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Abstract

How do professionals forecast in uncertain times, when the relationships

between variables that held in the past may no longer be useful for forecasting

the future? For inflation forecasting, we answer this question by measuring

survey respondents' adherence to their pre-COVID-19 Phillips curve models

during the pandemic. We also ask whether professionals ought to have put

their trust in their Phillips curve models over the COVID-19 period. We

address these questions allowing for heterogeneity in respondents' forecasts

and in their perceptions of the Phillips curve relationship.
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1 | INTRODUCTION

How do professionals forecast in uncertain times, when
the relationships between variables that held in the past
may no longer be useful for forecasting the future? Castle
et al. (2016) review “a body of research that seeks to pro-
vide viable strategies for economic forecasting when past
relationships can no longer be relied upon.” They remind
us that as long ago as the first half of the 20th century
authors were struggling with forecasting in the presence
of structural beaks: for example, Shoup et al. (1941)
(“The times are so different now [i.e., October 1941] from
1935 to 1939 that relations existing then may not exist at
all today.”—even prior to the United States entering
World War II) and Klein (1947) (“Would the econometri-
cian merely substitute into his equations of peacetime
behavior patterns in order to forecast employment in a
period during which there will be a war?”).

The review by Castle et al. (2016) suggests a number
of partial remedies for forecast failure caused by struc-
tural breaks, which are aimed at avoiding making

systematic forecast errors after a break has occurred and
(to a lesser extent) using information on the break as it
unfolds. Our interest is in the extent to which profes-
sionals adhere to their existing models or adopt more
robust forecasting models, and if so, whether they are jus-
tified in doing so.

We consider the COVID-19 pandemic which began in
the first quarter of 2020. Unlike the onset of business
cycle downturns, which are often difficult to call in real
time, COVID-19 was heralded by lockdowns and other
restrictions and measures aimed at restricting the trans-
mission of the virus. Hence, the respondents in the US
Survey of Professional Forecasters (SPF) would have been
left in little doubt that something was afoot. We compare
the forecasts made prior to 2020:1 with those made dur-
ing the period 2020:1 to 2022:4.

Hence, our paper differs from a growing body of liter-
ature that looks at ways of obtaining and utilizing more
timely information on activity and other key indicators
(than that afforded by official statistics), such as high-
frequency “alternative” data or “Big Data.”1 Our interest
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is in how professional forecasters actually responded, as
measured by surveys of their expectations, and allows for
the possibility that new types of data and forecasting
models were adopted.

A number of complicating factors arise when we try
to determine whether forecasters changed their behavior
confronted with the disruption to the economy and
financial system caused by COVID-19. The first is deter-
mining how forecasters forecast in normal times. That is,
the extent to which their forecasts are based on well-
founded theory or models of how the economy operates.
There is little direct (self-reported) evidence on how sur-
vey respondents form their expectations.2 Consequently,
we infer the respondents' models from the forecasts (and
realizations) alone.

Second, there appears to be considerable heterogene-
ity in individual respondents' “models,” as described by
Clements (2024), in his analysis of respondents' Phillips
curve models prior to COVID-19. This apparent heteroge-
neity is perhaps exacerbated by the short data samples
available for many respondents and by respondents being
active survey participants at different times. In addition,
many economic relationships are beset by nonlinearities
or have parameters that change over time. The Phillips
curve is a case in point: There is evidence that the curve
may have “flattened” over time, as well as that the slope
may depend on the tightness of the labor market (see,
e.g., Hooper et al., 2019). In principle, it may be possible
to estimate models with these features using individual-
level forecasts, but in practice, small samples with miss-
ing observations due to non-participation suggest it
would be challenging to accurately capture such complex
interactions. A recent study by Cerrato and Gitti (2022)
considers whether the actual Phillips curve changed at
the time of COVID. Their study suggests that the slope of
the Phillips curve became flat during the COVID period,
before steepening dramatically from March 2021
onwards. Although forecasters' inflation models would
be expected to mirror changes in the economy which per-
sist over time, it is debatable whether their forecasts
would reflect the dramatic changes found by Cerrato and
Gitti (2022) as they unfolded in real time.

Following Clements (2024), we consider the Phillips
curve but focus on the extent to which survey respon-
dents altered their reliance on the Phillips curve from
2020:Q1 onwards. We use the approach discussed in
Clements (2024) to estimate individual PC models for the
respondents. We acknowledge the importance of the het-
erogeneity in individuals' PC models before COVID-19.
We consider the extent to which these individuals chan-
ged their behavior over the COVID-19 period. Individuals
who were not operative over the COVID-19 period are
discarded, as are individuals who did not participate

during the COVID period. This avoids the possible distor-
tionary effects of considering aggregates of forecasters
pre-COVID-19 and during COVID-19, whereby composi-
tional effects may give a misleading picture.3 If fore-
casters were relatively homogeneous, we might simply
consider the behavior of the consensus forecaster across
the two periods. However, the diversity in actual behav-
ior cautions against this approach.4

There are a number of papers on the theory-
consistency of survey expectations, some of which are
reviewed by Clements (2024). Of those, a number con-
sider whether survey expectations are consistent with a
Phillips curve relationship. These include Fendel et al.
((2011), p. 286), Dräger et al. (2016), and Casey (2020), in
addition to Clements (2024).5 Our paper differs from this
literature by explicitly focusing on the possible changes
in expectations behavior resulting from an upheaval: in
our case the upheaval caused by COVID-19.

The paper is also related to a literature on perceived
persistence in expectations formation. As examples,
Aguiar and Gopinath (2007), Bluedorn and Leigh (2018),
Krane (2011), and Clements (2020) consider the perma-
nency of shocks to output, and Jain (2019) examines the
heterogeneity of inflation persistence perceptions. We
consider perceptions of inflation persistence indirectly
through the lens of the Phillips curve, following
Clements (2024).6

The plan of the rest of the paper is as follows. In
Section 2, we describe how we estimate individual PC
models for the respondents, following Clements (2024).
Section 3 explains how we measure the change in respon-
dents' inflation forecasting behavior in response to the
onset of COVID-19. Section 4 reports our empirical find-
ings. Section 5 takes a more aggregated approach and
tracks the forecasts through the COVID-19 period.
Section 6 considers the robustness of the findings to a dif-
ferent specification of the Phillips curve model and to a
different (more precise but potentially biased) way of esti-
mating the unknown model parameters. Section 7 offers
some concluding remarks. There are Appendices detail-
ing the calculation of Spearman's Rank Correlation coef-
ficient, and a description of the forecast data and actual
data used in the paper.

2 | ESTIMATING PHILLIPS
CURVES FOR THE INDIVIDUAL
RESPONDENTS.

We follow Clements (2024), which contains the details. A
“hybrid” PC can be written as

πt ¼ βbπt�1þβf Etπtþ1þ γutþ εt, ð1Þ
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where πt is quarterly inflation and Etπtþ1 is the expecta-
tion given the information available at t. The unemploy-
ment rate ut is the measure of slack in the economy.
When estimated on “actual” data, a proxy for, or way of
estimating, the expectations term has to be found.
Coibion et al. (2018) review studies using survey expecta-
tions, whereas McCallum (1976) is an early example of
instrumenting this term. This issue does not arise in our
approach, because all the terms in (1) are forecasts.

We estimate (1) for each respondent who made more
than a minimum number of forecasts of inflation and the
unemployment rate. As remarked by Clements (2024),
model heterogeneity will arise for a number of reasons. If
a respondent's forecasts do not reflect a linkage between
inflation and the unemployment rate, we would expect γ
to be zero for that respondent—his/her “model” is not
PC theory consistent.

For respondent j, we estimate (1) using as data the
forecasts of that respondent:

Ej,tπtþh ¼ βb,jEj,tπtþh�1þβf ,jEj,tπtþhþ1þ γjEj,tutþhþ ej,t,h,

ð2Þ

where Ej,tπtþh are j's h-step-ahead forecasts of πtþh made
at time t, and Ej,tutþh is j's h-step-ahead forecasts of utþh

made at time t. The model relates three different
step-ahead inflation forecasts to a single horizon unem-
ployment rate forecast. Our source of forecast data, the
US SPF (described in Appendix B) allows us to esti-
mate (2) for left-hand-side forecast horizons of h¼ 0,1,2,
and 3,7 which we can estimate as a system:

Ej,tπt ¼ ζjþβb,jEj,tπt�1þβf ,jEj,tπtþ1þ γjEj,tutþ ej,t,0
Ej,tπtþ1 ¼ ζjþβb,jEj,tπtþβf ,jEj,tπtþ2þ γjEj,tutþ1þ ej,t,1
Ej,tπtþ2 ¼ ζjþβb,jEj,tπtþ1þβf ,jEj,tπtþ3þ γjEj,tutþ2þ ej,t,2
Ej,tπtþ3 ¼ ζjþβb,jEj,tπtþ2þβf ,jEj,tπtþ4þ γjEj,tutþ3þ ej,t,3,

ð3Þ

requiring that the parameters are the same across the
equations. Jain (2019) used such a system approach to
improve the precision of her estimates of inflation persis-
tence, although this will come at a cost if the parameters
differ across equations. We compare results using both
the individual equation estimates (from 2, for each h sep-
arately) and using the system (for all h together, from 3).
When we use a system approach, we estimate the
equations by GLS assuming the following error structure:
E ej,t,iej,s,k
� �¼ σik when t¼ s, but is zero otherwise. That

is, the errors in the equations for the forecasts made by
individual j in response to the same surveys are allowed
to be correlated, reflecting the impact of unmodeled

factors at time t on forecasts at all horizons. See Clements
(2024) for details.

3 | MEASURING THE RESPONSE
TO COVID-19

We consider the set of respondents who responded to at
least 20 surveys during the period 1981:Q3 to 2019;Q4
and then went on to respond to at least four of the
surveys during 2020:Q1 to 2022:Q4, inclusive.

For each respondent, we calculated a hybrid PC for
their h¼ 0, h¼ 1, h¼ 2, and h¼ 3 forecasts, either singly,
or as a system, for the pre-COVID-19 period (up to and
including 2019:Q4), and recorded estimates of the slope
parameter and the R2. The slope measures the respon-
siveness of the inflation forecasts to the unemployment
rate forecasts, and the R2 the proportion of the variation
in the respondent's inflation forecasts which is attribut-
able to his/her PC model. Taken together, these two sta-
tistics measure the extent of the respondent's reliance on
a PC relationship in the generation of their expectations.

Given the estimates of the unknown parameters
in (3), for a given respondent j, we calculate j's PC model
forecasts as follows. The 2020:Q1 current-quarter model-
based forecast is the value predicted by the first equation
of (3) using the estimated values of ζj,βb,j,βf ,j,γj and the
reported forecasts as the right-hand-side variables:
the 2020:Q1 forecast of inflation in 2019:Q4, the 2020:Q1
forecast of inflation in 2020:Q2, and the 2020:Q1 forecast
of the unemployment rate in 2020:Q1. The 2020:Q2
current-quarter model-based forecast uses the same
parameter estimates, but the right-hand-side variables
are the 2020:Q2 forecast of inflation in 2020:Q1, the 2020:
Q2 forecast of inflation in 2020:Q3, and the 2020:Q2 fore-
cast of the unemployment rate in 2020:Q2. We repeat up
to 2022:Q4.

The same approach is used for the h¼ 3 forecasts, but
now, we use the last equation of (3), again estimated on
the surveys up to 2019:Q4. The h¼ 3 forecast made at
time 2020:Q1 is of target quarter 2020:Q4 and uses the
2020:Q1 forecast of inflation in 2020:Q3, the 2020:Q1
forecast of inflation in 2021:Q1, the 2020:Q1 forecast of
the unemployment rate in 2020:Q4, and so on.

There are two main focuses of our investigation.
First, we measure respondents' adherence to their

pre-COVID-19 PC models. We do so by measuring how
well the PC models explain the COVID-19 period
reported forecasts. We calculate the (square root) of the
average squared error between the reported and model-
implied forecasts, during 2020:Q1–2022:Q4 and compare
this to the models' estimated standard errors, which mea-
sure how well the models explain the reported forecasts

CLEMENTS 3

 1099131x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/for.3169 by T

est, W
iley O

nline L
ibrary on [15/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



during the pre-COVID-19 in-sample period. Comparing a
model's squared forecast errors with the model's error
variance (multiplied by a function of the explanatory var-
iables) underpins the Chow (1960) test statistic, which
was used by Clements and Hendry (2002) as a test of
“forecast failure” (FF) Clements and Hendry (2002)
define FF “as significant mis-forecasting relative to the
previous record (in-sample, or earlier forecasts), whereas
poor forecasting is judged relative to some standard,
either absolute (perhaps because of a policy requirement
for accuracy), or relative to a rival model.” The notion of
FF suits our purpose here, interpreted as whether or not
the PC model “fails” to explain forecast behavior over the
COVID-19 period. We might expect an individual's PC
model forecasts of her reported forecasts over COVID-19
to be “worse” than anticipated, based on the in-sample
fit, if the reported forecasts reflect a perceived breakdown
in the pre-COVID-19 relationship between inflation and
unemployment, and, or if, there are abnormally large idi-
osyncratic “errors” resulting from one-off factors that
affect the relationship.

We also consider whether in-sample fit is correlated
with the out-of-sample RMSFE between the reported
forecasts and model forecasts across respondents. If
respondents do not change their forecasting behavior
much we would expect a positive correlation: Those with
small (large) in-sample model standard errors will tend
to have small (large) differences between their model and
reported forecasts.8 For each respondent, we calculate a
measure of FF: the ratio of the square root of the aver-
aged PC model errors (in terms of predicting the reported
forecasts), out-of-sample, to the in-sample fit of their PC
models. We also consider whether FF depends on in-
sample characteristics of the PC models. That is, whether
FF is related to the R2 and the slope parameter. Of inter-
est is whether those whose forecasts bear a strong PC
model imprint are more or less likely to exhibit FF.

Second, we consider whether professionals ought to
have put their trust in the PC over the COVID-19 period.
Comparing the forecast accuracy of the reported forecasts
to that of implied PC model forecasts is unlikely to pro-
vide a fair assessment of the value of the PC relationship.
This is because the reported forecasts may draw on
knowledge of the PC relationship and in addition will
likely also incorporate information on the current state of
the economy and idiosyncratic factors, giving them an
edge over the model forecasts.9 One might expect a close
adherence to a PC model to count against forecast accu-
racy if it comes with a failure to take on board COVID-
19-related developments.

We compare the PC model forecasts during the
COVID-19 period to the simple “no-change” predictor
proposed for US inflation by Atkeson and Ohanian

(2001) (henceforth referred to as AO forecasts). Atkeson
and Ohanian (2001) suggested using a simple average of
the four quarterly inflation rates up to the forecast origin,
a device found by the authors to be competitive with
standard Phillips curve forecasting models.10 AO and PC
forecasts are on a level-playing field in that neither incor-
porate information about current and unfolding events.11

We consider whether the relative accuracy of the PC
model and AO forecasts depends on the characteristics of
the PC model (such as the activity slope parameter).12

The COVID-19 period - taken here to comprise fore-
casts reported to surveys in 2020:1 to 2022:4 inclusive - is
necessarily short, and heterogeneous. This suggests cau-
tion in interpreting and generalizing the results.

As an important check on whether there is a “COVID
effect” on forecaster behavior we compare our results
with those obtained for a non-COVID period. After all,
FF as defined above might simply reflect worse out-
of-sample performance than expected given the model's
in-sample performance, and this may occur at any time
and not be the result of a response to COVID. For this
reason, we repeat the empirical analysis for the period
2017:1 to 2019:4, having estimated the models on the
forecasts from the surveys up to 2016:4. This 3-year out-
of-sample period is adjacent to our COVID forecasting
period, because this choice maximizes the size of the in-
sample period, and hence, the availability of individual
forecasts to estimate the models.13

4 | EMPIRICAL FINDINGS

4.1 | Do respondents adhere to their pre-
COVID-19 PC models?

Figure 1 shows the relationship between in-sample PC
model fit, and the extent to which “out-of-sample”
COVID-period forecasts deviate from PC model forecasts,
for each forecaster, for h¼ 0 and h¼ 3.14

The figure shows that RMSFESPF,PC exceeds σ̂ for
most forecasters for h¼ 0, and there is some suggestion
that the two are positively correlated across respondents
(formally tested below). For h¼ 3, the two are more
broadly in line, than for h¼ 0, indicating a clear differ-
ence between the short and medium horizons in this
regard. At the shortest horizon, the reported inflation
forecasts during COVID-19 differ more from the PC
model than during the in-sample period. For h¼ 3, the
post-2020 forecasts are more in line with what is expected
based on pre-2020 behavior.

As a supplement to Figure 1, Table 1 reports the aver-
ages of the individual FF measures across respondents,
by forecast horizon, as well as the quartiles of the FF
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values, as an indicator of the heterogeneity across respon-
dents.15 We report these summary statistics for the
COVID forecast period, 2020–2022, as well as for the
“normal” period, 2017–2019. The table clearly shows
much higher FF values during COVID, as indicated by a
comparison of the median values across the two periods.
Notwithstanding the relatively wide dispersion of FF
values across respondents, for h¼ 0,1, the COVID-period
lower quartiles exceed the normal period upper quartiles.

For a more formal assessment of the COVID period,
Table 2 reports the rank correlations16 (across respon-
dents) between σ̂, and RMSFESPF,PC.

17 We find a positive
rank correlation at all horizons, suggesting that

individuals' whose forecasts were well described by their
estimated PC models (small estimated standard error)
tend to have more closely matching out-of-sample
(COVID-19 period) PC model and reported forecasts.
This suggests a tendency to persevere with PC models
during the COVID-19 period. These results are based on
estimating the PC separately for each h (Equation 2). In
Section 6, we investigate whether this finding is robust to
estimating the PC models by pooling over h.

Table 2 also suggests FF—the ratio of RMSFESPF,PC

to σ̂—is related to the in-sample slope coefficient γ̂ and
the in-sample R2 (where in-sample is again the pre-
COVID-19 period 1981:3 to 2019:4) at the longer forecast

TABLE 1 Forecast failure (FF): Hybrid PC models (single-equation estimation).

COVID 2020–2022 2017–2019

h 0 1 2 3 0 1 2 3

LQ 1.288 1.152 0.947 0.812 0.506 0.567 0.502 0.627

Median 1.606 1.614 1.417 1.350 0.675 0.770 0.676 0.885

UQ 2.060 2.542 2.014 2.381 0.857 1.025 1.128 1.106

Note: The entries are the quartiles of the distribution of individual FF values for the horizon h given in the column.

FIGURE 1 In-sample and out-of-sample performance of individuals' Hybrid PC models. The first bar is RMSFESPF,PC , the “distance”
between the reported and model forecasts out-of-sample, and the second is the in-sample PC model estimated standard error. Individuals are

ordered by the second variable. We graph the findings for h¼ 0 and h¼ 3, the shortest and longest horizons. Here and in the remaining

figures, the PC model is estimated separately for each forecast horizon.
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horizons. The second panel of the table shows that FF is
systematically positively related to the slope at h¼ 3,
such that a larger negative γ is correlated with less FF
(smaller ratio of RMSFESPF,PC to σ̂). The third panel sug-
gests the higher the R2, the higher FF, at h¼ 2,3: Those
whose forecasts were well approximated by a PC model
in-sample are more likely to experience FF.

For the normal period, we also find a statistically sig-
nificant positive rank correlation between σ̂ and
RMSFESPF,PC across respondents at all horizons, but in
contrast to the COVID period, FF is no longer related to
the slope coefficient (results not shown).

4.2 | Ought respondents put their trust
in their PC models?

For the COVID period, at the shortest horizon, Figure 2
shows that reported forecasts are more accurate than the
model forecasts and AO forecasts for most respondents,
as expected given the additional information that the
reported forecasts would be expected to draw on. There is
little to choose between the model forecasts and AO fore-
casts. However, there is again a divergence between the
short- and medium-term horizons. At h¼ 3, the reported
model forecasts and AO forecasts are more closely in
tune.18

Table 3 complements Figure 2 by providing the
medians and quartiles of the cross-sectional distributions
of the individual ratios of the RMSFEs of reported to the
PC model forecasts, and of the PC model to AO forecasts.
Table 3 panel A shows that for the COVID period, the
median ratio of the RMSFE of the reported forecasts to
the model forecasts is 0:754. At the two longer horizons,
there is little to choose between the reported and model
forecasts. The same is broadly true of the 2017–2019 nor-
mal forecast period: The reported forecasts are more
accurate than the model forecasts at h¼ 0, but similar at
h¼ 2,3. One difference is that the distribution of the
ratios of the RMSFEs of the reported to model forecasts is

markedly smaller for the COVID period (e.g., compare
the inter-quartile ranges for h¼ 3).

If we view these ratios as reflecting the role of judg-
ment and/or recent developments, then judgment has a
similar effect in the two forecast periods. This interpreta-
tion supposes respondents act “as if” they have models,
which they use to generate forecasts, and then adjust.
Recall that we have inferred their models by estimating
PC relationships on an in-sample period, so we do not
know if this is valid as a behavioral description.19

What of the AO forecasts? Table 3 panel B indicates
the AO forecasts are markedly more accurate on average
than the PC model forecasts for h¼ 1,2 in the COVID
period compared with normal times (compare the
median ratios in the two periods), supporting the use of
the “robust” forecasting device in uncertain times. In
fact, as indicated by panel C, the AO forecasts are more
accurate than the reported forecast except at h¼ 0, by
around 10% on RMSE at h¼ 1,2.

Next, regardless of which model or method is more
accurate, we consider whether the relative accuracy of the
model forecasts to the AO forecasts varies across the cross-
section depending upon the closeness of the reported and
model forecasts and characteristics of the (in-sample) PC
models, such as the R2 and slope parameter. See Table 4.
We find that RMSFEPC=RMSFEAO is positively correlated
with RMSFESPF,PC at the shortest horizon.20 Model fore-
casts that are closer to the reported forecasts are more
accurate than the AO forecasts out-of-sample.

A more negative γ̂ is associated with less accurate
model forecasts, that is, a higher RMSFEPC=RMSFEAO,
at h¼ 3, counting against the value of the Phillips curve.
However, a higher R2 is significantly associated with a
lower value RMSFEPC=RMSFEAO at h¼ 0. Hence,
a greater reliance on the PC relationship in-sample gives
rise to more accurate model forecast (relative to AO, out-
of-sample) when the strength of the PC model is defined
by the R2 but not when it is defined by the degree of
responsiveness of inflation to the measure of slack. We
consider this issue in more depth subsequently by

TABLE 2 Pre-pandemic belief in the Phillips curve and forecasting during the pandemic: Hybrid Phillips curve, with horizon-specific

estimates.

h
σ̂ and RMSFESPF,PC FF and γ̂ FF and R2

Statistic p-value Statistic p-value Statistic p-value

0 0.574 0.000 0.092 0.312 0.190 0.153

1 0.550 0.001 �0.240 0.900 0.090 0.318

2 0.496 0.002 0.339 0.032 0.466 0.004

3 0.466 0.005 0.392 0.017 0.382 0.019

Note: The statistics are the Spearman rank correlation coefficients.
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replacing the hybrid PC with a “backward-looking” PC,
as has been used in some studies of survey expectations.

In summary, our key findings are that respondents'
forecasts are much less aligned with their (imputed) PC

model forecasts during COVID than during the earlier
“normal” period. However, across forecasters, we find
that those whose forecasts are more closely aligned with
a PC model in-sample are more likely to produce out-

TABLE 3 Relative forecast accuracy: Hybrid PC models (single-equation estimation).

COVID 2020–2022 2017–2019

h 0 1 2 3 0 1 2 3

Panel A. Reported forecast RMSFE to PC model RMSFE

LQ 0.638 0.899 0.989 0.993 0.545 0.915 0.945 0.949

Median 0.754 0.955 1.004 1.002 0.715 0.984 1.021 1.014

UQ 0.889 0.980 1.022 1.015 0.832 1.059 1.098 1.103

Panel B. PC model RMSFE to AO forecasts RMSFE

LQ 0.917 1.089 1.005 0.945 0.861 0.982 0.915 0.967

Median 0.995 1.154 1.074 1.029 0.921 1.053 0.963 1.044

UQ 1.091 1.210 1.158 1.069 1.010 1.148 1.101 1.131

Panel C. Reported forecast RMSFE to AO forecasts RMSFE

LQ 0.656 1.010 1.009 0.946 0.536 0.901 0.835 0.978

Median 0.751 1.098 1.091 1.017 0.643 1.024 0.949 1.062

UQ 0.891 1.170 1.153 1.069 0.832 1.135 1.105 1.248

Note: The entries are the quartiles of the distribution of the individual ratios, specified in the given panels, for the horizon h given in the column.

FIGURE 2 Out-of-sample RMSFEs. The first bar is the RMSFE of the actual SPF forecasts, the second is the RMSFE of the hybrid PC

model forecasts, and the third is the RMSFE of the AO forecasts. Individuals are ordered by the first variable. We graph the findings for h¼ 0

and h¼ 3, the shortest and longest horizons.
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of-sample forecasts which more closely align with that
model, during both the normal and COVID periods.

For the majority of individuals, we found that the
accuracy of the reported forecasts was close to that of
the PC model forecasts and AO forecasts at the longest
horizon (three quarters ahead) but not at the shortest.
There is evidence that using a no-change predictor
(AO) improves on the reported forecasts, and the PC
model forecasts, beyond the shortest horizon forecasts,
and to a greater extent during COVID than during nor-
mal times. Hence, although the reported forecasts are
superior at the shortest horizon, this superiority does not
extent beyond “nowcasting” of the current-quarter value.
The gain from the exercising of judgment (if we interpret
the reported forecasts as model forecasts plus judgment)
is short lived.

5 | A CLOSER LOOK IN THE TIME
DIMENSION

Figures 3 and 4 show the current-quarter and three-
step-ahead median forecasts, respectively, for the
COVID-19 period. The dates on the horizontal axis refer
to the dates of the surveys. These correspond to the tar-
get periods for the current-quarter forecasts but not for
the longer horizon forecasts. For example, in Figure 4,
the 2020:Q2 forecasts are of 2021:Q1, and the actual
value is the 2021:Q1 inflation rate (which is the actual
corresponding to the 2021:Q1 survey in Figure 3).
Figure 3 shows the actual rate of inflation fell sharply in
2020:Q2, before increasing by around 5% in the third
quarter, and increasing further and remaining high until
the second half of 2022. The reported median SPF fore-
casts anticipated the fall in the second quarter, and
some of the rebound in the third quarter, and were
markedly more accurate than the median PC forecasts,
or the AO forecasts, for these two quarters. Thereafter,
the reported forecasts are not much better than the

others. In 2021:Q2, for instance, all forecasts were far
too low,21 and all the forecasts underpredicted inflation
throughout 2021. (Recall that Figure 3 depicts current-
quarter forecasts.) Clear divergences between reported
and PC model forecasts occurred in 2020:Q2 and Q3,
but not subsequently, although the model forecasts were
generally too low.

In contrast, the longer horizon median reported and
PC model forecasts (Figure 4) generally move in lockstep
and fail to anticipate the high rates of inflation
that occurred. The median reported and PC model h¼ 3
forecasts deviate little from 2% or so throughout the
period. The AO forecasts pick up as they start to feed
off the higher realized inflation rates we move
through 2021.

These results suggest the main differences between
the short-horizon reported and PC model forecasts on
average resulted from the forecasts made in 2020:Q2
and Q3. For the longer horizon, the differences mainly
stem from 2020:Q3. Of course, the averages hide differ-
ences between individuals, and these are studied in
Section 4.

6 | ROBUSTNESS OF THE
FINDINGS

6.1 | The specification of the
Phillips curve

As discussed in Section 1, some studies simply relate fore-
casts of inflation to forecasts of the unemployment rate
and do not include a forward-looking inflation term. To
see whether our results using the forward-looking, hybrid
specification carry over to the simpler specification, we
repeat the analysis with the PC model:

πt ¼ βbwπt�1þ γbwutþ εbw,t, ð4Þ

TABLE 4 Phillips curve inflation forecasts versus the AO benchmarks during the pandemic: hybrid Phillips curve, with horizon-specific

estimates. Rank correlation between the ratio of the PC model MSFE to AO MSFE and the closeness of the reported and model forecasts,

and characteristics of the (in-sample) PC models.

RMSFESPF,PC γ̂ R2

h Statistic p-value Statistic p-value Statistic p-value

0 0.644 0.000 0.015 0.467 �0.484 0.998

1 0.196 0.149 �0.066 0.635 �0.188 0.840

2 0.074 0.349 �0.384 0.983 �0.327 0.962

3 0.126 0.258 �0.483 0.997 �0.185 0.832

Note: The statistics are the Spearman rank correlation coefficients.
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FIGURE 3 Current-quarter median forecasts for surveys 2020:Q1 to 2022:4.

FIGURE 4 h¼ 3 median forecasts for surveys 2020:Q1 to 2022:4.
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in place of (1). Without the forward-looking term, the
SPF data would allow a five-equation system to be
estimated, with an equation for the h¼ 4 inflation rate
(compare to the four-equation system 3 for the hybrid
model). However, for ease of comparability to the results
for the hybrid model, we do not use this additional
equation.

The results for the backward model are recorded in
Figures 5 and 6, and Tables 5 to 8. Using such models,
we replicate the finding for the hybrid model that the FF
values are much higher in the COVID period than the
normal period (compare Table 5 to Table 1).

Table 6 suggests FF is not related to the PC model
slope for the backward model (compare to Table 2),
although as before, FF does appear to depend on the in-
sample R2.

The findings for the backward model are also similar
to the hybrid when we compare the accuracy of the
model forecasts to the reported forecasts (compare
Table 7 panel B to Table 3 panel B). The median ratio is
0.71 (COVID period, and 0.67, normal times) at the short-
est horizon, and beyond that is much closer to 1. As
before, the model forecasts are worse than the AO fore-
casts during the COVID period. (For example, the
median ratio of the model to AO RMSFE is some 15%
higher at h¼ 0,1 during the COVID period.) Table 8 is
broadly similar to Table 4, suggesting that it is also the

case that in the backward model, more negative slopes
(in-sample) are associated with less accurate PC mode
forecasts relative to the AO and that higher R2 values are
associated with more accurate PC model forecasts.

We conclude that the main findings are not sensitive
to the choice of a hybrid versus a backwards Phillips
curve model.

6.2 | Single-equation versus systems
estimation

If an individual's PC is the same for each h, instead of
estimating the model separately for each h, we would
obtain more precise estimates by pooling and estimating
the system (Equation 3), rather than estimating each
equation separately, as hitherto. In this section we com-
pare results for the4 hybrid model. Table 9 replicates
table 2, but using pooled estimates. (The comparison
between reported and AO forecasts would of course be
identical to panel C of Table 2, and so is omitted from
Table 9). The results for pooled estimation are qualita-
tively similar to the single-equation results. The reported
forecasts are more accurate at h¼ 0, and the AO forecasts
generally out-perform the model forecasts by a greater
margin during COVID (approximately 5% and 14% more
accurate) than in normal times.

FIGURE 5 In-sample and out-of-sample performance of individuals' backward-looking PC models. The first bar is RMSFESPF,PC , the

“distance” between the reported and model forecasts out-of-sample, and the second is the in-sample PC model estimated standard error.

Individuals are ordered by the second variable. We graph the findings for h¼ 0 and h¼ 3, the shortest and longest horizons.
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FIGURE 6 Out-of-sample RMSFEs. The first bar is the RMSFE of the actual SPF forecasts, the second is the RMSFE of the backward-

looking PC model forecasts, and the third is the RMSFE of the AO forecasts. Individuals are ordered by the first variable. We graph the

findings for h¼ 0 and h¼ 3, the shortest and longest horizons.

TABLE 5 Forecast failure: Backward PC models (single-equation estimation).

COVID 2020–2022 2017–2019

h 0 1 2 3 0 1 2 3

LQ 1.598 1.167 0.780 1.013 0.490 0.520 0.593 0.576

Median 1.932 1.757 1.304 1.256 0.609 0.773 0.746 0.769

UQ 2.419 3.069 1.936 2.270 0.761 0.965 1.182 1.135

Note: The entries are the quartiles of the distribution of individual FF values for the horizon h given in the column.

TABLE 6 Pre-pandemic belief in the Phillips curve and forecasting during the pandemic: Backward Phillips curve, with horizon-specific

estimates.

h
σ̂ and RMSFESPF,PC FF and γ̂ FF and R2

Statistic p-value Statistic p-value Statistic p-value

0 0.382 0.016 0.123 0.255 0.245 0.091

1 0.144 0.223 �0.234 0.893 0.346 0.029

2 0.234 0.106 0.277 0.069 0.408 0.012

3 0.257 0.088 0.157 0.208 0.473 0.004

Note: The statistics are the Spearman rank correlation coefficients.
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TABLE 7 Relative forecast accuracy: Backward PC models (single-equation estimation).

COVID 2020–2022 2017–2019

h 0 1 2 3 0 1 2 3

Reported forecast RMSFE to PC model RMSFE

LQ 0.538 0.872 1.002 0.991 0.586 0.914 0.918 0.937

Median 0.666 0.954 1.019 1.006 0.706 0.975 1.000 1.033

UQ 0.782 1.000 1.039 1.023 0.963 1.070 1.080 1.117

PC model RMSFE to AO forecasts RMSFE

LQ 1.071 1.117 1.016 0.935 0.832 0.996 0.933 0.989

Median 1.147 1.164 1.066 1.027 0.880 1.047 0.966 1.049

UQ 1.238 1.229 1.137 1.067 0.910 1.122 1.126 1.164

Note: The entries are the quartiles of the distribution of the individual ratios, specified in the given panels, for the horizon h given in the column.

TABLE 8 Phillips curve inflation forecasts versus the AO benchmarks during the pandemic: Backward Phillips curve, with horizon-

specific estimates. Rank correlation between the ratio of the PC model MSFE to AO MSFE and the closeness of the reported and model

forecasts, and characteristics of the (in-sample) PC models.

RMSFESPF,PC γ̂ R2

h Statistic p-value Statistic p-value Statistic p-value

0 0.484 0.002 �0.051 0.607 �0.612 1.000

1 0.433 0.008 �0.463 0.996 �0.179 0.828

2 0.440 0.007 �0.380 0.982 �0.365 0.977

3 �0.127 0.745 �0.457 0.994 �0.193 0.843

Note: The statistics are the Spearman rank correlation coefficients.

TABLE 9 Relative forecast accuracy: Hybrid PC models (pooled-over-horizon estimates).

COVID 2020-2022 2017–2019

h 0 1 2 3 0 1 2 3

Panel A. Reported forecast RMSFE to PC model RMSFE

LQ 0.626 0.956 0.987 0.984 0.567 0.907 0.963 0.942

Median 0.787 0.981 1.005 1.003 0.705 0.940 1.018 1.008

UQ 0.877 1.007 1.014 1.014 0.857 1.023 1.078 1.088

Panel B. PC model RMSFE to AO forecasts RMSFE

LQ 0.923 1.048 1.021 0.948 0.842 0.979 0.869 0.960

Median 0.973 1.109 1.080 1.020 0.894 1.057 0.943 1.056

UQ 1.077 1.164 1.154 1.070 1.003 1.133 1.097 1.217

Panel C. Reported forecast RMSFE to AO forecasts RMSFE

LQ 0.656 1.010 1.009 0.946 0.536 0.901 0.835 0.978

Median 0.751 1.098 1.091 1.017 0.643 1.024 0.949 1.062

UQ 0.891 1.170 1.153 1.069 0.832 1.135 1.105 1.248

Note: The entries are the quartiles of the distribution of the individual ratios, specified in the given panels, for the horizon h given in the column.
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7 | CONCLUSIONS

We consider whether professional forecasters react differ-
ently in the COVID-19 period, in terms of forecasting CPI
inflation. Do their forecasts of inflation and the unem-
ployment rate conform to Phillips curve relationships to
the same degree during the pandemic, as they did during
“normal times”? Naturally, forecasters are expected to
have made larger forecast errors than usual due to the
effects of unforeseen events. Faced by this additional
uncertainty, do they persevere with their PC models, sup-
plemented by judgment regarding the likely effects of
unfolding events, or look to alternative ways to forecast
inflation?

We find that by and large professionals do not radi-
cally alter their behavior, in the sense that respondents
whose forecasts conformed closely to a Phillips curve
model pre-COVID-19 are more likely to produce forecasts
which are consistent with that model during COVID-19.
Naturally, the reported forecasts deviate from the PC
model forecasts because they reflect additional informa-
tion on how the evolving pandemic is expected to impact
on inflation and do so to a greater extent than during
“normal times.” In this respect, our results are consistent
with professional forecasters drawing on additional
sources of information during COVID-19, such as those
discussed by Ferrara and Sheng (2022) (and the papers
therein), and using that information to chart the effects
of the pandemic, and the attempts of governments at mit-
igation, on the macroeconomy. Our results do not suggest
a wholesale rejection of forecasting with Phillips curves.

Comparing reported forecasts, PC model forecasts
and “no-change” AO forecasts during COVID-19, we find
that for most respondents, the short-term (h¼ 0) reported
forecasts are markedly more accurate, and the PC model
and AO forecasts similar. This is consistent with the
reported forecasts being able to draw on relevant infor-
mation, explaining their superior performance at h¼ 0.
By h¼ 3, this superiority has vanished when we consider
the forecasters en masse, in the sense that the median
ratio of the RMSFE of the reported and AO forecasts
favors the AO forecasts. We find that the relative gains to
AO over either the reported or model forecasts is greater
during COVID-19 than in the normal comparator period
(2017–2019).

Hence, there is evidence that the respondents would
have done better, in terms of accuracy, to switch to a
“robust” forecasting device (the AO forecasts). The com-
parison of the AO forecasts to the PC model forecasts is
fairer than comparisons involving reported forecasts, in
that neither draw on current-survey-quarter information,
although that information only provides an edge at h¼ 0.
The AO forecast is just one example of a robust device—

see Castle et al. (2015) for details—and alternatives may
do better, but we do not pursue them here.22

Our findings are broadly the same if we replace the
hybrid PC model with a backward PC model or pool
across horizons when we estimate the PC models'
unknown parameters.
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ENDNOTES
1 Ferrara and Sheng (2022) present an edited sample of such
papers. “Big Data” often includes data from online information-
gathering services: See, for example, Diebold (2003).

2 Questions on how expectations are formed are not routinely
included but are occasionally asked in special one-off surveys.
For the US SPF respondents, Stark (2013) report: “We found that
almost all respondents use a combination approach to forecast-
ing: Twenty of 25 respondents said they use a mathematical/
computer model plus subjective adjustments to that model in
reporting their projections. (One respondent reported using pure
model-generated forecasts, and four respondents said they use
only their experience and intuition.) One interpretation of these
results is that SPF panelists, like many macroeconomists in gen-
eral, think models are useful but should not be fully trusted to
deliver reasonable results in every circumstance.”

3 For example, if the proportions of PC model and non-PC model
forecasters differed between the two periods. See Engelberg et al.
(2011) and Manski (2011) on compositional effects.

4 Clements (2022) highlights the importance of forecaster
heterogeneity.

5 These papers consider different formulations for the relationship
between inflation and the unemployment rate. For example,
Dräger et al. (2016) consider the number of times inflation and
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unemployment forecasts move in opposite directions (at each
point in time, across the cross-section of forecasters). Here, we
consider forecasters adherence to Phillips curve relationships.

6 Binder et al. (2021) show that perceived persistence also affects
the term structure of uncertainty.

7 h¼ 0 denotes a forecast of the survey–quarter value. This is fore-
cast because the “actual” value will not be revealed until the fol-
lowing quarter. h¼�1 is a “forecast” of the previous quarter.
These are reported by the SPF, and the respondents usually write
in the advance actual values.

8 We naturally expect that out-of-sample fit (to the forecasts) will
generally worsen across the board.

9 On the value of the timeliness of the information embedded in
survey forecasts, see Faust and Wright (2009) and Clements
(2015), inter alia.

10 An update by Stock and Watson (2009) reports more nuanced
findings, in particular that Phillip curve forecasting models dis-
play episodic good performance.

11 The “no-change” predictor was one of the robust forecasting
methods proposed by Clements and Hendry (1999) and Castle
et al. (2015, 2016), inter alia.

12 Note that when we calculate RMSFEs to compare the accuracy
of the reported forecasts and the AO forecasts, for example, we
only include AO forecasts for the periods for which the respon-
dent in question made a forecast. Thus, it is a fair comparison in
the sense that we are comparing forecasts for the same forecast
origins (surveys).

13 Earlier periods, such as the financial crisis period, would further
restrict the individual-level forecast data required to estimate the
PC models.

14 The in-sample PC model fit, σ̂, is the estimated standard error of
the PC model, on the reported forecasts for the period 1981:Q3 to
2019:Q4: although there will typically be many missing values.
The deviation between the model forecasts “out-of-sample” and
the reported forecasts, denoted RMSFESPF,PC , is the square root
of the average squared difference between the two sets of fore-
casts over the period 2020:Q1–2022:Q4.

15 Recall that FF is RMSFESPF,PC divided by σ̂.
16 The rank correlation coefficient is explained in Appendix A.
17 There is a maximum of 12 current-quarter forecasts (h¼ 0) but

only nine h¼ 3 forecasts. This is because the latest actual value is
for 2022:4, so that the last h¼ 3 forecast is made at time 2022:1.
For some individuals there will we fewer than these maximum
numbers, because of non-participation.

18 Equality of two sets of forecasts on (R)MSFE does not of course
imply that the two sets of forecasts are the same and leaves open
the possibility that each set may continue useful information not
included in the other. This can be made operational by testing
whether or not a linear combination of the two forecasts is more
accurate than either one alone (the notion of forecast encompass-
ing of Chong and Hendry; 1986) but is not explored here.

19 The role of judgment in macroforecasting has been studied by
Turner (1990) and Clements (1995), inter alia.

20 RMSFEPC and RMSFEAO denote the PC model and AO forecast
RMSFEs. For respondent i, the calculation of the AO

RMSFE includes only AO forecasts for surveys for which i made
a forecast. RMSFEPC depends on h and i, whereas for a given ori-
gin, the AO forecasts do not depend on h. (As implemented, the
AO forecasts are simply the average of the inflation rates of the
previous four quarters, for all future periods.) Hence, RMSFEAO

will be different for respondents who do not make forecasts for
the same surveys.

21 As shown in Figure 3, the actual inflation rate was a little over
8%, and the median reported forecast a little over 3%.

22 AO forecasts will adapt more slowly than devices which average
over shorter periods, for example.
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APPENDIX A: SPEARMAN'S RANK
CORRELATION COEFFICIENT

Spearman's rank correlation coefficient has been used to
determine whether there are cross-respondent relation-
ships in various quantities of interest: for example,
between the in-sample fit and the distance between
COVID-19 reported and model forecasts. The rank corre-
lation does not require that the relationship between the
variables is linear, because it works off the ranks of
the variables. It will detect an association provided only
that the relationship is monotonic.

The Spearman rank correlation r lies between �1 and
1, where 0 indicates no relationship. The rank correlation
given by

r¼ 1� 6R
N N2�1ð Þ ,

where R is the sum of squared differences between
the ranks (of the forecasters by sample size and by the
value of γ̂j). It is common to calculate the Fisher
transformation,

F rð Þ¼ 1
2
ln

1þ r
1� r

,

such that z¼F rð Þ:
ffiffiffiffiffiffiffi
N�3
1:06

q
�N 0,1ð Þ under the null of statis-

tical independence. As well as reporting r, we report the
probability of the test statistic z being at least as large as
we obtained if the null hypothesis (of a zero correlation)
is true. Probabilities less than 0.025 or greater than 0.975
indicate rejections of the null in a two-sided test at the
5% level. (High probabilities suggest a negative relation-
ship and low probabilities a positive relationship.)

The test statistics we report are based on estimates of
the quantities of interest, rather than the population
values. For example, when we consider the relationship
between PC model unemployment rate parameter γ, and
the expected squared error of the reported forecasts dur-
ing COVID-19, we use estimates of these quantities - γ̂i
and the MSFE of the forecasts which individual i made
during this period.

We could account for the uncertainty in the estimate
γ̂i, because these quantities are realizations of random
variables with known “measurement” uncertainties:
See, for example, the perturbation method of Curran
(2015). Or alternatively we could perform a (block)
bootstrap on individual i's reported pre-COVID-19 fore-
casts of inflation and the unemployment rate, to deter-
mine the bootstrap distribution of the unemployment
rate parameter (or of the in-sample standard error, σi).
The problem arises in that we do not know the

measurement uncertainties in the COVID-19 period
quantities. Simply re-sampling the COVID-19 period
forecasts and actual values to estimate the distribution of
an individual's expected squared loss is unlikely to be
successful, given the small number of forecasts (from 4 to
a maximum of 12), and will not capture the impact of,
say, an individual filing a forecast in response to the
2020:Q2 survey but not the 2020:Q1 survey, or vice versa.
In short, the COVID-19 period in our dataset (2020:Q1 to
2022:Q4) is a singular period. For this reason, we do not
attempt to posit a distribution for the COVID-19 period
data that underlies the RMSFE and related measures and
which would be necessary to calculate the uncertainty in
the estimates.

APPENDIX B: DATA APPENDIX

B.1 | Forecast data
The forecast data are from the US Survey of Professional
Forecasters (SPF). The SPF is a quarterly survey of macro-
economic forecasters of the US economy that began in 1968,
administered by the American Statistical Association (ASA)
and the National Bureau of Economic Research (NBER).
Since June 1990, it has been run by the Philadelphia Fed,
renamed as the SPF: See Croushore (1993). It is one of the
principal sources for academic research of macroeconomic
expectations. See, for example, Clements et al. (2023). The
forecast data are freely available from the Philadelphia
Fed website http://www.phil.frb.org/econ/spf/.

We use the individual expectations from 1981:Q3 to
2022:Q4 for:

Civilian Unemployment Rate (UNEMP). Percentage
points. Seasonally adjusted. Quarterly average.

CPI Inflation Rate (CPI) Headline. Annualized quar-
ter on quarter percentage change. Seasonally adjusted.
Based on quarterly average index level.

B.2 | Actual data
The matching real-time data were downloaded from
http://www.philadelphiafed.org/research-and-data/real-
time-center/real-time-data/.

The Real-Time Data Set for Macroeconomists
(RTDSM) provides quarterly vintages of monthly data.
From the quarterly vintages of monthly data, we con-
struct quarterly vintages of quarterly data, by averaging
the months. We then transform the CPI data to match
the forecasts. Although the revisions to CPI and UNEMP
are small, we use the advance estimates. (For the CPI,
vintages are not available prior to 1994:Q3, so the data up
to 1994:Q2 are taken from the 1994:Q3 vintage.)
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