
Bayesian network modelling of 
phosphorus pollution in agricultural 
catchments with high-resolution data 
Article 

Published Version 

Creative Commons: Attribution 4.0 (CC-BY) 

Open Access 

Negri, C., Mellander, P.-E., Schurch, N., Wade, A. J. ORCID: 
https://orcid.org/0000-0002-5296-8350, Gagkas, Z., Wardell-
Johnson, D. H., Adams, K. and Glendell, M. (2024) Bayesian 
network modelling of phosphorus pollution in agricultural 
catchments with high-resolution data. Environmental Modelling
and Software, 178. 106073. ISSN 1873-6726 doi: 
10.1016/j.envsoft.2024.106073 Available at 
https://centaur.reading.ac.uk/116468/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .

To link to this article DOI: http://dx.doi.org/10.1016/j.envsoft.2024.106073 

Publisher: Elsevier 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://centaur.reading.ac.uk/licence


www.reading.ac.uk/centaur   

CentAUR 

Central Archive at the University of Reading 
Reading’s research outputs online

http://www.reading.ac.uk/centaur


Environmental Modelling and Software 178 (2024) 106073

Available online 13 May 2024
1364-8152/© 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Bayesian network modelling of phosphorus pollution in agricultural 
catchments with high-resolution data 

Camilla Negri a,b,c,d,*, Per-Erik Mellander a, Nicholas Schurch d, Andrew J. Wade c, 
Zisis Gagkas b, Douglas H. Wardell-Johnson b, Kerr Adams b, Miriam Glendell b 

a Agricultural Catchments Programme, Teagasc Environment Research Centre, Johnstown Castle, Co. Wexford Y35 Y521, UK 
b The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK 
c University of Reading, School of Archaeology, Geography and Environmental Science, Whiteknights, Reading, RG6 6AB, UK 
d Biomathematics and Statistics Scotland, Craigiebuckler, Aberdeen AB15 8QH, UK   

A R T I C L E  I N F O   

Handling Editor: Daniel P Ames  

Keywords: 
Diffuse pollution 
Point sources 
High-resolution water-quality monitoring 
Participatory model 
Uncertainty 

A B S T R A C T   

A Bayesian Belief Network was developed to simulate phosphorus (P) loss in an Irish agricultural catchment. 
Septic tanks and farmyards were included to represent all P sources and assess their effect on model performance. 
Bayesian priors were defined using daily discharge and turbidity, high-resolution soil P data, expert opinion, and 
literature. Calibration was done against seven years of daily Total Reactive P concentrations. Model performance 
was assessed using percentage bias, summary statistics, and visually comparing distributions. Bias was within 
acceptable ranges, the model predicted mean and median P concentrations within the data error, with simulated 
distributions more variable than the observations. Considering the risk of exceeding regulatory standards, pre-
dictions showed lower P losses than observations, likely due to simulated distributions being left-skewed. We 
discuss model advantages and limitations, the benefits of explicitly representing uncertainty, and priorities for 
data collection to fill knowledge gaps present even in a highly monitored catchment.   

1. Introduction 

Phosphorus (P) losses from farmland to surface waters (diffuse P 
losses) continue to be a major cause of water quality deterioration and 
eutrophication (European Environment Agency, 2019). P remains a 
major source of water quality failures in Ireland, particularly due to the 
slow release of soil legacy P (Schulte et al., 2010), which is often un-
accounted for in soil P tests (Thomas et al., 2016b). There are multiple 
challenges facing land managers, stakeholders, and policymakers when 
tackling P pollution in agricultural catchments in Northwest Europe (Bol 
et al., 2018). Smaller catchments (<50 km2) vary in their vulnerability 
to P losses, necessitating a catchment-specific understanding of 
stressor-impact relationships and targeting of mitigation measures 
(Glendell et al., 2019). Drivers of P transfer differ across spatial scales 
(point, plot, field, hillslope, and catchment), and the understanding 
gained from laboratory or field measurements may not be directly 
applicable at the catchment scales represented in models (Brazier et al., 
2005; Wade et al., 2008). Additionally, the understanding of key drivers 
of catchment vulnerability is complicated by different P sources and 

pathways that result in similar concentration-discharge hysteresis re-
lationships at the catchment outlet. This confounding often makes it 
difficult to determine the most important P sources and pathways to 
target with P reduction measures and to predict their likely effect (Bol 
et al., 2018). 

Soil P content and excess plant available P, derived from fertilizer 
application, have been identified as the main sources of diffuse P in Irish 
agricultural catchments (Regan et al., 2012), while some studies stress 
the importance of point pollution sources (Campbell et al., 2015; Gill 
and Mockler, 2016; Vero et al., 2019) as well as legacy P (Thomas et al., 
2016b). In addition, the transport and delivery of P in Irish agricultural 
catchments are dominated by weather and hydrological conditions 
rather than initial soil P (Mellander et al., 2015, 2018). To investigate 
diffuse P pollution sources in Irish agricultural catchments, modelers 
have used two main approaches: 1) the critical source areas (CSAs) 
approach (Packham et al., 2020; Thomas et al., 2016b, 2021), and 2) the 
load apportionment approach (Crockford et al., 2017; Mockler et al., 
2017). CSAs methods aim at identifying and mapping areas of high 
hydrological activity connected with areas of elevated P mobilisation, 
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thus facilitating the transfer of P from terrestrial to aquatic ecosystems 
(Djodjic and Markensten, 2019). One of the biggest advantages of CSAs 
is that they provide the basis to spatially identify potential locations for 
mitigation measures, however, these approaches require extensive 
sampling and mapping of P sources and hydrological connectivity, and 
provide qualitative results that might be difficult to interpret for policy, 
to validate, or evaluate at larger scales (Djodjic and Markensten, 2019). 
In contrast, Load Apportionment Models (LAMs), calculate nutrient 
loads from all sources and then estimate factors to reduce such loads to 
account for treatment (e.g. wastewaters) or environmental attenuations. 
Estimated loads are then compared with loads calculated from mea-
surements (Mockler et al., 2016). This method can identify the dominant 
pollution contributors in catchments and sub-catchments, while also 
assessing management strategies (Mockler et al., 2016). However, LAMs 
can be difficult to interpret for non-experts, because of the uncertainties 
around load estimation, especially when used with low-frequency 
datasets, which limits their utility as management tools (Crockford 
et al., 2017). 

Catchment nutrient models are crucial to summarize current 
knowledge and process understanding, as well as to test land use and 
climate scenario effects on water quality, which can inform mitigation 
action (Jackson-Blake et al., 2015). However, mechanistic models of 
water quality (e.g. catchment scale P models like INCA-P (Jackson-Blake 
et al., 2016),), can have parameters that are unmeasurable yet heavily 
influence model outputs (Jackson-Blake et al., 2017) and are often 
over-parameterized, especially when upscaling to watershed scales 
(Radcliffe et al., 2009). Additionally, P models often perform inade-
quately in rural catchments where diffuse sources are dominant, and 
model outputs’ accuracy is limited by current knowledge (Jackson-Blake 
et al., 2015). Furthermore, water quality and nutrient transport models 
are frequently hindered by constraints associated with available data, 
the presence of non-linear interactions, and temporal and spatial scale 
representation issues (Blöschl et al., 2019; Harris and Heathwaite, 2012; 
Rode et al., 2010; Wellen et al., 2015). Hence, there is a recognition of 
the importance of incorporating uncertainty explicitly in hydrological 
and water quality modelling, not only through error bounds on output 
values, but by representing uncertainty as an intrinsic aspect of inexact 
environmental science (Beven, 2019; Pappenberger and Beven, 2006). 
Additionally, given the high levels of uncertainty and complexities 
involved in water quality mitigation and modelling, there is a pressing 
need to develop and apply probabilistic modelling tools for Environ-
mental Risk Assessment (ERA) as an alternative to deterministic 
methods, and Bayesian Belief Networks (BBNs) are particularly well 
suited for this purpose (Moe et al., 2021). BBNs are a probabilistic 
graphical modelling framework that represents a set of variables and 
their conditional dependencies using a Directed Acyclic Graph (DAG) i. 

e., a network that has no cycles. BBNs are a powerful tool for modelling 
complex systems and have been used to integrate the disparate physi-
cochemical, biotic/abiotic, and socio-economic aspects (Penk et al., 
2022) needed to simulate P in river catchments (Jarvie et al., 2019). 
BBNs show promise as decision support tools in water resource man-
agement (Phan et al., 2019) because they represent causal relationships 
between variables transparently and graphically, making it straightfor-
ward to understand and build BBNs with the participation of experts. 
BBNs facilitate an improved understanding of risk by explicitly repre-
senting the uncertainties and assumptions in the model as probability 
distributions, and they provide a systems-level understanding of a 
problem (Aguilera et al., 2011; Barton et al., 2012; Forio et al., 2015; 
Glendell et al., 2022; Kaikkonen et al., 2021; Kragt, 2009; Uusitalo, 
2007). BBNs’ can make predictions with sparse data (Forio et al., 2015; 
Glendell et al., 2022; Uusitalo, 2007); and the probabilistic outputs from 
BBNs can be used to recommend actions to policy makers, and to 
communicate best practices to stakeholders (Barton et al., 2012; Kaik-
konen et al., 2021; Uusitalo, 2007). The probability distributions used in 
BBNs represent (most) model parameters explicitly encoding the un-
certainties in the prior knowledge, data, and parameters (Sahlin et al., 
2021). These prior distributions can be assumed, elicited from expert 
knowledge, or quantified using prior data. However, hybrid Bayesian 
Networks (BBNs that have a combination of continuous and discrete 
variables) are rarely applied in water quality modelling, and they have 
not been tested in a catchment with high-resolution monitoring data. 
Glendell et al. (2022) found that a hybrid BBN developed using standard 
regulatory data in seven test catchments in Scotland performed well, 
albeit with relatively large predictive uncertainty. In this work, we test 
whether a hybrid BBN can perform better when applied and calibrated 
in a catchment with long-term high-resolution data to understand 
whether the wide predictive uncertainty can be reduced or whether it is 
an irreducible property of this stochastic modelling approach. Hence, in 
this study we developed a BBN model of in-stream P concentrations in a 
poorly drained Irish agricultural catchment to: (1) model P losses in a 
data-rich meso-scale agricultural catchment using high-resolution 
observational data and expert advice; (2) evaluate the impact of rural 
point sources (septic tanks and farmyards), which are seldom repre-
sented in catchment water quality models, on P losses, and (3) evaluate 
the strengths and weaknesses of using BBNs as a modelling framework 
for high-resolution observational hydrological data. 

2. Materials and methods 

2.1. Study area 

This study focusses on the Ballycanew catchment (in older papers, 

Fig. 1. Study area: the Ballycanew catchment in County Wexford. Elevation varies between 21 m a.s.l. And 232 m a.s.l. The location of the hydrometric station is 
marked with the black dot, while magenta lines represent streams and yellow lines represent artificial drainage. 
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Table 1 
Model specifications organized by sub-model. The “Hydrology”, “Management”, and “Soil erosion and soil P” sub-models belong to both Model A and B 
(Delignette-Muller et al., 2020; Environmental Protection Agency Ireland (EPA), 2000, Environmental Protection Agency Ireland (EPA), 2003, Environmental 
Protection Agency Ireland (EPA), 2015; Gill, 2005; Gill et al., 2007; Shore et al., 2016; Wall et al., 2012; Stutter et al., 2021). 
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also referred to as Grassland B, for example in Sherriff et al. (2015), 
Fig. 1) located near Gorey, County Wexford, Ireland. The catchment 
covers 1207 ha and is comprised of 78% grassland and 20% tillage land 
use, while the remainder 2% is considered seminatural land use 
(Table 1). The catchment has been monitored intensively as part of the 
Agricultural Catchments Programme (ACP), Teagasc (Wall et al., 2011), 
which started in 2009 and is ongoing. Ballycanew soils have poor 
drainage characteristics due to deposits of heavy clays. However, land-
owners in the area have improved the land for grass production with tile 
and mole drainage. The low soil permeability in the catchment results in 
flashy hydrology and a high risk of P loss to water through quick and 
erosive surface pathways during heavy rain events (Mellander et al., 
2015). 

2.2. Data collection 

2.2.1. Hydrochemistry 
The Ballycanew catchment is equipped with a river bank-side kiosk 

where the instrumentation is installed, its location is marked in Fig. 1 as 
Outlet Hydro-Station (Mellander et al., 2012; Jordan et al., 2007). River 
water level is recorded every 10 min in a stilling well in the catchment 
outlet using an OTT Orpheus Mini vented-pressure instrument. The river 
discharge is calculated from a rating curve developed in a flat-V weir 
using an Acoustic Doppler Current meter. Total phosphorus (TP) and 
total reactive phosphorus (TRP) concentrations are monitored with a 
Hach-Lange Phosphax within the range of 0.01–5.00 mg l− 1, co-located 
with a Solitax Hach-Lange turbidity (turbidity units, NTU, also recorded 
every 10 min) sensor field-calibrated to suspended sediment concen-
tration (mg l− 1) (Sherriff et al., 2016). 

Data from the bank-side monitoring station (Fig. 1, Outlet Hydro- 
Station) collected every 10 min (total discharge, average total reactive 
P concentrations, and average turbidity), were aggregated to daily 

average values for this study. 

2.3. Bayesian Belief Network development 

Bayesian Networks are directed acyclic graphs (DAGs), that repre-
sent a set of variables and their conditional dependencies using a 
graphical model. The term “directed acyclic” means that there is a 
sequential flow of information among variables and no dynamic feed-
back loops (Barton et al., 2012; Kragt, 2009). An introduction to 
Bayesian Networks and their application in ERA can be found in Moe 
et al. (2021), and won’t be repeated here. The relationships between 
variables in a BBN are parameterized using conditional probability 
distributions or conditional probability tables when variables are 
discrete (CPTs), and the graphical network is a description of such re-
lationships (Borsuk et al., 2004). A hybrid Bayesian network combines 
both discrete and continuous variables, the latter represented as prob-
ability distributions. In this study, a conceptual BBN was developed in 
GeNIe 2.4 (BayesFusion, 2019) visualizing the ‘source-mobilisation--
transport-continuum’ (Haygarth et al., 2005) and identifying the main 
drivers of phosphorus pollution in the catchment. The initial DAG 
comprised of 63 nodes and 81 arcs, with 325 independent parameters 
out of 483, with parameter count defined as the total size of CPTs while 
independent parameters are those not implied by other parameters. The 
average number of node parents (indegree) was 1.3, and the maximum 
number of node parents was 5. An extensive literature review was 
conducted summarizing the knowledge base for the subject which was 
used to inform the priors (distribution shapes and parameter values) for 
key parameters in the models, as shown in Table 1. Catchment-specific 
information was also collated and used to inform the model structure 
and priors (Appendix A). 

From the initial parameterization, two models were developed: 
Model A, which only accounts for diffuse reactive P sources (i.e., losses 
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from soil matrix and topsoil), and Model B, which also includes P losses 
from farmyards, which is infrequent in P modelling (Harrison et al., 
2019) and septic tanks, which are often overlooked as P sources, as 
opposed to centralized wastewater treatment centres (Withers et al., 
2014). The models aim at integrating all the total reactive P losses from 
the different compartments at the catchment outlet (“Total catchment 
in-stream P load”, T month− 1) and then converting the loads into con-
centrations (mg l− 1) by dividing by the monthly discharge (m3 

month− 1). 

2.3.1. Expert input to inform key aspects of the model 
Experts from the Agricultural Catchments Programme, the James 

Hutton Institute, and the Irish EPA with relevant areas of expertise 
(hydrology, hydrochemistry, land management, farm consultancy, pol-
icy making, and environmental modelling) were consulted in 1-to-1 
meetings, and in a group workshop. Excluding the authors of this 
paper, whom we also consider part of the experts’ pool, a total of thir-
teen experts were consulted, and their personal information anony-
mized. Before the interviews and workshops, experts were provided 
with a topic information sheet (available in Supplementary Information) 
describing the model and the aims and objectives of the session. The 
experts were asked to provide their input on the conceptual model 
structure to ensure that the causal dependencies between variables 
made sense and none were missing; parameterising variables and their 
relationships using equations; approving the CPT values for the 

“Buffers” (proportion of each type of buffer strip present in the catch-
ment) node, as well as deciding which loads were impacted by the buffer 
reduction (i.e., only surface-pathway derived nodes); and were asked to 
provide recommendations for further information sources (e.g., reports, 
publications, or datasets). 

2.4. Model structure 

The model structure is presented in Fig. 2. The complete structure 
and specification of both models are included in Table 1 to allow 
reproducibility and further model application in different contexts. 
Table 1 describes the model structure and the conditional probability 
distributions and describes which CPTs were logical, contained expert 
judgement, and which were derived from data or literature, highlighting 
which sub-models and variables are part of Model A or Model B. In 
particular, the “Hydrology, “Management”, and “Soil erosion and soil P” 
sub-models are represented in both Model A and B, while the sub-models 
“Septic Tanks” and “Farmyards” are only represented in Model B. 

2.5. Model evaluation 

P models typically struggle to produce positive performance in-
dicators (Jackson-Blake et al., 2015). Additionally, BBNs cannot be 
evaluated with the traditional metrics used for hydrological models (for 
example, Nash-Sutcliffe Efficiency or Root Mean Square Error), because 
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the number of observations does not correspond to the number of model 
realizations. Therefore, the model performance was evaluated following 
the procedures suggested by Jackson-Blake et al. (2015), using a suite of 
strategies comparing predicted TRP concentrations (mg l− 1) with the 
observed TRP concentrations (available as daily average, mg l− 1) 
(2009–10–01 to 2016–12–31) by 1) calculating percentage bias (PBIAS), 
2) comparing summary statistics (median, mean, upper and lower limit, 
interquartile ranges), and 3) comparing the full posterior distributions 
with the observations. Using the R SHELF package (version 1.8.0, 
Oakley, 2020), a monthly lognormal distribution was fitted to the 
observed TRP concentrations using 100 quantiles and 0 as the lower 
limit. This distribution was used to compute the PBIAS % in the R 
package hydroGOF (version 0.4–0, Zambrano-Bigiarini, 2020). In addi-
tion, a bootstrapping method was applied to the available observations 
to obtain a lognormal distribution fitted to each month’s TRP concen-
tration data. Percentage bias was used to evaluate the BBNs perfor-
mances in each month, in this case with 10,000 data points simulated in 
the BBNs by selecting each month as evidence, and 10,000 data points 
drawn from each month’s lognormal distribution fitted to the observa-
tional data using bootstrapping. Both for the overall and the monthly 
performance evaluation, data points outside the instrument’s limits of 
detection (0.01–5.00 mg l− 1) were excluded from the model evaluation. 

3. Results and discussion 

3.1. Model structure 

As a result of the discussions with experts and the extensive data 
review, the final model versions (A and B) are considerably less complex 
than was initially conceptualized. As mentioned, the original BBN 
comprised 63 nodes and 81 arcs, while the resulting Model B comprises 

38 nodes, 46 arcs, 106 independent parameters out of 153, average 
indegree of 1.2, and maximum indegree of 5. The original model 
structure (not shown here) included variables that were excluded from 
the final structure as a result of the consultations with experts. Fertilizer 
(organic plus inorganic) application based on stocking rates was 
excluded from the BBN as soil P fertilizer is applied only to maintain 
Morgan P levels, available at field scale. Erosion rates were also not 
included in the final version of the model as catchment-specific data was 
unavailable. Incidental losses due to animal poaching were also 
excluded as fencing of water courses is in place in the ACP catchments. 
The final BBN structure is shown in Fig. 2, which highlights which nodes 
were part of Model A and which ones were added for Model B. The 
model structure (Table 1) directly reports which variables were influ-
enced by experts, in an attempt to address some of the transparency 
issues raised by Kaikkonen et al. (2021) regarding expert role. 

3.2. Phosphorus concentrations 

3.2.1. Phosphorus concentrations in the stream – overall performance 
Overall model performance is shown in Table 2, where mean, lower 

and upper limit, and meaningful percentiles of the BBN TRP concen-
tration distributions are shown against the average monthly distribution 
fitted to the observations. The 5th percentile shows that the model 
concentrations are more skewed towards low concentrations than the 
observations. This may be related to the equation used to calculate the 
variable “Predicted Dissolved P Concentration [mg l− 1]”, reported in 
Table 1 and derived from Thomas et al. (2016b). The node was set up to 
substitute the negative values with zeroes as recommended by Thomas 
et al. (2016b). 25% of the simulated values for the “Predicted Dissolved 
P Concentration [mg l− 1]” node equalled zero (meaning no TRP from the 
soil matrix would be measured at the catchment outlet) and currently 

Fig. 2. Structure of the final BBNs, including the additional nodes for Model B highlighted inside the box. The nodes in orange represent variables that pertain to 
Management, those in yellow represent Soil variables, those in turquoise represent the Hydrology variables, those in light blue represent the Turbidity-related 
variables, those in lilac represent the Loads within the catchment, and those in cyan represent the Concentrations integrated at the catchment outlet. 
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included when computing the final TRP concentration distribution prior 
to censoring it by instrument’s limits of detection (0.01–5.00 mg l− 1), 
which may have skewed the model predictions. However, the model 
results are also skewed towards larger concentrations in the upper 
percentiles compared to the observations. The median modelled TRP 

concentration approximates the observed median, and as discussed, the 
tails of the modelled distributions are wider than those in observed mean 
daily data, which is also shown in Fig. 3. 

Fig. 3 shows the overall model distributions compared to the 
lognormal distribution fitted to the observations. The boxplots and the 
density plots at their right-hand side show the full distributions 
excluding data points outside the instrument’s limit of detection, while 
the dots scattered on top of the boxplots show only a sample (n = 30). 

3.2.2. Phosphorus concentrations in the stream – monthly performance 
Each month’s modelled and observed TRP concentrations are shown 

as histogram plots in Fig. 4 A and as density plots in Fig. 4 B. The his-
tograms show that the distributions from the simulations from both 
models approximate the peak of the distribution of the observations, 
however, the simulated concentration distributions have a lower tail 
that is not seen in the observed data. This discrepancy could be a product 
of how the predicted dissolved P concentration is being calculated in the 
model (see 3.2.1). The observations reported are aggregated daily mean 
values calculated from monitoring observations taken every 10-min. 
These daily means necessarily do not reflect the full range of concen-
tration variability in the monitoring data, especially for extreme or short 
duration hydrological events, and they do not show diel P variations due 
to changes in temperature, light, and precipitation (Bieroza et al., 2023), 
which are likely to affect P mobilisation, delivery, and in-stream uptake. 
For example, see Table 3 for a comparison between the daily mean P and 
the 10-min P observations. Furthermore, the detection of low P con-
centrations is restricted by the instrument detection limits (0.01–5.00 
mg l− 1). Although neither model reproduces the width of the observed 
data distributions, the simulated distributions from Model A are broader 
than those from Model B suggesting that Model B is marginally better 

Table 2 
The two models’ overall performances in terms of mean, standard deviation, 
quantiles, and percentage bias. Data outside the instrument’s limit of detection 
(0.01–5.00 mg l− 1) were excluded from the calculations. Both observed and 
predicted TRP concentrations were log-transformed before calculating the sta-
tistics, and then converted back to normal values.   

Observed TRP 
(time- 

weighted) 

Predicted TRP 
Diffuse P (flow- 

weighted) 

Predicted TRP 
Diffuse + Point P 
(flow-weighted) 

mg l− 1 

lower limit (μ-1ơơ) 0.03 0.03 0.03 
mean 0.06 0.08 0.08 

upper limit (μþ1ơơ) 0.10 0.20 0.21 

5th percentile 0.02 0.02 0.01 
25th percentile 0.04 0.05 0.04 
50th percentile 0.06 0.09 0.10 
75th percentile 0.08 0.14 0.14   

Model A 
(Diffuse P) 

Model B 
(Diffuse þ Point 

P) 

Percentage bias 
against distribution 

fitted to 
observations (%) 

– 76 80  

Fig. 3. Overall distribution density of log10 TRP concentrations fitted to observations versus those predicted by the two developed BBNs. BBN predictions show a 
larger variance, the full extent of which is shown in the plot by the density and box plots and scattered data points. Data outside the instrument’s limit of detection 
(0.01–5.00 mg l− 1) were excluded from the plot, and the text shows the number of valid samples for each model. This plot was produced with the ggdist R package 
version 3.3.0 (Kay, 2023). 
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constrained. Importantly, the models predict flow-weighted concentra-
tions (normalized by both time and discharge) rather than 
time-weighted (mean concentration in stream water as it passes the 
sampling point), which could in some cases better represent nutrient 
concentrations (i.e., for lakes, Rowland et al. (2021)). This may result in 
the different dilution effect in the model compared to the observations 
(see mean (μ) total discharge (Q, m3), in Table 4). Monthly density plots 
show little to no seasonality, probably masked by model assumptions, 
which are further discussed in Table 5. Overall, the model represents the 
observed distribution between the 25th and 75th percentile very well, 
indicating strong predictive performance. This is especially notable 
when considering the small units (P concentrations) that are being 
reproduced and the complexities of processes affecting P dynamics in 
river catchments. 

Table 4 summarizes each month’s characteristics in terms of mean 
and median P concentrations, as well as mean discharge and model 
percentage bias calculated for the two BBNs. Percentage bias shows that 
the difference between the two models is minimal, corroborated by the 
nearly identical performance in terms of mean predicted concentrations. 
Mean total discharge (Q, m3) is shown for Model B and the observations, 
assuming to be the same for Model A. The ratio between the modelled 
and the observed discharge shows how the models simulate 80–100% of 
flow correctly in most cases, except the summer months, when the 
modelled discharge is 60–70% of the observed. This underprediction can 
explain why the model average concentrations are higher than the 
observed ones (less discharge, less dilution). 

3.2.3. Phosphorus concentrations in the stream – risk of exceeding WFD 
standards 

For a speedy evaluation of the P loss risk, in-stream P concentrations 
were discretized according to the Environmental Quality Standard 
(EQS) for both models and evaluated against similarly discretized 
lognormal distribution fitted to the observed in-stream TRP. The EQS 
was classified as good (between 0 and 0.035 mg l− 1) and bad (above 
0.035 mg l− 1), as 0.035 mg l− 1 is the phosphate threshold established in 
Ireland to comply with the Water Framework Directive (European 
Communities Environmental Objectives (Surface Waters) European 
Communities Environmental Objectives Regulations, 2009). The com-
parison was done by censoring the concentrations for the instrument’s 
limit of detection (0.01–5.00 mg l− 1). Overall, both models show a 
repartition good/bad threshold close to 40/60 % (data not shown), 
however, that is lower than the monthly EQS in the distribution fitted to 
the observations. The fitted observations agree with Mellander et al. 
(2022), who also showed that the probability of exceeding the EQS in 
this catchment was 93.7% of the time (data from 2010 to 2020). This 
discrepancy may be explained by the model’s predicted TRP concen-
tration distribution’s inherent shape, which was left-skewed in com-
parison to the observed data, and by the censoring process, which might 
have caused a shift of the distribution towards 0.01 mg l− 1. 

3.3. Model strengths and limitations 

We designed a BBN to describe and calculate TRP losses at the 

Fig. 4. A represents the histograms of each month’s log10 of TRP concentrations (mg l− 1), observations are shown in blue, predictions obtained from the Diffuse P 
model (Model A, top figure) and Diffuse + Point P model (Model B, bottom figure) are shown in yellow. The histograms placed inside the grey box show values 
outside the limit of detection (0.01–5.00 mg l− 1). B represents the monthly density plots of log10 observations (top), the Diffuse P model (middle), and the Diffuse +
Point P model (bottom). Data outside the instrument’s limit of detection (0.01–5.00 mg l− 1) were excluded from the plots in box B, and the text shows the number of 
valid samples for each model. The density plots in box B were produced with the ggdist R package version 3.3.0 (Kay, 2023). 
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catchment outlet in a grassland-dominated Irish agricultural catchment. 
As compared to the steady-state probabilistic conceptual catchment 
model of P pollution risk by Glendell et al. (2022), the present model was 
parameterized using high-resolution datasets, including seven years of 
daily turbidity (NTU) and discharge (m3) data at the catchment outlet, 
average soil Morgan P at field scale, and average measured farmyard 
size (instead of using a proxy of size). Using high-resolution turbidity 
data to calculate sediment losses at catchment outlet simplified the 
representation of erosion processes, thus avoiding assumptions 
regarding erosion rates, delivery, and the contribution of agricultural 
drains. Furthermore, the model was calibrated using seven years of daily 
observed TRP concentrations. 

Model performance in terms of percentage bias (76–85% depending 
on which model version) was close to the 50% acceptable range rec-
ommended by Glendell et al. (2022), and appears small, given the small 
concentration values being simulated. Additionally, in terms of 
inter-quantile ranges, this BBN’s performance approximates that of 
Glendell et al. (2022) BBN in the best performing catchments (Link-
wood, Rough, and Lunan catchments) but is better constrained than the 
previous study’s model in worse-performing catchments. 

We offer an overview of the model assumption and subsequent po-
tential limitations that we deem relevant in Table 5, highlighting several 
research gaps around P modelling in agricultural catchments. Specif-
ically, there is still uncertainty around point sources, where weak priors 
from the literature were introduced due to a lack of monitoring data, as 
well as a simplification of soil P sources (Morgan P), which, albeit 
measured at high spatial resolution, were represented at discrete levels 
(indexes) used for monitoring, which may lead to loss of information. 

Table 5 also introduces the lack of in-stream biological P uptake, a 
process that could be significant in spring and summer, and could 
improve the model’s representation of reality (Jackson-Blake et al., 
2015). Lastly, a future enhancement to this study would be the use of a 
sensitivity analysis, which would improve understanding of which var-
iables contribute the most to P losses at the catchment outlet. We note 
that the current method to implement a sensitivity analysis in GeNIe is 
only available for discrete BBNs. Discretization leads to a loss of infor-
mation (Landuyt et al., 2013), and makes the sensitivity analysis 
dependent on the discretization method. In our case, a discretized 
network would not allow the calculation of quantiles from the model 
predictions for comparison with those from the observations, countering 
the utility of the high-frequency dataset used here. Thus, further work is 
required to implement a suitable sensitivity analysis methodology. 

4. Conclusions 

In this study, we combined different methodologies for using high- 
frequency water quality datasets to inform the priors of a BBN aimed 
at modelling P losses in Irish agricultural catchments. Different sources 
of P were introduced in the modelling exercise in a step-wise fashion, 
thus improving the model predictive ability and testing the model 
structural uncertainty. The two developed BBNs were able to predict the 
mean and median P concentrations in the stream well overall, with some 
limitations apparent in performance at the monthly time-step. However, 
the models’ predictions presented wider distributions than the obser-
vations, which was noted in a similar work, and remains a property of 
this stochastic modelling approach. The BBN modelling approach 
allowed the inclusion of all the known P sources in the agricultural 
catchment, including farmyards, which is rare in P modelling, and septic 
tanks, which are often overlooked as P sources. In addition, this study 
directly reported on experts’ role and selection as an effort to increase 
transparency. The probabilistic modelling highlighted the need for 
further targeted data collection to fill important knowledge gaps, even in 
a catchment with state-of-the-art high-resolution and long-term moni-
toring, such as the one used in this study. Furthermore, the work 
informed future research steps, which will include testing of model 
transferability, the influence of in-stream P cycling (i.e., estimation of 
removal by biota, and/or sediment uptake) on model performance, and 
understanding of P losses under future climate change scenarios. 

Table 3 
Monitored TRP concentrations (mg l− 1) characteristics (correlation between the 
two datasets was 0.91). The two datasets have not been censored with the in-
strument’s detection limits for this analysis, nor log-transformed.   

10-min concentration data Daily mean concentration data 

mg l− 1 

Min 0.002 0.015 
25th percentile 0.042 0.043 

Median 0.057 0.058 
75th percentile 0.082 0.085 

Mean 0.075 0.075 
Max 3.095 1.065  

Table 4 
Summary of monthly characteristics and results, including model bias. Percentage bias and TRP concentrations have been calculated excluding data outside the in-
strument’s limit of detection (0.01–5.00 mg l− 1). “A” columns show results for Model A and “B” columns show results for Model B. Both observed and predicted TRP 
concentrations were log-transformed before calculating the statistics, and then converted back to normal values.   

Percentage 
bias of 
simulations 
against 
distribution 
fitted to 
observed 

mean (μ) 
concentrations 

median 
concentrations 

lower limit 
concentrations 
(μ-1ơ) 

upper limit 
concentrations 
(μ+1ơ) 

Mean total discharge (Q) 

(mg l− 1) (mg l− 1) (mg l− 1) (mg l− 1) m3  

A B A B obs A B obs A B obs A B obs Models obs model/observations 
ratio 

Jan 69.4 74.5 0.08 0.08 0.05 0.09 0.10 0.04 0.03 0.03 0.03 0.20 0.21 0.07 9.99 × 105 11.0 × 105 0.9 
Feb 74.5 70.9 0.08 0.08 0.04 0.09 0.09 0.04 0.03 0.03 0.03 0.21 0.20 0.07 7.42 × 105 7.48 × 105 1 
Mar 67.5 70.7 0.08 0.08 0.04 0.09 0.09 0.04 0.03 0.03 0.03 0.20 0.20 0.07 4.07 × 105 4.83 × 105 0.8 
Apr 69.9 77.9 0.08 0.08 0.05 0.09 0.09 0.04 0.03 0.03 0.03 0.20 0.21 0.09 2.73 × 105 3.06 × 105 0.9 
May 69 81 0.08 0.08 0.05 0.10 0.10 0.05 0.03 0.03 0.02 0.20 0.22 0.07 2.03 × 105 2.28 × 105 0.9 
Jun 73.5 89.2 0.08 0.09 0.07 0.10 0.10 0.07 0.03 0.03 0.03 0.20 0.23 0.13 1.40 × 105 2.24 × 105 0.6 
Jul 70.3 101 0.08 0.09 0.09 0.09 0.10 0.07 0.03 0.03 0.05 0.20 0.24 0.14 0.85 × 105 1.15 × 105 0.7 
Aug 68.5 89.1 0.08 0.09 0.09 0.09 0.10 0.09 0.03 0.03 0.05 0.20 0.23 0.16 1.51 × 105 2.52 × 105 0.6 
Sept 76.5 95.6 0.09 0.09 0.07 0.10 0.10 0.06 0.04 0.03 0.04 0.21 0.24 0.12 1.05 × 105 1.03 × 105 1 
Oct 72.2 73.8 0.08 0.08 0.07 0.10 0.09 0.07 0.03 0.03 0.04 0.2 0.21 0.13 3.94 × 105 4.41 × 105 0.9 
Nov 73.8 71.8 0.09 0.08 0.07 0.10 0.10 0.07 0.03 0.03 0.04 0.21 0.21 0.12 9.10 × 105 9.83 × 105 0.9 
Dec 73.8 72.5 0.08 0.08 0.06 0.09 0.09 0.05 0.03 0.03 0.04 0.20 0.20 0.09 10.10 ×

105 
11.20 ×

105 
0.9  
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Table 5 
Model assumptions, limitations, and strengths.  

Model assumptions Consequences 

Due to a lack of data, in-stream P removal by biota or sediment absorption is not 
represented. 

In-stream P concentrations may be overestimated. However, these processes are 
secondary, especially considering the extreme flashiness of this catchment. 

The main soil P source is spatially available at field resolution; however, the “Morgan P″ 
node was implemented using the categorical classification used in field monitoring. 

The categorical variable “Morgan P″ can be used for testing management scenarios, 
however, discretization can lead to loss of information and impact decision making ( 
Landuyt et al., 2013; Nojavan et al., 2017). 

Amount of WEP transported to stream “Predicted Dissolved P Concentration” based on 
the equation for the closed period only, from the 15th of October to the 12th of 
January, when farmers are forbidden from spreading fertilizer on land in Ireland ( 
Thomas et al., 2016b). The equation is applied to all months, and negative values are 
substituted with zeroes (see Table 1). 

25% of the simulated values of this variable were zeroes, which probably skewed the in- 
stream concentration posterior distribution as discussed in section 3.2.1. This could be a 
contributing factor in the masking of seasonality in the model. 

Experts noted that the septic tanks were modelled as a surface process, although soil risk 
classes have been included (Glendell et al., 2021), see variable “Soil risk factor” in 
section 2.4. 

Might be underestimating P losses from STs. 

P concentrations in septic tanks after primary or secondary treatment are based on 
(optimistic) Scottish EPA guidelines of Total P concentration reduction (Brownlie et al., 
2014) even though the objective of the modelling was TRP. 

There is uncertainty surrounding the actual TP/TRP concentration in a septic tank after 
primary or secondary treatment, and therefore more data is needed for this model 
compartment, as well as sensitivity testing. 

Septic tanks were assumed to be working, no hypothesis was made regarding failure. Might be underestimating P losses from STs. 

There is no measured data for septic tank P concentration or loads, thus each month the 
load from septic tanks “Realised total load” is the same, as it is not dependent on 
discharge (Q). 

Septic tank loads are not expected to vary seasonally; therefore, the model could be 
representing the domestic wastewater systems well, however, this could be one of the 
factors masking any seasonality in the model. However, septic tank loads have temporal 
patterns too, and are considered to be an important source of nutrients during spring and 
summer (Withers et al., 2014). 

P concentrations from farmyards are modelled according to literature, however Moloney 
et al. (2020) found higher concentrations of TP in farmyard drains than that found by  
Harrison et al. (2019) (about 37 times). 

Farmyard losses in the catchment cannot be estimated, and the uncertainty around these 
losses in the literature is very high, thus the model may be under or overestimating these 
losses. Further data collection is needed to test these assumptions. 

The hydrology compartment, and consequently the rest of the model, was set up at a 
monthly time step. 

This allows the integration of both sparse and high-resolution datasets, as well as the 
chance for future evaluation of management actions and mitigation measures. This also 
means that the model does not represent events and hot moments, which usually 
represent the larger contribution of P losses in a catchment, with climate change expected 
to increase their contribution (Ockenden et al., 2016). 

Both models are calibrated and validated against daily averages of TRP concentration. 
The daily resolution data may not represent the full variability of the in-stream 
concentrations (statistics on the two datasets are shown in Table 3). 

The model appears to simulate higher TRP concentrations in the upper quartiles than the 
observations (Table 2), but these may be realistic if compared against the sub-hourly 
dataset.  
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Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.envsoft.2024.106073. 

Appendix A. catchment characteristics  

Catchment characteristics     

Reference 

General Location 52◦36′N, 6◦20′W Sherriff et al. (2015) 
Size 1191 ha Teagasc - Agriculture and Food 

Development Authority, (2018) 
Median slope 3◦ Sherriff et al. (2015) 
Altitude (m a.s.l.) 40–200 Mellander et al. (2015) 
Average field size (ha) 3.04 Thomas et al. (2016b) 

Management Land use 78% grassland, 20% tillage Teagasc - Agriculture and Food 
Development Authority, (2018) 

Stocking rate (LU ha¡1) 1.04 Sherriff et al. (2015) 
Hydrology Soil series Typical Surface-water, Gleys or Groundwater, Gleys 

(71%), Typical Brown Earths (29%) 
Thomas et al. (2016a) 

Drainage class Poorly drained, well-drained in the uplands Teagasc - Agriculture and Food 
Development Authority, (2018) 

Proportion of poorly drained soils on total area 85% Shore et al. (2014) 
Dominant flow pathway Surface Thomas et al. (2016a) 
Stream order 2 Mellander et al. (2012) 
Runoff coefficient 2009–2014 0.48 Thomas et al. (2016b) 
Runoff flashiness (Q5:Q95) 202 Thomas et al. (2016b) 
Runoff Flashiness 2010–2020 (Q5/Q95) 126 Mellander et al. (2022) 
Ditch density (km2km¡2) and area of channel network 
(% of catchment area) 

1.3 (1.26%) Shore et al. (2015) 

Channel density (%) per sediment retention class Low (15%), low-moderate (10%), moderate-high 
(26%), high (49%) 

Shore et al. (2015) 

Annual discharge 2010–2020 (mm yr¡1) 1051 Mellander et al. (2022) 
P loss Mean suspended sediment concentrations 

2009–2012 (mg l¡1) 
14 Sherriff et al. (2015) 

Mean suspended solids loads 
2009–2012 (t km¡2yr¡1) 

26.64 Sherriff et al. (2015) 

Average P losses (kg TP ha¡1) 2010–2013 1.035 Mellander et al. (2015) 
Total Dissolved P (mg l¡1) ~ Total Reactive P (mg l¡1) at 
catchment outlet 

TDP = 1.1475 × TRP + 0.0078 Shore et al. (2014) 

% areas at highest risk of legacy soil P transfers in baseline 
and (resampled) years with CSA Index threshold ≥ 5 

5.6 (4.1) Thomas et al. (2016b) 

Water Extractable P (WEP) ~ Soil Morgan P WEP = 0.58 × SoilMorganP+1.13 Thomas et al. (2016b) 
Connectivity Mean HSA size m2 (% of catchment)b 703,147 (6) Thomas et al. (2016a) 

% hydrologically disconnected area over total catchment 
areac 

24.9 Thomas et al. (2016a)  
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