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Abstract
In recent years discontinuous Galerkin (DG) methods have received increased
interest from the geophysical community. In these methods the solution in each
grid cell is approximated as a linear combination of basis functions. Ensemble
data assimilation (DA) aims to approximate the true state by combining model
outputs with observations using error statistics estimated from an ensemble of
model runs. Ensemble data assimilation in geophysical models faces several
well-documented issues. In this work we exploit the expansion of the solution
in DG basis functions to address some of these issues. Specifically, it is inves-
tigated whether a DA–DG combination (a) mitigates the need for observation
thinning, (b) reduces errors in the field’s gradients, and (c) can be used to set
up scale-dependent localisation. Numerical experiments are carried out using
stochastically generated ensembles of model states, with different noise proper-
ties, and with Legendre polynomials as basis functions. It is found that strong
reduction in the analysis error is achieved by using DA–DG and that the ben-
efit increases with increasing DG order. This is especially the case when small
scales dominate the background error. The DA improvement in the first deriva-
tive is, on the other hand, marginal. We think this to be a counter-effect of the
power of DG to fit the observations closely, which can deteriorate the estimates
of the derivatives. Applying optimal localisation to the different polynomial
orders, thus exploiting their different spatial length, is beneficial: it results in a
covariance matrix closer to the true covariance than the matrix obtained using
traditional optimal localisation in state space.
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1 INTRODUCTION

Discontinuous Galerkin (DG) methods produce gridded
numerical solvers with a mix of characteristics that are
ideally suited to large geophysical fluid models. They com-
bine several advantageous features from other numeri-
cal approaches like finite-difference, finite-volume, and
finite-element methods. First, they conserve tracer vol-
umes, mass, and momentum (though not necessarily
energy). Second, owing to the discontinuity of the solution
at the grid cell edges, numerical stencils involve only face
neighbours. These stencils are smaller than those in con-
tinuous Galerkin methods, in which the stencils can also
involve vertex neighbours, and higher order finite-volume
methods, which use stencils stretching over multiple grid
cells. Consequently, DG methods can be parallelised more
efficiently. Third, as discontinuities are allowed at the
grid cell face it is relatively straightforward to merge/di-
vide cells (h-adaptivity) and/or vary the number of basis
functions (p-adaptivity) on a cell-by-cell basis (Marras
et al., 2016). Fourth, as higher order DG models allow the
solution to vary within grid cells, discontinuities at the grid
cell edges are smaller than those in finite-volume mod-
els. This allows for better approximations of the contin-
uous fields found in geophysical fluid dynamics. Finally,
for sufficiently smooth solutions—for example, the solu-
tions one customarily encounters in geophysical mod-
els in regions with at least some degree of turbulent
dissipation—increasing the polynomial order turns out to
be a computationally more efficient way to reach a desired
accuracy than reducing the grid cell size (Vos et al., 2010).

The potential benefits of DG solvers have not escaped
the attention of the geophysical community. Over the
last few years, several numerical geophysical prediction
(research) systems have been developed/are under devel-
opment that use (partial) DG methods in the compu-
tational core. Examples of such efforts are the coastal
ocean model Thetis (Kärnä et al., 2018), the US Navy/Air
Force NUMA atmospheric model (Giraldo, 2011), the
soil water flow model DORiE (Riedel et al., 2020), or
the sea-ice model neXtSIMDG being developed as part
of the Scale-Aware Sea Ice Project (https://sasip-climate
.github.io/). The latter development is the direct motiva-
tion for the work laid out in this article. neXtSIMDG uses
the Maxwell-elasto-brittle rheology and thermodynamics
from its ancestor, the neXtSIM sea-ice model (Bouillon &
Rampal, 2015; Rampal et al., 2016; Samaké et al., 2017), but
replaces the original finite-element numeric on an adap-
tive Lagrangian mesh with a DG numeric on an Eulerian
mesh. This eases the embedding in a global climate system,
keeps accurate representation of sharp gradients in the
physical fields, and facilitates efficient parallelisation of
the model to achieve superior computational performance.

In the geosciences and climate enterprise it is common
practice to periodically correct the model state towards the
truth using observations in a process called data assim-
ilation (DA). A wide range of DA algorithms is avail-
able for this purpose. For example, see Kalnay (2002);
Navon (2009); Bannister (2017); Carrassi et al. (2018);
Evensen et al. (2022) for an overview. For example, the
three-dimensional variational (3DVar) method is used
in the sea-ice model of Environment Canada (Buehner
et al., 2013), the Arctic Cap Nowcast/Forecast System
(Hebert et al., 2015), and the Multivariate Ocean Varia-
tional Estimation/Meteorological Research Institute Com-
munity Ocean Model (Toyoda et al., 2016). The MITgcm
model has been paired with a local error subspace trans-
form Kalman filter (Mu et al., 2018). Other examples, such
as the TOPAZ4 (Sakov et al., 2012; Xie et al., 2018), the
NEMO-LIM2 (Massonnet et al., 2013), and the neXtSIM
model (Cheng et al., 2023; Richter et al., 2023; Sampson
et al., 2021), all use different flavours of the ensemble
Kalman filter (EnKF) (Evensen et al., 2022). It is planned
that DA capabilities will also be added to neXtSIMDG.
EnKFs are model agnostic and can in principle directly
be used with DG models such as neXtSIMDG. The overar-
ching objective of this study is to investigate an optimal
approach that allows the EnKF to directly update the DG
decomposition of the physical fields based on information
provided in the observations. We believe this will improve
the DA performance, stability, and efficiency relative to a
comparable approach that is blind to the underlying DG
structure.

We hypothesise that it is possible to exploit the struc-
ture of a DG solver directly to get better DA performance at
little additional computational cost. In particular, we will
investigate whether it is possible to (a) exploit the fact that
DG basis functions partially resolve the solution at a sub-
cell level to assimilate multiple observations per grid cell;
(b) correct not only the field itself but also its derivatives,
and (c) profit from the separation of the solution in basis
functions inherent to DG to construct a scale-dependent
localisation scheme. As a first and explorative study, we
take an incremental approach to the problems. In a real-
istic set-up, DA would be applied in a sequential fashion.
That is, the DA would assimilate observations into a model
forecast and the results would subsequently be used as ini-
tial conditions for the following forecast cycle. Instead, we
plan to investigate these hypotheses using a synthetic, uni-
variate one-dimensional (1D) model. That is, a model in
which the states are realisations of a statistical distribution
and in which a dynamical forward model is absent. Conse-
quently, we will not investigate whether the DA correction
gives rise to numerical instabilities when the corrected
states are propagated forward in time but will defer this
to future work. The primary reason for this choice is that
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PASMANS et al. 3

the statistical set-up allows for the generation of arbitrary
background fields while maintaining control over their
scales. Furthermore, it also limits the number of factors
that can affect DA performance. For example, when the
state is propagated forward in time between DA correc-
tions using a dynamical model, the model can cause a
non-Gaussian error distribution to develop. In that case,
the assumptions under which most DA methods are valid
are violated and the DA correction is suboptimal. Note
that, even though we utilise the DG structure in DA, we
will solely focus on the performance of DA instead of the
DG scheme itself. In particular, this study is carried out
under the assumption that a specific grid resolution and
order of DG scheme is given by the modellers, as this is the
typical situation faced by DA practitioners.

The first and second goals of this study are motivated
by the density of observations bestowed by satellites. The
resolution for the latest generation of satellite missions
is within (101)–(103)m (Drüe & Heinemann, 2004;
Drusch et al., 2012; Emery et al., 1994; Gong et al., 2013;
Gourmelen et al., 2018), which is already smaller than
typical grid sizes in numerical models ((103)m). Conse-
quently, the observed fields contain spatial scales smaller
than those that can be resolved with the current gener-
ation of finite-volume models. The portion of the model
field that cannot be resolved by the model gives rise
to representativeness errors. Together with instrumental
errors, these errors make up the observational error. The
work on the impact of these representativeness errors
on DA performance is extensive, and reviews can be
found in Cohn (1997); Janjić and Cohn (2006); Janjić
et al. (2018). These representiveness errors should be
accounted for when determining the statistics of the obser-
vational errors. This is particularly so in the specification of
the observational error covariance. If not accounted for or
removed, these errors can degrade the DA analysis (Liu &
Rabier, 2002). Instead of explicitly accounting for the rep-
resentiveness errors in the observational error statistics the
issue is usually coped with by data thinning, the process of
selecting only a portion of available data, and by superob-
bing. The latter is the process of averaging all observations
from the same observation platform over one (or more)
grid cell(s) into a single observation (Oke et al., 2008).
Although very popular, as they represent a concrete prag-
matic option, superobbing and thinning are not ideal, as
information in the small scales is lost in the process. In
DG models the solution is (partially) resolved at the subcell
scale. We therefore conjecture that the typical one observa-
tion per grid cell rule of thumb for superobbing/thinning
no longer applies when the structure of DG is used in the
DA. An improved capability to assimilate densely spaced
data might then open up to the possibility for DA to cor-
rect subcell scales, thus possibly improving first-order (the

gradient), or even higher order, derivatives of the model
fields.

Our third research question, DG-based scale-
dependent localisation, tackles a central concern for
ensemble-based DA methods in high dimensions.
Ensemble-based DA algorithms use an ensemble of model
runs to estimate B, the covariance of the errors in the
model state. Owing to the finite size of the ensemble,
the ensemble estimate is plagued by sampling errors
(Houtekamer & Mitchell, 1998). If the absolute error cor-
relation between the entries of the state vector is small
(as is usually the case in physical systems where corre-
lation decays exponentially with distance; e.g., Carrassi
et al., 2018), sampling errors can dominate the true cor-
relation. The process to suppress this sampling error is
referred to as localisation. Two categories of localisation
scheme are in common use (Carrassi et al., 2018; Grey-
bush et al., 2011): domain localisation and covariance
localisation. Though computationally more efficient,
domain localisation is not suitable for observations that
are non-local or exhibit spatially correlated observation
errors. As such conditions are common when dealing
with dense satellite observations, the focus of this study
will be on covariance localisation, in which localisation
is applied directly to the background error covariance. In
its most prevalent form, covariance localisation is applied
in state space: it is assumed that the true error correla-
tions tend to zero over long distances, and this behaviour
is imposed on the ensemble covariance by tapering it
off to zero with increasing distance (Ehrendorfer, 2007;
Hamill et al., 2001). The distance at which the sampling
noise dominates the true error covariance will depend
on the scales in the true covariance: the larger the scale
in the covariance, the larger the tapering, or localisation,
distance should be. However, distance-based localisation
schemes in the state space do not offer this flexibility.
Alternatively, the covariance can be localised in Fourier
space (Buehner & Charron, 2007). This makes locali-
sation scale dependent, but this dependence cannot be
varied with position in the model domain. Localisation in
wavelet space combines the best parts of the preceding two
approaches (Berre et al., 2015; Chabot et al., 2017; Deck-
myn & Berre, 2005; Tangborn, 2004; Varella et al., 2011).
As each wavelet represents a limited range of scales for a
limited region, the localisation can be adjusted based on
both scale and position. Multiple families of wavelets (e.g.,
orthogonal Meyer and spherical harmonics) have been
used. In previous applications the use of wavelets required
transformation of model output. As the current gener-
ation of geophysical models are formulated in either a
physical grid space or spectral space, wavelet-based locali-
sation in an ensemble DA system requires transformation
of ensemble members to and from wavelet space. We will
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4 PASMANS et al.

show in this study that DG basis functions form a filter
bank separating different scales and consequently act, at
the subgridscale, much like a wavelet basis, but without
the need for wavelet transformations. The third aim of
this study is to investigate if this model-intrinsic wavelet
space can be used for localisation.

The article is organised as follows. Section 2 describes
the general set-up of a DG model like neXtSIMDG. This is
followed in Section 3 by a general description of the DA
scheme used in this study. Section 4 contains the set-up
and results of several univariate 1D twin experiments
using synthetic truths and ensembles. With these we look
at the benefits of assimilating multiple observations per
cell on the model field and on its derivatives. Section 5
describes the framework of our proposed scale-dependent
localisation scheme and numerical experiments. Finally,
Section 6, summarises our findings, draws the conclusion,
and gives forward perspectives of our study, thereby paving
the way to the application of DG-informed DA in more
realistic settings.

2 DG METHODS

In recent decades the finite-volume method has become
one of the most popular numerical methods to solve par-
tial differential equations in geophysical models (Adcroft
et al., 2022; Chen et al., 2006; Harris et al., 2021; Kühn-
lein et al., 2019; Shchepetkin & McWilliams, 2005) due to
the fact that it inherently obeys mass and tracer conser-
vation laws. In the finite-volume method, the unknowns
are assumed to be constant within a model grid cell and
their changes in time are determined by the flux through
the grid cell edges. Equivalently, one can say that the solu-
tion in the grid cell is approximated by a multiple of a
zeroth-order polynomial. This suggests a straightforward
extension to a scheme in which the solution in each grid
cell is approximated as a linear combination of higher
order polynomials. This gave rise to DG methods (Hes-
thaven & Warburton, 2007). A short overview of the gen-
eral structure of univariate DG models is presented in this
section. Hereafter, we will use italic symbols to indicate
quantities that are piecewise continuous functions of space
and we will use bold symbols for quantities that can be rep-
resented by finite arrays and, therefore, can be stored in
computer memory.

Suppose that the exact solution at position r, time t,
to a system of partial differential equations is given as
xtruth(r, t). Then the DG approximation to the scalar func-
tion xDG(r, t) is given by

xDG(r, t) =
L−1∑

l=0

M∑

m=1
xDG

lm (t)𝜙lm(r), (1)

with M the number of grid cells, L the number of basis
polynomials used in the DG approximation, and xDG(t) ∈
RL×M a matrix. The (scalar) entries of this matrix, the DG
coefficients xDG

lm , depend only on time, whereas the spatial
part of the DG solution is encoded in the basis functions

𝜙lm(r) =

{√
| det DΨ−1

m (r)| ̃𝜙l◦Ψ−1
m (r), if r ∈ Dm

0 otherwise
,

(2)
where Ψm ∶ ̃D → Dm is a coordinate transform from a ref-
erence domain ̃D to the mth grid cell Dm, with det DΨm(r)
the determinant of its Jacobian, D being the model domain,
and { ̃𝜙l ∶ 0 ≤ l < L − 1} is a set of reference functions
defined on ̃D. Specifically, each basis function is defined
locally within a grid cell and is irrelevant outside of it.
The set 𝜙 = {𝜙lm ∶ 0 ≤ l < L, 1 ≤ m ≤ M} endowed with
the L2 inner product defines a Hilbert space of functions
denoted here by V .

Several function families provide suitable candidates
for the basis functions ̃

𝜙l. On a top level, bases can be
divided between nodal and modal bases (Hesthaven &
Warburton, 2007, section 3.1). For nodal basis functions
the DG coefficients are equal to the solution evaluated at
specific nodal (grid) points; that is, xGP

lm (t) = xGP(rlm, t) if
rlm ∈ Dm. A 1D example of such a nodal basis is the fam-
ily of Lagrange polynomials with ̃

𝜙l, defined as the unique
(L − 1)th-order polynomial that satisfies ̃

𝜙l(rl′ ) = 𝛿ll′ for all
0 ≤ l < L, and 𝛿 is the Kronecker delta. In contrast, DG
coefficients for a modal basis cannot be directly found by
evaluating the function but require projecting the solu-
tion onto the modal basis functions. One such example
of a modal basis in one dimension, and the one that will
be used in this study, is the Legendre basis. This choice
is motivated by the fact that this basis is being used in
neXtSIMDG as well as that it allows for point-wise evalu-
ation of model fields within the cells. More esoteric bases
that are not pointwise defined and require more advanced
observation operators will not be considered as their use
is currently rare in geophysical modelling. In this case,
̃D = [−1, 1],

Ψm(r) =
rm+1 + rm

2
+ r rm+1 − rm

2
,

with rm the left side of the mth grid cell, and ̃
𝜙l(r) = Pl(r),

the lth-order Legendre polynomial. In this case, the DG
coefficient xDG

lm can be found by projecting xDG on the basis
polynomial:

∫D
𝜙lm(r)xDG(r, t) dr

=
L−1∑

l′=0

M∑

m′=1
xDG

l′m′ (t)
∫D

𝜙lm(r)𝜙l′m′ (r) dr
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PASMANS et al. 5

=
L−1∑

l′=0
xDG

l′m(t)∫

rm+1

rm

𝜙lm(r)𝜙l′m(r) dr

=
L−1∑

l′=0
xDG

l′m∫

1

−1
Pl(r)Pl′ (r) dr = xDG

lm ,

where xDG has been expanded using Equation (1)
and the orthogonality of the Legendre polynomials,
∫

1
−1Pl(r)Pl′ (r) dr ∼ 𝛿ll′ , has been used.

In its most general form, a nonlinear geophysical
model like neXtSIMDG can be written as

0 = (xtruth
, t)

def
= 𝜕(xtruth

, t)
𝜕t

− [−∇ ⋅  (xtruth
, t) + (xtruth

, t)], (3)

where  is the flux and  is the volume force. can be a
nonlinear operator, but often is equal to the identity oper-
ator (i.e.,(x, t) = x) and is the residual operator. In the
Bubnov–Galerkin method (Bellman, 1970), an approxima-
tion x ∈ V is sought such that the residual in Equation (3)
is orthogonal to V ; that is, for all 0 ≤ l ≤ L − 1, 1 ≤ m ≤ M,
it must hold that

0 =
∫D

𝜙lm(x, t) dr = 𝜕

𝜕t ∫D
𝜙lm(x, t) dr

+
∫D

𝜙lm∇ ⋅  (x, t) dr −
∫D

𝜙lm(x, t) dr

= 𝜕

𝜕t ∫Dm

𝜙lm(x, t) dr +
∫
𝜕Dm

𝜙lm (x, t) ⋅ dS

−
∫Dm

(∇𝜙lm) ⋅  (x, t) dr −
∫Dm

𝜙lm(x, t) dr

≈ 𝜕

𝜕t ∫Dm

𝜙lm(x, t) dr +
∫
𝜕Dm

𝜙lm
∗(x, t) ⋅ dS

−
∫Dm

(∇𝜙lm) ⋅  (x, t) dr −
∫Dm

𝜙lm(x, t) dr, (4)

where 𝜕Dm is the boundary of the mth cell and dS the
boundary area element; ∗ is the numerical flux, which
will be discussed later. In the second line of the equation,
integration by parts has been used in combination with
the information on the local support of 𝜙lm given in
Equation (2).

The flux  (x, t) is not uniquely defined on the grid
cell boundaries since𝜙lm exhibits discontinuities here. The
fundamental ansatz made in DG methods is that this flux
can be replaced by a numerical flux ∗ = ∗(x−, x+, t).
Here, x− is the approximation of x on one side of the cell
boundary and x+ on the other side. In the case the cell
boundary is part of the domain’s outer boundary, x+ is pro-
vided by the boundary conditions. The numerical flux is

problem specific and has to be chosen with care, as the
stability of the DG scheme depends on it (Hesthaven &
Warburton, 2007, section 4.4).

After integration, Equation (4) can be represented as a
system of ordinary differential equations for xDG

lm with 0 ≤
l < L, 1 ≤ m ≤ M:

d
dt

̃lm(xDG
, t) = − ̃ lm(xDG

, t) + ̃lm(xDG
, t), (5)

with xDG a tensor having xDG
lm as its entries and

̃lm(xDG
, t) =

∫D
𝜙lm(r)

(
∑

l′m′

xDG
l′m′ (t)𝜙l′m′ (r), t

)
dr,

̃lm(xDG
, t)

=
∫D
∇𝜙lm(r, t) ⋅ 

(
∑

l′m′

xDG
l′m′ (t)𝜙l′m′ (r), t

)
dr

+
∫D

𝜙lm(r)

(
∑

l′m′

xDG
l′m′ (t)𝜙l′m′ (r), t

)
dr,

lm(xDG
, t) =

∑

m′
<n′
∫
𝜕Dm′ ∩𝜕Dn′


∗

(
∑

l′
xDG

l′m′𝜙l′m′ (r, t),
∑

l′
xDG

l′n′𝜙l′n′ (r, t)

)
⋅ dS

+
∑

m′ ∫𝜕Dm′ ∩𝜕D


∗

(
∑

l′
xDG

l′m′𝜙l′m′ (r, t),
∑

l′
xDG

l′m′𝜙l′m′ (r, t)

)
⋅ dS.

The preceding discussion can easily be extended
to multivariate models by expanding each model field
separately—for example, see Hesthaven and Warbur-
ton (2007, section 5.9) for a multivariate example. In that
case, xDG would contain coefficients for different model
fields, and consequently (xDG

, t), (xDG
, t), and  (xDG)

can contain terms that depend on different fields. Fur-
thermore, the aforementioned procedure can trivially be
expanded to diagnostics equations (i.e., equations without
time derivative) that constrain the solution to a specific
submanifold by setting the left-hand side of Equation (5)
to zero.

3 DA WITH DG-BASED MODELS

DA combines a prior guess of the model state, also known
as the background, with observations in order to pro-
duce an improved estimate of the true state of the system.
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6 PASMANS et al.

A plethora of DA methods have been developed over
the past decades; though different in their details, all
share some basic components. Among these are a list of
observations and the specification of a probability distri-
bution for the observational errors, the specification of
the model state as a finite array, together with an esti-
mate of their a priori error distribution, the background
error, and an observation operator that takes the model
state as input and outputs predictions for the observed
quantities.

We shall study the implications, advantages, and
drawbacks of adapting DA to DG models. As a prototype
of a DA method, we will work with the deterministic
ensemble-3DVar (D-E3DVar): an ensemble-variational
method based on the deterministic EnKF (Sakov &
Oke, 2008). In the version of D-E3DVar used here, it is
assumed that observational error consists solely of the
instrumental error, thus neglecting the representativeness
error, that the statistics are Gaussian, static in time, and
that there is no correlation between these instrumental
errors in the different observations, while background
errors are assumed to be Gaussian with a varying covari-
ance estimated from an ensemble. Our choice for a
method as D-E3DVar is motivated by the fact that it is
an ensemble method and thus requires localisation. It
is therefore amenable to study scale-aware localisations,
as we shall discuss in Section 5. As it is a variational
method, the implementation of covariance localisation in
the linear solver is straightforward, certainly when com-
pared with an EnKF method. Furthermore, its results
are easily extendable to an ensemble of four-dimensional
variational systems, which is an approach currently used
in a number of four-dimensional variational implementa-
tions (Bonavita et al., 2016; Ngodock et al., 2020; Pasmans
et al., 2020; Pasmans & Kurapov, 2019; Zhu et al., 2022)
and theoretically can deal with nonlinear observation
operators.

D-E3DVar DA updates the forecast state by minimising
the cost function

J(𝛿x) = 1
2
𝛿xTB−1

𝛿x

+ 1
2

[
y −H(xf + 𝛿x)

]T
R−1

[
y −H(xf + 𝛿x)

]
, (6)

where xf is the ensemble mean of the forecast states, 𝛿x
the DA correction (the analysis increment) to the forecast
mean, y the vector containing the different observations,
H the (possibly nonlinear) observation operator mapping
the model state into predictions for the observations, and R
the observation error covariance matrix, which we assume
to be diagonal and constant in time. The background error

covariance B is estimated from an ensemble of N indepen-
dent model realisations as

B = 1
N − 1

N∑

n=1
a(n) ⊗

(
a(n)

)T
,

with a(n) = x(n) − xf the forecast ensemble anomaly of
ensemble member n.

For the purpose of this study we conveniently consider
point observations of the system’s state vector; therefore,
H is linear and we can write

y −H(xf + 𝛿x) = y −Hxf −H𝛿x
def
= d −H𝛿x. (7)

The post-DA model state (i.e., the analysis) produced by
minimising the cost function in Equation (6) is given by

xa = xf + ̂
𝛿x = xf +Kd, (8)

with ̂
𝛿x the value for which J attains its minimum. Similar

to Sakov and Oke et al. (2008), the members of the analysis
ensemble can be approximated as

xa,(n) = xa + a(n) − 1
2

KHa(n), (9)

where K = BHT(HBHT + R)−1 is the Kalman gain.
The values Kd and KHa(n) are given as BHTR−1∕2

𝜒

(0)

and BHTR−1∕2
𝜒

(n) respectively, where 𝜒

(n) 0 ≤ n ≤ N are
found by iteratively solving

(R−1∕2HBHTR−1∕2 + I)
[
𝝌
(0)
,𝝌

(1)
, … ,𝝌

(N)]

= [R−1∕2d,R−1∕2Ha(1), … ,R−1∕2Ha(N)] (10)

using the reduced conjugate gradient method (Gürol
et al., 2014) and a block-diagonal Krylov algorithm
(Auligné et al., 2016; Mercier et al., 2019).

With the DA scheme in hand, here the D-E3DVar
(Equations 6–9), one can then decide whether the DA
correction should act on the model physical quantities at
grid nodes xGP or on the coefficients obtained by project-
ing the field on the Legendre basis functions. Given the
former approach, the approximation of the field is com-
pletely determined by the field’s values at a set of grid
points. We will refer to this approach as the “grid-point
approach.” In the latter case, the field is a piecewise Leg-
endre polynomial of order < L. Because of this, it will be
referred to as the “DG space.” The grid point and DG
spaces are isomorphic with RM and RL⋅M respectively, and
in this work we will apply the term grid-point space to the
function space and its isomorphic equivalent in RM inter-
changeably. Similarly, we will apply the term DG space to
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PASMANS et al. 7

T A B L E 1 Interpolated solutions (zeroth-order derivative) and their first and second derivatives, for the discontinuous Galerkin (DG)
and grid point (GP) representation for the model field at point r.

Order DG Grid point

0
∑L−1

l=0
∑M

m=1xDG
lm 𝜙lm(r) = HDG

r
∑M

m=1xGP
m 𝜒m(r) = HGP

r

1
∑L−1

l=0
∑M

m=1xDG
lm

d𝜙lm
dr
(r)

+
∑L−1

l=0
∑M

m=1
∑M

m′=1𝜙lm(r)
(
[[𝜙lm]]m′ {{xDG}}m′ − [[𝜙lmxDG]]m′

) ∑M
m=1

xGP
m+1−xGP

m

Δr
𝜒m(r − 1

2
Δr)

2
∑L−1

l=0
∑M

m=1xDG
lm

d2
𝜙lm

dr2 (r)

+
∑L−1

l=0
∑M

m=1
∑M

m′=1𝜙lm(r)
(
[[𝜙lm]]m′ {{ dxDG

dr
}}m′ − [[𝜙lm

dxDG

dr
]]m′

) ∑M
m=1

xGP
m+1+xGP

m−1−2xGP
m

Δr2 𝜒m(r)

Note: Δr is the grid cell width, 𝜒m(r) = max(0, 1 − |rm−r|
Δr

), xDG (dxDG∕dr) is the polynomial DG approximation in the first (second) row of the table, [[⋅]] is the
difference between the left and right limits towards the point separating grid cells m and m + 1, and {{⋅}}m is the average of the two limits. Basis functions in
second and third rows are assumed to be orthonormal.

the piecewise-polynomial function space and its isomor-
phic equivalent in RL⋅M interchangeably. In particular, a
specific field in grid-point space (DG space) and its rep-
resentation as RM (RL⋅M) vector of values on grid points
(vector of projection coefficients) are treated equivalently
in this article. Assimilating in the DG or in the grid-point
space implies defining different observation operators. In
this work, the observations are point observations. For a
DG model, predictions for the observations are determined
by evaluating the polynomial DG approximation at the
observation points. In the grid-point approach, model val-
ues at the left side of cell m are stored in xGP

m and linear
interpolation is used to find the field value at an arbitrary
observation position r. The pointwise interpolation error of
this scheme being(Δr2), withΔr the cell size (Quarteroni
et al., 2007, section 8.1). The equations for the observation
operator for the DG and grid-point models can be found
in the first row of Table 1. Also listed in this table are
the approximations for the first and second derivatives of
the field used in the calculation of the root-mean square
error (RMSE) ratios in Section 4.2 for the case in which
the basis functions are orthonormal; they are thus only
relevant as an evaluation metric for the performance of
the methods, and not in the methods workflow. The DG
coefficients for the first-order (second-order) derivative are
found using the strong DG formulation obtained by apply-
ing integration by parts twice to ∫D 𝜙lm(r)(dxDG∕dr(r))dr
(∫D 𝜙lm(r)(d2xDG∕dr2(r))dr). The resulting expression con-
sists of two parts. The first part is the first (second) deriva-
tive of the polynomial DG approximation found in row 1
of Table 1. The second part accounts for discontinuities at
the grid cell boundaries. In the grid-point approach, val-
ues for the first (second) derivative of the model field are
obtained by first approximating the values of the first-order
(second-order) derivative in the grid cell centres (grid cell
vertices) using a central finite-difference method. These
values at the grid cell centres (grid cell vertices) are then
interpolated to the observation location using linear inter-
polation. As the error in both the central finite-difference

method and linear interpolation is (Δr2), the interpo-
lation error in the derivatives is also accurate in (Δr2).
Cubic spline (Quarteroni et al., 2007, section 8.7) and
piecewise cubic Hermite interpolating polynomial (Fritsch
& Butland, 1984) interpolation, which are(Δr4) accurate,
have also been tried in the observation operator for the
grid-point case (not shown here). Use of the cubic spline
interpolator did improve RMSE ratios, but it was still
outperformed by lower order DG models (DG01, DG02).
RMSE ratios for the piecewise cubic Hermite interpolating
polynomial interpolator at high observational density were
worse than those obtained using the spline interpolator.
This is due to the slope limiter removing the small-scale
signal in the model fields.

4 ASSIMILATION IN THE DG
SPACE: CAN WE ASSIMILATE
DENSER DATA?

The current generation of geophysical DA systems are
restricted in the density of observations that they can effec-
tively assimilate. It has been shown that in standard DA
systems, with uncorrelated observational errors, assimilat-
ing more observations produces more accurate analyses.
However, the improvement becomes marginal when the
observational density exceeds∼ 1 observation per grid cell
(Liu & Rabier, 2002). On the other hand, spatial correla-
tions between observations errors are a common occur-
rence, particularly for satellite data. Such correlations will
evidently be present if instrument errors are correlated.
But even if they are not, preprocessing and representa-
tiveness errors stemming from unresolved processes in the
model can introduce spatial correlations between obser-
vation errors (Evensen et al., 2022; Janjić et al., 2018). If
these latter correlations are not accounted for, increasing
the observational density is not only ineffective but can
even deteriorate DA performance (Liu & Rabier, 2002).
Ideally, any off-diagonal error covariances can be explicitly
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8 PASMANS et al.

accommodated in the DA algorithm. The use of diagonal
R is common, as the off-diagonal error covariances are
often not a priori known and additional steps and assump-
tions are necessary to estimate them (Campbell et al., 2017;
Evensen, 2021; Fowler et al., 2018; Michel, 2018; Miyoshi
et al., 2013; Rainwater et al., 2015; Stewart et al., 2013).
Because of this, and the fact that it allows for the use
of more efficient algorithms to minimise the cost func-
tion in Equation (6), it is in practice common to work
with diagonal observation error covariances. This is tra-
ditionally accomplished by discarding data, an operation
known as “thinning” (i.e., removing observations) and/or
by spatially averaging observations (i.e., “superobbing”).
In both cases, potentially useful observations are discarded
or their information is not properly used. To better utilise
the observation information, sophisticated schemes have
been developed to optimally select the observations to be
retained during the observation thinning process (Gratton
et al., 2015; Lazarus et al., 2010; Mulia et al., 2017; Ochotta
et al., 2007), as well as schemes in which “synthetic” rep-
resentativeness errors are created by using slightly differ-
ent observation locations for each ensemble member (Lea
et al., 2022; Zuo et al., 2017, 2018). Here, we will investigate
whether assimilation in DG models with representative-
ness errors can take advantage from higher observation
densities without having to resort to non-diagonal obser-
vation error covariances or adaptive thinning schemes. In
particular, we will study to what extent observation thin-
ning is still necessary in these models. We will ignore
superobbing at this stage and leave it for future work.

4.1 Experimental set-up

The experimental set-up is chosen to resemble that in Liu
and Rabier (2002); each realisation of the experiment is
constructed as follows and is implemented in the DAPPER
DA framework (Raanes et al., 2023):

1. First, a background field is generated by drawing from
a probability distribution. The pointwise expectation
value of this background distribution is zero and its
spatial autocovariance is

cov(Δr) = 100 ×
[
cos

(8𝜋Δr
𝓁

)
+ 4

3
sin

(8𝜋Δr
𝓁

)]

× e−6𝜋Δr∕𝓁
,

with Δr the distance between points and 𝓁 = 8000 km
the width of the periodic domain. That is, its
power spectrum can be written as (E

[
xtruth])(𝜅) =

| (cov)|2(𝜅). The generation of a realisation of such

a background field from this spectrum is described in
more detail in Appendix A.

2. Seventeen anomalies are generated, following the pro-
cedure in Appendix A, by sampling from noise with
power spectrum (𝜅) ∼ 𝜅

−𝛼 , (0) = 0 (zero mean),
∫
∞

0 (𝜅)d𝜅 = 1 (unit variance), with 𝛼 depending on
the experiment. These anomalies are added to the real-
isation of the background field created in the previ-
ous step and represent background errors. Keep one of
the 17 members thus created aside as artificial “truth”
xtruth. The other N = 16 constitute the background
ensemble. We justify the use of an ensemble of this size
based on the fact that its dimension-to-ensemble-size
ratio is (104) as large as the ratio typically found in
operational DA systems, and that tests showed rela-
tively little reduction in analysis error beyond N = 16
(not shown). That is, each realisation of the experi-
ments starts off with a different ensemble and different
ensemble mean.

3. Sample Nobs equally spaced observations from the “arti-
ficial truth” and add observational noise sampled from
a standard normal distribution. This added observa-
tional noise represents solely the instrument error and
is therefore uncorrelated by construction. The value of
Nobs will vary between experiments.

4. Project the N = 16 members on both the DG space and
the grid-point space with M = 79 grid cells. For the
grid-point space this is done by evaluating the mem-
bers expressed as Fourier series at the grid cell vertices.
Interpolation is not yet required at this stage. The DG
coefficients are obtained by integration as outlined in
Equation (A.1). This projection approach was chosen,
instead of the faster approach of obtaining the DG coef-
ficients by interpolating the field to Gauss–Legendre
points, to avoid aliasing of higher order DG modes
into the coefficients for the lower order modes (Hes-
thaven & Warburton, 2007, section 5.3). This ensures
that these small-scale processes will not be represented
in the numerical projection as they are perpendicu-
lar to the projection space. The lost processes mimic
representativeness errors in realistic, dynamic mod-
els stemming from the lack of capability to resolve
dynamics at all scales. Contrary to the observational
noise, these representativeness errors are spatially
correlated.

5. Sample the members at the observation locations
using HGP for the projection on the grid-point
space and HDG for the projection on the DG spaces
(see Section 3).

6. Compute the analysis using Equation (8).
7. Calculate the analysis RMSE for the field and some of

its derivatives. The RMSE in the pth-order derivative is
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PASMANS et al. 9

calculated as
√√√√

M∑

m=1∫Dm

(
p(r) −

dpxtruth

dpr
(r)

)2

dr (11)

with p the interpolator for the pth-order derivative
in Table 1 corresponding to either the grid-space or
DG model. Notice that this RMSE contains both the
background/analysis error and the representativeness
error.

4.2 Results observation density

Following the procedure in Section 4.1 using Nobs obser-
vations, we compute the domain-averaged forecast (prior
to DA) and analysis RMSE; that is, the L2-norm of the
error between the “truth” and the ensemble mean, for the
fields and their first- and second-order derivatives. This is
then repeated another 49 times, each time using a differ-
ent 16-member ensemble. After completion, the same 50
realisations of a 16-member ensemble are used to carry
out the same experiment but now using different num-
bers of observations Nobs. As a result of the procedure, the
error in the model fields consists of two parts. One part
is the anomaly explicitly introduced in the second step of
Section 4.1. This part corresponds to the background and
model error in a model with full dynamics. The second part
is an interpolation/projection error and would correspond
to the representativeness error in a full model. In the DG
models based on Legendre polynomials, the (derivative) of
the latter error e is bounded by

‖‖‖‖
dde
drd

‖‖‖‖
≤

hL−d
√
(L + Lmax − 4d)!

‖‖‖‖
dLmax xtruth

drLmax

‖‖‖‖
(12)

with || ⋅ || the L2-norm and Lmax = 11 the number of
degrees of freedom per grid cell for the highest order DG
scheme considered in this work (Hesthaven & Warbur-
ton, 2007, section 4.3). This shows that, even prior to any
DA, the error in the model field will be smaller when
high-order DG schemes (i.e., L ≫ 1) are used and that the
interpolation errors for the derivatives (d > 0) are higher
than for the field itself (d = 0). As our interests lie with
the performance of the DA and not the model, we try to
filter out this effect by displaying RMSEs in this work as
post/prior DA ratios.

The RMSE ratios from these 50 experiments and their
90% confidence intervals calculated using percentile boot-
strap (Efron & Tibshirani, 1994) are shown in Figure 1a
as a function of the average number of observations per
grid cell. For the grid-point model, the decrease of the

F I G U R E 1 Domain-averaged root-mean-squared (RMS)
analysis error (RMSEa)/RMS background error (RMSEbg) ratio in
the (a) field, (b) first-order derivative of the field, and (c)
second-order derivative of the field as a function of the average
number of observations per grid cell for the grid-point model with
M = 79 grid cells as well as discontinuous Galerkin (DG) models of
orders L − 1 = 0, L − 1 = 1, L − 1 = 2, L − 1 = 4, L − 1 = 6,
L − 1 = 8, and L − 1 = 10, M = 79 grid cells, and background error
power spectrum S that scales as S ∼ 𝜅

−4.

ratio with increasing observation densities starts to level
off at Nobs∕M ≈ 1.5 with M = 79 the number of grid cells.
For higher order DG models (i.e., DG models using poly-
nomials of order ≥ 1, the RMSE ratio decreases faster
with increasing observation density than for the grid-point
case. The difference in slope is most pronounced when
Nobs∕M ≤ 5, but the RMSE in the DG models continues
to decrease even after this point. As a result, the DA
in the higher order DG models outperforms the DA in
the grid-point model significantly at the 90% level. This
behaviour—that is, the capability to assimilate and ben-
efit from denser data—is a consequence of the DG mod-
els having more degrees of freedom than the grid-point
model. Therefore, it can provide a better fit to the obser-
vations, as will be shown at the end of this section. For
the zeroth-order derivative (i.e., the model field itself)
there is no DA benefit beyond a DG order of 4. This can
be explained by the fact that the background error spec-
trum in the experiment is dominated by (𝜅) ∼ 𝜅

−4. That
is, it is dominated by the large scales (small 𝜅). Higher
order polynomials represent smaller scales, and conse-
quently the background variance explained by the higher
order DG coefficients is so small that effectively no DA
updates are made to these coefficients. Contrary to Liu and
Rabier (2002), no increase of RMSE with increasing obser-
vational density was detected. This is because the spatial
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10 PASMANS et al.

observational error correlations in the work of Liu and
Rabier (2002) are larger than in this experiment as they
have added long spatial correlations, representing corre-
lated instrumental errors, to the representativeness errors
already present Liu and Rabier (2002). In this experiment,
however, instrumental errors are assumed to be uncorre-
lated. The RMSE ratios for the first derivative decrease
(i.e., improve) with increasing DG order, as shown in
Figure 1b. The improvement over the grid-point model is
significant at the 90% confidence level for higher order DG
models. Furthermore, the relative improvement increases
consistently with the DG order. However, the actual size
of this improvement is rather marginal (<0.7%; cf. the
y-axis ranges in Figure 1a,b). Finally, Figure 1c shows that
DA has no significant impact on the errors in the second
derivative.

The absence of improvement when the DG order is
increased beyond 4 suggests that the potential of DG-based
DA to improve over grid-point DA is related to (effec-
tively bounded by) the scales actually present in the back-
ground error. To investigate this behaviour, we perform the
same type of experiments but this time with background
errors sampled from a pink-noise spectrum (i.e., a spec-
tral slope 𝛼 = −1) that, by construction, includes smaller
spatial scales. The results are shown in Figure 2. In par-
ticular, Figure 2a confirms the finding in Figure 1 that the
higher order DG models outperform the grid-point model.
Nevertheless, in contrast to Figure 1a, there is now a con-
sistent reduction of the RMSE ratios with increasing DG
order. It is worth noting, however, that the RMSE ratios are
higher than those obtained with a spectral slope of 𝛼 = −4
(see Figure 1a). The reason for this will be discussed in
more detail at the end of this section. For the first and
second derivatives (Figure 2a,b) the situation is substan-
tially different from that in Figure 1 with the RMSE ratios
increasing as the DG order increases: DA deteriorates the
representation of the gradient and the Laplacian of the
solution.

To understand and illustrate why this occurs, we plot
in Figure 3 the observations, the truth, the background,
and the analysis for DG orders 2 and 10, the grid-point
solution, and the background error for the two noise spec-
tra under consideration. In the case of a pink spectrum
(𝛼 = −1, Figure 3a,c,e), the spectrum of the background
error in the first (second) derivative has a slope of 𝛼 = 1
(𝛼 = 3), which follows a blue spectrum. This implies that
most of the error in the first and second derivatives is in the
smaller scales. As the dashed orange line (the background
estimate) in Figure 3a,c shows, this small-scale portion of
the spectrum is filtered out by projecting on the grid point
or on the DG02 space. Therefore, there is not much error
left to be removed by the DA and the RMSEs ratios are
of ∼ 1 (cf. Figure 2b,c). The higher order polynomials in

F I G U R E 2 As Figure 1, but now with a background error
power spectrum S that scales as S ∼ 𝜅

−1.

the DG10 model contain smaller scales. The freedom con-
tained in these scales is used to fit the observations (see
Figure 3e). However, to fit the observations, the analysis
field must make sharp turns (e.g., see Figure 3e near posi-
tion 100 and 700 km), leading to large oscillations in the
analysis, especially near the cell boundaries. These oscil-
lations really stand out when we look at the differences
in the analysis fields between DG10 and DG02 shown in
Figure 3i. They are several times larger than the differences
in the background and the differences between DG02 and
the grid-point model shown in Figure 3g. This behaviour
is similar to the Runge phenomenon observed for the
interpolation polynomial: as the DG order increases, the
analysis starts to fit the observations. However, increases in
order do not convergence uniformly to some limit. Instead,
near the boundaries, oscillations develop of which the
amplitude increases with increasing order. These oscilla-
tions can result in pointwise divergence (e.g., see Figure 3e
near 700 km). As the scale of these oscillations is small,
their contribution to the RMSE is more noticeable for
the derivatives than for the field itself. Both slope lim-
iters and spectral filtering are popular methods to remove
small-scale oscillations in finite-element methods. Tests in
which a slope limiter was applied to the ensemble mem-
bers (not shown here) indicate that they are of little benefit
for the set-up used here. Our truth does contain small-scale
oscillations, and removal of these oscillations from the
ensemble by the limiter is detrimental to DA’s ability to fit
these oscillations. A similar issue arises when spectral fil-
ters are used to suppress higher order polynomials in the
analysis. In summary, for high-order DG models the reduc-
tion of errors in the field introduces errors in the small
scales that are magnified by differentiation.
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PASMANS et al. 11

F I G U R E 3 Example of
the the true field (blue), the
background estimate (orange),
and analysis (green) for (a, b)
the grid-point model, (c, d) the
discontinuous Galerkin (DG)
order 2 model (DG02), (e, f) the
DG order 10 model (DG10)
with background error sampled
from a spectrum with
(a, c, e, g, i) 𝛼 = −1 and
(b, d, f, h, j) 𝛼 = −4. On
average, three observations are
assimilated per grid cell. The
observed values are depicted as
black + signs. Only a limited
part of the domain (nine grid
cells) is shown. Also shown are
the differences between the
various models: (g) difference
between panels (c) and (a); (h)
difference between panels (d)
and (b); (i) difference between
panels (e) and (c); (j) difference
between panels (f) and (d).

With a red error spectrum (𝛼 = −4) the spatial corre-
lations in the background errors are longer. For portions
of the domain smaller than the correlation scale this gives
the impression that the background is the truth plus a
fixed offset (see Figure 3b,d,f) and errors in its derivatives
are small. Since most of the error is located in the large
scales, background estimates for the derivative are already
good and little correction from DA can be achieved.

Consequently, the differences in the analysis between
DG02 and the grid-point model and between DG10
and DG02, shown in Figure 3h,j respectively, are a full
order smaller than those observed using a pink spectrum
(Figure 3g,i).

The foregoing two experiments were repeated, but now
using observations randomly distributed throughout the
domain with the total number of observations ranging
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12 PASMANS et al.

from 4 to 1027. No significant difference with the results
in Figures 1 and 2 were found (not shown). The experi-
ments were also repeated (not shown) using observational
error standard deviations of 𝜎o = 0.5 (𝜎o = 1.5). In these
cases the analysis RMSE ratio is lower (higher) than those
in Figures 1 and 2, but there is no qualitative difference.

The dependence of the DA performance on the back-
ground error spectrum and its spatial scales is further
explored in Figure 4. In Figure 4 the RMSE ratio for the
model field and its derivatives is shown as function of the
slope of the power spectrum 𝛼 used to generate the back-
ground errors for three different observational densities.
The left column of Figure 4 shows that for the model field
itself DA performance improves in all DG orders as the
spectrum from which the background errors are sampled
becomes redder (lower 𝛼): the smaller the dominant scales
in the error are, the smaller the improvement obtained
using DG-based DA. However, the background errors
benefit the most from increasing the DG order in models

in which the smaller scales dominate. The centre and right
column of Figure 4 show that the negative impact of DA on
the derivatives in the higher order DG models starts to dis-
appear when the background error spectrum slope drops
below 𝛼 < −2.

The experiments in the preceding part of this section
were all carried out under the assumption that the num-
ber of grid cells remains the same. This is because we
are primarily interested in the optimal number of obser-
vations to assimilate per grid cell given a specific model
set-up. This set-up resulted in lower RMSE ratios for the
higher order DG models as they possess a higher num-
ber of degrees of freedom than the grid-point model. For
completeness we will also compare the RMSE ratios of the
DG models with the ratios in grid-point models having an
equal number of degrees of freedom. Here, the number of
degree of freedom in the grid-point experiment is varied by
varying the number of grid cells, whereas in the DG exper-
iments it is varied by varying the order of the DG scheme

F I G U R E 4 Investigation into the
dependence of the root-mean-squared
error (RMSE) on the scales in the
background error. Shown are the
analysis/background RMSE ratios of
the (a, d, g) zeroth, (b, e, h) first, and
(c, f, i) second derivatives as a function
of the slope 𝛼 of the power spectrum for
experiments assimilating on average
(a–c) Nobs∕M = 1, (d–f) Nobs∕M = 3,
and (g–i) Nobs∕M = 9 observations per
grid cell, with Nobs the total number of
observations and M = 79 the number of
grid cells.
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PASMANS et al. 13

whilst keeping the number of grid cells equal to M = 79.
The RMSE ratios as a function of number of degrees of
freedom are shown in Figure 5. The ratios are shown for
different numbers of assimilated observations with qual-
itatively similar results. For errors generated from a red
spectrum (𝛼 = −4) the DA performance of the grid-point
and DG models at an equal number of degrees of free-
dom is not significantly different at the 90% -confidence
level. An exception to this behaviour is the DG0 model
with 79 degrees of freedom, for which DA performs signifi-
cantly worse than the grid-point model. This is because for
a single grid cell DG0 only uses one degree of freedom to
approximate the model, whereas in the grid-point model
the approximation involves two points (one at each cell
edge). For a pink-noise error spectrum (𝛼 = −1), DA works
better in the grid-point model than in the DG models with
equal number of degrees of freedom, as the former is not
affected by the Runge phenomenon. Increasing the value
of R to weaken the impact of the observations within DA
did not resolve this problem (not shown). Even though DA
for the grid-point model performs, at a given number of
degrees of freedom, as good as or better than the DG model,
it should be noted that in a realistic setting the numer-
ical scheme will not be determined by the requirements
of DA. Instead, it will be determined by considerations
related to the practical running of the model; for example,
hardware architecture and parallelisation. Even with the
same number of degrees of freedom, it is possible that
wall times for the grid-point and DG model computations
might differ.

F I G U R E 5 Analysis/background root-mean-squared error
(RMSE) ratios as function of the number of degrees of freedom in
the model when assimilating (a) Nobs = 79, (b) Nobs = 237, and (c)
Nobs = 711 observations for the grid-point model with different
number of grid cells and discontinuous Galerkin (DG) models with
different orders but fixed number of grid cells. RMSE ratios are
shown for background error spectrum S(𝜅) = 𝜅

𝛼 with 𝛼 = −1 and
𝛼 = −4.

5 DG-BASED SCALE-DEPENDENT
LOCALISATION

In this section we shall consider exclusively DG models
using Legendre polynomials as the basis function. We will
look at their filtering properties and will show how these
properties can be used to introduce a scale-dependent
localisation for ensemble-based DA methods.

5.1 Filtering properties of Legendre
polynomials

The Legendre polynomials form a family of polynomials
of increasing order l on domain ̃D = [−1, 1] given by the
recursion relation (Legendre, 1785, p. 431)

̃
𝜙l(r) =

⎧
⎪
⎨
⎪⎩

1 if l = 0
r if l = 1
2l−1

l
r ̃
𝜙l−1(r) −

l−1
l

̃
𝜙l−2(r) if l > 1.

The Legendre polynomials are orthogonal; that is,
∫
̃D
̃
𝜙l(r) ̃𝜙l′ (r) dr = [2∕(2l + 1)]𝛿ll′ . Examples of the basis

functions 𝜙lm based on the Legendre polynomials are
shown in Figure 6a.

The power spectra in Figure 6b show that, as the
polynomial order increases, a relatively larger part of the
spectral power is contained in the smaller scales (𝜅 > 1)
whereas less and less ends up in the larger scales (𝜅 ∼ 0).
This suggests that the Legendre polynomials can be used
to construct a band-pass filter. In the following we will
describe how such a filter can be constructed. For sim-
plicity, we will assume that the model grid D consists of

F I G U R E 6 (a) Examples of Legendre basis polynomials 𝜙lm

of different polynomial orders l on a domain consisting of 79 cells of
size 2. The examples shown all have their support in the grid cell
[−1, 1]. (b) Power spectrum of the polynomials shown in (a).

 1477870x, 0, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/qj.4737 by T
est, W

iley O
nline L

ibrary on [20/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



14 PASMANS et al.

grid cells of width 2. Such a situation can always be cre-
ated by applying a suitable coordinate transformation to
the model’s differential equations before integrating the
model. After such a transformation the transform function
Ψm ∶ ̃D → Dm simplifies toΨm(r) = rm − r, where rm is the
centre of the mth grid cell. This transformation can imme-
diately be generalised to a continuum as Ψr(r′) = r − r′.
Furthermore, we extend the definition of the Legendre
polynomials ̃

𝜙l from ̃D to R as

̃
𝜙

l
(r′) =

{
̃
𝜙l(r′) if r′ ∈ ̃D
0 otherwise

and use this to define a filter l,

l(x)(r, t)
def
= (x ∗ ̃

𝜙

l
)(r)

def
=
∫

R

̃
𝜙

l
(r − r′)x(r′, t) dr′

=
∫

1

−1
̃
𝜙l(r′)x(Ψr(r′), t) dr′,

where ∗ denotes convolution. From the convolution
theorem it now follows that

|l(x)|2(𝜅)
def
= | (x ∗ ̃

𝜙l)|2(𝜅)
= | (x◦Ψr)|2(𝜅)| ( ̃𝜙l)|2(𝜅)
= | (x)|2(𝜅)| ( ̃𝜙l)|2(𝜅),

where  is the Fourier transform, 𝜅 is the wave num-
ber, and by definition the power spectrum reads ( ̃𝜙l) =
| ( ̃𝜙l)|2. That is, the filter l modifies the spectral power
contained in x at wave number 𝜅 with a factor | ( ̃𝜙l)|2(𝜅).
The power spectra | ( ̃𝜙l)|2(𝜅) in Figure 6b show that
the peak of this spectrum shifts to higher wave num-
bers as l increases. Consequently, l removes spectral
power at low wave numbers (long scales) and the range
of wave numbers (scales) over which this removal takes
place increases with increasing l. Furthermore, using the
orthogonality of the Legendre polynomials and Ψrm =
Ψm we find thatl(x)(rm, t) = [2∕(2l + 1)]xlm(t). Therefore,
apart from a scaling constant, the DG coefficients associ-
ated with the lth-order Legendre polynomial are precisely
the values of the band-pass filtered field at the grid cell
centres.

The filtering properties of the Legendre polynomials
are used extensively in DG models to stabilise solutions
and recover high-order accuracy in models contain-
ing discontinuities (Kanevsky et al., 2006). More details
regarding the implementation of spectral filtering using
(Legendre) polynomials in DG models and their impact
on the solution can be found in Vandeven (1991); Fis-
cher and Mullen (2001); Hesthaven and Kirby (2008).
Examples of the applications of such methods in fluid

dynamics are present in Blackburn and Schmidt (2003);
Zhang and Stanescu (2010); Meister et al. (2012); Talay
Akyildiz and Alshammari (2022). In the next section we
will show that the use of Legendre polynomials is not
limited to spectral filtering, but that they can also be used
to improve ensemble estimates of the background error
covariance matrix.

5.2 Localisation matrix

In practical applications, the size of the ensemble used to
estimate B in Equations (8) and (9) is orders of magnitude
smaller than the dimension of the model space. This intro-
duces a sampling error in the estimate B. For correlations
close to zero this sample error can overshadow the true
correlation. These spurious correlations are suppressed
using localisation. As discussed in Section 1, covariance
localisation is to be preferred over domain localisation
when dealing with dense (satellite) observations. Covari-
ance localisation replaces B with B◦, the Schur, or
entry-by-entry, product of B with a positive-definite, sym-
metric matrix  with both B and  acting on the full
model state containing the coefficients for all the grid
cells. Two types of methods are in common use to con-
struct . The first is parametrised schemes in which the
entries of  are assumed to depend on a very limited
number of parameters. Parameter values are obtained
from calibration experiments by minimising metrics like
RMSE. The best-known scheme within this category is
the Gaspari–Cohn scheme (Gaspari & Cohn, 1999), in
which the entries of  depend on a single parameter,
the localisation length scale. Other examples belonging to
this category can be found in Anderson (2007); Moosavi
et al. (2018). The second is non-parametrised schemes in
which localisation factors are obtained as the expectation
values of unknown distributions (Anderson, 2007, 2012;
Flowerdew, 2015; Ménétrier et al., 2015). These expec-
tation values are approximated from the model under
ergodicity assumptions.

Regardless of the method used, the optimal param-
eter values/the expectation values will depend on the
signal-to-noise ratio in the sample covariance. In partic-
ular, it may be expected that if the length scales in the
background errors change so does the distance at which
noise starts to exceed the signal: the length scale in .
Traditionally, localisation factors  have been estimated
assuming a single length scale without considering the
multiscale feature of the model fields. If multiple scales are
present in the field then this can result in localisation fac-
tors that suppress true correlations at one scale but fail to
suppress the noise at other scales. In Section 5.1 we showed
that the Legendre polynomials act as a band-pass filter
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PASMANS et al. 15

separating the the model field by length scale. This allows
us to circumvent the aforementioned problem by applying
different amounts of localisation to different scales in the
signal. More formally, define


DG =

L−1∑

l=1

L−1∑

l′=1
(DG,l)TLll′


DG,l′

, (13)

where


DG,l =

M∑

m=1
êm ⊗

(
⊗

L−1
l′=0𝛿ll′ êT

m
)

(14)

is the projection operator that selects only those entries
from x that are associated with the lth basis function. Here,
Lll′ only contains the localisation factors for the covariance
between DG coefficients associated with Legendre polyno-
mials l and l′. In other words, Lll′ are the L × L subtensors
that act on a subspace and together make up the global
localisation tensorDG that acts on the full state consisting
of all DG coefficients.

As DG in Equation (13) requires the construction of
multiple localisation matrices Lll′ , the amount of cali-
bration required makes application of the parametrised
localisation scheme impractical. Instead, we construct it
as Lll′

mm′ = Lll′ [sin(𝜋|rm − rm′ |∕𝓁)], where the choice of the
sine function stems from the use of a periodic domain. The
“kernel” matrix Lll′ is obtained using the optimal Schur
filter (Ménétrier et al., 2015).

For the sake of completeness we will summarise
the optimal Schur filter here. We start from Ménétrier
et al. (2015, eq. 64):

Lll′
mm′ =

N − 1
(N − 2)(N + 1)

×
⎛
⎜
⎜
⎜⎝

N − 1 −
E

[∑N
n=1a(n)lm a(n)lm

∑N
n′=1a(n

′)
l′m′a

(n′)
l′m′

]

E

[∑N
n=1a(n)lm a(n)l′m′

∑N
n′=1a(n

′)
lm a(n

′)
l′m′

]
⎞
⎟
⎟
⎟⎠

. (15)

Here, E[⋅] is the expectation value of ⋅ and a the ensem-
ble perturbation. An ergodicity assumption is made and
the expectation values are approximated using their spatial
averages

E

[ N∑

n=1
a(n)lm a(n)lm

N∑

n′=1
a(n

′)
l′m′a

(n′)
l′m′

]
≈ vll′

[
sin

(
𝜋|rm − rm′ |

𝓁

)]

def
= 1

2M

M∑

i=1

( N∑

n=1
a(n)li a(n)li

)[ N∑

n′=1
(m−m′a(n

′)
l′ )i(m−m′a(n

′)
l′ )i

+
N∑

n′=1
(m′−ma(n

′)
l′ )i(m′−ma(n

′)
l′ )i

]

= 1
2

[( N∑

n=1
a(n)l ◦a(n)l

)
∗

( N∑

n′=1
a(n

′)
l′ ◦a(n

′)
l′

)]

m−m′

+ 1
2

[( N∑

n=1
a(n)l ◦a(n)l

)
∗

( N∑

n′=1
a(n

′)
l ◦a(n

′)
l′

)]

m′−m
(16)

and

E

[ N∑

n=1

N∑

n′=1
a(n)lm a(n)l′m′a

(n′)
lm a(n

′)
k′l′m′

]
≈ cll′

[
sin

(
𝜋|rm − rm′ |

𝓁

)]

def
= 1

2M

N∑

n′=1

N∑

n=1

M∑

i=1
a(n)li

(
m−m′a(n)l′ + m′−ma(n)l′

)

i
a(n

′)
li

×
(
m−m′a(n

′)
l′ + m′−ma(n

′)
l′

)

i

= 1
2

N∑

n=1

N∑

n′=1

(
a(n)l ∗ a(n)l′

)

m−m′

(
a(n

′)
l ∗ a(n

′)
l′

)

m−m′

+ 1
2

N∑

n=1

N∑

n′=1

(
a(n)l ∗ a(n)l′

)

m′−m

(
a(n

′)
l ∗ a(n

′)
l′

)

m′−m
,

(17)
where 

𝑗
is a shift of the state by 𝑗 grid points on a peri-

odic grid,  is the mirror operator on a periodic domain,
and ∗ is given by (a ∗ b)i = (1∕M)

∑M
m=1am(ib)m, the

discrete convolution operator for a periodic domain. For
non-periodic domains, 

𝑗
can be defined by mirroring

model fields at their boundaries. The resulting expression
for the localisation coefficients is

Lll′
mm′ ≈ Lll′

[
sin

(
𝜋|rm − rm′ |

𝓁

)]

= N − 1
(N − 2)(N + 1)

×
⎧
⎪
⎨
⎪⎩

N − 1 −
vll′

[
sin

(
𝜋|rm−rm′ |

𝓁

)]

cll′
[
sin

(
𝜋|rm−rm′ |

𝓁

)]
⎫
⎪
⎬
⎪⎭

.

The expression for the grid-point case can be found by
setting L = 1 and omitting any indices l, l′. A comparison
of the computational cost of the scale-dependent method
versus the localisation operator for the grid-point case can
be found in Appendix C.

5.3 Set-up of localisation experiments

In order to compare the differences between B cre-
ated using scale-dependent localisation, standard
scale-independent spatial localisation, and no localisa-
tion, we generate a large ensemble of 10,000 univariate
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16 PASMANS et al.

ensemble members as Fourier series following the pro-
cedure outlined in Appendix A using J = 395 degrees of
freedom in the Fourier coefficients, a pink-noise spectrum
(k) ∼ 𝜅

𝛼 , 𝛼 = −1, and a standard deviation of 1. The
covariance estimated from this 10,000-member ensemble
is assumed sufficiently large to have negligible sampling
error.

The ensemble members generated are processed in two
different ways.

1. Continuing the procedure outlined in Appendix A,
each ensemble member is projected onto a fourth-order
Legendre basis (L − 1 = 4) defined on a periodic
domain with length 𝓁 = 8000 km and MDG = 79 equis-
paced grid cells.

2. In the grid-point approach, each ensemble member is
interpolated onto an equispaced grid with J points. The
grid-point state on this grid is obtained by interpolating
the ensemble member expressed as Fourier series onto
the grid nodes.

Subensembles of size N with sampling error are cre-
ated by randomly selecting N ensemble members from the
10,000-member ensemble and storing their representation
as a DG state and grid-point state. A schematic overview
of the whole process is given in Figure 7.

5.4 Resulting localisation factors

First, we verify that localisation distances are indeed scale
dependent. To this end, N = 96 DG states are randomly
selected from the 10,000-member ensemble. The localisa-
tion tensor DG is calculated from these members using
Equation (15). As a result of the ergodicity assumption in
Equations (16) and (17), the localisation factors Lll′

mm′ are
solely a function of the orders l and l′ of the associated poly-
nomials and of the difference in grid cell indices |m −m′|.
For equispaced grids, as the one used in our experiments,
the latter can be related to distance between points via
(𝓁∕M)|m −m′|. For the non-scale-dependent localisation

( )

–1 –T

1

10,000

1 1

1

1 1 1 L − 1
L − 1
L − 1

0
0

0
0

F I G U R E 7 Schematic overview of the experimental set-up to create a localised covariance in grid-point space (dotted grey and solid
grey background) and in discontinuous Galerkin (DG) space (dotted grey and white background). A large 10,000-member ensemble is
created; (a) from this ensemble, members are randomly selected to create smaller subensembles; (b) the subensemble members are
interpolated/projected to create grid-point/DG states; (c) from the grid-point states, covariance and localisation operators are created, and (d)
the localised covariance operator is mapped to DG space. Simultaneously, (e) the DG states are split by the order of their coefficients, and for
each pair of orders the covariances and localisation operators are calculated. (f) The resulting localised covariances are mapped from DG- to
grid-point space or vice versa using the linear transform C defined in Equation (18). Such a transformation is only possible in this section as
the number of grid points is equal to the dimension of the DG space.

 1477870x, 0, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/qj.4737 by T
est, W

iley O
nline L

ibrary on [20/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



PASMANS et al. 17

factors GP, we use again Equation (15) on the grid-point
states created from the same 96 ensemble members. The
calculation of both DG and GP is repeated 100 times.
Each time a different 96-member ensemble is used, ren-
dering 100 realisations of DG and GP. The mean of the
entries in DG and GP over these 100 repetitions together
with the 5% and 95% percentiles are shown in Figure 8.

The non-scale lines in Figure 8 show the localisa-
tion factor for the grid-point state as a function of dis-
tance between grid positions. As expected, the maximum
localisation factors can be found at zero distance. Nev-
ertheless, the inspection of the non-scale case reveals a
few aspects deserving clarification. First, contrary to many
other localisation schemes, the maximum localisation fac-
tor is smaller than 1 because the optimal Schur locali-
sation scheme not only corrects for the sampling error
in correlation but also for that in the sample variance
(Ménétrier et al., 2015). As the spectrum of the ensemble
perturbations scales as 𝜅

−𝛼 , the first Fourier mode dom-
inates the perturbations. As this mode is a sinusoid with
wavelength 𝓁, the autocorrelation as a function of dis-
tance between points first decreases towards zero and then
becomes negative, whilst its absolute value increases, as
distance approaches 1

2
𝓁. As the localisation coefficient is

a function of the absolute value of the autocorrelation, it
also initially decreases towards zero at 1.5 × 106 m, but it
starts to increase again as the distance approaches 1

2
𝓁.

The localisation factor L00
mm′ closely resembles the

non-scale-dependent localisation but with higher val-
ues, thus suppressing the ensemble covariance less than
its non-scale-dependent counterpart. The behaviour for
the higher order DG localisation factors is significantly
different, as is visible in Figure 8a. Within one grid cell

F I G U R E 8 (a) Localisation coefficients Lll (order 0-4) for
different orders l as well as GP (nonscale) as a function of distance
between grid cells based on an N = 96-member ensemble. (b) As (a)
but the colours now show cross-order coefficients L0l between the
zeroth-order coefficient and coefficients of higher orders; the black
line is the same in (a) and (b).

length the localisation factor drops from its maximum
value of 0.97 to its lower bounds, which varies around 0.0.
Cross-order DG localisation factors in Figure 8b also a
show rapid decrease to values around 0.0, with cross-order
localisation factors between zeroth-order coefficients and
coefficients of order 3 and higher exhibiting no signifi-
cant deviation from zero. Overall, Figure 8 shows that
the localisation length scale (i.e., the length scale over
which Lll′

mm′ goes to zero) strongly depends on the order
of the coefficients l and l′ being localised. In particular,
the length scale for L00

mm′ involving solely zeroth-order DG
coefficients is noticeably longer than that for any higher
order DG coefficients.

The same localisation factors but now for an ensemble
of N = 16 members are shown in Figure 9. Qualitatively,
the dependence of the localisation factors on distance is
comparable to that in Figure 8, but with lower values.
Furthermore, both Figure 9 and especially Figure 8 show
that the assumption that the covariance is (block-)diagonal
in wavelet space—as is made in, for example, Deck-
myn and Berre (2005); Pannekoucke et al. (2007); Chabot
et al. (2017)—cannot be generalised to covariances in DG
space: Figures 8b and 9b testify that, over short distances,
cross-order localisation factors can take on values that are
significantly different from zero.

5.5 Resulting covariances

In Section 5.4 it was shown that scale-dependent locali-
sation renders localisation factors that behave differently
than those obtained by non-scale-dependent localisation.
In this section, we investigate whether this results in visi-
bly different ensemble covariances and if these covariances
are a better approximations of the true covariance than
those obtained with non-scale-dependent localisation.

F I G U R E 9 As Figure 8, but now using ensembles of N = 16
members.
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18 PASMANS et al.

The 10,000 ensemble members are converted to 10,000
grid-point states and 10,000 DG states. The covariance of
the 10,000 grid-point states is shown in Figure 10a. A pos-
itive covariance up to 1.03 can be found in a band near the
diagonal. Because of periodicity, this band is repeated near
(0, 8 × 106)m and (8 × 106

, 0)m. Between these bands,
covariances are negative, with a low of −0.15. The equiva-
lent covariance of DG states is shown in Figure 10b. Each
box in Figure 10b is a spatial covariance, similar to the one
in Figure 10a, but only involving DG coefficients of spe-
cific orders. For example, the second box (from left) on the
bottom row shows the covariance (1∕N − 1)

∑N
n=1x(n)0mx(n)1m′ ,

which is the cross-covariance between the coefficients of

polynomials of orders 0 and 1 at the mth and m′th grid
cells respectively. We will refer to the covariance as shown
in this block as the (0, 1)-DG covariance. The (0, 0)-DG
covariance (bottom, left box in Figure 10b) mimics the
grid-point covariance. For the (i, 𝑗)-DG covariances with
i > 0 and/or 𝑗 > 0, non-zero covariances are located in a
small band near the diagonal, with some blocks exhibiting
no covariance at all. So, when a Legendre basis is used, DG
covariances exhibit distinct dependence on the order of the
DG coefficient.

Not only the covariance itself, but the sampling error
also depends on the order of the DG coefficients. The
grid-point covariance for the 16-member ensemble is

�
�

�

F I G U R E 10 The (a, c, e)
grid-point ensemble covariances and
(b, d, f) discontinuous Galerkin (DG)
ensemble covariances from (a, b) a
10,000-member ensemble, (c, d) a
16-member ensemble without
localisation, and (e, f) a 16-member
ensemble with localisation. Panels (a),
(c), and (e) show the spatial covariance
between grid points, whereas each tile
in panels (b), (d), and (f) shows the
spatial covariance between DG
coefficients of the DG orders indicated
on the axes.
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PASMANS et al. 19

shown in Figure 10c. As a consequence of the sampling
errors, the range in values is larger ([−1.23, 2.09]) and the
band structure is less discernible: we see how spurious
(unrealistic) correlations appear. From the 16-member DG
case in Figure 10d we see again that the (0, 0)-DG covari-
ance mimics the grid-point covariance, but the sampling
noise in the other blocks of Figure 10d exhibits less spa-
tial structure than the error in the (0, 0)-DG covariance: the
higher order DG covariances take the form of unstructured
noise or unstructured noise plus positive covariance along
the diagonal. That is, off-diagonal, the signal-to-noise ratio
is smaller than one in these covariances. This rapid drop
in signal to noise with spatial distance between points
explains why the localisation factors for the higher orders
in Figure 9b and Figure 8b drop rapidly with distance.
The noise in Figure 10d,e is efficiently removed by the
localisation (see Figure 10e,f). However, comparison of
Figure 10a,b with Figure 10e,f respectively shows that
it also removes the genuine negative covariances and
reduces the width of the diagonal bands. This overzeal-
ous removal is not as much of a problem for the (i, 𝑗)-DG
covariances with i + 𝑗 > 0 as these covariances are truly
near-diagonal.

In the aforementioned, we have established that both
the covariance and the sampling errors in the covariance
differ depending on the order of the DG coefficients. Now
we want to determine whether accounting for those differ-
ences in the localisation procedure yields better estimates
of the true covariance. To enable side-by-side comparison,
either the grid-point covariance must be converted into its
representation in DG space or the DG covariance must be
converted into a covariance in grid-point space. A linear
transformation that converts a DG state into a grid-point
state can be formulated as

C =
J−1∑

𝑗=0

M∑

m=1
ê
𝑗

(
⊗

L−1
l′=0𝜙l′m(r𝑗)𝛿ll′ êT

m
)
, (18)

with r
𝑗
= (𝓁∕J)(𝑗 − 1) the position of the 𝑗th grid-point

point. As it is a linear transformation, the grid-point rep-
resentation of the localised DG covariance is given as

C(BDG◦DG)CT
. (19)

Since in our experiments the dimension of the grid-point
space is equal to that of the DG space, Equation (18) can
be inverted to get the localised grid-point covariance in the
DG space as

C−1(BGP◦GP)C−T
. (20)

Similar to Figure 10e, the ensemble covariance of 16
grid-point states after non-scale-dependent localisation
is shown in Figure 11a. Next to it in Figure 11b is its

representation in DG space obtained by applying
Equation (20) to Figure 11a. If we compare the figure
with the true DG covariance in Figure 10b, we see for
the (i, 𝑗)-DG covariances with i > 0 and/or 𝑗 > 0 that
spurious localisation appears as bands parallel to the diag-
onal. This indicates that a strategy in which DG states
are mapped to and from grid-point states and in which
localisation and DA is carried out in grid-point space is
troublesome: for the high-order DG coefficients the effec-
tive background error covariances obtained in this way do
not match the covariance from the ensemble of DG states
(Figure 10b). On the other hand, if we start of with the DG
states, localise in DG space (Figure 11d), and map this to
grid-point space using Equation (19) we get a covariance
(Figure 11c) that, although not flawless, better captures
the width of the true covariance (Figure 10a) around the
diagonal as well as the occurrence of negative covariances
than the covariance obtained using non-scale-dependent
localisation (Figure 10e). This improvement in the
off-diagonal covariances suggests that the benefits of the
scale-dependent localisation scheme are not limited to
subgrid scales, but reach into the larger scales as well. The
reason for this can be inferred from Figures 8 and 9: as the
subgrid scales with small localisation radii are treated sep-
arately from the grid-scale processes that are represented
by the zeroth-order coefficients, the localisation coeffi-
cients for the latter (blue lines in the figures) are larger
than those when non-scale-dependent localisation is used
(black lines). This results in the truthful long-distance
covariances suffering less suppression during localisation.

To quantify the differences visible in Figure 11, the
relative error between the true grid-point covariance and
the covariance of grid-point states without localisation
and grid-point states with non-scale-dependent localisa-
tion is shown in Figure 12 for different ensemble sizes.
Also shown in the figure is the covariance created from
DG states using scale-dependent localisation after map-
ping it to the grid-point space. The error norm in the
grid-point space is calculated using two different methods:
the Frobenius norm

√√√√
J−1∑

𝑗=0

J−1∑

𝑗
′=0
(ΔBll′ )2

in Figure 12a, and the operator/spectral norm, which
is the largest absolute eigenvalue of the error ΔB, in
Figure 12b. The errors are normalised by the Frobenius
or spectral norm of the true covariance respectively to
obtain the relative error. The computation of the norms is
repeated 100 times with different ensembles and the mean
of the relative norms with its 90% confidence interval is
shown in Figure 12. Both non-scale- and scale-dependent
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20 PASMANS et al.

� (
)

(
)

( )

( )

�
F I G U R E 11 (a) The 16-member
ensemble covariance localised in
grid-point space and (b) its
transformation into DG space. (d) The
same 16-member ensemble, but now
localised in DG space using
scale-dependent localisation together
with (c) its transformation to grid-point
space.

F I G U R E 12 (a) Relative Frobenius and (b) operator/spectral
error between the true ensemble covariance in grid-point space as a
function of the number of ensemble members N for covariance
without localisation, with non-scale-dependent localisation, and
with scale-dependent localisation. The 90% confidence intervals in
the relative error are shown as opaque shading.

localisation reduce the relative error strongly compared
with no localisation, with the reduction being more pro-
found for the smaller ensemble sizes. The scale-dependent
localisation produces relative errors that for N ≥ 8 are
slightly, but significantly, better at the 90% confidence
level than the covariances using non-scale-dependent
localisations are. In summary, non-scale-dependent local-
isation applies too much localisation to the largest scales
in the errors, resulting in the removal of the negative,
off-diagonal covariances and too little to the smallest
scales, leaving spurious off-diagonal covariances for the
higher order DG coefficients. Scale-dependent localisation
addresses these issues and renders an overall more accu-
rate representation of the background error covariance
matrix.

6 DISCUSSION AND
CONCLUSIONS

DG models resolve the solution of a system of partial differ-
ential equations as a linear combination of basis functions.
We have shown in this study that, if Legendre polynomials
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PASMANS et al. 21

are used as basis functions, these functions act as a filter
bank: each polynomial in each grid cell represents portions
of the solution in specific portions of the physical space
and of the spectral domain. Furthermore, the polynomi-
als resolve the solution within grid cells, not solely on a
finite number of points as in the case in finite-difference
or finite-volume methods. Both these characteristics can,
in principle, be exploited by DA. This study is a first explo-
ration along this line. Here, we have used a highly idealised
DA set-up to investigate if, and under what conditions,
these theoretical benefits can be realised. We tackled three
aspects: the dependence of the DA performance on the
observation density, the ability of DA–DG combination to
improve estimates of the derivatives, and the DG-based
scale-dependent localisation.

Dependency of RMSE ratios, ratios of norm of differ-
ence between ensemble means and the “truth,” on the
observation density per grid cell shows that DA in DG
models benefits from increasing observation density and,
consequently, that less data thinning should be applied
when deploying DA in DG models. In agreement with
the data thinning finding in Liu and Rabier (2002), we
see that the RMSE reduction rate levels off in all mod-
els, but in the DG models this happens at higher densities
than in the grid-point model. In the set-up presented in
this article, little improvement in the RMSE ratio was
obtained when assimilating more than five observations
per grid cell both for red and pink noise. As the ability
to correct the error will depend on the extent to which
the latter is resolved by the basis functions, we expect the
optimal number of observations beyond which no substan-
tial amelioration of the analysis is obtained to be different
when a different family of basis functions or family of
error spectra is used. Furthermore, in this study, corre-
lations stemmed solely from representativeness errors. In
reality, instruments might also introduce spatial correla-
tions, albeit their estimation and treatment in DA is more
straightforward. More details on how to deal with such
inherent correlations can be found in Stewart et al. (2013);
Campbell et al. (2017). When keeping the number of grid
cells constant, DA performance increases with increas-
ing order of the DG scheme. The magnitude of the latter
improvement, however, depends on the scales contained
in the background errors. If small-scale errors dominate,
increasing DG order renders a monotonic reduction of
RMSE. On the other hand, if large-scale errors dominate,
increasing DG order beyond 2 yields no additional bene-
fit. In both cases, most of the benefit is attained already
for orders as low as 2, an order that is achievable in opera-
tional models and will be used in neXtSIMDG. When large
scales dominate the background error, the RMSE ratios
for a given DG-order are smaller (better DA performance)
than when small scales dominate. This is in agreement

with the findings of Fowler et al. (2018), who showed
that DA performs best when observations and background
are accurate at different scales. As we have used white,
uncorrelated, noise (thus small scale) to simulate obser-
vational errors, we get the greatest reduction in RMSE
ratio if the large scales dominate the error background
errors.

This study could not find any indication that DG mod-
els can help DA with reducing errors in the derivatives
of the field. When small-scale errors are dominant in
the background errors of higher order DG models, the
improvements in DA performance actually come at the
cost of deteriorating the estimates of the higher order
derivatives. This suggests that if accurate estimates for
the derivatives are required then methods that include
such derivatives in the cost function are needed. One
way to achieve this would be to assimilate the deriva-
tives or their approximations as observations. A successful
example of such an approach can be found in Bédard and
Buehner (2020), in which not only a thinned set of observa-
tions is assimilated, but also the differences between obser-
vation. The latter is found to reduce analysis errors for
intermediate wavelengths. An alternative approach that
could help with improving the higher order derivatives is
adding penalty terms for discontinuities in the field and its
derivatives at the cell boundaries. This would suppress the
detrimental Runge effect. In any case, our findings have
pointed out that the straightforward DG–DA approach fol-
lowed in this work is insufficient to correct the derivatives
of the field.

When the Legendre basis is used, it was found that the
functional dependence of the optimal localisation coeffi-
cients depends strongly on the order of the DG coefficient
and that consequently tuning localisation on the order
of the DG coefficients is appropriate. When this is done,
it produces covariances that are closer to the true back-
ground error covariance and are apter in retaining weak
long-distance covariances. Wavelet-based localisation
algorithms, like the ones in Deckmyn and Berre (2005);
Pannekoucke et al. (2007); Varella et al. (2011), have the
advantage that they can vary their localisation scales in
space. This aspect has not been covered in this study as
we assumed our background error statistics to be homo-
geneous in space. Because of the similarities with the
schemes used in aforementioned studies, the DG-based
localisation scheme in this study should be able to deal
with varying correlation scales too. However, it is impor-
tant to note when Legendre polynomials are used as
basis functions that all scales larger than the grid cell
width are grouped together. That is, as the grid cell
sizes decreases, DG-based localisation is expected to
tend to the same result as localisation in the grid-point
space. Another well-known issue with the optimal
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22 PASMANS et al.

localisation scheme, and one that has not been addressed
in this study, is that localisation coefficient matri-
ces produced by optimal localisation are not bounded
to be positive definite. One proposed way to over-
come this problem is to fit positive-definite kernels to
 (Michel et al., 2016). Such an approach could also
directly be applied to the DG-based scale-dependent
localisation. Alternatively, positive-definiteness can be
achieved by actively forcing the Fourier coefficients of the
distance-dependent localisation function to be positive
(Bochner, 1933). Finally, the DA increments, regardless of
whether scale-dependent localisation is used or not, might
induce non-physical discontinuities in the solution at the
grid cell boundaries. In sequential DA in an operational
setting, the analysis will serve as an initial condition for
a forward model and these discontinuities could give rise
to numerical instability and model imbalances. The issue
is not unique to DG systems, as finite-volume methods
also contain discontinuities. However, the issue might
be more prominent in DG systems as the presence of
higher order modes might allow these discontinuities
to disperse in the solutions as small-scale signal. Future
work using a cycling DA system should be carried out to
assess whether this leads to problems in practice and what
countermeasures can be put in place.

Once these problems are solved, the scale-dependent
localisation approach in this work could also be applied
to schemes using scale-dependent basis functions other
than Legendre polynomials. Currently, DA schemes for
the third-generation wave models Wavewatch III, SWAN,
and WAM only directly correct significant wave height
(Almeida et al., 2016; Houghton et al., 2022, 2023; Moaz-
zami et al., 2017; Qi & Cao, 2015; Waters et al., 2013)
or do not use localisation (Caires et al., 2018). In
these models, the wave-number–wave direction combi-
nations are basis functions and scale-dependent locali-
sation can be achieved by applying different localisation
coefficients to coefficients associated with different wave
numbers.

The work in this study was conceived as an initial
exploration of the changes in best DA practices when DA
is applied to DG models and consequently was intention-
ally highly idealised. Nevertheless, its findings should be
readily extendable to two- and three-dimensional models
provided that they are defined on tensor product grids
(e.g., Cartesian grids). In that case, tensor products of the
Legendre polynomials can be used as basis functions and
the results in this study are applicable in each direction
separately. When using different grid topologies or basis
functions, DA in higher order DG models is still expected
to produce greater error reduction, as these models resolve
the solution on a subgrid level. However, scale-dependent
localisation might not be feasible, as other basis

functions may not possess the same filtering properties as
the Legendre polynomials.
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APPENDIX A. FIELD GENERATION

Assume that the power spectrum density ̂(x) of the
field x is given. Then, a random field on a periodic domain
of length 𝓁 is created as

x(r) = ℜ

[ J∑

𝑗=0
(𝜖1,𝑗 + i𝜖2,𝑗)

√
̂(|𝜅

𝑗
|) ei𝜅

𝑗

r
,

]

with ℜ[⋅] the real part of ⋅, 𝜖1,𝑗 and 𝜖2,𝑗 drawn from a
normal distribution, and 𝜅

𝑗
= 𝑗(2𝜋∕𝓁) the wave number,

J = 829 for the experiments in Section 4 and J = 395 in
Section 5. Then,

 (x)(𝜅) = 1
2

J∑

𝑗=−J
(1 + 𝛿

𝑗0)(𝜖1,𝑗 + i sign(𝜅
𝑗
)𝜖2,𝑗)

×
√

̂(|𝜅
𝑗
|)𝛿(𝜅 − 𝜅

𝑗
)

and

(x)(𝜅) = E
[
 (x)(𝜅)∗ (x)(𝜅)

]

= 1
2

⌊ J
2⌋∑

𝑗=−⌊ J
2⌋
(1 + 𝛿

𝑗0) ̂(|𝜅𝑗|)𝛿(𝜅 − 𝜅
𝑗
),

with ⋅∗ denoting the complex conjugate. Then, in its
one-sided form, (x)(|𝜅

𝑗
|) = ̂(|𝜅

𝑗
|) as desired.

After generation, the signal can be converted into Leg-
endre coefficients by exploiting the orthogonality condi-
tion of the Legendre polynomials ̃

𝜙l:
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xlm =
2l + 1

2 ∫Dm

𝜙lm(r)x(r) dr

= 2l + 1
2 ∫

mΔr+Δr

mΔr
̃
𝜙l

(2r − 2mΔr
Δr

− 1
)

x(r) dr

= 2l + 1
2
ℜ

[ J∑

𝑗=1
(𝜖1,𝑗 + i𝜖2,𝑗)

√
̂(|𝜅

𝑗
|)

∫

mΔr+Δr

mΔr
̃
𝜙l

(2r − 2mΔr
Δr

− 1
)

ei𝜅
𝑗

r dr
]

+ 1
2

√
̂(|𝜅0|)𝜖1,0

×
∫

mΔr+Δr

mΔr
̃
𝜙l

(2r − 2mΔr
Δr

− 1
)

dr (A.1)

with Δr = 𝓁∕N the grid cell width and 2∕(2l + 1) a nor-
malisation factor. As the functions ̃

𝜙l are polynomials,
the integrals in Equation (A.1) can be carried out using
integration by parts.

APPENDIX B. PROJECTION OPERATOR

The “truth” xtruth is generated as a Fourier series. The
projection on the basis function 𝜙lm can be found by inte-
gration, exploiting the fact that the basis is orthonormal
and that 𝜙lm has its support in grid cell m :

xtruth(r) = ℜ

[

∫

𝓁

0
𝜙lm(r)

J∑

𝑗=0
A
𝑗

ei𝜅
𝑗

r

]

= ℜ

[

∫

rm+
1
2
Δr

rm−
1
2
Δr

𝜙lm(r)
J∑

𝑗=0
A
𝑗

ei𝜅
𝑗

r dr

]

= ℜ

[

∫

1

−1
P(r′)

J∑

𝑗=0
A
𝑗

ei𝜅rm eiΔr𝜅r′∕2 dr′
]

= ℜ

[ J′∑

𝑗=0
A′
𝑗∫

1

−1
Pl(r′) ei𝜅′

𝑗

r′ dr′
]

+ℜ

[ J∑

𝑗=J′+1
A′
𝑗∫

1

−1
Pl(r′) ei𝜅′

𝑗

r′ dr′
]
,

with Δr = 𝓁∕M the grid cell width, 𝜅
𝑗
= 2𝜋𝑗∕𝓁 the wave

number, 𝜅′
𝑗

= 𝜋Δr𝑗∕𝓁 the scaled wave number, and A′
𝑗

=
1
2
ΔrA

𝑗
the scaled Fourier amplitude.

Let J′ be the largest value of 𝑗 for which 𝜅

′
𝑗

< 0.2. Then,
for 𝑗 > J′, the integrals by applying integration by parts
repeatedly give

∫

1

−1
Pl(r′) ei𝜅′

𝑗

r′ dr′

=
l∑

l′=0
(−1)l′ (i𝜅′

𝑗

)−l′−1
𝑗

dl′Pl

dr′l′
(r′) ei𝜅′

𝑗

r′
||||||

1

−1

For 𝜅′
𝑗

< 0.2 the terms 𝜅−l′−1 become so large that the sum-
mation fails as a result of numerical errors. Therefore,
integration for 0 < 𝑗 ≤ J′ is carried out using Gaussian
quadrature:

ei𝜅′
𝑗

r′ ≈ Q(r′)
def
=

8∑

q=1
ei𝜅′

𝑗

r′q
8∏

s=1,s≠q

r′ − r′s
r′q − r′s

,

with r′q the Gauss–Lobatto points on the interval [−1, 1],
and

∫

1

−1
Pl(r′) ei𝜅′

𝑗

r′Δr′ ≈
∫

1

−1
Pl(r′)Q(r′) dr′.

APPENDIX C. COMPUTATIONAL COST
SCALE-DEPENDENT LOCALISATION

To apply covariance localisation in the D-E3DVar
algorithm, B in Equation (10) needs to be replaced with
B◦. As D-E3DVar is an iterative solver, it requires
repeated application of B◦ to a vector of the form
HTR−1∕2

𝜒 with 𝜒 ∈ RNobs . Here, we provide an estimate of
the algorithm complexity as measured by the number of
floating-point operations, “flop”1 for short, necessary for
the application of B◦ to a vector HTR−1∕2

𝜒 . Flop neces-
sary to calculate the latter vector are not included as they
are necessary regardless of whether localisation is used.
The number of flop will be listed in big-O notation: (N)
means there is c ∈ R ∶ flop < cN.

For given l and l′, Lll′
mm′ can be calculated using the

convolutions in Equations (16) and (17). Calculation of
each term in the convolution in Equation (16) requires
(MN) flop. The convolution can be carried out most effi-
ciently using a fast-Fourier transform at the expense of
(M log M) flop (Cooley et al., 1967). For Equation (17),
N convolutions need to be carried out at a total cost of
NM log M flop and the results need to be multiplied and
summed, costing another (MN) flop. The division, sum-
mation, and scalar multiplication in Equation (15) require
an additional(M) flop, bringing the total cost to calculate
Lll′

mm′ for all m and m′ combined to (NM log M).
Each entry of (BDG◦DG)𝜒 can be written as

(
(BDG◦DG)𝜒

)
lm =

Lk−1∑

l′=0

M∑

m′=1

1
N − 1

×
N∑

n=1
a(n)lm a(n)l′m′Lll′

mm′𝜒l′m′ .

(C.1)

Based on the foregoing, for each l, (LNM log M) flop
are necessary for Lll′

mm′ . For each l and m, (LMN)
multiplications/additions appear in Equation (C.1).
Thus, in total, the calculation of (BDG◦DG)𝜒 requires
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∑L−1
l=0 (LNM log M) +M(LMN) = (L2NM log M) +

(L2NM2) flop.
The number of flop for non-scale-dependent local-

isation on a grid with MGP nodes can be found by
setting L = 1 in the foregoing and is (NMGP log MGP) +
(N(MGP)2). So, for equal number of grid cells,
MGP = M, the scale-dependent localisation is L2 times
more expensive than the non-scale-dependent localisa-
tion. If the dimension of the state is equal in both cases

(i.e., MGP = LM), then the scale-dependent approach is
more expensive by

1 + (M)−1 log M
1 + (LM)−1 log(LM)

< 1 + (M)−1 log M ≤ 1 + e−1
.

So, if DG and grid-point space have similar dimensions,
scale-dependent localisation can be up to 37% more expen-
sive than non-scale-dependent localisation.
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