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ABSTRACT: The emergence of exascale computing and artificial intelligence offer tremendous 
potential to significantly advance Earth system prediction capabilities. However, enormous chal-
lenges must be overcome to adapt models and prediction systems to use these new technologies 
effectively. A 2022 WMO report on exascale computing recommends “urgency in dedicating 
efforts and attention to disruptions associated with evolving computing technologies that will be 
increasingly difficult to overcome, threatening continued advancements in weather and climate 
prediction capabilities.” Further, the explosive growth in data from observations, model and en-
semble output, and postprocessing threatens to overwhelm the ability to deliver timely, accurate, 
and precise information needed for decision-making. Artificial intelligence (AI) offers untapped 
opportunities to alter how models are developed, observations are processed, and predictions 
are analyzed and extracted for decision-making. Given the extraordinarily high cost of computing, 
growing complexity of prediction systems, and increasingly unmanageable amount of data being 
produced and consumed, these challenges are rapidly becoming too large for any single institu-
tion or country to handle. This paper describes key technical and budgetary challenges, identifies 
gaps and ways to address them, and makes a number of recommendations.

SIGNIFICANCE STATEMENT: Earth system modeling and prediction stands at a crossroad.  
Exascale computing and artificial intelligence (AI) offer powerful new capabilities to advance 
Earth system predictions. However, models, assimilation, and data processing systems are increas-
ingly unable to exploit these new technologies due to scientific, software, and computational 
limitations. Significant changes to the models including algorithms, software, and parallelism are 
needed to run models efficiently on diverse exascale systems. While AI offers significant potential, 
it is unclear the degree it can be developed and integrated into existing prediction systems. We 
recommend models be redesigned, linking science, software, and computing in codesign efforts 
to fully exploit exascale and AI. Special efforts are needed to recruit, train, and retain a highly 
skilled, interdisciplinary workforce. Given the high cost, shared computing and data facilities may 
become necessary.
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1. Introduction
Continued development and use of Earth system models (ESMs) are at the core of our ability to 
address the complex challenges that society faces due to climate change. Society’s demands 
for more accurate predictions and more comprehensive information for decision-making are 
needed to reduce impacts of extreme weather and to adapt to a rapidly changing climate. ESMs 
cover a wide range of time scales and requirements for computing based on time-to-solution 
constraints, length of simulations, and complexity of the processes and interactions within 
the modeling system.

Traditionally, the symbiotic relationship between models and high performance computing 
(HPC) relied on the ability to double the speed and capability of computers every few years 
at a fixed cost. However, the point was reached around 2005 where this paradigm no longer 
held. Processors are no longer benefiting from faster clock speeds, so increases in computing 
power have been achieved with more compute cores. This trend is expected to continue with 
future systems anticipated to have millions to hundreds of millions of compute cores. This 
change has resulted in new challenges including the enormous cost and energy requirements 
to drive systems of this magnitude and finding ways for ESMs to use such systems effectively 
and efficiently (Lawrence et al. 2018). Despite significant efforts made to optimize them, a 
2017 report shows that most ESMs use less than 5% of the CPU processor’s peak capabili-
ties (Carman et al. 2017). Additional and substantial performance improvements targeting 
next-generation computing [CPU, graphical processing unit (GPU), and hybrid processors] 
are possible but will require rethinking how models are designed and developed (Bauer et al. 
2021). Further, artificial intelligence (AI) offers untapped opportunities to alter how models 
are developed, observations are processed, and predictions are analyzed and extracted for 
decision-making (see the sidebar).

HPC architectures are becoming increasingly complex and diverse. As the Earth observation 
and prediction systems have become more sophisticated with increasing spatial resolution 
and scientific complexity, there is a corresponding increase in the volume and diversity of data 
that must be handled. This explosion of data is exacerbating the already severe challenges 
and barriers to data sharing, handling, input/output (I/O), and saving information. Therefore, 
the ESM community must reconsider current paradigms to both address the fundamental 
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and discontinuous changes in technology and ensure that continued advances meet societal 
needs for more accurate weather and climate predictions.

This paper is structured as follows: section 2 identifies the key changes in technologies, 
as well as opportunities, precipitated by exascale computing; section 3 provides a survey 
of major activities underway; section 4 identifies key technological challenges that must be 
overcome to have effective solutions. Section 5 discusses gaps and potential ways to address 
them. Section 6 summarizes and concludes with recommendations to the ESM community 
and stakeholders.

2. A disrupted horizon
The sustained increase in HPC capacity has been instrumental to advances in numerical 
weather, climate, and environmental prediction over the last few decades (Bauer et al. 2015). 
Heavens et al. (2013) describes the advancement of ESMs with more physical, biological, and 
chemical processes that provide a more accurate depiction of the climate system. Forecast-
ing systems with increasing resolution and complexity, expansion of data assimilation and 
ensemble approaches, oceanographic, sea ice, and hydrological coupling are examples of 
how the growth and availability of HPC have improved weather and climate predictions but 
require significantly more computing.

While there are distinct differences in the prioritization of the computational needs of the 
different applications,1 the general issue of requiring massively enhanced computational 
and data handling capacities is similar everywhere. A current 
goal of the weather and climate communities is the develop-
ment of global models capable of simulations having a 1–3-km 
resolution. Subkilometer or even large-eddy simulation (LES)-
scale-limited-area models, nesting, and regional refinement 
are approaches to more accurately predict short-duration, 
high-impact weather events including heavy precipitation, 
fires, coastal inundation, and urban-scale events. Such mod-
els will facilitate the evolution from parameterization to direct simulation of sub-mesoscale 
processes including clouds, ocean eddies, surface hydrology, deep convection, and localized 
topographic forcing whose small-scale, transient dynamics are fundamental drivers of most 
weather and climate extremes (Satoh et al. 2019). This may well imply that future ESMs will 

1	In general, weather models must run in a 
specific period of time to be useful for short-term 
prediction. Time-to-solution requirements for 
climate prediction are less clearly defined based 
on many factors including model complexity, 
resolution, length of simulations, spinup time, 
and goals of the simulations.

The Role of AI for Prediction
The rapid advances in AI offer increasing potential to replace portions of prediction models, and data 
processing systems, or even build entirely new weather forecasting systems (Pathak et al. 2022; Bi et al. 
2022; Lam et al. 2023; Price et al. 2023). Model results demonstrate similar predictive skill to traditional 
and numerical models, requiring a fraction of the computing resources to run them.

These results are encouraging, but limitations remain (Bonavita 2024). AI models are trained with data 
generated from physics-based prediction models. Until recently, they exclusively relied on reanalysis datasets, 
while latest efforts also aim to directly include observations and other sources. Accuracy of the AI models 
depend on sufficient coverage and completeness of training data used. Relying on historical data to train 
them, AI models face challenges being able to predict climate-induced, extreme weather events that occur 
rarely, if ever (Ebert-Uphoff and Hilburn 2023). The behavior of AI models for such events can be unpredict-
able. This is of critical importance since accurate prediction of extreme weather and climate change is where 
the biggest impacts to society lie.

Training AI models is an essential part of building a predictive capability. Even though AI models are 
rapidly improving, physics-based models will continue to be essential to provide an accurate evolution of 
three-dimensional fine-scale weather in time and space (Bauer et al. 2023). Therefore, continued investment 
and development of ESMs will be critical to providing improved weather and climate predictions.
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always need to resolve at very fine scales to properly represent scale interactions that matter 
across forecast ranges from days to decades (Palmer and Stevens 2019). To make such ad-
vances energy-efficient and tractable, AI methods may be an effective replacement for some 
parameterizations and model components (Slater et al. 2023).

The increasing frequency and severity of extreme weather events around the world, 
combined with growing human population, necessitate improvements to the weather and 
climate prediction systems in order to provide timely and accurate information. Under-
standing changes and simulating their impacts—in terms of droughts, build environment, 
or food scarcity—to alleviate the growing costs of disasters in both lives and property could 
require more than a 100-fold increase in computational performance over the most powerful 
leadership-class HPC systems in use today (Schulthess et al. 2019). While development and 
deployment of such exascale computers are already underway, the need for green solutions 
to power and provide cooling for even larger HPC systems presents enormous challenges.

In general terms, an exascale supercomputer is defined as a system capable of achieving 
a sustained computational performance of 1 Exaflops (1018 floating point operations) per 
second, using a 64-bit floating-point arithmetic. However, exascale supercomputers are more 
than their computational capabilities. Figure 1 shows that in addition to computing hardware, 
fast memory, robust interprocessor communications, and large storage for I/O and analysis 
are also required.

Two aspects of computational capability are of particular importance to the weather 
and climate communities. The first is sustained computational performance. This requires 
a dedicated, high-speed network and distinguishes leadership-class HPC systems from 
distributed computing systems. The second aspect is the use of a 64-bit floating-point 
arithmetic—commonly referred to as double-precision. While 32-bit precision is used in most 
portions of the models, 64-bit precision is often required for physics and other areas. Recent 
investigations show that while ESMs can benefit from 16-bit precision, higher precision re-
mains a requirement (Gan et al. 2013; Maynard and Walters 2019).

Until recently, most supercomputers worldwide achieved sufficient computational  
performance using traditional CPUs, and with few exceptions, these CPUs used the same x86 
instruction set architecture. Portability across hardware from different vendors was enabled 
via a combination of shared-memory parallelization [Open Multiprocessing (OpenMP)],  
message passing interface (MPI), and standard-based programming languages—such as  
C, C++, and FORTRAN. Performance optimization was well understood for broad classes of 
science applications. This is no longer the case.

Exascale supercomputers being designed and deployed have increasingly diverse  
architectures: employing various combinations of many core CPUs, GPUs, and 

What is “Exascale”?

Compute Memory Network Exascale?

What about 
“AI Flops”?

Does cloud 
count?

CPU? GPU? 
Total?

≥1 Exaflops/s (double precision) on the HPL benchmark

Fig. 1.  Key elements of exascale include supercomputers with hundreds of thousands to millions of 
computational processors, hundreds of petabytes of high-speed memory, a robust system network 
capable of quickly moving information between processors, and large amounts of storage sufficient to 
support I/O and analysis requirements of the applications that run on them.
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field-programmable gate arrays (FPGAs). Figure 2 illustrates two exascale systems installed 
in Japan and the United States with differing design approaches and hardware technologies. 
Developing software for such systems frequently involves the navigation of numerous, often 
vendor-specific, programming models and libraries. Model portability becomes a problem 
requiring significant expertise in many areas including—but not limited to—software engi-
neering. Optimization of a prediction model for a specific compute architecture is an equally 
arduous task, where subtle design choices in GPU hardware from different vendors, for ex-
ample, can lead to significant differences in performance.

Simultaneous with the shift in processor and system architectures, the volume and diver-
sity of the output data produced with HPC systems continue to grow at rates that are equal 
to or faster than the computing cost. Reflecting this swell in the model output is the increase 
in both capacity and bandwidth of file systems associated with leadership-class comput-
ers which are costly to purchase and account for a significant and increasing percentage 
of HPC procurements. Further, data throughput is growing much slower than the computa-
tional performance, creating additional challenges in generating output from increasingly 
high-resolution models and ensembles. When models are run as part of complex workflows, 
I/O can create unanticipated bottlenecks in both model development (debugging, diagnostics, 
instrumentation) and downstream uses of the data.

Figure 3 illustrates some of the complexity in the workflows of today’s operational weather 
prediction systems that is executed once or several times per day to produce the latest analysis 
(initial conditions) and forecasts. Observational data from various sources are received, pre-
processed, and managed in object-based data stores to facilitate data selection, bias correction, 
and matching with model output. Analyses and forecasts are produced, and their output is 
postprocessed to generate products disseminated to a wide range of users and uses. Machine 
learning (in green) offers the potential to upgrade and accelerate processing across the workflow.

The massive expected growth in data will require new policies, technologies, and ap-
proaches to ingest, generate, distribute, analyze, compress, and store data. The assumption 

•>1 Exaflops/s (32 bit)
•158,976 CPU nodes
•384 racks (cabinets)
•8 shelves per rack

•Per “shelf”:
•48 CPU nodes
•48 ARM cores per node

•Tofu interconnect
•6D mesh torus
•216,864 fiber & electric cables

•Multi-tier storage: Local (LLIO), shared 
(FEFS), commercial cloud

•30 MW power consumption

RIKEN- FUGAKU

•>1.5 Exaflops/s (32 bit)
•9472 CPUs, 3788 GPUs
•Per “blade”
•2 AMD EPYC CPUs
•8 AMD Radeon Instinct GPUs
•Multiple fabric endpoints (NICs)

•Cray Slingshot interconnect
•3 hop Dragonfly topology

•Lustre Storage: ≥250 PB, 5-10 TB/s
•21 MW power consumption

OLCF - FRONTIER

Fig. 2.  Fugaku (RIKEN—2020) and Frontier (ORNL—2021) are two recently installed exascale super
computers that illustrate the increasing hardware diversity on these systems including processors, 
interconnect, storage, and I/O. While Frontier is more power efficient due to the use of GPUs (21 mega-
watts vs 30 megawatts), power consumption on future systems is expected to continue increasing.
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that all data need to be saved is no longer possible, feasible, or 
cost-effective given the increasingly large share of HPC procure-
ments devoted to data handling.2

3. Overview of exascale-focused activities
This section gives a survey of exascale-focused activities within the weather and climate com-
munities. Most efforts to prepare models for exascale have focused on adapting existing codes 
to run on GPUs, AMD, and other types of processors. Some groups have embarked on major 
efforts to rewrite portions of their prediction models to address shortcomings in performance, 
portability, and software design.

a. Activities in the research community.
1) Europe. For many years, the European climate prediction community has invested in con-
certed actions to facilitate the exchange of data and models, coordinate European contribu-
tions to the Coupled Model Intercomparison Project (CMIP), and, most importantly, ensure  
access and support the use of European supercomputer facilities through the European  
Network for Earth System (ENES) modeling. Further, complementary projects have promoted 
the development of commonly distributed climate modeling infrastructure, shared software 
development, and workflow and data management to assess computing and data needs for 
next-generation weather and climate models.

In 2013, the European Centre for Medium-Range Weather Forecasts (ECMWF) founded its 
10-yr scalability program to prepare the prediction workflow for performance, portability, 
and scalability challenges of the next decade (Bauer et al. 2020). Projects like energy-efficient 
scalable algorithms for weather and climate prediction at exascale (ESCAPE) focused on the 
development of novel approaches for numerical modeling, programming models for hetero-
geneous processor architectures, HPC benchmarks for real weather and climate prediction 

2	Climate models have been severely constrained 
for decades due to the complexity, simulation 
length, and time required to output high data 
volumes during a model run. Weather models 
have been less constrained.

Object 
based 

data store

Object 
based 

data store

Meteorological 
observa�ons

IoT
observa�ons

Machine-learning

Smart 
instruments

Quality control Accelera�on Data analy�cs, feature detec�on, product tailoring

Direct
dissemina�on

Decision support
systems

Compression

Cloud HPC 
Edge 

Storage

Product 
genera�on

Data assimila�on
Forecast produc�on

Data selec�on
& pre-processing

Data selec�on
& pre-processing

Fig. 3.  Depiction of an operational workflow used for weather prediction. Workflows can be quite complex, containing hundreds 
to thousands of processes that are run 2–24 times per day, incorporating observation processing, data assimilation, model predic-
tion, postprocessing, and product generation. The data may be further processed by downstream users who incorporate the data 
into decision support systems for specific types of guidance (e.g., fire weather, flooding, and avalanche prediction). Ideally, climate 
prediction shares most of the same computing/data handling components even if workflow setup and schedules are different.
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workloads, and for employing machine learning to accelerate processing and support data 
analytics. The scalability program has spawned strong European and international collabora-
tion on HPC, big data handling, and machine learning through 14 EU-funded projects between 
2015 and 2022 and made weather and climate prediction a primary application in Europe’s 
exascale technology roadmap. The new European Commission Horizon and Digital Europe 
funding programs and European High Performance Computing Joint Undertaking (EuroHPC) 
(delivering three European pre-exascale and two exascale HPC centers by 2021 and 2023, 
respectively) will provide new opportunities by 2027.

In the United Kingdom, the Met Office is midway through a next generation modeling 
systems (NGMS) program, which aims to reformulate and redesign its complete weather and 
climate research and operational/production systems for a next-generation supercomputer in 
the mid-2020s. The scope of the work covers atmosphere, land, marine, and ESM capabilities 
and includes the full processing chain from observation processing and data assimilation 
through the modeling components, verification, and visualization. The new atmosphere 
model infrastructure [U.K. Lewis Fry Richardson (LFRic)] is being developed using an ap-
proach called “separation of concerns” that relies on an in-house code generation tool called 
PSyclone and a domain-specific language (DSL) for the scientific code to provide performance 
portability (Adams et al. 2019).

In Germany, the leading climate and weather modeling centers are the Max Planck  
Institute for Meteorology (MPI-M), the German Climate Computing Centre (Deutsches  
Klimarechenzentrum) (DKRZ), the German Weather Service (Deutscher Wetterdienst) (DWD), 
and the Helmholtz research centers. Collectively, these centers have driven the recent  
development of global storm-resolving models (Zängl et al. 2015). Kilometer-scale regional 
modeling and regional-scale large-eddy simulations in the project High Definition Cloud and 
Precipitation for Advancing Climate Prediction [HD(CP)2] have demonstrated the capabilities  
of the Icosahedral Nonhydrostatic (ICON) modeling system and exposed bottlenecks that 
must be overcome to fully exploit exascale computing power. Further, a new generation of 
ocean models [ICON-O and finite-element sea ice–ocean model (FESOM)] is being tested in 
support of DestinationEarth and other European projects.

2) Asia. The Japanese government launched the Flagship 2020 Project (Supercomputer Fu-
gaku) in 2014 with the mission to carry out research and development for future supercom-
puting. In 2018, the advancement of meteorological and global environmental predictions 
utilizing high-volume observational data was established as an additional priority issue and 
exploratory challenge. New technology is being developed to make accurate predictions of 
those extreme weather events using ultra-high-resolution simulations and big data obtained 
from satellite-based observation technologies and ground radars. In June 2021, the Japan 
Meteorological Agency (JMA) launched a new project to accelerate the development of its 
global model, high-resolution regional model, and Ensemble Prediction System (EPS) for 
heavy rainfall disaster prevention on Fugaku, one of the largest HPC systems in the world.

In China, the Institute of Atmospheric Physics, Sugon, Tsinghua University, and the  
National Satellite Meteorological Center jointly developed the Earth System Science  
Numerical Simulator Facility (EarthLab). The EarthLab is a numerical simulation system 
of the main Earth system components with matching software and hardware. The global 
model of EarthLab has a horizontal resolution of 10–25 km and the spatial resolution of its 
regional nest at 3 km over China and 1 km in key areas. The system is being designed to 
integrate simulations and observation data to improve the accuracy of forecasting, improve 
the prediction and projection skills for climate change and air pollution, provide a numeri-
cal simulation platform, and support China’s disaster prevention and mitigation, climate 
change, and other major issues.
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In India, the Ministry of Earth Sciences (MoES) enables research and development  
activities that improve the prediction of weather, climate, and hazard-related phenomena 
for societal, economic, and environmental benefits. In particular, MoES supports continued 
the development of the Ensemble Prediction System including running at a 12-km resolu-
tion on an 8 petaflop (PF) system currently available. Large investments in HPC planned in 
2022–25 (toward a 30 PF system), combined with improvements in models and workflows, 
are expected to significantly improve weather and climate predictions, disaster management, 
and emergency response in the next decade.

3) North America. A number of U.S. exascale-focused research efforts and initiatives have 
the goal of advancing weather and climate prediction in the next decade. One effort, funded 
through the U.S. Department of Energy’s Office of Science, is to develop the Energy Exas-
cale ESM (E3SM) (Leung et al. 2020) to run multidecadal, coupled climate simulations at 
global, cloud-resolving (1–3 km) scales. Initiated in 2014 and building on the Community 
ESM (CESM), a major effort to refactor and redevelop the legacy software was undertaken to 
enable GPU-accelerated computing. A key component in this development is the use of the 
Kokkos (Edwards et al. 2014) and C++ languages to enable both computational performance 
and portability across vendor architectures. Algorithmic changes to numerical methods were 
made to improve computational performance on GPUs while preserving CPU performance.  
A major upgrade in 2019 was the development of the Simple Cloud Resolving E3SM  
Atmosphere Model (SCREAM), designed to run at cloud-resolving scales on CPU- and 
GPU-based exascale systems (Caldwell et al. 2021).

Other U.S. efforts are focusing on the development of prediction models to run global, 
storm-resolving (3 km), or finer scales on exascale systems. The NSF-funded Model for  
Prediction Across Scales (MPAS) developed at the National Center for Atmospheric Research 
(NCAR) has forged a successful collaboration with IBM Weather Company and NVIDIA to port 
the model to GPUs.3 The model demonstrates good performance and scaling of atmospheric 
components (dynamics and physics) on the Summit system at 
a 3-km global scale.

Researchers at NOAA’s Geophysical Fluid Dynamics Laboratory  
(GFDL) partnered with a private company, the Allen Institute  
for AI (AI2), to port the Finite-Volume Cubed-Sphere Global  
Forecast System (FV3GFS) climate/weather model to GPUs 
and other advanced architectures.4 Significant portions of the model have been rewritten  
in high-level python code that are transformed via software tools into optimized, 
architecture-specific code (Dahm et al. 2023). Some physics parameterizations are being 
replaced with machine learning algorithms that are orders of magnitude faster than the 
traditional routines.

The U.S. Naval Research Laboratory is developing a next-generation weather prediction 
system called NEPTUNE, which is based on the spectral-element-based Nonhydrostatic  
Unified Model of the Atmosphere (NUMA), a model that demonstrated exceptional CPU and 
GPU performance and scaling (Abdi et al. 2019). NEPTUNE adapted the NUMA dynamical  
core implemented for the efficient use of CPUs and GPUs. An NSF-funded effort called  
EarthWorks was launched in 2020 to build an exascale-ready climate model using components 
from CESM and the GPU-enabled MPAS Ocean model developed by the DoE. The model will 
utilize a uniform grid, with a goal to run on CPUs and GPUs at storm-resolving scales.

Finally, two U.S. efforts are aimed at rewriting ESMs from the ground up to utilize 
exascale computing, AI, and data handling technologies more effectively. The Climate 
Machine,5 developed by the Climate Modeling Alliance (CliMA), is an ESM, written in the 
Julia programming language, that leverages advanced computational and AI technologies, 

3	https://ncar.ucar.edu/what-we-offer/models/model- 
prediction-across-scales-mpas.

4	https://www.gfdl.noaa.gov/fv3/.
5	https://github.com/CliMA/ClimateMachine.jl.
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new algorithms, and data handling approaches. NOAA’s Global Systems Laboratory began 
the development of Geofluid Object Workbench (GeoFLOW) in 2018 to explore algorithms,  
software techniques, performance, and portability needed for exascale-ready models.  
GeoFLOW uses an object-oriented framework to evaluate scientific accuracy and com-
putational efficiency of algorithms used in finite-element models running at global 
cloud-resolving scales (Rosenberg et al. 2023). The development path is to progress from 
simpler to more complex models using the most promising algorithms, software engineering  
techniques, and computing technologies.

4) Australasia, Africa, and South America. In general, the lack of resources including fund-
ing, staff, and support has made it more difficult to sustain the robust development of ESMs 
in these regions. Centers typically rely on collaborations and partnerships with larger centers 
that can provide global models, data, and computing resources. For example, Australia and 
New Zealand are participating in the development of the LFRic model with the Met Office. Ac-
tivities in Africa include the South African Weather Service (SAWS), the Council for Scientific 
and Industrial Research (CSIR), and the recently launched AI Research Center that is sup-
ported by the United Nations Economic Commission for Africa (UN-ECA) (Bopape et al. 2019).

Similarly, in South America, centers such as Center for Weather Prediction and Climate 
Studies/National Institute for Space Research (CPTEC/INPE) in Brazil provide the necessary 
infrastructure that enable engagement in future exascale computing and modeling. While 
these centers lack the resources available at large centers in Europe, North America, and Asia, 
direct engagements have helped these regions keep up with the latest innovations including 
hardware technologies, models, and data processing.

b. Activities within WMO research programs. The Working Group on Numerical Experimentation  
(WGNE) fosters the collaborative development of ESMs for use in weather, climate, water, 
and environmental prediction on all time scales and includes diagnosing and resolving 
shortcomings. WGNE has been aware of the evolution to more massively parallel machines 
with alternative chip designs for more than a decade and highlighted the need to rewrite the 
current generation of models.

The World Climate Research Programme (WCRP) is intended to address future challenges 
related to ESMS that are too large and complex for a single nation to address. One such activity, 
called “Digital Earths,” is constructing a digital and dynamic representation of the Earth system, 
codevelopment of high-resolution ESMs, and the exploitation of billions of observations with 
digital technologies from the convergence of novel HPC, big data, and artificial intelligence 
methodologies. In addition to the prediction and scientific aspects, this effort recognizes the 
importance of investment in end-to-end capabilities including orders of magnitude increases 
in observations, assimilation, prediction, postprocessing, and data handling needed to deliver 
information to diverse users to address both near-term and long-term impacts.

c. Activities within the private sector. Industry partnerships to advance climate and weather 
models have been robust. For example, IBM and NVIDIA provided hardware resources, 
technical support, and funding to support parallelization of the MPAS model in the United 
States. An outcome of this effort has been a GPU-enabled variant of the MPAS, called the 
Global High-Resolution Atmospheric Forecasting (GRAF) model, which is being used to sup-
port customers worldwide.6 In addition to providing HPC, heavy precipitation event (HPE) 
has expanded its technology offerings to embrace big data, AI, 
and cloud computing. Intel and AMD have established Centers 
of Excellence at the Argonne and Oak Ridge Leadership Com-
puting Facilities, respectively. In Europe, several HPC-oriented 

6	https://www.weathercompany.com/global-high- 
resolution-atmospheric-forecasting/.
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projects have direct vendor involvement, but there are also bilateral activities between cen-
ters and vendor groups such as the ECMWF-Atos (e.g., NVIDIA, Mellanox, and DDN) center 
of excellence.

Industry has also been using AI to improve prediction capabilities. Recent large-scale AI 
models demonstrating weather forecasting capabilities were developed by NVIDIA, Huawei, 
and Google (Pathak et al. 2022; Bi et al. 2023; Lam et al. 2023). Further, NVIDIA launched 
Earth-2 in 2022, an HPC system dedicated to climate prediction enhanced by AI technology 
and the company’s OMNIVERSE software.

Increasing interest in cloud computing has led to collaborations and contracts with Google, 
Amazon Web Services (AWS), Microsoft Azure, and other vendors to provide increasingly com-
prehensive HPC and data solutions for weather and climate centers. For example, the Met Office 
signed a $1B contract with Microsoft to provide compute (1.5 million cores) and data (4 Exabytes) 
services over 10 years. Further, the system will be powered by 100% renewable energy. Such an 
agreement suggests an increasing opportunity for further private sector engagements.

4. Technical challenges
Within the weather and climate communities, researchers have primarily focused on model 
development on the scientific challenges: gaining understanding and demonstrating im-
proved accuracy of the dynamical, physical, biological, chemical, and other processes and 
then mapping these science problems onto computer systems through numerical methods 
and algorithms. However, concurrent with these science challenges are numerous technical 
challenges related to software, hardware, and human factors, which must be addressed for 
prediction models to benefit from exascale computing.

This section distills several of the most pressing and common technical challenges. While 
most of these challenges are not new, their difficulty and complexity are amplified in the 
exascale context. Further, many of the challenges outlined are not independent: addressing 
(or neglecting) one issue may reduce (or increase) the difficulty of another. While the relative 
importance may differ in weather and climate applications, the challenges are relevant, and 
the constraints described affect every ESM application. Additional technological challenges 
that arise from the introduction of AI-based models and model components are discussed in 
Hines et al. (2023).

a. Cost. Estimates for the computing resources needed to run weather prediction models at 
global 1–3-km scales operationally range broadly from 1 to 100 million CPU cores. Such 
estimates depend on the many factors including resolution, type and design of the model, 
time-to-solution requirements, and type of hardware (processors, memory, storage, etc.). 
Such estimates will also depend on the speed, efficiency, and scalability of the ESM applica-
tions that run on them. A million CPU cores represent the low end of an operational (8 min 
per forecast day) capability, sufficient for storm-resolving (3 km) weather prediction. An esti-
mated 100 times more computing power will be needed to run at 1-km cloud-resolving scales.

Climate projection goals are much broader than weather prediction and thus harder to 
estimate in terms of computational requirements. In general, runtimes of climate simulations 
range from 1 to 20 simulated years per day (SYPD) or more. Tradeoffs between the complexity 
of the models (e.g., chemistry, physics, and ocean), computing requirements, and time-to-
solution must be balanced to meet a broad spectrum of research, prediction, and projection 
requirements.

To gain insight into the cost, two systems purchased in the 
United States are used as a guide. The first system, NOAA’s Orion 
computer with 72 000 cores (1750 nodes), was purchased for 
22 million USD in 2018.7 The second system, called Derecho,  

7	https://www.noaa.gov/organization/information- 
technology/orion.
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is a hybrid CPU–GPU system purchased by NCAR’s with  
2488 AMD CPU nodes and 82 NVIDIA GPU nodes (328 GPUs 
costing approximately 35 million USD).8 Extrapolating 
the hybrid system (Derecho) to a 25 000 node CPU system  
(1 million cores–assuming 1 GPU = 3 CPU nodes) yields roughly 310 million USD, which is 
similar to the estimated cost of an extrapolated million core Orion CPU system. Based on these 
estimates, HPC systems 100 times larger could cost 30 billion USD or more. Such estimates do 
not include the cost of facilities, power, and cooling needed to run them. European estimates 
based on running existing models at kilometer scales have also been made (Bauer et al. 2021).

Improvements to the prediction models, including the use of AI, represent the best oppor-
tunity to improve the computational efficiency of the models and thereby reduce the cost of 
HPC. Deployment of cloud computing may offer benefits but does not appear to fundamentally 
alter the expected cost.

b. Environmental impact. Costs, power consumption, and environmental footprint, or stated 
differently, economic and social affordability are driving efforts to reduce emissions. The en-
vironmental impact of large-scale HPC systems must be considered, specifically CO2 emis-
sions associated with the generation of electricity required to 
power them. Clearly, this impact is highly dependent on the 
means of energy production. For example, using the U.S. EPA 
Greenhouse Gas Equivalencies Calculator,9 the carbon foot-
print of a 29-MW supercomputer is over 100 000 t yr−1. However, reduced or zero-emission 
data centers are being deployed that use cleaner sources of energy. For example, a EuroHPC 
pre-exascale system deployed in 2023 in Finland benefits from local hydropower genera-
tion, dry air cooling, and excess heat injection to nearby communities.

c. Software investment. The cost of designing, developing, deploying, and maintaining the 
software used on HPC systems is significant and often overlooked. This can include scientific  
software, such as applications, libraries, and visualization tools; development tools, such  
as compilers, profilers, and de-
buggers; and systems software, 
such as operating systems, job 
schedulers, and monitoring tools. 
Figure 4 illustrates software ap-
proaches that require investment  
in languages, libraries, and frame
works that are designed to im-
prove performance, portability, 
and productivity.

Funding required for a team 
of dedicated research software 
engineers can easily run into 
tens of millions of dollars per 
year. When this type of fund-
ing is not available, the burden 
of software development of-
ten falls to scientific and early 
career staff, including gradu-
ate researchers and postdocs. 
Training—and career tracks—for 

Software Design

Direct 
Programming

SYCL

Julia

OCCA

Kokkos

RAJA

Math Libraries

BLAS

LAPACK

FFTW

Data, ML/AI

CCL

Frameworks
& DSLs

AMReX

libCEED

COPPA

TensorFlow

Pytorch

Level of Abstraction

Fig. 4.  Languages, libraries, frameworks, and DSLs can be de-
ployed to improve application portability. Direct languages were 
designed to support CPU, GPU, and hybrid architectures at the 
language level. Libraries, frameworks, and DSLs increase the level 
abstraction (orange arrow) in the application, simplifying devel-
opment and potentially improving portability and usability.

8	https://news.ucar.edu/132907/officials-inaugurate- 
new-nwsc-supercomputer.

9	https://www.epa.gov/energy/greenhouse-gas- 
equivalencies-calculator.
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professional staff whose skill sets lie along the continuum between software engineering 
and applied science is critical. A focused effort is needed to support software institutes, 
strengthen undergraduate education, and offer workshops, 
hackathons, and summer programs to further develop research 
software engineers with domain knowledge and computational 
skills. Training and workshops offered by ECMWF are one 
example of such events.10

Cost estimates to adapt models to exascale systems are based on assumptions that the soft-
ware has been adequately prepared. However, unless the model has been carefully designed 
with the most efficient algorithms and approaches, it will gain little or no benefit from addi-
tional computing resources. This is why most exascale efforts described above also investigate 
the best algorithmic approaches including spatial and temporal discretization, numerical 
solvers, and process coupling with computational efficiency and data centricity in mind.

d. Performance and scalability. Performance refers to how fast an application will run with 
a specific amount of compute resources. For example, operational weather models are ex-
pected to produce a 10-day forecast in 75–80 min or 7.5–8 min per forecast day. Climate 
models are expected to run at least five SYPD, which means century runs can be completed 
in 20 days and millennial runs in 200 days. Given the massive estimated computing require-
ments, researchers have recently suggested that one SYPD may be sufficient for short-duration 
(20–100 years), global, 1-km cloud-resolving climate predictions (Neumann et al. 2019).

Scalability refers to how the application behaves when more (or fewer) computing resources 
are used. Two types of scaling are commonly used: weak scaling and strong scaling (Hager 
and Wellein 2010). These metrics can be used to make realistic estimates of computing re-
quirements if model resolution is increased from 10 to 1 km for example.

Informally, weak-scaling metrics answer the question, “will using twice the computing 
resources allow a problem double the size of the current one to be solved in the same amount 
of time?” It is particularly useful for understanding interprocess communication behavior as 
the model scales to higher numbers of processors. Models that require no global communica-
tions often demonstrate close to a 100% weak scaling efficiency.

Similarly, strong-scaling metrics answer the question, “Can the same problem be solved in 
half the time using double the computing resources?” This measure defines the term perfect 
strong scaling (100% efficiency) and is often used to estimate future compute requirements. 
However, models do not scale perfectly. In fact, as models are run at higher resolutions, scal-
ing efficiencies will decline due to decreasing amounts of work per processor, limited paral-
lelism, and a relative increase in interprocess communications. Overcoming such scaling 
issues usually requires more compute power. For example, a 50% scaling efficiency means 
a further doubling of compute resources (4× total) is needed to run the application in half the 
time. Further increases will eventually lead to performance “roll over” (0% efficiency), where 
more compute provides no additional benefit.

e. Model I/O. The quantity of data produced by increasingly high-resolution models and as-
similation highlights problems including storage requirements, speed of I/O operations, and 
availability of data needed to support weather and climate workflows. Increases in model 
resolution, frequency of output, and number of ensemble members are key factors that drive 
storage requirements. For example, model output for a 3-km resolution weather model, with 
192 vertical levels and output every 3 h for a 10-day forecast, is estimated to be 0.5 pet-
abytes per model run. Increasing model resolution to 1 km would produce 64–100 times 
more data. Similarly, with increasing simulation length and number of fields, climate model 
output could easily exceed 50 PB per run.

10	https://www.ecmwf.int/en/learning.
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Further, the speed in which data can be written to disk is already a major bottleneck. 
The classical simulation workflow, where a large set of model fields are dumped to disk and 
analyzed later (postprocessing), has reached bandwidth and storage capacity limits. So far, 
modeling groups and weather centers react by restricting ensemble sizes and limiting the 
number of output fields but this is not sustainable.

In the future, more flexibility may be required—for example, interacting with ongoing 
simulations to turn certain output fields on or off for live (during model execution) 
visualization or select processing of the fields necessary to run a regional flood or fire impact 
model. In addition, concepts under discussion include the exploration of new compression 
methods (Baker et al. 2016) and the use of AI to regenerate model results from archived data 
with lower information content (Wang et al. 2021). Within a decade, output generation is 
expected to become too slow, requiring new approaches such as postprocessing data in situ 
while the model is running.

f. Data handling. New strategies are needed to overcome expected 1000-to-10 000-fold in-
creases from increasingly dense observations and high-resolution data assimilation, model, 
and ensemble output. Increasingly, high-volume data must be stored where it is generated 
and accessed by applications that extract, analyze, visualize, and distribute only informa-
tion needed to serve application and user requests. Such a data-in-place strategy will require 
collocation of HPC and data storage and support for flexible, scalable mechanisms for access 
by automated and interactive processes.

Advanced AI systems have shown the ability to perform analysis “in-flight,” which may help 
alleviate some of the challenges currently faced with the exponential increase in I/O. Some 
supercomputing centers host community filesystems, which allow the secure and seamless 
sharing of big data generated by large-scale simulations or experimental facilities. The Petrel 
data service (Allcock et al. 2019) at the Argonne Leadership Computing Facility (ALCF), for 
example, provides access to a 3.2 petabyte high-speed file system that can be integrated into 
automated workflows using Python, JavaScript, or other data science tools.

g. Productivity. Software productivity describes the ease in which users develop, test, share, 
maintain, and document code. Historically, scientists have led model development: making 
decisions about code structure, 
algorithms, and testing sufficient 
to meet project objectives. How-
ever, due to increasing scientific 
and computational requirements, 
heterogeneous computing plat-
forms, and complex software eco
systems, model development is 
now an often-arduous effort.

Codesign is a more robust ap-
proach, where domain scientists 
and research software engineers 
collaborate closely on all aspects 
of model design and develop-
ment. Figure 5 illustrates the 
importance of codesign and de-
velopment to enable more robust 
applications in terms of software 
productivity, portability, and 

Application and Software Design

Application Quality
Performance, Accuracy, Usability

Interoperability, Complexity,
Extensibility

Parallelization, Portability

Libraries, Languages, DSLs

Architectural Design, Code Structure

Algorithms, Grids, Time Integration

Fig. 5.  An illustration of the design and software development 
layers within an application. The lowest layers (algorithms, 
design, code structure) will enable or limit the quality of the 
application in terms of computational performance, scientific 
accuracy, and usability across diverse modeling and computa-
tional systems. Quality metrics are nominally listed as compu-
tational performance, scientific accuracy, and usability of the 
application by the development team and community of users.
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performance across diverse hardware and system architectures. The lower layers in the figure 
are the foundation upon which capabilities of layers above are enabled or limited. Careful 
selection of algorithms and software design must be considered as equally important to the 
languages and frameworks that are used. These decisions should be made collectively by the 
codevelopment teams who must balance scientific and computational requirements.

h. Portability. HPC systems are being designed with increasingly diverse hardware, combining 
CPUs, GPUs, and other accelerators from a variety of vendors. There are several approaches 
modeling teams are using to achieve performance and portability across CPU, GPU, hybrid, 
and other systems. The simplest approach is to use directives that inform the compiler where 
parallelism exists and how it can be exploited. OpenACC or OpenMP directives are inserted 
that minimally impact the original code. However, to get good performance, modest to 
substantial changes may be required. In some cases, performance portability is not possible 
due to the underlying algorithms, code structure, or organization of the calculations that is 
incompatible with the CPU, GPU, FPGAs, or other processors.

Another approach is the use of cross-platform abstraction layers—such as SYCL, Kokkos 
(Edwards et al. 2014), RAJA (Beckingsale et al. 2019), and OCCA (Medina et al. 2014). These 
require more changes to the existing application code than directive-based programming; 
however, code divergence is still minimal.

An extreme approach to application portability is to develop separate implementations 
of an application for each platform: in most cases, the cost of developing and maintaining 
such software makes this solution infeasible. Code divergence—which quantifies the number 
of lines of source code that differ between two implementations of an application that 
target different platforms (Harrell et al. 2018)—is a useful metric when comparing different 
approaches to portability since lower code divergence is associated with lower human and 
capital costs.

An alternative to the direct programming approaches above is the use of libraries 
and frameworks. Most major computer vendors provide free implementations of math 
libraries—such as basic linear algebra subprogram (BLAS), linear algebra package (LAPACK), 
and Fastest Fourier Transform in the West (FFTW)—that are highly optimized for their 
architectures. Since the API remains the same, few or no changes to source code are required 
to run on new platforms. Specialized application frameworks, such as AMReX (Zhang et al. 
2021) and libCEED (Brown et al. 2021), target specific classes of discretization techniques 
and are also being employed to achieve portability goals.

Finally, the development of DSLs applied to the weather and climate domains is being used 
as a means to improve application portability, reduce complexity, and improve application 
performance. DSLs are often tightly linked to specific modeling centers, where support 
by the institution is assured. Notable use of DSLs to improve portability and productivity 
includes PSyclone used with the LFRric model and GridTools used with the ICON, COSMO, 
and FV3 models.

5. Critical gaps
This section highlights critical gaps needed to significantly advance weather and climate 
prediction capabilities.

a. Improvements to prediction systems. Researchers worldwide increasingly believe that 
new approaches are needed to gain significant improvement in prediction capabilities, not 
only to the model codes themselves but also include the entire prediction workflow. Trans-
formational changes to the models must address fundamental limitations in the processors, 
HPC systems, prediction models, and data requirements. These challenges are highlighted 
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in the 2017 paper “Position Paper on High Performance Computing Needs in Earth System 
Prediction” with a call to action for vendors and model developers (Carman et al. 2017).

Reaching the same conclusion in 2018, a European consortium of Earth system and comput-
ing scientists as well as socioeconomic impact domain experts put forward the ExtremeEarth 
proposal aimed at a radical reformulation of Earth system simu-
lation and data assimilation workflows to allow extreme-scale 
computing, data management, and machine learning on emerg-
ing and future digital technologies. The main components of 
ExtremeEarth have now been included in the DestinationEarth11 
project that is part of the European Commission’s Green Deal.12

It should be noted that rapid advances in AI-driven prediction models (e.g., from NVIDIA, 
Huawei, and Microsoft) are demonstrating competitive skill and may fill some of these gaps.

b.  Access to sufficient HPC resources.  Computing requirements needed to run cloud- 
resolving weather and storm-resolving climate models will require systems 100 times larger 
than leadership class systems in use today. The cost and environmental impact of systems 
of this magnitude suggest that shared modeling centers dedicated to weather and climate 
prediction may become a necessity in the future. The distinction between research and op-
erational centers will likely continue given the specialized requirements and critical need 
to produce reliable, timely weather forecasts and access to data resources, storage, and 
analysis tools.

Access to significant HPC resources is limited by the increasing cost of the systems and data 
centers themselves. Figure 6 illustrates the geographic disparity of HPC, with the majority 
of the TOP500 list of high-end HPC centers located in the United States, China, Europe, and 
Japan. Such disparities limit access to and engagement by countries that may be most affected 
by climate changes, for example.

c. Access to data resources, storage, and analysis tools. Development and improvement 
of a prediction system require large computing and storage to run simulations, evaluate re-
sults, and improve capabilities. Large centers with shared access to such resources are the 
most effective way for the community to collaborate and make improvements in all aspects 
of the prediction system. Cloud computing represents a viable technology capable of storing 
and sharing large amounts of data. However, more robust mechanisms are needed to orga-
nize, discover, analyze, mine, and generate information from such data.

The Benefits of 
Exascale—for Who?o?
• Over 98% of computing power 

worldwide is in Europe, Asia, 
and North America

• Over 72% belongs to China, 
Japan, and the U.S.

• Regions most at risk from 
climate change have few or no 
computing resources

Goal: Identify critical gaps between 
members with and without 
significant computing resources https://www.top500.org/statistics/list/

Fig. 6.  The location of the top 500 HPC computing centers worldwide is illustrated. Over 98% of comput-
ing power worldwide is located in Europe, Asia, and North America. Further, over 72% belong to China, 
Japan, and the United States.

11	https://digital-strategy.ec.europa.eu/en/policies/ 
destination-earth.

12	https://www.sciencemag.org/news/2020/10/europe- 
building-digital-twin-earth-revolutionize-climate- 
forecasts.
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Given the volume of data consumed and produced by Earth system prediction models, 
collocation of HPC with data is expected to be essential. Shared access to such facilities will 
permit more effective collaborations between national and international groups. However, 
the cost to access high-volume data may limit open access to regions including South America 
and Africa that have limited resources, skills, and tools.

d. Access to highly specialized knowledge and skills. Significant and coordinated efforts 
are needed to address the critical shortage of qualified software professionals. Developing 
prediction models for increasingly diverse computing environments and leadership class 
HPC systems requires expertise in the science domain, applied mathematics, computer sci-
ence, and software engineering. Given the disruptive changes with the HPC, AI, and associ-
ated software environments, stronger and coordinated actions with the ESM community are 
needed to recruit, train, and retain a workforce able to compete with the industry for the best 
and brightest. Coordinated actions could include the establishment of scientific software 
institutes, university curricula, and certifications that are specific to the needs of the ESM 
community.

6. Summary and next steps
Earth system modeling and prediction stands at a crossroad. Exascale computing and 
artificial intelligence offer powerful new capabilities to advance Earth system predictions. 
However, models, assimilation, and data processing systems are increasingly unable to exploit 
these technologies due to workforce, scientific, software, and computational limitations. 
Development of new prediction models is needed that incorporate the rapid and disruptive 
changes in HPC and the widening role of AI in models, data processing, and workflows.

This paper builds upon findings of a 2023 WMO report on exascale computing and data 
handling. Urgent actions are needed to overcome challenges including the enormous cost of 
future HPC, a 1000× projected increase in data (observations, model output), and increasing 
scientific and software complexity of models and applications that inhibit portability, perfor-
mance, and user productivity. Technical and budgetary challenges identified are becoming 
too large to be addressed individually.

Comprehensive, collaborative, and sustained national-scale efforts are recommended to 
meet critical needs at a time of increasing societal risks. Figure 7 highlights recommenda-
tions and actions in four areas:

1)	 Advocate to leaders, sponsors, and stakeholders the need to address fundamental limi-
tations in HPC, prediction models, and data handling systems that threaten continued 
improvements in weather and climate prediction capabilities. Urgent need for immedi-
ate action and investment is based on both societal needs 
for significantly improved predictions and the excellent 
return on investment (ROI) of such actions. In the United 
Sates alone, increasingly severe weather and climate disas-
ters are costing over $100B annually.13 Doubling or tripling 
funding to significantly improve prediction capabilities in 
the United States would represent a fraction of those costs.

2)	 Assess capabilities of current prediction systems to understand gaps and deficiencies 
and thus drive collaborations and actions by the ESM community. Estimates of comput-
ing and data requirements targeting specific weather and climate configurations (based 
on societal benefit) will serve to focus and justify investments.

3)	 Develop an action plan that brings the worldwide community together to address and col-
laborate on solutions that benefit the ESM community and stakeholders. As computing,  

13	According to NOAA’s National Centers for 
Environmental Information (NCEI), the total 
cost of billion dollar disasters was $595B over 
the last 5 years (2018–22) and $1.1T in the last 
10 (2013–22).

Unauthenticated | Downloaded 05/02/25 01:32 PM UTC



A M E R I C A N  M E T E O R O L O G I C A L  S O C I E T Y D E C E M B E R  2 0 2 4 E2401

data, and software complexity grow, few institutions or countries will be able to over-
come the challenges alone. Strong collaborations and codesign on computing, science, 
software, and data will be essential.

4)	 Engage with industry, academic, and government partners on computing, model devel-
opment, data systems to enable cost sharing, enhance data use, and improve system 
efficiencies. For example, foundation models and public sector datasets (e.g., reanalysis 
data, observations, and model data) could enable strong public–private sector partner-
ships on AI developments (Bauer 2023).

Assessment of current modeling and prediction systems is an important first step to both 
understand the capabilities and limitations of current models and determine the cost of fu-
ture computing. Such computational assessments for exascale have already begun at some 
centers. For example, the exascale readiness assessment of United States global prediction 
models is being conducted as part of the Interagency Council for Advancing Meteorological 
Services (ICAMS) by HPC experts at the DoE, NOAA, NASA, NCAR, and the Navy. The goal 
is to “determine the current state of ESMs including performance, scalability, portability, and 
their ability to run at fine spatial scales being targeted by leading weather and climate modeling 
centers.” The outcome of such comparisons could help reduce duplication, increase focus, 
and reduce costs.

Scientific assessments are also needed to quantify the benefit of increases in model resolu-
tion at fine scales. Such efforts are both limited by the lack of computing and the need to meet 
timeliness constraints. For example, Giorgetta et al. (2022) ported the ICON model to GPUs 
and demonstrated improvements in performance, portability, and predictability. Researchers 
determined that the climate model could run at a 1.25-km resolution but could not achieve a 
minimum time constraint of 1 SYPD even with the most advanced CPU and GPU processors. 
The effort helped identify where further improvements are needed.

Using exascale computing and AI effectively will require sustained efforts to design, build, 
and revitalize prediction models and data systems. Leadership, funding, long-term com-
mitment, and strong collaborations will be needed to significantly improve predictions and 
mitigate the risks associated with extreme weather and climate change.
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Fig. 7.  An illustration summarizing an action plan on exascale computing and data handling proposed 
to the WMO in 2021.
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