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Abstract
Climate	change	majorly	impacts	biodiversity	in	diverse	regions	across	the	world,	in-
cluding	South	Asia,	a	megadiverse	area	with	heterogeneous	climatic	and	vegetation	
regions.	However,	climate	impacts	on	bats	in	this	region	are	not	well-	studied,	and	it	
is	unclear	whether	climate	effects	will	follow	patterns	predicted	in	other	regions.	We	
address	this	by	assessing	projected	near-	future	changes	in	climatically	suitable	areas	
for	110	bat	species	from	South	Asia.	We	used	ensemble	ecological	niche	modelling	
with	four	algorithms	(random	forests,	artificial	neural	networks,	multivariate	adaptive	
regression	splines	and	maximum	entropy)	to	define	climatically	suitable	areas	under	
current	 conditions	 (1970–2000).	 We	 then	 extrapolated	 near	 future	 (2041–2060)	
suitable	 areas	 under	 four	 projected	 scenarios	 (combining	 two	 global	 climate	mod-
els	 and	 two	 shared	 socioeconomic	 pathways,	 SSP2:	middle-	of-	the-	road	 and	 SSP5:	
fossil-	fuelled	development).	Projected	future	changes	in	suitable	areas	varied	across	
species,	with	most	species	predicted	to	retain	most	of	the	current	area	or	lose	small	
amounts.	When	shifts	occurred	due	to	projected	climate	change,	new	areas	were	gen-
erally	 northward	 of	 current	 suitable	 areas.	 Suitability	 hotspots,	 defined	 as	 regions	
suitable	for	>30%	of	species,	were	generally	predicted	to	become	smaller	and	more	
fragmented.	Overall,	climate	change	in	the	near	future	may	not	lead	to	dramatic	shifts	
in	the	distribution	of	bat	species	in	South	Asia,	but	local	hotspots	of	biodiversity	may	
be	lost.	Our	results	offer	insight	into	climate	change	effects	in	less	studied	areas	and	
can	inform	conservation	planning,	motivating	reappraisals	of	conservation	priorities	
and	strategies	for	bats	in	South	Asia.
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1  |  INTRODUC TION

Climate	 change	 is	 a	 major	 threat	 to	 biodiversity	 (Araújo	 &	
Rahbek,	2006;	Hughes	et	al.,	2003),	and	 its	 impacts,	 including	the	
modification	 of	 species	 biology,	 ecology	 and	 distribution	 and	 ul-
timately,	 increased	 extinction	 risk	 across	 the	 world	 (Parmesan	 &	
Yohe,	 2003;	 Schmittner	 &	 Galbraith,	 2008;	 Thomas	 et	 al.,	 2004; 
Walther	 et	 al.,	2005;	Wolkovich	et	 al.,	2014),	 are	predicted	 to	 ac-
celerate	 towards	 the	 end	 of	 the	 century	 (Urban,	 2015).	 Loss	 of	
species	diversity	and	reduced	distribution	ranges	are	expected	con-
sequences	of	climate	change	(Jetz	et	al.,	2007;	Malcolm	et	al.,	2006; 
Midgley	 et	 al.,	 2006),	 particularly	 among	 taxa	with	 behaviour	 and	
lifecycles	 closely	 influenced	 by	 climatic	 conditions	 (Brook,	 2009; 
Sherwin	et	al.,	2013).

Climate	 change	 currently	 affects	 and	 will	 continue	 to	 impact	
many	areas	of	the	world	 including	South	Asia,	which	is	considered	
one	of	the	most	vulnerable	regions	to	climate	change	impacts	(World	
Bank	Group,	2022).	This	 region	hosts	a	wide	and	diverse	range	of	
biotic	 and	 abiotic	 conditions	 with	 spatial	 variation	 in	 climate	 and	
vegetation	 that	 have	 resulted	 in	 high	 degrees	 of	 diversity,	 rich-
ness	 and	endemism	 (Srinivasulu	&	Srinivasulu,	 2016)	 and	 contains	
two	 global	 biodiversity	 hotspots:	 the	 Eastern	 Himalayas	 hotspot	
and	the	Western	Ghats	and	Sri	Lanka	hotspot,	and	also	comprises	
small	parts	of	the	Indo-	Burma,	Mountains	of	Southwest	China	and	
Sundaland	hotspots	(Myers	et	al.,	2000;	Olson	&	Dinerstein,	1998).	
This	 biodiversity	 is	 likely	 to	 be	 threatened	by	 climate	 change,	 but	
few	studies	have	investigated	the	potential	impacts	of	future	climate	
scenarios	in	this	region.

South	Asia	 hosts	 over	 500	 species	 of	mammals,	 of	which	 151	
species,	 in	 nine	 families,	 are	 bats	 (Srinivasulu,	 2019;	 Srinivasulu	
et	al.,	2023).	Unfortunately,	in	most	regions	in	South	Asia,	bats	are	
often	 perceived	 negatively	 (Frembgen,	 2006)	 and	 are	 not	 consid-
ered	to	be	of	conservation	value	–	only	six	species	are	specifically	
protected	by	the	Indian	Wildlife	(Protection)	Act,	1972.	Bats	can	be	
important	 as	 indicator	 species	 (Jones	 et	 al.,	 2009),	 ecological	 ser-
vice	providers	and	keystone	species	(Altringham	&	McOwat,	2011; 
Hughes	et	al.,	2012;	Kalka	et	al.,	2008;	Raman	et	al.,	2023;	Williams-	
Guillén	 et	 al.,	2008).	Globally	 bats	 have	 been	 identified	 as	 partic-
ularly	 susceptible	 to	 climate	 change	 (Festa	 et	 al.,	 2022;	 Sherwin	
et	 al.,	2013)	 due	 to	 their	 high	 risk	 of	 dehydration	 caused	by	 their	
high	surface-	to-	volume	ratios	(as	a	result	of	their	relatively	smaller	
bodies	 and	 larger	 wing	 and	 tail	 membranes;	 Korine	 et	 al.,	 2016; 
Salinas-	Ramos	 et	 al.,	 2023)	 and	 their	 slower	 reproductive	 strate-
gies	 (Frick	et	al.,	2020).	 In	addition,	bat	behaviour	and	ecology	are	
often	 driven	 by	 climate-	based	 cues	 (Bates	&	Harrison,	 1997),	 and	
due	 to	 lacking	 an	 effective	 evaporative	 cooling	 body	mechanism,	
bats	 are	 especially	 sensitive	 to	 heat	 (Salinas-	Ramos	 et	 al.,	 2023).	
Climate	 extremes	 like	 heat	waves,	 increasing	 in	 frequency	 due	 to	
anthropogenic	climate	change	(Sippel	et	al.,	2015;	Vogel	et	al.,	2019),	
are	known	to	cause	mass	mortality	events	in	bats	across	the	world	
(O'Shea	et	al.,	2016).	Overall,	bats	are	likely	to	be	impacted	by	pre-
dicted	 climate	 changes	 in	 South	Asia;	 however,	 it	 remains	 unclear	
how	changes	in	climate	conditions	could	affect	areas	of	bat	diversity	

and	species	distribution	ranges	in	this	region,	and	how	these	effects	
vary	between	species.

Ecological	niche	modelling	 (ENM)	 is	a	set	of	 techniques	widely	
used	 to	 spatially	 model	 suitability	 by	 extrapolating	 from	 ecolog-
ical	niche	conditions	present	within	a	 species'	 current	distribution	
(Araújo	et	al.,	2006;	Pearson	&	Dawson,	2003).	When	climate	con-
ditions	(e.g.	temperature	and	precipitation)	are	used	as	niche	data,	
ENM	results	in	climatic	suitability	envelopes	that	may	approximate	
the	 fundamental	 niche	 (Soberón	 &	 Arroyo-	Peña,	 2017).	 Climatic	
suitability	 envelopes	 are	 subsequently	 compared	 to	 evaluate	
changes	 in	 climatically	 suitable	 locations	 into	 the	 future	based	on	
modelled	climate	scenarios,	as	an	assessment	of	the	effect	of	climate	
change	on	the	study	species	(Guisan	&	Thuiller,	2005).	However,	due	
to	 limitations	 including	 uncertainty	 in	 data	 acquisition	 and	 gener-
ation,	 modelling	 methodology,	 assumptions	 of	 statistical	 analyses	
and	 reproducibility	 of	 analytical	 methods,	 ENM	 requires	 careful	
consideration	and	application	(Feng,	Park,	Liang,	et	al.,	2019;	Feng,	
Park,	Walker,	et	al.,	2019).	This	has	resulted	in	the	development	of	
various	 robust	 statistical	 applications,	 algorithms	 and	 frameworks	
for	ENM	(Araújo	&	Luoto,	2007;	Breiner	et	al.,	2018;	Drake,	2014; 
Elith	et	al.,	2011;	Hijmans	et	al.,	2005;	Pearson	et	al.,	2006),	and	a	
rise	in	the	use	of	these	modelling	methods	in	ecology,	conservation	
and	policymaking	(Araújo	et	al.,	2019).	Recently,	ensemble	ENMs	–	
where	multiple	ENM	algorithms	are	used	on	the	same	data	and	their	
results	are	combined	through	various	consensus	methods	–	have	in-
creased	in	popularity	as	a	reliable	method	to	account	for	differences	
between	modelling	 algorithms	 in	ENM,	 thereby	 increasing	 the	 ro-
bustness	and	interpretability	of	these	models	(Thuiller	et	al.,	2009).	
Through	ecological	niche	modelling,	 it	 is	possible	 to	estimate	suit-
able	regions	based	on	known	species	occurrences	and	climate	data	
for	a	given	time	period	in	a	region.	Climate	impacts	on	species	in	a	re-
gion	can	then	be	analysed	by	comparing	these	suitability	envelopes	
between	current	and	projected	future	climate	conditions.

In	 this	 study,	 we	 investigate	 the	 predicted	 impact	 of	 climate	
change	 on	 bat	 species	 in	 South	Asia	 using	 geographic	 occurrence	
data	and	bioclimatic	variables	describing	current	climates	and	four	
near	 future	 (2041–2060)	 scenarios.	We	 used	 ensemble	 ENM	 and	
carefully	constructed	sets	of	simulated	pseudoabsences	that	incor-
porate	 uncertainty	 in	 the	 data	 and	 considered	 biological	 and	 en-
vironmental	 factors.	The	consensus	output	was	 then	evaluated	 to	
characterise	changes	in	the	size	and	location	of	climatically	suitable	
areas	for	all	studied	bats	and	to	identify	hotspots	of	diversity	based	
on	climate	suitability.	These	results	provide	information	of	value	for	
conservation	planning,	prioritisation	and	policymaking.

2  |  METHODS

2.1  |  Study area

South	Asia	 covers	 an	 area	 of	 approximately	 3.75	million	 km2,	 and	
comprises	the	countries	of	Afghanistan,	Bangladesh,	Bhutan,	India,	
the	Maldives,	Nepal,	Pakistan	and	Sri	Lanka	 (Figure 1).	The	region	
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consists	of	four	broad	climate	zones	(Oliver,	2005):	dry	subtropical	in	
the	far	North,	equatorial	in	the	far	South,	alpine	in	the	mountainous	
regions	and	tropical	(with	regional	variations)	in	most	of	the	rest	of	
the	subcontinent.	According	to	the	Koppen-	Geiger	climate	classifi-
cation	system	(Peel	et	al.,	2007),	the	region	comprises	15	different	
climatic	subtypes,	dominated	by	subtropical	climates	(humid	summer	
and	dry	winter)	in	the	north	and	the	Indo-	Gangetic	plain,	and	tropical	
savanna	climates	(wet	and	dry)	in	the	central,	eastern	and	peninsu-
lar	regions.	Most	of	the	west	and	north-	west	of	South	Asia	consists	
of	 arid	 and	 desert	 climates.	Due	 to	 the	 large	 topographical	 varia-
tion	 in	this	region,	the	variety	of	elevations,	soil	types	and	biomes	
in	 South	Asia	 is	 very	 complex	 (Ramankutty	 et	 al.,	2018).	 To	 avoid	
biases	based	on	political	boundaries,	the	focal	area	for	the	analysis	
was	 defined	 as	 a	 rectangular	 extent	 around	 the	 borders	 of	 South	
Asia	(Figure 1).	Due	to	the	Himalayas	and	trans-	Himalayan	regions	
forming	a	barrier	to	bat	movement	and	presence	(Ruedi	et	al.,	2008; 
Thapa	et	al.,	2021),	the	regions	of	China	that	fell	under	this	extent	
were	removed,	thus	creating	a	dispersal	boundary	on	the	northern	
border	of	Nepal,	which	coincides	with	the	Himalayas.	Additionally,	
due	to	distance	and	isolation	from	most	of	the	study	area,	the	small	
portion	of	 Indonesia	 (northern	Aceh,	 Sumatra)	 that	 fell	within	 the	
study	 extent	was	 removed	 (Figure 1).	 The	Western	Ghats	 and	 Sri	
Lanka	biodiversity	hotspot	is	located	within	the	study	area,	and	the	
area	 also	 comprises	 parts	 of	 the	 Eastern	 Himalayas,	 Indo-	Burma,	
Mountains	 of	 Southwest	 China	 and	 Sundaland	 hotspots	 (Myers	
et	al.,	2000).

2.2  |  Species distribution data

There	 are	 151	 recognised	 bat	 species	 in	 South	 Asia	 (Srinivasulu	
et	 al.,	 2023)	 but	 we	 excluded	 the	 four	 species	 endemic	 to	 the	
Andaman	and	Nicobar	Islands	given	the	geographic	isolation	of	the	
islands	 from	 the	 rest	 of	 the	 South	 Asian	 landmass.	 Species	 were	
identified	 based	 on	 current	 taxonomic	 information	 at	 the	 time	 of	
analysis	(Srinivasulu	et	al.,	2021a,	2021b).	We	also	limited	our	study	
to	 species	 for	which	we	 could	 gather	 five	or	more	occurrence	 lo-
calities	 across	 South	 Asia,	 with	 a	minimum	 distance	 between	 oc-
currences	of	5 km.	Presence-	only	occurrence	data	for	these	species	
were	collected	from	published	(including	but	not	limited	to	Bates	&	
Harrison,	1997;	Raman	et	al.,	2023;	Srinivasulu	et	al.,	2021a,	2021b; 
Srinivasulu	&	Srinivasulu,	2012),	unpublished	sources	 (records	col-
lected	during	 field	 surveys	 conducted	 in	 India	between	2002	and	
2022	and	records	communicated	by	collaborators	and	citizen	scien-
tists	in	the	region	confirmed	by	photographic	or	other	evidence)	and	
GBIF	 records	 [accessed	 July	 2022].	 Records	 of	 specimens	 housed	
in	museums,	 including	 the	Natural	History	Museum	 (London,	UK),	
Harrison	 Institute	 (Sevenoaks,	United	Kingdom),	 Field	Museum	of	
Natural	History	(Chicago,	USA),	Zoological	Survey	of	India	(Kolkata,	
India)	and	Natural	History	Museum,	Osmania	University	(Hyderabad,	
India),	were	also	included.

To	define	current	localities,	we	omitted	occurrence	records	col-
lected	 before	 1980	 and	 only	 included	 records	 collected	 between	
1980	 and	 1999	 if	 presence	 was	 confirmed	 during	 field	 surveys	

F I G U R E  1 Study	area,	showing	
topography	and	political	boundaries	of	
countries	in	South	Asia.	Indonesia	and	
China,	shown	in	grey,	are	not	included	in	
this	study.
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conducted	by	the	authors	from	2000.	In	order	to	account	for	spatial	
bias	 in	 sampling	and	 spatial	 autocorrelation	between	occurrences,	
points	were	spatially	rarefied	to	the	resolution	of	the	climate	data	
(2.5 arc-	minutes).	Duplicate	records	within	the	same	cell	were	omit-
ted	from	the	analysis	using	random	removal	of	nearest	neighbours	
implemented	in	the	spThin	package	(Aiello-	Lammens	et	al.,	2015)	in	
R	4.3.0	(R	Core	Team,	2022).	After	processing,	occurrence	data	were	
available	for	110	bat	species	representing	all	nine	families	recognised	
in	 South	 Asia,	 for	 which	we	 obtained	 a	 total	 of	 5998	 occurrence	
points.	 Data	 availability	 varied	 among	 species,	 with	 occurrences	
ranging	from	5	points	for	six	species	(Coelops frithii,	Kerivoula lenis,	K. 
malpasi,	Murina leucogaster,	M. pluvialis	and	Myotis annectans)	to	439	
points	for	Pteropus medius.

2.3  |  Bioclimatic variables

Yearly	and	seasonal	patterns	 in	 temperature	and	precipitation,	 re-
ferred	 to	 in	biogeographic	modelling	as	bioclimatic	 factors	or	pre-
dictors,	 are	 known	 to	 influence	 behaviour	 and	 life	 history	 in	 bats	
around	the	world	(Conenna	et	al.,	2019;	Gorman	et	al.,	2021;	Kohyt	
et	al.,	2021;	Weinberg	et	al.,	2022).	To	capture	these	conditions	and	
test	the	hypothesis	that	macroclimatic	effects	can	determine	occur-
rence	of	bats,	the	19	standard	current	bioclimatic	predictor	variables	
were	sourced	at	2.5 arc-	minute	resolution	from	the	WorldClim	v2.1	
database	for	the	period	of	1970–2000	(Fick	&	Hijmans,	2017).	We	
focused	on	this	resolution	(~4 × 4 km)	considering,	in	the	absence	of	
detailed	 species-	level	 information,	 that	 such	 distances	 are	 within	
the	average	foraging	range	and	mobility	of	these	species.	Our	study	
covers	 large	 taxonomic,	 spatial	 and	 temporal	 scales	 that	 aim	 to	
capture	broad	environmental	 effects	 that	 are	best	detected	using	
moderately	coarse	resolutions	(Wiens	et	al.,	2009).	Finer	resolutions	
are	 more	 suitable	 for	 detecting	 smaller-	scale	 behavioural	 effects	
(Pulliam,	2000)	 including	movement,	territoriality	and	inter-	species	
interactions	in	mixed	colonies.

Four	future	climate	predictions	were	obtained	combining	two	dif-
ferent	global	climate	models	and	two	different	socioeconomic	climate	
scenarios	to	capture	uncertainty.	We	considered	the	Canadian	Earth	
System	Model	5	(CanESM5;	Swart	et	al.,	2019)	and	Hadley	Centre	
Global	Environment	Model	3	(HadGEM3;	Good,	2019;	Good,	2020)	
available	in	the	Coupled	Model	Intercomparison	Project	6	(CMIP6)	
from	 which	 we	 obtained	 2.5 arc-	minute	 climate	 predictions	 for	 a	
near-	future	 time	 (2050,	 averaged	 from	2041	 to	2060).	 From	each	
model,	data	were	obtained	for	the	shared	socioeconomic	pathways	
2	and	5	(SSP2,	equivalent	to	Representative	Concentration	Pathway	
RCP4.5;	 and	 SSP5,	 equivalent	 to	 Representative	 Concentration	
Pathway	RCP8.5).	These	pathways,	used	by	the	International	Panel	
on	Climate	Change,	characterise	an	optimistic	 ‘middle	of	 the	road’	
socioeconomic	scenario	representing	an	 ideology	towards	sustain-
able	 development,	 and	 a	 pessimistic	 ‘fossil-	fuelled	 development’	
scenario	 of	 climate	 change	based	on	development	 almost	 entirely	
based	on	fossil	 fuels	 in	the	future,	and	 little	development	towards	

sustainability	 and	 an	 emphasis	 on	 resource-		 and	 energy-	intensive	
lifestyles	 (Kriegler	 et	 al.,	 2017).	 The	 two	 CanESM5	 models	 are	
hereafter	referred	to	as	Can2-	45	for	SSP2-	RCP4.5	and	Can5-	85	for	
SSP5-	RCP8.5,	and	the	two	HadGEM3	models	as	Had2-	45	for	SSP2-	
RCP4.5	and	Had5-	85	for	SSP5-	RCP8.5.

To	allow	for	accuracy	in	model	transfer	and	clarity	in	interpreta-
tion,	bioclimatic	variables	in	ENM	models	are	usually	selected	a	priori	
to	avoid	multicollinearity	and	variance	inflation.	The	bioclimatic	vari-
ables	were	first	filtered	using	an	assessment	of	ecological	relevance	
based	on	 field	knowledge	and	 literature	 (Appel	et	al.,	2019;	Bates	
&	Harrison,	1997;	Corro	et	al.,	2021;	Grindal	et	al.,	1992;	Stones	&	
Wiebers,	1965).	Then,	the	variables	were	further	filtered	based	on	
collinearity	–	noting	that	available	ENM	algorithms	are	not	greatly	
impacted	 or	 can	 account	 for	 correlation	 and	 interaction	 between	
variables	(Dormann	et	al.,	2013;	Feng,	Park,	Liang,	et	al.,	2019;	Feng,	
Park,	Walker,	 et	 al.,	 2019;	De	Marco	&	Nóbrega,	2018;	Muñoz	&	
Felicísimo,	2004),	 and	 in	 some	 cases,	 correlated	 variables	may	 be	
used	 if	 they	 are	 considered	 ecologically	 relevant.	 An	 analysis	 of	
multicollinearity	was	conducted	using	a	combined	variance	inflation	
factor	(VIF)	and	pairwise	correlation	test	in	the	usdm	package	(Naimi	
et	al.,	2014)	in	R.	Variables	with	an	absolute	pairwise	Pearson's	r < .85	
were	selected	for	the	analysis.	When	a	variable	pair	had	high	correla-
tion	 (r ≥ |.85|),	we	removed	the	variable	deemed	to	have	 least	eco-
logical	relevance,	but	if	both	variables	were	considered	ecologically	
relevant,	 the	 variable	with	 the	 highest	 VIF	was	 excluded	 instead.	
Additionally,	 collinearity	 shifts	 between	 current	 and	 future	 pre-
dictions	were	measured	using	paired	t-	tests	of	VIF	scores	for	each	
variable,	as	these	tend	to	impact	model	transferability	(Feng,	Park,	
Liang,	et	al.,	2019;	Feng,	Park,	Walker,	et	al.,	2019).	All	climate	data	
were	cropped	and	masked	to	the	extent	of	the	study	area	defined	
above.	A	final	set	of	10	climate	variables	was	selected	for	the	anal-
ysis,	which	were	 considered	 ecologically	 relevant	 for	 South	Asian	
bats,	and	showed	no	significant	collinearity	shifts	between	current	
and	future	scenarios	(Table S1).	The	same	variables	were	used	for	all	
species	for	consistent	interpretations.

2.4  |  Pseudoabsence generation

As	 the	 occurrence	 data	 available	 were	 presence	 only,	 pseudoab-
sences	were	 generated	 for	 use	 in	 the	 ensemble	modelling.	 These	
pseudoabsences	 are	used	by	 the	modelling	 algorithms	 as	 a	 repre-
sentation	of	environmental	conditions	contrasting	those	of	species	
occurrences	(Elith	et	al.,	2006;	Feng,	Park,	Liang,	et	al.,	2019;	Feng,	
Park,	Walker,	 et	 al.,	 2019;	 Phillips	 et	 al.,	 2006).	 They	 are	 used	 in	
presence-	only	models	 as	 a	 substitute	 for	 ‘true’	 absences,	where	 a	
survey	has	been	conducted	for	a	species,	but	the	species	has	not	been	
detected.	Broadly	following	recommendations	from	Barbet-	Massin	
et	al.	(2012),	1000	pseudoabsences	were	specified	as	the	minimum	
amount	to	be	generated	for	each	species.	To	balance	sample	sizes	of	
presences	and	pseudoabsences	for	species	with	few	occurrence	lo-
calities,	we	generated	multiple	replicates	of	pseudoabsences,	where	
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each	replicate	had	equal	number	of	presences	and	pseudoabsences.	
The	 number	 of	 replicates	 per	 species	 was	 calculated	 by	 dividing	
1000	by	the	number	of	presences	rounded	up	to	the	nearest	integer.	
This	ensured	a	minimum	of	1000	pseudoabsence	points	for	all	spe-
cies	and	 integrated	uncertainty	 in	model	results	via	replication	for	
species	with	fewer	presence	localities.	Pseudoabsences	were	gener-
ated	randomly	requiring	a	minimum	distance	of	2.5 km	and	a	maxi-
mum	distance	of	1000 km	away	from	occurrence	localities.	Because	
data	availability	varied	among	species,	analyses	included	from	3	to	
200	replicates	(Table S2).

2.5  |  Ensemble ecological niche modelling

Presence–pseudoabsence	 ensemble	 ecological	 niche	models	were	
generated	for	each	species	based	on	the	current	climatic	data	using	
the	BIOMOD	framework	(Thuiller	et	al.,	2009),	implemented	in	the	
biomod2	package	(Thuiller	et	al.,	2022)	in	R.	The	ensemble	included	
four	algorithms	known	to	be	robust	and	perform	well	across	a	range	
of	distribution	scales	(Meller	et	al.,	2014):	multivariate	adaptive	re-
gression	 splines	 (MARS),	 artificial	 neural	 networks	 (ANN),	 random	
forests	 (RF)	 and	maximum	 entropy	 (MAXENT,	 implemented	 using	
maxnet;	Phillips	et	al.,	2017).	This	diversity	in	computational	models	
provides	low	inter-	correlation	in	model	components,	which	is	ideal	
for	higher	predictive	performance	 in	ensemble	ENMs	 (Elith,	2019; 
Valavi	et	al.,	2022).	The	models	were	calibrated	according	to	the	de-
fault	parameters	and	parameterisation	processes	in	biomod2.

To	validate	model	results,	we	used	fivefold	cross-	validation,	di-
viding	the	occurrence	data	into	five	subsets,	and	testing	each	subset	
against	a	model	calibrated	on	the	remaining	four	subsets.	Hold-	out	
validation,	where	a	small	subset	of	the	data	is	used	only	for	evalu-
ation,	while	 the	 remaining	data	are	used	 for	calibration	validation,	
was	unsuitable	due	to	the	small	sample	size	of	occurrences	in	several	
species.	Model	performance	was	evaluated	using	two	standard	eval-
uation	metrics:	the	area	under	the	receiver	operating	characteristic	
(ROC)	curve	(AUC)	and	the	true	skill	statistic	(TSS).	Variable	contri-
butions	were	calculated	by	performing	five	permutations	for	each	al-
gorithm,	each	involving	removal	of	the	focal	variable	from	the	model	
to	calculate	the	difference	in	performance.	We	report	the	average	
permutation	importance.

The	 individual	 models	 with	 a	 final	 TSS	 value	>0.7	 were	 then	
combined	into	ensemble	consensus	models	for	each	species	which	
we	used	with	future	climate	data	to	predict	 the	future	climatically	
suitable	areas.	Predicted	suitability	was	reclassified	into	binary	suit-
able–unsuitable	predictions	using	 the	 threshold	 at	which	TSS	was	
maximised	 (values	above	this	threshold	represent	climatic	suitabil-
ity).	These	binary	maps	were	used	to	characterise	changes	in	climat-
ically	suitable	areas	from	current	to	future	climatic	scenarios	using	
four	 metrics:	 the	 relative	 change	 in	 climatically	 suitable	 areas	 (%	
change),	the	percentage	of	the	current	area	retained	into	the	future	
and	the	distance	and	azimuth	(angle	of	direction)	between	centroids	
of	current	and	future	suitable	areas.	Change	and	retention	were	cal-
culated	respectively	as:

To	 estimate	 distance	 and	 azimuth,	 we	 first	 defined	 distinct	
fragments	 within	 suitable	 areas.	 Fragments	 represent	 connected	
suitable	cells	from	the	binary	maps,	estimated	by	first	applying	mor-
phological	dilation	using	a	buffer	of	radius	2.5 km,	followed	by	a	mor-
phological	erosion	using	a	negative	buffer	of	the	same	radius.	As	a	
result	of	this	process,	suitable	areas	within	2.5 km	of	each	other	were	
connected	to	reflect	the	assumption	that	bats	can	move	easily	within	
this	distance.	The	resulting	number	of	fragments	varied	among	spe-
cies	 depending	 on	 the	 configuration	 of	 the	 suitable	 area.	 For	 all	
fragments,	 we	 then	 identified	 centroids	 and	 the	 shortest	 straight	
paths	between	each	centroid	in	the	current	scenario	and	its	nearest	
neighbour	 in	 the	 future	 scenario,	 assuming	 zero	movement	 costs.	
The	length	and	azimuth	of	that	path	were	used	to	estimate	distances	
and	angles	of	direction.	For	each	species,	we	calculated	 the	mean	
distance	and	mean	azimuth.	Azimuths	were	classified	 into	cardinal	
and	intercardinal	directions	based	on	angle,	assuming	North	to	be	0	
and	360.	All	centroid-	based	calculations	were	performed	using	the	
geosphere	package	(Hijmans,	2022)	in	R.

Summary	models	of	 climatically	 suitable	areas	were	generated	
for	all	species	together	by	creating	a	map	of	species	richness	for	each	
time	period.	All	binary	models	 for	each	time	period	were	summed	
together	into	a	model	that	ranged	from	0	to	110,	representing	the	
number	of	species	for	which	a	cell	is	climatically	suitable	according	
to	their	binary	models.	This	model	was	then	rescaled	to	a	0	to	1	scale	
for	 consistent	 comparison	 and	 converted	 into	 a	 binary	map	 using	
a	threshold	of	0.3,	such	that	 in	the	final	binary	models	for	current	
and	future,	the	positive	cells	represented	suitability	hotspots	–	areas	
that	were	climatically	suitable	for	≥30%	(more	than	33)	of	the	study	
species.	Certainty	in	projected	models	was	calculated	as	a	continu-
ous	model	by	first	averaging	individual	replicates	within	a	species	to	
assess	model	agreement,	and	then	averaging	these	species	models	
into	a	final	model	ranging	from	0	to	1,	which	can	be	interpreted	as	
high	certainty	of	climatic	unsuitability	through	uncertainty	to	high	
certainty	of	climatic	suitability.

3  |  RESULTS

3.1  |  Impact of future climate change

The	expected	climatic	conditions	by	the	mid-	21st	century	are	likely	
to	 result	 in	 smaller	 climatically	 suitable	 areas	 for	 bats	 in	 South	
Asia	 (average	reduction	>8%)	but	with	 large	portions	of	the	cur-
rent	areas	expected	to	remain	suitable	 (average	retention	>59%.	
Figure 2).	However,	these	average	impacts	hide	considerable	vari-
ation	among	species	resulting	partly	from	different	climatic	vari-
ables	being	important	across	species	and	models	(Table S1).	In	all	

Change =
Current suitable area − Future suitable area

Current suitable area
∗100

Retention =
Current suitable area ∧ Future suitable area

Current suitable area
∗100
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scenarios,	there	were	potential	winners	and	losers,	with	some	spe-
cies	predicted	to	have	no	climatically	suitable	areas	in	the	future	
while	for	others	the	area	could	double,	and	retention	varied	from	

nearly	0%	to	99.8%	(Figure 2).	These	‘losing’	and	‘winning’	species	
were	more	common	in	some	taxonomic	groups,	with	species	in	the	
family	Miniopteridae	being	consistently	among	the	highest	losers,	

F I G U R E  2 Projected	impacts	of	climate	change	by	mid-	21st	century	for	110	species	of	bats	in	South	Asia	under	four	future	scenarios	
representing	two	climate	models	and	two	socioeconomic	pathways.	Panels	show	the	projected	percentage	change	in	climatically	suitable	
area	from	current	to	future,	percentage	of	the	current	climatically	suitable	area	predicted	to	be	retained	in	the	future	and	distance	between	
current	and	future	climatically	suitable	areas.

F I G U R E  3 Projected	shifts	in	the	
location	of	climatically	suitable	areas	
of	110	bats	in	South	Asia	caused	by	
predicted	climate	change	by	the	mid-	
21st	century	under	four	climate	change	
scenarios	representing	two	climate	
models	and	two	socioeconomic	pathways.
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and	 species	 in	 Rhinopomatidae	 and	 Pteropodidae	 predicted	 to	
be	 among	 the	 most	 affected	 in	 the	 CanESM5	 model	 scenarios	
and	 the	 HadGEM3	 model	 scenarios	 respectively.	 On	 the	 other	
hand,	 Molossidae	 and	 Emballonuridae	 showed	 the	 highest	 gain	
in	 suitable	 areas	 under	 the	 CanESM5	model	 and	 the	HadGEM3	
scenarios	respectively.	Nevertheless,	in	nearly	all	scenarios,	even	
winning	 families	generally	had	species	projected	to	 lose	suitable	
area	 (Table S2).	 In	 the	 CanESM5	 scenarios,	Molossidae	 showed	
the	 highest	 projected	 retention	 of	 suitable	 areas	 in	 the	 future	
for	 any	 family	 (73.5%	 in	 Can2-	45	 and	 71.2%	 in	 Can5-	85),	while	
Hipposideridae	 was	 projected	 to	 retain	 the	 highest	 amount	 of	
suitable	area	 in	 the	HadGEM3	scenarios	 (80.7%	 in	Had2-	45	and	
76.8%	in	Had5-	85;	Figure 2; Table S2).

Overall	patterns	were	largely	consistent	among	the	four	future	
climate	change	scenarios	explored,	with	smaller	impacts	predicted	
under	‘middle	of	the	road’	SSP2-	RCP4.5	socioeconomic	scenarios	
than	in	the	pessimistic	 ‘fossil-	fuelled	development’	SSP5-	RCP8.5	
scenarios	 (Figure 2).	 Many	 species	 show	 consistent	 losses,	 like	
Kerivoula malpasi,	known	from	five	localities,	with	predicted	losses	
of	66%	to	84%	in	climatically	suitable	areas	across	scenarios;	while	
others	 showed	 consistent	 gains,	 including	 Myotis hasseltii,	 that	
were	projected	 to	 increase	 the	 area	of	 suitable	 climate	by	more	
than	60%	and	Saccolaimus saccolaimus	which	is	projected	to	gain	
106%	of	its	current	suitable	area	(Figure 2; Table S2).	For	some	in-
dividual	species,	projected	impacts	were	highly	dependent	on	the	
scenario	–	 for	example,	Myotis csorbai,	known	from	seven	 locali-
ties,	was	projected	 to	 lose	100%	of	climatically	suitable	areas	 in	
the	future	in	CanESM5	scenarios,	but	had	losses	of	around	47%	in	
the	HadGEM3	scenarios.	Pteropus medius,	with	439	occurrences,	
and	 Cynopterus sphinx,	 with	 312	 occurrences	 showed	 moderate	
projected	 retention	 of	 suitable	 areas	 (25.9%–57.1%	 in	 P. medius 
and	 30.8%–44.8%	 in	 C. sphinx; Table S2),	 with	 varied	 degrees	
of	 projected	 losses	 in	 all	 scenarios	 (18%–61.7%	 in	P. medius	 and	
37.9%–60.7%	in	C. sphinx; Table S2).

Across	all	climate	scenarios	and	species,	and	including	all	pro-
jected	spatial	changes,	 future	climatically	suitable	areas	were	on	
average	216 km	from	current	climatically	suitable	areas.	However,	
distances	also	varied	between	scenarios	and	species.	For	example,	
Murina pluvialis'	 climatic	 suitable	 area	was	 projected	 to	 shift	 by	
an	 average	 of	 4.5 km	 in	 the	 future,	 the	 smallest	 distance	 in	 the	
CanESM5	 scenarios;	 however,	 in	 the	 HadGEM3	 scenarios,	 the	
average	 distance	 between	 current	 and	 future	 areas	was	 128 km	
(Table S2).	 For	 some	 species,	 the	 disparity	 in	 projected	 suitable	
areas	 between	 socioeconomic	 scenarios	 led	 to	 extremely	 large	
differences	 in	 distance	 between	 current	 and	 future.	 For	 exam-
ple,	Rhinolophus subbadius,	in	the	SSP2-	RCP4.5	scenarios	for	both	
climate	models,	 had	 a	 projected	 distance	 of	 28 km	 from	 current	
to	 future;	 however,	 in	 SSP5-	RCP8.5,	 the	 distance	 increased	 to	
2202 km.	 Most	 future	 suitable	 areas	 were	 located	 northwards	
from	currently	suitable	areas	with	a	trend	for	more	north-	eastern	
shifts	 under	 SSP2-	RCP4.5	 socioeconomic	 scenarios	 and	 more	
north-	western	 shifts	 under	 the	 more	 pessimistic	 SSP5-	RCP8.5	
scenarios	(Figure 3; Table S2).

3.2  |  Suitability hotspots

The	 most	 suitable	 areas	 under	 current	 climate	 conditions	 were	
projected	to	host	up	to	64	of	the	110	study	species,	with	11.9%	
of	the	total	study	area	(446,686 km2)	projected	to	be	suitable	for	
at	 least	30%	of	 the	 study	 species	 (i.e.	 33	 species;	 Figure 4).	We	
detected	four	contiguous	hotspots	in	all	climate	models:	the	lower	
Himalayas	 of	 north	 and	 northeast	 India,	 northeastern	 Pakistan,	
Nepal,	 northern	 Myanmar	 and	 Bangladesh;	 the	 Andaman	 and	
Nicobar	 islands	 and	 southernmost	 coast	of	Myanmar;	 Sri	 Lanka,	
covering	 the	 entirety	 of	 the	 island;	 and	 south	 India,	 in	 the	
Western	 Ghats	 and	 along	 the	 coasts	 of	 central	 and	 southern	
Maharashtra,	 Karnataka	 and	 Kerala,	 and	 fragmented	 regions	 of	
southern	 Karnataka	 and	 southern	 Tamil	 Nadu,	 extending	 to	 the	
southern	Nilgiris	and	Coromandel	coast	of	Tamil	Nadu.	Additional	
smaller	 hotspots	 appear	 in	 the	 Ballari–Vijayapura–Hubli	 region	
of	 Karnataka,	 India,	 an	 area	 characterised	 by	 unique	 geography	
and	isolated	geology	and	climate;	the	highlands	west	of	the	Indus	
Valley	in	northern	Pakistan	and	eastern	Afghanistan;	and	regions	
including	 and	 immediately	 north	 of	 Gir	 National	 Park,	 southern	
Gujarat,	India	(Figure 4).

Most	of	these	hotspots	were	projected	to	remain	climatically	
suitable	for	many	species	by	the	mid-	21st	century	in	all	scenarios,	
although	 their	 extent	 was	 generally	 reduced,	 particularly	 in	 the	
lower	Himalayas	and	the	Western	Ghats	hotspots,	and	projections	
suggested	northward	shifts	in	the	Himalayan	regions	(Figure 4).	In	
northern	India	and	northern	Pakistan,	projected	changes	reduced	
contiguity	in	projected	suitability	hotspots	(particularly	under	the	
CanESM5	scenarios).	 In	the	Western	Ghats,	declines	particularly	
affected	 central	 Maharashtra	 and	 Tamil	 Nadu.	 Additionally,	 the	
small	distinct	hotspots	in	Ballari–Vijayapura–Hubli	were	projected	
to	disappear,	while	hotspots	west	of	 the	 Indus	Valley	 and	north	
of	Gir	were	projected	to	expand	(Figure 4).	Although	both	climate	
change	models	predicted	similar	changes,	under	both	HadGEM3	
scenarios,	 a	marked	 northward	 increase	 in	 suitable	 areas	 in	 the	
Ayeyarwady	region	of	Myanmar	was	projected.	Analysis	of	model	
certainty	 showed	 a	moderate	 degree	 of	 uncertainty	 around	 the	
projected	suitability	hotspots	in	all	scenarios,	combined	with	some	
areas	of	high	certainty	of	suitability	 in	the	Himalayas	and	north-
eastern	India,	and	in	southern	India	and	central-	southwestern	Sri	
Lanka	(Figure S1).

3.3  |  Model evaluation

We	 found	variation	 in	performance	of	 the	 four	 algorithms	used,	
with	some	models	having	TSS < 0.7	for	several	species.	RF	was	uti-
lised	for	all	110	species,	while	MARS,	MAXENT	and	ANN	were	lim-
ited	to	93,	90	and	89	species	respectively.	For	17	species,	RF	was	
the	only	algorithm	represented	 in	 the	 final	ensemble.	There	was	
a	 significant	negative	 correlation	between	 the	number	of	occur-
rence	points	and	the	number	of	models	used	in	the	final	ensemble	
(Pearson's	r = −.791;	p < .001).	RF	was	the	only	model	represented	
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in	the	final	ensemble	for	species	with	more	than	120	occurrences;	
Taphozous nudiventris	and	Sphaerias blanfordi	were	the	two	excep-
tions	to	this,	with	97	and	17	occurrences	respectively.	RF	models	
also	had	the	highest	mean	AUC	and	TSS	scores	across	all	species	
(Table 1).

4  |  DISCUSSION

Our	analyses	of	the	effects	of	projected	near-	future	climate	change	
on	bats	in	South	Asia	show	a	general	pattern	of	moderate	potential	
loss	 in	all	scenarios	with	relatively	high	degrees	of	retention	in	cli-
matically	suitable	areas.	As	expected,	smaller	losses	were	projected	
under	 the	 ‘middle-	of-	the-	road’	 SSP2-	RCP4.5	 scenarios	 compared	
to	 the	more	 pessimistic	 ‘fossil-	fuelled	 development’	 SSP5-	RCP8.5	
scenarios,	reinforcing	the	need	for	changing	behaviour	and	avoiding	
business	as	usual	(Peters	et	al.,	2013).	While	loss	was	moderate,	our	
results	 also	 revealed	 variability	 among	 species	 and	 scenarios	with	
winners	and	losers.	For	example,	Myotis csorbai,	a	species	restricted	
to	Nepal,	was	projected	to	lose	all	its	current	suitable	area	in	some	
scenarios,	while	Saccolaimus saccolaimus,	a	species	with	a	very	wide	
but	fragmented	distribution	in	South	and	Southeast	Asia,	was	pro-
jected	to	double	its	current	suitable	area	in	some	scenarios.	Previous	
work	has	also	reported	varied	responses	of	bats	to	climate	change.	
Studies	 across	 the	 world	 have	 reported	 negative	 impacts	 both	
globally	 (Bellard	et	al.,	2013)	and	regionally	 (Rebelo	et	al.,	2010,	 in	
Europe;	Hughes	et	al.,	2012,	in	Southeast	Asia;	Thapa	et	al.,	2021,	in	
Nepal).	Bandara	et	al.	(2022)	found	no	or	limited	effects	for	Kerivoula 
picta	 and	K. malpasi	 in	 Sri	 Lanka.	 Positive	 effects	 have	 also	 been	

observed	in	the	Amazon	(Costa	et	al.,	2018),	North	America	(Hayes	
&	Piaggio,	2018)	and	Nepal	(Thapa	et	al.,	2021).	This	variation	likely	
reflects	differences	in	niche	plasticity,	robustness	to	changing	condi-
tions	and	migratory	propensity	among	species.	Additionally,	varia-
tion	can	occur	due	to	data	limitations	and	modelling	choices.	Indeed,	
our	results	showed	uncertainty	in	projections	for	some	species:	many	
species	involved	small	(< 30	occurrences)	sample	sizes,	and	the	mini-
mum	sample	size	of	five	occurrences	has	been	used	before	but	may	
not	be	fully	reliable	(Pearson	et	al.,	2006).	However,	most	advanced	
ENM	 algorithms,	 especially	 techniques	 such	 as	MAXENT,	 can	 ac-
count	for	fewer	occurrences	in	species	with	low	prevalence	and	nar-
row	ranges	(Morales	et	al.,	2017;	Pearson	et	al.,	2006;	van	Proosdij	
et	al.,	2016),	and	ensemble	modelling	can	provide	higher	predictive	
accuracy	by	accounting	for	inter-	model	variation.	Capturing	and	re-
porting	this	variation	by	considering	various	scenarios,	scales	and	al-
gorithms	is	important	to	ensure	that	conservation	and	management	
recommendations	 are	 not	misguided	 due	 to	 over-		 or	 under-	fitting	
and	a	lack	of	reliability	in	results.

Similar	to	other	studies	on	bats	(in	Europe	by	Rebelo	et	al.,	2010; 
in	 Southeast	 Asia	 by	Hughes	 et	 al.,	2012;	 and	 in	Nepal	 by	 Thapa	
et	al.,	2021),	we	also	found	a	trend	for	 likely	shifts	towards	higher	
latitudes	in	climatically	suitable	areas.	In	SSP2-	45	scenarios,	suitable	
areas	for	most	species	were	projected	to	be	located	north-	northeast	
or	northwest	from	current	areas;	in	SSP5-	85	scenarios,	the	shift	was	
more	 generally	 northeast.	 Overall,	 climate	 change	 is	 expected	 to	
lead	to	latitudinal	shifts	towards	polar	regions,	but	arguably,	our	pro-
jected	shifts	could	also	reflect	the	geographic	configuration	 in	our	
study	area,	where	the	Southern	region	is	mostly	coastal.	However,	
this	 is	 unlikely	 the	 reason	 for	 the	 observed	 trend,	 as	 for	 species	
currently	 in	 northern	 and	 central	 areas,	we	 also	 did	 not	 generally	
find	 projected	 southward	 shifts.	 Future	 suitable	 areas	 were	 also	
usually	 not	 located	 far	 from	 current	 suitable	 areas,	 and	 it	 is	 likely	
that	bats	could	 track	changes	 in	climatic	suitability	 in	many	cases.	
However,	there	are	several	barriers	that	could	limit	shifts,	including	
the	Himalayas	in	the	north	and	northeast,	the	Thar	Desert	and	the	
Great	Rann	of	Kutch,	and	the	hill	ranges	of	south	and	central	India.	
Similarly,	moving	across	large	tracts	of	water	may	prevent	tracking	
of	 climatically	 suitable	 areas	 in	 some	 species.	 Importantly,	 even	 if	
there	are	no	 strong	geographical	barriers,	movement	may	be	pre-
vented	due	to	lack	of	other	abiotic	and	biotic	resources	or	variation	
in	dispersal	behaviour.

Combining	 information	 from	 individual	 species,	we	 identified	
current	 and	 future	 climatic	 suitability	 hotspots	 –	 areas	 of	 cli-
matic	suitability	for	>30%	of	study	species.	The	current	suitabil-
ity	hotspots	aligned	with	four	biodiversity	hotspots	falling	within	
the	region	 (Myers	et	al.,	2000),	but	representation	varied.	While	

F I G U R E  4 Projected	impacts	of	climate	change	by	mid-	21st	century	to	current	hotspots	of	climatic	suitability	for	110	bats	in	South	Asia	
(hotspots	reflect	areas	suitable	for	>30%	of	studied	species)	under	four	climate	change	scenarios	representing	two	climate	models	and	two	
socioeconomic	pathways,	with	maps	showing	species	with	the	highest	loss	and	gain	for	any	species	in	any	scenario.	Current	climatically	
suitable	areas	are	represented	in	yellow	and	red,	with	yellow	showing	areas	projected	to	remain	as	climatically	suitable	hotpots	in	the	
future	and	red	representing	areas	lost.	Blue	areas	are	gains	projected	as	new	future	hotspots	(areas	currently	not	identified	as	hotspots	but	
predicted	to	be	suitable	for	many	species	in	the	future).

TA B L E  1 TSS	and	AUC	model	evaluation	scores	for	each	
modelling	algorithm	used	in	the	ensemble	ENM.

Modelling algorithm TSS AUC

ANN 0.869 ± 0.059	
[0.750–0.999]

0.955 ± 0.024	
[0.887–1.000]

MARS 0.897 ± 0.055	
[0.761–0.995]

0.970 ± 0.016	
[0.920–0.997]

MAXENT 0.859 ± 0.052	
[0.754–0.978]

0.958 ± 0.019	
[0.904–0.994]

RF 0.980 ± 0.014	
[0.940–1.000]

0.998 ± 0.001	
[0.991–1.000]

Ensemble 0.879 ± 0.058	
[0.726–0.996]

0.976 ± 0.012	
[0.932–0.999]

Note:	Scores	are	given	as	mean ± standard	deviation	[minimum	
–	maximum].
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a	 large	 proportion	 of	 the	 current	 suitability	 hotspots	were	 pro-
jected	to	be	retained	into	the	future,	projected	losses	outweighed	
areas	of	projected	gain.	In	the	Himalaya	and	Indo-	Burma	hotspots,	
projected	 losses	would	 lead	 to	 high	 fragmentation	 and	 isolation	
between	hotspots	 (especially	under	the	SSP2-	RCP4.5	scenarios).	
Movement	 corridors	 and	 continuous	 protected	 area	 networks	
are	likely	to	be	critical	to	allow	movement	and	occupation	of	new	
suitable	areas.	Interestingly,	new	suitable	areas	were	consistently	
identified	nearby	rivers,	around	the	northern	regions	of	the	Indus	
valley,	 northwestern	 Pakistan	 and	 southern	 Gujarat.	 The	 small	
areas	 of	 suitability	 in	Ayeyarwady	 (Myanmar)	were	 projected	 to	
increase	only	 in	 the	HadGEM3	scenarios,	 and	 in	Had5-	85,	 there	
were	 a	 few	 additional	 isolated	 fragments	 of	 projected	 gain	 in	
suitability	 in	 Bangladesh	 and	 northeast	 India,	 regions	with	 typi-
cally	 moist	 deciduous	 and	wet	 evergreen	 habitats	 (Champion	 &	
Seth,	1968;	Olson	et	al.,	2001),	quite	similarly	to	Ayeyarwady.	The	
Western	Ghats	suitability	hotspot	was	mostly	 retained	and	con-
tiguous	across	all	scenarios,	and	gains	in	climatically	suitable	areas	
were	 restricted	 to	 small	 areas	 on	 the	margins,	 showing	 that	 the	
Western	Ghats	are	likely	to	remain	stable	as	a	suitability	hotspot	
into	the	near	future.	Losses	in	climatically	suitable	areas	were	con-
sistently	seen	in	the	Nilgiris	hills	and	northern	Maharashtra	–	both	
regions	 with	 unique	 vegetation	 and	 habitat	 structures,	 ranging	
from	semi-	arid	 scrublands	 in	 the	north	of	 the	Western	Ghats	 to	
tropical	moist	 deciduous	 forests	 in	 the	Nilgiris.	Many	 regions	 in	
peninsular	India	which	are	known	to	be	specific	in	geography	and	
habitat	consistently	showed	patterns	of	projected	loss	in	suitable	
areas.	 Combined	 with	 a	 growing	 understanding	 of	 the	 effects	
of	climate	change	 in	 the	Himalayas	and	Western	Ghats	and	how	
it	 impacts	 biodiversity	 (Srinivasulu	 et	 al.,	 2021a,	 2021b;	 Thapa	
et	al.,	2021),	our	results	showing	high	degrees	of	retention	com-
bined	with	 severe	 losses	 and	minimal	 gains	 further	 support	 the	
importance	of	these	regions.

We	evaluated	projected	 impacts	of	 climate	 change	using	en-
semble	 ecological	 niche	 modelling,	 an	 approach	 with	 good	 pre-
dictive	accuracy	that	captures	uncertainty	from	algorithm	choice	
(Hao	 et	 al.,	 2020).	 However,	 this	 method	 has	 some	 limitations.	
First,	 ensemble	 ENM	 requires	 considering	 the	 balance	 between	
selecting	many	algorithms	and	the	 increased	computational	 time	
and	resources.	Generally,	the	suggestion	is	that	if	a	smaller	number	
of	algorithms	are	used,	the	ones	with	higher	predictive	accuracy	
and	robustness	are	selected,	as	done	here	(Drake,	2014).	A	second	
limitation	is	the	challenge	of	generating	suitable	pseudoabsences	
for	 presence-	only	 occurrence	 data	 (Barbet-	Massin	 et	 al.,	 2012; 
Engler	et	al.,	2004;	Lütolf	et	al.,	2006).	Our	method	for	generating	
pseudoabsences	incorporates	random	sampling	within	geographic	
limits	based	on	spatial	resolution	and	scale	of	the	analysis	and	es-
timated	foraging	distances	of	study	species.	We	aimed	to	balance	
statistical	 rigour	 and	 ecological	 realism	 while	 working	 with	 the	
constraints	of	 lacking	accurate	species-	level	data	on	bat	 ranging	
and	movement	 in	 South	 Asia.	 Further	 analyses	 for	 species	with	
available	 data	 could	 incorporate	 information	 on	 ecological	 dis-
tance	and	environmental	profiling	as	additional	limiting	factors	to	

pseudoabsence	generation	(Iturbide	et	al.,	2015).	Model	certainty	
is	also	an	issue	with	ENM	that	greatly	 impacts	the	reliability	and	
interpretability	of	these	results.	For	instance,	our	analysis	showed	
high	certainty	of	climatic	unsuitability	in	most	of	the	study	areas	
(Figure S1).	However,	 it	 is	 important	to	note	that	per-	species	re-
sults	are	much	more	informative,	and	broad	interpretations	must	
be	very	cautious.	Finally,	another	limitation	of	ENM	is	the	need	to	
carefully	select	variables	to	balance	ecological	importance,	meth-
odological	 constraints,	 including	 the	 effects	 that	 multicollinear-
ity	and	collinearity	shift	have	on	different	algorithms,	and	model	
transferability	(Feng,	Park,	Liang,	et	al.,	2019;	Feng,	Park,	Walker,	
et	al.,	2019).	Here,	we	also	considered	 this	balance	selecting	 ro-
bust	methods,	 reducing	variables	to	avoid	high	collinearity	while	
prioritising	ecologically	relevant	information.

Understanding	 species	 responses	 to	 rapid	 climate	 change	 is	
vital	in	conservation	planning,	especially	in	regions	with	high	bio-
diversity	and	rates	of	endemism	(Quintero	&	Wiens,	2013;	Raman	
et	 al.,	2023;	Warren	et	 al.,	2008).	This	 study	 is	 an	 initial	 assess-
ment	 of	 potential	 effects	 of	 near-	future	 (2041–2060)	 climate	
change	on	bat	species	in	South	Asia,	finding	that	while	climatically	
suitable	areas	may	be	reduced,	many	currently	suitable	areas	are	
likely	to	remain,	and	shifts	may	be	within	the	dispersal	potential	of	
many	species.	Nonetheless,	retention	of	suitable	areas	and	mod-
erate	loss	does	not	necessarily	ensure	population	persistence.	Our	
initial	 assessment	 of	 impacts	 focuses	 on	 abiotic	 climate	 effects,	
but	climate	change	may	influence	habitat	and	food	resources	dif-
ferently,	 resulting	 in	 climatically	 suitable	 areas	 being	 effectively	
unable	 to	support	healthy	bat	populations.	Analysing	climate	ef-
fects	alone	ignores	the	potential	combined	effects	of	climatic	and	
ecogeographic	impacts	on	species	distributions	(Newbold,	2018).	
This	 is,	however,	a	 first	 step	 to	understanding	potential	changes	
in	areas	where	climate	and	ecogeographic	data	may	not	be	of	the	
same	 quality,	 interpretability	 or	 accessibility,	 biasing	 ecological	
interpretations.	Future	climatically	suitable	areas	may	also	be	un-
suitable	due	to	geology	and	topography,	factors	linked	to	human	
activities	 including	 human	 land	 use,	 human	 population	 densities	
and	 proximity	 of	 roosts	 and	 foraging	 sites	 to	 human	 infrastruc-
ture	and	developed	areas.	However,	while	it	 is	possible	to	model	
both	 types	 of	 factors	 together	 (e.g.	Hughes	 et	 al.,	2012;	 Raman	
et	al.,	2023;	Simões	&	Peterson,	2018),	the	lack	of	accurate	data	on	
their	interactions	when	it	comes	to	bats	in	this	region	could	lead	to	
overfitting,	erroneous	predictions,	and	misinterpretations	across	
highly	diverse	species	and	functional	groups	(Araujo	&	New,	2007; 
Fordham	et	al.,	2012;	Newbold,	2018;	Peterson	et	al.,	2011;	Simões	
&	Peterson,	2018).	It	is	important	to	analyse	the	effects	of	climate	
(and	 future	 climate	 change)	 and	 ecogeography	 independently	 as	
well	 as	 together,	 and	 to	 study	 their	 interactions,	 to	 truly	 under-
stand	the	factors	influencing	abiotic	and	biotic	ecological	suitabil-
ity	 for	 each	 species.	 In	 addition,	 it	 is	 important	 to	 consider	 that	
ecological	niche	modelling	based	on	data	from	currently	occupied	
areas	is	a	limited	perspective	on	the	true	niche	of	the	species,	and	
may	not	reflect	the	species'	entire	climatic	limits	or	its	capacity	to	
adapt	to	changing	environments	(Hoffmann	&	Sgrò,	2011).	Future	
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work	that	considers	these	additional	 factors	and	 limitations,	and	
the	current	 intactness	of	 future	suitable	areas	would	be	 import-
ant	to	inform	conservation	actions	for	climate	change	mitigation.	
Our	results	offer	a	first	evaluation	that	highlights	the	need	to	fur-
ther	 study	 climate	 change	 impacts	 in	megadiverse	 regions	 such	
as	South	Asia	 and	 to	develop	 robust	 conservation	plans	 that	 in-
tegrate	 this	 information.	 Effective	 conservation	 requires	 the	 in-
tegrated	study	of	species	responses	to	climate,	biotic,	geographic	
and	anthropogenic	factors,	and	effective	communication	with	and	
outreach	to	policymakers	and	stakeholders	at	all	levels.
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