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Lipidome changes due to improved dietary 
fat quality inform cardiometabolic risk 
reduction and precision nutrition

Fabian Eichelmann    1,2 , Marcela Prada1,2, Laury Sellem3, Kim G. Jackson    3, 
Jordi Salas Salvadó    4,5, Cristina Razquin Burillo    4,6, Ramon Estruch    4,7, 
Michael Friedén8, Frederik Rosqvist8, Ulf Risérus8, Kathryn M. Rexrode    9, 
Marta Guasch-Ferré    10,11, Qi Sun    11,12,13, Walter C. Willett11, 
Miguel Angel Martinez-Gonzalez    5,6,11, Julie A. Lovegrove3, Frank B. Hu11, 
Matthias B. Schulze    1,2,14 & Clemens Wittenbecher    1,15 

Current cardiometabolic disease prevention guidelines recommend 
increasing dietary unsaturated fat intake while reducing saturated fats. Here 
we use lipidomics data from a randomized controlled dietary intervention trial 
to construct a multilipid score (MLS), summarizing the effects of replacing 
saturated fat with unsaturated fat on 45 lipid metabolite concentrations. In 
the EPIC-Potsdam cohort, a difference in the MLS, reflecting better dietary 
fat quality, was associated with a significant reduction in the incidence of 
cardiovascular disease (−32%; 95% confidence interval (95% CI): −21% to 
−42%) and type 2 diabetes (−26%; 95% CI: −15% to −35%). We built a closely 
correlated simplified score, reduced MLS (rMLS), and observed that beneficial 
rMLS changes, suggesting improved dietary fat quality over 10 years, were 
associated with lower diabetes risk (odds ratio per standard deviation 
of 0.76; 95% CI: 0.59 to 0.98) in the Nurses’ Health Study. Furthermore, 
in the PREDIMED trial, an olive oil-rich Mediterranean diet intervention 
primarily reduced diabetes incidence among participants with unfavorable 
preintervention rMLS levels, suggestive of disturbed lipid metabolism before 
intervention. Our findings indicate that the effects of dietary fat quality on 
the lipidome can contribute to a more precise understanding and possible 
prediction of the health outcomes of specific dietary fat modifications.

Cardiovascular diseases (CVDs) account for approximately 20 million 
(34%) global deaths annually1. In addition, type 2 diabetes (T2D) sub-
stantially contributes to global noncommunicable disease burden and 
premature mortality, primarily through its vascular complications2. 
Therefore, reductions in cardiometabolic disease (that is, CVD and 
T2D) incidence yield substantial societal benefits3,4. The World Health 
Organization (WHO) recently issued dietary guidelines that advocate 
for reducing saturated fats while increasing unsaturated fats to prevent 

cardiometabolic diseases5, in line with evidence synthesis efforts and 
national guidelines that emphasize the importance of the type and 
quality of fats in the habitual diet6,7.

However, current controversies concerning the role of dietary fat 
in cardiometabolic health center on the potential metabolic benefits of 
a high-fat, low-carbohydrate diet (LCD) versus the merits of reducing 
saturated fat intake. For example, dairy products are high in saturated 
fatty acids (SFAs), and yet observational data indicate that their relation 
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Here we test the hypothesis that alterations of the lipidome inter-
link the replacement of dietary SFAs with UFAs and cardiometabolic 
disease risk. We integrate lipid profiling data from dietary RCTs, which 
offer advantages in precise control of dietary exposures and protec-
tion against confounding, and large prospective cohort studies with 
substantial sample sizes, real-life dietary data and long duration of 
comprehensive phenotyping to examine the lipidome changes that 
relate dietary fat quality with cardiometabolic risk and examine poten-
tial precision nutrition applications.

Results
Study design
We generated a multilipid score (MLS) based on 45 of 111 analyzed 
lipid class-specific fatty acid concentrations using preintervention 
and postintervention lipidomics data in the Dietary Intervention and 
VAScular function (DIVAS) trial. DIVAS is a 16-week RCT comparing an 
SFA-rich diet to a diet high in plant-based UFAs29. Higher MLS levels 
reflect the effect of replacing dietary SFAs with plant-based UFAs on the 
lipidome (Fig. 1a). Using the population-based European Prospective 
Investigation into Cancer and Nutrition (EPIC)-Potsdam cohort study 
with the same lipidomics data, we linked the MLS that reflects better 
dietary fat quality to future cardiometabolic disease risks (Fig. 1b)30,31.

We partially validated the DIVAS dietary SFA with UFA replace-
ment effects on circulating lipid metabolites in the LIPOGAIN-2 trial, 
an 8-week overfeeding RCT with an SFA-enriched diet in the control 
group and a UFA-enriched diet intervention arm32. We also analyzed 
the Nurses’ Health Study (NHS) and NHSII cohorts and the Prevención 
con Dieta Mediterránea (PREDIMED) trial with Broad Institute lipi-
domics data, which provided relative abundances of a subset of the 
lipid metabolites included in the original MLS. A reduced MLS (rMLS) 
limited to lipids available on both platforms (42 lower-resolution lipid 
variables to reflect 15 class-specific fatty acid concentrations) was 
strongly correlated with the original MLS. In the NHS/NHSII cohorts, 
we replicated diet and disease associations and also related 10-year 
increases in rMLS levels (suggesting improved dietary fat quality) with 
subsequent T2D risk (Fig. 1c). In the PREDIMED trial, we examined if 
individuals with adverse preintervention rMLS levels, suggestive of 

to cardiometabolic risk may be neutral or possibly beneficial, especially 
when compared to low levels of these foods or foods that are high 
in refined carbohydrates. The specific effect of replacing SFAs from 
animal sources with plant-based unsaturated fatty acids (UFAs) in the 
context of a moderately high-fat diet on cardiometabolic risk, includ-
ing T2D and CVD, is still unclear. Given the complex, long-term nature 
of dietary impacts on health, definitive endpoint trials remain elusive.

Some populations appear to be especially vulnerable to the 
negative health impacts of specific diets5. The interplay of genetics, 
physiological traits and diet influences lipid metabolism and cardio-
metabolic disease development8–12. Therefore, a beneficial dietary 
fat composition may be especially critical in groups predisposed to 
dysregulated lipid metabolism.

Clinical lipid markers, like blood lipoproteins and triglycerides, 
commonly used as surrogates for cardiometabolic disease risk, are 
affected by dietary fat13–15. However, recent evidence challenges the tra-
ditional view that dietary fat quality influences cardiometabolic health 
primarily through these standard blood lipid profiles16. More complex 
effects of dietary fat quality on lipoprotein size and composition, as 
well as the direct involvement of specific lipid compounds in signal 
transduction, membrane fluidity and immune response, have been dem-
onstrated16. Improved markers of metabolic adaptation to dietary fat 
quality also create opportunities to integrate data from shorter dietary 
randomized controlled trials (RCTs) and prospective cohort studies 
with long follow-ups and substantial numbers of incident disease cases.

Our recent studies have corroborated that comprehensive lipidom-
ics profiles are susceptible to dietary fat modification and are strongly 
associated with cardiometabolic risk17–19. Other observational stud-
ies have generated multimetabolite signatures of dietary exposures, 
including a plant-based diet, dairy intake and a Mediterranean diet, and 
associated them with disease risk20–26. However, assessing diet effects on 
the metabolome in a well-conducted RCT reduces measurement error, 
rules out confounding by other lifestyle factors and relates metabolite 
signatures to a precisely defined diet substitution. Multistudy integra-
tion based on overlapping lipidomics profiling data can strengthen 
the evidence on the long-term health effects of dietary fat quality and 
offer potential applications in biomarker-driven precision nutrition27,28.
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Fig. 1 | Study design. a, DIVAS trial. First, we use the DIVAS trial to generate an 
MLS of controlled unsaturated-for-saturated fat substitution. b, EPIC-Potsdam 
cohort. Second, we reconstruct the MLS and use it as a surrogate marker to 
estimate the expected cardiometabolic risk effects of the DIVAS intervention 
diet. c, NHS/NHSII cohorts. Third, we construct a highly correlated rMLS based 

on another lipidomics platform and link baseline levels and 10-year changes 
of this rMLS to cardiometabolic disease risk. d, PREDIMED trial. Fourth, we 
examine potential differences in the Mediterranean diet intervention effect on 
T2D risk across participants with different preintervention rMLS levels (effect 
modification). Figure created with BioRender.com.
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unfavorable dietary fat quality before the intervention, benefit more 
from a Mediterranean diet intervention, which is high in plant-based 
UFAs, particularly from nuts and olive oil, and has been shown to lower 
CVD and T2D risk (Fig. 1d)33,34. The baseline characteristics of all studies 
are provided in Supplementary Tables 1–9.

An intervention-derived lipidomics score
We generated a summary score that reflects the influence of dietary fat 
quality on the lipidome in post hoc lipidomics analyses of the DIVAS 
dietary intervention trial. In the DIVAS trial, all diets were isoenergetic 
and provided 36% of the total energy from fats. Nonfat macronutrient 
intake and omega-3-poly-UFA (PUFA) intake were uniform across all diet 
groups. The control diet was high in SFAs (SFA-rich diet; 17% total energy 
from SFAs and 15% total energy from UFAs (11% mono-UFAs (MUFAs) 

and 4% omega-6-PUFAs); n = 65). The DIVAS trial had two intervention 
arms in which 8% of total energy from SFAs was replaced with 8% of total 
energy from UFAs, either only with MUFAs (SFA:MUFA:omega-6-PUFA 
content in percent total energy: 9:19:4) or with a mix of MUFAs and PUFAs 
(SFA:MUFA:omega-6-PUFA content in percent total energy: 9:13:10). 
Extensive sensitivity analyses showed that our analysis workflow yielded 
highly consistent results in the two intervention arms, and we therefore 
present comparisons between the control group (high SFA intake) and 
pooled intervention group (high UFA intake). In the pooled intervention 
group (UFA-rich diet; n = 130), dietary targets were 9% of total energy from 
SFAs and 23% of total energy from UFAs. Detailed dietary assessments 
yielded an estimated total energy intake contribution of 17.6% by SFAs 
and 14.5% by UFAs in the SFA-rich diet group and of 8.1% by SFAs and 24% 
by UFAs in the UFA-rich diet group (Fig. 2a and Extended Data Fig. 1)29,35.
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Fig. 2 | Deriving an MLS of modified dietary fatty acid composition in the 
DIVAS trial and benchmarking against established risk biomarkers. a, Target 
percentage of total energy intake from SFA and UFA sources per intervention 
arm. b, Effect of UFA-rich diet interventions relative to the SFA-rich diet on lipid 
concentrations (n = 113) modeled as postintervention concentration differences 
(95% CI) between SFA- and UFA-rich diets adjusting for baseline concentration, 
age, BMI and sex. Only statistically significantly changed lipids (FDR < 0.05) are 
shown. The center indicates the β-coefficient, and whiskers indicate 95% CIs. c, 
Selected lipids (FDR < 0.05) for the MLS calculation according to lipid class and 
fatty acid. d, Effect of UFA-rich diet interventions relative to the SFA-rich diet on 

MLS and established risk biomarkers (n = 113). MLS was calculated as weighted 
sum. Observed intervention effects served as weights. For comparison, MLS and 
risk biomarkers were variance standardized (unit = 1 s.d.). Data were modeled as 
postintervention score or concentration differences between SFA- and UFA-rich 
diets adjusting for baseline score level or concentration, age, BMI and sex. Results 
for established risk markers were originally published in Vafeiadou et al.29. The 
center indicates the β-coefficient, and the whiskers indicate the 95% CI. FA, fatty 
acid; TG, triglycerides; HOMA-IR, homeostatic model assessment for insulin 
resistance; IL-6, interleukin-6; hsCRP, high-sensitivity C-reactive protein.
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A random sample of DIVAS trial participants (n = 113; Supplemen-
tary Table 2) underwent pre- and postintervention lipidomics profil-
ing, measuring the absolute concentrations of 987 molecular lipid 
species. We summarized the absolute levels of up to 28 specific fatty 
acids (12–26 carbon atoms, 0–6 unsaturations) in 16 lipid classes (7 
phospholipid (sub)classes, 5 sphingolipid classes, 3 neutral glycerolipid 
classes and cholesterol esters), generating 111 lipid class-specific 
fatty acid concentrations. We then compared lipidomics responses 
to the intervention diet versus to the control diet. After multiple 
testing correction (false discovery rate (FDR) < 0.05), the replace-
ment of SFAs with UFAs in the diet intervention group significantly 
reduced the circulating concentrations of 45 class-specific fatty acids  
(Fig. 2b).

The UFA-rich diet primarily reduced lipid metabolites with 
medium- or long-chain fatty acid residuals that contain no (for exam-
ple, C12:0, C14:0, C18:0 and C20:0) or few (for example, C14:1 and 
C16:1) unsaturations. In descending frequency, the affected lipid 
metabolites belonged to the classes of ceramides (n = 18; including 
ceramides, dihydroceramides, lactosylceramides and hexosylcera-
mides), cholesterol esters (n = 6), phosphatidylcholines (n = 6), diglyc-
erides (n = 5), phosphatidylethanolamines (n = 5; including alkyl- and 
plasmalogen-phosphatidylethanolamines), triglycerides (n = 2), 
lysophosphatidylcholines (n = 2), monoglycerides (n = 1), sphingo-
myelins (n = 1) and phosphatidylinositols (n = 1; Fig. 2c).

We summarized the statistically significant effects of the UFA-rich 
diet intervention on lipid metabolites in a weighted MLS. The DIVAS 
diet effect estimates were defined as score weights. Detailed informa-
tion to reconstruct the MLS based on absolute lipid concentrations is 
provided in Supplementary Tables 10 and 11. As such, a higher MLS 

reflects a higher UFA intake. This MLS increased substantially in the 
UFA-rich intervention diet group compared to in the SFA-rich diet con-
trol group (+0.98 s.d.; Fig. 2d). For comparison, we show the effects of 
the DIVAS diet interventions on blood lipids (high-density lipoprotein 
cholesterol (HDL-C), non-HDL-C and triglycerides), glucose markers 
(fasting glucose and homeostatic model assessment for insulin resist-
ance) and inflammation markers (high-sensitivity C-reactive protein 
(hsCRP) and interleukin-6). Among these clinical cardiometabolic risk 
markers, the DIVAS intervention diet only affected non-HDL-C levels 
(−0.4 s.d., FDR < 0.05; Fig. 2d)29.

Lipidomics score correlations with foods and biomarkers
We constructed the DIVAS-derived MLS in the EPIC-Potsdam cohort 
using harmonized lipidomics data. This was done within a CVD and 
T2D case–cohort design. This study included a random subcohort of 
1,262 individuals who were representative of the entire cohort without 
prevalent cardiometabolic conditions. Additionally, we oversampled 
participants who developed CVD (n = 551) or T2D (n = 775) during the 
follow-up period (Supplementary Table 3). The MLS distribution in 
the subcohort was approximately normal, with similar variance across 
sexes (Fig. 3a,b).

The MLS weakly inversely correlated with age, body mass index 
(BMI), waist circumference and blood pressure and moderately 
inversely correlated with triglycerides, non-HDL-C and total cholesterol 
(Fig. 3c). Among food groups, the MLS showed the most pronounced 
positive correlation with margarine and the most pronounced inverse 
correlation with butter (Fig. 3d). Butter fat contains around 65% SFAs 
and 28% MUFAs and small amounts of PUFAs and naturally occurring 
trans-fat. Typical margarine contains 80% total fat, of which around 20% 
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Fig. 3 | Distribution and correlations of the MLS in the EPIC-Potsdam 
subcohort. a, Univariate distribution of the MLS (n = 1,148). b, Distribution 
of the MLS in men (n = 438) and women (n = 710). The center line indicates the 
median, hinges indicate the first and third quartiles, and whiskers indicate the 
median ± 1.5 × interquartile range. c, Spearman correlation of the MLS with age, 

anthropometry, blood pressure and standard clinical biomarkers. d, Spearman 
correlation of the MLS with self-reported habitual intake of different food 
groups. Highlighted are the strongest positively (margarine) and negatively 
(butter) correlated foods. BP, blood pressure; TC, total cholesterol.
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are SFAs, 50% are MUFAs and 30% are PUFAs36. A comprehensive list of 
MLS correlations with food group intake in the EPIC-Potsdam cohort 
is available in Supplementary Table 12. These analyses conducted 
in a free-living study population show that the MLS correlates in the 
expected directions with the primary sources of plant-based UFAs and 
dairy SFAs in participants’ diets.

Lipidomics score associations with CVD and T2D
In the EPIC-Potsdam cohort, we associated the MLS with cardiometa-
bolic disease risk, standardizing the MLS to the postintervention con-
trast between the control and intervention groups in the DIVAS trial. 
Therefore, cardiometabolic risk estimates in the EPIC-Potsdam cohort 
reflect expected effects of the DIVAS trial diet intervention-induced dif-
ference in the MLS. The Cox proportional hazards models were adjusted 
for age, sex, waist circumference, height, leisure-time physical activity, 
highest achieved education level, fasting status at blood draw, total 
energy intake, blood pressure (systolic and diastolic), smoking status, 
alcohol intake, use of antihypertensive medication, lipid-lowering 
medication and acetylsalicylic acid medication.

In the EPIC-Potsdam cohort, the DIVAS diet-induced MLS dif-
ference was associated with 32% (95% confidence interval (95% CI): 
21% to 42%) lower CVD (composite endpoint of primary incidence of 
myocardial infarction (MI) and stroke) and 26% (95% CI: 15% to 35%) 
lower T2D incidence. Additional adjustment for triglycerides, total 
cholesterol, HDL-C, non-HDL-C, hemoglobin A1c (HbA1c) or hsCRP 
did not substantially alter the MLS–CVD association. The association 

of the MLS with T2D risk was rendered statistically nonsignificant 
after adjustment for triglycerides but was only marginally affected 
by adjustment for the other standard metabolic risk biomarkers  
(Fig. 4a).

The only significant effect of the DIVAS diet on standard surrogate 
markers was on non-HDL-C. Therefore, we also standardized non-HDL-C 
on the postintervention contrast between the control and intervention 
groups in the DIVAS trial. The impact of the DIVAS trial UFA-rich diet 
intervention on non-HDL-C was associated with a 5% (95% CI: 10% to 0%) 
lower relative risk of CVD and 5% (95% CI: 11% to 1%) lower relative risk 
of incident T2D in the EPIC-Potsdam cohort. Thus, the increase in MLS, 
which reflects improved fat quality, resulted in sixfold stronger CVD 
(32% versus 5%) and fivefold stronger T2D (26% versus 5%) relative risk 
reductions compared to the risk reductions associated with changes 
in non-HDL-C levels (Fig. 4b). When we included the non-HDL-C levels 
and the MLS in the same mutually adjusted model, the non-HDL-C 
associations with CVD and T2D risk were attenuated, whereas the 
MLS associations remained substantial and statistically significant. 
A sensitivity analysis using a weighted combination of all available 
established cardiometabolic risk markers (clinical score), independ-
ent of the statistical significance of the DIVAS diet intervention effects, 
yielded similar results. However, the MLS showed stronger inverse dis-
ease associations than the clinical score (Extended Data Fig. 2). These 
results suggest that the MLS may capture the cardiometabolic health 
impact of altered dietary fat quality in more detail than established 
surrogate biomarkers.
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Fig. 4 | Association of the MLS with CVD and T2D incidence in the EPIC-
Potsdam cohort. a, MLS–cardiometabolic disease risk associations in different 
multivariable-adjusted Cox proportional hazards models adjusted for age, sex, 
waist circumference, height, leisure-time physical activity, highest achieved 
education level, fasting status at blood draw, total energy intake, blood pressure 
(systolic and diastolic), smoking status, alcohol intake, use of antihypertensive 
medication, lipid-lowering medication and acetylsalicylic acid medication (T2D: 

n/cases = 1,886/775; CVD: n/cases = 1,671/551). The center indicates the hazard 
ratio, and the whiskers indicate 95% CI. MV, multivariable adjusted; HR, hazard 
ratio. b, Comparison of multivariable-adjusted disease risk associations between 
the MLS and non-HDL-C, which was the only significantly affected standard 
biomarker in the DIVAS trial. The center indicates the percent risk reduction, and 
whiskers indicate the 95% CI.
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Replication of lipidomics score associations with diet
In post hoc analyses, replacing SFA with UFA overfeeding in the 
LIPOGAIN-2 trial (n = 60; Supplementary Table 4) consistently reduced 
all seven overlapping sphingolipid concentrations, and the LIPOGAIN-2 
trial diet effects on five of these seven sphingolipids were also signifi-
cant (P < 0.05; Extended Data Fig. 3a). We derived a score based on the 
seven overlapping sphingolipids, which was strongly correlated with 
the original MLS (Spearman correlation coefficient ρ = 0.66; Extended 
Data Fig. 3b). Diet intervention effects on this sphingolipid score were 
consistent and similarly significant between the DIVAS and LIPOGAIN-2 
RCTs (Extended Data Fig. 3c). The LIPOGAIN-2 diet-induced changes 
in the sphingolipid score, reflecting lower sphingolipid metabolite 
concentrations, were moderately correlated with diet-induced reduc-
tion in apolipoprotein B count (ρ = 0.47; Extended Data Fig. 3d). The 
LIPOGAIN-2 diet effect on the sphingolipid score was attenuated but 
remained strong and significant after additional adjustment for apoli-
poprotein B changes (Extended Data Fig. 3c).

A subsample of 10,894 women in the NHS (n = 7,479) and 
NHSII (n = 3,412) cohorts have Broad Institute lipidomics data with 
species-level information on the total number of C atoms and double 
bonds in the fatty acid residuals of lipid metabolites (Supplementary 
Tables 5–8)37. We derived the rMLS using 42 lower-resolution lipid 
variables to reflect 15 class-specific fatty acid concentrations in the 
original MLS (Extended Data Fig. 4). In the EPIC-Potsdam cohort, the 
rMLS showed high correlation (ρ = 0.91; Extended Data Fig. 5a), strong 
agreement (Extended Data Fig. 5b) and CVD and T2D associations 
comparable with the original MLS.

In the NHS/NHSII cohorts, we used the average of the two food fre-
quency questionnaires (FFQs) closest to the blood sample collection to 
estimate the macronutrient composition of individual diets. A pooled 
cross-sectional analysis in 9,309 women with complete macronutri-
ent intake data yielded an estimated increase of the rMLS by 0.89 s.d. 
(P = 6.7 × 10–54) when modeling the replacement of 8% total energy of 

dietary SFAs with UFAs (Fig. 5a), a contrast covered by the range of SFA 
and UFA intake (Extended Data Fig. 6). The replacement of SFAs with 
other macronutrients (carbohydrates and protein) was associated 
with a significant but less pronounced increase in the rMLS (Fig. 5a and 
Extended Data Fig. 7). We also correlated the rMLS with established 
diet quality scores (Methods). An LCD score reflecting high intake of 
fat and protein and low intake of carbohydrates was not related to rMLS 
levels. However, an animal-based LCD score reflecting high intake of 
animal fat and animal protein was correlated with lower rMLS levels, 
whereas a vegetable-based LCD score based on high intake of vegetable 
protein and vegetable fat was correlated with higher rMLS levels. The 
Alternate Healthy Eating Index (AHEI) and the Alternate Mediterranean 
Diet Score (aMed) include high intake of unsaturated plant fats as one 
among several diet quality metrics and were both related to higher 
rMLS levels, although the positive correlation was less pronounced 
than the high plant fat intake-focused vegetable-based LCD score 
(Fig. 5b). These results indicate that reduced SFA intake and higher 
intake of plant-based UFAs are major determinants of rMLS plasma 
levels in a human population under natural conditions.

Replication of lipidomics score associations with diseases
The NHS/NHSII lipidomics sample included a nested 1:1-matched stroke 
case–control study (n = 1,094 women; Supplementary Table 6). Higher 
rMLS levels, indicative of better dietary fat quality, were associated 
with a 10% lower relative stroke risk (odds ratio per s.d. = 0.90, 95% CI: 
0.82 to 0.98, P < 0.05) in age-adjusted models. Further adjustment for 
BMI and diet quality (AHEI without alcohol points) slightly attenuated 
this association and rendered it statistically nonsignificant (odds ratio 
per s.d. = 0.92, 95% CI: 0.83 to 1.02, P > 0.05; n = 936 after exclusions 
due to missing covariable information; Fig. 5c). These estimates are 
directionally consistent with the 18% lower relative stroke risk per stand-
ard deviation higher rMLS (P < 0.05) that we estimated in a secondary 
analysis in the EPIC-Potsdam cohort (data not shown).
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Fig. 5 | Diet and disease association of the rMLS in the NHS cohorts. a, Change 
in rMLS by substitution of 8% total energy from saturated fat for isocaloric energy 
intake from alternative macronutrient sources, that is, protein, carbohydrates or 
unsaturated fats (n = 10,381). The center indicates the β-coefficient, and whiskers 
indicate the 95% CI. b, Spearman correlation between established diet scores 
and rMLS (sample sizes for respective correlations: LCD, n = 6,045; animal-based 
LCD score (ALCD), n = 6,045; vegetable-based LCD score (VLCD), n = 6,045; aMed, 
n = 6,593; AHEI, n = 6,370). c, T2D (n case–control pairs = 728) and stroke (n 

case–control pairs = 336) risk in relation to baseline rMLS levels and 10-year rMLS 
change (n case–control pairs = 244). Data for change analyses are not available 
for stroke. The T2D case–control study was matched for age, race, fasting status 
(all fasted), ethnicity and season of blood collection, and conditional logistic 
regression models were adjusted for the AHEI, smoking status and subsequently 
BMI; the stroke case–control study was matched for age, fasting and smoking 
status, and conditional logistic regression models were adjusted for the AHEI and 
subsequently BMI.
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Lipidomics data were also available in a nested 1:1-matched T2D 
case–control study in the NHS (n = 1,456 women; Supplementary 
Table 7). In age-matched models, 1 s.d. higher rMLS was associated 
with 28% lower relative T2D risk (odds ratio per s.d. = 0.72, 95% CI: 
0.65 to 0.79, P = 6.4 × 10–12). Further adjustment for BMI, diet quality 
and smoking status did not appreciably affect this association of ben-
eficial rMLS levels with lower T2D risk (odds ratio per s.d. = 0.71, 95% 
CI: 0.62 to 0.81, n = 1,114 after exclusions due to missing covariable 
information; Fig. 5c), which is consistent with the risk estimates in the 
EPIC-Potsdam cohort.

In addition, a diabetes case–control study (244 cases and 244 
controls; Supplementary Table 8) nested in the NHS cohort had 
repeated lipidomics profiles 10 years apart but before any diabetes 
cases occurred and complete information on diet, smoking and BMI 
at both time points. An increase of the rMLS over 10 years suggestive 
of better dietary fat quality was associated with 24% lower relative risk 
of subsequent T2D incidence (odds ratio per s.d. = 0.76, 95% CI: 0.59 
to 0.98), adjusted for baseline rMLS levels, BMI, age, diet quality and 
smoking status (Fig. 5c). Additional adjustment for concurrent changes 
in BMI and diet quality marginally attenuated the association of rMLS 
changes with subsequent T2D risk (data not shown). These results 
indicate that rMLS changes over time translate into altered T2D risk 
and suggest potential MLS applications to monitor diet effects on 
T2D risk over time.

The lipidomics score and Mediterranean diet intervention
The PREDIMED trial showed that a Mediterranean diet reduces CVD 
and T2D incidence (Supplementary Table 9)33,34. Our post hoc analyses 
revealed a statistically significant interaction between the preinter-
vention rMLS and the Mediterranean diet effect on T2D risk (P < 0.05, 
n = 678). Therefore, we examined the Mediterranean diet effect on 
T2D risk stratified by preintervention rMLS. Participants with lower 
preintervention rMLS (suggestive of disturbed lipid metabolism and 
adverse dietary fat quality) showed a 42% (95% CI: 15% to 61%, n = 349) 
reduction in T2D risk by the Mediterranean diet intervention, whereas 
those with beneficial rMLS levels (above the median) did not show a 

diabetes risk reduction (reduction in T2D risk for intervention versus 
control = 3% (95% CI: 36%-decrease to 48%-increase)), n = 328; Fig. 6a). 
These results suggest that adverse levels of the diet-responsive MLS 
may help to identify population groups with the most robust T2D risk 
reduction by a Mediterranean diet, possibly informing targeted dietary 
precision prevention.

Secondary analyses suggested that both Mediterranean diet inter-
vention subtypes with the highest extra virgin olive oil intake and 
with added nuts were effective in mitigating the adverse preinterven-
tion rMLS-related T2D risk (Fig. 6b). Importantly, these analyses are 
restricted to T2D risk. Participants with a beneficial rMLS level may 
still benefit from a Mediterranean diet through nonlipid-mediated 
links with other diseases.

We did not observe a modification of the Mediterranean diet effect 
on CVD risk by preintervention rMLS (n = 736). However, the PREDIMED 
trial participants were selectively recruited from a high-risk population, 
and important effects of the Mediterranean diet on CVD risk are likely 
independent of the dietary fat component, for example, mediated by 
high polyphenol intake. Further examination of potential interactions 
between dietary fat quality, the lipidomics-based MLS and long-term 
CVD risk in other study populations is warranted.

Network analysis of the diet-related lipidome
We derived a conditional independence network in the EPIC-Potsdam 
subcohort, including all lipid metabolites in the MLS. This data-driven 
network tended to connect lipid metabolites with biological similarities 
(that is, containing the same fatty acid residuals or belonging to the 
same lipid class; Extended Data Fig. 8). We used the Louvain modu-
larity detection algorithm to derive data-driven lipid clusters38. We 
then calculated cluster-specific lipid scores. All cluster-specific scores 
were associated with a substantial and statistically significant CVD risk 
reduction. A di- and triglyceride-dominated cluster was particularly 
informative for T2D risk, whereas the T2D risk association of a cluster 
enriched in odd- and short-chain acyl chain-containing cholesterol 
esters and phospholipids was not statistically significant (Extended  
Data Fig. 9).
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Fig. 6 | Modification of the effect of Mediterranean diet intervention on 
T2D by rMLS levels in the PREDIMED trial. a, Effect of the Mediterranean diet 
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on T2D risk in the PREDIMED trial across preintervention rMLS strata (n = 687).  

b, Comparison of the effects of a tree nuts-rich Mediterranean diet intervention 
and an extra virgin olive oil-rich Mediterranean diet intervention versus a control 
diet on T2D risk across preintervention rMLS strata. The center indicates the 
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Our analysis revealed that lipid metabolites reduced by the DIVAS 
trial high-UFA diet and included in the MLS were mostly neutral or 
associated with high cardiometabolic risk (Extended Data Fig. 10). 
We used the NetCoupler algorithm to identify direct links between 
metabolites and disease risk that cannot be explained by adjustment 
for other metabolites39,40. Lipid metabolites with endpoint associations 
that remain significant after adjustment for other MLS lipids are high-
lighted in Extended Data Fig. 10, which may help to identify the biologi-
cal processes that drive the MLS to cardiometabolic risk associations.

Discussion
In this study, we showed that lipidomics-based MLSs, reflecting the 
isocaloric replacement of SFAs with UFAs, were associated with signifi-
cantly lower CVD and T2D risk. The primary analysis of the same lipid-
omics data in the DIVAS trial and the EPIC-Potsdam cohort yielded more 
substantial extrapolated cardiometabolic risk reductions than standard 
cardiometabolic risk markers. Additionally, we demonstrate consistent 
associations between lipid metabolites and diet and cardiometabolic 
risk across different cohorts and trials using partially overlapping lipi-
domics data and show that changes in dietary fat quality-related lipid 
scores over 10 years precede changes in T2D risk. Post hoc analyses of 
the PREDIMED trial suggest that adverse preintervention levels of a fat 
quality-related lipid score may predict a stronger T2D risk reduction 
by the healthy Mediterranean diet intervention.

Seminal precision nutrition studies have focused on acute meta-
bolic responses to tailor personalized diets41–43. This approach can be 
complemented by biomarker-driven stratified nutrition44. Our study 
supports the concept of using lipidomics multimarker approaches 
to assess and predict the impact of dietary fat quality on health and 
improve precision in dietary risk prevention using triangulation of 
different study designs. We demonstrate the effect of dietary fat 
quality on the lipidome in a controled RCT with high compliance, 
which substantially reduces the risk of bias and enhances precision 
of the dietary exposure compared to observational data. We then 
leverage large cohort studies to show the relationship between 
intervention-responsive lipid scores and real-world dietary behav-
iors and long-term cardiometabolic health and use a lipid score to 
predict subgroup effects of dietary changes in post hoc analyses of a 
hard endpoint trial.

The WHO recommends that adults reduce SFA intake to 10% of 
total energy5. Additionally, the WHO guidelines on dietary fat suggest 
further reducing saturated fat intake below 10% and replacing it with 
PUFAs and MUFAs from plant sources or fiber-rich carbohydrates5. 
These recommendations rely on a comprehensive synthesis of evi-
dence from trials and observational studies linking lower SFA intake to 
reduced mortality and CVD risk15,45,46. Despite data from over 56,000 
trial participants and approximately 3.7 million observational study 
participants, there is considerable heterogeneity in total fat and SFA 
intake levels, nutrients and food sources replacing dietary SFAs and 
duration in the underlying studies and limited data from trials on hard 
endpoints5. Additionally, the evidence of the effect of dietary fat quality 
on other endpoints, such as T2D47, is not reflected in these guidelines. 
Therefore, the certainty of evidence for these WHO recommendations 
ranges from very low to moderate, subjecting the guidance on dietary 
fat quality to ongoing controversies.

In our study, we relate the lipidomics signature of replacing a 
high-dairy, SFA-rich diet with a diet rich in plant-based MUFAs and 
PUFAs to the risk of developing CVD and T2D. Our findings from the 
lipidomics-based integrated analysis of trial and cohort data on CVD 
risk are consistent with the current recommendation to replace dietary 
SFAs with MUFAs and PUFAs from plant sources, relating a specific 
dietary strategy consistent with the DIVAS intervention to quantita-
tive CVD and T2D risk reduction estimates. Additionally, our results 
show that changes in dietary fat quality-related lipidomics scores over 
10 years are significantly associated with a reduction in subsequent 

T2D risk. Very few studies associate longitudinal lipidomics data with 
subsequent disease risk48,49.

Several studies suggest that higher levels of dairy intake biomark-
ers are related to reduced T2D risk, although questions concerning 
potential confounding factors, such as sex, lipid class interactions 
and differentiation among dairy product types, require further 
exploration50,51. In addition, multimetabolite signatures derived from 
self-reported dairy consumption showed inverse diabetes associa-
tions22,23. These metabolite signatures are tuned to distinguish dairy 
intake from the average diet and may underrepresent lipid metabolites 
with medium- and long-even-chain SFAs, which are predominant in 
full-fat dairy but are also abundant in the broader diet. Therefore, it 
remains unclear to what extent the inverse T2D associations of dairy 
intake-related metabolite signatures are attributable to dairy fat, other 
dairy components or correlated factors, such as total dietary fat con-
tent. In our study, a lipid score that reflects the metabolic adaptation 
to the controled replacement of saturated dairy fat with plant-based 
unsaturated fat was associated with significantly reduced T2D risk. 
Although our results do not dispute the potential health benefits of 
total or specific dairy products within a balanced diet52, they imply that 
replacing SFAs from dairy with high-quality plant-based UFAs in a mod-
erately high-fat diet may confer additional cardiometabolic benefits.

Most established biomarker adjustments did not affect MLS–dis-
ease associations, except for substantial attenuation of the MLS–T2D 
association by adjustment for total triglyceride levels. However, the 
DIVAS diet intervention did not significantly affect triglyceride lev-
els, which is consistent with similar dietary RCTs53. Insulin resistance 
affects very-low-density lipoprotein kinetics and plasma triglyceride 
levels54, but longer interventions might be needed to show these indi-
rect effects. For example, long-term supplementation of high-dose 
long-chain PUFAs has beneficial effects on triglyceride levels, and 
replacement of dietary SFAs with UFAs decreases hepatic insulin resist-
ance and liver triglycerides55–58. The potential etiological relationship 
between dietary fatty acid composition, the lipidome, insulin resist-
ance and circulating trigylcerides warrants further investigation.

The Mediterranean diet’s comprehensive health and environmen-
tal benefits justify its recommendation for the general population59. 
The Mediterranean diet can reduce T2D incidence, partially due to its 
high olive oil and low SFA content34,60,61. Previous interaction analyses 
did not detect an effect modification between dietary fat quality and 
genetic background on T2D risk62. We conducted effect modification 
analysis, showing that the Mediterranean diet-related reduction of T2D 
incidence in the PREDIMED trial was primarily observed in individuals 
with adverse preintervention rMLS levels. These observations suggest 
that the beneficial effects of the Mediterranean diet’s favorable fat 
quality on T2D risk are particularly pronounced in individuals with 
disturbed lipid metabolism and unfavorable dietary fat quality, as 
reflected in adverse preintervention rMLS levels. Therefore, our find-
ings support the concept that lipidomics-based scores may help iden-
tify vulnerable population groups and more precisely target dietary 
interventions focusing on fat quality for T2D prevention.

A strength of this study is the integration of dietary interventions 
and nutritional cohort studies through lipidomics to examine the 
impact of dietary fat quality on cardiometabolic risk. We included all 
significantly DIVAS diet-affected lipids in the MLS, and our network 
and cluster analyses suggest that the included lipids provide partially 
redundant information. Including a broad panel of lipids in the primary 
MLS allowed us to project our findings onto studies with other partially 
overlapping lipidomics data (LIPOGAIN-2, NHS/NHSII and PREDIMED) 
and may offer flexibility to consider technical and economic bench-
marks for creating targeted precision nutrition biomarker panels. 
Specificity is a critical concern for dietary intake biomarkers, but this is 
not applicable here given our study’s focus on MLSs for monitoring the 
metabolic adaptations to changes in dietary fat quality and inferring 
the potential impact on cardiometabolic risk. We show that healthful 
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dietary patterns that include, but are not limited to, a high intake of 
plant-based UFAs correlate with beneficial lipid scores, whereas higher 
adherence to an animal fat-rich dietary pattern correlates with adverse 
lipid scores. Other health-related dietary exposures may have con-
vergent effects on the metabolic processes reflected in dietary fat 
quality-responsive MLSs.

However, this study has several limitations. We did not conduct 
independent intervention studies to validate absolute effect sizes on 
all metabolites, establish thresholds or assess cost-effectiveness, which 
are important steps toward potential future biomarker applications. 
Applying lipidomics scores to guide dietary risk prevention needs to 
be tested in de novo RCTs. Additionally, as our study populations were 
primarily of European ancestry, validating lipid score associations 
in populations not of European ancestry is essential. The DIVAS trial 
offered a comprehensive panel of established surrogate biomarkers, 
but more detailed lipoprotein measurements were not available. The 
LIPOGAIN-2 correlation analyses of dietary fat quality-induced changes 
in sphingolipid score and apolipoprotein B count suggest partially 
overlapping and partially independent diet effects. Further studies 
into the interplay between dietary fat quality, lipidomics profiles, 
detailed lipoprotein subclass assessment and prospective disease 
risk are warranted.

Our analysis focused on the DIVAS trial intervention diet, replac-
ing specific saturated fats (primarily medium- and long-chain SFAs 
from dairy) with unsaturated fats (mainly plant-based oils and nuts). 
Similar studies on complementary dietary exposures may inform 
alternative dietary strategies to produce similar lipidome changes 
or help compile broader panels of metabolic adaptation markers. In 
addition, outcome-optimized lipidomics scores have been developed 
for disease risk prediction63,64, and evaluation of the overlap with the 
dietary fat quality-related alterations in the lipidome may foster pro-
gress toward robust and reliable lipidomics-based biomarkers of diet 
and disease risk.

In conclusion, we selected lipid metabolites that are affected by 
replacing dietary SFAs with plant-based UFAs in RCTs and showed that  
scores derived from these lipids are associated with self-reported 
dietary fat sources, dietary fatty acid composition and health-related 
dietary pattern adherence in free-living individuals. Lipidomics scores 
that reflect lower SFA intake and high plant-based UFA intake were 
consistently associated with reduced incidence of T2D and CVD in 
prospective cohort studies. The associations of lipidomics scores with 
diet and disease risk are stronger than established surrogate markers, 
yielding larger estimated cardiometabolic benefits of improved dietary 
fat quality. Our findings corroborate the cardiometabolic benefits 
of replacing dietary SFAs with plant-based UFAs by integrating data 
from RCTs and nutritional cohorts and suggest that lipidomics-based 
scores may provide sensitive metrics for the health-related metabolic 
adaptation to change in dietary fat quality.
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Methods
Study designs and populations
DIVAS trial. Lipidomics analysis was performed in a subset of parti-
cipants (n = 113 of 195) from the DIVAS trial, a 16-week, single-blind ran-
domized controled parallel trial (registered at www.clinicaltrials.gov  
under accession number NCT01478958). The DIVAS trial was con-
ducted according to the guidelines of the Declaration of Helsinki, and 
favorable ethical opinion for conduct was given by the West Berkshire 
Local Research Ethics Committee (09/H0505/56) and the University of 
Reading Research Ethics Committee (09/40). All individuals provided 
written informed consent before participating. This study recruited 
men and women aged between 21 and 60 years and with estimated 
moderate CVD risk who were randomized to one of three isoenergetic 
diets: rich in SFAs, rich in MUFAs or rich in mixed UFAs including both 
MUFAs and omega-6 PUFAs. The target compositions (percent total 
energy of total fat:SFA:MUFA:PUFA) were 36:17:11:4 for the SFA-rich diet 
(n = 38), 36:9:19:4 for the MUFA-rich diet (n = 39) and 36:9:13:10 for the 
mixed UFA-rich diet (n = 36). We collapsed the MUFA-rich and mixed 
UFA-rich diets into one UFA-rich diet arm for the generation of the MLS.

In the DIVAS dietary intervention trial, all participants’ diets were 
isoenergetic and provided 36% of total energy (percent total energy) 
from fats. Nonfat macronutrient intake and sources were consistent 
between the intervention and control diets. However, different spreads, 
oils, dairy products and snacks were used to modify the diets’ SFA:UFA 
ratio. The control diet was high in saturated fat (SFA-rich diet; 17% of 
total energy from SFAs and 15% of total energy from UFAs; n = 38 with 
lipidomics data). In the intervention diet, 8% of total energy from SFAs 
was substituted for 8% of total energy from UFAs (UFA-rich diet; 9% of 
total energy from SFAs and 23% of total energy from UFAs; n = 75 with 
lipidomics data). The analysis of 4-day weighed diet diaries indicated 
successful implementation of these dietary targets over the interven-
tion period (Fig. 2a)29,35. The SFA:MUFA:omega-6-PUFA content in per-
cent total energy in the control group was 17:11:4 and was either 9:19:4 
or 9:13:10 in the intervention group arms with different MUFA:PUFA 
ratios. The omega-3-PUFA content was standardized across all diet 
groups. Extensive sensitivity analyses revealed that our analysis work-
flow yielded highly consistent results in the two intervention arms. 
Therefore, we present comparisons between the control group (high 
SFA intake) and a pooled intervention group (high UFA intake). We 
collapsed the MUFA-rich and mixed UFA-rich diet into one UFA-rich 
diet arm to generate the MLS.

All participants were nonsmokers; were not pregnant or lactating; 
had normal blood biochemistry and liver and kidney function; did not 
take dietary supplements or medication for hypertension, raised lipids 
or inflammatory disorders; had no prior diagnosis of MI, stroke or dia-
betes; did not consume excessive amounts of alcohol (males: less than 
21 U per week; females: less than 14 U per week) and performed fewer 
than three 30-min sessions of aerobic exercise per week. The trial was 
single blinded, and randomization was conducted by a study researcher 
using minimization stratified for sex, age, BMI and estimated CVD risk. 
The participants were unaware of the assigned intervention diet and 
were asked to replace habitually consumed sources of exchangeable 
fats with study foods (spreads, oils, dairy products and commercially 
available snacks) of specific fatty acid composition provided free of 
charge.

Dietary guidance was provided at baseline and throughout the 
study via 1:1 verbal and written instructions. Compliance was monitored 
through weighed 4-day diet diaries (weeks 0, 8 and 16), records of study 
food intake and plasma phospholipid fatty acids as short-term biomark-
ers of intake (weeks 0 and 16). Observed fatty acid intake compositions 
were largely in line with the defined target fatty acid compositions35. 
Body weight, which was to remain constant, was monitored every 4 
weeks, and changes were addressed with advice to the participants to 
adapt study food or carbohydrate consumption and/or activity levels. 
Fasting blood samples were taken at baseline and after 16 weeks at a 

similar time of day, and blood fractions were immediately separated 
and stored at −80 °C.

EPIC-Potsdam cohort. The EPIC-Potsdam cohort study is a prospec-
tive cohort study that recruited 27,548 participants (16,644 women and 
10,904 men of primarily Middle European ancestry, age range: 35–65 
years) from the general population of Potsdam, Germany, and the 
surrounding geographical area from 1994 to 1998. Follow-up occurred 
every 2–3 years by mailed questionnaires and, if necessary, by tel-
ephone. Response rates ranged between 90% and 96% per follow-up 
round. The study protocol was approved by the ethics committee of 
the Medical Society of the State of Brandenburg, Germany, and all 
participants provided a statement of written informed consent before 
enrollment.

Incident CVD was defined as incidence of primary nonfatal and 
fatal MI and stroke (International Statistical Classification of Diseases 
and Related Health Problems (ICD)-10 codes: I21 for acute MI, I63.0 to 
I63.9 for ischemic stroke, I61.0 to I61.9 for intracerebral hemorrhage, 
I60.0 to I60.9 for subarachnoid hemorrhage and I64.0 to I64.9 for 
unspecified stroke). Incidence of CVD was captured by participants’ 
self-reports or based on information from the death certificates, which 
were validated by contacting the treating physicians. Inquired infor-
mation included ICD-10 code, date of occurrence and further informa-
tion on symptoms and diagnosis criteria. For MI, diagnostic criteria 
included clinical symptoms, electrocardiograms, cardiac enzymes 
and known coronary heart disease. For stroke, diagnosis was based 
on anamnesis, clinical symptoms, computed tomography/magnetic 
resonance tomography, angiogram, lumbar puncture, echocardio-
gram, Doppler and electrocardiogram plus imaging techniques if 
available. Participants with silent cardiovascular events that had not 
been documented within 28 days after occurrence were excluded as 
nonverifiable cases from all analyses.

Information on incidence of T2D was systematically acquired 
through self-report of a diagnosis, T2D-relevant medication or dietary 
treatment due to T2D diagnosis during follow-up. Additionally, death 
certificates and information from tumor centers, physicians or clinics 
that provided assessments for other diagnoses were screened for indi-
cation of incident T2D. For participants who were classified as potential 
cases based on that information, a standard inquiry form was sent to 
the treating physician. Only physician-verified cases with a diagnosis of 
T2D (ICD-10 code E11) and a diagnosis date after the baseline examina-
tion were considered confirmed incident cases of T2D.

Nested case–cohorts were constructed for efficient study of 
molecular phenotypes. From all participants who provided blood 
at baseline (n = 26,437), a random sample (subcohort, n = 1,262) was 
drawn, which served as a common reference population for both end-
points. For each endpoint, all incident cases that occurred in the full 
cohort until a specified censoring date were included in the analysis. 
After excluding prevalent cases of the respective outcomes, the ana-
lytical sample for T2D comprised 1,886 participants, including 775 
incident cases (26 cases in the subcohort), and the analytical sample 
for CVD comprised 1,671 participants, including 551 incident cases (28 
cases in the subcohort). Follow-up was defined as the time between 
enrollment and study exit determined by diagnosis of the respective 
disease, death, dropout or final censoring date, whichever came first. 
Endpoint-specific censoring dates were 30 November 2006 for stroke 
and MI and 31 August 2005 for T2D.

Anthropometric and blood pressure measurements were con-
ducted according to a standardized protocol65,66. Information on life-
style and education was obtained using computer-assisted personal 
interviews. These included information on recreational physical activ-
ity, smoking status, average alcohol intake and educational attainment. 
Participants were categorized as hypertensive at study baseline if they 
had a systolic blood pressure of ≥140 mmHg, diastolic blood pressure 
of ≥90 mmHg, reported prior diagnosis of hypertension or current 
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antihypertensive medication use. At baseline, trained study person-
nel obtained 30 ml of peripheral venous blood from each participant. 
Blood was partitioned into serum, plasma (with 10% of total volume 
citrate) and blood cells and was subsequently separately stored in tanks 
of liquid nitrogen at −196 °C or in deep freezers at −80 °C until the time 
of analysis. Plasma samples, from which aliquots were drawn for the 
lipidomics measurements in 2016, were never or only once thawed and 
refrozen during storage (93 samples were defrosted and refrozen once 
for aliquoting for unrelated analysis).

Plasma concentrations of standard blood lipids (total cholesterol, 
HDL-C, triglycerides, HbA1c, glucose and hsCRP) were measured at 
the Department of Internal Medicine, University of Tübingen, with 
an automatic ADVIA 1650 analyzer (Siemens Medical Solutions) in 
2007. All biomarker measurements conducted in plasma, including 
the lipidomics measurements (detailed below), were corrected for the 
dilution introduced by citrate volume to improve comparability with 
concentrations measured in EDTA-plasma reported in the literature. 
Laboratory measurements were conducted by experienced technical 
personnel following the manufacturer’s instructions. Single imputa-
tion based on linear regression was used to impute missing covariate 
information (participants with missing data for: waist circumference, 
n = 2; BMI, n = 12; standard blood lipids (triglycerides, HDL-C and tri-
glycerides), n = 82; and blood pressure, n = 148).

NHSs. The NHS recruited 121,701 female nurses aged 30–55 years in 
1976 (ref. 67). A subset of 32,826 nurses provided blood samples in 1989 
or 1990, of whom 18,743 provided a second blood sample in 2000 or 
2001. The NHSII cohort was established in 1989 and recruited 116,429 
female nurses aged 25–42 years. In NHSII, blood samples from 29,611 
participants were collected between 1996 and 1999. The standardized 
blood collection procedure is described elsewhere37. Participants 
reported their usual intake of a standard portion of each item in the FFQ 
(frequency ranging from never to more than six times per day) during 
the past year every 4 years. The reproducibility and validity of the FFQ 
has been extensively documented68–70. The NHSs were approved by the 
Human Research Committee at the Brigham and Women’s Hospital, 
Boston, MA, and participants provided written informed consent.

We computed the intake of individual nutrients by multiplying 
the frequency of consumption of each food by the nutrient content 
of the specified portion based on food composition data from the US 
Department of Agriculture and data from manufacturers. Intake of 
carbohydrate, fat and protein was expressed as nutrient densities (that 
is, percent energy)71. In a validation study comparing energy-adjusted 
macronutrient intake assessed by the FFQ with four 1-week diet records, 
the Pearson correlation coefficients were 0.61 for total carbohydrates, 
0.52 for total protein and 0.54 for total fat70.

Participants who reported a stroke were asked for permission 
to review their medical records. For both nonfatal and fatal strokes, 
available medical records related to the clinical event, such as imaging 
and autopsy reports, were reviewed by physicians who were blind to 
participant risk factor status. Strokes were defined according to the 
National Survey of Stroke criteria and were classified as ischemic or 
hemorrhagic72,73. The ischemic stroke lipidomics case–control study in 
the NHS/NHSII cohorts used in our analyses included 968 participants 
with lipidomics data to construct the rMLS (484 case–control pairs). 
Matching factors included age, fasting, smoking status, race, ethnicity 
and season of blood collection.

In NHS/NHSII cohorts, T2D incidence was detected based on 
self-reported diagnosis and was confirmed by a validated supple-
mentary questionnaire74. Before 1998, confirmation of T2D incidence 
relied on the National Diabetes Data Group criteria and from 1998 
onward relied on the American Diabetes Association diagnostic criteria. 
Validation studies in the NHS have demonstrated the validity of the 
supplementary questionnaires to adjudicate T2D diagnosis, showing 
that more than 97% of participants with self-reported T2D detected by 

questionnaires were reconfirmed through medical record review by 
endocrinologists blinded to questionnaire information74,75.

We also designed a 1:1-matched nested case–control study for lipi-
domics and T2D. Matching factors were age, race, ethnicity and season 
of blood collection. The T2D case–control study in NHS included 1,456 
participants (728 matched case–control pairs) with baseline lipidomics 
data to construct the rMLS. A subset of case–control pairs had repeated 
lipidomics data approximately 10 years apart to construct the rMLS 
based on fasting (≥8 h) blood samples from both times (1989/1990 and 
2000/2001). In the repeated blood sampling study, all participants 
remained diabetes free until after the second blood collection, and all 
incident T2D cases occurred between 2002 and 2008.

The study protocols were approved by the Institutional Review 
Boards of Brigham and Women’s Hospital and Harvard T.H. Chan School 
of Public Health. Participants’ completion of questionnaires was con-
sidered as implied consent.

PREDIMED trial. The PREDIMED study was a multicenter dietary 
intervention trial with 7,447 participants in three intervention arms 
and demonstrated cardiometabolic risk reduction by a Mediter-
ranean diet intervention (www.predimed.es; ISRCTN registry: ISR
CTN35739639)33,76. The PREDIMED trial received ethical approval from 
the Institutional Review Board of the Hospital Clinic in Barcelona, Spain, 
16 July 2002. The PREDIMED trial inclusion criteria were either preva-
lence of T2D or prevalence of three or more major cardiovascular risk 
factors (smoking, dyslipidemia, hypertension and adiposity). Besides 
the low-fat diet control group, the Mediterranean diet intervention 
included two arms (one particularly high in extra virgin olive oil and 
the other particularly high in tree nut intake) that we pooled into one 
Mediterranean diet group for our primary analyses. Preintervention 
blood samples were taken after an overnight fast by trained study 
personnel according to a standard protocol and fractioned, and the 
EDTA-plasma was stored at −80 °C in deep freezers.

The PREDIMED T2D case–cohort study with available lipidomics 
data comprised 694 randomly selected participants (approximately 
20% of participants) who fulfilled inclusion criteria, that is, no preva-
lent T2D at recruitment and available plasma samples and all incident 
T2D cases during a median of 3.8 years of intervention (n = 251; per 
case–cohort design 53 incident T2D cases were randomly included in 
the subcohort). The analytical sample was restricted to participants 
with complete data on lipid metabolites in the rMLS (n = 678, including 
211 participants with incident T2D). Of those, 468 participants (includ-
ing 148 participants with subsequent T2D incidence) had additional 
plasma samples and lipidomics profiles from 1 year after recruitment.

The PREDIMED CVD case–cohort study with lipidomics data 
comprised 791 randomly selected participants with available plasma 
samples at recruitment (approximately 10% of the eligible participants) 
and all incident CVD cases during a median of 3.8 years of intervention 
(n = 231). After excluding participants with missing rMLS lipid metabo-
lite values, the analytical sample comprised 871 participants, including 
215 participants with incident CVD. Of those, 736 participants (includ-
ing 136 participants with subsequent CVD incidence) had additional 
plasma samples and lipidomics profiles from 1 year after recruitment. 
The study protocols were approved by the Institutional Review Boards 
at all study locations (PREDIMED) and the Harvard T.H. Chan School of 
Public Health (PREDIMED case–control subproject). All participants 
gave written informed consent.

LIPOGAIN-2 trial. The LIPOGAIN-2 study was a 12-week, double-blind, 
parallel-group randomized trial focusing on overweight individuals. In 
this manuscript, only the first phase of the trial, consisting of an 8-week 
overfeeding period, was used.

Participants aged between 20 and 55 years with a BMI ranging from 
25 to 32 kg m–2 were eligible. Exclusion criteria were diabetes (fast-
ing glucose of >7 mM on two occasions) or liver disease, pregnancy, 
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lactation, alcohol abuse, claustrophobia, abnormal clinical chemis-
try test results, use of drugs influencing energy metabolism, use of 
omega-3 supplements or extreme diets, regular heavy exercise (>3 h per 
week), intolerance to gluten, egg or milk protein and implanted metals. 
Participants were required to fast overnight for 10 to 12 h and avoid 
physical exercise and alcohol for 48 h before measurements were taken.

The trial took place at Uppsala University Hospital in Uppsala, 
Sweden, from August 2014 to June 2015. Participants were assigned to 
groups through a computer-generated list, which was prepared by a 
statistician not involved in the study, and stratified for sex, age and BMI. 
This study is registered on www.clinicaltrials.gov under the identifier 
NCT02211612 and was conducted in accordance with the Declaration 
of Helsinki. All participants provided written informed consent before 
inclusion, and the study was approved by the Regional Ethical Review 
Board in Uppsala (Dnr 2014/186).

In total, 61 participants were randomized to receive muffins made 
with either refined sunflower oil, which is high in PUFAs (specifically 
linoleate 18:2n-6), or refined palm oil rich in SFAs (mainly palmitate 
16:0) for 8 weeks. Participant body weight was monitored weekly when 
they visited the clinic to receive their muffins, which were prepared in 
large batches under controlled conditions in a metabolic kitchen at 
Uppsala University. These muffins, identical in composition except 
for the type of fat, were added to the participants’ regular diets to be 
eaten at any time of the day. Their number was adjusted weekly by plus 
or minus one muffin per day based on the rate of weight gain, with the 
goal being an average weight gain of 3% (equivalent to about 2.9 ± 0.5 
muffins or approximately 40 g of oil per day). The muffins comprised 
51% fat, 44% carbohydrates and 5% protein by energy percentage. One 
participant was removed due to missing sphingolipid measurements.

Lipidomics profiling
DIVAS trial and EPIC-Potsdam cohort. Lipidomics analysis was per-
formed with Metabolon’s Complex Lipid Panel for the EPIC-Potsdam 
cohort and the DIVAS trial separately. In brief, the platform generates 
concentrations of molecular species and nearly complete fatty acid 
composition per lipid class in plasma. The lipid fraction is extracted 
with methanol:dichloromethane, concentrated under nitrogen and 
reconstituted in ammonium acetate dichloromethane:methanol 
(BUME extraction). Extracts are then infused into the ionization source 
of a Sciex SelexION-5500 QTRAP mass spectrometer operated in mul-
tiple reaction monitoring mode with positive/negative switching. 
Lipid classes are subsequently separated by differential mobility spec-
trometry. Using 1,100 multiple reaction monitorings, lipid mass and 
characteristic fragments are determined with the help of more than 50 
isotopically labeled internal standards that are simultaneously intro-
duced with the biological sample. Molecular species are quantified by 
taking the ratio of the signal intensity of each target compound to that 
of its assigned internal standard and multiplying by the concentration 
of internal standard added to the sample77.

The Complex Lipid Panel produced measurements for 14 lipid 
classes (cholesteryl esters, monoglycerides, ceramides, dihydrocera-
mides, lactosylceramides, hexosylceramides, sphingomyelins, lysophos-
phatidylethanolamines, lysophosphatidylcholines, diglycerides, 
triglycerides, phosphatidylcholines, phosphatidylethanolamines and 
phosphatidylinositol). For phosphatidylethanolamines, species from 
the two subclasses phosphatidylethanolamine ether and phosphatidy-
lethanolamine plasmalogen were detected. Measured concentrations 
of molecular species were used to calculate within-class fatty acid sums 
(summing all concentrations of molecular species containing a specific 
fatty acid within a lipid class). Within-class fatty acid sums are synony-
mous with molecular species level in lipid classes containing only one 
reported variable fatty acid per molecule (one-fatty-acid-containing 
classes: cholesteryl esters, monoglycerides, ceramides, dihydrocera-
mides, lactosylceramides, hexosylceramides, sphingomeylins, lysophos-
phatidylethanolamines and lysophosphatidylcholines).

For comparability with the species-level lipidomics in the PRED-
IMED trial and NHS/NHS2 cohorts (see below), we further calculated 
the species level for those classes with more than one fatty acid per 
molecule (that is, diglycerides, triglycerides, phosphatidylcholines, 
phosphatidylethanolamines and phosphatidylinositol) by summing 
all species with the same total atomic mass and degree of saturation 
of the contained fatty acids (that is, isobaric species). We used the 
updated shorthand notations from the LIPIDMAPS initiative where 
applicable78. We only refer to the shorthand notations of fatty acids 
for brevity. According to the manufacturer, the median coefficient of 
variation of species at a 1 µM concentration in serum or plasma was 
approximately 5%. Several lipid species had higher percentages of miss-
ing values because they were likely below the lower limit of quantifica-
tion. Lipid species with more than 70% missing values were excluded, 
while missing values in the remaining lipid species were imputed 
using the ‘Quantile Regression Imputation of Left-Censored data’ 
approach from the R package imputeLCMD (https://CRAN.R-project.
org/package=imputeLCMD).

NHS/NHSII cohorts and the PREDIMED trial. At the Broad Institute, 
plasma polar and nonpolar lipids were identified using a Shimadzu 
Scientific Instrument Nexera x2 U-HPLC system, which was linked to 
a Thermo Fisher Scientific Exactive Plus Orbitrap mass spectrometer. 
Lipids were extracted from the plasma (10 µl) using 190 µl of isopro-
panol that had 1,2-didodecanoyl-sn-glycero-3-phosphocholine as 
an internal standard, supplied by Avanti Polar Lipids. After centrifu-
gation (10 min, 9,000g, room temperature), the supernatants (2 µl) 
were directly injected onto a 100 × 2.1 mm ACQUITY BEH C8 column 
(1.7 µm) from Waters. The column was flushed isocratically at a flow 
rate of 450 µl min–1 for 1 min at 80% of mobile phase A (95:5:0.1 (vol/
vol/vol) of 10 mmol l–1 ammonium acetate:methanol:acetic acid), suc-
ceeded by a linear gradient to 80% of mobile phase B (99.9:0.1 (vol/vol) 
methanol:acetic acid) for 2 min and a linear gradient to 100% mobile 
phase B over 7 min and finally maintained at 100% mobile phase B for 
3 min.

Mass spectrometry analyses were performed in positive ion mode 
using electrospray ionization and full scan analysis over m/z 200–1,100 
at a resolution of 70,000 and a data acquisition rate of 3 Hz. The follow-
ing other mass spectrometry parameters were used: ion spray voltage 
at 3.0 kV, capillary and probe heater temperature at 300 °C, sheath gas 
at 50, auxiliary gas at 15 and S-lens RF level at 60. Progenesis QI software 
(NonLinear Dynamics) was used to process raw data for feature align-
ment, nontargeted signal detection and signal integration. Targeted 
processing of a subset of lipids was conducted using TraceFinder soft-
ware (version 3.2; Thermo Fisher Scientific). Lipids were characterized 
by their headgroup, overall acyl carbon content and total acyl double 
bond content79. The Broad Institute metabolomics data in NHS/NHSII 
were measured in several case–control studies. Within each case–
control study, lipid species with more than 70% missing values were 
excluded, whereas missing values in remaining lipid metabolites were 
imputed with half the minimal measured value. Due to the platform 
evolution in the NHS/NHSII cohorts, some metabolite levels were not 
measured in specific case–control studies. For calculation of the rMLS, 
nonmeasured values of specific metabolites in specific case–control 
studies were substituted with the median of all measured values across 
the whole dataset (only applicable to the rMLS diet substitution models 
in the NHS/NHSII cohorts).

LIPOGAIN-2 trial. Sphingolipids from serum were extracted using 
butanol–methanol methods80,81. Sphingolipids were detected and 
quantified using ultraperformance liquid chromatography/tandem 
mass spectrometry, as previously described82.

Statistical analysis
All lipidomics variables in all study samples were log transformed.
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DIVAS diet effect. We assessed the difference in postintervention 
within-class fatty acid sum concentrations between the SFA-rich and 
UFA-rich diets via linear regression models with trial arm coded as 
an indicator variable (SFA-rich diet as a reference) and adjusted for 
respective baseline concentrations in addition to age, BMI and sex. All 
lipids that were statistically significantly different between the diets 
after controlling for an FDR83 at 5% were used for calculating the MLS 
(Supplementary Tables 10 and 11). Using the estimated intervention 
effects as weights, we calculated the MLS in the DIVAS trial and, again, 
used linear regression to estimate baseline-adjusted differences in 
MLS between the diets. For the analyses of sphingolipids, sphingolipid 
score and apolipoprotein B in the LIPOGAIN-2 trial, we used the same 
approach as in the DIVAS trial. The models were similarly adjusted for 
age, sex and BMI.

Calculation of the MLS in the EPIC-Potsdam cohort. Using the esti-
mated intervention effects as weights, we calculated the MLS in the 
EPIC-Potsdam cohort and divided the score by the observed diet effect 
on the MLS in the DIVAS trial so that one unit increase in the MLS cor-
responds to the magnitude of the DIVAS diet intervention effect. Like 
the above approach, we estimated the diet effect on other risk bio-
markers (HbA1c, fasting glucose, total triglycerides, HDL-C, non-HDL-C 
and hsCRP) and applied the respective observed effect as a scale for 
the hypothetical DIVAS intervention effect in the EPIC-Potsdam  
cohort.

Risk associations with CVD and T2D in the EPIC-Potsdam cohort. 
We assessed the association between MLS and incident CVD and T2D 
with Cox proportional hazards models. The case–cohort design was 
accounted for by assigning weights as proposed by Prentice. Age was 
the underlying time variable, with entry time as age at baseline and exit 
time as age at event or censoring. The fully adjusted model included 
age (years), sex, waist circumference (cm), height (cm), leisure-time 
physical activity (average h per week), highest achieved education level 
(three categories: primary school, secondary school/high school and 
college/higher education degree), fasting status at blood draw (three 
categories: overnight fast, only drink and unfasted), total energy intake 
(g day–1), blood pressure (systolic and diastolic; mmHg), smoking 
status (four categories: never, former, current smoker (<20 U day–1) 
and current smoker (≥20 U day–1)), alcohol intake (six sex-specific 
categories: none, low, moderately low, moderately high, high and 
very high), antihypertensive medication (yes/no), lipid-lowering 
medication (yes/no) and acetylsalicylic acid medication (yes/no) as 
covariates. Models for CVD were additionally adjusted for prevalent 
T2D. To check if the presentation of stratified results was warranted, 
we tested the potential for effect measure modification by sex by 
including MLS × sex interaction terms into the multivariable-adjusted  
model.

Derivation of the rMLS. The rMLS was constructed with the same 
weights as were used in the EPIC-Potsdam cohort; however, those lipids 
that were not available in the Broad Institute lipidomics data in the NHS/
NHSII cohorts and PREDIMED trial were either skipped or, where pos-
sible, imputed using regression weights from the EPIC-Potsdam cohort. 
In detail, the Broad Institute lipidomics datasets available in the NHS/
NHSII cohorts and the PREDIMED trial offer species-level lipidomics 
in those lipid classes that contain more than one fatty acid residue per 
molecule, whereas the platform used in the EPIC-Potsdam cohort and 
the DIVAS trial generated resolution down to the molecular species 
level, indicating all fatty acid residues per molecule (with the excep-
tion of triglycerides). We calculated species levels in the EPIC-Potsdam 
cohort and used these to predict within-class fatty acid sums. These 
lipid species-specific weights were then applied to generate a predicted 
value of the missing lipid variable in the PREDIMED trial and the NHS/
NHSII cohorts, where possible.

Diet substitution models, risk associations and analysis of change 
in NHS/NHSII. Diet and lipidomics profiles were available from 10,894 
women in the NHS (n = 7,479) and NHSII (n = 3,415) cohorts. For macro-
nutrient substitution modeling, we used the average of the macronutri-
ent intakes derived from the two FFQs closest to the blood collection 
that was used in the dietary substitution analyses (NHS cohort: 1986 
and 1990; NHSII cohort: 1995 and 1999). We then included all dietary 
macronutrient variables (as percent total energy) except for saturated 
fat in a linear model with the variance standardized MLS as outcome, 
adjusting for total energy intake excluding alcohol (kcal day–1), alcohol 
intake (g day–1), BMI (kg m–2), age (years) and diet quality (AHEI without 
alcohol points). Macronutrient intake was scaled to 8% of total energy. 
Therefore, effect estimates from this linear model can be interpreted 
as the association of substituting 8% of total energy from SFAs with 
8% of total energy from other macronutrients. Conditional logistic 
regression models were used to assess the associations of the rMLS 
with the risk of developing stroke and T2D.

We further assessed the correlation of the rMLS with established 
diet quality indices, including LCDs84, the aMed85 and the AHEI86. For 
the general LCD, participants were divided into 11 strata based on 
percentage of energy from each total fat, protein and carbohydrates. 
Points were assigned descending from 10 for the highest stratum in 
fat and protein to 0 for the lowest. For carbohydrates, scoring was 
reversed, with the lowest intake receiving 10 points and the highest 
receiving 0. We applied the same methodology to compute two addi-
tional LCD scores: one animal based and one vegetable based. The 
animal-based LCD score was based on the percentage of energy derived 
from carbohydrates, animal protein and animal fat. Conversely, the 
vegetable-based LCD score was calculated from the energy percentages 
from carbohydrates, vegetable protein and vegetable fat84.

The aMed score, adapted from Trichopoulou et al.87, includes 
vegetables (excluding potatoes), fruits, nuts, whole grains, legumes, 
fish and the ratio of monounsaturated to saturated fats along with 
red and processed meats and alcohol. Participants scoring above the 
median intake in these categories received 1 point, except for red and 
processed meats where scoring below the median earned a point; all 
others received 0. Alcohol intake scoring awarded 1 point for daily con-
sumption between 5 and 15 g. The aMed score ranges from 0 to 9, with 
higher scores indicating greater adherence to the Mediterranean diet85.

The AHEI was developed after a comprehensive literature review 
and consultations with nutrition researchers to identify dietary factors 
consistently linked with a reduced risk of chronic diseases in clinical and 
epidemiological research. Beneficial AHEI components include vegeta-
bles, fruits, whole grains, nuts, legumes, long-chain omega-3 PUFAs and 
total PUFAs, whereas adverse components comprise sugar-sweetened 
beverages, red and processed meats, trans-fats and sodium. Moderate 
alcohol consumption scores highest, with high consumption scoring 
lowest. Each AHEI component is rated from 0 (worst) to 10 (best), 
resulting in a total score ranging from 0 (no adherence) to 110 (perfect 
adherence)86.

Risk associations with stroke and T2D in the nested 1:1-matched 
case–control studies were assessed with conditional logistic regres-
sions adjusted for age, BMI, alcohol intake, diet quality and smoking. 
Analyses on 10-year change in MLS were further adjusted for status 
after 10 years of these variables (except age).

Risk associations and interaction analyses in the PREDIMED trial. We 
used Prentice-weighted Cox proportional hazards regression to assess 
the association between the rMLS and the risk of incident disease end-
points in PREDIMED. The interaction analyses were performed in the 
subsamples with two lipidomics profiles (preintervention and 1-year 
into the intervention). The interaction model contained a three-way 
interaction term between Mediterranean diet intervention and the 
repeated rMLS measurements (preintervention rMLS × Mediterranean 
diet intervention × 1-year intervention rMLS) along with the main effect 
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terms and were adjusted for age and sex. The results of the interaction 
analyses informed the subsequent stratified analyses according to the 
Mediterranean diet intervention. The Cox models in the intervention 
strata were adjusted for age, sex and preintervention BMI.

Network and cluster analysis in the EPIC-Potsdam cohort. We esti-
mated a network model of conditional dependencies, where edges 
represent covariance between two lipids that could not be explained 
by adjustment for any subset of other lipids. To this end, we applied an 
order-independent implementation of the causal structure learning 
PC algorithm88. The resulting network graphically encoded the family 
of causal models that could have generated the observed conditional 
independence structure, that is, the skeleton of the data-generating 
directed acyclic graph. Within this network, we identified clusters of 
lipids using the Louvain modularity detection algorithm. The Louvain 
method is a fast heuristic algorithm for detecting communities in 
large networks by optimizing modularity. It iteratively merges nodes 
into communities to maximize within-community links compared to 
between-community links38.

We then calculated cluster-specific lipid scores using the same 
weights as for the full MLS and associated the resulting scores with 
risk of cardiometabolic diseases in the same way as the full MLS. We 
furthermore applied the NetCoupler algorithm (netcoupler.github.
io/NetCoupler/) to identify those lipid–disease connections that 
could not be attributed to the influence of related MLS lipids. The 
algorithm uses the conditional independence network to detect links 
between individual lipids and disease incidence that could not be 
explained by confounding influences through other lipids. By defi-
nition, at least one subset of direct neighbors is sufficient to block 
confounding from the whole network. However, sufficient adjustment 
sets cannot be unambiguously read from the graph because the edges 
are not directed. Therefore, the NetCoupler algorithm iterates for 
each lipid through adjustment for all possible combinations of direct 
network neighbors. A lipid is then only classified as a direct effec-
tor if the association with disease incidence is robust across all these  
submodels39,40.

Software
All analyses were performed using R (version 4.3.0). Further informa-
tion on used R packages is reported in Supplementary Table 13.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The research data supporting the findings of this study consist of sensi-
tive human information derived from the following contributing stud-
ies: the DIVAS trial, LIPOGAIN-2 trial, EPIC-Potsdam cohort, NHS/NHSII 
cohorts and PREDIMED trial. To ensure the confidentiality and protec-
tion of participant data, all datasets are governed by an approved data 
access policy, which adheres to data security and ethical considera-
tions. Access to these datasets is available for research and validation 
purposes, subject to adherence to institutional data security protocols. 
According to standard controlled access procedures, applications to 
use resources from the participating studies will be reviewed by Exter-
nal Collaborations and Scientific Steering Committees to verify that 
the proposed use maintains the protection of the privacy of the par-
ticipants and the confidentiality of the data in EPIC-Potsdam (conven-
ing monthly), NHSI and NHSII (convening biweekly) and PREDIMED 
(convening monthly) and the principal study investigators in DIVAS 
( J.A.L.) and LIPOGAIN-2 (U.R.). Study-specific contact and data access 
information can be obtained from the corresponding authors or the fol-
lowing sources: DIVAS trial (https://research.reading.ac.uk/ifnh/cases/
milk-dairy-consumption-risk-cardiovascular-diseases-cause-mortality/),  

EPIC-Potsdam cohort (https://www.dife.de/en/research/cooperations/
epic-study/), NHS and NHSII cohorts (https://nurseshealthstudy.org/) 
and PREDIMED trial (http://www.predimed.es/). Source data are pro-
vided with this paper.

Code availability
Code is available via Zenodo at https://doi.org/10.5281/zenodo.11412029  
(ref. 89).
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Extended Data Fig. 1 | Comparison of target versus average achieved SFA and UFA intake in DIVAS. Achieved SFA and UFA intakes were estimated from 4-day 
weighed diet diaries collected during the intervention.
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Extended Data Fig. 2 | Cardiometabolic risk associations of MLS vs a clinical 
score based on glucose, HDL-C, non-HDL-C, total triglycerides, and hsCRP. 
Derivation of clinical score irrespective of prespecified benchmark (FDR < 
0.05) used for MLS (n = 113). The clinical score summarizes the nominal effects 

of the DIVAS diet intervention on HDL-C, non-HDL-C, hsCRP, glucose, and total 
triglycerides independent of statistical significance. Similar to the MLS, the 
clinical score was scaled by the observed intervention effect on the clinical score 
in the DIVAS trial.
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Extended Data Fig. 3 | Replication of diet effects on a reduced, sphingolipid-
based score (Sphingolipid-Score) in the LIPOGAIN-2 trial. a, Comparison 
of intervention effects on sphingolipids that are part of the MLS and available 
in the LIPOGAIN-2 trial (n = 60). Center = beta coefficient, whiskers = 95% 
confidence interval. b, Scatter plot and Spearman correlation between MLS 
and Sphingolipid-Score in the EPIC-Potsdam cohort. Two-sided test, p value < 
2.2*10−16. c, Observed effect of LIPOGAIN-2 intervention on Sphingolipid-Score  

(n = 60). The Sphingolipid-Score was scaled by the observed effect in the DIVAS 
trial, therefore a change in one unit indicates the same effect as observed in 
DIVAS. Center = beta coefficient, whiskers = 95% confidence interval. d, Scatter 
plot and Spearman correlation between change in apolipoprotein B and 
Sphingolipid-Score in the LIPOGAIN-2 trial. Two-sided test, p-value = 0.00015. 
Shown values are post-intervention levels adjusted for baseline levels, age, sex, 
BMI, and intervention.
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Extended Data Fig. 4 | Matching of Metabolon and Broad Institute lipidomics data. Shown are all lipids that are part of the MLS. Color coding indicates presence 
or absence in rMLS. In case of no direct match between datasets, where possible we generated predicted concentrations based on available isobaric species level in the 
EPIC-Potsdam cohort.
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Extended Data Fig. 5 | Correlation and agreement of MLS and rMLS. a, Scatter 
plot of the Spearman correlation between MLS based on Metabolon lipidomics 
data and rMLS based on lipids that are also available through the Broad Insitute 

lipidomics platform in the EPIC-Potsdam subcohort (n=1,262). Shown is 
Spearman correlation, two-sided test, p-value < 2.2*10−16. b, Bland-Altman plot 
showing the agreement between MLS and rMLS in the EPIC-Potsdam cohort.
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Extended Data Fig. 6 | Projection of DIVAS targets for dietary UFA-to-SFA ratio and total energy from fats onto the pooled NHS/NHSII study population. Shown 
are total energy from fat and dietary UFA-to-SFA ratio of NHS/NHSII cohort participants with metabolomics data (n = 10,381).
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Extended Data Fig. 7 | Effect of substituting dietary SFA with other 
macronutrients on rMLS. Change in rMLS by substitution of 8% total energy 
from saturated fat for isocaloric energy intake from alternative macronutrient 
sources, that is, protein, carbohydrates, or unsaturated fats in the Nurses’ Health 

Study (NHS, n = 7,457) and Nurses’ Health Study II (NHS2, n = 3,412) and the 
pooled analysis of both cohorts (n = 10,869). Center = beta coefficient, whiskers = 
95% confidence interval.
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Extended Data Fig. 8 | Conditional independence network and clusters of 
all MLS lipids. The network was derived using the PC-algorithm in the EPIC-
Potsdam subcohort (n = 1,262) based on the lipids in the MLS. The nodes in this 
network correspond to the UFA-rich diet-affected lipids, and links correspond 
to correlations between a lipid pair that are robust against adjustment for any 
subset of other network lipids. Many links in this data-driven network connect 
lipid metabolites that contain the same fatty acid residual but belong to different 
lipid classes (for example, C12:0 in cholesteryl esters, phosphatidylcholines, 
triglycerides, and diglycerides; C18:0 in ceramides and hexosylceramides) 
or lipids of the same class with metabolically related fatty acid residuals (for 
example, C20:1 and C22:1 hexosylceramides). Based on this network, we used 

the Louvain modularity detection algorithm to derive data-driven lipid clusters. 
Cluster 1 was enriched in odd- and short-chain acyl chain-containing cholesterol 
esters and phospholipids. Cluster 2 mainly featured di- and triglycerides. Cluster 
3 was primarily composed of medium to long-chain fatty acid-containing 
ceramides (including dihydro-, lactosyl-, and hexosyl-ceramides). Cluster 
4 was primarily composed of medium to long-chain fatty acid-containing 
ceramides (including dihydro-, lactosyl-, and hexosyl-ceramides). Cluster 5 was 
dominated by phosphatidylethanolamines (including those with ether bonds). 
Abbreviations – MLS: multi-lipid score; HR, hazard ratio; UFA: unsaturated fatty 
acids; CVD: cardiovascular disease; T2D: type 2 diabetes.
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Extended Data Fig. 9 | MLS cluster-specific risk associations in the EPIC-
Potsdam cohort. Multi-variable-adjusted Cox proportional hazards models 
adjusted for age, sex, waist circumference, height, leisure-time physical activity, 
highest achieved education level, fasting status at blood draw, total energy 
intake, blood pressure (systolic and diastolic), smoking status, alcohol intake, use 
of anti-hypertensive medication, lipid-lowering medication, and acetylsalicylic 
acid medication. The CVD risk associations were remarkably robust when 
restricted MLS were constructed based only on lipids from each cluster. The 
strongest CVD risk association was assessed for the Cluster 4-based MLS, and 
all cluster-restricted MLS were associated with a substantial and statistically 
significant CVD risk reduction. The T2D risk associations of the cluster-restricted 
MLS were also all directionally consistent with a T2D risk reduction related to 
the UFA-rich diet imprint. The di- and triglyceride-dominated cluster 2 was 

particularly informative for T2D risk. The T2D risk association of the hexosyl- 
and lactosyl-ceramide-enriched cluster 1-based MLS was suggestively inverse 
but not statistically significant. These robust inverse cardiometabolic risk 
associations of UFA-rich diet imprint in granular lipidomics network clusters 
suggest that the depth of lipidomics profiling may be more critical than breadth. 
However, it appears that ceramide and phosphatidylethanolamine metabolites 
are particularly informative for the link between UFA-rich diets and CVD risk. 
At the same time, reduced concentrations of medium and long-chain fatty 
acid-containing di- and triglycerides are critical to linking UFA-rich diets to T2D 
risk. Center = hazard ratio, whiskers = 95% confidence interval. Abbreviations 
– MLS: multi-lipid score; HR, hazard ratio; UFA: unsaturated fatty acids; CVD: 
cardiovascular disease; T2D: type 2 diabetes.
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Extended Data Fig. 10 | Associations of MLS-contained lipids with 
cardiometabolic risk in the EPIC-Potsdam cohort. Associations are derived 
from multi-variable-adjusted Cox proportional hazards models adjusted for age, 
sex, waist circumference, height, leisure-time physical activity, highest achieved 
education level, fasting status at blood draw, total energy intake, blood pressure 
(systolic and diastolic), smoking status, alcohol intake, use of anti-hypertensive 

medication, lipid-lowering medication, and acetylsalicylic acid medication. 
Red asterisks indicate that these lipid-disease associations were robust against 
adjustment for interrelated diet-affected lipids. Center = hazard ratio, whiskers 
= 95% confidence interval. Abbreviations – HR: hazard ratio; SD: standard 
deviation; CVD: cardiovascular disease; T2D, type 2 diabetes.

http://www.nature.com/naturemedicine








≤ ≤
≥

≥ ≥




	Lipidome changes due to improved dietary fat quality inform cardiometabolic risk reduction and precision nutrition

	Results

	Study design

	An intervention-derived lipidomics score

	Lipidomics score correlations with foods and biomarkers

	Lipidomics score associations with CVD and T2D

	Replication of lipidomics score associations with diet

	Replication of lipidomics score associations with diseases

	The lipidomics score and Mediterranean diet intervention

	Network analysis of the diet-related lipidome


	Discussion

	Online content

	Fig. 1 Study design.
	Fig. 2 Deriving an MLS of modified dietary fatty acid composition in the DIVAS trial and benchmarking against established risk biomarkers.
	Fig. 3 Distribution and correlations of the MLS in the EPIC-Potsdam subcohort.
	Fig. 4 Association of the MLS with CVD and T2D incidence in the EPIC-Potsdam cohort.
	Fig. 5 Diet and disease association of the rMLS in the NHS cohorts.
	Fig. 6 Modification of the effect of Mediterranean diet intervention on T2D by rMLS levels in the PREDIMED trial.
	Extended Data Fig. 1 Comparison of target versus average achieved SFA and UFA intake in DIVAS.
	Extended Data Fig. 2 Cardiometabolic risk associations of MLS vs a clinical score based on glucose, HDL-C, non-HDL-C, total triglycerides, and hsCRP.
	Extended Data Fig. 3 Replication of diet effects on a reduced, sphingolipid-based score (Sphingolipid-Score) in the LIPOGAIN-2 trial.
	Extended Data Fig. 4 Matching of Metabolon and Broad Institute lipidomics data.
	Extended Data Fig. 5 Correlation and agreement of MLS and rMLS.
	Extended Data Fig. 6 Projection of DIVAS targets for dietary UFA-to-SFA ratio and total energy from fats onto the pooled NHS/NHSII study population.
	Extended Data Fig. 7 Effect of substituting dietary SFA with other macronutrients on rMLS.
	Extended Data Fig. 8 Conditional independence network and clusters of all MLS lipids.
	Extended Data Fig. 9 MLS cluster-specific risk associations in the EPIC-Potsdam cohort.
	Extended Data Fig. 10 Associations of MLS-contained lipids with cardiometabolic risk in the EPIC-Potsdam cohort.




