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Abstract
Convective-scale ensembles are used routinely in operational centres around
the world to produce probabilistic precipitation forecasts, but a lack of spread
between members is providing forecasts that are frequently overconfident. This
deficiency can be corrected by increasing spread, increasing forecast accuracy, or
both. A recent development in the Met Office forecasting system is the inclusion
of large-scale blending (LSB) in the convective-scale data assimilation scheme.
This method aims to reduce the synoptic-scale forecast error in the analysis by
reducing the influence of the convective-scale data assimilation at scales that are
too large to be constrained by the limited domain. These scales are instead ini-
tialised using output from the global data assimilation scheme, which we expect
to reduce the forecast error and thus improve the spread–skill relationship. In
this study, we quantify the impact of LSB on the spread–skill relationship of
hourly precipitation accumulations by comparing forecast ensembles with and
without LSB over a 17-day summer trial period. This trial found modest but
significant improvements to the spread–skill relationship as calculated using
metrics based on the Fractions Skill Score. Skill is improved for a lower precip-
itation centile by an average of 0.56% at the largest scales, but a corresponding
degradation of spread limits the overall correction. The spread–skill disparity is
reduced the most in the higher centiles due to a more muted spread response,
with significant reductions of up to 0.40% obtained at larger scales. Case-study
analysis using a novel extension of the Localised Fractions Skill Score demon-
strates how spread–skill improvements transfer to smaller-scale features, not
just the scales that have been blended. There are promising signs that further
spread–skill improvements can be made by implementing LSB more fully within
the ensemble, and we encourage the Met Office to continue developing this
technique.
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2 GAINFORD et al.

1 INTRODUCTION

Convective-scale ensembles have been used for over a
decade to quantify the uncertainty in convective-scale
weather forecasts (e.g., Clark et al., 2011; Klasa et al., 2018;
Wang et al., 2011). Ideally, the spread between ensem-
ble members should be equal to the expected error of
the ensemble mean when verified over many forecasts
(Buizza, 1997; Hopson, 2014). If this spread–skill rela-
tionship is well correlated, the spread can be used to
predict the forecast skill, with small spread (large confi-
dence) implying a skilful forecast and vice versa. However,
meteorological centres around the world often report
that convective-scale ensembles provide overconfident,
and typically underspread, forecasts given the verified
weather (e.g., Beck et al., 2016; Cafaro et al., 2021; Ferrett
et al., 2021; Porson et al., 2019, 2020; Raynaud & Bouttier,
2017; Schwartz et al., 2014; Tennant, 2015). This over-
confidence can be addressed in two ways: either by
increasing the spread between members, thereby decreas-
ing the confidence, or by increasing the skill of the
ensemble mean, thereby making the large confidence
more appropriate. One way of improving the skill of
convective-scale models throughout the early stages
of the integration is to improve the accuracy of the
initial state.

Due to the computational cost of running operational
models at resolutions approaching the convective-scale,
forecasts must be run over a limited region. By definition,
the data assimilation (DA) schemes that initialise these
regional models do not include information extending
beyond the model domain, which limits the accuracy of
features with scales exceeding the domain size (Guidard
& Fischer, 2008). Therefore, it is expected that a regional
model DA scheme will represent scales approaching its
own domain size less accurately than the global host
model within which it is nested (providing lateral bound-
ary conditions). Recent studies have shown that nudging
the synoptic-scale regional analysis of selected variables
towards that of the host-model analysis improves skill
in deterministic models (Bengtsson et al., 2017; Milan
et al., 2023). Our work extends these findings to consider
the impact of these blended analyses on the spread–skill
relationship of a convective-scale ensemble. We posit
that this ensemble will show the same improvement in
spread and skill as other studies of this nature (Keresturi
et al., 2019; Schwartz et al., 2021, 2022; Zhang et al., 2015).
In particular, we expect that the ensemble will benefit
from the same increase in skill demonstrated in deter-
ministic forecasts, while leaving the initial conditions
in the convective-scale model to diverge at a rate simi-
lar to or larger than without blending. In this way, the
spread–skill disparity will be reduced because the lack of

spread between members will be more appropriate given
the increase in skill.

Blending is just one of many methods being explored to
improve the performance of convective-scale ensembles:
time-lagging (Ben Bouallègue et al., 2013; Mitter-
maier, 2007; Raynaud & Bouttier, 2017), stochastic physics
schemes (McCabe et al., 2016), and multi-model ensem-
bles (Beck et al., 2016; Porson et al., 2019) have all shown
promising spread improvements to varying degrees. How-
ever, there are also improvements being made to the
more fundamental aspects of ensemble design, such as
the perturbation and initial condition strategies. Recent
upgrades to the Met Office Global and Regional Ensem-
ble Prediction System–Global (MOGREPS-G) DA setup
have produced large improvements in skill and mod-
est increases in spread compared with the previous
ensemble transform Kalman filter scheme (Inverarity
et al., 2023). However, it is unclear how much these spread
improvements propagate through to the convective-scale
ensembles that are nested within the global ensemble. This
transfer of spread is likely to have some dependence on
the method used to initiate the ensemble: that is, whether
the ensemble is initialised as a simple downscaler of the
global ensemble or whether it uses a separate, higher res-
olution DA scheme. Tennant (2015) has shown that using
convective-scale analyses to initialise convective-scale
ensembles increases skill and spread compared with a
downscaled ensemble, and is therefore the preferred
strategy for the operational Met Office convective-scale
ensemble, MOGREPS-UK. However, the synoptic scales
initialised using convective-scale DA may conflict with
the synoptic scales arriving from the global model via the
member perturbations or lateral boundary conditions,
hence the desire to achieve a better balance in the initial
state through blending (Caron, 2013).

Recent studies have demonstrated consistently the
benefits of using blending schemes in regional models.
For instance, blending has been shown to remove large
systematic biases affecting typhoon tracks in the North
Pacific Ocean (Hsiao et al., 2015), correct mismatches
between analysis and lateral boundary condition per-
turbations (Caron, 2013; Wang et al., 2011), and reduce
spin-up and wind errors in the first 24 h of integration
(Wang et al., 2014). These improvements all have positive
impacts on model skill, but there is also evidence that
synoptic-scale blending can introduce additional spread
in convective-scale ensembles (Keresturi et al., 2019;
Schwartz et al., 2021, 2022; Zhang et al., 2015). In fact,
Zhang et al. (2015) demonstrated that larger-scale pertur-
bations are much more effective at generating ensemble
spread than smaller-scale perturbations. However, these
performance benefits have also been shown to depend
on the specific blending technique used. One of the main
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GAINFORD et al. 3

choices that must be made when implementing a blending
scheme is the cutoff wavelength controlling the scale at
which the host model begins to influence the regional
model (Yang, 2005). Most studies choose a single wave-
length, of between 500 and 1000 km, which defines the
shape of a Raymond-like weighting profile (Raymond,
1988). Other studies have shown that introducing a
dynamic cutoff wavelength, varying either by regime
(Feng et al., 2020, 2021) or by model variable and height
(Zhang et al., 2015), can improve model performance
further compared with a static wavelength.

Despite these technical differences, there is large agree-
ment that blending can improve the spread–skill disparity
in convective-scale ensembles. Our study investigates this
hypothesis by applying the “large-scale blending” (LSB:
Milan et al., 2023) formulation to the initial conditions
of a convective-scale ensemble and measuring the associ-
ated response in spread and skill. LSB has recently been
implemented into the Met Office’s regional 4D-Variational
DA scheme, and has been shown to reduce gravity-wave
generation and improve skill in trials performed with the
deterministic, convective-scale UK variable resolution
(UKV) model (Milan et al., 2023). Our work extends these
findings to consider the spread–skill impact of recen-
tring ensemble members around UKV background fields
blended with LSB. Note that this work focuses only on
assessing improvements to the spread–skill relationship of
precipitation and does not consider any potential, broader
ensemble quality improvements. In fact, blending has a
negligible impact on probabilistic forecast metrics such as
reliability curves, rank histograms, and relative operating
characteristic (ROC) areas (not shown), which suggests
that the predominant benefit will instead be observed
spatially. Additionally, we would expect LSB to impact
variables other than just precipitation, particularly those
that undergo blending directly (Milan et al., 2023), but we
do not analyse this here.

This work presents results of a trial comparing two
ensemble configurations: a reference ensemble where the
initial state was updated using 4D-Var without blending
as outlined in Milan et al. (2020), and a blended ensemble
where LSB was included in the DA scheme. These ensem-
ble forecasts were run in summer 2019 and include several
convective events. After a description of MOGREPS-UK,
the LSB method, and the diagnostic approaches in
Section 2, Section 3 (the results section) begins with a
discussion of the characteristics and climatology of the
weather within the trial period. Then, precipitation dis-
tributions are analysed, which motivates the focus on
assessing the LSB impacts in purely spatial terms. Next,
the differences between the LSB and reference ensembles
across the entire trial period are assessed, with a focus
on evaluating the spread–skill response. The significance

of these differences is considered by comparing
them with similar statistics generated from mixing
ensemble members of both trials. This technique allows
us to quantify the extent to which the members composing
the LSB ensemble can be considered a unique sampling of
the underlying distribution, and not just another sampling
of the reference distribution. After this, a case study is pre-
sented using a novel metric that locates areas of improved
spread and skill within the domain. We show a case of
elevated convection that has been predicted more accu-
rately and more confidently with LSB included. Finally,
Section 4 concludes the article by discussing limitations
and future work.

2 METHODS

This section starts by outlining the ensemble configura-
tion used in this work (Section 2.1), before describing how
LSB is implemented within this ensemble (Section 2.2).
After this, the metrics used to assess the spread–skill rela-
tionship are presented (Sections 2.3 and 2.4), before con-
cluding with a discussion on our significance estimation
approach (Section 2.5).

2.1 MOGREPS-UK

MOGREPS-UK is the Met Office’s operational,
18-member, convective-scale ensemble run over the UK.
The variable-resolution grid starts at 4-km grid spacing
at the corners and tapers to 2.2-km grid spacing in the
fixed-resolution inner mesh, where all subsequent anal-
ysis is performed. Figure 1 shows a schematic of the
initialisation procedure. Note that this is updated from fig.
1 of (Porson et al., 2020) to reflect the improved timeliness
of the member initialisation, which was implemented
shortly after the lagged configuration was introduced.
MOGREPS-UK cycles every hour, producing three new
members run out to 120 h, which are combined with the
15 members from the previous five cycles to produce an
18-member lagged ensemble. This time-lagged approach
allows the model to utilise the hourly updates provided by
the UKV convective-scale DA, and has the added benefit
of improving spread between ensemble members (Porson
et al., 2020).

Every hour, a high-resolution analysis with 1.5-km
grid spacing is produced over the UK domain using
convective-scale 4D-Var DA (Milan et al., 2020). To pro-
duce the three new perturbed high-resolution members,
three members of the global MOGREPS-G ensemble
are selected and perturbations about the 17-member
ensemble mean (excluding the control member) are
calculated. These perturbations are then added to
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4 GAINFORD et al.

F I G U R E 1 Schematic showing the data flow for initialising the time-lagged MOGREPS-UK ensemble. Top: black boxes show the
six-hourly deterministic global model cycling frequency. The red boxes, arrows, and numbers show the MOGREPS-G members that provide
initial-condition perturbations and lateral boundary conditions. The black dots and grey arrow show the UKV analyses around which a given
MOGREPS-UK cycle is centred. The UKV analyses that are blended with the global model are highlighted by black backgrounds (only
applies to the blended ensemble). Blue boxes show the run times of a single MOGREPS-UK cycle, while the blue numbers show the
ensemble members initialised in that cycle. The 18-member lagged ensemble for a given hour is comprised of the three members initialised
at that hour combined with the 15 members from the previous five cycles. Figure adapted from Porson et al. (2020). [Colour figure can be
viewed at wileyonlinelibrary.com]

the high-resolution analysis to produce the three
new high-resolution perturbed members. Due to the
production time required for the MOGREPS-G ensemble,
the perturbations do not always derive from the most
recent analysis (e.g., the perturbed UK members produced
from the 0900 UTC high-resolution analysis use pertur-
bations from the 0000 UTC MOGREPS-G forecast rather
than the 0600 UTC MOGREPS-G forecast, whereas the
1100 UTC MOGREPS-UK members are perturbed using
the 0600 UTC MOGREPS-G).

Since December 2019, MOGREPS-G initialises each
member separately using hybrid 4D ensemble variational
data assimilation (hybrid 4DEnVar: Inverarity et al., 2023).
MOGREPS-G cycles every six hours at 0000, 0600, 1200,
and 1800 UTC, producing 17 members + 1 control from
global analysis. We retain the same member labelling
from MOGREPS-G data assimilation for the correspond-
ing MOGREPS-G and MOGREPS-UK members, meaning
that there are 35 member labels despite the fact that only
18 members are included in a given forecast (see red text of
Figure 1). Note that there is no relation between members
with the same labels initialised 12 h apart.

This study analyses the effects of LSB within
MOGREPS-UK by comparing forecasts from two ensem-
ble configurations. The “reference” ensemble was run
without LSB, while the “blended” ensemble implemented

LSB as described in the next section. Each ensemble was
run using the second Regional Atmosphere and Land
science configuration for midlatitudes (RA2-M: Bush
et al., 2023) with additional stochastic physics perturba-
tions introduced using the Random Parameter 2 scheme
(McCabe et al., 2016). Both ensembles were run for a
17-day period over summer and winter 2019. On average,
though, the ensemble forecasts run over winter showed
differences that were an order of magnitude smaller than
for the summer and are therefore not discussed further in
this work.

2.2 Large-scale blending
in MOGREPS-UK

LSB is the blending approach chosen by the Met Office
to improve synoptic scales within regional model analy-
ses. In general, blending schemes can choose to modify
the synoptic scales of either the regional analysis post
DA or the regional background within/prior to DA. Here,
LSB opts to integrate blending fully into the DA process.
Blended increments are obtained by finding the differ-
ence between the synoptic scales of the “host” model (the
Met Office deterministic global model forecast downscaled
onto the UKV grid) and the synoptic scales of the regional
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GAINFORD et al. 5

(UKV) background. The incremental 4D-variational DA
uses blended fields as background and in its formulation.
Therefore, the increments after minimization are on the
blended fields. For a full description of the LSB implemen-
tation at the Met Office, the reader is directed to section 2.1
of Milan et al. (2023).

In LSB, the synoptic scales are distinguished from the
convective scales by a Raymond low-pass filter (Raymond,
1988) with wavelength cut-off of 700 km. For this choice
of cut-off wavelength, blending begins to have an effect at
scales above 400 km and reaches a maximum response at
approximately 1100 km. At all scales larger than 1100 km,
the blended field is composed of 75% host model back-
ground and 25% regional model background, where this
choice of weights was found to maximise skill (Milan
et al., 2023). A schematic of this amplitude response is
shown in fig. 4 of Milan et al. (2023). When LSB is applied,
blended fields are obtained for the horizontal wind, poten-
tial temperature, pressure, and density. LSB is also applied
to the total water-vapour content, but additional incre-
ments are added, which ensures the relative humidity field
is nudged back towards the convective-scale DA state to
avoid spurious precipitation spin-up (further details can be
found in Milan et al. (2023), Section 2.2 and the appendix).

The only difference between the “blended” and “ref-
erence” MOGREPS-UK configurations used in this study
is the UKV analyses providing the initial conditions. Both
configurations receive the same lateral boundary condi-
tions and member perturbations from MOGREPS-G. How-
ever, LSB is only applied to construct the blended analysis
in one hour out of every six. This choice is made because
of an observed effect in which synoptic-scale LSB and
4D-Var increments anti-correlate during cycles where LSB
is applied without a corresponding update to the bound-
ary conditions—this effect is explained in more detail in
Milan et al. (2023). Therefore, because of the time-lagged
configuration of MOGREPS-UK, the following holds.

• LSB is only applied directly to the initial conditions
of the members initialised at 0300, 0900, 1500, and
2100 UTC (UKV analyses with black boxes in Figure 1).
We refer to the members initialised during these cycles
as being “directly blended” (members 12, 13, 14, 29, 30,
31).

• All other members are initialised around analyses that
have used blended backgrounds, or in other words, LSB
has been applied during a prior cycle (UKV analyses
without black boxes in Figure 1). Even though blending
has not been applied to the analyses of these cycles, the
influence of LSB will feed through via a chain of back-
grounds from the previous directly blended analysis. We
refer to the members initialised during these cycles as
being “indirectly blended.”

As is the case for all lagged ensembles, the full
18-member ensemble does not form an independent and
identically distributed (i.i.d.) sample of realisations, since
we would expect the older three-member sub-ensembles
of the 18-member lagged set to have larger variance than
the fresher sub-ensembles. Moreover, since MOGREPS-G
and MOGREPS-UK have different cycling frequencies,
and because LSB is only applied to a single three-member
sub-ensemble, there are structural differences in the pro-
duction method that make each individual sub-ensemble
distinct from another. These distinctions need to be taken
into account in any statistical analysis aimed at determin-
ing the impact of blending on the ensemble.

The sporadic application of LSB implies limited diver-
gence between the two ensemble configurations, so, to
provide context, it is useful to inspect the member fields
briefly. Figure 2 shows a comparison of hourly precipita-
tion accumulations for a selection of members from the
reference and blended ensembles. This period occurs 10
h before the case study considered in Section 3.4 and was
chosen because of the large uncertainty in the develop-
ment of a band of rain over Ireland, which illustrates the
typical difference between the two ensembles. There is
larger variation between members of the same ensem-
ble than there is between the same member from the
two ensembles. If the reference ensemble member did
not evolve this rain band, the addition of blending did
not cause a differing evolution. Similarly, if the band of
rain did develop in an ensemble member, the intensity of
the precipitation is similar in the same member in both
ensembles. This observation suggests that the inclusion of
blending does little to the distribution of precipitation, a
hypothesis that is explored more thoroughly in Section 3.2.
There are, however, subtle differences in the spatial pat-
terns, which we hypothesise to be more accurate in the
blended ensemble on average. One of the focuses of this
study is to verify this statement, which is achieved using
the Fractions Skill Score.

2.3 Fractions Skill Score (FSS)

The effect of LSB on the spread–skill relationship is eval-
uated from the spatial improvements made to hourly
precipitation accumulations. To measure these improve-
ments we use the Fractions Skill Score (FSS: Roberts &
Lean, 2008), a neighbourhood-based metric designed to
calculate the difference between two fields over a pre-
scribed scale. We use the FSS because it is not sensitive
to the double penalty problem (Gilleland et al., 2009;
Wernli et al., 2009) and allows us to easily assess the
impact of LSB on ensemble spread and skill across a
range of scales. This scale awareness is important, because
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6 GAINFORD et al.

F I G U R E 2 A selection of postage stamps from the reference
and blended ensembles for the June 29, 2019, 0300 UTC ensemble
forecast, lead time T + 4 h. Members 17 were initialised at 2200 UTC
the previous day (lead time T + 9 h), one hour after direct blending.
Members 18 and 19 were initialised at 2300 UTC the previous day
(lead time T + 8 h), two hours after direct blending. There is large
uncertainty within the ensemble about the development of the band
of rain over Ireland. Mask applied from the radar as described in
Section 2.3. [Colour figure can be viewed at wileyonlinelibrary.com]

we expect LSB to have a scale-dependent effect on the
ensemble.

The FSS operates by first converting the forecast and
observed precipitation hourly accumulations into binary
fields that are equal to unity if the precipitation exceeds
a specified threshold or zero otherwise. Observations are

provided by the Nimrod radar system (Golding, 1998)
and are interpolated to the MOGREPS-UK grid using a
nearest-neighbour algorithm that masks any extrapolated
points. We acknowledge that there are uncertainties asso-
ciated with radar observations, especially with cases of
elevated convection, but do not consider these uncertain-
ties here. Regions that lie outside the radar envelope are
masked out in both the observations and the forecast to
ensure fair comparisons. To account for potential model
bias in absolute precipitation amounts, the threshold used
to create the binary field is a centile value and applied such
that if, for example, the 90th percentile is used, 10% of
grid points within the radar envelope have a value of one.
These binary fields are then converted to fractions fields
by averaging over a square neighbourhood of size n × n
grid points, where n is also specified. Finally, two fractions
fields, A and B, can be compared by calculating the mean
squared difference (MSD(n)) between the two fields and
benchmarking against a low-skill climatalogical baseline
(MSDref

(n)) to produce the FSS:

MSD(n)(A,B) =
1

NxNy

Nx∑

i=1

Ny∑

𝑗=1

[
A(n)i,𝑗 − B(n)i,𝑗

]2
, (1)

MSDref
(n)(A,B) =

1
NxNy

Nx∑

i=1

Ny∑

𝑗=1

[
A2
(n)i,𝑗 + B2

(n)i,𝑗

]
, (2)

FSS(n)(A,B) = 1 −
MSD(n)(A,B)
MSDref

(n)(A,B)
, (3)

where Nx and Ny are the number of grid points in the x and
y directions. An FSS of unity indicates identical fractions
fields, while a score of zero indicates fields that are com-
pletely mismatched. Note that the post-processing code
that is used to calculate the fractions fields regrids the data
onto a stage grid with spacing 2327 m (Roberts et al., 2023),
hence the grid point to km conversion is slightly different
from the expected 2.2 km for MOGREPS-UK.

Typically, the FSS is used to understand the scales at
which a deterministic forecast becomes skilful by com-
paring the forecast with a verification and recalculating
the score for increasing neighbourhood sizes until an
acceptable value has been reached (approximately 0.5). For
MOGREPS-UK, this score usually occurs at neighbour-
hood sizes of between 50 and 100 km. For our purposes,
we must extend the analysis to encompass larger scales,
given that the cutoff wavelength for LSB is an order of
magnitude larger than the typical skilful scale. However,
for neighbourhood areas approaching the domain size,
edge disparities can become increasingly important: a frac-
tions value towards the boundary of the domain may be
calculated with far fewer grid points in the surrounding
large neighbourhood than a more central fractions value.
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GAINFORD et al. 7

Nachamkin and Schmidt (2015) have shown that the FSS
can be meaningfully impacted by the method to handle
boundary-fraction values, especially for poor forecasts and
small domains. For our study, we expect this effect to have
a similar impact on both blended and reference ensembles,
and thus the results comparing differences between the
two ensembles will be largely insensitive to this handling
method.

Dey et al. (2014) introduced two metrics that use the
FSS to evaluate ensemble spread–skill relationships. For
an M-member ensemble, the dispersion FSS (dFSS) is an
average of the FSS between all member–member pairs to
yield a single value representing the spread:

dFSS(n) =
1

M(M − 1)

M∑

Ma=1

M∑

Mb1=Ma≠Mb

FSS(n)(Ma,Mb) , (4)

where Ma and Mb are the fractions fields for the mem-
bers being compared, as described previously. Larger dFSS
values mean there is greater similarity between members,
and therefore lower spread (and vice versa). As well as
ensemble spread, the skill can be measured using the
error FSS (eFSS), which averages the FSS between each
ensemble member and a chosen verification field, O, as
given by

eFSS(n) =
1
M

M∑

Ma=1
FSS(n)(Ma,O) , (5)

where higher eFSS values mean higher skill. A useful
spread–skill relationship should show no bias between the
eFSS or dFSS (Dey et al., 2016). If the ensemble produces
higher dFSS than eFSS values over many forecasts, it is
underspread (and lower dFSS than eFSS values imply an
overspread ensemble). Note that a single forecast cannot
meaningfully be described as underspread or overspread,
since these descriptors are only useful over multiple
forecasts.

2.4 Localised Fractions Skill Score
(LFSS)

By design, skill scores such as the FSS produce a
domain-averaged value that can be sequenced in time
to understand the evolution of model performance. If,
instead, we wish to understand the spatial distribution
of model performance, we must modify this diagnostic
to preserve spatial awareness. To achieve this, Wood-
hams et al. (2018) introduced the Localised Fractions Skill
Score (LFSS), which uses an identical formulation to the
FSS as presented in Equations (1)–(3), but instead uses

summations over time to obtain a spatial field of scores at
each grid point, i, 𝑗. The LFSS is calculated as

MSD(n,i,𝑗)(A,B) =
1
T

T∑

t=1

[
A(n,i,𝑗)t − B(n,i,𝑗)t

]2
, (6)

MSDref
(n,i,𝑗)(A,B) =

1
T

T∑

t=1

[
A2
(n,i,𝑗)t + B2

(n,i,𝑗)t

]
, (7)

LFSS(n,i,𝑗)(A,B) = 1 −
MSD(n,i,𝑗)(A,B)
MSDref

(n,i,𝑗)(A,B)
, (8)

where T is the number of field snapshots included in the
calculation. At a given grid point, an LFSS of unity means
that all input fields are in agreement about the precipita-
tion in the n × n neighbourhood surrounding the point,
while a score of zero means there is complete mismatch.

In an analogous way to calculating the
domain-averaged ensemble spread–skill relationship,
we introduce a novel extension of the LFSS that can be
used to generate fields that highlight areas of larger or
smaller ensemble spread and skill. We define the “disper-
sion LFSS (dLFSS)” and “error LFSS (eLFSS)” for a given
neighbourhood, n, as the following:

dLFSS(n,i,𝑗)

= 1
M(M − 1)

M∑

Ma=1

M∑

Mb1=Ma≠Mb

LFSS(n,i,𝑗)(Ma,Mb) ,

(9)

eLFSS(n,i,𝑗) =
1
M

M∑

Ma=1
LFSS(n,i,𝑗)(Ma,O) . (10)

We expect an ensemble with a useful spread–skill rela-
tionship to colocate regions of similar dLFSS and eLFSS;
however, we do not attempt to verify this here for conci-
sion.

This method does not mandate a particular choice of
time coordinate, so in theory the LFSS could be calculated
over different lead times, cycles, or a combination of both,
depending on the aims of the user. However, in our experi-
ence (not shown here), iterating over multiple cycles intro-
duced excessive noise, which made comparisons between
the two ensembles difficult to interpret. Previous work
using the LFSS has also restricted iteration to lead times
over a single cycle using integration periods of 24 h (Wood-
hams et al., 2018) and 3 h (Ferrett et al., 2021). Our results
use 12-h periods sequencing hourly precipitation fields
from lead times T + 2 to T + 13 h.

2.5 Significance estimation

The differences between the precipitation fields of dif-
ferent members of the same ensemble configuration are
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8 GAINFORD et al.

much larger than the differences between the same mem-
ber of the two configurations, as can be seen in Figure 2.
As such, we expect the impacts of blending on ensemble
spread and skill to be modest, especially when summaris-
ing the data by averaging over multiple cycles. The FSS
does not include any built-in uncertainty estimation, so
we seek a method that quantifies this uncertainty while
respecting the statistical structure of the ensemble.

The full 18-member ensemble is not strictly speak-
ing an i.i.d. sample of realisations and is most accurately
described as a set of six three-member sub-ensembles,
each of which can be considered an i.i.d. sample of real-
isations. To quantify the significance of any measured
impact of blending, we use a null hypothesis that, for each
three-member sub-ensemble, the blended ensemble and
the reference ensemble are drawn from the same under-
lying distribution and use a resampling that exchanges
members only between matched sub-ensembles. This
approach ensures that we isolate the response that occurs
purely due to LSB, not due to mixing members from
sub-ensembles with different distributions. From this, we
construct confidence limits that quantify the significance
of the difference between the blended and reference con-
figurations.

Details of this constrained resampling technique,
including its implementation and use in generating confi-
dence limits, are described in Appendix A.

3 RESULTS

3.1 Trial period characteristics

The UK was under a southwesterly flow at the beginning of
the trial period (June 16, 2019), which encouraged a num-
ber of convective storms to develop over southern England.
High pressure and settled conditions then moved in from
June 21 and persisted until June 24. Additional thun-
derstorms developed over southern and central England
from June 24, with slow-moving light rain clearing from
the northeast in the early hours of June 26. Conditions
then remained dry and settled under another area of high
pressure until the arrival of an occlusion from the west
triggered fresh thunderstorms over Ireland and southern
Scotland on June 29. Scattered showers persisted across
the UK and Ireland until the end of the trial period on
July 2 (UKMO, 2019). Overall, the trial period was highly
variable, with multiple convective and showery events
interspersed with more dry and settled periods.

This regime variability has a noticeable impact on
hourly precipitation accumulations across the domain, as
seen in the time series presented in Figure 3. Typically, the
ensemble mean underestimates the precipitation across

the domain compared with the radar. This is especially
noticeable towards the end of June 22, when both ensem-
bles missed the timing of the convective initiation. The
ensembles were also uncertain about the development of
a strong band of thunderstorms over Ireland during the
beginning of June 29, with a majority of members forecast-
ing little or no rain even at short lead times (see Figure 2).
The ensemble then becomes more accurate after this band
clears Northern Ireland and regains strength over cen-
tral Scotland, possibly due to the more predictable forcing
provided by the orography. The events immediately suc-
ceeding this period are highlighted as the green shading in
Figure 3 and are studied in more detail in Section 3.4.

Also highlighted in Figure 3 is a 0.025-mm
domain-average threshold, which we use to filter out
dry events that occur in both ensembles and the radar.
Applying this filter ensures the average FSS results are not
contaminated by an undesirable feature of the FSS design
which causes it to return low scores when dry events
are forecast correctly (as discussed in Mittermaier, 2021).
Moreover, the FSS behaves far more sensitively with low
fractional precipitation coverages (Roberts & Lean, 2008),
which we have found can have a large effect on the aver-
age FSS. Low coverages can either be caused by isolated,
but potentially impactful convective cells or by localised,
scattered showers. The former is clearly more of a con-
cern than the latter, and any filtering method used should
distinguish between these two cases. Therefore, to ensure
the average FSS is not biased towards these low-impact
events, a domain-average filter was chosen to select only
those periods with precipitation of note. The 0.025-mm
threshold value was chosen as the smallest value at which
the average results presented in Section 3.3 become largely
insensitive to further threshold increases. For context, this
domain-average value is equivalent to light drizzle occur-
ring over approximately 10% of the domain, where light
drizzle is defined as 0.3 mm/h by the American Meteorol-
ogy Society Glossary of Meteorology (AMS, 2023). Upon
inspection, the filtered periods are dominated primarily
by the high-pressure conditions of June 21–23 and 25–29.

The FSS results presented in the following section
focus on analysing the 90th and 97.5th centiles. The radar
threshold values for these centiles when averaged across
all data in the trial period are 0.20 and 0.80 mm, respec-
tively. For the filtered trial period with dry events excluded,
the thresholds are 0.31 and 1.23 mm, respectively.

3.2 Precipitation distributions

LSB could impact the hourly precipitation field in two
ways: it could change the position of precipitating points
in the domain, or it could change the magnitude of the
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GAINFORD et al. 9

F I G U R E 3 Time series of the domain-averaged hourly precipitation in the reference ensemble and radar. Ensemble data are
calculated for lead time T + 8 h. The blended ensemble data have been omitted for clarity, but they largely follow the reference ensemble.
[Colour figure can be viewed at wileyonlinelibrary.com]

overall accumulation. The postage stamps presented in
Figure 2 suggest that LSB predominantly modifies the spa-
tial location of precipitation, rather than the intensity. To
examine this behaviour more thoroughly, the distribution
of precipitation across the domain for both ensemble con-
figurations was calculated and averaged over all cycles, all
lead times, and all members.

Figure 4 shows that both ensembles under-represent
the lightest and heaviest rain compared with the radar,
and the addition of LSB has a negligible impact on
the distributions when compared with the radar. For
example, the percentage difference between the radar
and the reference ensemble for the 0.25–0.50 mm
bin is 0.834%, while the equivalent percentage differ-
ence between the blended and reference ensembles
is −0.005%. This behaviour is largely insensitive to
lead time: averaged over lead times T + 2, 4, 6 h, the
radar-reference difference for the same bin is 0.582%,
while the blended-reference difference is −0.020%. Sim-
ilarly, for lead times T + 20, 22, 24 h, the radar-reference
difference is 0.924%, while the blended-reference differ-
ence is −0.023%. The under-representation of light rain
has been noted as a deficiency in the RA2-M physics pack-
age used for these ensembles, and is one of the targets
for improvement in the RAL3 scheme (Bush et al., 2023).
This result is consistent with the differences being pre-
dominantly due to model biases rather than forecast
initialisation.

The other concern with LSB is the generation of spu-
rious precipitation at the start of the integration, which
has been observed in other studies (Schwartz et al., 2021).
While we do not see this effect when analysing the ensem-
ble as a whole, there is a much stronger signal when com-
paring blending between different sets of three-member
sub-ensembles. Figure 5 shows domain- and cycle-average
precipitation as a function of lead time for two sets of
sub-ensembles from both configurations. In the blended
ensemble, the set of members labelled “DB” have been

F I G U R E 4 Domain-wide precipitation distributions from
the radar data (bars) and both ensembles (stalks, representing the
height of the equivalent bars in the ensemble histograms). Radar
bars use the same logarithmic colour bar as in Figure 2 for
consistency. Ensemble distributions are averaged across all cycles,
lead times, and ensemble members. [Colour figure can be viewed at
wileyonlinelibrary.com]

directly blended (members 12, 13, 14, 29, 30, 31). The set
labelled “IDB” are the indirectly blended members ini-
tialised five hours after the most recent blending cycle
(members 9, 10, 11, 26, 27, 28) and would therefore be
the least affected by blending. The reference DB and IDB
sets use these same selections of members, although no
blending takes place in either set.

Figure 5 shows that both sets of members display sig-
nificant spindown from T + 2 to T + 6 h before beginning
to stabilise, which is broadly consistent with the behaviour
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10 GAINFORD et al.

F I G U R E 5 Domain-wide precipitation averaged across all
cycles for the directly blended members (DB, solid lines) and a
selection of indirectly blended members that were initialised five
hours after blending (IDB, dashed lines). Radar value was
calculated by averaging across all events in the trial period and does
not have lead-time dependence. [Colour figure can be viewed at
wileyonlinelibrary.com]

when averaged over all members. Note that this spindown
behaviour is atypical when compared with operational
outputs, possibly due to the effects of time lagging or the
more limited amount of data in our trial. Regardless, the
blended DB members show consistently larger average
precipitation up to T + 12 h than any of the reference or
IDB precipitations. Recall from Section 2.2 that the DB set
is also the set that ingests new lateral boundary conditions
from the global ensemble. Therefore, if there was a large
disparity between the reference DB and reference IDB
members, this would imply that the ingestion of new lat-
eral boundary conditions was a predominant cause for the
larger values. With the exceptions of T + 6 and T + 8 h, this
is largely not the case. Therefore, LSB has a clear impact
on the total accumulations for the directly blended mem-
bers, meaning that spurious precipitation may be present.
This effect has largely vanished five hours after blending
occurs.

3.3 Impact of LSB on spatially
integrated spread–skill relationship

The variation in FSS across the trial period is shown in
Figure 6 as a function of validity time and lead time. Each
hourly cycle is included in these panels, with the forecast
associated with a given cycle tracking along the diagonal.
We choose a lead time cutoff of 24 h based on previous

LSB work with the deterministic UKV model, which
demonstrated that the blending signal persists for
approximately 18 h (Milan et al., 2023). Additional work
presented later in this section supports this cutoff lead
time. All panels show the FSS for the 90th centile and for
a neighbourhood size of 44 km (width of 19 grid points),
the neighbourhood size at which both ensembles exceed
skill scores of 0.5 in Figure 7. Figure 6a shows the dFSS
(spread) scores for the reference ensemble, where higher
values mean more confidence and lower spread. Scores
are variable over the trial period, with a notable period of
higher confidence occurring towards the end of June and
start of July. Typically, higher confidence is achieved at
shorter lead times, as expected.

Next, Figure 6b shows the difference between the dFSS
(spread) and eFSS (skill) scores for the reference ensem-
ble. Some eFSS values are missing due to a pre-filter
check, which ensures that at least 0.2% of the domain
grid points contain precipitation above the percentile
threshold. This check is typically failed with exception-
ally small precipitation coverage, whereby there are far
fewer grid points with nonzero precipitation to meet the
requested centile fully. Typically, the lower skill regions
occur during the extended dry period from June 26–29,
which has been filtered out. There is no clear depen-
dence of the correctness-of-spread on lead time, with some
events becoming more correctly spread at shorter lead
times and others becoming less correctly spread. It is
also difficult to say from this representation of the data
whether the reference ensemble overall is underspread
or overspread.

Figure 6c,d shows the difference between the blended
and reference ensembles for the dFSS and eFSS, respec-
tively. Larger values mean the blended ensemble had
higher scores (lower spread or larger skill). Score differ-
ences are much smaller than those in Figure 6b, which is
expected given the large similarity between fields shown
in Figure 2. One notable exception occurs towards the end
of June 17 and start of June 18, when the blended ensem-
ble is both more skilful and more confident. These score
increases are persistent across all lead times included. The
changes in dFSS and eFSS due to blending tend to have the
same sign, but it is difficult to determine the overall effect.

While these contour plots are useful for understand-
ing the broad variability of the FSS over the trial period,
they only capture the influence of LSB for a single
neighbourhood size and centile. Therefore, Figures 7–10
show the averaged values across the filtered (non-hatched,
full-opacity) space of Figure 6, and the differences between
these values, for neighbourhood sizes up to 900 km. Note
that we chose to pool these FSS values by averaging the
final scores, as in other studies (e.g., Sharma et al., 2023;
Woodhams et al., 2018), rather than aggregating the
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GAINFORD et al. 11

F I G U R E 6 Contour plots showing evolution of 90th centile FSS with a 44-km (19 × 19 grid points) neighbourhood as a function of
lead time and validity time over the trial period. A single cycle is along the diagonal. Hatched sections are dry events, which have been
filtered out of the dataset in subsequent calculations (domain-averaged hourly accumulations less than 0.025 mm). (a) dFSS (spread) for the
reference ensemble, (b) dFSS−eFSS (spread−skill) difference for the reference ensemble, (c) dFSS (spread) blended−reference difference,
and (d) eFSS (skill) blended−reference difference. [Colour figure can be viewed at wileyonlinelibrary.com]

score components separately (Mittermaier, 2021). The
sensitivity of the scores to this choice will be explored in
future work.

To start, Figure 7 shows the expected increases in
FSS with neighbourhood size (Roberts & Lean, 2008).
The dFSS (spread) scores are higher than the eFSS (skill)
scores for both the 90th and 97.5th centiles, hence both
ensembles were underspread for both centiles considered.
However, the ensembles are less underspread using the
larger centile, suggesting that the biggest contributor to the
overconfidence is in the lighter rain.

Differences between the two ensembles are difficult
to distinguish from this presentation of the data, so
Figure 8 shows the percentage differences between them.
This percentage difference is calculated as 100(dFSS −
eFSS)∕eFSS, where larger percentages means more under-
spread. The underspread values peak at a neighbourhood
size of approximately 50 km and steadily become more
correctly spread for larger neighbourhoods. The blended

ensemble is less underspread than the reference ensem-
ble across all neighbourhoods and for both centiles. The
90th centile shows the smallest improvements to the
spread from blending, with the blended ensemble being
less underspread by only 0.2% at most. The largest sus-
tained difference in the 97.5th centile approaches 0.4% at
scales similar to the wavelength where LSB begins to blend
fields, 400 km. There is also a large improvement in the
spread–skill relationship closer to the grid scale at this
higher centile.

We can infer from Figures 7 and 8 that LSB has had a
larger impact on ensemble skill than spread, and in par-
ticular that LSB has decreased spread. This is because
the blended ensemble is less underspread than the ref-
erence ensemble despite all dFSS and eFSS curves of
Figure 7 increasing when LSB is applied. To see this
explicitly, the solid lines of Figure 9 show the differ-
ence between the blended and reference ensembles for
the dFSS (spread) and eFSS (skill) for the 90th and
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12 GAINFORD et al.

F I G U R E 7 Scale-dependent dFSS (spread) and eFSS (skill)
curves obtained by averaging FSS values similar to those presented
in Figure 6 a over the trial period and over lead times T + 2 to
T + 24 h. The reference and blended curves are difficult to
distinguish, especially for the 97.5th centile. [Colour figure can be
viewed at wileyonlinelibrary.com]

97.5th centiles. Larger values in these plots show that the
blended ensemble has larger skill scores (larger skill) or
larger spread scores (smaller spread) than the reference
ensemble. Also included in these figures as dashed lines
are the mixed-member 95% confidence estimations as
described in Section 2.5 and Appendix A.

Both spread and skill score differences between the
blended and reference ensembles are comfortably larger
than the 95% confidence level for the 90th precipitation
centile data over all neighbourhood sizes, indicating sig-
nificant results. In fact, skill score increases are larger than
spread score increases across all neighbourhood sizes and
centiles. Above 400-km neighbourhood size, LSB increases
skill scores by an average of 0.56% in the 90th centile data,
while spread scores only increase by 0.41%. Similarly, in
the 97.5th centile data, skill scores above 400 km increase
by an average of 0.37%, while spread scores only increase
by 0.093%. Note, however, that these percentage increases
are even larger towards the grid scale for the 90th centile
due to the smaller normalisations (Figure 7), with a maxi-
mum skill increase of 0.84% observed at the smallest neigh-
bourhood. Ultimately, though, the larger increase in skill
scores shows that the correctness-of-spread improvements
with blending are caused by increases in skill outweighing
decreases in spread.

Interestingly, the dependence of LSB impact on neigh-
bourhood size is different for the two centiles. Whereas

F I G U R E 8 Scale-dependent percentage differences between
dFSS and eFSS averages presented in Figure 7. eFSS averages are
used for normalisation. [Colour figure can be viewed at
wileyonlinelibrary.com]

blending leads to a fairly uniformly significant response
across neighbourhood size for the 90th centile data, for the
97.5th centile the spread differences are never significant
and the skill differences only significant for neighbour-
hood sizes larger than 200 km. Additionally, the blended
ensemble has more spread than the reference ensemble at
the grid scale using the 97.5th centile data, before becom-
ing slightly less spread at neighbourhood sizes larger
than 200 km. The smaller sample size for the 97.5th cen-
tile inherently lends itself to larger confidence intervals
than the 90th centile, but, given the variability of the
confidence intervals, is much smaller than that of the
blended−reference profiles, this is not the predominant
factor. Note that the 95th centile FSS curves were also
investigated and were found to resemble a smoothly vary-
ing transition between the 90th and 97.5th centile data
presented here.

The results presented in Figure 9 are averages across
all lead times and validity times of the trial period, but
it is also instructive to interrogate the lead-time depen-
dence of the LSB response. Figure 10 has the same format
as Figure 9 but shows the results using the 90th centile
for specific lead time ranges. Given the fact that blend-
ing only modifies the initial conditions, we expect it to
have the largest impact at early lead times, and this is
indeed verified in this figure, with maximum skill score
differences approaching 0.01 between lead times T + 2 and
T + 6 h. This difference diminishes with increasing lead
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GAINFORD et al. 13

(a) (b)

F I G U R E 9 Scale-dependent FSS difference between the blended and reference ensembles for the spread (dFSS) and skill (eFSS)
averages presented in Figure 7. Averages are performed over lead times T + 2 to T + 24 h. Solid line, circle markers: difference between the
blended and reference FSS averages. Dashed line, square markers: upper limit of the 95% confidence estimated through constrained
resampling technique. [Colour figure can be viewed at wileyonlinelibrary.com]

(a) (b) (c)

F I G U R E 10 As Figure 9 but for the 90th centile only, separated by lead time. [Colour figure can be viewed at wileyonlinelibrary.com]

time for both spread and skill scores. The spread-score
ensemble differences become insignificant across all
neighbourhoods for lead times longer than T + 20 h.
There is also a scale dependence observed in these results,
where score differences are larger towards the grid scale
than synoptic scales at very short lead times (Figure 10a),
before decaying and becoming less significantly differ-
ent compared with larger neighbourhood sizes at longer
lead times (Figure 10b,c). We speculate that this is related
to the inherent growth rate of small-scale errors being
much faster than that of large-scale ones (Lorenz, 1969).
We also notice a lead-time dependence in the skill

improvements provided by LSB, with scores deteriorat-
ing at the grid scale between lead times T + 12 and T +
18 h, before recovering and becoming significant again
at lead times longer than T + 20 h. This dependence
can be partly observed in Figure 10b, with insignifi-
cant skill-score improvements observed below neighbour-
hood scales of approximately 120 km. We do not have a
clear explanation for this behaviour, though it may sim-
ply be a consequence of the limited data used for this
analysis.

In summary, the results from this section show the
following.
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1. On applying LSB, the skill of the lower hourly accu-
mulation centile (including lighter and heavier pre-
cipitation) is improved by more than the skill of the
higher centile (including just the heaviest precipita-
tion) (Figure 9). This skill improvement is significant
across all neighbourhood sizes for the lower centile,
while the higher centile is only significantly improved
for neighbourhood sizes above 200 km.

2. These skill improvements are accompanied by a sig-
nificant decrease in spread for the lower centile, and a
more modest, insignificant decrease in spread for the
higher centile (Figure 9). This is true across all neigh-
bourhood sizes of the lower centile and neighbourhood
sizes above 200 km for the higher centile.

3. Given the context that the ensembles are underspread,
these score increases show that the improvements in
the spread–skill relationship in both centiles come
from increases in skill scores outweighing increases in
spread scores (degradations in spread). LSB corrects the
spread–skill relationship for the higher centile more
than for the lower centile (Figure 8).

4. The largest, consistent spread–skill improvements
occur at the neighbourhood sizes where blend-
ing begins to modify fields, scales of approximately
400–500 km. Large improvements are also observed
towards the grid scale for the higher centile (Figure 8).

5. The impact of LSB on ensemble spread persists for
approximately 18–20 h. The ensemble is made more
skilful until at least 24 h after initiation, although

smaller improvements are noted between lead times
T + 12 and T + 18 h for smaller neighbourhood sizes
(Figure 10).

3.4 Case study of the spatial impact
of LSB

The previous section has shown that LSB improves the
spread–skill relationship across all scales and precipitation
intensities. The impacts at larger scales are expected, but
the reasons for the spread–skill improvements towards the
convective scale are not as immediately obvious. This case
study shows an example of these downscale improvements
and provides context to help interpret the previous FSS
results. This case-study period runs from June 29, 2019,
1700 UTC to June 30, 2019, 0500 UTC, and was selected
due to the presence of spatially separated synoptic-scale
and regional-scale weather features. We chose to analyse
the ensembles initialised at 1500 UTC (comprising cycles
from 1000–1500 UTC), with lead times T + 2 to T + 13 h
for the members initialised at 1500 UTC. This choice was
made because the “directly blended” members are the
freshest in these ensembles (i.e., have the shortest lead
times). Longer lead-time studies were considered to be
less informative, given the short persistence of the LSB
signal (Section 3.3).

The case-study conditions are shown in Figure 11.
At the start of the period, a band of thunderstorms

(a)

(b)

F I G U R E 11 Synoptic overview of the case-study period: (a) synoptic chart from the Met Office daily weather summary (UKMO, 2019)
for the closest period before the integration window used in the LFSS case study. Contours show mean sea-level pressure in 4-hPa intervals.
(b) Hourly rain radar valid at June 29, 2019, 1900 UTC, chosen to show the time and location of the strongest period of elevated convection
over Ireland. [Colour figure can be viewed at wileyonlinelibrary.com]
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GAINFORD et al. 15

associated with a cold front was advecting over Scotland
and northern England. The precipitation intensified as the
band pushed into Scotland, and by midnight on June 30,
2019 all members correctly predicted maximum accumu-
lations of more than 8 mm. Both ensemble confidence and
skill increased as this band cleared into the North Sea. At
the same time, a westerly moving occlusion brought warm,
moist air aloft to the west coast of Ireland. Upper-level
vorticity advection initiated a line of convection begin-
ning on June 29, 2019 1600 UTC, moving northeastwards.
Convective intensity reached a maximum at 1900 UTC
over Northern Ireland, after which the forcing region
overtook the convection and accumulations reduced. This
convection was identified as elevated by forecasters (David
Flack, personal communication, 2023), a situation that
models have struggled with capturing in the past (Flack
et al., 2023). The rest of the United Kingdom was largely
dry and settled during this period.

If we assert that a reliable ensemble should colocate
regions of high dLFSS and eLFSS, the reference ensem-
ble shown in Figure 12 largely meets this requirement
for this case. Greater confidence and skill is shown over
eastern Scotland (region 1) than in other areas of the
domain, which is expected given the large-scale forcing
driving precipitation in this region. Similarly, the ensem-
ble was less confident and consequently less skilful in

the location of elevated convection over Northern Ireland
(region 3), which is expected given the lower predictabil-
ity of this type of convection. Over southern Scotland
and northern England (region 2), however, the ensem-
ble is incorrectly confident about the convection in the
trailing edge of this rain band. Most ensemble members
initiated convection in northwest England, which was
too intense and slightly too early. This mistiming caused
spatial mismatch between model and radar fields within
the 12-h window, leading to lower eLFSS scores over
this region. Overall, however, the mistimed convection
over region 2 is the only bust in an otherwise reliable
forecast.

To assess the impact of LSB on this case study, Figure 13
shows the sensitivity of the difference between the blended
and reference ensembles to the centile and neighbour-
hood size. Over differing parts of Scotland (region 1), the
blended ensemble has increased spread and decreased
skill for the centiles and neighbourhood sizes consid-
ered. However, given the already high scores associated
with this region, this result suggests that LSB has had a
minor impact on the spread–skill relationship of precipi-
tation enhanced through predictable means. On the other
hand, there is a notable increase in spread over northern
England (region 2) in the data using the larger centile,
indicating that the blending is somewhat correcting the

(a) (b)

F I G U R E 12 97.5th-centile, 260-km neighbourhood size (112 × 112 grid points) dLFSS (left) and eLFSS (right) for the reference
ensemble calculated over the case-study period (June 29, 2019, 1700 UTC to June 30, 2019, 0500 UTC). If data are missing for a grid point in
any of the fractions fields used to create these LFSS maps (which occurs when there are insufficient radar returns for a given hourly
accumulation), that point is masked to ensure fairness. Darker areas in the plots indicate regions where the fractions fields were similar
across all lead times and between all ensemble members (dLFSS) or between all members and radar (eLFSS). Lighter regions are where there
was either large disagreement between members across all lead times or little precipitation. To make the distinction clear between the latter
two cases, hatching is applied to any grid point where the total accumulation over the 12-h period is less than 1 mm in all three datasets (both
ensembles and radar). Annotated regions are the focus of analysis in the text. [Colour figure can be viewed at wileyonlinelibrary.com]
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16 GAINFORD et al.

overconfident forecast of convection. This is especially
clear in the 97.5th-centile, 260-km neighbourhood size
dLFSS map (Figure 13e), which shows blended scores that
have decreased by over 0.12 in places. The areas with the
largest increase in spread colocate with areas of improved
skill scores, meaning the spread–skill relationship has
improved.

The largest impact of LSB is observed for the case
of elevated convection over Northern Ireland (region 3).
There is a clear signal in all panels of Figure 13 of increased
skill and decreased spread. Figure 13a,b shows increased
scores for the spread and skill of the 90th centile (absolute
threshold of approximately 0.5 mm over the integration
period). Improvements in skill for this lower centile
suggests that the blending has positioned the broad pre-
cipitation envelope more accurately. This improvement in
skill is observed in all ensemble members, meaning they
now have greater similarity and increased dLFSS scores

(lower spread). However, the strongest impact of LSB is
with the most intense rain, as can be seen in the 97.5th
centile (2–5 mm absolute threshold) plots of Figure 13c–f.
For instance, Figure 13d shows maximum skill-score
improvements of more than 0.2, while Figure 13f
shows a sustained improvement of over 0.12 using a
neighbourhood size comparable to the east–west extent of
Ireland. Blending has preferentially improved the location
of the more intense precipitation. The spread scores have
also increased over this area, keeping the spread–skill
relationship broadly correct.

Taken together, these maps suggest that the blending
has helped to represent smaller scale features over Ireland
and northern England more accurately, which we attribute
to improvements in the location of the synoptic-scale fea-
tures providing the forcing. From inspection of the mem-
bers, the blended ensemble has correctly shifted the ele-
vated convection over Ireland to the northeast compared

(a) (c) (e)

(b) (d) (f)

F I G U R E 13 Blended−reference LFSS differences for a selection of centiles and 120-km (51 × 51 grid points) and 260-km (112 × 112
grid points) neighbourhoods. For the dLFSS difference maps, higher scores show regions where the blended ensemble has larger dLFSS
(lower spread) than the reference ensemble. For the eLFSS difference maps, higher scores show regions of improved skill. Note that these
metrics can produce sharp artifacts over areas of little precipitation, due to the discontinuous square neighbourhoods used when calculating
fractions fields. These artifacts do not appear over precipitating regions. Hatching denotes areas that received less than 1 mm of precipitation
in all three datasets (both ensembles and radar) over the integration window. [Colour figure can be viewed at wileyonlinelibrary.com]
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GAINFORD et al. 17

with the reference ensemble. This is similar to the dis-
placement made to the convection over northern Eng-
land, which is associated with improvements in the tim-
ing of the convective initiation. This increase in skill is
associated with an increase in spread over the deficient
areas of northern England, but a decrease in spread over
Ireland. Despite the existing spread–skill relationship of
the reference ensemble being reasonable, blending has
improved the most deficient areas and predicted elevated
convection more confidently.

4 CONCLUSIONS

This study investigated the impact of large-scale blend-
ing on the spread–skill relationship of hourly precipita-
tion accumulations within the Met Office convective-scale
ensemble, MOGREPS-UK. We hypothesised that LSB
would improve the spread–skill relationship by prefer-
entially increasing ensemble skill compared with spread.
In a 17-day summer trial period, LSB improved the
spread–skill relationship across all scales and precipi-
tation thresholds, with the largest corrections of up to
0.4% noted for neighbourhood sizes above 400 km for the
97.5th centile threshold (note that 400 km is also the scale
at which LSB begins to blend the host model into the
regional model forecast). When interrogated further, these
spread–skill corrections are caused by skill scores being
improved (eFSS increased) by more than spread scores
have deteriorated (dFSS increased). In the 90th-centile
results, for instance, LSB affected both skill and spread
scores significantly across all neighbourhood sizes, but
skill scores improved by an average of 0.56% for the largest
neighbourhood sizes, while spread scores only increased
(i.e., spread was degraded) by an average of 0.41%. Spread
scores in the 97.5th-centile results were not significantly
different at any scale with LSB applied, while skill-score
improvements were significant above 200-km neighbour-
hoods. Typically, LSB resulted in spread–skill improve-
ments across all scales considered, not just the scales that
had been blended. A novel extension of the LFSS demon-
strated how these spread–skill improvements transfer to
smaller scale features. By improving the synoptic-scale
flow, the blended ensemble corrected an overconfident
case of convection and improved performance with ele-
vated convection. This is a particularly promising result
given the historical difficulty of modelling elevated convec-
tion (Flack et al., 2023).

This work has focused on assessing improvements to
the spread–skill relationship only, since we found negli-
gible impacts on reliability curves, rank histograms, and
ROC area (not shown). We also note a large seasonal
dependence to the impacts of LSB. This work only presents

findings from the summer trial, since the results of the
winter trial showed minimal changes. Inspection of the
dominant regimes and precipitation totals within the win-
ter trial period reveals that the weather was, on average,
more vigorous and larger scale compared with the
summer trial, and was therefore less sensitive to
domain-scale corrections. This seasonal dependence is
consistent with the previous deterministic LSB study,
which showed much stronger improvements in the FSS
results for summer than winter (Milan et al., 2023). While
the authors do not quote specific differences from the FSS
with LSB applied, the results presented in fig. 16 of Milan
et al. (2023) comparing forecasts with and without LSB
appear to be similarly modest yet significant. Our work has
shown that skill improvements in deterministic models
extend to the convective-scale ensemble that recentres its
members around these high-resolution analyses, though
these improvements are still only modest.

Using LSB within convective-scale ensembles shows
promising improvements to the spread–skill relation-
ship, but these improvements are limited by a corre-
sponding degradation in spread. Previous studies with
convective-scale ensemble blending found similar skill
improvements to this work but opposite spread responses
(Keresturi et al., 2019; Wang et al., 2011; Zhang et al., 2015).
However, in these studies, blending was either incorpo-
rated alongside other model improvements or applied
more holistically across the ensemble initiation. This work
has been performed using an ensemble that only applied
blending to the UKV background providing the initial con-
ditions. Blending is not applied to the initial-condition per-
turbations or lateral boundary conditions provided by the
host ensemble. While we should expect the synoptic scales
of the host ensemble to be in better agreement with the
blended analysis than the unblended analysis, some ten-
sion will inevitably remain, which may limit subsequent
divergence between members.

Additionally, our study has shown that the impacts
of LSB on ensemble spread persist for approximately
18–20 h from forecast initiation. This is in broad agree-
ment with other work that has investigated the persis-
tence of blending (Wang et al., 2014) and the persistence
of initial-condition perturbations in UK regional models
(Porson et al., 2020; Tennant, 2015). Other studies over the
United States, however, have found that blending instead
has a stronger response at later lead times than those seen
in this work (Schwartz et al., 2021, 2022). This difference
may be partly due to the implementation of blending, with
these studies applying blending to the analysis rather than
integrating blending into the DA scheme itself. Addition-
ally, we would expect the use of a much larger domain
size to extend the persistence of blending, as it would take
longer for the influence of the lateral boundary conditions
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to become dominant over the initial conditions. Assessing
the sensitivity of the LSB response to domain size is outside
the scope of this work.

We have also observed signs of spurious precipita-
tion spin-up within the members where LSB was applied
directly, which is consistent with other works evaluating
blending (Schwartz et al., 2021). Any future work aiming
to increase the frequency with which LSB is applied to
MOGREPS-UK should be aware of the effect that this may
have on the other ensemble members, which currently
only inherit the effect of blending through the ingestion of
blended background fields. It may be possible to improve
skill further by applying LSB more frequently, but it is
difficult to assess this using the currently available data
because the six-hourly blending was applied at the same
time as lateral boundary conditions were updated.

LSB has been shown to improve skill and the
spread–skill relationship within this convective-scale
ensemble in summer and we encourage the Met Office
to continue developing this technique. Further improve-
ments should focus on counteracting the associated
reduction in spread, possibly by implementing LSB more
frequently than every six hours or applying LSB more
completely within the ensemble initiation process.
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APPENDIX A. CONSTRAINED RESAMPLING

Our method for quantifying the uncertainty in the
measured LSB response is based on the question of
whether the addition of blending creates an ensemble
that is just a different sampling of the same underlying
distribution, or whether the blended ensemble samples a
different, more skilful distribution. If the two ensembles
are drawn from the same distribution, then we expect the
differences between the statistics of the blended and ref-
erence ensembles to be no different from the statistics of
two ensembles obtained by swapping half of the members
of the blended and reference ensembles. We therefore
use a resampling estimate of the null distribution based
on these “mixed-member ensembles” to estimate the
significance of the differences between the blended and
reference ensembles.

Mixing forecasts has been shown to be an effec-
tive method for estimating uncertainty (Hamill, 1999).
However, because MOGREPS-UK is lagged, it is more
accurate to describe the 18-member ensemble as a set of
six three-member sub-ensembles, which can each be con-
sidered an i.i.d. sample. Therefore, we seek to isolate the
response that occurs purely due to LSB, not that due to
mixing members from sub-ensembles with different dis-
tributions. This requires the use of constraints, which only
permutes members between the two ensembles that would
otherwise form a mixed i.i.d. sub-ensemble, were it not
for the use of LSB. The constraints that create the fairest
comparison between mixed ensembles are the following:

1. only members that are initialised during matching
cycles are permuted;

2. only the newly updated members at each hour are
resampled; and
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F I G U R E A1 Schematic demonstrating an example of the
ensemble member resampling process. The number within each
box is the member label inherited from the corresponding
MOGREPS-G member. Each hourly, time-lagged ensemble is
comprised of the three-member sub-ensemble initialised during
that cycle, along with the five previous the sub-ensembles. To create
the first mixed-member ensembles (“set a” and “set b” at
1000 UTC), members are permuted between the three-member
reference and blended sub-ensembles for each of the six
sub-ensemble cycles. There is an alternating pattern of
oversampling the reference or blended ensemble for each successive
cycle, which ensures an equal mixing of reference and blended
members. The mixed-member ensembles for the next hour
(1100 UTC) are generated by fixing the permutations for those
members common to the ensemble at the previous hour,
resampling only the newly initialised members for that cycle. The
resampling of the newly initialised members respects the
oversample ordering, such that each 18-member mixed ensemble
will always comprise an equal mix of reference and blended
members. [Colour figure can be viewed at wileyonlinelibrary.com]

3. there are an equal number of members mixed between
the reference and blended ensembles.
However, because three ensemble members are ini-

tialised each hour, criteria 2 and 3 cannot be compatible

for each individual hour. Instead, an alternating pattern
is applied, which oversamples the reference ensemble
in one hour and then oversamples the blended ensem-
ble in the next. This setup ensures that criterion 3 is met
over the entire 18-member ensemble in the most fair way
possible. Additionally, imposing criterion 2 ensures per-
sistence between previously resampled sub-ensembles,
which would introduce additional variance if otherwise
neglected.

By stitching together sets of permutations between
three-member sub-ensembles initialised in the same
cycle, we are effectively performing a similar block boot-
strap to that outlined in Wilks (1997); however, since we
already have knowledge of the data structure and corre-
lations, we do not need to anticipate some of the more
user-dependent aspects of this method. Because these
criteria were designed to replicate the construction of
the lagged ensembles themselves most closely, they nec-
essarily take into account additional variance that may
be introduced through neglecting autocorrelations or
through extra resampling, and ensure that the confidence
limits are constructed by only considering the variance
introduced by blending.

An example of the resampling process is shown
graphically in Figure A1, where the numbers within
each box represent the MOGREPS-UK member labels.
Time-lagging of MOGREPS-UK members means that the
ensemble valid at the next hour consists of 15 members
that were in the previous hour, alongside three new mem-
bers. This example represents just one of many possible
ways of constructing a mixed ensemble using the outlined
constraints. Therefore, the resampling process is repeated
1000 times to ensure robust confidence intervals can be
constructed.

The confidence limits are estimated by performing the
same filtered averages over validity time and lead time on
the “set a” and “set b” mixed-member ensembles as for
the blended and reference ensembles. Then, we calculate
the difference between the two mixed-member ensemble
averages. Finally, we take the upper 95th percentile across
all 1000 resamples as our estimate of significance. Note
that, by construction, we do not expect either “set a” or
“set b” ensembles to include systematically larger values
after averaging, so we present the absolute value of the
averaged differences.
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