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Abstract
Purpose Impaired gut barrier function is associated with systemic inflammation and many chronic diseases. Undigested 
dietary proteins are fermented in the colon by the gut microbiota which produces nitrogenous metabolites shown to reduce 
barrier function in vitro. With growing evidence of sex-based differences in gut microbiotas, we determined whether there 
were sex by dietary protein interactions which could differentially impact barrier function via microbiota modification.
Methods Fermentation systems were inoculated with faeces from healthy males (n = 5) and females (n = 5) and supple-
mented with 0.9 g of non-hydrolysed proteins sourced from whey, fish, milk, soya, egg, pea, or mycoprotein. Microbial 
populations were quantified using fluorescence in situ hybridisation with flow cytometry. Metabolite concentrations were 
analysed using gas chromatography, solid phase microextraction coupled with gas chromatography-mass spectrometry and 
ELISA.
Results Increased protein availability resulted in increased proteolytic Bacteroides spp (p < 0.01) and Clostridium coccoides 
(p < 0.01), along with increased phenol (p < 0.01), p-cresol (p < 0.01), indole (p = 0.018) and ammonia (p < 0.01), varying 
by protein type. Counts of Clostridium cluster IX (p = 0.03) and concentration of p-cresol (p = 0.025) increased in males, 
while females produced more ammonia (p = 0.02), irrespective of protein type. Further, we observed significant sex-protein 
interactions affecting bacterial populations and metabolites (p < 0.005).
Conclusions Our findings suggest that protein fermentation by the gut microbiota in vitro is influenced by both protein 
source and the donor’s sex. Should these results be confirmed through human studies, they could have major implications 
for developing dietary recommendations tailored by sex to prevent chronic illnesses.

Keywords Dietary protein · Gut microbiota · Sexual dimorphisms · In vitro gut systems · Microbial-derived metabolic 
end products
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Introduction

With the exception of its role in food sensitivity and food 
allergy, dietary protein is seldom viewed as having any-
thing other than positive effects on health. Consequently, 
dietary guidelines encouraging populations to increase pro-
tein intake by up to 100%, in a bid to combat the effects 
of sarcopenia [1], have been made with little consideration 
given to safety in terms of potential adverse effects on gut, 
immune and metabolic health. Until recently, digestion and 
absorption of dietary protein was considered to be highly 
efficient. However, recent evidence suggests that up to 
10% of consumed protein reaches the colon undigested in 
humans [2]. The colon is host to the greatest density of com-
mensal bacteria in mammals [3], and is where the highest 
level of bacterial fermentation of undigested food products 
occurs. Undigested colonic dietary protein is fermented by 
specific components of the resident microbiota [4] and thus 
has the potential to drive the expansion of proteolytic pop-
ulations at the expense of more beneficial groups such as 
bifidobacteria and lactobacilli. Work in this area is limited, 
but intervention studies using varying amounts of increased 
dietary protein and time have reported changes in colonic 
bacterial metabolism [5–7], with increased dietary protein 
intake being linked to adverse shifts in bacterial populations 
[8]. Such changes can result in increases in the produc-
tion of microbial-derived negative end-point metabolites, 
including ammonia and phenolic compounds, which have 
been shown to reduce gut barrier function in vitro [9–12]. 
The gut wall provides a physical, selective barrier prevent-
ing potentially harmful products of gut bacteria and food 
digestion from entering blood circulation [13]. Reductions 
in this barrier function through inflammation, disruption, 
and impaired integrity of the gut lining, a condition often 
referred to as ‘leaky gut’, can result in increased passage 
of these products, such as lipopolysaccharide (LPS), into 
blood [13, 14]. This can cause chronic low-grade systemic 
inflammation and thus promote the development of chronic 
degenerative diseases of the liver and cardiovascular system 
[14, 15]. While leaky gut may have multifactorial causes, 
fermentation of excess dietary protein by colonic microbes 
could be an important contributor to the development of 
these chronic diseases.

Healthy adult females have been shown to express lower 
and more variable permeability in the gut barrier than 
males. Additionally, adult male gut barrier function appears 
more stable and is less sensitive to impairment caused by 
non-steroidal anti-inflammatories (NSAIDs) than females 
[16]. However, female gut barrier function is more resil-
ient to shock states such as acidosis or hypoxia than that 
of males [17], but becomes less stable with age [18]. The 
cause of these differences is multifactorial and is thought 

to involve sex hormones, immunity and the gut microbiota 
[19–21]. For example, female microbiotas are significantly 
more diverse than those in males, [22–24] and tend to have a 
lower abundance of Bacteroidetes, but higher proportions of 
Bacillota (Firmicutes) and Actinobacteria than male micro-
biotas [25, 26]. A greater diversity and high proportions of 
Bacillota can be indicative of a healthy microbiota [27], 
which might contribute to the greater efficiency observed in 
female barrier functionality. Microbiota sex differences also 
extend to lower taxonomic levels, with populations of Pre-
votellaceae, Ruminococcaceae [28], Clostridiales [22], and 
Escherichia [29] being lower in females than males. Spe-
cific microbial genera and species have been demonstrated 
to correlate with components of gastrointestinal immunity, 
including Clostridium-driven increases in intestinal muco-
sal regulatory T-cell (Treg) populations [30]. Higher levels 
of Clostridium populations in the male gut and the associa-
tion between these microbes and increased levels of Tregs, 
may contribute to the disproportionally lower incidence of 
inflammatory gut conditions observed in males compared 
to females.

Complex interactions occur between gut barrier integ-
rity, immune function and the gut microbiota. Since there is 
sexual dimorphism in all three of these systems in healthy 
adults, it is likely that the detrimental effects of excess 
dietary proteins on microbial-derived metabolites associ-
ated with reduced barrier function could also be sexually 
dimorphic. To the best of our knowledge, this has not yet 
been explored and possible mechanisms remain undefined. 
However, significant sex-dependent responses to dietary 
interventions have previously been identified, including 
inulin, starch and the probiotic Bifidobacteria lactis in 
immune-associated protein expression in the gut of 28-day-
old piglets [31]. This supports potential links between nutri-
tion and sex-based differences in physiological responses.

Consumption of proteins originating from different 
sources has previously been shown to have differential 
effects on metabolic end-product production by bacterial 
populations in the gut [32, 33]. For example, rat caecal 
production of acetic acid was significantly higher follow-
ing consumption of soya protein than casein [34], and lactic 
acid production was higher following fish meal consumption 
compared to casein and soy [32]. However, there are several 
inconsistencies across these studies, including where supple-
menting with proteins from the same source (soya) resulted 
in significantly different levels of acetic acid production by 
the gut microbiota [32, 34]. This could be explained by the 
protein being used in conjunction with different prebiot-
ics, which could impact on microbiota metabolism differ-
ently to the microbial metabolic response to protein in the 
absence of prebiotics [34]. Variations observed might also 
be attributed to the disparities in intestinal microbiota across 
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individuals and groups of experimental animals. In addition, 
results from rodent trials, although useful, may not directly 
reflect human responses to dietary proteins, since mice and 
rats have marked differences in gastrointestinal physiology 
to humans. This includes rodents having proportionally 
larger caecums along with smaller colons [35], and consid-
erable differences in microbiota composition in comparison 
to humans. For example, only 25 of the 60 bacterial genera 
found in the murine microbiota are shared by humans [36]. 
Factors such as the strain of mouse [37] and animal housing 
environments [38, 39] can also cause significant differences 
in the composition of rodent microbiotas, as previously 
reviewed by Hugenholtz and de Vos [37].

Dietary proteins from animal and non-animal sources 
may also have distinct effects on the composition of gut 
bacterial populations. Xiao et al. demonstrated that dietary 
proteins derived from cereals were linked with proportional 
increases in Bacteroides spp. and Phascolarctobacterium 
spp. in vitro, in comparison to proteins from meat sources 
[33]. In addition to these findings, faecal microbial fermen-
tation of chicken protein resulted in increased short chain 
fatty acid (SCFA) production compared to the other pro-
teins tested [33]. However, data regarding changes to the 
production of phenolic compounds, which are known to 
reduce gut barrier function in vitro, were not reported. The 
purification processes for the meat-based test proteins were 
also not reported but can have important implications for 
digestibility and thus efficiency of transit to the colon. Nev-
ertheless, differential effects of proteins from different ori-
gins on both microbiota composition and on the production 
of metabolic end-products suggests that protein source may 
be an important determinant regarding the potential links 
between increased dietary protein and impaired intestinal 
barrier function.

We hypothesised that excess non-hydrolysed dietary pro-
teins from different sources would have differential effects 
on the composition of the microbiota, and on the produc-
tion of bacterial-derived metabolic end-products, especially 
those which have been shown to have detrimental effects 
on intestinal barrier function. We further hypothesised that 
these differences would have sex-dependent origins. The aim 
of this work was to quantify the effects of increased avail-
ability of non-hydrolysed proteins from different sources on 
the gut microbiota and metabolite production using in vitro 
gut model systems. These were inoculated with stools from 
both male and female healthy human donors to explore any 
sexually dimorphic differences which may occur.

Materials and methods

Sample preparation for in vitro batch culture 
fermentation

Stool samples were collected from 10 (5 female; 5 male) 
healthy human donors (25–40 years) without any gastro-
intestinal disorders, who had not consumed antibiotics, 
laxatives, probiotics, or prebiotics for 2 months. Donors 
were not following vegetarian or vegan diets and were not 
actively consuming high protein diets or taking medica-
tions known to affect the gut microbiota. These were used 
to inoculate fermenters within 2 h of production and dur-
ing this time, the faecal samples were kept under anaerobic 
conditions using anaerobic sachets (OxoidTM, AnaeroGen 
2.5 L) (Thermo Scientific TM, 10,269,582) in collection 
jars. Anaerobic phosphate-buffered saline (0.1 M PBS, pH 
7.4) was used to dilute the faecal sample to a 1:10 (w/v) 
ratio prior to homogenisation in a stomacher (Stomacher 
400 Circulator Lab Blender, Seward, UK) for 2 min (460 
paddle beats/min).

Batch culture fermentations

Ten independent fermentations (5 female; 5 male) were com-
pleted, each with a different donor. The vessels were auto-
claved prior to each experimental run and filled with 135 mL 
of basal media (peptone water (2 g/L), yeast extract (2 g/L), 
NaCl (0.1 g/L), K2HPO4 (0.04 g/L), KH2PO4 (0.04 g/L), 
MgSO4.7H2O (0.01 g/L), CaCl2.6H2O (0.01 g/L), NaHCO3 
(2 g/L), Tween 80 (2 ml/L), haemin (0.05 g/L), vitamin K 
(10 ul/L), L-cysteine HCl (0.5 g/L), bile salts (0.5 g/L)) 
after the media was steamed for 20 min. Anaerobic condi-
tions inside the vessels were maintained using a continuous 
stream of N2 (15 mL/min).

The pH within the vessels was maintained between 6.7 
and 6.9 using a homeostatic pH controller (Electrolab, 
UK) connected to 0.5 M sodium hydroxide (NaOH) and 
hydrochloric acid (HCl). The temperature was kept at 37 
0C with circulating water on the outside of the vessel using 
a temperature-controlled water bath. For each donor there 
were nine vessels, seven of which contained the proteins of 
interest: pea (76% protein), egg (77%), whey (79%), milk 
(81%), fish meal (73%), and soya (80%), all of which were 
supplied by Food and Feed Innovations Ltd, and concen-
trated mycoprotein was donate by Quorn® Foods. Different 
quantities of the products were added to reach a comparable 
protein amount of 0.9 g in the vessels in order to simulate a 
30-g bolus of protein that may be eaten in one sitting. The 
remaining two vessels were a negative control which did 
not contain additional protein, and a positive control (inu-
lin (1.5 g); Beneo, Orafti® P95). Twenty-four hours prior 
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865 g for 20 min. The top diethyl ether layer was extracted 
and retained. The ether extract (400 µL) was mixed with 
50 µL MTBSTFA (N-methyl-N-tert-butyldimethylsilyltri-
fluoroacetamide) and stored at room temperature for 48 h 
before analysis. An Agilent 7890B systems gas chromato-
graph (Hewlett Packard, UK) fitted with a flame ionisation 
detector and an HP-5ms column (30 × 0.25 mm, 0.25 mm 
film thickness (Agilent, UK)) was used for the analysis. The 
carrier gas used was helium at a flow rate of 1.9 mL/min and 
a head pressure of 139.8 kPa. The column temperature was 
programmed to increase from 63 °C to 190 °C at 5 °C per 
minute and held at 190 °C for 30 min, while the injector and 
detector temperatures were 275 °C. A split ratio of 100:1 
was used. One µL of the samples were injected into the GC 
and HPChem software was used to record the peak areas of 
metabolites. The ratio of short-chain fatty acids (SCFAs) to 
branch-chain fatty acids (BCFAs) was determined by divid-
ing the total concentration of SCFAs by BCFAs for each 
condition.

Phenolic compounds analysed using headspace 
SPME with gas chromatography-mass spectroscopy

Volatile compound analysis was carried out by automated 
headspace solid-phase microextraction (SPME) coupled 
with gas chromatography-mass spectrometry (GC-MS), 
using an Agilent 110 PAL injection system mounted on an 
Agilent 7890 GC connected to a 5975 mass selective detec-
tor (MSD). The SPME fibre stationary phase was composed 
of 75 μm divinylbenzene/Carboxen™ on polydimethylsi-
loxane (Supelco, Bellefonte, PA). The samples (1 mL) were 
added and then equilibrated for 10 min at 35 °C before being 
extracted for 30 min. Samples were agitated at 500 rpm 
(5s on, 2s off) during equilibration and extraction. After 
extraction, the contents of the fibre were desorbed onto the 
front of a Zebron ZB5MS fused silica capillary column 
(30 m × 0.25 mm i.d., 1 μm film thickness; Phenomenex, 
Torrance, CA) in splitless mode, with the splitter opening 
after 0.75 min (100:1 split). The GC program and the fibre 
desorption step commenced at the same time. The GC oven 
was held at 60 °C before heating at 5 °C/min to 260 °C, 
where the temperature was maintained for 1 min. Helium 
was used as the carrier gas at a constant flow rate of 0.9 mL/
min.

The mass spectrometer operated in electron impact mode 
with an electron energy of 70 eV, scanning from m/z 20 to 
m/z 280 at 1.9 scans/s. Compounds were identified using a 
library and their relative concentrations were determined by 
comparing peak areas with 1 µL of 10 mg/L internal stan-
dard (1,2-Dichlorobenzene).

to inoculation the vessels were maintained under anaerobic 
conditions, 370C, and pH 6.7–6.9 to stabilise and reflect 
the environment of the descending colon. The vessels were 
then inoculated with 15 mL of faecal slurry (1:10, w/v) 
from a different volunteer each time and sample collection 
occurred at 0, 8, 24 and 48 h.

Metabolomic and microbiota analyses

Preparation of samples for gas chromatography, and 
fluorescent in-situ -hybridisation coupled with flow 
cytometry (FISH flow).

At each time point 4 mL of sample were removed from each 
vessel. 1.5 mL of each sample were then placed in a 1.5-mL 
microcentrifuge tube and centrifuged at 13,000 g for 10 min 
and the supernatant was stored at − 20 °C for later GC anal-
ysis. A further 750 µL sample was removed for FISHflow 
analysis and placed in a microcentrifuge tube and spun at 
13,000 g for 5 min. The supernatant was discarded, and the 
remaining pellet was aspirated with 375 µL PBS which was 
mixed with 1125 µL 4% paraformaldehyde solution. This 
solution was stored at 4 °C for 4 h before being washed 
twice with PBS. The pellet was then resuspended in 150 µL 
PBS and 150 µL ethanol before being stored at − 20 °C [40].

Ammonia production analysis assay

The procedure was followed as per the manufacturer’s 
instructions for the Ammonia Assay Kit (Sigma-Aldrich 
Co Ltd, AA0100). In brief, a 1 mM ammonia standard was 
prepared by mixing 10 µL of 20 mM NH4Cl with 190 µL 
H2O in a Falcon tube. The working reagent was prepared 
by combining the pre-prepared solutions of 90 µL ammonia 
assay buffer solution, 4 µL solution A and 4 µL solution B to 
each sample. The 1 mM standard was separated into a range 
of concentrations from 0 mM, 0.25 mM, 0.5 mM to 1 mM 
in the multiwell plate. A total of 10 µL of each sample to 
be assessed and 90 µL of the working reagent solution was 
placed into the remaining wells. The plate was mixed and 
incubated in the dark at room temperature for 15 min. Read-
ings were taken at 360 nm (ex) and 450 nm (em) on a Tecan 
plate reader (Tecan, UK). The ammonia concentration for 
each sample was calculated using the calibration curve.

Short-chain fatty acid and branched-chain fatty acid 
analysis using gas chromatography

The method used has been described previously [41]. Briefly, 
a mixture of 1 mL of sample, 50 µL internal standard (2-eth-
ylbutyric acid), 0.5 mL concentrated HCL and 2 mL diethyl 
ether was vortexed at 1500 rpm for 1 min and centrifuged at 
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Pellets were resuspended in 300 µL of PBS, vortexed and 
stored in the dark at 40C before being analysed using the 
BD Accuri™ C6 flow cytometer (BD, Brussels) at excita-
tion wavelengths of 488 nm and 640 nm. Data analysis was 
performed using the Accuri CFlow Sampler Software.

Statistical analyses

General linear modelling was conducted using IBM SPSS 
statistics version 27.0.1 (IBM, Chicago, IL, USA) on the 
individual metabolite and microbial functional groups pres-
ent, with ‘treatment’ or ’protein type’ or ‘additional protein’ 
as factors along with ‘sex’ and ‘time’. Multiple test cor-
rections were completed using least significant difference 
(LSD).

Results

Fermentation of dietary proteins derived from 
different sources resulted in significant shifts in 
microbiota composition

The effects of increased protein availability on the composi-
tion of the gut microbiota were explored using in vitro fer-
mentation systems and human faecal inoculate. We observed 
significant main effects of ‘treatment’ in the overall model 
for all bacteria and functional groups explored (all bacte-
ria (EUB), p < 0.001; Bifidobacterium (BIF), p < 0.001; 
Lactobacillus-Enterococcus group (LAB), p = 0.035; Bac-
teroides spp (BAC), p < 0.001; Clostridium coccoides group 
(EREC), p < 0.001; Roseburia spp. (RREC), p < 0.001; 
Atopobium cluster (ATO), p < 0.001; Clostridium cluster IX 
(PRO), p < 0.001). Total protein (TP) effects were obtained 
by averaging the values from individual proteins and not by 
including all proteins simultaneously in gut model vessels. 

Microbiota analysis using fluorescence in situ 
hybridisation coupled with flow cytometry

Fluorescent in situ hybridisation coupled with flow cytom-
etry (FISHflow) was used to quantify bacterial popula-
tions, with the method used by Rigottier-Gois et al. [42, 
43] adapted for the Accuri C6 flow cytometer. The frozen 
fixed samples (-200C) were thawed and vortexed for 10 s. 
Then 75 µL of each sample was mixed with 500 µL of PBS 
in a 1.5 mL Eppendorf tube, followed by centrifugation at 
11,337 g for 3 min. The resulting supernatant was discarded 
and a mixture of 100 µL of Tris-EDTA buffer (pH 8.0) with 
lysozyme (1 mg/mL) was added to the pellet. After stirring, 
the samples were incubated in the dark for 10 min before 
being vortexed and centrifuged again at 11,337 g for 3 min. 
The supernatants were removed, and the pellets were resus-
pended in 500 µL of PBS, vortexed, and centrifuged (11,337 
g for 3 min). Subsequently, the pellets were resuspended in 
150 µL of hybridisation buffer (0.9 M NaCl, 0.2 M Tris-
HCl (pH 8.0), 0.01% sodium dodecyl sulphate, 30% for-
mamide), vortexed, and centrifuged (11,337 g for 3 min). 
Supernatants were removed and pellets were resuspended 
in 1 mL of hybridisation buffer. Oligonucleotide probe solu-
tion (50 ng/mL, 4 µL) (Table 1) was added to 50 µL of each 
sample in 1.5 mL Eppendorf tubes, vortexed, and incubated 
overnight at 360C, which was previously determined to be 
the optimal temperature for the probes [40]. On the follow-
ing day, each sample was centrifuged (11,337 g for 3 min) 
and washed with 125 µL of hybridisation buffer, vortexed, 
and centrifuged (11,337 g for 3 min). Supernatants were 
removed and pellets were resuspended in 175 µL of wash-
ing buffer solution (0.064 M NaCL, 0.02 M Tris/HCL (pH 
8.0), 0.5 EDTA M (pH 8.0), 0.01% sodium dodecyl sulfate). 
After vortexing and incubating in the dark at 350C to elimi-
nate non-specific probe binding, the samples were vortexed 
and centrifuged again and the supernatants were discarded. 

Table 1 Oligonucleotide probe sequences
Probe name Target Species Sequence
Non Eub Control Probe  A C T C C T A C G G G A G G C A G C [44]
Eub338I+ Majority of bacteria  G C T G C C T C C C G T A G G A G T
Eub338II+ Planctomycetales  G C A G C C A C C C G T A G G T G T [45]
EUB338III+ Verrucomicrobiales  G C T G C C A C C C G T A G G T G T [45]
Bif164 Bifidobacterium spp.  C A T C C G G C A T T A C C A C C C [46]
Lab158 Lactobacillus and Enterococcus GGTATTAGCAYCTGTTTCCA [47]
Bac303 Bacteroidaceae, prevotellaceae and some porphyromonadaceae  C C A A T G T G G G G G A C C T T [48]
Erec482 Most Clostridium coccoides-Eubacterium rectale group GCTTCTTAGTCARGTACCG [49]
Rrec584 Roseburia genus TCAGACTTGCCGYACCGC [50]
Ato291 Atopobium cluster  G G T C G G T C T C T C A A C C C [51]
Prop853 Clostridium cluster IX  A T T G C G T T A A C T C C G G C A C [50]
Fprau655 Faecalibacterium prausnitzii  C G C C T A C C T C T G C A C T A C [52]
DSV687 Desulfovibrio genus  T A C G G A T T T C A C T C C T [53]
Chis150 Clostridium histolyticum TTATGCGGTATTAATCTYCCTTT [49]
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fermentation (p = 0.006) and for mycoprotein (p < 0.01) and 
control (p = 0.03) at 24 h. We also observed a trend for the 
numbers of PRO being greater in the male stool inoculated 
fermenters compared to females following soya protein 
fermentation at 24 h, but this did not reach significance 
(p = 0.058). Additionally, the male microbiota resulted in 
higher numbers of LAB at 24 h than females after ferment-
ing whey protein (p = 0.019), whilst the female microbiota 
had significantly more total bacteria than males following 
soya protein fermentation at 8 h (p = 0.038). No sex differ-
ences in microbial populations were found at baseline. Here 
we show that the effects of different types of protein fermen-
tation on the gut microbiota were dependent on the sex of 
the donor. To view all other bacterial counts for males and 
females view Table 3 in the supplementary material.

Bacterial fermentation of dietary proteins 
influenced the production of both beneficial 
and potentially detrimental microbial-derived 
metabolites

Gas chromatography coupled with mass spectrometry was 
used to quantify microbial-derived end-product metabo-
lites, including short-chain fatty acids (SCFAs, Fig. 4a-c), 
branched-chain fatty acids (BCFAs) (Fig. 4d-f) and phenolic 
compounds (Fig. 5) after 0, 8, 24 and 48 h of fermentation 
with each of the substrates. Statistical modelling showed 
that all SCFAs and BCFAs had significant main effects of 
‘treatment’ (p ≤ 0.001). With regards to beneficial SCFAs, 
increases in butyrate production following fermentation of 
total protein (TP) was significantly greater than negative 
controls at 8 (p = 0.037), 24 (p < 0.01) and 48 (p < 0.01) h 
(Fig. 4a). Acetate (Fig. 4b) and propionate (Fig. 4c) produc-
tion in response to total protein (TP) fermentation compared 
to negative controls was significantly increased by 24 and 
48 h (p < 0.01 for both). Concentrations of the branched-
chain fatty acids (BCFAs) iso-valerate (Fig. 4d, p < 0.01) 
and iso-butyrate (Fig. 4e, p < 0.011) were significantly 

Specifically, at the 8 h timepoint, the effects of the differ-
ent protein sources on the microbial community were not 
apparent (Fig. 1a-h), However, after 24 h the fermentation 
of total protein led to increased numbers of total bacte-
ria (EUB) (Fig. 2a, p < 0.001), BAC (Fig. 2b, p = 0.005), 
EREC (Fig. 2c, p = 0.004), RREC (Fig. 2d, p = 0.009), ATO 
(Fig. 2e, p < 0.001), and (PRO (Fig. 2f, p = 0.009) compared 
to equivalent negative controls, in which additional proteins 
were absent. No significant differences were observed in 
abundances of BIF (Fig. 2g) genus or Lactobacillus-Entero-
coccus group (Fig. 2h), Desulphovibrionaceae or Clos-
tridium histolyticum group (data not shown), nor at other 
timepoints for TP. No analysis of microbiota composition 
was conducted at 48 h as bacterial fermentation in the colon 
likely would not last 48 h in vivo.

There were differences in the expansion of bacterial 
groups following fermentation of proteins from differential 
sources at 8 h (Fig. 1a-h). At 8 h, both mycoprotein (p = 0.035) 
and pea protein (p = 0.038) fermentation resulted in sig-
nificantly elevated levels of EREC in comparison to whey 
and egg proteins. Whey protein fermentation also resulted 
in significantly fewer BAC than mycoprotein (p = 0.021), 
fish (p < 0.01), egg (p < 0.01), pea (p = 0.025) and soya 
(p = 0.02) proteins, while milk protein fermentation resulted 
in significantly lower levels of BAC than fish (p = 0.035) 
and egg (p = 0.038) all at 8 h. By 24 h, soy protein fermenta-
tion resulted in significant increases in all bacterial groups 
(p < 0.05, Fig. 2a-h) except for BAC (Fig. 2b), whereas egg 
protein was only able to stimulate increased growth of BAC 
(p < 0.001), EREC (p = 0.018) and ATO (p = 0.019) com-
pared to negative controls, which contained no additional 
protein. Taken together, these findings demonstrate that the 
source of protein is a key factor when considering the effects 
of protein on microbial populations. The p-values generated 
following statistical comparisons between all bacterial func-
tional groups and all protein sources at each timepoint are 
available in Supplementary Table 1.

Expansion of specific bacterial functional groups 
in response to protein fermentation significantly 
differed between the sexes

Faecal samples from 5 healthy males and 5 healthy females 
were used to inoculate in vitro fermentation systems. When 
all conditions were included in the model, ‘sex’ was found 
to have significant main effects (p < 0.05) for each group 
of bacteria quantified (other than BAC) at 24 h. Here, total 
protein (TP) fermentation produced significantly increased 
numbers of PRO by males compared to females (p = 0.019) 
(Fig. 3). Sex differences were also found following bacterial 
fermentation of individual proteins. PRO was more abun-
dant in males than females at 8 h in response to mycoprotein 

Fig. 1 Effects of fermentation of proteins extracted from different 
sources (pea, whey, egg, milk, fish meal, soy and mycoprotein), inu-
lin and negative control (no substrate) on bacterial populations from 
human faeces following inoculation of anaerobic, pH controlled, batch 
culture systems and quantification by FISHflow at 0, 8 and 24 h. Aver-
ages of the results of all protein samples for each individual volunteer 
were calculated to generate the “total protein” values. Bacterial groups 
quantified were total prokaryotes (EUB, a), Bacteroidaceae and Pre-
votellaceae (BAC,b), Clostridium coccoides-Eubacterium rectale 
group (EREC, c), Roseburia cluster (RREC, d), Atopobium Cluster 
(ATO, e), Clostridium Cluster IX (PRO, f), Lactobacillus spp. (LAB, 
g), Bifidobacterium spp. (BIF, h). Data shown are means of 10 inde-
pendent experiments (n = 5 males and 5 females) ± SEM. General liner 
modelling was used and LSD multiple testing correction was applied 
to generate the table of significances for the model. Significances of 
p < 0.05 are highlighted. Significance of individual differences can be 
viewed in Supplementary Table 1
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compared to negative control and all protein conditions. 
However, the protein conditions themselves did not show 
any differences in the SCFA: BCFA ratio, as illustrated in 
Fig. 6g. All values for significant differences between pro-
teins for SCFA and BCFA concentrations can be found in 
Supplementary Table 2.

The origin of protein and sex of the donor 
determine the extent of phenolic compound 
production following bacterial fermentation

Microbial-derived phenolic compounds have been linked 
with reduced intestinal barrier function in vitro, and we 
observed significant main effects of ‘treatment’ for all phe-
nolic compounds assessed (p < 0.019). Increased total pro-
tein availability (TP) was associated with increases in the 
production of phenol (p < 0.01, Fig. 5a), p-cresol (p < 0.01, 
Fig. 5b), indole (p = 0.018, Fig. 5c) and ammonia (p < 0.01, 
Fig. 5d) at 24 h compared to negative controls. There were 
also significant interactions between levels of phenolic 
compound production and the specific type of protein being 
fermented by the gut-derived bacteria. Here, fermentation 
of mycoprotein (p = 0.03) and soy (p = 0.037) both resulted 
in significantly higher concentrations of phenol than egg-
derived protein (Fig. 5a). Concentrations of p-cresol were 
also significantly higher as a result of mycoprotein fermen-
tation in comparison to fish (p = 0.047), while whey protein 
fermentation resulted in significantly higher concentrations 
of indole than mycoprotein (p = 0.001), fish (p = 0.001), 
egg (p = 0.002) and pea (p = 0.02) protein fermentation 
(Fig. 5c). In response to both soy (p = 0.001) and myco-
protein (p < 0.001) fermentation, the gut derived bacteria 
increased ammonia production by around 200 mM whereas 
fermentation of egg protein did not result in detectable 
increases in ammonia production (Fig. 5d). All p-values 
denoting significances in phenolic compound production in 
response to individual protein fermentation can be found in 
Supplementary Table 2.

The extent of the effect of protein fermentation on phe-
nolic compound production at 24 h was highly dependent 
on the sex of the donor. Gut bacteria from females produced 
higher concentrations of phenol (p = 0.032, Fig. 7a) and 
ammonia (p = 0.012, Fig. 7d), while microbes from males 
produced higher concentrations of p-cresol (p = 0.001, 
Fig. 7b). Sexual dimorphism in phenolic compound produc-
tion was a direct consequence of protein fermentation, as 
there were no significant sex differences in the absence of 
additional proteins (Fig. 7a-d). In addition, production of 
indole did not appear to be sex-dependent (Fig. 7c). There 
were no significant differences between fermentation of ani-
mal (whey, fish, milk and egg) and non-animal (soy, pea 
and mycoprotein) proteins in the productions in p-cresol 

higher following total protein fermentation at all time points 
compared to negative controls, whereas valerate (Fig. 4f, 
p = 0.037) only increased at 24 h. No differences between 
males and females were found at 0 h. Correlation analyses 
of the microbiota composition and metabolite production 
can be found in supplementary Table 2.

Production of SCFAs by bacteria as a result of protein 
fermentation was highly dependent on the protein source. 
All individual protein sources led to significantly more 
butyrate production (p < 0.05) than the negative controls, 
except for fish and egg proteins (Fig. 6a). In addition, egg 
protein fermentation was associated with lower butyrate 
concentrations compared to whey (p = 0.045) and milk 
(p = 0.012), and less acetate (Fig. 6b) than whey (p = 0.031), 
milk (p < 0.01), fish (p = 0.023), and soya (p = 0.023), and 
also less propionate (Fig. 6c) than whey protein fermen-
tation (p < 0.01) at 24 h. No significant differences were 
observed between protein sources in terms of change in 
SCFA concentration at 8 h. In comparison to the negative 
controls, milk protein fermentation resulted in higher levels 
of BCFAs including iso-valerate (p = 0.012) at 8 h (Fig. 4d), 
while milk, whey and mycoprotein (p < 0.01 for all) fermen-
tations resulted in increased concentrations of iso-butyrate 
(Fig. 4e) at 8 h. In addition, fermentation of mycoprotein led 
to elevated levels of valerate (p = 0.01, Fig. 4f) compared to 
fish (p = 0.024), pea (p = 0.017) and egg (p = 0.037), all at 
8 h. By 24 h, is—valerate production (Fig. 6d) was signifi-
cantly greater following fermentation of whey (p < 0.001), 
mycoprotein (p = 0.01) and milk (p < 0.001) compared to 
fish protein. Fermentation of whey (p < 0.01), mycoprotein 
(p = 0.04) and milk (p < 0.001) also resulted in significantly 
higher concentrations of iso-butyrate (Fig. 6e) than egg pro-
tein. Similarly, the increase in valerate concentrations at 24 h 
was significantly greater when both whey (p = 0.025) and 
milk (p = 0.016) proteins were utilised by the faecal bacteria 
in comparison to egg protein. After 24 h, inulin fermenta-
tion led to a significantly greater SCFA: BCFA ratio when 

Fig. 2 Proteins isolated from different sources (pea, whey, milk, fish 
meal, egg, soy and mycoprotein), and inulin, were fermentable sub-
strates utilised by faecal bacteria in anaerobic batch culture systems, 
along with a negative control (no substrate). These results are from the 
24 h timepont in Fig. 1. The results of all the proteins from each indi-
vidual participants were averaged and labelled as total protein (TP). 
This was used to compare the effect of overall protein fermentation 
on bacterial populations against the negative control. FISHflow was 
used to quantify the following bacterial populations: total prokaryotes 
(EUB, a), Bacteroidacea and Prevotellaceae (BAC, b), Clostridium 
coccoides-Eubacterium rectale group (EREC, c), Roseburia clus-
ter (RREC, d), Atopobium Cluster (ATO, e), Clostridium Cluster IX 
(PRO, f), Bifidobacterium spp. (BIF, g), Lactobacillus spp. (LAB, h). 
Letters denote a significant difference between conditions: a = signifi-
cantly different to control, b = significantly different to inulin, c = sig-
nificantly different to egg, d = significantly different to whey, e = sig-
nificantly different to milk. Data shown are means of 10 independent 
experiments (5 males; 5 females) ± SEM
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(Fig. 8a); however, ammonia production was increased fol-
lowing fermentation of non-animal protein than animal pro-
teins (p = 0.003) (Fig. 8c). Furthermore, male and female 
microbiotas produced similar concentrations of p-cresol fol-
lowing fermentation of animal proteins, but male-derived 
microbiotas produced higher concentrations of p-cresol 
(p = 0.004) than female-derived microbiotas in response 
to non-animal proteins, whereas microbiotas from females 
produced more ammonia (p = 0.035) following fermentation 
of animal proteins compared to that from males (Fig. 8d).

Microbial-derived metabolite production in 
response to specific protein fermentation occurred 
in a sex-dependent manner

Finally, we identified sex differences in the production of 
microbial-derived metabolites following fermentation of 
specific proteins. At 8 h, the female-associated microbiota 
produced significantly more propionate following fermenta-
tion of milk (p = 0.026), fish (p = 0.011) and egg (p = 0.013) 
proteins than the male-associated microbiota (Fig. 9a), and 
significantly higher concentrations of acetate following fish 

Fig. 4 Effect of faecal bacteria fermentation of different protein sub-
strates (pea, whey, milk, fish meal, egg, soy and mycoprotein) and 
inulin on the concentrations of short-chain fatty acids butyrate (a), 
acetate (b) and propionate (c), and on branched-chain fatty acids iso-
valerate (d), iso-butyrate (e), valerate (f) quantified by GC/MS at 0 
(baseline), 8, 24 and 48 h. The means of all the protein substrates used 
were averaged for each individual and labelled as total protein (TP). 

Human faecal inoculums from 10 healthy donors (5 males; 5 females) 
were used to inoculate anaerobic, pH and temperature-controlled batch 
culture systems. Error Bars = SEM General linear modelling using 
‘sex’, ‘treatment’ and ‘time’ as factors, with LSD multiple testing cor-
rection, was used to analyse the model. Significances of p < 0.05 are 
highlighted. For individual significant differences, see supplementary 
Table 2

 

Fig. 3 Sex differences in the effect of fermentation of proteins isolated 
from different sources and negative control (no substrate) in the abun-
dance of bacterial groups Clostridium cluster IX (PRO) at 8 and 24 h, 
Lactobacillus-Enterococcus group (LAB) at 24 h, and total bacteria 
at 8 h (d)) from healthy human faeces inoculated into anaerobic, pH 
controlled, batch culture systems. MP = Mycoprotein. Samples from 
0, 8 and 24 h were quantified by FISHflow. Values are means from 5 
males and 5 females ± SEM. * = p < 0.05, ** = p < 0.01
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but there were no further sex-dependent differences in 
iso-valerate production following fermentation of specific 
proteins. However, female-derived microbiotas produced 
higher concentrations of ammonia following fermentation 

(p < 0.01) and egg (p = 0.001) utilisation (Fig. 9b), also at 
8 h. Male-derived microbiotas produced significantly more 
iso-valerate (p = 0.001) in the absence of any protein fer-
mentation than female microbiotas did at 8 h (Fig. 9c), 

Fig. 5 Effects of bacterial fermentation of different dietary proteins, 
inulin and negative control (no substrate) by human faecal micro-
biota on the concentration of phenol (a), p-cresol (b), indole (c) and 
ammonia (d) at 24 h in in-vitro, pH controlled, anaerobic, batch culture 
systems. Phenol, indole and p-cresol were quantified using GC/MS, 
ammonia was analysed using ammonia assay. The average was deter-
mined from the results of all proteins and is labelled as total protein 

(TP) and was compared against the control. Data shown are means 
(a, b and c) and mean change from baseline (d) of 10 independent 
experiments with different donors (n = 5 males and females). Error 
bars = SEM. Letters denote significant differences between conditions: 
a = significantly different to control, b = significantly different to inu-
lin, c = significantly different to egg, d = significantly different to whey, 
e = significantly different to milk
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composition towards more proteolytic phenotypes includ-
ing Bacteroides and Clostridium genera. However, the sig-
nificance of these increases was highly dependent on the 
source of the protein. In addition, fermentation of proteins 
from different sources resulted in differential concentra-
tions of potentially gut barrier-disrupting bacterial-derived 
metabolites, including phenol, p-cresol, indole and ammo-
nia. We also demonstrate that the responses of the micro-
biota to increased protein availability weresex-specific, 
with significant interactions occurring between the proteins 
originating from different sources and the sex of the donors. 
This could have important implications with regards to pro-
viding appropriate dietary advice and guidelines to different 

of fish-derived proteins (p = 0.02). No significant differ-
ences between males and females were found for the other 
metabolites measured or for any of the metabolites at 0 h.

Discussion

Despite recent recommendations to increase protein con-
sumption in adults [1], the effects of high protein diets on 
the composition and metabolic output of the gut microbiota, 
and potential to disrupt intestinal barrier function, remain 
largely uncharacterised. Using in vitro systems, we show that 
bacterial fermentation of protein caused shifts in microbiota 

Fig. 6 Anaerobic faecal batch culture systems designed to reflect con-
ditions in the human colon (pH controlled at 6.7–6.9, temperature 
controlled at 37oC) were used to explore the production of microbial-
derived metabolites following fermentation of different dietary pro-
teins (pea, whey, milk, fish meal, egg, soy and mycoprotein) and inu-
lin compared to a negative control (no substrate). The production of 
short chain fatty acids butyrate (a), acetate (b) and propionate (c), and 
branched chain fatty acids iso-valerate (d), iso-butyrate (e) and valer-
ate (f) were quantified using GC/MS. Average was determined from 
the results of all proteins from each individual and are labelled ‘total 
protein’ (TP) and were compared against the negative control. Fig-

ure 5g presents the aggregated concentrations of SCFAs and BCFAs 
quantified for each condition at 24 h, alongside the corresponding ratio 
of SCFAs to BCFAs. Letters denote significant difference between 
conditions. Data presented are the mean changes from baseline of 
10 independent experiments with different donors (n = 5 males and 5 
females) at the 24 h time point from Fig. 4 ± SEM. Letters denote a sig-
nificant difference between conditions: a = significantly different to the 
negative control, b = significantly different to inulin, c = significantly 
different to egg, d = significantly different to whey, e = significantly 
different to mycoprotein, f = significantly different to milk
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metabolic activity. Indeed, since the models lack absorp-
tive capacity, microbial derived metabolites accumulate in 
the model and production can be quantified in response to 
protein availability, which would be challenging in animal 
or human studies. Furthermore, we have previously dem-
onstrated that findings derived from our gut model systems 
often reflect findings from subsequent human trials [54–56].

Increased protein availability was linked with significant 
shifts in the composition of the gut microbiota, with 7 out 
of the 11 functional groups quantified, differing signifi-
cantly from the controls. Two of the most notable bacterial 
functional groups that were less prevalent under increased 
protein availability were Bifidobacterium and Lactobacillus 

populations to reduce risks of developing chronic diseases 
of the cardiovascular system and liver.

As is consistent across all reductionist biological in 
vitro models, gut fermentation systems do not fully reflect 
physiological conditions within the human colon due to the 
absence of, for example, hormones and immune-associated 
molecules and cells. In addition, proteins entering the colon 
would normally have undergone some degree of physi-
ological modifications by digestive enzymes. However, 
these fermentation models do provide a supportive environ-
ments for the microbiota, with limited additional nutrients, 
to permit evaluation of the direct effect of the test substrate, 
in this case protein, on bacterial populations and microbial 

Fig. 7 The effect of increased 
dietary protein availability (pea, 
whey, milk, fish meal, egg, soy 
and mycoprotein) on the produc-
tion of metabolites associated 
with reductions in gut barrier 
function (phenol (a); p-cresol 
(b); indole (c); ammonia (d)) was 
assessed using an in-vitro gut 
model system (pH controlled at 
6.7–6.9, temperature controlled at 
37 oC). The values for ‘addi-
tional protein’ were calculated 
as an average of the results from 
the use of each of the proteins 
fermented individually and 
compared to the negative control 
(no substrate). Data presented are 
from 10 independent experi-
ments with different donors (n = 5 
males and 5 females) at the 24 h 
time point. Error bars ± SEM, 
* p < 0.05, ** p < 0.01, *** 
p < 0.001
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61]. In our trial, four phenolic metabolites (phenol, p-cresol, 
indole and ammonia), which have been shown to reduce 
barrier function in vitro [12], were significantly elevated 
under high protein conditions compared to the low protein 

spp genera. These groups include the most commonly used 
bacteria for probiotic supplementation, due to the large body 
of evidence that supports their positive effects on health 
[57–59], including reductions in intestinal permeability [60, 

Fig. 8 Dietary protein isolated from animal (milk, whey, fish meal and 
egg) and non-animal- based proteins (soy, pea and mycoprotein) were 
utilised as fermented energy sourced by faecal bacteria in anaerobic 
gut modelling systems (pH controlled at 6.7–6.9, temperature con-
trolled at 37 oC). The production of metabolites potentially detrimental 
to gut barrier function was analysed after 24 h of fermentation. Each 
protein was fermented individually and the results from non-animal 

and animal-based protein were determined from the average of the 
proteins within the respective categories. These categories were then 
compared against the negative control (no protein). Data presented are 
from 10 independent experiments, from n = 5 males and females which 
are shown together (a & c) or separately (b & d). Error bars ± SEM, * 
p < 0.05, ** p < 0.01, *** p < 0.001
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dietary casein hydrolysate did not result in significant shifts 
in bacterial populations in human stools [9].

Although limited in number, the majority of published 
studies which explore the impact of increased dietary pro-
tein on microbiota composition and/or metabolic output 
do so by using protein derived from single sources [62, 9, 
64–66]. However, here we demonstrate that bacterial fer-
mentation of dietary proteins from different sources had 
differential impacts on colonic bacterial populations and 
metabolic end-products in vitro. The basis of this probably 
arises from disparities in the proteolytic capacity of different 
bacterial groups. For example, bacteria which secrete differ-
ent proteases and peptidases, including specific species of 
Bacteroides, Clostridium and Fusobacterium [4, 67], have 
growth advantages over other bacterial groups in relation 
to availability of proteins from different sources. This is a 
result of varying capacities to cleave exogenous proteins 
into constituent amino acids, which are utilised more effi-
ciently than larger peptides [68–73]. Subsequently, proteins 
from different sources are preferentially utilised by different 
proteolytic groups and thus differential population expan-
sion would occur, as we observed. Linked to this, each of the 
tested proteins had unique amino acid compositions which 

conditions of the controls. These results are in accordance 
with a previously published study which also used in-vitro 
gut model systems [62]. However, most studies exploring 
the effects of high protein availability on microbiota com-
position and/or metabolic activity used hydrolysed protein 
in order to obtain high purity (∼ 95%), for example, casein 
hydrolysates [9, 62]. These ultra-concentrated sources of 
protein, limit levels of the non-protein substrates usually 
associated with these proteins when consumed as part of a 
normal human diet. These additional substrates may include 
non-digestible oligosaccharides, which are preferentially 
fermented by some gut bacteria before the proteins are uti-
lised, and thus affect the composition of the gut microbiota. 
Therefore, using less pure proteins, as were used here (75–
81%), is more reflective of normal high-protein diets and 
will generate results with higher translational potential than 
using ultra-pure protein substrates [9, 62]. Furthermore, 
hydrolysed proteins are absorbed absolutely in the upper 
intestinal tract [63]. Consequently, due to increased digest-
ibility, it is highly unlikely that hydrolysed proteins reach 
the human colon where the majority of bacterial fermenta-
tion of dietary proteins occurs. This could, in part, explain 
the limited translation to in-vivo systems where increased 

Fig. 9 Sex differences in the 
production of metabolites (pro-
pionate at 8 h (a), acetate at 8 h 
(b), iso-valerate at 8 h (c) and 
ammonia at 24 h (d) follow-
ing fermentation of different 
dietary proteins, and control 
(no substrate) by human faecal 
microbiota in batch culture 
systems. Acetate and propionate 
levels were quantified using GC/
MS, and ammonia was quantified 
with an ELISA. Values are means 
from 10 independent experiments 
(n = 5 males and females) ± SEM. 
* = p < 0.05, ** = p < 0.01
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example, males have been reported to have a greater abun-
dance of the Bacteroides-Prevotella genera18,25,26, and cer-
tain species within the Bacteroides genus, than females [87], 
whilst, females have been found to have significantly more 
lactic acid producing bacteria than males [24]. Although we 
did observe higher overall bacterial cell counts in females, 
our study found no differences in the Bacteroidetes-Pre-
votellaceae (BAC) or Lactobacillus-Enterococcus (LAB) 
groups between the sexes at baseline. These discrepancies 
suggest there are as yet unknown caveats perhaps age could 
play a key role. Alternatively, our FISHflow methodology 
fully quantifies functional groups while deeper sequenc-
ing techniques may well have identified more subtle differ-
ences between the sexes at baseline. Additionally, reports 
of sex-based differences in gut microbiotas are often based 
on human trials where many additional influential factors 
are present. For example, bile acids [88] and components 
of immunity [89, 90], which have considerable impacts on 
gut microbiotas and are sexually dimorphic, but were absent 
from our in vitro models [91–93]. Regardless of this, we 
did observe significantly lower levels of Clostridium cluster 
IX in females than males, which is consistent with previous 
reports [81, 85, 86]. Interestingly, we report protein × sex 
interactions regarding changes in microbiota composition in 
response to increased fermentation of proteins from different 
sources. Here, Clostridium cluster IX (PRO) and Lactoba-
cillus spp. (LAB) were present in greater numbers in males 
following fermentation of mycoprotein and whey protein 
than in females. Diet-dependent sex differences have pre-
viously been reported in animals and humans [82, 84, 94–
96], with human males, in general, being more susceptible 
to dietary-driven changes in microbiota composition than 
females [82]. However, the underlying mechanisms have 
yet to be elucidated. During fermentation, differences in 
microbiotas may be exacerbated by dietary substrate avail-
ability, which could impact on bacterial metabolic activity. 
Although there were only limited sex-dependent microbiota 
compositional differences in response to fermentation of 
proteins from different sources, we did observe significant 
differences between the sexes in microbial metabolite pro-
duction in response to differential dietary proteins. This is 
consistent with the metabolic potential of gut microbiotas 
varying between the sexes. This is of particular interest with 
regard to the microbial production of phenol in response 
to dietary fish protein, which was significantly higher in 
females compared to males. This finding is consistent with 
females being more susceptible to perturbations in gut bar-
rier function in response to specific stimuli[17]. However, we 
also observed increases in propionate production by the gut 
microbiota in females in response to fish protein fermenta-
tion. Previously, propionate has been demonstrated to ame-
liorate dextran sodium sulphate-induced colitis in murine 

may also provide growth advantages to bacterial groups 
that preferentially utilise specific amino acids [74, 75]. For 
example, when screened for amino acid content, Staphylo-
coccus aureus had significantly higher levels of alanine than 
other Gram-positive bacteria. These bacteria can eithersyn-
thesise alanine de novo, or have increased capacity to obtain 
alanine from extracellular sources [74]. Since all the pro-
teins used in our trial were non-hydrolyzed, bacteria with 
lower proteolytic and higher saccharolytic capacity, such as 
Roseburia, were likely to have preferentially utilised any 
residual carbohydrates present in the protein additives [76]. 
This could explain why total numbers of Roseburia were 
significantly higher than controls in the non-animal proteins 
which are likely to contain additional fermentable carbohy-
drate compared to the animal proteins [4]. Since increased 
dietary protein is rarely a result of the consumption of an 
ultra-pure hydrolysed protein from a single source, our 
results better reflect the effects of high-protein diets on the 
composition and metabolic output of healthy human gut 
microbiotas.

Variation in amino acid compositions between the pro-
teins assessed is highly likely to have contributed to the 
observed differential production of nitrogenous metabolites. 
The deamination of all three aromatic amino acids (phenyl-
alanine, tyrosine and tryptophan) results in the production 
of phenol [77]. Similarly high phenylalanine and trypto-
phan content of milk, whey, soya and mycoprotein [78, 
79] resulted in microbial fermentation of these proteins, 
producing significantly more phenol than fermentation of 
inulin. Furthermore, decarboxylation of tyrosine results in 
p-cresol production; since mycoprotein typically has low 
levels of tyrosine, it might be expected that it would pro-
duce less p-cresol than milk, fish and whey proteins which 
have relatively high levels of tyrosine [79]. However, we 
found that mycoprotein fermentation produced the high-
est concentration of p-cresol. While the reason for this is 
currently unclear, it could be due to the different changes 
in microbial composition between the proteins leading to 
elevated levels of p-cresol producers under mycoprotein 
conditions. Both phenol and p-cresol have been shown to 
increase permeability of colonocyte monolayers in vitro 
[21]. Taken together, our results demonstrate that the source 
of dietary protein should be taken into account when explor-
ing the impact of high protein diets on microbiota compo-
sition and subsequent metabolic activity in relation to gut 
barrier functionality.

Our results are consistent with the growing body of evi-
dence supporting sexual dimorphism in gut microbiotas [26, 
80–85]. As previously noted, female gut microbiotas are 
often more diverse and have higher overall cell counts than 
male microbiotas [81, 85, 86]. However, the bacterial species 
reported to be different between the sexes is inconsistent. For 
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