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Abstract

Lameness is a key health and welfare issue affecting commercial herds of dairy cattle, with

potentially significant economic impacts due to the expense of treatment and lost milk pro-

duction. Existing lameness detection methods can be time-intensive, and under-detection

remains a significant problem leading to delayed or missed treatment. Hence, there is a

need for automated monitoring systems that can quickly and accurately detect lameness in

individual cows within commercial dairy herds. Recent advances in sensor tracking technol-

ogy have made it possible to observe the movement, behaviour and space-use of a range of

animal species over extended time-scales. However, little is known about how observed

movement behaviour and space-use patterns in individual dairy cattle relate to lameness, or

to other possible confounding factors such as parity or number of days in milk. In this cross-

sectional study, ten lame and ten non-lame barn-housed dairy cows were classified through

mobility scoring and subsequently tracked using a wireless local positioning system. Nearly

900,000 spatial locations were recorded in total, allowing a range of movement and space-

use measures to be determined for each individual cow. Using linear models, we highlight

where lameness, parity, and the number of days in milk have a significant effect on the

observed space-use patterns. Non-lame cows spent more time, and had higher site fidelity

(on a day-to-day basis they were more likely to revisit areas they had visited previously), in

the feeding area. Non-lame cows also had a larger full range size within the barn. In con-

trast, lame cows spent more time, and had a higher site-fidelity, in the cubicle (resting) areas

of the barn than non-lame cows. Higher parity cows were found to spend more time in the

right-hand-side area of the barn, closer to the passageway to the milking parlour. The num-

ber of days in milk was found to positively affect the core range size, but with a negative

interaction effect with lameness. Using a simple predictive model, we demonstrate how it is

possible to accurately determine the lameness status of all individual cows within the study
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using only two observed space-use measures, the proportion of time spent in the feeding

area and the full range size. Our findings suggest that differences in individual movement

and space-use behaviour could be used as indicators of health status for automated moni-

toring within a Precision Livestock Farming approach, potentially leading to faster diagnosis

and treatment, and improved animal welfare for dairy cattle and other managed animal

species.

Introduction

Globally, lameness is one of the key health and welfare issues that affects intensive dairy farms,

particularly for herds that are housed indoors permanently or semi-permanently [1–3]. In the

UK alone, the estimated cost to the dairy industry of treatment, lost milk yield, and lost fertility

is over £128 million per annum [4]. Prompt treatment of lameness can reduce severity and the

number of required treatments [5], hence reducing financial costs and the duration and

impact of pain for the individual animal. However, early detection of lameness remains a prob-

lem as many farmers may underestimate the prevalence of lameness within their herd [2],

identify and treat cows later than might be optimal [5], or time constraints may mean they are

unable to undertake time- and labour-intensive mobility monitoring [6]. Increasing intensifi-

cation of farming practices means that these detection issues are likely to become even more

problematic in larger dairy herds. Hence, there is a need for systems which can automatically

detect lameness at an early stage without the need for time-consuming mobility observations

of individual animals. Recent attempts to use automated systems to detect lameness have relied

upon the identification of abnormal gait using load cells, pressure sensitive mats, computer

vision or accelerometers [7,8], but the uptake of such technology on farms has been limited

due to both costs and practical effectiveness in the working farm environment. More generally,

within Precision Livestock Farming approaches [9], a range of behavioural measures have

been suggested as potential indicators of health status and disease for monitoring managed

animal species. Lameness is known to cause pain and walking difficulty in affected cows

[10,11], and this may influence how they move and use the available space within the barn.

However, existing studies that have linked the lameness status of individual dairy cows to their

space-use behaviour have been restricted to small spatial scales (i.e. at the level of individual

stalls) [12].

In the wider movement ecology context, animal movement and space-use behaviour is

known to be influenced by landscape characteristics such as the location of water or food

resources, habitat type and vegetation cover [13], as well as local topographic features such as

the gradient of a hillside [14]. For example, grazing animals are known to move to locations

with higher quantities of grass resources or where there is better quality of nutrients [15]. By

adapting to their environment, animals can hence visit favourable areas more than others

[16,17]. In a limited home range, an animal may repeatedly visit certain locations [18] or

actively spend more time in specific areas leading to different levels of space-use intensity. For

an individual animal, the level of similarity in its space use at different time points can be cal-

culated and the level of site fidelity quantified [19–22]. In the specific context of pasture-based

cattle, [23] showed how spatial overlap between domesticated cattle and wild buffalo was

linked to the gradient of available resources, [24] demonstrated how concentrate supplement

can modify the feeding behaviour of grazing cows in high mountain pastures, while [25] con-

sidered how spatial interactions between cattle and wild boar could potentially facilitate cross-

species disease transmission.
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Understanding how illness or welfare status may affect animal movement behaviour, space-

use, and interactions with the local landscape could potentially provide extremely useful

insights and indicators for monitoring and managing a range of animal species [9]. Lameness,

mastitis and ketosis (metabolic disorder) are all important diseases of dairy cattle that have

been shown to affect feeding and lying behaviour [26–32], and in this context, the use of cow-

mounted accelerometers to measure cow behaviour is well established [8,33–35]. However,

despite these extensive studies highlighting the links between disease and dairy cow behaviour,

an automated method for disease detection based on behavioural observations is still lacking.

A major issue with any automated approach is the complex interplay between health status

and other potential confounding factors such as age, parity, or stage of lactation [36,37], that

lead to individual behavioural differences. A recent study investigated a range of possible beha-

vioural indicators of health status in dairy cattle including lying, locomotion, feeding and

rumination activities, in addition to brush and concentrate feeder visits and milking order

[29]. Although there were differences between lame and non-lame cows, [29] also reported a

high variability across individual animals and predictor variables overlapped between these

groups.

The use of spatial tracking systems for monitoring dairy cattle is less well developed than

accelerometer-based systems, but they have the potential to provide additional important

behavioural information about movement and space-use in individual animals. With pasture-

based animals, tracking is possible with standard Global Positioning Systems (GPS) [38,39],

but for indoor barn-housed dairy cows alternative systems are needed. Real-Time Location

Systems (RTLS) are a recent new development in the application of radio frequency technol-

ogy with great potential for use in livestock agriculture. They have been tested and validated

for indoor spatial tracking of dairy cows [28,40–42], and have subsequently been used to pre-

dict time budgets of behavioural activities [43], to determine the probability of cattle undertak-

ing feeding or drinking [44], or to detect behavioural changes related to oestrus [45]. However,

to date there have been no studies that have reported how differences in space-use behaviour

within a commercial barn may be directly linked to the lameness status of individual dairy

cows.

In this paper we present results from of an analysis of a tracking data set containing nearly

900,000 recorded spatial locations obtained over five days from a cross-sectional study group

of ten lame and ten non-lame barn-housed dairy cows using a wireless positioning system. We

determine measures of space-use behaviour within the barn for each cow, and using linear

models we demonstrate where lameness status, parity and days in milk have a significant effect

on the observed space-use measures. We demonstrate how observable differences in space-use

patterns can be used directly within a simple predictive model to accurately determine the

lameness status of individual cows. The methodology and approach described within the study

could be adapted to study space-use behaviour in other commercially managed or wild animal

species.

Materials and methods

The study was carried out in strict accordance with the UK Animal Welfare Act (2006).

The study was reviewed and approved by the Royal Veterinary College Ethics and Wel-

fare Committee under the unique reference number 2012 1223. The study was non-inva-

sive and the collars used were similar to those in standard industry use. Lame cows were

managed according to the farm’s animal health plan and all animals were monitored

daily whilst in the study in order to identify any potential welfare issues which needed

addressing.
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Data collection

The study was undertaken over 5 successive days in January 2014 on a commercial dairy farm

in Essex, UK. A total of 210 Holstein pedigree cows were housed in a rectangular free-stall

barn measuring 30m by 60m. The cows were split into high yield (120 cows) and low yield (90

cows) groups, separated by a central feed alley (Fig 1A). The high yield group were housed in

the upper part of the barn and had access to 120 free-stalls, and linear feed space of 0.43m per

cow. The milking parlour and collecting yard were situated in the lower part of the barn, with

a connecting return passage positioned on the right-hand side of the barn (Fig 1A). All cows

were fed a commercial total mixed ration (TMR) and milking took place three times a day

(05:00hrs, 13:00hrs, 21:00hrs).

To explore the effect of lameness, and possible confounding factors such as parity and days

in milk, on cow space-use and behaviour, a cross-sectional study design was used. Prior to the

study, all cows in the high yield group were locomotion scored at the exit to the milking par-

lour using the 4-point AHDB Dairy Mobility Score [46] by ZB (where 0 = sound and

3 = severely lame), and re-scored in the main barn by HH the following day. Cows which were

known to have had a health incident in the previous three months, including foot lesions and

mastitis treatments, were excluded. Two study groups (10 lame cows and 10 non-lame cows)

were selected based on their mobility scores, and to match yield and parity where possible (S1

Table). It should be noted that only cows with a mobility score of 2 (‘lame’) were included in

the lame group; score 3 cows (‘severely lame’) were not included due to a low number of cows

with this score within the herd, and for ethical reasons (the selected cows would not be treated

until the end of the study). Selection of the cows was made without any prior knowledge of

their space-use behaviour. Individual parity ranged from 1 to 6 years (mean = 3.25, s.d = 1.44),

and for the current parturition period, days in milk (DIM) ranged from 44 to 220 (mean =

125, s.d. = 51.3, and mean daily milk yield (in litres) ranged from 28.7 to 58.4 (mean = 42.5, s.

d. = 6.88), see S1 Table. At the end of the study period all cows were clinically inspected for

lameness and foot trimming was carried out where appropriate.

The selected cows were fitted with wireless sensors (Ominsense Series 500 Cluster Geoloca-

tion System [28,35,47,48]; www.omnisense.co.uk/), to track spatial location in the upper area

of the barn. The Series 500 sensors form a RTLS wireless network able to compute relative spa-

tial locations in (x, y, z) coordinates of each individual sensor within the system using the

arrival time of periodic messages sent from each node to its neighbours to triangulate distances

(note that in this study, cows were restricted to a single elevation, so only the (x, y) coordinates

were used). Thirteen sensors were attached to known fixed positions around the barn and a

further eight were positioned within the adjacent collecting yard and milking parlour to

improve network coverage and triangulation measurements (Fig 1A). Validation of sensor

precision and accuracy within this specific barn environment has been reported previously in

[28]. The sensors were found to perform well for spatial tracking of individual cows, although

performance was slightly worse than the commercially advertised specification (95% of mea-

surements within 2 m of ground truth; Omnisense Ltd.), which is likely due to metal features

within the barn environment disrupting the sensor signals [28]. The sensors were mounted on

cows using a neck collar that incorporates a counterweight to keep the sensor in a stable posi-

tion at the top of the neck [28,35].

Location data were collected continuously for 24 hours per day over the 5 days of the study

using a 0.125Hz sample rate, leading to a theoretical maximum of 54,000 location data points

being collected per cow over the duration of the study. However, location data during the

three daily milking events, each lasting approximately 90 minutes when the cows left the upper

barn area, were excluded as cow movement and space-use behaviour was constrained by

Space-use in dairy cows
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human interventions at these times. In addition, some further minor data loss occurred when

sensors occasionally suffered battery failure before being replaced, or when sensor error seem-

ingly placed a cow outside the barn (any such coordinates were removed from the analysis). In

Fig 1. Schematic map of barn and examples of cow movement trajectory and space-use intensity. (A) Schematic map of barn indicating features and areas of

interest. Fixed sensors were positioned on the barn walls to aid tracking of mobile cow-mounted sensors. Areas C1, C2 and C3 are zones defined to correspond to

the three main cubicle blocks in the upper barn area (CT is the total cubicle area corresponding to the union of C1, C2 and C3); area F corresponds to the feeding

zone and includes space either side of the feed barrier; area P is a passageway allowing access from the upper barn area to the collecting yard and milking parlour.

(B) Example of a cow trajectory (cow 1078, day 5) produced by smoothing the raw sensor-collected data using a simple moving average over a 15 time-step (2

minute) moving window. (C) Example space-use intensity plot (cow 1078, day 5) produced by overlaying a 1.5m2 square grid onto the map of the barn and

counting the cells in which trajectory points are found. Darker colours correspond to higher space-use intensity. The 95% and 50% isopleths are respectively

indicated by the dashed and solid contour lines. Note that the plot shows space-use data from the full barn for illustrative purposes; results in the main paper are

for location data from the upper barn only, see Fig 2.

https://doi.org/10.1371/journal.pone.0208424.g001
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total, 876,621 location data points (81% of the theoretical maximum) were collected in the

upper barn area and used in the following data analysis. The mean number of location data

points collected per day across all cows was 8767 (median = 8930), and the minimum average

number of data points collected for a single cow over the 5 days of the study was 8175 data

points per day.

The sensor recorded raw location data were smoothed to remove outliers using a simple

moving average (SMA) over a two-minute moving window (i.e. 15 data points at the 0.125Hz

sampling rate; Fig 1B). Basic movement and space-use measures calculated directly from the

smoothed sensor location data include the total distance moved per hour, and the mean x and

mean y locations.

A basic analysis of this data set was described in [28], where spatial location data were used

alongside accelerometer data in a decision tree algorithm to classify cow behaviour as either

‘feeding’, ‘non-feeding’, or ‘out of the pen for milking’. Differences in the daily activity budgets

between lame and non-lame cows were highlighted, with lame cows spending significantly less

time feeding. However, [28] only considered daily behavioural time budgets and did not

directly consider differences in space-use measures or site fidelity between the lame and non-

lame groups as we do in more detail here.

Space-use intensity and the utility distribution

Animal space use intensity can be quantified from location data using a utility distribution

(UD) for each individual animal [49–51]. In many movement data sets, spatial locations are

only recorded at low temporal sampling resolutions or there may be missing data, and a range

of methods have been developed to estimate the UD in such cases [52]. These include kernel

density estimation [50,53], the Brownian bridge movement model (BBMM) [15,54,55], step-

selection analysis [56], and state space models [57]. However, since our location data are col-

lected at high temporal sampling resolution (0.125Hz) with very few missing data points, and

we calculate the UD on a daily basis over a confined spatial area, a simple cell-counting

method is much more computationally efficient and will give similar results [52,58].

To determine the daily UD for each individual cow in our data set we overlay a virtual 40 x

13 square grid of 1.5m x 1.5m (= 2.25m2) cells onto the upper barn area (0� x� 60, and 10�

y� 30 in Fig 1A). The cell size is chosen to be slightly larger than the known sensor precision

and to roughly correspond to the area that can be occupied by a single cow. For each cow, each

of the smoothed (x, y) coordinate locations in the upper barn area are assigned to the relevant

grid cell and the count for that cell is increased by one. Any coordinate locations lying outside

the upper barn area are removed (corresponding to milking periods or when sensor error

resulted in a location outside the barn). The final daily UD is then rescaled to form a discrete

probability distribution that sums to 1, by dividing all individual cell counts by the total cell

count across all cells (Fig 1C).

To explore relative space use intensity we use the UD to determine the mean daily propor-

tion of time spent in the upper barn area in specific biologically relevant areas of interest (see

Fig 1A): feeding area (F: 0� x� 53, 10� y� 20); full cubicle area (CT: 0� x� 60, 20�

y� 30); right-hand cubicle area (C1: 40� x� 60, 20� y� 30); central cubicle area (C2: 20�

x� 40, 20� y� 30); and left-hand cubicle area (C3: 0� x� 20, 20� y� 30). The feeding

area, F, is defined on either side of the physical feed barrier marked in Fig 1A, and does not

span the entire width of the barn. A small area on the right-hand side of the barn, marked as P

on Fig 1A (P: 53� x� 60, 10� y� 20), serves as a passage and return to the milking parlour.

The cubicle areas include fixed cubicle blocks, where cows are able to lie down in individual

cubicles (stalls), as well as interconnecting passageways (Fig 1A).

Space-use in dairy cows
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In animal home range analysis, the 50% isopleth (the contour line which can be drawn on

the UD corresponding to the highest density cells that cumulatively account for 50% of the

total observed density) is often considered as the ‘core’ home range of the animal as it contains

those cells where the animal spends the most amount of time [59–63]. Similarly, the 95% iso-

pleth is considered to be the ‘full’ or largest extent of the home range; cells lying outside the

95% isopleth are usually assumed to correspond to noise in the data or to areas only very infre-

quently visited [59–63]. For our location data, we truncate and rescale the UD at both the 95%

isopleth (full range) and 50% isopleth (core range) levels (Fig 1C; Fig 2). We determine the

mean daily size of the full and core ranges for each cow, measured in terms of the number of

virtual cells lying inside the relevant isopleth level.

Site fidelity

By comparing the level of overlap or similarity of UDs at different time-points it is possible to

determine how the level of consistency of space-use, or site fidelity, of an animal may change

over time [19–21]. Assuming two different discrete UDs that have both been rescaled as proba-

bility distributions, the Bhatacharyya coefficient (or Bhattacharyya’s affinity) is a simple way to

compare the level of similarity or overlap of the UDs [59,64,65]:

Ot1t2
¼
P

q2Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ut1
ðqÞ:Ut2

ðqÞ
q

; ð1Þ

where q represents each discrete cell in the spatial grid and Uti
ðqÞ is the probability mass for

that cell at time ti. The Bhattacharyya coefficient ranges from 0 (no overlap) to 1 (full overlap).

We calculate the Bhattacharyya coefficient for each cow using the UD across the full upper

barn areas compared across successive days within the study. The space-use similarity score of

smaller UDs corresponding to site fidelity in the feeding area (F) only, and the cubicle area

(CT) only, are also calculated.We determine an overall measure of the similarity score of corre-

sponding UDs over the 5 days of the study (i.e. an overall measure of site fidelity) for each cow

by determining the average Bhattacharyya coefficient calculated from each pair of consecutive

days:

�O ¼
1

4

P4

i¼1
Otitiþ1

ð2Þ

To check the robustness of results to the averaging procedure used, we also considered two

further approaches: averaging the Bhattacharyya coefficient over all possible combinations of

pairs of days within the study (10 possible unique pairs in total), and a similar approach but

where each pair of days is weighted according to the metric distance between the days before

taking the average. However, site-fidelity results were very similar using all three approaches

and hence we only report results from the simplest method here.

Statistical analysis of space-use

Although our main interest in this study is to explore behavioural differences between lame

and non-lame cows, it is important to also consider potential confounding factors. Hence in

the statistical analysis we consider three predictor variables: ‘lameness’ (L, assigned to a binary

variable with 1 as lame and 0 as non-lame), ‘parity’ (P), and ‘days in milk’ (D, calculated over

the current parturition only), see S1 Table. We also considered mean daily yield as a predictor

variable but preliminary investigations showed that this had no effect and hence was not

included in the subsequent analysis. As data were collected continuously over the 5 days of the

study for all cows, with no specific management interventions on any days, we do not include

Space-use in dairy cows
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Fig 2. Space use intensity plots illustrating typical utility distributions over the five days of the trial. Plots are shown for (A-E) a single lame cow (cow

1078), and (F-J) a single non-lame cow (cow 2179), for each of the five days of the study. The space-use intensity UD is calculated by overlaying a 1.5m x

Space-use in dairy cows
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‘day’ as a predictor variable in our analysis (S2 File highlights no clear trends or differences by

day between the lame and non-lame groups for any of the basic space-use measures consid-

ered). Similarly, as the study only lasts for 5 days, we do not have a long enough time period of

data to consider changes in lameness status (or parity or DIM) during the study (although this

may be possible in much longer studies).

In total, sixteen different space-use and site-fidelity dependent variables, S1 to S16, were con-

sidered: S1: mean distance moved per hour; S2: mean x coordinate; S3: mean y coordinate; S4:
proportion of time spent in the feeding area (F); S5: proportion of time spent in the full cubicle

area (CT); S6 –S8: proportion of time spent in each of the specific cubicle areas (C1, C2, C3 con-

sidered separately); S9: mean size (in virtual cells) of the daily ‘full’ range (corresponding to the

95% isopleth of the UD); S10: mean size (in virtual cells) of the daily ‘core’ range (correspond-

ing to the 50% isopleth of the UD); S11 –S16: site fidelity determined for each of three areas (full

upper barn area, feeding area (F) only, and cubicle area (CT) only) for two different isopleth

levels (full range = 95%; core range = 50%).

Statistical analysis was undertaken using model selection based on a multivariate linear

(regression) model with the three predictor variables (lameness, L; parity, P; days in milk, D).

Linear models corresponding to all possible combinations of the predictor variables and their

interaction terms were fitted to each of the individual space-use measures, S1 to S16 in turn:

Si ¼ a0 þ a1Lþ a2P þ a3Dþ interaction effects; ð3Þ

where αn are regression coefficients to be determined (α0 is the intercept). For each linear

model, the Akaike Information Criterion (AICc; corrected for small sample sizes) was used to

select the best relative fitting model for that space-use measure [66] (the lowest AICc score cor-

responds to the best fitting model). For the best fitting linear model, the F-statistic and associ-

ated p-value are then used to determine whether the model is a significantly better fit (at the

5% level) to the data than an intercept-only model (which does not include any of the predictor

variables). Subsequently, the individual p-values corresponding to each regression coefficient,

αj, are used to determine the significance (at the 5% level) of each predictor variable (and any

interaction effects) within the linear model.

For the multivariate linear regression model to be valid the following assumptions must

hold [67]. Firstly, there must be a linear relationship between the predictor variables and the

dependent variables (we assume this implicitly during the analysis, and also check by examin-

ing the data visually in the output plots). Secondly, there must be no multicollinearity between

the predictor variables. To test this, Variance Inflation Factor (VIF) scores were calculated for

each predictor variable (LVIF = 1.465776, DVIF = 1.0714, PVIF = 1.3877), and since no scores

were higher than the threshold score of VIF>10, we conclude that there is not a high level of

multicollinearity between our predictor variables [68]. Thirdly, the model residuals must be

normally distributed; and finally, there must be no heteroscedasticity within the data [67]. For

each fitted linear model, we test the residuals for normality using the Shapiro-Wilks test (S-W;

5% significance level) and for heteroscedasticity using the non-constant variance test (NCV;

5% significance level). Regression and model fitting were undertaken using the ‘glm’ and

‘AICc’ functions in R [69].

1.5m square grid (40 x 13 cells) onto the upper barn area only and counting the cells in which the smoothed trajectory points for each cow occur for each day

of the trial. Darker colours correspond to higher space-use intensity. The 95% and 50% isopleths (corresponding to the full and core ranges for movement

within the upper barn area only) are respectively indicated by the dashed and solid contour lines. (K) Space use intensity plot calculated in the same manner

as above but using the aggregated data from all 20 cows over all 5 days of the study.

https://doi.org/10.1371/journal.pone.0208424.g002
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Predictive model for lameness

To explore the potential predictive capability of the observed dependent variables to correctly

classify lameness in individual cows we also consider a generalised linear regression model

with logit link function of the form:

log
p

1 � p

� �

¼ b0 þ b1S1 þ � � � þ bnSn; ð4Þ

where βn are regression coefficients to be determined (β0 is the intercept), Si are the corre-

sponding values of the observed dependent variables in the previous analysis, and p represents

the estimated probability from the model that a cow is classified as lame. To avoid over-fitting

the predictive model, we restrict the model selection choice to those dependent variables, Si,
where one or more of the predictor variables were found to be significant in the previous anal-

ysis. As above, we determine the best relative fitting model using model selection via the

Akaike Information Criterion score, AICc (corrected for small sample sizes) [66]. Regression

and model fitting were undertaken using the ‘glm’ and ‘AICc’ functions in R [69].

Results

Space-use intensity and other basic space-use measures

Fig 2 shows illustrative daily space-use intensity UDs in the upper barn area for a single lame

cow (cow 1078; Fig 2A–2E) and a single non-lame cow (cow 2179; Fig 2F–2J) over the 5 days

of the study (individual plots for all cows and all days of the study are shown in S1 File). Fig 2K

illustrates the aggregated space-use intensity UD for all 20 cows over all 5 days of the study and

highlights areas of higher space-use intensity (i.e. inside the 50% isopleth) corresponding to

the cubicle and feeding areas, with lower space-use intensity in the corridors and passageways.

Full results for each basic space-use measure (S1 to S10) at the level of each individual cow

are given in S2 Table and are shown as individual data points in Fig 3. Model selection and

subsequent analysis revealed that the predictor variables (lameness, parity, and days in milk)

had statistically significant effects on a number of the space-use measures (Table 1). Lameness

was found to have a significant negative effect on the proportion of time spent in the feeding

area (S4, p = 0.004; Fig 3D), and conversely, had a significant positive effect on the proportion

of time spent in the full cubicles area (S5, p = 0.011; Fig 3E). It should be noted however, that

heteroscedasticity was found to be present in the residuals for this latter result (non-lame cows

had significantly higher variance) and hence the result should be treated with caution. A weak

positive effect of lameness on the mean y coordinate (S3, p = 0.08, Fig 3C) is consistent with

these results given the relative location of the cubicle and feeding areas (Fig 1). Lameness was

also found to have a significant negative effect on the full range size (95% isopleth), with non-

lame cows having a larger number of cells in their full range (S9, p = 0.029; Fig 3I).

Parity was found to have a significant positive effect on the proportion of time spent in the

right-hand cubicles, C1 (S6, p< 0.001; Fig 3F), and a significant negative effect on the propor-

tion of time spent in the left-hand cubicles, C3 (S8, p = 0.006; Fig 3H). Given the relative loca-

tions of these cubicle zones (Fig 1), these results are entirely consistent with the fact that parity

also had a significant positive effect on mean x location (S2, p< 0.001; Fig 3B); higher parity

cows consistently spent more time in the area to the right-hand side of the upper barn.

Days in milk was found to have a significant negative effect on the proportion of time spent

in the right-hand cubicles, C1 (S6, p = 0.038), although this effect was not as strong as the (posi-

tive) effect of parity within the same linear model (Fig 3F). Days in milk was also found to have

a significant positive effect on the core (50% isopleth) range size, (S6, p = 0.002), although there
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was also a significant negative interaction effect with lameness (p = 0.008), see Fig 3J. This lat-

ter result can be interpreted as days in milk having a (strong) positive effect on core range size

for non-lame cows and a (weaker) negative effect on core range size for lame cows (see respec-

tively the green and red dashed lines in Fig 3J). However, this somewhat contradicts the find-

ing that lameness (considered on its own within the same linear model) has a weak positive

effect on core range size (p = 0.063). A complicated model interaction effect such as this should

be interpreted with caution given the small sample size within our study.

None of the predictor variables were found to have any significant effects on the mean

hourly walking distance (S1, Fig 3A), or the proportion of time spent in the central cubicle

area, C2 (S7, Fig 3G).

Site fidelity

In general, site fidelity was higher for the full range (95% isopleth; Fig 4A–4C) than for the

core range (50% isopleth; Fig 4D–4F); see S3 Table for site fidelity statistics for individual

cows. Analysis of some site fidelity measures (S11 to S14) was strongly affected by a single out-

lier non-lame cow (2596), which resulted in the fitted model residuals being rejected as nor-

mal. Removal of this outlier cow (and also an additional lame outlier cow, 2010, for S16), led to

the model residuals being accepted as normal, and results are presented on this basis. Given

the reduced sample size, results with outlier(s) removed should be treated with caution. Only

the fitted model for S15 resulted in normally distributed residuals without removal of outliers.

Fig 3. Plots showing relationship between significant predictor variables (lameness; parity; days in milk, DIM) and basic space-use measures. Data for each basic

space-use measure, S1 to S10, are shown in plots (a) to (j) respectively, and are plotted against the most significant predictor variable determined from the model

selection procedure (Table 1). Where none of the predictor variables are significant (at the 5% level) for a given model, the data is plotted for the lame and non-lame

groups (a, c, g). Where appropriate, boxplots (with median line) are used to show the spread of the data for each level of the predictor variable (a–i). Individual data

points are calculated as a mean average across all five days of the trial for each cow (S2 Table). Lame cows are plotted as filled triangles and non-lame cows as filled

circles; the colours used to indicate each data point are fixed for each cow and are consistent across all plots (see legend). Where the best fitting linear model includes

only a single predictor variable, the fitted regression line is shown as a dashed black line (b, d, e, h, i). In (f) the best fitting linear model includes both parity and DIM

terms (Table 1); a regression line fitted only to the parity variable (the most significant predictor) is shown as a blue dashed line for illustrative purposes only. In (j), the

best fitting linear model includes lameness, DIM, and an interaction term; regression lines fitted only to the DIM variable are shown for the lame group (red dashed

line) and non-lame group (green dashed line) to illustrate the negative interaction of lameness with DIM.

https://doi.org/10.1371/journal.pone.0208424.g003
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Lameness was the only predictor variable to have a significant effect on site fidelity

(although days in milk had a weak negative effect on S12). Lame cows had significantly higher

Table 1. Results of model selection for multivariate linear regression models using the predictor variables (lameness, parity and days in milk) for each of the space-

use measures considered within the study.

Space-use measure Best fitting linear

model

AICc

score

F-statistic (p-

value)

Regression coefficient

values (p-values)

Summary & notes

S1: mean distance moved per

hour

S1 = a0

(Intercept only)

154.66 n/a a0 = 114.49 No significance.

S2: mean x coordinate S2 = a0 + α2P 120.42 F = 20.36

(p < 0.001)

a0 = 18.91

a2 = 2.997 (p < 0.001)

P has a significant positive effect on S2.

S3: mean y coordinate S3 = a + α1L 60.45 F = 3.44

(p = 0.08)

a0 = 22.90

a1 = 0.795 (p = 0.08)

(L has a weak positive effect on S3).

S4: proportion of time spent in

the feeding area (F)

S4 = a0 + a1L -64.59 F = 10.85

(p = 0.004)

a0 = 0.324

a1 = - 0.062 (p = 0.004)

L has a significant negative effect on S4.

S5: proportion of time spent in

the full cubicle area (CT)

S5 = a0 + a1L -62.88 F = 8.13

(p = 0.011)

a0 = 0.666

a1 = 0.056 (p = 0.011)

L has a significant positive effect on S5.
Heteroscedasticity present (NCV: p = 0.024; non-lame

cows have higher variance, see Fig 3E).

S6: proportion of time spent in

right cubicles (zone C1)

S6 = a0 + a2P +

a3D
-21.32 F = 10.82

(p < 0.001)

a0 = 0.189

a2 = 0.073 (p < 0.001)

a3 = - 0.001 (p = 0.038)

P has a significant positive effect on S6.
D has a significant negative effect on S6.

S7: proportion of time spent in

central cubicles (zone C2)

S7 = a0

(Intercept only)

-11.43 n/a a0 = 0.400 No significance.

S8: proportion of time spent in

left cubicles (zone C3)

S8 = a0 + a2P -16.30 F = 9.65

(p = 0.006)

a0 = 0.537

a2 = - 0.068 (p = 0.006)

P has a significant negative effect on S8.

S9: full range size (95% UD

isopleth)

S9 = a0 + a1L 170.28 F = 5.66

(p = 0.029)

a0 = 150.84

a1 = - 15.88 (p = 0.029)

L has a significant negative effect on S9.

S10: core range size (50% UD

isopleth)

S10 = a0 + a1L +

a3D + a4L:D
106.12 F = 7.24

(p = 0.003)

a0 = 11.531

a1 = 6.855 (p = 0.063)

a3 = 0.02 (p = 0.002)

a4 = - 0.076 (p = 0.008)

(L has a weak positive effect on S10).
D has a significant positive effect on S10.

Significant negative interaction effect between L and

D.

S11: site fidelity (full upper barn

& full range)

S11 = a0

(Intercept only)

-40.81 n/a a0 = 0.472 No significance.

Outlier cow (2596) removed to ensure normality of

residuals (n = 19).

S12: site fidelity (feeding area &

full range).

S12 = a0 + a1L +

a3D
-42.69 F = 3.995

(p = 0.039)

a0 = 0.688

a1 = -0.077 (p = 0.025)

a3 = -0.0006 (p = 0.060)

L has a significant negative effect on S12.
(D has a weak negative effect on S12).

Outlier cow (2596) removed to ensure normality of

residuals (n = 19).

S13: site fidelity (cubicle area &

full range)

S13 = a0 + a1L -28.26 F = 4.99

(p = 0.039)

a0 = 0.355

a1 = 0.102 (p = 0.039)

L has a significant positive effect on S13.
Outlier cow (2596) removed to ensure normality of

residuals (n = 19).

S14: site fidelity (full upper barn

& core range)

S14 = a0 + a1L -25.32 F = 4.64

(p = 0.046)

a0 = 0.181

a1 = 0.106 (p = 0.046)

L has a significant positive effect on S14.
Outlier cow (2596) removed to ensure normality of

residuals (n = 19).

Heteroscedasticity present (NCV: p = 0.017; lame

cows have higher variance, see Fig 4D).

S15: site fidelity (feeding area &

core range)

S15 = a0 + a1L -40.47 F = 10.69

(p = 0.004)

a0 = 0.295

a1 = - 0.112 (p = 0.004)

L has a significant negative effect on S15.

S16: site fidelity (cubicle area &

core range)

S16 = a0 + a1L -34.37 F = 7.89

(p = 0.013)

a0 = 0.133

a1 = 0.106 (p = 0.013)

L has a significant positive effect on S16.
Outlier cows (2010 & 2596) removed to ensure

normality of residuals (n = 18).

Results highlighted in bold indicate significance (p< 0.05). For all linear models considered, the intercept was always found to be significant and is always included. The

Shapiro-Wilks test was used to test the normality of model residuals: for S11 –S14, a single outlier non-lame cow (2596) was removed to ensure normality; for S16, two

outlier cows (2010, lame; 2596, non-lame) were removed to ensure normality. The non-constant variance (NCV) test was used to confirm the absence of

heteroscedasticity in the model residuals (results non-significant, except for S5 and S14). AICc = Akaike Information Criterion score, corrected for small sample sizes. L
= lameness (1 = lame, 0 = non-lame), P = parity, D = days in milk.

https://doi.org/10.1371/journal.pone.0208424.t001
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site fidelity than non-lame cows in the full cubicle area at both the full range (S13, p = 0.039;

Fig 4C) and core range (S16, p = 0.013; Fig 4F), and also for the full upper barn area at the core

range (S14, p = 0.046; Fig 4D). However, heteroscedasticity was present in the residuals for this

latter result (lame cows had significantly higher variance in site fidelity). Non-lame cows had

significantly higher site fidelity than lame cows in the feeding area at both the full range (S12,
p = 0.025; Fig 4B) and core range (S15, p = 0.004; Fig 4E). It should be noted that this latter

result is the only fitted model that satisfies the assumption of residual normality without

removing outliers from the data, and hence can be considered more robust.

Predictive model for lameness

Table 2 illustrates that the predictive model structure with the lowest AIC score, and hence the

best relative fitting model (accounting for model complexity), is of the form

log
p

1 � p

� �

¼ b0 þ b4S4 þ b9S9; ð5Þ

where S4 is the proportion of time spent in the feeding area, F, and S9 is the number of cells in

Fig 4. Plots showing relationship between significant predictor variables (lameness; parity; days in milk, DIM)

and site-fidelity similarity measures. Data for each site-fidelity similarity measure, S11 to S16, are shown in plots (A)

to (F) respectively, and are plotted against lameness status (which is the most significant predictor variable determined

from the model selection procedure (Table 1), in all cases except (A), where no predictor variable is significant).

Boxplots are used to show the spread of the data for the non-lame and lame groups, and individual data points are

calculated as a mean average across all five days of the trial for each cow (S3 Table). Lame cows are plotted as filled

triangles and non-lame cows as filled circles; the colours used to indicate each data point are fixed for each cow and are

consistent across all plots (see legend). In (C-F), where the best fitting linear model includes only a single predictor

variable, the fitted regression line is shown as a dashed black line. In (B) the best fitting linear model includes both

lameness and DIM terms (Table 1); a regression line fitted only to the lameness variable (the most significant

predictor) is shown as a blue dashed line for illustrative purposes only. In (A-D) and (F) the outlier cows (2596 and

2010) are marked with a black ring. Outlier cows were not included in the data for the purposes of model fitting

(except for (E), where no outlier cows were removed from the data).

https://doi.org/10.1371/journal.pone.0208424.g004
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the full range (95% isopleth). This model correctly predicts the lameness status of 18 out of the

20 cows within the study (S4 Table). Other model structures that include one or more of the

mean x coordinate (S2), the proportion of time spent in the full cubicle area (S5), or the site

fidelity in the feeding area (core range, S15), are also able to correctly identify the lameness sta-

tus of at least 18 out of the 20 cows, although these models have a worse AICc score due to hav-

ing more complex structures with additional parameters. Across all the best-fitting models in

Table 2, cow 2153 (non-lame) is always incorrectly classified as lame. However, investigation

of the health records for this cow revealed that it may have been misclassified by the expert

observers at the start of the study (see Discussion), and hence the models are all essentially cor-

rect in this case.

Discussion

By collecting high resolution spatial location data we have demonstrated in this 5-day cross-

sectional study how groups of 10 lame and 10 non-lame cows exhibit a number of statistically

significant differences in their movement and space-use behaviour (Table 1), including level of

site fidelity, range size, and time spent in specific locations of the barn. Furthermore, we have

shown that only two of these space-use measures need to be included within a simple statistical

model in order to accurately predict the lameness status of all individual cows within the herd

(S4 Table). Lameness is one of the key health and welfare issues affecting dairy cattle globally

[3]. Early detection of lameness can reduce animal pain and suffering [5], and also minimise

potential costs to farmers [4]. Current lameness detection methods, usually based on expert

observations of mobility, can be time-intensive [6] and hence there is a need for novel auto-

mated methods of detection. We have demonstrated in this study how a RTLS wireless local

positioning system can be used to continuously monitor movement and space-use behaviour

at high recording frequency, providing additional sources of behavioural information that can-

not be easily collected using other systems based on accelerometers or video [7,8]. This type of

RTLS space-use monitoring system could potentially be extended within a Precision Livestock

Farming approach [9] to enable automated on-farm prediction of lameness status in individual

cows based on space-use and other behavioural differences.

Table 2. Best fitting model structures considered for logistic regression predictive model with associated Akaike Information Criterion (AICc) scores (corrected for

small sample sizes).

AICc score Model structure & regression coefficients Correct predictions Incorrectly predicted cow IDS

20.21 b0 + b4S4 +b9S9

b0 = 25.61, b4 = -39.36, b9 = -0.098

18/20 2153, 2344

20.27 b0 + b4S4 +b5S5 + b9S9

b0 = 153.29, b4 = -161.70, b5 = -120.02, b9 = -0.158

18/20 2153, 2344

21.50 b0 + b4S4 +b15S15

b0 = 12.64, b4 = -23.96, b15 = -23.46

18/20 1340, 2153

21.88 b0 + b2S2 +b4S4 + b15S15

b0 = 4.67, b2 = 0.221, b4 = -19.08, b15 = -24.35

19/20 2153

21.98 b0 + b4S4 +b9S9 + b15S15

b0 = 24.33, b4 = -30.10, b9 = -0.080, b15 = -16.62

18/20 2010, 2153

AICc scores are listed in ascending order with lower values corresponding to a better relative model fit. The model is fitted through a logit link function for the lameness

binary variable (0 = non-lame, 1 = lame). All models include an intercept. The dependent variables considered in the model selection are those found to be significant in

the statistical analysis shown in Table 1 and are given by: S2: mean x coordinate; S4: proportion of time spent in the feeding area (F); S5: proportion of time spent in the

full cubicle area (CT); S9: full range size (95% UD isopleth); S15: site fidelity (feeding area & core range). All other model structures considered had higher AICc scores

(AICc > 22) and are not shown.

https://doi.org/10.1371/journal.pone.0208424.t002
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Our finding that non-lame cows spend a higher proportion of their time in the feeding area

(S4, Table 1; Fig 3D), and the equivalent result that lame cows spend more time in the cubicles

area (S5, Table 1; Fig 3E), is consistent with existing studies on feeding behaviour in dairy cows

[26–28,30]. In this study we do not try to distinguish between cows observed in the feeding

area that are actually feeding and those that are not feeding. However, this distinction may be

possible by combining basic spatial location data with additional accelerometer data on activity

[28]. Although we didn’t measure feed intake directly in this study, earlier studies have shown

that lame cows may eat the same amount but at a faster rate than non-lame cows [26]. This

may reflect a reduced time spent at the feed face in order to avoid confrontation and competi-

tion from other cows, since lame cows are known to be less likely to start an aggressive interac-

tion [10]. Lame cows may also increase their time spent lying [31] in order to reduce

discomfort and pain [1], and this could also explain our observed results.

Non-lame cows had significantly higher site fidelity than lame cows in the feeding area (S12
and S15, Table 1; Fig 4B and 4E), and this result holds at the core range even with the outlier

cow (2596) included in the analysis. Non-lame cows could be more able, or choosing, to com-

pete for their preferred food locations and consistently revisit these areas, whereas lame cows

may be avoiding potential competition and confrontation at the feed face [10]. The spacing of

dairy cows at a food trough is known to depend on dominance rank at small group sizes [70],

and both dairy cows and buffalo cows are known to show preferences for specific sites within

the milking parlour [71,72]. In wild animals, high levels of site fidelity in foraging locations

have been observed, albeit with high individual variance related to underlying environmental

conditions or prey availability [20]. When the outlier non-lame cow (2596) is removed from

the analysis then lame cows are found to have significantly higher site fidelity than non-lame

cows in the upper barn area for their core range and also for the cubicles area at both their full

range and core range (S13, S15, and S16, Table 1; Fig 4C, 4E and 4F). This indicates that lame

cows are more likely than non-lame cows to return to the same location within the cubicles

area on a day-to-day basis. It should be noted that investigation of farm health records for cow

2596 showed no evidence of any serious underlying health issues or related treatments before

or after the study period, and with this cow included in the analysis, the results are no longer

significant and the linear model is not valid (due to non-normality of residuals). The apparent

pattern of higher site fidelity shown in these areas by lame cows (Fig 4) should be investigated

further in future studies with larger sample sizes.

Non-lame cows had a significantly larger full range size than lame cows (S9, Table 1; Fig 3I),

even though there was no difference in total walking distance between the two groups (S1,
Table 1; Fig 3A). In contrast, the core range size was (weakly) positively influenced by lame-

ness, and by the number of days in milk (S10, Table 1), with a negative interaction term

between the two predictor variables (Fig 3J). However, the complexity of this model means it

should be treated with some scepticism given the small sample sizes in the study (the complex

model structure could potentially be due to the influence of a small number of specific individ-

ual cows). Additionally, although the sizes of the full and core ranges for each individual cow

are an important measure of how they use the space available within the barn, they may not

capture all relevant features of their behaviour; areas visited very infrequently may still be bio-

logically important (e.g. visits to the water trough or brush may be infrequent, but still play an

important role in the daily activity of each cow).

Parity was found to have a strong effect on the horizontal (mean x) location within the barn

(S2, p< 0.001; Fig 3B), with higher parity cows spending more time in the right-hand cubicles,

C1 (S6, p< 0.001; Fig 3F), and lower parity cows spending more time in the left-hand cubicles,

C3 (S8, p = 0.006; Fig 3H). The right-hand side of the barn used in our study corresponds to

being close to the passageway to the milking parlour (Fig 1), and hence the difference in
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horizontal location could be because older and more experienced (higher parity) cows are

choosing to stay near the connecting passage to the milking parlour in order to get a better

position in the milking queue. Disease status is also known to affect milking order, with lame

cows more likely to be found in the last third of the milking [29,73] and taking longer to return

from the milking parlour [11]. Similarly, cows suffering from mastitis were found to enter the

milking parlour later [74], although the same study reported no effect of age, parity or days in

milk on milking order. An alternative interpretation of our results is that when returning from

milking, the older higher parity cows in our study are simply not spreading out within the

barn as much as younger cows, possibly because they have longer bouts of low activity (stand-

ing or lying) and spend less time feeding. For example, previous studies have reported that pri-

miparous (parity 1) cows have significantly more lying bouts of shorter duration when

compared to parity 2 and parity 3+ groups [75] and that parity 1 and 2 cows spend more time

feeding than parity 3+ cows [76]. Higher parities have also been associated with longer stand-

ing times [77]. It is also possible that there is a social aspect to this observed space-use behav-

iour, with cows of similar parity staying close to each other in different areas of the barn for

social reasons. Other potential factors such as localised air quality, temperature, wind, and

noise may also influence the preferential use of certain locations within the barn by individual

cows, but were variables that were not measured in this study.

Days in milk (DIM) was found to have a significant negative effect on the proportion of

time spent in the right-hand cubicles, C1 (S6, p = 0.038) and a significant positive effect on the

core (50% isopleth) range size, (S6, p = 0.002) with an associated negative interaction effect

with lameness (Fig 3J). Various studies have reported increased lying behaviour with increased

DIM [78,79], while increased DIM has also been shown to lead to decreased feeding frequency

but increased meal duration and total feeding time [76]. The interplay between DIM, parity

and lameness is clearly complex, and further studies are needed to explore how observed

space-use behaviour is driven by each of these factors and their potential interactions.

Although we have high resolution spatial location data for each individual cow, we also

have relatively small sample sizes (10 lame and 10 non-lame cows) and the cross-sectional

study ran for only 5 days. Hence, although our results have exciting potential, we are cautious

about over-generalisation. In particular, the model parameter values found during the statisti-

cal analysis are specific to this study group and barn environment and will almost certainly be

different for other cows or other barn locations. We have demonstrated how space-use mea-

sures in individual cows are linked to health (lameness) status, parity, and (to a lesser extent)

days in milk, but space-use behaviour is also likely to be influenced by management actions,

the barn landscape and layout, the frequency of milking and the milking system used (auto-

mated v milking parlour), and individual cow age and breed [8]. Similar to [8], as we have

undertaken a short-term cross-sectional study using cows with known lameness status, it is

not possible to determine from our results how well space-use behavioural indicators may per-

form in detecting changes in the status of individual cows as they transition from non-lame to

lame (and subsequently recover after treatment) over the longer term. Longitudinal studies

over an extended time period with larger group sizes would allow us to determine the consis-

tency of any observed space-use differences, as well as what space-use behaviour changes

might be detectable at the onset of lameness. By monitoring a full herd across a larger time

period it would also be possible to determine more detailed social interactions and spatial

dynamics that may influence individual space-use behaviour. In this study, the cows being

tracked formed a subset of a much larger herd, and we did not attempt to explore social inter-

actions because of the difficulty in distinguishing between direct and indirect social interac-

tions when many individuals within the full herd are not part of the observed data set.

Nevertheless, our results suggesting higher parity cows use different areas of the barn
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compared to lower parity cows (Fig 3F and 3H) hints at a possible social aspect to their space-

use behaviour. More detailed analysis of social behaviour could be undertaken by exploring

network features within the herd as a whole [80], or through pairwise analyses of space-use

and space-use similarity [23,49,63,64,81].

Our aim with the predictive model in Eq (4) is to illustrate the ‘proof of concept’ of how

observed space-use behavioural data can be used to give an accurate prediction of lameness

status in individual cows in this cross-sectional study. As it stands, the model is not directly

transferable to other groups of cows or barn locations and would need to be adapted and tested

before being used in other farm environments. Nevertheless, it demonstrates the principle of

how only a few simple space-use measures could be used to accurately determine lameness sta-

tus for individual cows within a herd. The best relative fitting model structure only included

time spent in the feeding area, and the number of virtual cells in the full range (Table 2), dem-

onstrating that as few as two simple space-use measures are needed to give a good description

of lameness status in this study group of cows. Such a simple predictive model could poten-

tially be quickly adapted and parameterised for practical on-farm use (assuming the general

results hold), unlike more complex predictive models that might require computationally

intensive model fitting or continuous re-parametrisation.

Out of 20 cows, only one lame cow (2344) and one non-lame cow (2153) were incorrectly

classified by the best-fitting predictive model (Table 2, S4 Table). Investigation of the health

records of cow 2153 suggests that she was likely to have been misclassified as ‘non-lame’ before

the study by the expert observers (through mobility scoring), as lesions with the potential to

cause lameness were found on her feet when all cows were inspected at the end of the study

period (and hence the model prediction was essentially correct, and was able to detect this ear-

lier misclassification by the expert observers). In March 2014 shortly after our study was com-

pleted this cow underwent a series of 11 treatments for mastitis and was eventually culled

early. Mastitis is also known to affect dairy cow behaviour, with reduced lying times, reduced

feed intake and a reduction in competitive behaviour at the feeder compared to healthy cows

[32,82]. No other cows from the non-lame trial group had treatments for any health conditions

during the study period (or for at least 3 months after the study had finished). Meanwhile,

when inspected at the end of the study period, cow 2344 (lame) was found to be wearing a

hoof block, which is fitted to relieve pressure on the affected areas of the hoof, and hence this

may have potentially reduced clinical signs and changes in behaviour related to lameness for

this cow. No other cows in the lame group had similar treatments during the study period (or

for at least 3 months after the study had finished).

Increasing demand for animal products and intensification of farming practices in general,

means that there is a need for automated behavioural monitoring systems that can act as an

‘early warning’ to detect and predict the health status of managed animals, including dairy

cows suffering from lameness and other diseases [7,8,26,83]. Automated lameness detection

technology systems have been developed based on the identification of an abnormality of gait

or posture [83], using force plate technology [7,84] or kinematics [85]. Meanwhile, automated

monitoring of feeding behaviour in cattle has relied on electronic feed troughs [27,30]. How-

ever, there has not been a widespread uptake of such systems on commercial farms due to the

high price, practical limitations such as lack of space, or limited precision of detection [7].

Automated lameness detection systems based on differences in locomotion or activity patterns

observed in accelerometer data have been suggested as a lower cost alternative approach

[7,8,35]. The results we present here suggest that space-use and site-fidelity measures could be

an exciting addition to the suite of behavioural indicators available as part of Precision Live-

stock Farming approaches for monitoring and detecting diseases such as lameness in cattle

and other animals.
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The use of space-use and site-fidelity measures as health status indicators does not need to

be limited to cattle or dairy cows, and similar approaches could also potentially be used with

other managed animal species or even wild animals, if similar differences in space-use behav-

iour linked to health status are found to exist. Little is known about the direct link between

space-use behaviour and health in pigs, although there is evidence suggesting that impover-

ished environments contribute to high levels of boredom and apathy [86]. It should be

straightforward to monitor space-use patterns of individual pigs using automated wireless

positioning system in a similar manner to what we have done in this study with dairy cows. In

the context of broiler chickens, [87] showed how optical flow, a measure of the movement and

flow of the flock as a whole through the space within the barn determined by computer vision

techniques, could be directly linked to the health and disease status of the flock, illustrating

how space-use metrics at the group-level can also be used as indicators for welfare monitoring.

Conclusions

We have demonstrated in this study how location tracking data collected from animal-

mounted wireless sensors using a Real Time Location System can be processed and analysed

to give a suite of space-use behavioural measures. We have used these measures to explore dif-

ferences in space-use behaviour in two test groups of barn-housed dairy cows in a cross-sec-

tional study design, and found significant differences between lame and non-lame individuals.

Non-lame cows had higher site fidelity, and spent more time, in the feeding area, and had a

larger range within the barn. In contrast, lame cows spent less time in the feeding area and

more time in the cubicle areas of the barn, where they had higher site fidelity. Space-use behav-

iour was also found to be influenced by parity and days in milk: higher parity cows had a mean

location closer to where the connecting passage to the milking parlour is situated, and days in

milk was found to influence the core range size. We have demonstrated that only two simple

space-use measures, proportion of time spent in the feeding area and full range size, are

needed within a simple statistical model in order to accurately predict the lameness status of

all individual cows within the herd. The sample size used within this study (10 lame and 10

non-lame cows) was small and hence care should be taken in directly extrapolating our results

and conclusions to other studies and contexts. However, the general findings and associated

methods for exploring animal space-use could potentially be developed in future studies to

form a new set of tools for automated monitoring of dairy cattle, or for monitoring, detecting

and predicting health status in other managed or wild animal species.
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each day of the trial. Darker colours correspond to higher space-use intensity. The 95% and
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83. Chapinal N, de Passillé AM, Rushen J, Wagner S. 2010 Automated methods for detecting lameness

and measuring analgesia in dairy cattle. J. Dairy Sci. 93, 2007–2013. (https://doi.org/10.3168/jds.2009-

2803) PMID: 20412914

84. Ghotoorlar SM, Ghamsari SM, Nowrouzian I, Ghotoorlar SM, Ghidary SS. 2012 Lameness scoring sys-

tem for dairy cows using force plates and artificial intelligence. Vet. Rec. 170, 126. (https://doi.org/10.

1136/vr.100429) PMID: 22141114

85. Blackie N, Bleach ECL, Amory JR, Scaife JR. 2013 Associations between locomotion score and kine-

matic measures in dairy cows with varying hoof lesion types. J. Dairy Sci. 96, 3564–3572. (https://doi.

org/10.3168/jds.2012-5597) PMID: 23548277

86. Wood-Gush DGM, Vestergaard K. 1989 Exploratory behavior and the welfare of intensively kept ani-

mals. J. Agric. Ethics 2, 161–169. (https://doi.org/10.1007/BF01826929)

87. Dawkins MS, Cain R, Roberts SJ. 2012 Optical flow, flock behaviour and chicken welfare. Anim. Behav.

84, 219–223. (https://doi.org/10.1016/j.anbehav.2012.04.036)

Space-use in dairy cows

PLOS ONE | https://doi.org/10.1371/journal.pone.0208424 December 19, 2018 23 / 23

http://www.springer.com/gb/book/9780387953649
http://www.springer.com/gb/book/9780387953649
https://doi.org/10.1016/0168-1591(90)90088-U
https://doi.org/10.4081/ijas.2007.187
https://doi.org/10.1017/S0022029913000587
https://doi.org/10.1017/S0022029913000587
http://www.ncbi.nlm.nih.gov/pubmed/24308320
https://doi.org/10.3168/jds.2009-2500
http://www.ncbi.nlm.nih.gov/pubmed/20412910
https://doi.org/10.1016/j.applanim.2015.02.016
https://doi.org/10.1016/j.applanim.2015.02.016
https://doi.org/10.3168/jds.2015-10336
http://www.ncbi.nlm.nih.gov/pubmed/26805982
https://doi.org/10.5194/aab-53-130-2010
https://doi.org/10.5194/aab-53-130-2010
https://doi.org/10.3168/jds.2012-5985
http://www.ncbi.nlm.nih.gov/pubmed/23084886
https://doi.org/10.1017/S0022029909990227
http://www.ncbi.nlm.nih.gov/pubmed/19758477
https://doi.org/10.1016/j.rvsc.2016.10.003
http://www.ncbi.nlm.nih.gov/pubmed/28159229
https://doi.org/10.1016/j.tree.2013.06.002
http://www.ncbi.nlm.nih.gov/pubmed/23856617
https://doi.org/10.1186/s40462-015-0064-3
http://www.ncbi.nlm.nih.gov/pubmed/26527378
https://doi.org/10.1016/j.applanim.2014.09.022
https://doi.org/10.1016/j.applanim.2014.09.022
https://doi.org/10.3168/jds.2009-2803
https://doi.org/10.3168/jds.2009-2803
http://www.ncbi.nlm.nih.gov/pubmed/20412914
https://doi.org/10.1136/vr.100429
https://doi.org/10.1136/vr.100429
http://www.ncbi.nlm.nih.gov/pubmed/22141114
https://doi.org/10.3168/jds.2012-5597
https://doi.org/10.3168/jds.2012-5597
http://www.ncbi.nlm.nih.gov/pubmed/23548277
https://doi.org/10.1007/BF01826929
https://doi.org/10.1016/j.anbehav.2012.04.036
https://doi.org/10.1371/journal.pone.0208424

