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Diversity of Stratospheric Error Growth Across Subseasonal
Prediction Systems
R. W. Lee1 and A. J. Charlton‐Perez1

1Department of Meteorology, University of Reading, Reading, UK

Abstract The stratosphere has previously been shown to be a significant source of subseasonal tropospheric
predictability. The ability of ensemble prediction systems to appropriately exploit this depends on their ability to
reproduce the statistical properties of the real atmosphere. In this study, we investigate predictability properties
of the coupled stratosphere‐troposphere system in the sub‐seasonal to seasonal prediction project hindcasts by
fitting a simple, minimal model. We diagnose the signal and noise components of each system in the
stratosphere and troposphere and their coupling. We find that while the correlation skill scores are similar in
most systems, the signal to noise properties can be substantially different. In the stratosphere, some systems are
significantly overconfident, with a quantifiable impact on the tropospheric confidence. We link the method and
details of the design of a prediction system to these predictive properties.

Plain Language Summary Subseasonal weather prediction systems make use of ensemble
forecasting approaches, in which each forecast is made up of a number of complimentary predictions (ensemble
members), that produce more skillful predictions by averaging and allows forecasters to anticipate the
uncertainty in any particular forecast. There is a “battle” between the useful signal, hidden in the initial
conditions of a simulation run, against the noise that chaotically builds up over the run from inaccuracies in the
representation of the initial conditions. We use a simple statistical model with a minimal number of parameters
to investigate how well the prediction systems capture both the signal and noise properties of the real
atmosphere. We find that while the skill in the troposphere and stratosphere are in line with expectations from
the real‐world, the ratio between the signal and the noise is too large, particularly in the stratosphere. We find
this has an impact on the troposphere below, increasing the signal‐to‐noise ratio there too—artificially inflating
it—giving it an overconfidence which is not wholly statistically or physically justified. We link the method and
details of the design of a prediction system to these predictive properties.

1. Introduction
The stratosphere has been shown to be a significant source of tropospheric predictability on subseasonal‐to‐
seasonal (S2S) timescales (see Domeisen et al., 2020a for a review). Numerous other studies have also exam-
ined various aspects of average stratospheric‐tropospheric coupling, skill, and associated biases (e.g., Domeisen
et al., 2020b; Lawrence et al., 2022; Sigmond et al., 2013; Son et al., 2020; Tripathi et al., 2015) with increased
surface predictability following weak stratospheric vortex events over the United States, Russia, and the Middle
East and some smaller gains in skill following strong vortex events. Ensemble prediction systems (EPSs) with
poorly resolved stratospheric processes generally have poorer skill in the troposphere (Domeisen et al., 2020a),
although there are no detailed studies which have been able to isolate the quantitative contribution of the
stratosphere to tropospheric subseasonal predictive skill. The forthcoming Stratospheric Nudging And Predict-
able Surface Impacts (SNAPSI) project (Hitchcock et al., 2022) provides a model intercomparison protocol to
study this experimentally via control, free and nudged sets of reforecasts for three case study events.

The conclusions of the S2S project show that skill intermittency (the “windows‐of‐opportunity” concept, Mariotti
et al., 2020) is likely to be an important part of the future path to more widespread use of the forecasts. For
stratosphere‐troposphere coupling, there are a number of factors at play in describing skill intermittency. Several
recent studies have suggested that coupling between the stratosphere and troposphere in any given region is
strongly dependent on the tropospheric state (e.g., Charlton‐Perez et al., 2018; Domeisen et al., 2020c; Kolstad
et al., 2022; Lee et al., 2019; Lee et al., 2022; Maycock et al., 2020; Messori et al., 2022). In addition to state
dependency, windows of opportunity can also arise serendipitously when the uncertainty in the stratospheric and/
or tropospheric forecast is low. While much recent work has focused on examining the mean skill of subseasonal
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forecasts in the stratosphere and troposphere, comparatively little attention has been paid to exploring other
properties of EPSs.

In this study, we seek to expand this understanding by applying a simple, minimal statistical model to each joint
set of forecasts and observations over hindcasts from multiple EPSs in the S2S prediction project archive. The use
of a simple, minimal model allows for a deeper investigation of some of these forecasting properties using a clear
statistical method. Weigel et al. (2009) and Siegert et al. (2016) are two examples of minimal models which have
been used for investigating tropospheric seasonal predictability via signal and noise (and error) terms for the EPSs
and corresponding observations. The minimal model of Charlton‐Perez et al. (2021), is ideal for our purpose
however, because it has the key addition of stratospheric observed and forecast indices, and a term coupling those
in the stratosphere with those in the troposphere. This allows for a clear diagnosis of the contribution of the
stratosphere to tropospheric forecast skill, as well as other properties such as signal‐to‐noise ratios (SNRs), and it
purposefully excludes state dependent predictability in either the stratosphere or troposphere or in the coupling
between the two.

It has been noted by Scaife et al. (2014), Kumar et al. (2014), and Eade et al. (2014) that the SNRs in seasonal
predictions are often too low, leading to the “counterintuitive” effect that the EPS is less skillful at predicting
members drawn from itself than at predicting the corresponding verification. Statistically however, an anomalous
SNR indicates that EPS members are not statistically interchangeable with the verification, and an apparent
“paradox” arises only if such an interchangeability is assumed. An anomalous SNR is a consequence of the
relative magnitudes of the variance of the observations, the ensemble mean, and the error of the ensemble mean,
and should be expected in such circumstances (Bröcker et al., 2023). A Bayesian framework, applied to minimal
models, allows the calculation of posterior probabilities for hypotheses, including those related to SNRs (Siegert
et al., 2016).

In this study, we set out to compare properties of the coupling and predictability between EPSs in the S2S hindcast
data set using a simple, minimal model, fit with Bayesian methods. We will show that there are substantial
differences which might be related to how they produce their ensembles and we further show that there is a
relation between SNR properties in the stratosphere and troposphere.

2. Simple Minimal Model
Our model, from Charlton‐Perez et al. (2021), is as follows:

YS(t) = βyS(t) + εO(t),

XSk(t) = βxS(t) + ηPk(t) for k = 1,…,K,

YT(t) = Cy YS(t) + αyT(t) + λQ(t),

XTk(t) = CxXSk(t) + αxT(t) + ξRk(t) for k = 1,…,K.

In this model, Y(t) is the observed time series of the parameter of interest for forecasts made at different
times, t; Xk(t) are the matching ensemble forecasts. An added subscript S means stratosphere and T means
troposphere. S(t), O(t), P1(t), …, PK(t), T(t), Q(t), R1(t), …, RK(t) are independent standard normal random
variables that are also independent over time (i.e., for different t). The model has a predictable “signal” term in
both the stratosphere, S(t), and troposphere, T(t), that is identical in the forecasts and observations. These two
signal terms are uncorrelated. The noise terms in the stratosphere are O(t), P1(t), …, PK(t) and Q(t), R1(t), …,
RK(t) are the noise terms in the troposphere. The noise terms are uncorrelated with the signal terms and with
each other. The two parameters βy and βx scale the signal term in the stratosphere, allowing for under‐ or over‐
confidence in the forecasts, while αy and αx scale the signal term in the troposphere. The ε and η terms similarly
scale the noise components in the stratosphere and λ and ξ are the amplitude of the tropospheric noise terms.
The correlation between the stratospheric and tropospheric index in the observations is Cy, and for each
ensemble member is Cx and is independent of the tropospheric or stratospheric state. See Text S1 in Supporting
Information S1 for more details.

The SNRs in the stratosphere and the troposphere are:
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This framework can be used to estimate the predictive properties of EPSs by fitting the model parameters from a
matched data set of ensemble forecasts and observations using a Bayesian inference approach, as in Siegert
et al. (2016). This approach allows the simultaneous estimation of the parameters and quantification of their
uncertainty. The approach approximates a fully Bayesian analysis with a Markov chain Monte Carlo (MCMC)
integration (Brooks et al., 2011), using the RStan package (Stan Development Team, 2019) within R. MCMC
simulates random draws from an arbitrary probability distribution, such as the posterior distribution:

p(θ,s|x,y) ∝ l(x,y|θ,s)π(θ,s)

where θ = {βy, βx, αy, αx,ε, η, λ, ξ, Cy, Cx}, the collection of unknown parameters of the signal‐plus‐noise model;
s = {S(t),O(t),P1(t),…,PK(t),T(t),Q(t),R1(t),…,RK(t)}

N
t=1, the unknown values of the latent signal variable;

x,y = {XS1(t),…,XSK(t),YS(t),XT1(t),…,XTK(t),YT(t)}
N
t=1, the collection of known forecasts and observations

from a hindcast; l is the likelihood function; and π is the prior probability distribution. By using the MCMC
sampler, the posterior distributions can be approximated by smoothed histograms and posterior expectations
using empirical averages of samples drawn from the posterior distribution. Following the RStan default settings,
all posterior distributions are sampled using the efficient No‐U‐Turn Sampler variant of Hamiltonian Monte Carlo
(Betancourt, 2018; Hoffman & Gelman, 2014), generated by simulating four parallel Markov chains, each for
2000 iterations, after discarding a spin‐up period of 1000 iterations for initialization of the algorithm. All credible
intervals are given at the 99% level, throughout.

The prior distribution is a subjective choice in Bayesian analysis, informed by the current state of knowledge. We
specified the priors using beta and normal distributions, as detailed in Text S2 in Supporting Information S1. The
prior distributions are generally wide and uninformative, and the inference is insensitive to the choice of these
prior distributions, with posterior distributions being similar and not changing in any meaningful way. In general,
with sufficient data, the influence of the prior disappears, and the Bayesian inference is dominated by l (Gelman
& Robert, 2013).

3. Data Sets and Diagnostics
3.1. Ensemble Prediction Systems

The data sets for the indices are taken from hindcasts available from the subseasonal to seasonal project database
(Vitart et al., 2017a). Table 1 introduces the main characteristics of the S2S ensemble prediction systems (EPSs)
used in this study, including horizontal and vertical resolution, and ensemble strategy. Corresponding “obser-
vations” for each EPS are taken from the ERA5 reanalysis (Hersbach et al., 2020). The EPSs were chosen as the
most recent set within the S2S project database at the time of commencement of the analysis. While newer
versions of most EPSs now exist, many of the same elements remain including various initialization and
perturbation strategies as well as a variety of resolutions. There are substantial differences in the construction and
configuration between the EPSs (Merryfield et al., 2020; Takaya, 2019), including methods to represent the
uncertainty in initial conditions (initialization strategy—lagged ensemble with different initial times or burst
ensemble with a common initial time) and model physics, resolution (horizontal and vertical), ensemble size,
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ensemble perturbation strategy (in‐run adjustments), and hindcast period. These differences impact forecast
quality and our ability to evaluate the performance of the hindcast (Merryfield et al., 2020).

3.2. Stratospheric and Tropospheric Indices

The minimal model uses standardized stratospheric and tropospheric climate indices for forecast and observa-
tions. As a representative stratospheric index we use the stratospheric Northern Annular Mode (NAM) in the
lower stratosphere at 100 hPa, where forecast skill is high (Son et al., 2020), derived using the zonal mean
principal component method of Baldwin and Thompson (2009). As a representative tropospheric index we use the
North Atlantic Oscillation (NAO), here defined as the mean sea‐level pressure difference between a 2.5° × 2.5°
grid box centered at 65°N, 20°W (Iceland), 37.5°N, 25°W (Azores). The lead time dependent bias is removed,
prior to analysis. With biweekly temporal grouping used throughout, “weeks 3–4” here represents days 14–27,
“weeks 4–5” represents days 21–34, and “weeks 5–6” represents days 28–41 into each forecast. All hindcasts in
the database initialized between November–February for the particular model version in question are considered.
No attempt is made to standardize the period over which the forecasts are made. For the NCEP model, a lagged
ensemble is created by combining forecasts initialized over three consecutive days, producing an ensemble of
similar size to the other hindcasts analyzed.

The following sections use the minimal model to assess and contrast the S2S EPSs, focusing on skill, signal and
noise components of each system in the stratosphere and troposphere and their coupling.

4. Correlation Skill
Before considering the signal to noise properties of the systems, we first analyses their ability to produce skillful
forecasts. The forecast skill in the stratosphere and troposphere is largely in line with previous studies (e.g.,
Domeisen et al., 2020b) and skill does not vary to any significant degree between the modeling systems tested.
The forecast skill (Figure 1), as measured by the Pearson's correlation derived from the minimal model (Text S1 in

Figure 1. Correlations, as measured by the Pearson's correlation, ρ, of subseasonal forecasts. Showing the ensemble mean correlations in the stratosphere, ρ(XS,YS), and
troposphere, ρ(XT ,YT ); and the stratosphere‐troposphere correlations in the observations, ρ(YT, YS), and forecasts, ρ(XT, XS). Each set of correlations are shown for
weeks (w) 3–4, 4–5, and 5–6. Correlations are calculated by first taking the mean value of the index over these days. ρ(XT, XS) are the ensemble mean of the correlation in
each individual ensemble member. Credible intervals are 99%.
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Supporting Information S1), between EPS ensemble means and observations decreases with lead time over the
14‐day averaged weeks 3–4, 4–5, and 5–6, as expected, in both the stratosphere (ρ(XS,YS)) and troposphere
(ρ(XT ,YT) ). In addition, correlations are higher in the stratosphere than troposphere, and EPS mean correlations
are all relatively similar to each other.

Figure 2. (a–b): Signal‐to‐noise ratios, SNR, in the (a) stratosphere (S) and (b) troposphere (T) in the observations (y) and model forecasts (x) for weeks 3–4, 4–5 and 5–6.
Credible intervals are 99%. (c–j): Stratospheric forecast parameters for: the signal terms, βy and βx for the observations and forecasts respectively (middle row); and the
noise terms, ε and η (lower row), for the observations and forecasts respectively at 3–4 weeks lead time. EPSs: (c) and (b) ECMWF, (d) and (h) UKMO, (e) and
(i) NCEP, (f) and (j) CNRM.
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In terms of stratosphere‐troposphere coupling (Figure 1), The posterior mean of the correlation between the
stratospheric and tropospheric state (Cx and Cy) is not distinguishably different between the observations and
forecast system for any of the four systems considered. Correlations in the observations (ρ(YT, YS)) remain
constant with lead time, as would be expected, with variations between lead times due to sampling, and variations
between models due to sampling and natural variability (considering different hindcast periods). Stratosphere‐
troposphere coupling in the EPSs (ρ(XTk, XSk)) is consistent with the correlation in the observations in all
EPSs except NCEP at weeks 4–5 and 5–6 where it is significantly lower (Pr(ρ(XT, XS) > ρ(YT, YS)) is 0.019 and
0.003, respectively; Table S1 in Supporting Information S1), nonetheless suggesting that there is little difference
in the strength of stratosphere‐troposphere coupling between the models. This conclusion is important because it
implies that any deficiency in the EPSs' tropospheric predictions is not linked to a lack of coupling between the
stratosphere and the troposphere.

5. Signal and Noise
By comparing the posterior estimates of signal‐to‐noise ratio (SNR) in the observations and forecasting systems it
is possible to determine if forecasts produced by the forecasting system are over or under confident. While on
seasonal timescales some EPSs are underconfident (Baker et al., 2018; Eade et al., 2014; Scaife et al., 2014;
Siegert et al., 2016), here we will show that on the subseasonal timescale some forecasting systems are over-
confident (and therefore likely under dispersive) in their stratospheres (and to a much lesser extent also in their
tropospheres), stemming from too much signal and too little noise.

Stratospheric SNRs (Figure 2a) in the ECMWF EPS are consistent (0.05 > Pr(SNRSx > SNRSy) < 0.95) with their
corresponding observations across all lead times. Estimates of the SNR in the observations are similar for all four
periods. However SNRs in the UKMO, NCEP, and sometimes CNRM EPSs are significantly larger than observed
—stratospheric forecasts in these systems are overconfident. There is very high confidence (Table S2 in Sup-
porting Information S1) that this is the case for all weeks in the UKMO and NCEP EPSs (Pr
(SNRSx > SNRSy) = 1), and for weeks 3–4 and 5–6 in the CNRM EPS (Pr(SNRSx > SNRSy) = 0.999 and 0.994,
respectively).

The stratospheric signal (βy, βx) and noise (ε, η) parameters from the minimal model are shown next for weeks 3–4
lead time (Figures 2c–2j), to investigate the origins of the anomalously large SNRs. In common with the cor-
relations and SNRs there are posterior distribution differences, with the observations featuring a larger variance
due to less data relative to the modeling systems each of which have more ensemble members. As implied from
the SNRs, the ECMWF system features very similar central tendency of their signal and noise distributions with
their corresponding observations. The CNRM system has a larger signal and smaller noise relative to their
corresponding observations, with just the far tails of the two distributions overlapping in each case (Pr
(βx > βy) = 0.999). UKMO and NCEP EPSs feature entirely separated distributions compared to their corre-
sponding observations for both signal (larger) and noise (smaller), again indicating the initializations may be
under‐dispersed in the stratosphere. This same pattern of relative differences for the different systems and their
corresponding observations qualitatively remains similar over weeks 4–5 and 5–6 (not shown), with the main
absolute differences being a shift toward a smaller signal and increased noise in both the systems and their
corresponding observations.

The tropospheric SNR (Figure 2b) posterior distributions from all EPSs overlap with their corresponding ob-
servations at all lead times, to varying degrees. The UKMO at week 3–4 (Pr(SNRTx > SNRTy)= 0.982) and NCEP
at week 5–6 (Pr(SNRTx > SNRTy)= 0.978) are the least consistent (see Table S2 in Supporting Information S1 for
all probabilities).

Overall, the EPSs which run in lagged ensemble mode (Table 1), UKMO and NCEP, feature significantly larger
SNRs, via both increased signals and reduced noise, relative to the EPSs which run in burst mode with stochastic
spread of initial conditions, namely ECMWF. While the CNRM EPS is also run in burst mode, it relies only on in‐
run perturbations to model dynamics, choosing not to perturb initial conditions. Therefore, by weeks 3–4 there are
also some problems with a high signal and reduced noise in the stratosphere, but not nearly as severe as the lagged
ensembles. It therefore appears that the method of ensemble perturbation generation might in some EPSs yield an
overconfident, under‐dispersed stratosphere on subseasonal timescale, with too much signal and too little noise,
stemming from insufficient spread in initial conditions to represent the true uncertainty. Such lagged ensemble
methods for initial condition generation may have been sufficiently well assessed for their SNR in the troposphere
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Figure 3. Signal‐to‐noise ratios, SNR, in the stratosphere (S) versus the troposphere (T) in the observations (gray; y) and forecasts (colors; x) at (a) 3–4, (b) 4–5, and (c) 5–
6 weeks lead time. Each sample of the observations is matched to its respective EPS forecast by shape. Credible intervals are 99%. Curved dark gray background lines
represents the fractional change in the size of the stratospheric signal between the EPS and observations (an EPS‐observation pair parallel to a line means differences are
entirely determined by the stratospheric SNR difference). Vertical light gray background lines represent the fractional change in the size of the tropospheric signal
between the EPS and observations (an EPS‐observation pair parallel to a line means differences are entirely determined by the tropospheric SNR difference) (see Text
S3 and Figure S1 in Supporting Information S1 for a more detailed explanation).
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where growth timescales are faster, but not in the stratosphere where they are
slower. However, there are many other differences between the systems.

6. Discussion and Conclusions
Might an overly confident stratosphere bias the signal‐to‐noise in the
troposphere? To analyze this, the SNR is shown for the stratosphere against
the troposphere for weeks 3–4, 4–5 and 5–6 (Figure 3) with the addition of
theoretical minimal model curves of fixed stratospheric SNR (Text S3 in
Supporting Information S1). Displayed in this way, it is again clear that in
the UKMO system the stratospheric SNR is outside of the corresponding
observations at weeks 3–4. Furthermore, taking the example of weeks 3–4
(Figure 3a), if we were to correct the stratospheric SNR bias (say via a
relevant EPS upgrade) and the UKMO system would shift left, parallel to
the background guideline curves, to give it the same (x‐axis, SNRS) value as
the corresponding observations, we see the UKMO system now only
weakly positively biased for the tropospheric SNR (y‐axis, SNRT). This
suggests that the stratosphere is the leading cause of the tropospheric SNR
bias. The NCEP system is also outside of the corresponding observations
(Figure 3c).

To investigate if other S2S EPSs follow the same overall pattern of an as-
sociation between stratospheric and tropospheric SNR, the differences are
computed for the other S2S systems in the database in addition to the four
already considered and their corresponding observations for up to six extra
EPSs (Figure 4, Table 1). By adding these additional EPSs, some of which are
highly overconfident (e.g., HMCR), while others are underconfident and
over‐dispersed (e.g., ECCC), they still maintain the same diagonal line
grouping across all EPSs, and across all lead times. This confirms that EPSs
that feature an overly confident stratosphere have a quantifiable impact on the
troposphere on the extended range/subseasonal timescale. This study uses an
ensemble of opportunity where the EPSs differ in many ways: model dy-
namics, ensemble strategy, resolution, ensemble size (Table 1). We do note,
however, that many outlying EPSs tend to feature lagged initialization
ensemble strategies and/or under resolved stratospheres (low model top, low
number of vertical levels) which would tend to curtail stratospheric vari-
ability and may contribute to overconfidence. EPSs with few ensemble
members manifest themselves in Figure 4 with a large confidence interval.
There may also be other attributes of EPS design leading to such SNR biases;
investigation into the causes warrants further work.

To make use of predictability from all aspects of the system, including the
stratosphere, EPS design should therefore, in addition to having sufficient
vertical and horizontal resolution to simulate important processes of sub-
seasonal predictability, also carefully consider ensemble perturbation tech-
niques to generate sufficient spread to represent the true uncertainty where
the growth of noise/errors is slower. At longer (>6 weeks) lead times, this
may become less important as tropospheric noise (and in‐run perturbations,
where applied) eventually reduce the overconfidence and particularly its
impact on the tropospheric SNR. This also implies that the low SNR on
seasonal‐to‐decadal timescales (e.g., Eade et al., 2014) may be somewhat
masked on the seasonal end of this range by those overconfident stratospheres
in some EPSs, and therefore emerge later in the forecast lead time than they
would otherwise if the EPSs were not under‐dispersive at initialization and
shorter lead times.

Figure 4. Differences in signal‐to‐noise ratios, SNR, in the stratosphere (S)
versus the troposphere (T) between the model forecasts (x) and their
respective observations (y) at (a) 3–4, (b) 4–5, and (c) 5–6 weeks lead time.
Credible intervals are 99%.
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Data Availability Statement
This work is based on S2S data. S2S is a joint initiative of the World Weather Research Programme (WWRP) and
the World Climate Research Programme (WCRP). The original S2S database is hosted at ECMWF (Vitart
et al., 2017b) as an extension of the TIGGE database. ERA5 hourly data on pressure and surface levels used in the
study was obtained from the Copernicus Climate Change Service (C3S) Climate Data Store (CDS) at Hersbach
et al. (2023a, 2023b). The RStan software used in the study is available at Stan Development Team (2019).
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