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Abstract Several observation types (e.g., geostationary satellite and Doppler radar observations) have
recently been found to exhibit strong spatial error correlations. Including these error statistics in data
assimilation for numerical weather prediction can improve analysis quality and forecast skill. Moreover, it
allows for increases in the spatial density of observations assimilated, which is needed for the provision of
information on appropriate scales for high‐resolution forecasting. However, introducing correlated error
statistics may increase the computational complexity and parallel communication costs of matrix‐vector
products involving observation precision matrices (inverse observation error covariance matrices). Without new
approaches, we cannot take full advantage of new observation uncertainty estimates. We develop a new
numerical approximation method based on a particular type of fast multipole method and a domain localization
approach. The basic idea is to divide the observation domain into boxes and then separate calculations of matrix‐
vector products according to the partition. These calculations can be done in parallel with very low
communication overheads. The new method is easy to implement and parallelize, and it is applicable to a wide
variety of observation precision matrices. We applied the new method to a simple variational data assimilation
problem and found that the computational cost of the variational minimization was dramatically reduced while
preserving analysis accuracy across a range of scales. The new method has the potential to be used as an efficient
technique for practical applications where a large number of observations with mutual error correlations need to
be assimilated quickly.

Plain Language Summary Weather forecasts are generated by running a computational model from
a starting point that describes the current weather conditions. These conditions are estimated using a data
assimilation process that combines observations of the weather with computational predictions from a previous
forecast. In the data assimilation process, the statistical weighting given to the observations is determined by our
knowledge of the observation error statistics. Spatial relationships between errors, or spatial error correlations,
are often found in remotely sensed observations, such as those from satellites. The inclusion of spatially
correlated observation error statistics in the data assimilation process can substantially increase the time
required to complete the process. We develop a novel method that can significantly reduce the time taken to
assimilate observations with mutual spatial error correlations. Moreover, the accuracy of data assimilation can
be maintained with this new method.

1. Introduction
Data assimilation is essential for numerical weather prediction (NWP) as it provides the initial conditions for
computer models that simulate the evolution of the atmosphere (e.g., Lorenc et al., 2000; Nichols, 2010). In
addition, data assimilation is used to create climate reanalyzes (e.g., Bollmeyer et al., 2015; Hersbach et al., 2020).
Data assimilation blends observations and model forecasts by taking account of their uncertainties. Observation
uncertainties are described by an observation error covariance matrix, R∈Rm×m, where m is the number of
observations (Hodyss & Satterfield, 2017; Janjić et al., 2018). In practical data assimilation applications, the
matrix R is often treated as block diagonal with each block containing error statistics of one type of observation
(for a given time). This is because observation errors between observations of different types are usually assumed
to be uncorrelated. Moreover, observation errors between observations of the same type may be mutually un-
correlated, resulting in diagonal blocks in the matrix R, or mutually correlated, leading to non‐diagonal blocks. A
widely adopted approach to estimate the matrixR is to use the diagnosis approach of Desroziers et al. (2005). This
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approach is an indirect sampling approach that uses a large sample of assimilation residuals. For a given sample
size, the sampling error of this approach is affected by the accuracy of the observation and background error
covariance matrices specified in the data assimilation algorithm (Hu & Dance, 2024).

Previous studies have shown that observations such as Doppler radar radial winds (DRWs), geostationary satellite
data and atmospheric motion vectors (AMVs) can exhibit strong spatial error correlations, leading to non‐
diagonal blocks of the matrix R. For example, errors in the DRWs used by the Met Office and Deutscher
Wetterdienst (DWD) NWP systems were found to have a horizontal correlation length of 12–50 km (Waller,
Simonin, et al., 2016; Waller et al., 2019; Zeng et al., 2021). The spatial error correlation lengthscale estimated for
observations from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) used in the Met Office and
Météo‐France varies between 30 and 250 km (Michel, 2018; Waller, Ballard, et al., 2016). The horizontal error
correlation lengthscale for the AMVs assimilated within the Met Office UKV model 3D‐Var FGAT system is
found to be around 140–210 km (Cordoba et al., 2017). Moreover, Bormann et al. (2003) found that some AMVs
can have a correlation lengthscale up to 800 km or even broader for tropical regions in the ECMWF global data
assimilation system at that time. These findings have important implications for better use of the observations
with strong spatial error correlations. By directly including correlated error statistics in the assimilation scheme,
we are able to use a shorter observation‐thinning distance or make full use of the information from high‐resolution
observations (Bell et al., 2020; Fowler et al., 2018; Rainwater et al., 2015; Waller, Simonin, et al., 2016). This has
been shown to improve both analysis accuracy and forecast skill in idealized data assimilation systems (e.g.,
Healy & White, 2005; Stewart et al., 2008, 2013) as well as operational systems (e.g., Fujita et al., 2020; Simonin
et al., 2019; Yeh et al., 2022). In addition, assimilation of dense observations (e.g., Doppler radar observations)
without thinning is important for convection‐permitting NWPs as they require information on small scales
(Waller et al., 2021). Convection‐permitting NWP is key for forecasting extreme weather events such as heavy
rainfall (e.g., Clark et al., 2016; Dance et al., 2019). The timing of these extreme events is often difficult to capture
in a model that does not resolve small‐scale weather processes (e.g., Hu et al., 2019; Hu & Franzke, 2020).

A potential problem with including spatially correlated observation error statistics in data assimilation procedures
is that matrix‐vector products involving the inverse of the matrix R can be computationally expensive. These
matrix‐vector products arise in the observation penalty term of the variational data assimilation cost function and
its gradient with the form (see more details in Section 2)

q = Ad, (1)

where A∈Rm×m denotes the observation precision matrix (the inverse of the matrix R∈Rm×m) and d∈Rm

denotes the observation‐minus‐model departure vector,

d = y − H(x), (2)

where x∈Rn is the model state vector, y∈Rm is the observation vector and H is the observation operator that
maps the model state vector to the observation vector (i.e., H : Rn → Rm). The vector d is called the innovation
vector if x= xb. In this study, we do not address the problem of inverting the matrixR. Instead, we assume that the
matrix A is known and focus on fast computation of the matrix‐vector products involving the matrix A. If the
matrixR is diagonal, then the matrixA is also diagonal. In this case the computation of Equation 1 requires onlym
floating point operations, and it can be perfectly parallelized without incurring communication costs. However, if
the matrixR is non‐diagonal, then the matrixA is usually a full matrix. In this case, the work required to calculate
Equation 1 increases to O(m2) floating point operations. Moreover, the bigger problem is that the parallelization
of matrix‐vector multiplications with full matrices requires a large number of communications if matrix and
vector elements are distributed across multiple processors (Deng, 2012; Grama et al., 2003).

An efficient way to calculate Equation 1 for a non‐diagonal matrix is to decompose the matrix R into a lower
triangular matrix and an upper triangular matrix (e.g., using the Cholesky decomposition; Golub & Van
Loan, 1996). This approach avoids the need to explicitly invert the matrix R and allows the linear system to be
solved by forward and backward substitution. For correlated inter‐channel error covariance matrices, the Cho-
lesky decomposition approach is compatible with the parallelization strategy used for diagonal R matrices
because the observations with mutually correlated errors are typically distributed in one processing element (PE;
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Simonin et al., 2019; Weston et al., 2014). However, for spatially correlated error covariance matrices, the
Cholesky decomposition approach may be incompatible with this parallelization scheme because observations
may be allocated to different PEs according to their geophysical locations, and hence excessive communications
between PEs are required. To deal with this, Simonin et al. (2019) proposed a pragmatic strategy for operational
applications where observations with mutually correlated errors were assigned to a single PE. With this new
allocation of observations, the Cholesky decomposition approach can be easily applied locally in each PE without
the need for communication. However, the strategy is only applicable to moderate numbers of mutually correlated
observations.

Several other studies also addressed correlated observation errors in data assimilation. Guillet et al. (2019)
modeled spatially correlated observation errors using diffusion operators, which facilitates a convenient operator
for the inverse observation error covariance matrix. However, it is not clear how this approach can be combined
with a treatment of satellite inter‐channel error correlations. In another approach, eigendecomposition has been
used to approximate the matrix R (e.g., Anderson, 2003; Fisher, 2005; Fowler, 2019; Michel, 2018; Stewart
et al., 2013). However, using too few eigenpairs can cause spurious error correlations, while too many eigenpairs
can lead to great computational expense (Fisher, 2005; Stewart, 2010). There have also been a few studies that
account for correlated observation errors by transforming the observations into spectral space (Chabot et al., 2015,
2020; Ying, 2020). In addition, Bédard and Buehner (2020) proposed the use of the difference between adjacent
observations to indirectly extract the information from observations having spatial error correlations. However, it
is unclear how to use this approach to deal with non‐uniformly distributed data.

The overall aim of this work is to make progress toward development of a new, approximate approach for fast
computations of matrix‐vector products that can be used for the treatment of spatially correlated errors in data
assimilation. As this is a complicated problem, we choose to make progress in small steps. Thus, the goal of this
paper is to examine a novel, hierarchical approximation approach and establish some initial evidence with an
idealized model that the method has the potential to provide the key features that it will need. Furthermore, we
make a pragmatic assumption that the precision matrix, A, is known, rather than working directly with the error
covariance matrix, R. These assumptions allow us to establish that the approximation approach preserves (rather
than discards) small scale information in the analysis as well as being fast and accurate, before we invest sig-
nificant further time in mathematical derivation and numerical implementation of the approach for operational
applications.

In our previous work (Hu & Dance, 2021a), we explored the use of a singular value decomposition approach to the
fast multipole method (SVD‐FMM; Gimbutas & Rokhlin, 2003) for fast calculation of Equation 1 with a full
matrix A. The SVD‐FMM is a hierarchical decomposition where truncated SVDs are used to compress and
decompress portions of the matrix‐vector product. The approach is general in that it can be applied to any
covariance matrix. In Hu and Dance (2021a), we proposed a possible parallelization scheme for the SVD‐FMM in
data assimilation applications. We compared its computational cost (including the communication cost) with
three distinct standard parallel formulations for computing large matrix‐vector products (see Grama et al., 2003,
Section 8.1). We carried out a series of numerical experiments to test the performance of the SVD‐FMM when
using different observation error correlation functions and lengthscales, and different matrix reconditioning
techniques. We also tested its performance in the presence of missing observations. We showed that the SVD‐
FMM can accurately and rapidly compute Equation 1 under various circumstances. However, the complexity
of the algorithm of the SVD‐FMM may be a disadvantage for its operational use. In this work, we develop a new
method based on the SVD‐FMM and a domain localization approach. We call this new method the local SVD‐
FMM. The local SVD‐FMM simplifies the multi‐level algorithm of the SVD‐FMM into a single‐level one. The
single‐level algorithm is easier to implement and parallelize. The domain localization we use is similar to, but not
identical to, that used for ensemble Kalman filter methods (e.g., Greybush et al., 2011; Janjić et al., 2011; Nino‐
Ruiz et al., 2019; Periáñez et al., 2014). With the ensemble filter, localization is mainly used to get rid of spurious
correlations (Hamill et al., 2001; Houtekamer & Mitchell, 1998), but it also brings some computational side
benefits, including the increase in effective ensemble size (Oke et al., 2007) and the reduction of computational
costs (Lorenc, 2003; Petrie & Dance, 2010). With the local SVD‐FMM, localization is used to exclude in-
teractions between observations that are beyond a certain distance (given by a non‐dimensional localization
length parameter; see Section 3.1) in the calculation of the matrix‐vector products involving the matrix A. This
means only subsets of the matrix A and the vector d are used to calculate the vector q (Equation 1). Mathe-
matically, this is equivalent to setting some of the elements of A to be zero. Since the spatial correlation between
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two observation errors is expected to decrease as the distance between the observations increases, we anticipate
that the numerical error caused by excluding the distant observations in the computation will be small (Eijkhout &
Polman, 1988).

A further new contribution of this work is the application of the new method to a variational data assimilation
experiment. We apply the local SVD‐FMM to an idealized data assimilation problem and demonstrate its ac-
curacy and efficiency across a range of scales in the analysis.

We organize the rest of this paper as follows: In Section 2, we introduce the three‐dimensional variational data
assimilation algorithm and explain where matrix‐vector products involving the matrix A arise in the solution of
the variational data assimilation problem. In Section 3, we present the algorithm for the novel local SVD‐FMM
along with a discussion of accuracy, efficiency and a potential parallelization scheme. In Section 4, we show the
accuracy of the local SVD‐FMM in computing Equation 1 for different observation error correlation lengthscales,
different localization lengths and different numbers of singular vectors. In Section 5, we demonstrate the accuracy
and efficiency of the local SVD‐FMM in calculating the analysis in a simple variational data assimilation system.
In Section 6, we discuss our results and conclude that the local SVD‐FMM has potential as a numerical
approximation method that can accelerate matrix‐vector multiplication in data assimilation applications where a
large volume of observational data with spatially correlated errors needs to be assimilated.

2. Variational Data Assimilation Algorithm
In this section, we briefly introduce three‐dimensional variational data assimilation (3D‐Var). We use it as an
example to show how the local SVD‐FMM can be applied in variational data assimilation. The objective of 3D‐
Var is to find the value of x that minimizes the cost function

J(x) =
1
2
(x − xb)⊤B− 1 (x − xb) +

1
2
(H(x) − y)⊤R− 1(H(x) − y), (3)

where xb ∈Rn denotes the background state vector, B∈Rn×n denotes the background error covariance matrix and
other variables were introduced in Section 1. The minimizer of the cost function is the optimal estimate of the
system state that we seek, which is called the analysis and denoted by xa.

In operational data assimilation, the incremental formulation of the cost function is widely used, as it reduces the
computational cost of variational data assimilation (Courtier et al., 1994). The increment is defined as δx= x − xb.
By substituting x = xb + δx into Equation 3, we obtain the incremental cost function

J(δx) =
1
2
δx⊤B− 1δx +

1
2
(Hδx − d)⊤R− 1(Hδx − d), (4)

where H∈Rm×n is the observation operator linearized at x = xb. Once we find the value of δx that minimizes
Equation 4, we obtain the value of x that minimizes Equation 3 by

xa = xb + δxa, (5)

where δxa is the minimizer of the incremental cost function.

To further reduce the computational cost, the control variable transform (CVT; e.g., Courtier et al., 1998) is
applied in operational variational data assimilation, where a new variable is defined as z = L− 1x. The trans-
formation matrix L satisfies B = LLT but is not necessarily the symmetric square root of the matrix B, and it can
be a rectangular matrix. Using L = B1/2 (the symmetric square root of B) Equation 4 reads

J(δz) =
1
2
δz⊤δz +

1
2
(HB1/2δz − d)⊤R− 1 (HB1/2δz − d), (6)

where δz = B− 1/2δx. It can be seen from Equation 6 that the use of CVT avoids the need to invert the matrix B.
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The cost function is minimized when its gradient vanishes. Differentiating Equation 6 with respect to δz gives its
gradient

∇J = ( I + B1/2H⊤R− 1HB1/2)δz − B1/2H⊤R− 1d. (7)

Solving ∇J = 0 is equivalent to solving the linear system

Sδz = w, (8)

where

S = I + B1/2H⊤R− 1HB1/2 (9)

and

w = B1/2H⊤R− 1d. (10)

The matrix S is called the (preconditioned) Hessian, which must be positive definite to ensure a unique solution to
the minimization of the cost function (Golub & Van Loan, 1996, Chapter 5). Since the matrix S is a low‐rank
update to the identity matrix, it has a theoretical minimum eigenvalue of one (e.g., Tabeart et al., 2022).

To solve Equation 8 for δz, we may use the conjugate gradient (CG) method (e.g., Barrett et al., 1994;
Tabeart, 2019; Trefethen & Bau, 1997). This iterative method has been widely used in NWP to minimize the cost
function. In Section 5, we will use the local SVD‐FMM in solving Equation 8, along with the CG method.

3. The Local SVD‐FMM
In this section, we describe the new local SVD‐FMM algorithm and propose a simple parallelization scheme for
the method. We first introduce a partition of the observation domain and the domain localization approach
(Section 3.1). We then separate the matrix‐vector product given by Equation 1 into three terms, making use of the
localized observation partition (Section 3.2). We finally describe the algorithm for calculating each term and
discuss possible parallelization formulations and algorithmic complexity (Sections 3.3–3.5). The reader can refer
to Gimbutas and Rokhlin (2003) and Hu and Dance (2021a) for further theoretical explanations and interpretation
of the SVD‐FMM, which is the basis for the local SVD‐FMM.

3.1. Partition of the Observation Domain

The local SVD‐FMM starts by dividing the observation domain into (approximately) equally‐sized boxes. The
observations could be regularly distributed or irregularly distributed. However, if observation locations are not
evenly distributed, we may consider using boxes of different sizes. This ensures that the number of observations
in each box is similar. If the observation domain is three‐dimensional, then it can be divided into smaller cubes.
In practical applications, the number of boxes can be determined such that the average number of observations
in each box is smaller than a prescribed value. The optimal configuration of boxes may depend on the indi-
vidual application and computer architecture. Figure 1 shows an example of the observation domain partition,
where the grid spacing of observations is 6/14° in the East‐West direction (equates to about 30 km at 50.5°N)
and 6/11° in the North‐South direction (equates to about 30 km), and the observation domain is divided into
8 × 8 boxes.

After observation partitioning, we define four fields for each box. The near field of a box b, denoted by Nb, is
made of itself and all the boxes that connect to it (see the left panel of Figure 2). The far field of a box b, denoted
by Fb, consists of all the other boxes. The interaction field of box b, denoted byLb, consists of a subset of boxes in
Fb, which are within a certain distance of box b. The distance is given by a non‐dimensional localization length
parameter (h), denoting the number of boxes. For example, the right panel of Figure 2 shows the interaction field
of box b with h = 3, indicating that the interaction field contains boxes within a distance of three boxes from b,
excluding the near‐field boxes. The non‐dimensional localization length parameter can also be expressed in units
of length by simply multiplying it by the size of the box. The non‐interaction boxes of b, denoted byDb, are given
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by the boxes that are in Fb but not in Lb. Let mb, mNb
, mLb

and mDb
denote the

number of observations in box b, Nb, Lb and Db, respectively, then we have
m =∑Nbox

b=1mb, where Nbox is the total number of boxes, and
m = mNb

+ mFb = mNb
+ mLb

+ mDb
for any b.

3.2. Separation of the Matrix‐Vector Product

We first separate the vector q into Nbox sub‐vectors, where Nbox is the number
of boxes used to divide the observation domain. The sub‐vector of the vector
q corresponding to box b is denoted by q(Ib) = {q(i)|i ∈ Ib}, which contains
elements of the vector q that correspond to the observations in box b. The
vector Ib ∈Rmb contains the indices of observations in box b. We then
separate the calculation of the vector q(Ib) into three matrix‐vector products,

q(Ib) = A(Ib, INb
)d(INb

) + A(Ib, ILb) d(ILb ) + A(Ib, IDb) d(IDb ), (11)

where vectors INb
∈RmNb , ILb

∈RmLb and IDb
∈RmDb denote the sets of

observation indices in Nb, Lb, and Db, respectively, the matrices
A(Ib, INb

) = {A(i, j)|i∈ Ib, j∈ INb
} , A(Ib, ILb) = {A(i, j)|i∈ Ib, j∈ ILb} , and

A(Ib, IDb) = {A(i, j)|i∈ Ib, j∈ IDb} denote sub‐matrices of the matrix A that
are comprised of specific rows and columns of the matrix A given by the
corresponding observation indices, and the vectors d(INb

) = {d( j)| j∈ INb
} ,

d(ILb ) = {d( j)| j∈ ILb} , and d(IDb ) = {d( j)| j∈ IDb} denote sub‐vectors of the
vector d.

The first matrix‐vector product on the right‐hand side of Equation 11 is the near‐field matrix‐vector product,
which is calculated exactly (see Section 3.3). The second matrix‐vector product is the interaction‐field matrix‐
vector product, which is approximated using the SVD (see Section 3.4). Thus, the accuracy depends on the
number of singular values/vectors used in the approximation (p). The last matrix‐vector product is the non‐
interaction‐field matrix‐vector product, which is completely discarded (see Section 3.5). Figure 3 shows which
elements of the matrix A are involved in the near‐field, interaction‐field and non‐interaction‐field matrix‐vector
products in the calculation of q(Ib) for all boxes. For example, the first panel of Figure 3 shows which elements of
the matrix A are used to form A(Ib, INb

) for b = 1, …, Nbox.

To provide the reader with further intuition about the approximation, we also plot a row of the matrixA and some
example approximated forms in physical space (since matrix elements correspond to observation locations). To
do this, we first create the matrix R using the second‐order auto‐regressive (SOAR) correlation function (e.g.,
Daley, 1994; Tabeart et al., 2018),

CSOAR(i, j) = σ2(1 +
|Δi,j|

l
) exp(

− |Δi,j|

l
), (12)

Figure 1. An example of the observation domain partition. Observations
(gray dots) are approximately regularly distributed over a region from 49°N
to 52°N and 3°W to 3°E with a grid spacing of about 30 km, resulting in 154
observations. The observation domain is divided into 8 × 8 boxes.

Figure 2. Illustration of the near, interaction and non‐interaction fields of the box b. (left panel) The shaded boxes are in the
near field of the box b. (middle panel) The shaded boxes are in the interaction field of the box b with a non‐dimensional
localization length parameter h = 3. (right panel) The shaded boxes are in the non‐interaction field of the box b.
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where σ is the error standard deviation, l is the error correlation lengthscale and Δi,j denotes the great‐circle
distance between two points. We then use the MATLAB function inv.m (MATLAB INV, 2022) to invert the
matrix R. The SOAR covariance matrix is symmetric positive definite and thus invertible. After obtaining the
matrixA, we select the row corresponding to the observation located in the center of the domain and plot this row
in physical space in the left panel of Figure 4. We find that the magnitude of the elements in this row decreases
rapidly from the center and the sign of the elements oscillates. Similar results have been observed in other
precision matrices (e.g., Morrison et al., 2022). The middle and right panels of Figure 4 show the same row of the
matrix A that is approximated by the local SVD‐FMM. The middle panel shows a good approximation of the
matrix A where more elements are included in the interaction field and these elements are well approximated by
the retained singular values/vectors. In contrast, the right panel shows a bad approximation where more elements
are discarded and the interaction‐field elements are not well approximated.

Although only the near‐field elements of the matrixA are used without approximation, we still need the inverse of
the full matrixR. This is because, for a full matrix, the inverse of a matrix sub‐block typically depends on all of the
other sub‐blocks of the matrix (Bernstein, 2009, Chapter 2). In practice, if correlations between observation errors
for different observation types are excluded, the matrix R can be considered block diagonal with zero blocks on
the off‐diagonals and each diagonal block corresponding to a different observation type (e.g., Stewart
et al., 2013). In this case, the inverse of each block can be calculated independently, and the local SVD‐FMM can
be applied to each block separately.

Figure 3. Plots illustrating the position (marked by black squares) of the elements of the matrix A∈R154×154 used for the
near‐field, interaction‐field, and non‐interaction‐field matrix‐vector products in Equation 11. Observations are distributed
and partitioned as in Figure 1. The localization length is h = 3.
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3.3. The Near‐Field Matrix‐Vector Product

The near‐field matrix‐vector product is expected to contribute most to the results of Equation 11 as the elements of
the matrix A are expected to decay with distance from the diagonal (Eijkhout & Polman, 1988). In addition, from
a physical point of view, since spatial observation error correlation is expected to decrease with distance, the
observations in the near field provide more information than those in the interaction and non‐interaction fields.
Therefore, the near‐field matrix‐vector product should be computed without any approximation,

A(Ib, INb
)d(INb

) = ∑
i∈Ib

∑
j∈INb

A(i, j)d( j). (13)

Equation 13 should only have a very small numerical roundoff error, which is negligible in determining the
accuracy of the local SVD‐FMM. Since the average size of Ib ism/Nbox and the average size of INb

is 9m/Nbox, the
amount of work for computing Equation 13 for a box is approximately 9(m/Nbox)2 additions and multiplications.
In total, 9m2/Nbox additions and multiplications are required for the computations for all boxes.

Near‐field matrix‐vector products can be calculated in parallel using a simple strategy. Let PE‐b denote a PE that
has been assigned to carry out the computation task for box b and let it store the vector d(Ib), and the matrices
A(Ib, INb

) and A(Ib, ILb) . To calculate Equation 13, each PE needs to receive elements of d from the PEs holding
the data for the neighboring boxes. This means that each PE needs to communicate with at most 8 PEs, as each box
can have up to 8 neighbors. We note that the observation domain must be partitioned to allow each PE to have
enough memory to store its portion of the vector d and the matrixA. In addition, the load balance between PEs and
the balance of communication overheads per PE need to be taken into account.

3.4. The Interaction‐Field Matrix‐Vector Product

The interaction‐field matrix‐vector product is approximated by a computationally efficient algorithm. This al-
gorithm relies on the SVD for data compression. The SVD is mathematically defined by (e.g., Golub & Van
Loan, 1996)

M = ∑

min(n1,n2)

k=1
uksk(vk)⊤, (14)

Figure 4. One row of the true and approximated observation error precision matrix, A, in physical space. Observations are
distributed and partitioned as in Figure 1. The observation corresponding to the chosen row is located at the darkest red circle
in the center of the domain. The true matrix is the inverse of the second‐order auto‐regressive covariance matrix with a
standard deviation of 1 and a correlation lengthscale of 160 km (Equation 12). The approximated matrices are obtained by
approximating the true matrix using the local singular value decomposition approach to the fast multipole method with
different numbers of singular values (p) and localization lengths (h). The corresponding physical locations of near‐field
elements are given by circles inside the solid line square or at its edge. The corresponding physical locations of interaction‐
field elements are given by circles outside the solid line square, but inside or at the edge of the dashed line square. The
corresponding physical locations of the non‐interaction‐field elements are given by circles outside the dashed line square.
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whereM is an n1× n2 matrix, uk ∈Rn1 is the kth left singular vector, sk is the kth singular value, and vk ∈Rn2 is the
right singular vector. For a square, symmetric positive‐definite matrix, the SVD is equivalent to eigenvalue
decomposition, and we have uk = vk.

There are four main steps to calculate the interaction‐field matrix‐vector product: (a) Obtain the numerical op-
erators, which are used to compress, translate and decompress the information in the vector d; (b) Compress the
part of d that is allocated to each box; (c) For each box b, translate the compressed information from boxes in b's
interaction field (Lb) to b; and (d) Decompress the translated information for each box.

The mathematical detail, algorithmic complexity, parallelization scheme, and communication costs for each step
of the interaction‐field calculation are presented below. We assume that the data has already been allocated to
each PE as described in Section 3.3.

1. Compute p‐term truncated SVDs of the interaction‐field sub‐matrix for each box,

A(Ib,ILb) ≈ ∑

p

k=1
ub, ksb, k(vb,k)⊤, (15)

where b = 1, …, Nbox, ub,k ∈Rmb denotes the kth left singular vector for box b, vb,k ∈RmLb denotes the kth right
singular vector for box b and sb,k denotes the kth singular value for box b, and we should have p ≪ mb. The
computation of the truncated SVDs is perfectly parallel. Each PE can perform a matrix decomposition inde-
pendently. After the SVDs, the memory allocated in PE‐b for the sub‐matrix A(Ib, ILb) can be released. The
singular vectors and singular values obtained can be used to compute Equation 1 with any vector d as long as the
matrix A remains the same. In practical data assimilation applications, the matrix A may vary each assimilation
cycle due to factors such as quality control but typically does not change between iterations of the minimization
scheme in a given cycle.

2. Project the sub‐vector d(Ib) for each box b onto the basis given by p left singular vectors and obtain the
coefficient of projection,

Φb,k = ub,k ⋅d(Ib), (16)

where k = 1, …, p and the symbol ⋅ denotes a dot product. For a fixed b and a fixed k, Equation 16 requires 2mb

operations. Summing over each value of b and each value of k, the total number of operations is 2mp. The
computation of Equation 16 is perfectly parallel.

3. Transform the projection on the basis given by left singular vectors into the basis given by right singular
vectors and obtain the coefficient of projection,

Ψb, k = ∑
b′∈Lb

∑

p

k′=1
Tb,b′ ( k,k′)Φb′ , k′ , (17)

where b′ ∈Lb is a box in the interaction field of box b and Tb,b′ ∈Rp×p is the translation operator between b and
b′, which is given by

Tb,b′ ( k, k′) =∑
mb′

i=1
vb, k(i)ub′ , k′ (i), (18)

where k, k′ = 1, …, p. It should be noted that vb,k has a larger size than ub′,k′. Thus, we need to multiply each
element of ub′,k′ by the element of vb,k corresponding to the same observation as the element of ub′,k′. Equation 17
requires less than 2(Nboxp)2 operations because a box's interaction field always contains less thanNbox entries. The
parallelization of this step is the most expensive compared to the parallelization of the other steps because it
requires each PE‐b to communicate with all the PEs holding data for the boxes in b's interaction field. The
computational cost depends on the number of entries in the interaction fields.
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4. Obtain the final result for the interaction‐field computation,

A(Ib, ILb)d(ILb ) ≈ ∑

p

k=1
ub,ksb,kΨb,k. (19)

This step requires 2mp operations and is perfectly parallel.

The computational costs for the truncated SVDs (Equation 15) and the translation operator (Equation 18) have not
been discussed above because they can be pre‐computed and used for any vector d if the matrix A is unchanged.
The interaction‐field computation could become expensive if the truncated SVDs and the translation operator
need to be computed frequently. In practice, since the observations vary in space and time, the SVDs need to be
recomputed for each assimilation cycle. However, since the observation precision matrix typically remains
constant between iterations in a given cycle, the computed singular values and singular vectors can be reused at
each iteration step.

We refer to the error arising from the interaction‐field computation as the approximation error, which consists of
the truncation error of the SVDs and the translation error of the translation operator. The truncation error and the
translation error using p singular vectors are both dependent on the (p+ 1)th singular values of the submatrices of
A (Bernstein, 2009; Gimbutas & Rokhlin, 2003, Fact 9.14.28). We showed in our previous work that the error of
the SVD‐FMM (without localization) using p singular vectors is smaller if the mean (p + 1)th singular value of
the submatrices of the matrix A is smaller (Hu & Dance, 2021a; Figure 9). Thus, the optimal value of p for an
application should depend on how fast the singular value spectra decrease. In Section 4, we show numerically how
the average of the (p + 1)th singular values of the submatrices of A, as well as the accuracy of the local SVD‐
FMM, vary with increasing p.

3.5. The Non‐Interaction‐Field Matrix‐Vector Product

The non‐interaction‐field matrix‐vector product in Equation 11 is completely discarded, as we expect that this
term should have the smallest contribution to the result of q compared to the other two terms. This is because for
spatially correlated observation errors (e.g., errors from geostationary satellite and radar observations), the
observation error covariance matrix is expected to be banded, with the bandwidth depending on the observation
error correlation lengthscale, and the inverses of positive definite band matrices are known to exhibit an expo-
nential decay of their elements away from the main diagonal (Eijkhout & Polman, 1988). A band matrix is a
matrix that contains non‐zero elements near the diagonal and zero elements far away from the diagonal (Golub &
Van Loan, 1996, Chapter 4). We refer to the error caused by discarding the non‐interaction‐field matrix‐vector
product as the localization error, which should depend on the observation error correlation lengthscale and the
localization length. We give some example numerical results on how the localization error varies with observation
error correlation lengthscale. We measure the localization error by the relative difference,

RE =
‖A − Â‖F
‖A‖F

, (20)

where the matrixA is created in the same way as described in Section 3.2, the matrix Â is given by setting the non‐
interaction‐field elements of the matrixA to be zero and ‖⋅‖F denotes the Frobenius norm. Figure 5 shows that the
localization error (RE) increases as the observation error correlation lengthscale increases. Nevertheless, for all
the correlation lengthscales considered, the localization error is smaller than 0.24%.

In ensemble filtering, domain localization may cause abrupt transitions between neighboring sub‐domains, as the
analyses are calculated independently for each sub‐domain using different subsets of observations (e.g., Janjić
et al., 2011). However, this should not be an issue for the local SVD‐FMM because the analysis is calculated for
the entire domain.

3.6. The Non‐Dimensional Localization Length Parameter

In Figure 1, boxes are approximately rectangular with longer sides along the lines of latitudes. As a consequence,
they may encompass more observations in the East‐West direction than in the North‐South direction. If we use the
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same localization length for both directions, we may include more observa-
tions in the East‐West direction. To include a similar number of observations
in the two directions, we can use different localization lengths for the two
directions, as shown in Figure 6.

Moreover, we may also use non‐uniform localization lengths to suit the ge-
ometry of spatial error correlations. In practical applications, observation
error correlations may not be isotropic. For instance, observation error cor-
relation lengthscales for the DRWs vary with the height of the observation
and with the distance of the observation away from the radar (Waller,
Simonin, et al., 2016). For such spatial error correlations, we may need to set
the localization lengths for each box differently.

In general, a longer localization length means fewer matrix elements are
discarded, thus improving the accuracy of the local SVD‐FMM. However, at
the same time, longer localization lengths increase the size of the interaction‐
field submatrices, thereby increasing the computational cost of the SVD (see
Sections 4 and 5).

3.7. Computational Costs

The local SVD‐FMM reduces the algorithmic complexity of calculating
Equation 1. The standard matrix‐vector multiplication requires 2m2 opera-

tions. The local SVD‐FMM requires less than 9m2/Nbox + 4mp + 2(Nboxp)2 operations. The operations for
computing Equations 15 and 18 have not been counted, as they only need to be calculated once for the same
matrix A.

We further compare the communication costs of the parallelization scheme of the local SVD‐FMM with two
distinct standard parallel formulations of matrix‐vector multiplication. The two formulations start with two
different partitions of the matrix. The row‐wise (column‐wise) partitioning means an equal division of rows
(columns) of the matrix between PEs. Elements of the vector are equally allocated among PEs for both cases.
With row‐wise partitioning, each PE needs to collect the portion of the vector stored in every other PE, which
requires an all‐to‐all broadcast operation. The size of the message to be transferred is m/NPE, where NPE is the
number of PEs. With column‐wise partitioning, an all‐to‐one reduction operation is first used to add up the partial
results calculated locally by each PE, and a scatter operation is then used to spread the final result to all PEs. The

size of the message transmitted in the all‐to‐one reduction and scatter oper-
ations is m and m/NPE respectively. More details on the communication op-
erations can be found in Grama et al. (2003). In the parallelization scheme of
the local SVD‐FMM, communication is required in the near‐field computa-
tion and the third step of the interaction‐field computation. In the near‐field
computation, each PE should communicate with up to 8 PEs to collect the
elements of the vector d. In the third step of the interaction‐field computation,
each PE should communicate with a number of PEs to collect the coefficient
of projection, Φb

k . The exact number of PEs involved depends on the choice of
localization length. These communication tasks can be completed together by
an all‐to‐all broadcast operation, where the size of the message transmitted
between a box and its near field is m/NPE, and the size of the message
transmitted between a box and its interaction field is p. To compare the
communication costs, we can compare the communication operations
required and the size of messages to be transferred. An all‐to‐all broadcast is
required in both the parallelization scheme of the local SVD‐FMM and the
row‐wise partitioning formulation. The column‐wise partitioning formulation
requires two communication operations, in which the scatter operation re-
quires a similar communication time as the all‐to‐all broadcast (Grama
et al., 2003). Due to the smaller size of messages transferred, the

Figure 5. The relative localization error with the localization length of h = 3
as a function of observation error correlation lengthscale. The observations
are distributed and partitioned as in Figure 1.

Figure 6. Illustration of using different localization lengths for the latitudinal
and longitudinal directions.
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parallelization scheme of the local SVD‐FMM requires fewer communication costs than the two standard parallel
formulations of matrix‐vector multiplication.

4. The Local SVD‐FMM Accuracy Experiments
The accuracy of the local SVD‐FMM is determined by the number of singular vectors (p), the localization length
(h) and the structure of the matrix A. The structure of the matrix A is affected by the observation error correlation
lengthscale (l). In this section, we carry out numerical experiments to investigate the accuracy of the local SVD‐
FMM in calculating Equation 1 under different values of p, h, and l. We focus on the accuracy of the matrix‐vector
products, and the effect of the local SVD‐FMM on variational data assimilation will be examined in Section 5.

4.1. Design of Accuracy Experiments

Our observations are distributed over a region from 54°N to 60°N and 6°W to 6°E with a grid length of
approximately 12 km, which results in m = 3,456 observations. We divide the observation domain into 8 × 8
boxes as demonstrated in Figure 1. The side length of the boxes is about 83–98 km. The distribution of our
observations is similar to that of the geostationary satellite data over the UK (Waller, Ballard, et al., 2016). A
moderate observation grid spacing is chosen to allow our experiments to be completed in a relatively short time.
The matrix R is given by the SOAR covariance matrix (Equation 12). The observation error standard deviation is
assumed to be 1, and the correlation lengthscale varies between 80 and 160 km with an interval of 10 km. These
values are selected based on horizontal error correlations estimated for real observational data (e.g., Cordoba
et al., 2017; Waller, Ballard, et al., 2016). The matrix A is obtained by inverting the matrix R using the INV
function in MATLAB (MATLAB INV, 2022). The INV function uses an LDL decomposition for Hermitian
matrices (Golub & Van Loan, 1996). The vector d is formed using random values that follow a multivariate
normal distribution with zero mean and the covariance given by R + HBHT. The matrix H is considered an
identity matrix, and the matrix B is also given by the SOAR covariance matrix. The background error standard
deviation and correlation lengthscale are 0.6 and 20 km, respectively. These values are chosen based on that
estimated for wind observations in km‐scale NWP (Ballard et al., 2016).

We measure the accuracy of the local SVD‐FMM in calculating Equation 1 using the root mean square error
(RMSE),

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑m
i=1(qstd(i) − qfmm(i))

2

m

√
√
√
√

, (21)

where qstd(i) and qfmm(i) denote the ith element of the vector q calculated using the standard matrix‐vector
multiplication and the local SVD‐FMM, respectively.

4.2. Experiments With Fixed Localization Length

In these experiments, we investigate the accuracy of the local SVD‐FMM in calculating the matrix‐vector product
when the localization length is fixed to h = 3, while the number of singular vectors and the observation error
correlation lengthscale vary. As expected, we found that the RMSE of the local SVD‐FMM decreases as more
singular vectors are used (see Figure 7). We also note that the RMSE decreases quickly for the first several values
of pwhile decreasing more slowly as its value increases further. This is related to the spectra of the singular values
of the sub‐matrices of the matrixA. We explained in the last paragraph of Section 3.4 that the approximation error
of the local SVD‐FMM depends on the (p + 1)th singular values of the submatrices of the matrix A, and in our
experiments, the singular values of the submatrices of the matrix A drop rapidly (Figure 8, discussed further
below). Since the approximation error approaches a minimum with the use of more singular vectors, the RMSE at
p = 10 gives us a rough idea of the size of the localization error in the local SVD‐FMM.

Figure 7 also shows that the RMSE of the local SVD‐FMM increases with the observation error correlation
lengthscale. This is attributed to an increase in the approximation error and the localization error. We have shown
in Figure 5 that a larger observation error correlation lengthscale will lead to a larger localization error. The
observation error correlation lengthscale also affects the approximation error because it changes the singular
values of the sub‐matrices of the matrixA. We find in our experiments that if the correlation lengthscale is longer,
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then the mean singular value of the submatrices of the matrix A is larger for a given k (Figure 8). For a given
truncation, p, a larger mean (p + 1)th singular value means a larger approximation error. Therefore, if the cor-
relation lengthscale is longer, the approximation error will be larger. Our previous work has shown that the error
of the SVD‐FMM (without localization) also increases with the observation error correlation lengthscale (Hu &
Dance, 2021a; Figure 10). A similar result should be expected here because the source of the error is the same.

While the singular values of the submatrices of A can be shown mathematically to control the approximation
error, we have found that the singular values (or equivalently the eigenvalues) of the fullmatrix can also provide a
rough guide (Hu & Dance, 2021a). Various studies have investigated the behavior of the eigenspectra of cor-
relation matrices with varying correlation lengthscale (e.g., Fowler et al., 2018; Haben et al., 2011).

4.3. Experiments With a Fixed Number of Singular Vectors

We now investigate the accuracy of the local SVD‐FMM when using 10
singular vectors and varying the localization length and the observation error
correlation lengthscale. The localization length is given by a non‐dimensional
parameter (h) that describes the number of boxes. In these experiments, an
approximate physical localization length can be obtained by multiplying h by
90 km (the length of the box). Figure 9 shows that there is a relatively big drop
in the RMSE as h increases from 2 to 3, or from 180 to 270 km in metric units.
However, when increasing h further, changes in the RMSE are too small to be
observed visually. The optimal value of h should depend on the configuration
of boxes and the structure of the matrix A.

As with Figures 7 and 9 shows that the RMSE of the local SVD‐FMM in-
creases with the observation error correlation lengthscale. We discussed
previously that an increase in the observation error correlation lengthscale
increases the approximation error and the localization error. An additional
piece of information provided by Figure 9 is that the RMSE at h = 7 gives the
size of the approximation error because the localization error is zero
when h = 7.

4.4. Experiments With a Fixed Correlation Lengthscale

We finally carry out experiments of the local SVD‐FMM using an observa-
tion error correlation lengthscale of 80 km, and different localization lengths

Figure 7. The root mean square error (RMSE) in using the local singular value decomposition approach to the fast multipole
method to calculate the matrix‐vector product given in Equation 1 under different numbers of singular vectors and correlation
lengthscales. The localization length parameter is 3. The RMSE is averaged over 100 realizations of the vector. The size and
the color of the circles linearly increase with the RMSE.

Figure 8. Average of the kth singular values (sb,k) of Nbox submatrices of the
matrixA. Only the results for the first 10 singular values are plotted. The sb,k
are calculated as shown in Equation 15. Different symbols represent results
for different observation error correlation lengthscales (l). A logarithmic
scale is used on the axis of ordinates to allow a clear comparison between
smaller singular values.
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and numbers of singular vectors. Figure 9 shows that increasing the number of singular vectors has a much greater
effect on the RMSE than increasing the localization length. This indicates that the approximation error dominates
the RMSE of the local SVD‐FMM. While Figure 9 shows results using a particular observation error correlation
lengthscale, we expect similar results when the observation error correlation lengthscale is increased to a certain
value (see Figure 9).

5. Data Assimilation Experiments
In this section, we conduct variational data assimilation experiments using the local SVD‐FMM. We investigate
(a) whether the use of the local SVD‐FMM affects the number of iterations to solve the cost function, (b) how
much wall‐clock time is saved by using the local SVD‐FMM, and (c) how accurate the analyses obtained using the
local SVD‐FMM are. Analysis accuracy at different spatial scales is examined because we expect that including
correlated observation error statistics will modulate the scales that observation information projects onto in the
analysis and thus improve the analysis accuracy at these scales (Fowler et al., 2018; Stewart et al., 2008, 2013).
We wish to check whether this benefit is maintained with the local SVD‐FMM approximation. We do not use

Figure 9. As Figure 7, but under different localization lengths and observation error correlation lengthscales. Ten singular
vectors are used. Note that the scale used here is different to the one used in Figure 7, but the size and colors of the squares
nevertheless increase linearly with the root mean square error.

Figure 10. As Figure 7, but under different localization lengths and different numbers of singular vectors. The observation
error correlation lengthscale is 80 km. Note that the scale used here is different to those used in Figures 7 and 9, but the size
and colors of the diamonds nevertheless increase linearly with the root mean square error.
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parallel computing because the size of the problem in this experiment is
moderate and sequential computing is sufficient to provide the results we
need for this initial study.

5.1. Design of Data Assimilation Experiments

In our variational data assimilation experiment, we solve Equation 8 for δz
using the CG method. This is equivalent to solving the two‐side precondi-
tioned system (Haben, 2011, Chapter 4),

B1/2S̃B1/2 (B− 1/2δx) = B1/2w̃, (22)

where

w̃ = H⊤R− 1d (23)

and

S̃ = B− 1 +H⊤R− 1H (24)

is the Hessian of the cost function given by Equation 4.

To solve Equation 8, we need a background error covariance matrix (B), an observation error covariance matrix
(R), an observation operator (H) and an innovation vector (d). We assume that our model grid points are
distributed over the region shown in Figure 1 with a grid length of approximately 3 km. This leads to a model state
vector of size n= 15, 904. The matrixB is then created using the SOAR correlation function given by Equation 12
with an error standard deviation of 1 and an error correlation lengthscale of 80 km. We further assume our ob-
servations to be distributed with a grid length of about 6 km, which is similar to the footprint of SEVIRI ob-
servations in the mid‐latitudes. This leads tom= 3,976 observations. The matrixR is created using the first‐order
auto‐regressive (FOAR) correlation function (e.g., Stewart et al., 2013), which is also known as the Markov
correlation function and is used for Doppler radar wind observations in operational NWP (Simonin et al., 2019).
The FOAR covariance matrix is

CFOAR(i, j) = σ2 exp(
− |Δi,j|

l
), (25)

where σ, l and Δi,j are defined in Equation 12. We set the observation error standard deviation to be the same as the
background error standard deviation and the observation error correlation lengthscale to 160 km. Since the
observation error correlation lengthscale is larger than the background error correlation lengthscale, the obser-
vation information will project onto small scales in the analysis (Fowler et al., 2018). The relative position be-
tween observations and model grid points is shown in Figure 11. For each observation, our observation operator
averages the values at the four nearest model grid points to that observation. This linear observation operator
leads to

d = ϵo − Hϵb, (26)

where ϵo ∈Rm contains observation errors drawn randomly from a Gaussian distribution with zero mean and
covariance given byR and ϵb ∈Rn contains background errors drawn randomly from a Gaussian distribution with
zero mean and covariance given by B. Gaussian random numbers are produced using the MATLAB routine
mvnrnd.m (MATLAB MVNRND, 2022). Figure 12 shows a sample of background and observation errors in
physical space. We note that in this figure the amplitude of the observation error is larger than that of the
background error. This is due to the luck of the draw. When using different random number seeds, we observe the
opposite relative amplitudes.

Figure 11. Location of observations (diamonds) with respect to model grid
points (circles). The numbers give the order of elements when converting 2‐
D data into a column vector.
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After obtaining the matrices R, B, and H, we invert the matrix R using the MATLAB routine inv.m (MATLAB
INV, 2022), calculate the square root of the matrix B using the MATLAB routine sqrtm.m (MATLAB
SQRTM, 2022) and compute the product of the matricesH and B1/2. The matricesR− 1 andHB1/2 are then used in
the CG method described in the first column of Table 1. The second column of Table 1 identifies where the local
SVD‐FMM is used in the CG method. We choose a relative tolerance of τ = 10− 6 for the CG method, which
determines when the iteration terminates. We implement the CG method using the MATLAB routine pcg.m
(MATLAB PCG, 2022). In the control experiment, we use the full matrix R and standard matrix‐vector multi-
plication. The standard matrix‐vector multiplication is implemented in a naive way (e.g., no function handles are
used, and calculations are performed from left to right). To use the local SVD‐FMM, we divide the observation
domain into 8 × 8 boxes (see Figure 1). We choose the localization length as h = 2 and h = 3 and the number of
singular vectors as p = 4 and p = 10. We have written our own MATLAB code to implement the local SVD‐
FMM, which can be used together with pcg.m. The code can also be used to calculate matrix‐vector products
in other applications, provided the matrix is symmetric and the magnitude of its elements decays away from the
diagonal. The MATLAB code for the local SVD‐FMM is available in Hu and Dance (2021b).

Figure 12. A realization of (left panel) the background error and (right panel) the observation error in physical space. The grid
lengths of the background and observations are 3 and 6 km respectively. Background and observation error correlation
lengthscales are 80 and 160 km respectively.

Table 1
An Algorithm (the Conjugate Gradient Method; e.g., Barrett et al., 1994; Tabeart, 2019; Trefethen & Bau, 1997) for Solving Equation 8 for δz

Algorithm Comment
The conjugate gradient (CG) method Matrix‐vector products involving the matrix R− 1

1: Initialization k = 0, (δz)0 = 0

2: r0 = w − S(δz)0 = w 2: The calculation of w given by Equation 10 requires the calculation of R− 1d

3: p0 = r0
4: while ‖rk‖2

‖w‖2
> τ do

5: αk+1 =
‖rk‖2

2
pTk Spk

5: The calculation of the product of S (Equation 9) and pk requires the calculation
of R− 1 (HB1/2pk)

6: (δz)k+1 = (δz)k + αk+1pk
7: rk+1 = rk − αk+1Spk 7: The matrix‐vector product, Spk, has already been calculated in line 5

8: βk+1 =
‖rk+1‖

2
2

‖rk‖2
2

9: pk+1 = βk+1pk + rk+1

10: k = k + 1

11: end while

Note. The initial guess of δz is a zero vector. The symbols rk=w − S(δz)k and pk are the residual and search direction at iteration step k, respectively. The scalars αk+1 and
βk+1 are used to calculate the residual and search direction for iteration step k + 1, respectively. The symbol ‖⋅‖2 denotes Euclidean norm and τ is the relative tolerance
(compared to the size of ‖w‖2) that decides when the iteration stops.
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In addition to the local SVD‐FMM experiments, we perform experiments
where the off‐diagonal elements of the matrix R are completely ignored. To
account for the effect of neglecting observation error correlations, the diag-
onal elements are inflated by a factor of 1.7. Observation error variance
inflation avoids overfitting the largest scale (e.g., Stewart et al., 2008). The
chosen inflation factor has a similar magnitude to inflation factors used in
operational systems (e.g., Campbell et al., 2017). We also conduct experi-
ments to combine the local SVD‐FMM (p = 4 and h = 2) with observation
error variance inflation.

After obtaining the vector δza using the algorithm described in Table 1, we
calculate the analysis increment vector as

δxa = B1/2δza. (27)

The analysis error vector can then be calculated as

ϵa = ϵb + δxa. (28)

To investigate analysis accuracy at different spatial scales, we use the discrete
Fourier transform (DFT),

F(k, l) =
1
nx

1
ny
∑

nx − 1

m=0
∑

ny − 1

n=0
ϵa2d(m, n)e− i2π(k m

nx
+l nny), (29)

where k = 0, …, nx − 1, l = 0, …, ny − 1, i denotes the imaginary unit,
nx = 112 and ny = 142 are numbers of grid points in North‐South and East‐
West directions, F∈Rnx×ny denotes a complex matrix containing Fourier

coefficients, and ϵa2d ∈Rnx×ny is a matrix containing the analysis error in two‐dimensional space. The matrix ϵa2d can
be obtained by converting the vector ϵa into a matrix. Equation 29 can also be applied to the background error. We
carry out the DFT using the MATLAB routine fft2.m (MATLAB FFT2, 2022). The magnitude of Fourier co-
efficients is

γ(k, l) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Re2(F(k, l)) + Im2(F(k, l))

√
, (30)

where Re(⋅) and Im(⋅) denote the real and imaginary parts, respectively. The magnitude γ(k, l) measures the size of
the error in the scale represented by the wavenumber of k and l. A larger wavenumber in spectral space corre-
sponds to a smaller scale in physical space.

5.2. Experimental Results

We perform the CG method (described in Table 1) 100 times using different samples of random background and
observation errors. We first look at whether the use of the local SVD‐FMM affects the number of iterations
needed by the CG method. We find that how much the number of iterations varies depends on how many singular
vectors are used and which localization length is chosen (Figure 13). When using too few singular vectors and a
too short localization length, the matrix‐vector product will be poorly approximated by the local SVD‐FMM (see
Section 4), and we would expect the number of iterations to vary considerably (see green triangles in Figure 13).
The convergence rate of the CG method is known to be affected by the eigenstructure of the preconditioned
Hessian S (e.g., Tabeart et al., 2022; Trefethen & Bau, 1997, Theorem 38.5). When using the local SVD‐FMM,
we ignore some elements in the matrixA and approximate its sub‐matrices as low‐rank matrices. This changes the
eigenstructure of the matrixA and that of the Hessian S. In our experiments, the matrix S is positive definite for all
the parameters we considered (number of singular vectors, p and localization length, h). This ensures that there is
a unique solution to the minimization of the cost function. However, when the approximation of the matrix A is
poor (e.g., when h= 2 and p= 4), the minimum eigenvalue of S is found to be less than its theoretical value of one.

Figure 13. Comparison of the number of iterations required by the conjugate
gradient method to minimize the variational data assimilation cost function.
The abscissa is the number of iterations in experiments that use the local
singular value decomposition approach to the fast multipole method with
different numbers of singular vectors (p) and localization lengths (h). The
ordinate is the number of iterations in the control run that uses the standard
matrix‐vector product. Each marker represents the result obtained from one
realization of background and observation errors.
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A smaller minimum eigenvalue can cause a larger condition number, and a larger condition number typically
means a slower convergence (e.g., Tabeart et al., 2020). Figure 13 also shows that, for a given choice of the
number of singular vectors and localization length, the number of iterations also varies with different innovation
vectors (variation of points marked with the same symbol). This is because the innovation vector and the local
SVD‐FMM are used to calculate the vector w (right‐hand side of Equation 8), which also affects the convergence
rate (Trefethen & Bau, 1997, p. 300).

We now look at the computational time for implementing the CG method (see Table. 2). As expected, using the
diagonal matrix R gives the shortest computation time and the standard approach the longest. Using the local
SVD‐FMM can substantially reduce the computational time relative to the standard method. The computational
cost of the local SVD‐FMM can be separated into two parts. The first part includes the time taken to partition the
observation domain (Section 3.1) and to calculate SVDs (Equation 15) and translation operators (Equation 18).
We refer to this part as the initialization time of the local SVD‐FMM. The second part is the time taken to perform
the CG method, which is referred to as the iteration time and is determined by the number of iterations and the
computation cost for each iteration. When using a larger number of singular vectors or a longer localization
length, the initialization time increases due to the increased time used to calculate the SVD. The longer iteration
time for p = 4 and h= 2 is the result of a slower convergence rate (see Figure 13). In addition, we observe a slight
increase in the mean iteration time from p = 4 and h = 3 to p = 10 and h = 3. This is because the number of the
iterations is comparable in both cases (Figure 13), while the computation cost per iteration increases if p is larger.
To conclude, our numerical experiments show that the use of the local SVD‐FMM greatly improves the speed of
data assimilation, even considering the additional computational cost of the SVDs.

We finally investigate analysis accuracy at different spatial scales. The magnitude of Fourier coefficients (γ;
Equation 30) is used as a measure of analysis and background errors. Figure 14 shows γ as a function of the

wavenumber given by
̅̅̅̅̅̅̅̅̅̅̅̅̅
k2 + l2

√
. Since we only have nx = 112 grid points in the North‐South direction, we cut off

the plot at the wavenumber nx /2 − 1= 55. The upper panel of Figure 14 compares the mean analysis error and the
mean background error in the control run, where the analysis is calculated using the standard matrix‐vector
product. The analysis and background errors are averaged over 100 realizations of the background and obser-
vation error vectors. We find that the mean analysis error is smaller than the mean background error at all scales,
with the largest errors at large scales. This is consistent with the findings of Fowler et al. (2018). The lower panel
of Figure 14 shows the absolute differences between the mean analysis error in the control run and the mean
analysis errors in the experiments. The smallest difference is found for the local SVD‐FMM experiment with
p = 10 and h = 3. In particular, we find that the differences at the smaller scales are on the order of 10− 8. This
indicates that the use of the local SVD‐FMM can preserve the benefit of including correlated observation error
statistics in data assimilation (see the beginning of Section 5). In comparison, a larger difference is found for the
experiments with diagonal R at all scales. These results comparing analysis accuracy with diagonal and non‐
diagonal observation error variance matrices are consistent with the findings of previous studies (e.g., Rain-
water et al., 2015; Simonin et al., 2019; Stewart et al., 2008, 2013). When smaller h and p are used for the local

Table 2
CPU Time in Seconds Used by MATLAB R2023b on MacBook Air (M1, 2020) to Minimize the Variational Data Assimilation
Cost Function

Matrix‐vector multiplication

CPU times (s)

Minimum Mean Maximum

Standard 168.32 179.81 186.05

Diagonal matrix R 6.99 7.81 8.64

The local SVD‐FMM (p = 4, h = 2) 0.26 + 11.39 0.55 + 13.97 1.08 + 15.39

The local SVD‐FMM (p = 4, h = 3) 1.18 + 10.37 1.57 + 12.40 2.18 + 13.86

The local SVD‐FMM (p = 10, h = 3) 1.73 + 11.07 2.19 + 12.50 2.82 + 13.85

Note. The minimum, mean, and maximum values are taken from 100 runs with different samples of background and
observation errors. For experiments where the local singular value decomposition approach to the fast multipole method
(SVD‐FMM) is used, the computational time is given as the initialization time plus the iteration time (see the main text for
more details).
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SVD‐FMM, we observe an increase in the difference compared to the case of p = 10 and h = 3. At the largest
scale, the differences for the local SVD‐FMM experiments with p = 4 and h = 2 or 3 are even larger than that for
the diagonalR experiment. It is worth noting that increasing h from 2 to 3 brings little benefits when p= 4. This is
consistent with the results in Section 4.3, where we showed that for a fixed p, increasing hmay have little effect on
the accuracy of the local SVD‐FMM once h reaches a certain value. In this case, it is reasonable to retain more
singular values/vectors due to the increased matrix size. The lower panel of Figure 14 also shows that after
inflating the observation error variance, the difference for the local SVD‐FMM experiment with p= 4 and h= 2 at
the largest scale is reduced. However, at the same time, the difference at the smaller scales increases.

In addition to the comparison of mean analysis and background errors, Figure 15 compares the analysis and
background errors at the largest scale in each realization. We find that in some realizations the analysis error is
larger, while in other realizations the background error is larger. When using the standard matrix‐vector product,
or when using the local SVD‐FMM with a large number of singular vectors and a long localization length, the
markers are mostly on the upper left of the diagonal in the scatterplot (the upper panels of Figure 15). This means
that the analysis error is usually smaller than the background error at the largest scale. However, when using fewer
singular vectors or a shorter localization length, more markers are found on the lower right of the diagonal (the
middle panels of Figure 15), meaning that the analysis is usually less accurate than the background at the largest
scale. In this case, we find that inflating the observation error variance improves the analysis accuracy at the

Figure 14. (upper panel) Background and analysis errors at different physical scales (represented by wavenumbers in spectral
space) in the control run. Solid lines are the mean error size from 100 runs using different samples of background and
observation errors. Shaded areas are bounded by the minimum and maximum errors from these runs. (lower panel) Absolute
differences in the mean analysis error at different physical scales between the control run and experiments. The control run
and experiments are described in Section 5.1. A logarithmic scale is used on the axis of ordinates to allow a clear comparison
between results at all wavenumbers.
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largest scale (the bottom‐left panel of Figure 15). This is similar to what happens when the observation error
variance is inflated using a diagonal matrix, to compensate for ignoring observation error correlations (not
shown).

In summary, as long as the number of singular vectors and the localization length are chosen so that the local
SVD‐FMM is a good approximation of the full matrix‐vector product, it preserves the information in the analysis
at all scales.

6. Conclusion
Accounting for spatially correlated observation error statistics in data assimilation systems has been shown to
improve both the accuracy of data assimilation and forecasts (e.g., Fujita et al., 2020; Healy & White, 2005;

Figure 15. Background errors against analysis errors at the largest scale. Analyses are calculated differently for each panel
(see Section 5.1 for details). The markers and colors used for each analysis are consistent with Figure 14. Each marker in a
panel represents the result obtained from one realization of background and observation errors.
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Simonin et al., 2019; Stewart et al., 2008, 2013). The inclusion of correlated error statistics allows for the
assimilation of dense observational data sets, which can provide information on appropriate scales for high‐
resolution forecasting. Such data sets are currently often thinned to get rid of the spatial error correlations. A
potential downside of including correlated error statistics is that it may increase the computational cost of the
variational minimization problem. This is because including these error statistics makes the observation precision
matrix a full matrix. Computing a matrix‐vector product involving a full matrix requires more floating‐point
operations and higher parallel computing communication costs than computing a matrix‐vector product
involving a diagonal matrix.

To reduce the computational cost, we proposed a new numerical approximation method, called the local SVD‐
FMM, which is easy to implement in both sequential and parallel computations and is suitable for matrices
whose elements decay rapidly away from the main diagonal. The local SVD‐FMM was developed based on the
SVD‐FMM (without localization), which was originally proposed by Gimbutas and Rokhlin (2003) and
explored in Hu and Dance (2021a) for its feasibility in data assimilation. There are two new aspects in the local
SVD‐FMM. First, it is a single‐level algorithm that requires a single‐level partitioning of the observation
domain. In contrast, the SVD‐FMM is a multi‐level algorithm that uses a hierarchical structure of boxes, which
leads to a more complicated parallelization scheme. Second, a new non‐dimensional localization length
parameter is introduced in the local SVD‐FMM. The use of localization compensates for the increased cost by
replacing the multi‐level algorithm with a single‐level algorithm. Although the localization introduces errors by
ignoring error correlations between distant observations, we showed that these errors can be very small and do
not affect the accuracy of the analysis too much. The main drawback of the local SVD‐FMM for data assim-
ilation is the need to precompute the observation precision matrix before the method can be applied. In practice
we believe that there are three main ways we could deal with this issue, which may each be appropriate for
different observation types and situations, but would require further research to evaluate: (a) Starting from a
statistical estimate of the precision matrix rather than the observation error covariance matrix. For example, Le
and Zhong (2022) and Yuan (2010) each provide numerically efficient approaches to estimate a precision matrix
starting from the sample covariance (that could be obtained in data assimilation from a Desroziers et al. (2005)‐
type method). (b) Rather than inverting a new matrix each cycle (in response to quality control changes in
observation distribution) compute low‐rank downdates and updates, with only a small number of operations
relative to the dimension of the matrix (e.g., Brand, 2006; Golub & Van Loan, 1996). (c) Combine this type of
hierarchical approximation approach with a matrix factorization such as the Cholesky decomposition
(Hackbusch, 2016).

The accuracy of the local SVD‐FMM depends on many factors, including the localization length, the number of
singular vectors used, and the observation error correlation lengthscale. Generally, the accuracy increases with
the localization length and the number of singular vectors but decreases with the correlation lengthscale.
Moreover, we find that after the localization length and the number of singular vectors reach certain values,
further increasing them brings little benefit. The optimal value for them varies from application to application
and depends on, for example, the configuration of boxes and the observation error correlation lengthscale. In a
simple variational data assimilation experiment, the local SVD‐FMM is found to dramatically reduce
the computational cost of the variational minimization problem while maintaining the accuracy of the analysis.
In particular, the use of the local SVD‐FMM can preserve the improvement in the analysis accuracy at all
scales.

The local SVD‐FMM has a wide range of applicability. It is applicable to both regularly and irregularly
distributed observations and the observation domain can be partitioned into a regular or irregular mesh of boxes.
We may only need to have each box contain a similar number of observations in order to achieve good efficiency
and load balancing. Given the efficiency, accuracy and broad applicability, the local SVD‐FMM has the potential
to be used in practical data assimilation applications, such as convection‐permitting NWP (Dance et al., 2019; Hu
et al., 2023), where it may be important to assimilate a large volume of dense observations with strong mutual
spatial error correlations.
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Data Availability Statement
The numerical experiments in the study were carried out using MATLAB. The MATLAB code written by authors
was published in Hu and Dance (2021b).
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