.4, 1.0, 4.0

Note: The number of observations is m = 1000 for all figures. For Figures 6–9 and 11, the assumed observation-error covariance matrix is diagonal, that is,
R̃ = 𝜎2

o I, and the assumed and true background-error covariance matrices are identical, that is, B̃ = B.
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12 HU and DANCE

F I G U R E 1 Direct sampling error given by EQL(R̂,R) and the quantities 𝜇2(R), 𝜃(R̂,R), and 𝛽(R) (Equation 21) as a function of
observation-error standard deviation (𝜎o) for three different ratios (𝛼) of the number of observations to sample size. The y-axis is plotted using
a log scale.

equations do not give the same value, due to the sampling
error in the estimation of 𝜃(R̂,R). In our experiments, the
values of 𝜃(R̂,R) and 1

m
E

[

||R̂ − R||2F
]

are estimated using

1000 realisations of R̂ calculated using Equation (12), and
the uncertainty in the estimation is negligible.

By comparing the three panels of Figure 1, we find that
the direct sampling errors increase as the ratio 𝛼 = m∕N
increases. This result is clearly indicated by Equation (21).
By looking at each panel, we find that the square of
the average size of the diagonal elements of the matrix
R, 𝜇2(R), increases as 𝜎o increases. An explanation for
this is given by the following equations. If we assume
that the true observation-error covariance matrix is
modelled by

R = 𝜎2
oC, (51)

where C ∈ Rm×m is an arbitrary correlation matrix, then
using Equation (23) we obtain

𝜇
2(R) = 𝜎4

o , (52)

which explains the increase of 𝜇2(R)with 𝜎o. Moreover, as
𝜇

2(R) is not affected by 𝛼, the curve with triangles is the
same in each panel in Figure 1.

The quantity 𝛽(R) is also found to increase with 𝜎o,
which can be explained by substituting Equation (51) into
Equation (29),

𝛽(R) =
𝜎

4
o

mN

m∑

i=1
𝜆

2
i (C). (53)

Equation (53) also explains why an increase in 𝛼 = m∕N
results in an increase in 𝛽(R) as shown in Figure 1. (Note
that, from the left to the right panel, the sample size, N,

decreases while the number of observations, m, remains
the same.) Comparing Equations (52) and (53), we can
see that 𝛽(R) should be a smaller quantity than 𝜇2(R), as
shown by Figure 1.

The variance term, 𝜃(R̂,R), also varies with 𝜎o. This
term is calculated using the matrix 𝚪R̂,R, the columns of
which are samples of uncorrelated normal random vari-
ables with standard deviation 𝜎o. Figure 1 shows that,
like the other quantities, 𝜃(R̂,R) increases as 𝜎o increases
(see the curve with crosses in Figure 1). This is because,
by substituting Equation (51) into Equation (27), we may
write

𝜃(R̂,R) = 𝜎4
oVar

[

1
m

m∑

i=1
𝛾

2
i1(Ĉ,C)

]

. (54)

In Figure 1, the quantity 𝜃(R̂,R) is found to be much
smaller than 𝜇

2(R). In addition, 𝜃(R̂,R) is found to be
larger than 𝛽(R) for 𝛼 = 0.1 and 1.0, but smaller than 𝛽(R)
for 𝛼 = 10. This is because an increase in 𝛼 (meaning a
decrease in sample size in our experiment) leads to an
increase in 𝛽(R), but almost no change in 𝜃(R̂,R). (Small
changes in 𝜃(R̂,R) may occur, as it is a sample estimate.)

Using Equations (21) and (52)–(54), we may write

EQL(R̂,R) = 𝜎4
o

{

2
mN

m∑

i<𝑗
𝜆i(C)𝜆𝑗(C)

+m
N
⋅ Var

[

1
m

m∑

i=1
𝛾

2
i1(Ĉ,C)

]}

, (55)

which shows that, for a given m and a given N, the size
of the direct sampling error, EQL(R̂,R), is proportional
to the fourth power of the observation-error standard
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HU and DANCE 13

deviation (𝜎o). This is consistent with the results shown
in Figure 1. The derivation of Equation (55) holds if the
observation-error covariance matrix can be written in the
form of Equation (51) and does not require any particu-
lar choice of the correlation matrix C. We will show in
the following section that the observation-error correlation
length-scale (lo) has a much smaller impact on the size of
EQL(R̂,R) compared with 𝜎o.

8.2.2 Varying observation-error correlation
length-scale

In this section, we conduct numerical experiments on
direct sampling error using different observation-error
correlation length-scales (lo). By definition, the quantity
𝜇

2(R) depends only on the diagonal elements of R. There-
fore, a change in lo does not affect 𝜇2(R), since it does
not change the diagonal elements. This is clearly shown
by the curve with triangles in Figure 2. How 𝛽(R) (the
sum of the squares of the eigenvalues of the matrix R
divided by mN) varies with lo depends on the correlation
function we use to create the observation-error covari-
ance matrices, as they have different eigenvalue spectra.
How the variance term, 𝜃(R̂,R), varies with lo is also not
obvious from Equation (54). In our experiments, we find
that both 𝛽(R) and 𝜃(R̂,R) increase with lo as shown by
the curves with plus and cross in Figure 2, respectively.
We also find that the direct sampling error, EQL(R̂,R),
remains almost unchanged with varying lo in each panel.
This is because 𝛽(R) and 𝜃(R̂,R) are much smaller quan-
tities than 𝜇

2(R) and their influence on the size of
EQL(R̂,R) is tiny.

8.3 Experiments on sampling error
with the Desroziers et al. method (exact
assumed error statistics)

In this section, we show experimental results on the indi-
rect sampling error with the Desroziers et al. method in the
case where the observation and background-error covari-
ance matrices describe the true error statistics completely
correctly. This is not what actually happens in practice,
but we show the results in this particular case because
they will be used later in a more general case. In these
experiments, we show the change in the sampling error
with the Desroziers et al. method using exact assumed
error statistics and its upper bound given by Corollary 1, as
the observation and background-error standard deviations
and correlation length-scales vary.

8.3.1 Varying observation
and background-error standard deviations

Figure 3 shows that the sampling error with the Desroziers
et al. method using exact assumed error statistics
(EQL(R̂

e
,R)) increases as the observation-error standard

deviation (𝜎o) increases. In this experiment, the variation
of EQL(R̂

e
,R) follows closely from the variation of its

bound, given by the product of direct sampling error in
the estimate of the innovation covariance, EQL(D̂,D), and
s2

1(W) (Corollary 1). (The reader is reminded that s2
1(W)

is the square of the largest singular value of the matrix
W = R(HBH⊤ + R)−1.) In general, how tight this bound
is depends on two things. Following the derivation of this
bound given in Appendix C, the difference between the

F I G U R E 2 As Figure 1, but varying observation-error correlation length-scale (lo).
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14 HU and DANCE

F I G U R E 3 Sampling error with the Desroziers et al. method using exact assumed error statistics EQL(R̂
e
,R), direct sampling error

EQL(D̂,D), the square of the largest singular value of W, s2
1(W), and the upper bound of EQL(R̂

e
,R) given by the product of EQL(D̂,D) and

s2
1(W) (Theorem 3) as a function of observation-error standard deviation (𝜎o) for three different ratios (𝛼) of the number of observations to

sample size. The y-axis is plotted using a log scale.

exact value of EQL(R̂
e
,R) and its upper bound is

m∑

i=1

m∑

𝑗=1

|
|(s1(W) − si(W))zi𝑗||

2
, (56)

where zi𝑗 denotes an element of the matrix Z, which
is an orthogonal transformation of (D̂ −D) defined in
Appendix C. Equation (56) suggests that the tightness of
the bound depends on the difference between the largest
singular value and the other singular values of the matrix
W, and the size of zi𝑗 . For instance, if the singular-value
spectrum is flat, or if zi𝑗 is small, then we can expect a tight
upper bound.

The increase in the upper bound of EQL(R̂
e
,R) with

varying 𝜎o is a result of the increase in EQL(D̂,D) and
s2

1(W). The term EQL(D̂,D) measures direct sampling
errors. As the innovation covariance matrix, D, is formed
using the matrices B and R (Equation 14), the size of its ele-
ments increases with 𝜎o. Then, using the results on direct
sampling error in Section 8.2.1, we can expect EQL(D̂,D)
to increase with 𝜎o. The increase in s2

1(W) can be explained
by the following equation:

𝜏k(W) = 𝜏k(R)
𝜏k(R) + 𝜏k(HBH⊤)

, (57)

where 𝜏k(⋅) denotes the eigenvalue of a matrix that is
ordered by wavenumber k = 1, … ,m − 1. For symmetric
matrices, the singular values are equivalent to the eigen-
values. The notation 𝜏k(⋅) is used to distinguish this case
from the notation 𝜆i(⋅), which denotes the eigenvalue of a

matrix ordered by size. Equation (57) holds if the matrices
R and HBH⊤ are circulant (see Appendix E for derivation).
In our experiments, they are circulant due to the way they
are constructed. We know that an increase in 𝜎o increases
all eigenvalues of R, which according to Equation (57) also
increases all eigenvalues of W. Due to the symmetry of the
matrix, the eigenvalues and singular values of W are equal.
Thus, s2

1(W) increases with 𝜎o.
In contrast to the variation of indirect sampling error,

EQL(R̂
e
,R), with 𝜎o, EQL(R̂

e
,R) does not seem to vary

much with the background-error standard deviation (𝜎b),
as shown in Figure 4. We note that in fact EQL(R̂

e
,R)

increases slightly with 𝜎b; however, this is not clearly visi-
ble from Figure 4, as the y-axis is plotted on a logarithmic
scale. In comparison, the increase in the upper bound of
EQL(R̂

e
,R) is more pronounced. The upper bound is given

by the product of EQL(D̂,D) and s2
1(W), where the for-

mer is found to increase with 𝜎b and the latter is found
to decrease with 𝜎b. From the definition of the matrix D
(Equation 14), an increase in 𝜎b will increase the size of
the elements of D. Then, using the results on direct sam-
pling error (Section 8.2.1), we can expect that an increase
in 𝜎b will lead to an increase in EQL(D̂,D). The decrease
in s2

1(W) with increasing 𝜎b can be explained well using
Equation (57).

8.3.2 Varying observation
and background-error correlation length-scales

Compared with the variation of indirect sampling error,
EQL(R̂

e
,R), with the observation-error standard deviation
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HU and DANCE 15

F I G U R E 4 As in Figure 3, but for varying background-error standard deviation (𝜎b).

(𝜎o), the variation of EQL(R̂
e
,R) with the observation and

background-error correlation length-scales (lo and lb) is
very small (Figure 5). The variation of EQL(R̂

e
,R) with

lo and lb is consistent with the variation of its upper
bound, but by a smaller amount. Corollary 1 shows that
EQL(R̂

e
,R) with exact assumed error statistics is bounded

by the product of EQL(D̂,D) and s2
1(W). Since EQL(D̂,D)

measures direct sampling errors (Section 8.2.1) and the
size of the elements of D is determined largely by 𝜎o and
𝜎b rather than lo and lb, EQL(D̂,D) should change only
slightly as lo and lb change. In this experiment, EQL(D̂,D)
is found to vary from 0.1852 to 0.1858 (not shown). There-
fore, as shown in Figure 5, changes in the upper bound on
EQL(R̂

e
,R) are affected mostly by changes in the square

of the largest singular value, s2
1(W). The change in s2

1(W)
is not always monotonic. For example, when lb = 20 km,
s2

1(W) first decreases and then increases as lo increases. A
similar result is reported in Tabeart et al. (2018), where the
variation of the condition number of B−1 +H⊤R−1H was
not monotonic when changing one of lo and lb and fixing
the other. We note that these results may not be the case in
general.

8.4 Experiments on sampling error
with the Desroziers et al. method (inexact
assumed error statistics)

We now show some experimental results for the indi-
rect sampling error with the Desroziers et al. method
using inexact assumed error statistics as demonstrated by
Theorem 1. We consider a special case in which corre-
lated observation errors are assumed to be uncorrelated in
the assimilation. This assumption is sometimes used as a

pragmatic strategy in practical data assimilation appli-
cations. The experimental setup is as follows: (1) the
assumed observation-error covariance matrix (R̃) is
set as a diagonal matrix; (2) the true observation-error
covariance matrix (R) is created using the FOAR cor-
relation function given by Equation (48); and (3)
the assumed background-error covariance matrix
is exactly the same as the true background-error
covariance matrix (i.e., B̃ = B), which is gener-
ated using the SOAR correlation function given by
Equation (50).

Under this experimental design, there are many quan-
tities that we can vary, including the assumed and true
error standard deviations and correlation length-scales.
Therefore, we choose two particular experiments among
them, which we consider to be of more practical interest.
Following Waller et al. (2016b), we first consider varying
the assumed observation-error standard deviation denoted
by 𝜎o. This experiment may give us an idea of which size of
𝜎o we should choose to estimate a correlated R using the
Desroziers et al. method. We then consider varying the true
observation-error correlation length-scale (lo). This exper-
iment shows how large the error caused by the assumption
of uncorrelated observation errors can be in terms of differ-
ent true observation-error correlation length-scales. The
parameter values used in these two experiments are listed
in Table 1.

8.4.1 Varying assumed observation-error
standard deviation

As shown in Figure 6, the indirect sampling error,
EQL(R̂

e
,R), with inexact assumed observation-error
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16 HU and DANCE

F I G U R E 5 Sampling error with the Desroziers et al. method using exact assumed error statistics, EQL(R̂
e
,R), the square of the largest

singular value of W, s2
1(W), and the upper bound of EQL(R̂

e
,R) given by the product of EQL(D̂,D) and s2

1(W) (Corollary 1) as a function of
observation-error correlation length-scales (lo) and background-error correlation length-scales (lb). [Colour figure can be viewed at
wileyonlinelibrary.com]

statistics first decreases and then increases as the assumed
observation-error standard deviation (𝜎o) increases. This
can be explained by the variation of the three terms that
determine the size of EQL(R̂

e
,R) (see Theorem 1). The

first of these terms, EQL(R̂
e
,Re), is found to increase

with 𝜎o (Figure 6). (Note that EQL(R̂
e
,Re) measures the

indirect sampling error of R̂
e

with respect to Re rather
than R). Based on Theorem 3, this term is bounded by the
product of EQL(D̂,D) (direct sampling error in the esti-
mate of the innovation covariance) and s2

1(W̃) (the square
of the largest singular value), where EQL(D̂,D) is only
dependent on the exact error statistics and thus does not

vary with 𝜎o, and s2
1(W̃) should increase with 𝜎o following

the results in Section 8.3.1. Therefore, the upper bound
of EQL(R̂

e
,Re) should increase as 𝜎o becomes larger. If

EQL(R̂
e
,Re) follows its upper bound, then we can expect

it to increase with 𝜎o as well.
The term 1

m
||Re − R||2F is the second term that deter-

mines EQL(R̂
e
,R), and it measures the difference between

the estimated and true observation-error covariance matri-
ces. This term is invariant to sample size and is found to
first decrease and then increase as 𝜎o increases. This result
agrees with the theoretical findings of Waller et al. (2016b,
eq. (25)).
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HU and DANCE 17

F I G U R E 6 Sampling error with the Desroziers et al. method
using inexact assumed observation-error statistics, EQL(R̂

e
,R), and

the three terms on the right-hand side of Equation (30) as a function
of the assumed observation-error standard deviation (𝜎o).

The term 2
m
⟨E
[
R̂

e
− Re]

,Re − R⟩F is the last of the
terms that determines EQL(R̂

e
,R), which is of the order

of 10−5 ∼ 10−4 in Figure 6. Therefore, this term has very
small influence on the size of EQL(R̂

e
,R) in this experi-

ment. However, we note that 2
m
⟨E
[
R̂

e
− Re]

,Re − R⟩F may
be larger and non-negligible under some circumstances.
For instance, a larger ratio (𝛼) of the number of obser-
vations to sample size will increase E

[
R̂

e
− Re] and thus

2
m
⟨E
[
R̂

e
− Re]

,Re − R⟩F.
Our result implies that the optimal value of 𝜎o that

gives the smallest indirect sampling error, EQL(R̂
e
,R),

might be slightly smaller if sampling error is taken into
account than if no sampling error is considered. This hap-
pens if the amount of increase in EQL(R̂

e
,Re) is larger than

the amount of decrease in 1
m
||Re − R||2F as 𝜎o approaches

its optimal value. However, to avoid overfitting, we do not
recommend setting 𝜎o too low in systems with real data.

8.4.2 Varying true observation-error
correlation length-scale

The indirect sampling error, EQL(R̂
e
,R), with inexact

assumed observation-error statistics is found to increase
when increasing the true observation-error correlation
length-scale (lo; Figure 7). To explain this, we shall
look at the variation of the three terms that determine
the size of EQL(R̂

e
,R) (see Theorem 1). As shown in

Figure 7, the first term, EQL(R̂
e
,Re), decreases slightly

with lo, the second term, 1
m
||Re − R||2F, increases rapidly

F I G U R E 7 As in Figure 6, but for varying observation-error
correlation length-scale (lo).

with lo, and the last term, 2
m
⟨E
[
R̂

e
− Re]

,Re − R⟩F, is
of the order of 10−5–10−4. Therefore, when varying lo,
the change in EQL(R̂

e
,R) mainly follows the change

in 1
m
||Re − R||2F, because it has a much larger vari-

ation than the other two terms. The term 1
m
||Re −

R||2F measures the difference between the assumed and
true observation-error covariance matrices. Because our
assumed observation-error covariance matrix is diago-
nal and the true observation-error covariance is created
using the FOAR correlation function with correlation
length-scale lo (Equation 48), the difference between the
two matrices increases as lo increases.

8.5 The cross-sectional dispersion
of sample eigenvalues

We provide graphical illustrations for Theorem 4 in this
section. The experimental design is similar to those in
Section 8.3 with exact assumed statistics and those in
Section 8.4 with inexact assumed statistics. Figure 8 shows
the cross-sectional dispersion of sample eigenvalues in the
cases of direct and indirect sampling with exact assumed
error statistics as a function of the ratio (𝛼) of the number
of observations to sample size. The cross-sectional disper-
sion of sample eigenvalues is defined as the dispersion
of sample eigenvalues around the mean of true eigenval-
ues (Equation 38). Equations (40) and (41) show that, in
the two cases considered in Figure 8, the cross-sectional
dispersion of sample eigenvalues should decrease as the
sampling error decreases, and if the sampling error is zero
then the cross-sectional dispersion of sample eigenvalues
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18 HU and DANCE

is equal to the spread of the true eigenvalues. This is con-
sistent with the results shown in Figure 8, in which the
difference between the cross-sectional dispersion of sam-
ple eigenvalues and the spread of the true eigenvalues
increases as the ratio 𝛼 = m∕N increases. A larger 𝛼 means
a larger sampling error.

Figure 9 shows the cross-sectional dispersion of sample
eigenvalues in the case of indirect sampling with inex-
act assumed error statistics as a function of 𝛼. As shown
by Equation (43), an extra Frobenius inner-product term
appears in this case and, as a result, the cross-sectional
dispersion of sample eigenvalues does not necessar-
ily approach the spread of the true eigenvalues as 𝛼

decreases. Figure 9 shows that, when𝜎o = 1, the Frobenius
inner-product term is negative and the cross-sectional dis-
persion of sample eigenvalues approaches a value smaller
than the spread of the true eigenvalues as 𝛼 decreases.
However, when 𝜎o = 4, the Frobenius inner-product term
becomes positive and the cross-sectional dispersion of
sample eigenvalues approaches a value greater than the
spread of the true eigenvalues as 𝛼 decreases. These results
indicate that, when using the indirect sampling approach
with inexact assumed error statistics, the cross-sectional
dispersion of sample eigenvalues may be greater or smaller
than the spread of true eigenvalues, depending on the true
and assumed error statistics. Figure 9 also indicates that
if 𝛼 is too large then the main influencing factor in the
eigenvalue dispersion is the sampling error, while if 𝛼 is
sufficiently small then the main influencing factor is the
error due to inexact assumed statistics.

F I G U R E 8 The cross-sectional dispersion of sample
eigenvalues in the cases of direct sampling (E[𝛿(R̂)]) and indirect
sampling with exact assumed error statistics (E[𝛿(R̂

e
)]) as the ratio

(𝛼) of the number of observations to sample size increases. The
symbol 𝛿(R) denotes the spread of true eigenvalues. For details of
the quantities plotted see Theorem 4.

8.5.1 The spectra of true and sample
eigenvalues

We provide some further interpretation of the
cross-sectional dispersion of sample eigenvalues. In the
case of direct sampling, if the cross-sectional dispersion
of sample eigenvalues is larger than the spread of true

F I G U R E 9 The cross-sectional dispersion of sample
eigenvalues in the case of indirect sampling with inexact assumed
error statistics (E[𝛿(R̂

e
)]) as the ratio (𝛼) of the number of

observations to sample size increases. The symbol 𝛿(R) denotes the
spread of true eigenvalues. The symbol 𝜎o denotes the assumed
observation-error standard deviation. The Frobenius inner-product
term is defined in Theorem 4.

F I G U R E 10 The eigenvalues of the true observation-error
covariance matrix, the sample covariance matrix obtained using the
direct sampling approach, and the sample covariance matrix
obtained using the indirect sampling approach with exact assumed
error statistics.
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HU and DANCE 19

F I G U R E 11 The eigenvalues of the true observation-error
covariance matrix and the sample covariance matrices obtained
using the indirect sampling approach with inexact assumed
observation-error standard deviations (𝜎o).

eigenvalues, then the largest sample eigenvalues are
larger than the corresponding true eigenvalues and the
smallest eigenvalues are smaller than the corresponding
true eigenvalues (e.g., Ledoit & Wolf, 2004). In the case
of indirect sampling with exact assumed error statistics,
the same result is expected, since Equations (40) and (41)
are equivalent. For an illustration of the sample and true
eigenvalues in these two cases see Figure 10.

In the case of indirect sampling with inexact assumed
error statistics, the cross-sectional dispersion of sample
eigenvalues may be larger or smaller than the spread of
true eigenvalues, and we observe three circumstances for
the difference between the sample and true eigenvalues in
Figure 11.

• All sample eigenvalues are smaller than the correspond-
ing true eigenvalues.

• The largest and smallest sample eigenvalues are smaller
than the corresponding true eigenvalues, while the
moderate eigenvalues are larger than the corresponding
eigenvalues.

• Most sample eigenvalues are larger than the corre-
sponding true eigenvalues, except for the smallest sam-
ple eigenvalues.

The first circumstance arises when the assumed
observation-error standard deviation, 𝜎o, has the smallest
value considered. When 𝜎o is increased to 1.0, the second
circumstance appears. When we further increase 𝜎o to 4.0,
the third circumstance occurs. We have also carried out
experiments with larger values of 𝜎o (not shown). Even
when 𝜎o = 100, a few of the smallest eigenvalues are still
smaller than the corresponding true eigenvalues. We also
note that in the first two circumstances the cross-sectional

dispersion of sample eigenvalues is smaller than the spread
of true eigenvalues, while in the last circumstance the
cross-sectional dispersion of sample eigenvalues is larger
than the spread of true eigenvalues.

For circulant matrices, the effect of varying 𝜎o on the
eigenvalues of the matrix Re can be explained by

𝜏k(Re) = 𝜏k(R̃)
𝜏k(R̃) + 𝜏k(HB̃H⊤)

[
𝜏k(R) + 𝜏k(HBH⊤)

]
, (58)

which is proved in Appendix E. A similar equation
is shown in Waller et al. (2016b) but with a slightly
different formulation. We know that an increase in 𝜎o will
lead to an increase in all eigenvalues of R̃, which, based
on Equation (58), will increase all eigenvalues of Re fur-
ther. As the previous results show (Figure 9), the sample
eigenvalues (eigenvalues of R̂

e
) can be fairly close to the

eigenvalues of Re as long as 𝛼 is small enough.

8.5.2 Implications for matrix modification
and reconditioning

Our results may provide some guidance for the modifi-
cation of the observation-error covariance matrices esti-
mated using the Desroziers et al. approach. Multiplicative
variance inflation is used primarily to compensate for the
effects of ignoring observation-error correlations, which
increase the matrix elements by multiplying each element
by a given factor (Bormann et al., 2016). This is equiva-
lent to multiplying all the eigenvalues of the matrix by the
same factor. Therefore, if all the sample eigenvalues are
less than the corresponding true eigenvalues, the multi-
plicative variance inflation method can bring the sample
eigenvalues closer to the true eigenvalues. The underes-
timation of the true eigenvalues may happen when the
observation errors that are actually correlated are assumed
to be uncorrelated in data assimilation and the assumed
observation-error variance is too small (for an example
see Figure 11). A shortcoming of the multiplicative vari-
ance inflation method is that it cannot improve the condi-
tion number of the estimated observation-error covariance
matrices. A larger condition number may slow down the
convergence of the least-squared minimisation in varia-
tional data assimilation. The RR and ME methods are
two existing methods that can be used to reduce the con-
dition number of any covariance matrix (e.g., Tabeart
et al., 2020b). The RR method increases all eigenvalues
of the matrix by adding an equal amount to them, while
the ME method amends the eigenvalues below a certain
value to a given value while leaving the rest unchanged.
If we apply these approaches to the observation-error
covariance matrices estimated using the Desroziers et al.
method, they can also reduce the difference between the
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20 HU and DANCE

sample and true eigenvalues if the sample eigenvalues are
smaller than the corresponding true eigenvalues (for an
example see Figure 11).

In practice, it might be difficult to predict whether the
sample eigenvalues estimated using the Desroziers et al.
method are likely to be greater or less than the true eigen-
values. The difference between 𝜏k(R) and 𝜏k(R̂

e
) is a com-

bination of the difference between 𝜏k(R) and 𝜏k(Re) and
the difference between 𝜏k(Re) and 𝜏k(R̂

e
). In the case of

circulant matrices, the difference between 𝜏k(R) and
𝜏k(Re) is (using Equation 58)

𝜏k(R) − 𝜏k(Re) = 𝜏k(R)𝜏k(HB̃H⊤) − 𝜏k(R̃)𝜏k(HBH⊤)
𝜏k(R̃) + 𝜏k(HB̃H⊤)

,

(59)

which shows that the difference between 𝜏k(R) and 𝜏k(Re)
is dependent on the assumed and true background and
observation-error statistics as well as the observation oper-
ator. Although Equation (59) is derived in the case of
circulant matrices, there is some evidence from Waller
et al. (2016c) suggesting that the qualitative results for cir-
culant matrices are still applicable to non-circulant matri-
ces in an operational setting.

In addition to the difference between 𝜏k(R) and 𝜏k(Re)
given by Equation (59), the difference between 𝜏k(Re)
and 𝜏k(R̂

e
), namely sampling error, is also affected by the

assumed and true error statistics and the observation oper-
ator. Therefore, in practical applications, expert opinion
on the values of the quantities such as true and assumed
observation and background-error standard deviations is
required to conjecture whether 𝜏k(R̂

e
) is greater or less

than 𝜏k(R).

9 CONCLUSION

In this article, we developed new theorems that can
be used to analyse sampling errors in the estima-
tion of observation-error covariance matrices using the
Desroziers et al. approach (Desroziers et al., 2005). The
Desroziers et al. method is an indirect sampling approach,
as it does not sample directly from the observation-error
characteristics, but uses samples of O−A and O−B differ-
ences to estimate the observation-error statistics indirectly.
These samples are readily available in most data assimila-
tion systems, making the Desroziers et al. approach widely
adopted in practical applications to estimate error correla-
tions for remote-sensing observations such as geostation-
ary satellite data and Doppler radar wind. Although this
method produces noisy estimates that have to be recondi-
tioned for operational use, to the best of our knowledge,
no systematic investigation of the sampling error with this
method has been carried out so far, which brings us to the
purpose of this article.

Previously, Waller et al. (2016b) investigated the accu-
racy of the Desroziers et al. method when using different
assumed observation and background-error variances and
correlation length-scales. Waller et al. (2016b) showed
that, when correlated observation errors are assumed
to be uncorrelated, the Desroziers et al. method will
underestimate the observation-error variance and corre-
lation length-scale. However, in Waller et al. (2016b) the
estimated observation-error covariance matrices were not
calculated from samples of the O−A and O−B residuals,
and hence the statistical nature of the Desroziers et al.
method has not been examined. This work complements
the work by Waller et al. (2016b) by taking the sampling
error into account.

In this study, the expected quadratic loss defined
in Equation (20) is used to measure the sampling
error with the Desroziers et al. method, which is writ-
ten as EQL(R̂

e
,R) = 1

m
E

[

||R̂
e
− R||2F

]

, where R is the

true observation-error covariance matrix and R̂
e

is the
observation-error covariance matrix estimated using finite
samples of O−A and O−B residuals (Equation 19). We find
that EQL(R̂

e
,R) is determined by three terms: an indirect

sampling-error term, a misspecification-error term, and
a Frobenius inner-product term (Theorem 1). The indi-
rect sampling-error term is written as EQL(R̂

e
,Re), which

measures the indirect sampling error in the estimation of
Re using indirect samples, that is, the samples of O−A
and O−B residuals. The matrix Re is the observation-error
covariance matrix estimated via the Desroziers et al.
method, but in exact arithmetic (Equation 18), so that
it does not contain any sampling error. The size of
EQL(R̂

e
,Re) is bounded by the product of s2

1(W̃) and
EQL(D̂,D) (Theorem 3). The term s2

1(W̃) is the square
of the largest singular value of W̃ = R̃(HB̃H⊤ + R̃)−1,
which has an upper bound given in Equation (35) and
can be easily calculated in the case of circulant matrices
(Equation 57). The matrix D is the innovation covari-
ance matrix (Equation 14) and D̂ is a sample covariance
matrix of D (Equation 15). The term EQL(D̂,D) measures
the direct sampling error in the estimation of D using
samples that are drawn directly from D. Direct sampling
errors can be analysed using previous work by Ledoit
and Wolf (2004). The misspecification-error term 1

m
||Re −

R||2F describes the error of the Desroziers et al. method
caused by the misspecification of assumed observation
and background-error statistics. Its size can be estimated
using previous work by Waller et al. (2016b). The Frobe-
nius inner-product term, 2

m
⟨E
[
R̂

e
− Re]

,Re − R⟩F, is the
last term that determines EQL(R̂

e
,R), which is found to be

very small if the sample size is sufficiently large (for exam-
ples see Figures 6 and 7). Since this term may be hard to
compute in practice, we further provide an upper bound
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for EQL(R̂
e
,R) (Theorem 2). This upper bound can be

estimated using the terms EQL(R̂
e
,Re) and 1

m
||Re − R||2F.

Our theoretical analysis and numerical results showed
that, when using O−A and O−B statistics to estimate
observation-error covariance matrices, a larger sampling
error is expected if the true observation-error standard
deviation is larger, while the other true error statistics,
including background-error standard deviation and
observation and background-error correlation length-
scales, have a relatively small effect on the sampling
error. This suggests that we may consider using different
ratios of the number of observations to sample size for
different types of observations. If an observation type is
expected to have a large observation-error standard devia-
tion, then we may need a large sample size to ensure accu-
racy, whereas if the error standard deviation of an observa-
tion type is expected to be small then we may use a small
sample size for efficiency. In addition, if we do not have any
prior knowledge of the true observation-error standard
deviation and the estimated value is quite large, then we
may consider increasing the sample size to see if the esti-
mate changes significantly. Since we have shown that the
sampling error increases as the assumed observation-error
standard deviation increases, the reader might be tempted
to reduce the assumed observation-error standard devia-
tion to reduce the sampling error. However, if the assumed
observation-error standard deviation is too small, this will
lead to overfitting of the observational data in the assimi-
lation. This is likely to lead to poor analyses and spurious
results (Dance, 2020). Moreover, the sampling error may
be much smaller than the error due to the misspecifica-
tion of the background and observation-error statistics.
Therefore, we should set the assumed observation-error
standard deviation as accurately as possible.

We further investigated the difference between the
eigenvalues of the estimated and true observation-error
covariance matrices. We started by extending the results
of Ledoit and Wolf (2004) on cross-sectional dispersion of
sample eigenvalues to a more general case (Theorem 4).
The cross-sectional dispersion of sample eigenvalues is
defined as the spread of the sample eigenvalues around
the mean of the true eigenvalues (Equation 38). Ledoit and
Wolf (2004) showed that, in the case of direct sampling, the
sample eigenvalues are more dispersed around the mean
of the true eigenvalues than the true eigenvalues them-
selves. This means that the largest sample eigenvalues are
larger than the corresponding true eigenvalues and the
smallest sample eigenvalues are smaller than the cor-
responding true eigenvalues. However, when using
the Desroziers et al. method to estimate the true
observation-error covariance matrix, the cross-sectional
dispersion of the sample eigenvalues (eigenvalues of
R̂

e
) may be smaller or larger than the spread of the

true eigenvalues (eigenvalues of R). In the case of
indirect sampling, the difference between the sample
and true eigenvalues is determined by the sampling
error as well as the error due to inexact assumed error
statistics. These two errors are affected by a variety of
quantities, including the assumed and true background
and observation-error covariances and the observation
operator. As a consequence, expert opinion on the val-
ues of these quantities is needed to anticipate which
sample eigenvalues are likely to be larger than the true
eigenvalues and which sample eigenvalues are likely to be
smaller than the true eigenvalues.

Our analysis can be used to evaluate sampling errors
in estimating observation-error covariance matrices using
the Desroziers et al. method. Our approach provides
information on how sampling error and estimated eigen-
values are expected to change under particular variations
in assumed and true observation and background-error
statistics. Our theoretical results are general. Our numer-
ical experiments are carried out with circulant matrices.
However, the results obtained may still be qualitatively
useful for inferring what would happen in real-data
experiments with non-circulant matrices.
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APPENDIX A. PROOF OF THEOREM 1
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as required.

APPENDIX B. PROOF OF THEOREM 2

Using the triangle inequality, we obtain
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Then we have
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(B2)

Then, we use Jensen’s inequality (Jensen, 1906):

1
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m2 E
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e
− Re||2F
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. (B3)

This completes the proof.

APPENDIX C. PROOF OF THEOREM 3

Let W̃ = VSG⊤ be the singular-value decom-
position of a m ×m matrix W̃, where V ∈ Rm×m

and G ∈ Rm×m are orthogonal matrices and S =
diag(s1(W̃), s2(W̃), … , sm(W̃)) is a diagonal matrix with
diagonal elements that are the singular values. Suppose
the singular values are arranged in descending order, so
that maxi |si(W̃)| = s1(W̃). Since the Frobenius norm is
unitarily invariant (e.g., Horn & Johnson, 1991, section
5.6), we obtain

||W̃(D̂ −D)||2F = ||SG⊤(D̂ −D)||2F. (C1)
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Let Z = G⊤(D̂ −D). Then we have
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1(W̃)||D̂ −D||2F, (C2)

as required.

APPENDIX D. PROOF OF THE UPPER
BOUND OF S12(W∼)

We begin by noting that W̃ = R̃D̃
−1

, where D̃ = R̃ +
HB̃H⊤ is like the innovation covariance matrix defined
in Equation (14), but calculated using assumed obser-
vation and background-error covariance matrices. The
ith singular value of the product of two (real or com-
plex) matrices is smaller than or equal to the product of
the largest singular value of the first matrix and the ith
singular value of the second matrix, or the product of
the ith singular value of the first matrix and the largest
singular value of the second matrix (Bernstein, 2009,
Proposition 9.6.1; Horn & Johnson, 1991). In particular,
for i = 1,

s2
1(W̃) ⩽ s2

1(R̃)s
2
1(D̃

−1
). (D1)

We know that, for symmetric matrices, the eigenvalues
and singular values are the same, therefore

s2
1(W̃) ⩽ 𝜆

2
1(R̃)𝜆

2
1(D̃

−1
). (D2)

Then, using the fact that the maximum eigenvalue of a
matrix is equal to the reciprocal of the minimum eigen-
value of its inverse, we obtain

s2
1(W̃) ⩽

(
𝜆1(R̃)
𝜆m(D̃)

)2

. (D3)

Finally, using the fact that the minimum eigenvalue of the
sum of two (real or complex) matrices is larger than or
equal to the sum of the minimum eigenvalues of these two
matrices (Bernstein, 2009, Fact 5.12.2), an upper bound of
s2

1(W̃) is provided by

s2
1(W̃) ⩽

(
𝜆1(R̃)

𝜆m(R̃) + 𝜆m(HB̃H⊤)

)2

, (D4)

as required.

APPENDIX E. THE SIZE OF s2
1(W̃) IN THE

CASE OF CIRCULANT R̃ AND HB̃H⊤

We provide a fast way to compute the size of s2
1(W̃),

which can be used when the matrices R̃ and HB̃H⊤ are
circulant. We start with the definition and properties of cir-
culant matrices. A circulant matrix is a matrix where each
row is obtained by cyclically shifting the preceding row.
For example, an m ×m circulant matrix takes the form

C =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

c0 cm−1 · · · c2 c1

c1 c0 cm−1 c2

⋮ c1 c0 ⋱ ⋮

cm−2 ⋱ ⋱ cm−1

cm−1 cm−2 · · · c1 c0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Circulant matrices have some useful properties.

Fact 1 (Gray (2006, section 3.2)). The sum
and product of two circulant matrices are cir-
culant.

Fact 2 (Gray (2006, section 3.2)). The inverse
of a circulant matrix is circulant.

Fact 3 (Gray (2006, section 3.2)). Circulant
matrices commute.

Fact 4 (Gray (2006, Theorem 3.1)). The kth
eigenvector of any m ×m circulant matrix is

uk =
(

1, 𝜔k
, 𝜔

2k
, … , 𝜔

(m−1)k
)⊤
,

where 𝜔 = e−2𝜋i∕m is a primitive mth root of
unity and i is the imaginary unit.

Recall that W̃ = R̃(HB̃H⊤ + R̃)−1. If the matrices R̃
and HB̃H⊤ are circulant, then their sum is circulant
(Fact 1) and the inverse of the sum is also circulant
(Fact 2). Thus, the matrix W̃, as the product of two cir-
culant matrices, is circulant (Fact 1). We also know that
R̃ and (HB̃H⊤ + R̃)−1 are symmetric and they commute
(Fact 3). Therefore, their product W̃ is also symmetric.

Since the singular value of a symmetric matrix is
equivalent to the eigenvalue of that matrix, we have

s1(W̃) = 𝜆1(W̃).

Furthermore, as circulant matrices share the same
eigenvectors (Fact 4), we can write

𝜏k(W̃) = 𝜏k(R̃)
𝜏k(R̃) + 𝜏k(HB̃H⊤)

,
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26 HU and DANCE

where k = 0, … ,m − 1 is the wavenumber and 𝜏k(⋅)
denotes the eigenvalues ordered by wavenumber. We use
a different notation here to distinguish the eigenvalues
denoted by 𝜆i(⋅), which are ordered by size from the largest
to the smallest. Now the task is to find the wavenumber k′
that gives the largest eigenvalue of W̃ and then the value
of s2

1(W̃) can be calculated by

s2
1(W̃) =

[
𝜏k′ (R̃)

𝜏k′ (R̃) + 𝜏k′ (HB̃H⊤)

]2

.

This allows us to compute s2
1(W̃) directly from R̃ and

HB̃H⊤ without forming the matrix W̃. The kth eigenvalues
of R̃ and HB̃H⊤ can be easily computed using the ele-
ments of the first row of each matrix (e.g., Haben, 2011,
eqs. (5.25) and (5.26)). In addition, if a circulant matrix has
no negative elements, its maximum eigenvalue occurs at
k′ = 0 and is equal to the sum of any row of the matrix (e.g.,
Haben, 2011, eq. (5.28)). However, in our experiments, the
matrix W̃ may contain negative elements.

APPENDIX F. PROOF OF THEOREM 4

We may write

1
m

E

[

||Â − 𝜇(A) ⋅ I||2F
]

= 1
m

E

[

||Â −A +A − 𝜇(A) ⋅ I||2F
]

= 1
m

E

[

||Â −A||2F
]

+ 1
m

E
[
||A − 𝜇(A) ⋅ I||2F

]

+ 2
m

E

[⟨

Â −A,A − 𝜇(A) ⋅ I
⟩

F

]

= 1
m

E

[

||Â −A||2F
]

+ 1
m
||A − 𝜇(A) ⋅ I||2F

+ 2
m

⟨

E

[

Â −A
]

,A − 𝜇(A) ⋅ I
⟩

F
. (F1)

Then, based on Equations (2) and (4), we can find
that the Frobenius norm can be given by trace, ||A||2F =
tr(A⊤A). Using this relationship, the second term of the
last line in Equation (F1) can be rewritten as

1
m
||A − 𝜇(A) ⋅ I||2F

= 1
m

tr
[
(A − 𝜇(A) ⋅ I)(A − 𝜇(A) ⋅ I)⊤

]

= 1
m
[
tr(AA⊤) + 𝜇2(A) − 2𝜇(A) ⋅ tr(A)

]
. (F2)

Finally, using the relationship between the trace and
eigenvalues given by Equation (5), we can further
write

1
m
||A − 𝜇(A) ⋅ I||2F

= 1
m

[ m∑

i=1
𝜆

2
i (A) + 𝜇

2(A) − 2𝜇(A)
m∑

i=1
𝜆i(A)

]

= 1
m

m∑

i=1
(𝜆i(A) − 𝜇(A))2. (F3)

This completes the proof.
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