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Worldwide, there is a trend towards increased herd sizes, and the animal-to-stockman ratio is increasing within the beef and
dairy sectors; thus, the time available to monitoring individual animals is reducing. The behaviour of cows is known to change
in the hours prior to parturition, for example, less time ruminating and eating and increased activity level and tail-raise events.
These behaviours can be monitored non-invasively using animal-mounted sensors. Thus, behavioural traits are ideal variables for
the prediction of calving. This study explored the potential of two sensor technologies for their capabilities in predicting when
calf expulsion should be expected. Two trials were conducted at separate locations: (i) beef cows (n= 144) and (ii) dairy cows
(n= 110). Two sensors were deployed on each cow: (1) Afimilk Silent Herdsman (SHM) collars monitoring time spent ruminating
(RUM), eating (EAT) and the relative activity level (ACT) of the cow, and (2) tail-mounted Axivity accelerometers to detect
tail-raise events (TAIL). The exact time the calf was expelled from the cow was determined by viewing closed-circuit television
camera footage. Machine learning random forest algorithms were developed to predict when calf expulsion should be expected
using single-sensor variables and by integrating multiple-sensor data-streams. The performance of the models was tested
using the Matthew’s correlation coefficient (MCC), the area under the curve, and the sensitivity and specificity of predictions.
The TAIL model was slightly better at predicting calving within a 5-h window for beef cows (MCC= 0.31) than for dairy cows
(MCC = 0.29). The TAILþ RUMþ EAT models were equally as good at predicting calving within a 5-h window for beef and
dairy cows (MCC = 0.32 for both models). Combining data-streams from SHM and tail sensors did not substantially improve
model performance over tail sensors alone; therefore, hour-by-hour algorithms for the prediction of time of calf expulsion were
developed using tail sensor data. Optimal classification occurred at 2 h prior to calving for both beef (MCC= 0.29) and dairy
cows (MCC= 0.25). This study showed that tail sensors alone are adequate for the prediction of parturition and that the
optimal time for prediction is 2 h before expulsion of the calf.

Keywords: precision livestock farming, parturition, bovine, random forest, animal-mounted sensors

Implications

The availability of non-invasive sensors to monitor cattle
behaviour provides opportunities for the translation of
current behaviour and technology validation research into
a multi-sensor platform to predict when a cow will calf.
Four behaviours were monitored in this trial: time spent
ruminating, time spent eating, relative activity and tail rais-
ing. Using machine learning techniques, tail raising was
found to be the best single predictor of time-to-calving with

optimum prediction 2 h prior to calving. Combining tail rais-
ing with time spent eating and time spent ruminating
slightly increased the predictive performance of the model.

Introduction

There is a global trend towards increased herd sizes. For in-
stance, in the UK, the average dairy herd size has increased
2.7% since 2014 and the average beef herd size by 1.2%
(Agriculture and Horticulture Development Board, Beef and† E-mail: gemma.miller@sruc.ac.uk
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Lamb, 2018). If available labour does not increase in line
with herd size, this can result in the cow-to-stockman ratio
increasing and less time being available for monitoring of indi-
vidual animals. To optimise the production efficiency of the UK
livestock sector, there is a requirement for the development and
use of cost-effective animal monitoring solutions to inform on
the health and productive status of individual animals.

Dystocia is a considerable problem within beef and dairy
systems. Internationally, the prevalence of dystocia in dairy
cows typically varies between 2% and 7% of calvings, but
is as high as 14% in the USA (Mee, 2008). In the UK, 6.9% of
dairy heifers experience serious difficulties during calving
(Rumph and Faust, 2006). Reports of assisted calvings range
from 10% to 50% (Mee, 2008), with primiparous cows more
commonly experiencing difficulties (Lombard et al., 2007).
In the beef sector, between 1% and 8% of cows experience
difficult calvings, require surgical intervention or have stillbirths
(Nix et al., 1998; Phocas and Laloë, 2003; Eriksson et al., 2004;
De Amicis et al., 2018).

The costs associated with mild and severe cases of
dystocia in the dairy sector are estimated at between £110
and £400 due to milk loss (McGuirk et al., 2007). Dystocia
can lead to increased days open, increased numbers of
services, premature culling and poor calf health, performance
and survival (McGuirk et al., 2007; López de Maturana
et al., 2007; Lombard et al., 2007; Gaafar et al., 2011;
Barrier et al., 2013). Thus, the development of methods to
automatically predict the onset of parturition and identify
problematic calvings is important to facilitate timely and
appropriate interventions to prevent the losses associated
with dystocia.

A number of physiological and behavioural changes occur
around calving, which offer opportunities to predict the onset
of parturition. The characterisation of maternal hormonal
profiles is able to predict calving times with limited accuracy
(Shah et al., 2006) and the process is invasive and retrospec-
tive. Reductions in body temperature occur on the day of
calving and can be used to predict parturition onset within
a 24-h window, but variations in temperature change
between individual animals limit the predictive power of tem-
perature alone (Saint-Dizier and Chastant-Maillard, 2015).
Behavioural indicators, such as lying and standing, eating
and rumination (Kovács et al., 2016) patterns, social behav-
iour and tail-raising events are known to change in the 24 h
prior to calving (Huzzey et al., 2005; Miedema et al., 2011a
and 2011b; Jensen, 2012). Advances in animal-mounted
sensors capable of monitoring these behaviours provide
the opportunity to develop an automated system for the pre-
diction of parturition.

The objectives of this study were to determine if integrat-
ing data-streams from accelerometers mounted at two
locations on the animal could be used to develop machine
learning algorithms to predict when calf expulsion should
be expected to occur. The novelty of the study lies in the
integration of accelerometer data-streams into a machine
learning algorithm to predict time-to-calf expulsion in both
beef and dairy cows.

Methods

Animals
Two studies were conducted, one with beef cows at the Beef
and Sheep Research Centre at Scotland’s Rural College
(SRUC), UK, and one at a commercial dairy farm in Essex,
UK. In the beef trial, a total of 144 pregnant spring-calving
cows which calved between March and June 2017 were
monitored. The animals were a mixture of breeds (51
Limousin sired; 59 Aberdeen Angus sired; 34 Luing), with
78, 54 and 12 calving to the first, second and third artificial
insemination (AI), respectively. At the beginning of the trial,
the average liveweight was 662 ± 91 kg, and the average
body condition score was 2.8 ± 0.3 (using the system
described in Lowman et al., 1976). Cows ranged in age from
2 to 16 years, and parity number from 0 to 13. Cows were
allocated to one of two group-housed straw-bedded pens
prior to calving (pen 1: 32 × 6.4 m housing up to 24 cattle;
pen 2: 27.4 × 6.4 m housing up to 20 cattle). Animals entered
the study based on anticipated date of calving, with those
calving to the first AI entering the trial first. Throughout
the study, all beef cows were fed a total mixed ration com-
prising of (per head per day on a fresh weight basis) whole
crop barley silage (27.7%), grass silage (41.0%), barley straw
(25.6%), maize dark grains (5.1%) and minerals (0.6%).

In the dairy trial, a total of 110 Holstein Friesian dairy
cows which calved between July and October 2017 were
monitored. Cows ranged in age from 1 to 10 years, and parity
ranged from 0 to 6. All dairy cows were served using AI, and
estimated calving dates were available from the Cattle
Information Service records. Cows were housed in a 41-cubicle
dry cow shed (30× 12 m) from 14 or more days pre-calving,
where they remained loose-housed until showing signs of calv-
ing (determined visually by the farm staff), at which point they
were moved to a smaller (6× 10m), loose, straw-bedded yard
for calving and until approximately 24 h post-calving. Cows
were fed a dietary cation–anion balanced, total mixed ration
which was delivered once a day at approximately 0900 h.
To allow scraping and bedding, cows were removed from
the cubicle house once a day and held in the adjacent collecting
yard (1000 to 1100 h).

Experimental design and sensors
All cows in both studies were fitted with two sensors, and
data collection was started immediately:

(1) Silent Herdsman (SHM) collars (Afimilk Ltd., Israel), neck-mounted
accelerometers originally designed to detect oestrus based on cow
activity, rumination and eating patterns (Konka et al., 2014). Data
from the collars were downloaded to a base station in real time and
classified into behaviours by proprietary algorithms (hourly eating
and rumination and relative activity per 1.5 h).

(2) Tail-mounted tri-axial accelerometers (TTA) (AX3 3-Axis logging
accelerometer; Axivity, Newcastle upon Tyne, UK) measuring
acceleration at a frequency of 12.5 Hz. These have an internal
battery which is rechargeable. Data are downloaded manually
to a computer in comma-separated value format. Previous work
from SRUC and the University of Edinburgh has characterised
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tail-raise signatures and demonstrated that this information may
be important to predict time-to-calving during the immediate pre-
calving period (Miedema et al., 2011a). The TTAs were housed in
synthetic pouches and mounted on cow tails using hook and loop
straps (Figure 1). The angle of the tail at any point in time can be
determined by calculating the pitch of TTA (Figure 1). An approxi-
mation to this is obtained from the magnitude of gravitational
acceleration measured on the x-axis of TTA:

Accx ¼ g sinð�Þ

where θ is the angle of TTA orientation with respect to gravity
(Figure 1). Using this approach, the orientation of TTA was deter-
mined for a period of 10 min following attachment; thereafter
deviations of >20º from this position were deemed to be when
the tail was in a raised position.

Continuous, 24-h video data were collected for the duration
of the calving period. Twenty-five dome cameras were
mounted above the beef calving pens and footage recorded
continuously using GeoVision software (EZCCTV, Letchworth,
UK). In the dairy study, two cameras were installed at positions
which ensured that there was full coverage of the calving pen.
Shed lights were left on at night to ensure that calving time could
be recorded for animals calving during the night. Videos were
manually reviewed to ascertain the exact time of calf expulsion
(calf completely expelled from the cow) for each cow.

Data analysis
The SHM collars use proprietary algorithms to convert
raw accelerometer data into minutes per hour spent eating
(EAT), minutes per hour spent ruminating (RUM) and a
relative numeric level of activity per 1.5 h (ACT). Raw TTA
data were expressed as minutes per hour with the tail in a
raised position (TAIL).

For the development of prediction models, sensor
variables (TAIL, RUM, EAT and ACT) were combined with

non-sensor variables. The non-sensor variables used in beef
models were: time of day, parity, breed, weight at beginning
of trial (kg), body condition score at beginning of trial, age
(years) and AI status (conceived on the first, second or third
AI). For dairy cows, the variables were: time of day, parity
(multiparous or primiparous), number of lactations and age.

The hour in which a calf was completely expelled from the
cow was deemed ‘hour 0’ for that cow, and all previous data
points were assigned a value according to the number of
hours relative to hour 0. For each sensor variable, only ani-
mals which had at least 48 h prior to calf expulsion were
included, and all data up to 196 h (1 week) were considered.

Data from individual sensor variables were plotted to vis-
ually assess changes in behaviour in the week prior to calving.
The 5 h prior to calving was statistically compared to a control
period which was the corresponding 5-h period 24 h before,
using a Wilcoxon signed-rank test. Data were then randomly
divided into training and validation data subsets (70:30), using
the createDataPartition function in the R package caret (Kuhn,
2018), with no animal allowed to be in both training and
validation subsets.

Random forest (RF) models were developed to predict
when an animal was within 5 h of calving using single
variables and then combined variables. Random forest
classifiers are ensemble machine learning algorithms which
are considered to be more accurate than single classifiers,
and more robust to noise (Agjee et al., 2018). Ensemble
algorithms construct a set of independent classifier models
(decision trees), with each model having a ‘vote’ on how
to classify each new data point. Random forests were devel-
oped for each individual sensor variable (TAIL, RUM, EAT and
ACT) and then for multiple sensor variables, and finally –

for the best model – hourly time points leading up to calf
expulsion. The algorithm creates i bootstrapped samples
from the training data subset, where i is the number of inde-
pendent decision trees (ntree). A decision tree is then fitted
to each bootstrap sample. To overcome the unbalanced
nature of the data (fewer target time points than non-target),
bootstrapping, resampling during parameter tuning and
model evaluation were down-sampled, that is, if there were
100 time points of interest, then only 100 other data points
were included. Each tree was then tested with the out-of-bag
(oob) data points. At each branch in each decision tree, only
a random subset of variables was considered (mtry); this
parameter and ntree were optimised during tuning of the
algorithm. All possible values of mtry were tested and ntree
was increased (by 500 trees) until increasing the number of
trees further no longer reduced the model error (i.e. oob error
stabilised).

The final models were tested on the validation data
subset. The binary class variable ‘calving’ and the model
predictions (class probabilities) were used to create receiver
operator characteristic (ROC) curves and to estimate the
area under the ROC curve (AUC). Based on the ROC curves,
a threshold for the probability that a cow was within 5 h of
calf expulsion was chosen that resembled the optimum
balance between sensitivity (true positives divided by true

Figure 1 (colour online) Tail-mounted tri-axial accelerometer (TTA) attach-
ment to cow tail and orientation.
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positives plus false negatives) and specificity (true negatives
divided by true negatives plus false positives). The Matthew’s
correlation coefficient (MCC) was also calculated. It is a
metric which assesses the performance of a binary classifier
and is less sensitive to imbalanced datasets (such as the test
subsets in this case) and is calculated using the following
equation:

MCC ¼ TP� TN � FP� FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FPð Þ TP þ FNð Þ TN þ FPð Þ TN þ FNð Þp

where TP= true positive, TN= true negative, FP= false
positive and FN= false negative. These values were derived
from the optimum model identified by the ROC curve.
The MCC values are between −1 and þ1, with þ1 being
a perfect classifier, 0 being no better than random, and
−1 being a completely inversed classification.

All data analyses were undertaken in R (v3.4.1; R Core
Team, 2017) using the caret (Kuhn, 2018) and pROC
(Robin et al., 2011) packages.

Results

Data inclusion
Table 1 gives a summary of the success of data capture for
tail sensors and SHM collars in the beef and dairy trials,
and the reasons for excluding animals from data analysis.

Supplementary Table S1 shows how the number of animals
included in the analysis changed with hours prior to calving.
For the beef trial, a total of 124 animals were included in the
eating/rumination dataset, 111 in the activity dataset and
78 in the tail sensor dataset. The corresponding numbers
for dairy animals were 81, 101 and 53, respectively.

Changes in behaviour measured by animal-mounted
sensors
Tail raising. Mean time spent with the tail in a raised position
per hour in the week prior to calving was 2.1 ± 0.04 min/h in
beef cows (Figure 2a) and 3.2 ± 0.07 min/h for dairy cows
(Figure 2b). In the 5 h prior to calving, time spent with the tail
raised was significantly higher than in the control period
for both beef (increase from 4.7 ± 0.80 to 22.8 ± 1.66 min/h,
P< 0.01) and dairy cows (increase from 6.6 ± 1.29 to
26.2 ± 2.48 min/h, P< 0.01).

Time spent ruminating. In the week prior to calving, the mean
time spent ruminating by beef cows was 21.9 ± 0.12 min/h
(Figure 3a). Time spent ruminating decreased significantly in
the 5 h prior to calving compared to the control period (from
23.8 ± 0.67 to 12.0 ± 0.59 min/h, P< 0.001). For dairy cows,
the mean time spent ruminating in the week prior to calving
was 16.6 ± 0.10 min/h (Figure 3b). Time spent ruminating
decreased significantly in the 5 h prior to calving compared
to the control period (from 14.9± 0.73 to 8.8± 0.73min/h,
P< 0.001).

Table 1 Success of data recording (robust data collected) for variables collected using neck-mounted accelerometers (Silent Herdsman collars) (time
spent eating, time spent ruminating and relative activity level) and tail-mounted accelerometers (tail raising) from beef and dairy cows

Beef Dairy

Eating/rumination Activity Tail raising Eating/rumination Activity Tail raising

Total animals 144 144 144 110 110 110
Successful recording 137 128 93 85 103 55
Not attached – – 3 – – 2
No calving time 9 9 9 – – –

Less than 48 h 4 15 3 4 2 0
Animals in analysis 124 111 78 81 101 53

Figure 2 Average time spent with the tail in a raised position (minutes per hour) 1 week prior to calf expulsion for (a) beef and (b) dairy cows measured using
tail-mounted accelerometers. Standard errors are given by vertical bars.
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Time spent eating. The mean time spent eating by beef cows
was 21.1 ± 0.15 min/h (Figure 4a) in the week prior to
calving. During the control period, mean time spent eating
was 19.1 ± 0.76 min/h, which increased significantly in the
5 h prior to calving (23.0 ± 0.74 min/h, P< 0.001). For dairy
cows, the mean time spent eating in the week prior to calving
was 19 ± 0.1 min/h (Figure 4b). The 5 h prior to calving was
24 ± 0.9 min/h, which was significantly higher (P< 0.05)
than the control period (22 ± 1.0 min/h).

Relative activity level. In the week prior to calving, the mean
relative activity by beef cows was 4.2 ± 0.06 (Figure 5a).
Relative activity significantly increased compared to the control

period in the 5 h prior to calving (from 5.9 ± 0.54 to
13.6 ± 1.12, P< 0.01). For dairy cows, the mean relative activ-
ity was 2.9 ± 0.04 in theweek prior to calving (Figure 5b). There
was also a significant increase in relative activity in the 5 h prior
to calving compared to the control period in dairy cows (from
4.3 ± 0.53 to 9.1 ± 0.81).

Predictive models
The model performance statistics for individual and inte-
grated sensor variables are shown in Table 2. Note that data
in the integrated sensor models containing ACT had to be
aggregated into 3-h blocks to resolve the differences in res-
olution without making the assumption that behaviours were

Figure 3 Average time spent ruminating (minutes per hour) 1 week prior to calf expulsion for (a) beef and (b) dairy cows measured using neck-mounted
accelerometers (Silent Herdsman collars). Standard errors are given by vertical bars.

Figure 4 Average time spent eating (minutes per hour) 1 week prior to calf expulsion for (a) beef and (b) dairy cows measured using neck-mounted
accelerometers (Silent Herdsman collars). Standard errors are given by vertical bars.

Figure 5 Average relative activity (per hour) 1 week prior to calf expulsion for (a) beef and (b) dairy cows measured using neck-mounted accelerometers (Silent
Herdsman collars). Standard errors are given by vertical bars.
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being displayed evenly throughout the reported time periods.
The TAIL and TAILþ RUMþ EAT models were found to be
most robust in both beef and dairy cow datasets. The TAIL
model was slightly better at predicting calving within a
5-h window for beef cows (MCC= 0.31) than for dairy cows
(MCC= 0.29). The TAILþ RUMþ EAT models were equally
as good at predicting calving within a 5-h window for beef
and dairy cows (MCC= 0.32 for both models).

Variables recorded by SHM collars alone (RUM, EAT and
ACT) were not good predictors of the onset of parturition,
with the RUM and EAT variables performing the worst in both
beef (MCC of 0.13 and 0.15 for RUM and EAT, respectively)
and dairy cows (MCC of 0.12 and 0.09 for RUM and EAT,
respectively). Combining these variables resulted in a poorer
performing model (MCC= 0.07), likely due to the lower
resolution of data.

When assessing the relative importance of sensor
variables (calculated by determining the drop in prediction
accuracy after shuffling the values of a given predictor
variable in the oob samples, rendering them random and
with no predictive power – data not shown) within the
TAILþ RUMþ EAT dairy model, the TAIL variable was by
far the most important. Scaled (0 to 100, with 0 being redun-
dant and 100 being the most important) importance for TAIL
was 100 in both, with RUM and EAT models having substan-
tially less influence (scaled importance of 22.1 and 21.7,
respectively, for beef cows and 26.2 and 29.1 for dairy cows).

Predicting time-to-calving. As TAIL was identified as the
most important sensor variable for the prediction of parturi-
tion, and as a one-sensor system is more desirable than a
multiple-sensor system, it was selected to develop models

for the prediction of discreet time points prior to calf
expulsion. Model parameters and performance metrics are
shown for hours 0 to 12 prior to calving in Table 3. Within
beef cows, the predictive performance of TAIL increases after
4 h prior to calf expulsion (MCC increases from 0.07 at 4 h
prior to 0.17 at 3 h prior). A similar increase was observed
in dairy cows (MCC increased from 0.06 at 4 h prior to calf
expulsion to 0.14 at 3 h prior to calf expulsion).

Discussion

Behavioural changes
Changes in rumination behaviour observed in this study
are in line with those found in previous studies. Reductions
in time spent ruminating of 30% to 50% on the day of
calving have been observed in dairy cows (Soriani et al.,
2012; Calamari et al., 2014; Braun et al., 2014; Büchel and
Sundrum, 2014; Pahl et al., 2014).

Beef cows displayed an increase in the EAT variable in the
hour prior to calf expulsion and in the hour in which the calf
was born, which was not observed in dairy cows. This is
contrary to other studies which report decreases when mea-
surements were made by visual observations (Miedema
et al., 2011a) and by recording the time the cow spends with
its head in a feed-bin (Braun et al., 2014; Büchel and
Sundrum, 2014). The hour in which the calf was born includes
the whole hour, regardless of when the cow calved within
that hour – for example, if the cow calved at quarter past
the hour, the next 45 min is also included. The apparent
increase in eating may actually be a misclassification of
licking behaviour; this behaviour has been shown to peak

Table 2 Model parameter tuning and performance statistics for single- and combined-sensor variable random forest models to predict calving in beef
and dairy cows

mtry ntree obb error AUC (95% CI) Se (%) Sp (%) MCC

Beef
TAIL 3 1000 0.187 86.7 (83.1, 90.4) 76.1 83.3 0.31
RUM 4 2500 0.376 69.5 (65.1, 73.9) 69.6 62.3 0.13
EAT 4 2500 0.386 71.7 (67.5, 75.9) 63.8 70.2 0.15
ACT1 3 2500 0.296 78.1 (73.8, 82.4) 70.9 71.5 0.18
TAILþ RUMþ EAT 2 2500 0.187 86.7 (83.1, 90.3) 75.4 84.6 0.32
RUMþ EATþ ACT2 5 2500 0.526 46.7 (55.3, 62.5) 62.5 55.3 0.07
TAILþ RUMþ EATþ ACT2 6 1500 0.526 72.9 (60.5, 85.3) 81.3 69.7 0.22

Dairy
TAIL 2 2000 0.267 87.9 (81.5, 90.1) 78.6 83.5 0.29
RUM 1 1000 0.491 64.0 (58.5, 69.5) 69.8 59.3 0.12
EAT 3 500 0.463 62.4 (56.4, 68.5) 59.3 61.7 0.09
ACT1 5 2000 0.421 68.2 (63.7, 72.7) 66.7 62.3 0.11
TAILþ RUMþ EAT 3 2000 0.226 85.2 (80.5, 89.8) 76.7 85.1 0.32
RUMþ EATþ ACT2 4 1500 0.345 51.4 (68.8, 75.0) 75 68.8 0.18
TAILþ RUMþ EATþ ACT2 5 1000 0.242 86.9 (78.8, 95.1) 79.2 81.3 0.3

mtry= number of variables used at each split in each independent decision tree; ntree= number of independent decision trees; oob error= out-of-bag error; AUC= area
under the curve; CI= confidence interval; Se= sensitivity; Sp= specificity; MCC=Matthew’s correlation coefficient; TAIL= number of tail-raise events per hour;
EAT= time spent eating per hour (minutes); RUM= time spent ruminating per hour (minutes); ACT= relative level of activity per 1.5 h (minutes).
1ACT models have a 1.5-h time step due to the resolution of data collection for this sensor variable.
2Combined models containing ACT have a 3-h time step to resolve differences in the resolution of data collection between ACT and other sensor variables.

Predict calving with sensors and machine learning

1309



in the hour proceeding the birth of the calf (Jensen, 2012).
The same trend was not observed in dairy cows as their
collars were removed directly after calving. In the hour prior
to calf expulsion, it is possible that the cow is displaying
ground-licking or nesting behaviours (Miedema et al.,
2011a) which are being misclassified as eating by the accel-
erometer algorithms.

Activity levels are known to increase in cows in the hours
prior to calf expulsion when measured by visual observations
(Miedema et al., 2011a, 2011b) and leg-mounted accelerom-
eters (Titler et al., 2015). In this study, neck-mounted acceler-
ometers detected an increase in activity prior to calf expulsion,
particularly in the final 2 h; however, Clark et al. (2015) did not
detect any increase in activity prior to calf expulsion in dairy
cows using similar neck-mounted accelerometers. As different
animal-mounted sensors have different algorithms to define
behaviours, and have undergone different validation exercises,
it may be expected that there will be substantial differences in
behavioural measurements between them.

An increase in tail-raising behaviour, particularly in the 2 h
prior to calving, has previously been observed in dairy cows
(Miedema et al., 2011a, 2011b; Jensen, 2012). Data capture

from tail sensors was lower than would be practical for a
commercial system. There were two related reasons for this:
(1) the sensors were designed for data-gathering purposes
and are not sufficiently robust enough for commercial
deployment. (2) Some sensor data could not be processed
into tail-raise events as the orientation of the accelerometer
could not be determined. Robust housing for the accelerom-
eter would need to be engineered before this system could be
considered for commercialisation.

There are no studies which use animal-mounted sensors
to detect changes in rumination time, eating time, relative
activity and tail raising prior to calf expulsion in suckler beef
cows. This study has shown that patterns of behaviours lead-
ing up to calf expulsion are very similar in suckler beef and
dairy cows.

Predictive models
Interest in developing real-time predictive models to alert
farmers to when cows will calve using animal-mounted
sensors is increasing. The majority of published studies
using sensors to monitor various behaviours have been on
dairy cows. Some studies simply use threshold changes in

Table 3 Model parameter tuning and performance statistics for random forest models using number of tail-raise events to predict parturition at
discreet time points prior to calf expulsion in beef and dairy cows

Hours prior to
calf expulsion mtry ntree oob error AUC Se (%) Sp (%) MCC

Beef
0 6 2000 0.14 88.5 (79.9, 97.1) 79.2 93.3 0.25
1 8 500 0.11 89.8 (80.0, 99.6) 90.9 90.9 0.23
2 6 2000 0.23 95.4 (92.2, 98.6) 91.3 93.5 0.29
3 6 1000 0.25 84.1 (74.6, 93.7) 78.3 87.0 0.17
4 8 2500 0.32 59.2 (45.4, 73.1) 47.8 82.2 0.07
5 8 1000 0.54 47.8 (35.7, 59.9) 52.2 53.9 0.01
6 6 2000 0.51 56.4 (44.9, 67.9) 53.1 70.5 0.05
7 8 1500 0.57 57.6 (44.1, 71.0) 68.4 60.8 0.05
8 7 1500 0.59 53.8 (40.6, 67.1) 57.9 58.1 0.03
9 7 2500 0.52 54.2 (43.1, 65.3) 57.7 51.1 0.02
10 8 500 0.44 63.4 (50.8, 69.7) 63.2 64.2 0.05
11 6 2000 0.64 59.5 (49.3, 69.7) 62.5 56.4 0.03
12 8 2500 0.69 65.3 (52.1, 78.5) 55.6 66.5 0.04

Dairy
0 5 500 0.21 88.2 (71.9, 100) 87.5 89.7 0.16
1 5 1500 0.13 93.2 (88.5, 97.9) 81.3 89.7 0.20
2 5 2500 0.34 92.0 (86.0, 98.0) 86.7 92.4 0.25
3 4 1500 0.31 85.4 (75.5, 95.3) 70.0 90.3 0.14
4 2 1500 0.59 68.3 (48.6, 87.9) 88.9 54.1 0.06
5 3 1000 0.50 56.4 (38.2, 74.7) 58.3 61.4 0.03
6 5 1500 0.58 65.5 (51.8, 79.1) 80.0 59.0 0.06
7 1 2000 0.68 56.9 (43.7, 70.0) 50.0 61.2 0.02
8 5 500 0.83 54.5 (38.6, 70.4) 61.1 55.6 0.03
9 5 500 0.60 58.8 (41.8, 75.8) 71.4 54.1 0.04
10 5 500 0.48 57.5 (42.3, 72.8) 47.4 69.3 0.04
11 5 1500 0.42 52.7 (38.0, 67.4) 71.4 41.4 0.02
12 5 1000 0.56 50.2 (34.6, 65.9) 72.7 40.2 0.02

mtry= number of variables used at each split in each tree; ntree= number of independent decision trees; oob error= out-of-bag error; AUC= area under the curve;
Se= sensitivity; Sp= specificity; MCC=Matthew’s correlation coefficient.
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behaviours to define the onset of parturition. Titler et al.
(2015) were able to predict parturition on average 6 h in
advance by a 50% increase in activity. Krieger et al.
(2018) used threshold values for frequency and duration of
tail-raise events to predict parturition in five cows and
detected calving between 6 and 121min prior to expulsion
of the calf. In reality, the results of Krieger et al. (2018) are
similar to those found here, where increases in the predictive
accuracy of algorithms were observed 1 to 2 h prior to calf
expulsion in hour-by-hour models. The rationale behind
exploring the use of a more complex algorithm than simple
threshold algorithms was to allow variables which are risk fac-
tors for dystocia (e.g. age, parity) to be included in the model.

A variety of multi-sensor systems have been used to inte-
grate data-streams monitoring different behaviours. Rutten
et al. (2017) achieved a very low false positive rate of 1%
within 3 h of calf expulsion using two sensors to measure
activity level, rumination time, feeding time and temperature;
however, the sensitivity was only 42.4%. Borchers et al.
(2017) were able to predict parturition 8 h prior to calf expul-
sion with a sensitivity of 82.8% and a specificity of 80.4%
using two sensors (neck-mounted for rumination time and
leg-mounted for time spent standing or lying and step count).
Ouellet et al. (2016) achieved a sensitivity of 77% and a
specificity of 77% within a 24-h window using three sensors
to record four variables (vaginal temperature, rumination
time, lying time and lying bouts). In the present study, similar
results were achieved with a single sensor (TTA: sensitivity=
78.6%, specificity= 83.5% for dairy cows).

Conclusions

In this study, it was possible to predict when beef or dairy
cows were within 5 h of calf expulsion using animal-mounted
technologies. Of the variables measured by the sensors, time
spent with the tail in a raised position was found to be the
best predictor of parturition, and had an optimal predictive
power at 2 h prior to calf expulsion.
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