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Abstract—This paper is concerned with the topology design
of data center networks (DCNs) for low latency and fewer links
using deep reinforcement learning (DRL). Starting from a K-
vertex-connected graph, we propose an interactive framework
with single-objective and multi-objective DRL agents to learn
DCN topologies for given node traffic matrices by choosing link
matrices to represent the states and actions as well as using
the average shortest path length together with action penalty
terms as reward feedback. Comparisons with commonly used
DCN topologies are given to show the effectiveness and merits of
our method. The results reveal that our learned topologies could
achieve lower delay compared with common DCN topologies.
Moreover, we believe that the method can be extended to other
topology metrics, e.g., throughput, by simply modifying the
reward functions.

Index Terms—Low-latency Data Center Network Topology,
Deep Reinforcement Learning, Multi-objective Learning

I. INTRODUCTION

As many enterprises and corporations are gradually shifting
their services and businesses into cloud environments, data
center networks (DCNs) are being increasingly deployed to
connect a massive number of servers and achieve large-scale
data computing and storage. This trend has posed a significant
challenge to network topology design. Generally, the conven-
tional network topologies in data centers (DCs) are created by
either 1) non-heuristic and mathematical methodology, which
have considerable scalability with limited adaptability [1]–[3]
, or 2) heuristic algorithms subject to some special scenarios
[4], [5]. Apart from that, most network topologies seem to
lack effective data interaction with real applications and may
not adapt to the rapid-changing network traffic [6], especially
when scalability is required. Therefore, developing network
topologies that can be adaptive to traffic patterns is called for.

The primary objective of this paper is to develop a novel
approach to topology design of DCNs utilizing Deep Rein-
forcement Learning (DRL). Unlike the topology design ap-
proaches mentioned above, DRL enables active searching from
complicated network environment with greater network node
numbers. Specifically, DRL agents can learn the improved
solutions for reaching lower latency and fewer link numbers
topologies based on specific traffic matrix inputs, as will be
shown later.

The main contributions of the paper are summarized below:

• Development of an interactive environment called
TopoWorld for DRL agents to explore adaptive topologies
with high-dimensional nodes for low delay and link
number.

• Design of a novel multi-objective learning algorithm for
better generalization of node dynamics for topologies.

• Design of experimental benchmark to demonstrate the
performance improvement of the learned topologies com-
pared to conventional DCN ones.

II. BACKGROUND

A. Data Center Network Topologies

A series of related studies have been conducted to cope with
the problem of network topology design for DCs. M. Al-Fares
et al. proposed a scalable Fat-Tree topology for data center [1];
Meanwhile, J. Kim et al. initialized the research on a network
topology called Dragonfly by aggregating a collection of high-
radix routers [2]; Further, C. Guo et al. introduced a server-
centric network architecture named Bcube for DCs [3]; A.
Shpiner et al. proposed Dragonfly+ topology by modifying the
group routers of dragonfly [2] to achieve higher performance
[7]; Apart from that, Y. Deng et al. developed an optimal
low-latency and low-diameter topology in [4] by applying the
Simulated Annealing (SA) algorithm [8].

However, most of the topology designs seems to lack
interaction and fit with the actual network traffic, leading to
some discrepancy between theoretical predictions and practical
results. In addition, most topologies cannot be applied to
an arbitrary number of nodes, meaning that developer must
deploy servers strictly to a fixed number of nodes, which may
increase the potential overhead in the data center space. In this
paper, we will show an interactive and nodes-unlimited design
of DCN topology using DRL.

B. Deep Reinforcement Learning

Reinforcement learning (RL), as one of the most popular
optimization algorithms, is able to learn a series of actions
that aims at maximizing the accumulated rewards by inter-
acting actively with an environment in the absence of prior
knowledge. However, most traditional reinforcement learning
(RL) algorithms, such as Q-learning, are highly dependent on
tabular and handcraft features [9], which are difficult to cope



with high dimensional state-space environments. To handle
this problem, much research exploiting the capacities of deep
learning (DL) into RL, aiming to train the neural networks
from large and raw input data, proposes deep reinforcement
learning (DRL) that can successfully deal with large volumes
of discrete and continous space problems. Typically, the DRL
algorithms can be roughly splited into two different classes,
value-based algorithms such as DQN [9], and policy-based
algorithms such as DDPG [10], PPO [11], etc. Nowadays these
methods are widely used in various research tasks.

In our research, the number of nodes is a critical factor for
network topology design since thousands of nodes need to be
placed in modern data centers. We find that the conventional
RL algorithms might show some weakness in topology explo-
ration as the node numbers continuously increase due to the
remarkable rise of the state-space dimension. To handle this
issue, we uses a single-objective DQN instead of traditional
RL algorithms to explore the topologies and uses a variant
of the Multi-objective PPO algorithm to achieve bi-objective
search, which is able to find a better topology even if the
number of nodes continues to increase or decrease.

III. TOPOLOGY DESIGN BY SINGLE-OBJECTIVE DQN

A. Initial guess K-connected Graph

An initial guess of the topology plays a vital role in
topology learning since it may determine the starting level
of the topology and thus has a great chance to enhance the
efficiency of learning processes. These first topology genera-
tions would automatically be treated as the first observation at
each episode. For the sake of reliability, we select K-vertex-
connected topology as the initial guess graph [12].

B. State Design

The state can be loosely described as the observation of the
DRL agent from monitoring the results caused by the previous
action. In our work, the state would be a sparse matrix with
the size of maximum link numbers, indicating the connectivity
of each candidate link, with 1 representing the existence of a
link while 0 illustrating nonexistence. One of the example is
shown on Fig. 1. This way, models would be more efficient
in applying floating-point operations (FLOPs) and obtaining
acceptable accuracy parameters with sparse matrices. [13]

NaN 1 0 0 1

1 NaN 1 0 0

0 1 NaN 1 0

0 0 1 NaN 1

1 0 0 1 NaN
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0

1

2

3

4

0 1 2 3 4

Fig. 1: A state example. The length of the state equals to
maximum links number(solid line boxes), and thus there exists
a link between nodes number (0,1), (0,4), (1,2), (2,3) and (3,4).

C. Action Design

In this paper, the action is defined as adding or removing a
link from the current topology. Specifically, our action vector
would consist of two units: 1) an index number referring to a
specific link, e.g. the link (0, 1) is marked as the first link and
link (N -2, N -1) as the last link of the state; 2) an actual action
taken, where 0 represents to add the link while 1 represents
to disconnect the link selected. For example, an action [0, 0]
means adding the first link of to the current topology.

D. Reward Function Design

The goals of our single-objective DQN agent is minimizing
the average delay of the networks from the source node to the
destination node. Exploiting the Dijkstra shortest paths algo-
rithm, the possible average latency could be determined from
each link’s previously assigned delay value. For the proposed
TopoWorld, the reward is assigned for several sections:

a) Delay Reward Rd
t : the delay reward is designed as

the gap between a threshold ρ and the current feedback of
an average delay θt, assuming that the delays here are the
total delays of four different delay types. And if a source node
(default to the first node) can send packets to every other node
in the topology without packet loss, the average delay θt could
be described as:

θt =

∑N
n=1

∑
i∈δn

θti
N − 1

(1)

where N is the total node number. Note the source node(i.e.
node zero) would not be taken into account when calculating
average delay. The variable δn represents the set of passing
nodes in the shortest path from the source node to node n
based on Dijkstra’s algorithm. In summary, the delay reward
could be denoted as :

Rd
t = η(ρ− θt) (2)

where the η is a discount number, and the ρ is a threshold that
ensures the rewards are positive.

b) Redundancy Penalty Rl
t: Too many links are obvi-

ously undesirable and contrary to the learning objectives since
this may significantly increase the cost of the network. To
alleviate this problem as much as possible, we take a reward
penalty Rr

t to reduce the number of useless links in the learned
topologies.

Rl
t = −L (3)

where L is the number of current links.
c) Repetition Penalty Rr

t : Applying repeated and non-
useful works such as adding an existent edge or deleting a non-
existent link would lead to a negative reward for the selection,
which is exactly the opposite of the delay reward.

Rr
t = −Rd

t (4)

d) K-connected Degree Penalty RnK
t : If any node de-

termined in the first place is no longer higher or equal to the
degree specified in the initial guess graphs, the agent would be
given a relatively huge penalty for that intolerable behavior.



e) Non-connected Penalty Rnc
t : If any nodes included in

the graph are no longer being reached in the topology due to
the last action, the agent would be given a huge penalty for
that intolerable behavior.

The finally aggregated reward function of single-objective
DQN is thus synthesized as:

Rt =


Rnc

t if any node is disconnected

n×RnK
t if n nodes has lower degree than K

Rr
t +Rl

t if action is repeated

Rd
t +Rl

t otherwise

E. Interaction Environment for Agents

RL agents are required to construct an interactive envi-
ronment for decision-making. OpenAI Gym [14] is one of
the most famous RL toolkits to test and compare different
algorithms on various accessible episodic benchmarks. In our
work, an interactive gym-based environment called TopoWorld
is contributed to focus on developing DC topologies with
deterministic node dynamics, e.g., link latency. The general
layout of TopoWorld is shown in Fig. 2.

The architecture of the framework can be briefly depicted
as follows: 1) The DRL would first send the action selected
to the TopoWorld. 2) The step function would check and
execute the action to generate a topological structure as the
next observation of each iteration. 3) The TopoWorld would
evaluate the topology produced based on the reward function.
4) The newly obtained information would be passed to the
DRL model to update parameters.

Fig. 2: Layout of TopoWorld

IV. TOPOLOGIES DESIGN BY MULTI-OBJECTIVE DRL

A. Multi-objective Deep Reinforcement learning

Notably, the single-objective DQN learning agent is forced
to explore the graphs under multiple reward constraints. As the
number of nodes increases, the single-objective agent may not
learn efficiently, i.e., achieving a higher accumulated reward.
For example, it is kind of distinct that the learning process
tends to add incredible link numbers as the nodes grow, as
shown in Table III, which may not be desirable based on cost
considerations. To break this bottleneck, many recent studies
have focused on exploring the potential of deep reinforcement

learning in multi-objective conditions (MO-DRL). [15], [16]
have proposed their multi-objective algorithms and many
research works like [17], [18] use MO-DRL algorithms to
tackle some practical problems.In this paper, We would like to
use this approach to further reduce the number of links while
trying to maintain the same network performance.

B. Multi-objective Proximal Policy Optimization

As one of the most effective baselines of policy-based
DRL algorithms, the Proximal Policy Optimization (PPO)
Algorithm [11] creatively combines importance sampling and
the Trust Region method firstly introduced in TRPO algo-
rithm [19], thus making a good trade-off between sample
complexity and algorithm efficiency. To take advantage of this,
we introduce multiple value networks and previously defined
weights on top of PPO to allow the algorithm to better extract
characteristic attributes of multi objects in the following. We
call this algorithm a multi-objective and -values PPO algorithm
(MOV-PPO), which is given in Algorithm 1.

Consider a set of pre-defined weights ωO that determine
the weighting preferences for each learning objective o. Note
that this weight set should take into account the range of
values of the qualified rewards as well as the priority of
the objectives.The original PPO uses advantage as a relative
assessment of the selected action. By utilizing generalized
advantage estimation [20], the estimator of the advantage can
be shown as:

Âo
t = δot + (γλ)δot+1 + ...+ (γλ)T−t+1δoT−1 (5)

where δot is the temporal difference (TD) error that equals

δot = Rt + γVo(St+1)− Vo(St) (6)

Vo(St) denotes the estimated value of the objective o by the
value function based on current state St. In a multi-objective
scenario, we have an advantage estimator Âo

t per objective o.
For each advantage estimator, there would be a particular value
approximator, e.g., value neural network, to evaluate action
distribution and update corresponding values. In this way, we
have a vector of estimated advantages ÂO

t = {Â1
t , . . . , Â

o
t}

and values QO
t = {V1(St), . . . , Vo(St)} associated with O

objectives. In this case, the weighted advantages estimator
vector can be computed as:

Âω
t = ÂO

t × ωO (7)

and it would be used to optimize the main clipped Surrogate
Objective:

LCLIP (θ) = E[min(pt(θ)Â
ω
t , clip(pt(θ), 1− ϵ, 1 + ϵ)Âω

t )
(8)

where θ is the policy parameter, pt(θ) is the ratio of the
probability under the new and old policies, and ϵ is a hy-
perparameter, which is set as ϵ = 0.2 [11] in this work.

The reward function of the MOV-PPO algorithm still fol-
lows the same goal of the single-objective learning algorithm,
i.e., minimizing the average latency and the number of links.
However, instead of a scalar number, the reward feedback



Rt in this algorithm is an independent vector recording the
specific reward for each objective:

Rt = {R1
t , . . . , R

o
t } (9)

In the case of our topology development, the rewards vector(or
objectives) of the MOVPPO algorithm includes:

• Rd
t : Minimize the average delay of the networks.

• Rl
t: Add as few links as possible to the topology to

suppress the cost of the network.
Apart from this, we still apply the exact definition of action,
state and same other reward penalties for both reward ob-
jectives of the MOVPPO algorithm as in the single-objective
approach.

Algorithm 1 MOV-PPO for Topology Design

Input: Given O preferred weights ωo, O value nets V1, ..., Vo

for each objective, policy net πθold , replay buffer M , state
St, action At, and the transition probability Pt

1: for iteration = 1, 2, . . . do
2: Initialize the S1 with K-connected graph.
3: for actor = 1, 2, . . . do
4: Run policy πθold in TopoWorld environment for T

time steps, and push dataset {St,At,Rt,St+1,Pt} into M
5: Compute advantage estimates Âo

t = {Â1
t , . . . , Â

o
t}

based on value vector QO
t = {V1(St), . . . , Vo(St)}, then

compute weighted advantages as Âω
t = ÂO

t × ωO

6: end for
7: Update value net by applying label (Âω

t + QO
t ) and

optimize surrogate L w.r.t θ,
8: θold ← θ
9: end for

V. EXPERIMENTS AND RESULTS

A. Testbed and Training Settings

The testbed in our work draws on several popular software-
defined network tools: The Mininet [21], which is a widely
used real-time network emulator, will create a customized
topology, thus providing the infrastructure for performance
tests like the Ping (Packet InterNet Groper) and D − ITG
(Distributed Internet Traffic Generator) [22] commands, which
is a network workload generator as well as a standard perfor-
mance metric measurement tool. Note that all the tests have
considered the first node as the source node, i.e., traffic input
or output entry; And all topologies used for effect comparison
were tested under the same network traffic matrix, i.e., same
pre-settings of delay values for the links in the Mininet.

TABLE I: Experimental Parameters

Command Experimental parameters

Ping Protocol Compartment
Internet Control

Message Protocol 30 ms

D-ITG Protocol Rate Packet Size Duration
UDP 10 pkt/s 512 bytes 60 s

For neural networks(NNs) design, we use multiple linear,
fully connected layers to form our NNs for training purposes,
which can be roughly divided into three parts: 1) Input layer:
The input layer includes an equal number of neurons with
a maximum number of links. 2) Hidden layers: Usually,
we have two hidden layers in our networks. Each of them
has exactly the same neurons, as depicted in Table III. 3)
Output layers: This layer composition would depend on the
selected algorithm. For DQN, it only includes one neuron,
while for MOV-PPO, it typically contains a softmax layer as
well as a linear layer with the neurons equaling actions in the
action space. After training, this superimposed linear network
allows agents to learn optimized results under different node
dimensions and network traffic. The specific experimental
parameters and DRL training settings are listed in Table I and
Table II.

TABLE II: Training Settings

Algorithms Parameters
selected Learning rate Discount Epsilon GAE factor

DQN 1e-4 0.99 0.88 None
MOV-PPO 3e-4 0.99 None 0.95
Algorithms Neurons per hidden layer for different node numbers

selected N10 N16 N20 N32
DQN 64 128 256 384

MOV-PPO 64 128 256 384

B. Results

The learned topologies and test results will be provided with
the corresponding analysis in this section. However, we only
test the learned topologies in the number of nodes N equal to
10, 16, 20, and 32 due to hardware limits. The accumulated
rewards of learning processes are showed on the Fig. 3 and 4.

Fig. 3: DQN Rewards Fig. 4: MOVPPO Rewards

1) Single-Objective Learned Topology: To compare the
actual performance of topologies learned by single-objective
DQN agent, we also test several existing topologies under the
same traffic environment.

a) Multi-Ping Test: In this sub-section, the source node
will be set as a server to receive packets from other nodes
synchronously. The results in Fig. 5 show the average value
obtained after 5 Ping tests. The graph reveals that the topolo-
gies learned by DQN dominate the lowest delay among all
the multi-ping test results for all node dimensions, except
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Fig. 5: Ping Test for Single-Objective Learned Topologies

Fig. 6: D-ITG Test for Single-Objective Learned Topologies

for the ten-nodes scenario where the Bidiakis [23] topology
unexpectedly takes the lead.

b) D-ITG Test: In this part, the source node is instead
treated as a client and thus receives packets from other nodes
synchronously. Note that we choose a smaller flow stream at
each sending node to avoid network congestion.

The test results in Fig. 6 show that, although the solution
brought by our DQN agent does not carry the same equivalent
benefit in the 10-node case, the learned topologies still win in
most of the latency tests. Likewise, we can also observe that in
most test scenarios, single-objective learned topologies come
out on top in terms of throughput measurements.

2) Multi-objective Learned Topology: In this section, we
test our topologies explored by a multi-objective (MO) DRL
algorithm dictated in section IV. To visualize the performance
of this topology more precisely, We use both the existing
research results obtained by the Simulated Annealing (SA)
search [4] and the consequences of single-objective (SO) learn-
ing as baselines. All topologies generated by three algorithms
are tested under the same networking environments and traffic
metrics. In addition, Table IV shows the difference in link

number between SA [4], SO, and MO topologies.
What can be seen from Fig. 7 is that above all the

multi − ping tests for both kinds of topologies, the MO
topologies succeed in reaching less latency in all of the node
numbers. This trend seems to become more apparent as the
number of nodes increases. Apart from that, although the MO
topologies have more links in the N16 test than the SA and SO
topologies, we can still see a significant reduction in latency
compared to the latter two in Fig. 8 and Table III; on the other
hand, in N20 and N32 tests, The MO topologies achieve the
double advantage of including fewer links and lower latency
compared to SA and SO topologies. It is also noticed that
N32 MO topology outperforms the SA and SO baselines in
all three objects (delay, bandwidth, and links number).
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Fig. 8: D-ITG Test for Multi-Objective Learned Topologies

TABLE III: Comparison of links number

The number Topology links
of nodes SA [4] SO MO

16 32 32 34
20 40 60 37
32 64 85 58

VI. DISCUSSION

Regularity of The Learned Topologies: What is evident in
the results is that all the learned topologies, unsurprisingly, are



irregular graphs. Compared to those conventional topologies
based on spatial rules, the irregular graphs are more likely
to offer significant reduction of average hops. This trend is
expected to be more beneficial in complex networks [24].
We could add a penalty term to the reward function such
that the number of links to a node is limited to a certain
number for regularization purpose, but this may affect the
actual performance of the topologies.

The Price of Our Design: Although DRL has made a
big splash in various research and industrial fields in recent
years, there are still some difficulties when solving practical
problems using it. In our case, the generalization of the
topologies design process is not trivial, as the algorithm always
needs to relearn the optimized topology when the network
scale or network nodes change. This could bring some extra
time costs. However, some recent studies [25], [26] have
shown that the transferable features of neural networks may
alleviate this problem to some extent.

Another Possible Objective: Apart from the latency and
number of links, throughput is another essential network
performance indicator. Specifically, low latency and high
throughput are usually preferred for DCNs. Following our
workflow, there is a definite possibility to improve this indica-
tor by building an evaluation reward function, e.g., the upper
bound of topology throughput from the recent research [27].
Furthermore, if such a multi-objective learning model is used,
the DRL agents would have a good chance of discovering the
Pareto Frontier for all of the above optimization particles.

VII. CONCLUSION

In this paper, we have proposed a learning approach to
search DCN topologies with lower latency and limited link
numbers. A simulation environment called TopoWorld has
been developed to allow DRL agents to perform learning
activities, and a single-objective and proposed multi-objective
DRL algorithm have been applied. Experiments with Mininet
and D-ITG have been carried out to show the advantages of the
learned topologies in achieving better performance compared
to traditional topologies.
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