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Abstract

Self-organisation, prevalent in many species, is pivotal in enhancing an individ-

ual’s survival rate. Eusocial insects are a prime example of collective behaviour

and self-organisation, while bacteria colonies also exhibit self-organised patterns

stemming from mutual interactions, yielding increased complexity. Now, there

needs to be more explanation of how the reciprocal interactions between in-

dividuals translate to the global structure. We introduce the concept of the

internal state to address this. The internal state can represent certain physio-

logical traits in a given context. We use the internal state to represent the ovary

development of workers in Diacamma cf. Indicum. We explore how the repro-

ductive division of labour is maintained via the patrol behaviour of the queen,

whose movements are determined by her internal state. We used an agent-based

simulation to model the internal state of the queen and workers and to include

the spatial interactions between them. We extended the agent-based simulation

to explain the development of altruistic behaviour in Diacamma workers. The

findings showed that the coupling of the internal states of the queen and work-

ers could explain the patrol behaviour of the queen and the observed colony

size dependant behaviour in actual Diacamma colonies. The findings further

showed that altruistic behaviour in workers gives a more significant inclusive

fitness benefit than being selfish. It also offers an explanation for workers’ re-
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tention of functional ovaries in modern Diacamma colonies. Previous work has

explored the self-organisation in bacteria colonies and the effect of the growth

environment on morphology. We developed a morphological diagram to exam-

ine the landscape of observed morphologies in line with specific environmental

conditions. We then used the fractal dimension to quantitatively measure the

differences in morphology and use previous work to explore possible explana-

tions. Using the concept of internal state coupling, we develop a framework

for understanding the causal pathway from individual behaviour to collective

behaviour.
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Chapter 1

Collective behaviour and

Self-organisation

1.1 Introduction

1.1.1 Self-organisation vs collective behaviour

Self-organisation refers to a process where a system without central control or

planner spontaneously develops order and structure from local interactions be-

tween its parts [1] [2]. This order can emerge from simple rules and doesn’t

require any external intervention. An example would be ants building complex

paths without a leader [3] [4]. Self-organisation emphasises the emergent order

and patterns that arise from individual interactions within a system [5]. This

is not necessarily due to the conscious effort of the individuals. Instead, it is a

result of their actions and interactions. Collective behaviour is how individuals

interact in loosely organised groups [6]. It describes coordinated movements or

activities of a group of individuals, and this coordination can arise from fac-
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tors like shared information, common goals, or environmental cues. It relates

to swarm intelligence, the study of distributed systems inspired by collective

behaviour [7]. Swarms are made of simple “agents”, individuals who interact

(directly or indirectly) to give rise to the observed intelligent behaviour. This

intelligent behaviour is an emergent phenomenon from the uncoordinated inter-

actions of the individuals in the group.

Collective behaviour can be seen in birds [8] schooling fish [9] [10], and

social insects [11]. This behaviour can be advantageous by increasing defence

against predators [8] or enhanced foraging ability [12]. Group behaviour is

seen extensively in flocking birds. Birds respond positively to their kind [13].

This behaviour is likely due to the positive outcomes of being part of a group.

Birds also move together, forming magnificent aerial displays. The birds must

consider their movements and neighbours to avoid collisions [14]. The most

common formations are line formations (such as in the shape of a V) or cluster

formations. Smaller birds are more likely to fly in clusters, giving rise to easily

observed visual displays. In clusters, the velocity of one individual affects the

velocity of others. The density of the cluster is affected by predation, with high

predation leading to larger, denser flocks and low predation leading to sparser

flocks [15]. Interactions between individuals allowed information to spread to

all individuals in the flock, especially in the presence of a predator. Herbert-

Read [16] showed that escape waves in fish always start from the position of the

school closest to the predator, away from the origin.

In the same way, birds moved away from disturbances as a group initiated

by a few individuals [17] [18]. Being in the group gave quicker perceptions of

predators than individuals [8], giving individuals a much more extensive range of

perception [19]. There was increased vigilance of individuals in the periphery of

the group [20]. When not in the presence of a predator, individuals move more
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with respect to the group’s centre of mass than to their neighbours. Cohesion

helps the flock maintain its group advantage when avoiding predator attacks.

These escape waves are easier to see in orientation changes, as shown by Hemel-

rijk [21]. The formation of waves is highly correlated with reduced predation

risk [22].

Collective behaviour can also be seen in slime moulds. Slime moulds could

be used to study collective behaviour in a more controlled setting as genetic and

environmental factors can be more easily controlled [6]. The controlled setting

makes linking individual interactions with larger-scale complex behaviour easier.

Though in some cases, physics-like models can be sufficient to recreate (and pos-

sibly explain) collective behaviour without invoking new assumptions [23]. This

gives a sort of Occam’s razor where phenomena are attempted to be explained

by current physical laws before developing new theories and assumptions. Self-

organisation and collective behaviour are closely related concepts that help us

understand how seemingly simple actions can lead to complex and coordinated

group dynamics in nature [24] [25]. Collective behaviour relies on a level of

self-organisation from the components of a system. In collective behaviour,

self-organisation manifests through positive feedback, negative feedback and

leader-follower dynamics.

1.1.2 Insect and ant colonies

Insects show collective behaviour and decision-making, with choosing the short-

est path to a food source in ants [3] [4], to the strongly correlated movements of

midges [26] [27]. These behaviours stay consistent over increases in swarm size.

Eusociality describes a form of social behaviour found in animals characterised

by three features: cooperative brood care, overlapping generations and division

of labour [11] [28]. Ants and bees are the best-known examples. Eusocial insect
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species (specifically Hymenoptera) show complex group behaviours. For exam-

ple, ants may need to emigrate to a new nest site due to various disturbances,

which cause low mortality in workers. However, if mortality is high, colonies

resist dispersal [29] [30].

Another example of collective behaviour in insects is the division of labour,

which puts individuals into castes where each caste is slightly more specialised

for specific tasks (e.g. foraging and nest defence). Reproduction is also divided,

with some ants being part of the reproductive caste and others not. Typical

castes include reproductive queens, workers and soldiers [11]. This can lead to

physical (morphological) differences, such as soldier ants who defend the nest

being larger than other ants. Task allocation is done through social interac-

tions, directly via physical contact [31] or indirectly through pheromones [12].

Pheromones are usually used in foraging as a positive feedback method. How-

ever, crowding effects lead to less deposition of pheromones [32]. Studying how

social insects behave and solve problems can help us develop algorithms to help

us with crowding effects for alleviating traffic in autonomous vehicles [33].

Sumpter covers principles of collective behaviour [34] in his paper of the same

name. These principles outline the processes by which these behaviours arise.

These include the collective being more than the sum of its parts, individuals

versus group complexity, integrity and variability, positive and negative feed-

back, redundancy, and selfishness. Feedback is vital for amplifying behaviours

(such as pheromone deposition leading to more individuals going to a food

source) and suppressing behaviours, stopping every forager from going to the

same food source and preventing overcrowding. Redundancy is an advantage as

it allows for a more robust system as units are replaceable. Selfishness brings

up a curious contradiction: by natural selection, individuals will want to pass

on their genes selfishly. Therefore, it would initially seem that group behaviour
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and cooperation are disadvantageous.

Richard Dawkins’ book, ”The Blind Watchmaker” [35], explains how evolu-

tion shapes organisms through a gradual, step-by-step process. Ant colonies are

a great example of this, showing impressive organisation that arises from sim-

ple rules governing individual interactions. Dawkins’ framework shows how ant

colonies can achieve extraordinary things by the collective actions of individual

ants, which would not be possible if they worked alone. This is similar to the

”selfish gene” theory [36], where genes drive the evolution of traits, behaviours,

and collective strategies. But an organism’s influence is not limited to its phys-

ical form, as Dawkins argues in his book, ”The Extended Phenotype” [37]. Ant

colonies demonstrate this through their complex networks of tunnels and struc-

tures that reshape their environment, creating an extended phenotype that goes

beyond the individual ant.

Different factors could lead to the evolution of group behaviour in social

insects [11]. This includes delayed benefits for the individual. As for passing on

genes, kin selection looks at how genes are passed on, either directly via offspring

or indirectly via relatives. Suppose the indirect passing of genes is more effective

than the direct method. In that case, more investment in this strategy will lead

to the reproductive division of labour. Queller [38] discusses kin selection in

its role in coloniality in social insects. He discusses how relatedness to relatives

could explain the evolution of social behaviour, especially with haplodiploid

females who are more related to their sisters than their own offspring, through

Hamilton’s rule [39]. However, there is still a conflict of interest as the increased

relatedness applies to females, not males in social insect colonies. This means

other mechanisms are needed to regulate the conflict between the individual and

the group. Other mechanisms include worker and queen policing, such as that

seen in bees. Workers police each other’s reproduction [40] while in stingless
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bees, the queen polices the workers. There are advantages to living in groups,

such as defence against predation and advantages over out-group competitors.

However, there is increased competition between individuals in the group and

the transmittance of disease.

Individual ants can be more complex than first thought [41]. This increased

complexity and variability of individuals can give rise to emergent behaviour and

division of labour [42]. However, individuals are still largely interchangeable [43].

Individual ants affect the colony’s behaviour as a whole [9] [44] through their

mutual interactions with others in the colony. Collective behaviour is seen

in ants when determining the importance of specific tasks [45] when choosing

food sources [12] [46] and avoiding overcrowding when a food source has been

chosen [32]. Collective behaviour is also seen when choosing a new nest site

[47] [48]. With relatively complex cognition, it is unsurprising that ants can

create complex structures, such as in the paper by Franks and Deneubourg [49].

Consistent individual behaviour leads to complex structures, even if individuals

do not know the global structure they are building [49]. Synchronicity in tasks

is essential to ensure the tasks are executed efficiently [50] [51]. While ants do

not sleep, they have active and inactive periods [50] and balancing individual

and collective activity is vital to the colony’s survival [52]. Humans have also

been noted to go through active and inactive cycles [53].

A reproductive division of labour, where some individuals reproduce, and

others do not, can cause conflict between queens and workers [54]. However,

these conflicts can be mitigated in the interest of the group [55]. Reproductive

division of labour can also give rise to individual variations in behaviour [56]

leading to dominance hierarchies [57]. Workers at the top of the hierarchy are

more aggressive to workers at the bottom. Resource allocation is biased when

new nests are formed [58]. This can lead to different phenotypes where each
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caste has its own slightly specialised function [59] [60]. Due to caste differences

[61] [62], the way individuals interact can be different depending on the status

of the individuals involved and the purpose of the interaction. In dominance

interactions, older females dominate younger females until the younger female

takes over from the older alpha [63].

1.1.3 Diacamma

Dominance is essential in regulating reproduction portioning, and this domi-

nance is determined through physical interactions in Diacamma cf. Indicum

(from Japan). Pair interactions increase the transition probability from inac-

tive to active [64], helping to recruit more workers and ensuring synchronicity.

Another way ants interact with one another is through hostility. While nest-

mates accept sterile non-nestmates [65], non-nestmate queens can be violently

attacked. Nestmate queens are always accepted, showing workers can recognise

nestmates and non-nestmates. However, previous work has shown that Dia-

camma cf. Indicum were always aggressive to non-nestmates. This could be

because Diacamma is a solitary forager, so non-nestmates are a threat [66]. In

either case, workers police each other and enforce the group decision only to

allow the queen to reproduce [67] [68] [69].

When it comes to ants, such as Diacamma cf. Indicum (from Japan), phys-

ical contact (the touching of antennae) [31], conveys the internal state of the in-

dividuals and gives each party something which affects their behaviour. Colony

members are usually split into castes, such as queens who reproduce and workers

who forage and construct the nest [11] [59]. In Diacamma cf. Indicum, work-

ers maintain functional ovaries and can produce male eggs after their ovaries

develop without mating. This allows workers to rear their sons who are more

related than the queen’s sons [38]. However, the queen suppresses the ovary
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development of workers [31], possibly by suppressing dopamine in the worker’s

brain [70]. Punishments for developing ovaries and laying eggs include eating

the eggs and immobilising the rule breaker [71]. Previous work by Kikuchi

et. al [72] describes how multiple mechanisms are needed to properly regulate

workers’ ovary development and keep the colony’s homeostatic balance. These

include the queen increasing the duration of her active period patrolling the

colony with an increase in colony size and the increasing prevalence of policing

by workers. This is due to the weakening effect of direct contact with the queen

and self-restraint and self-restraint as the colony grows [72]. Worker policing and

dominance interactions become more critical as the colony grows. Other species

use “queen substances” to regulate reproduction, primarily in large colonies like

bees [73] [74].

Reproduction in the colony must be regulated to ensure the colony does not

grow too rapidly. The regulation of reproduction also ensures that the workers

co-operate rather than selfishly produce and care for their offspring. There is

a balance between workers allocated to different tasks needed to maintain the

colony (brood care, foraging, defending the nest site and maintenance) [54]. In

this way, the reproductive division of labour is a form of group homeostasis,

which the queen and workers maintain.

When the gamergate (effective queen and henceforth referred to as simply

“the queen”) interacts with a worker, the queen gains information about the

worker’s internal state [31]. Here, the internal state of the worker represents

its ovary development. On the other hand, the worker becomes aware of the

queen’s presence, and its ovary development is suppressed. Without the presence

of a queen, workers begin to develop ovaries [72]. The queen’s presence helps

suppress the ovary development of the workers to maintain the size of the colony

[31]. As such, the queen may have some awareness of the colony’s sizes so that
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every worker is contacted to avoid developing their ovaries and laying eggs.

While this is a more top-down approach to controlling a colony, when the colony

size increases, the patrol time of the queen also increases [75]. This increase in

patrol time shows a feedback loop based on the contact between the queen and

the workers in the colony, which allows for the dynamic control of reproduction.

1.1.4 Bacterial behaviour

Bacteria colonies have similar characteristics to ant colonies in that they form

communities where resources can be shared and regulated between the individu-

als in the community. The cells in these communities gain benefits for participat-

ing in this system, which increases their likelihood of survival [76] [77] [78] [79].

Unlike ants, the bacteria in these communities do not have a queen-like ana-

logue that polices the colony. In Bacillus, it has been shown that the bacteria

interact using electrical signalling, which is coupled to the metabolism of the

individual cells [80]. Similar to the workers conveying information about their

internal states or ovary developments, the Bacillus cells in a colony communi-

cate their internal state (metabolism) to each other to stop the more active outer

cells from taking up all the resources, allowing more of these to diffuse into the

rest of the colony. This means that information processing occurs in the colony

to understand the signals received from cells within a community [80]. The

use of bioelectrochemical signalling likens this to the brain, where the connec-

tions of neurons allow the brain to process information about the environment.

However, this could be considered a more primitive version of brain activity.

Research in tadpoles shows that lack of signals from the developing brains of

tadpoles causes abnormal growth in their tails and other structures [81] [82] [83].

This shows development in bio-electric signalling at different levels of complex-

ity. It can be used to co-operate and self-organise bacterial cells, develop more
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complex organisms (in this case, tadpoles) and is most obvious in the com-

plex connections of various animals’ brains and nervous systems. The different

levels of organisation show a relationship between electrical signalling and the

morphology of a biological system.

Biofilms are surface-associated microbial communities encased in a self-produced

extracellular polymeric substance (EPS) matrix, exhibiting enhanced coopera-

tive behaviours and increased resistance to environmental stressors [84] [85].

Biofilms are organised communities containing billions of densely packed cells.

Different authors can use the word community to mean the presence of different

types of cells (such as a biofilm with cells from Bacillus and E. coli). In this

text, we will use it to refer to a cluster of cells irrespective of whether there

are different kinds of cells or the same cells present. Bacteria in a biofilm usu-

ally adhere to each other and the surfaces they grow on. The biofilm leads

to a community with primitive homeostasis and a primitive circulatory system

by which the individuals maintain the structure and integrity of the commu-

nity [76]. These communities can also have subpopulations of different cell

types, which interact in different ways [79]. Different cell types can lead to co-

operative and antagonistic behaviours exhibited by these subpopulations, which

affect the local biofilm composition. Antagonistic behaviour means some cells

may restrict the growth rate of other strains in favour of their own. However,

cooperative behaviours mean cells can also benefit from different strains, such as

the release of a metabolic waste product of one cell, which is helpful to another

cell [77]. This benefit means these subpopulations can work synergistically with

each other and, as a group, confer advantages to the cells that reside within

the biofilm. These advantages include social cooperation and enhanced survival

when exposed to antimicrobials and antibiotics.

Social cooperation requires communication between the cells in the biofilm.
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Bacteria can communicate through cell-cell physical interactions/short-ranged

signalling [86] [87] and long-range chemical signalling [88]. While not as widespread

as other forms of bacterial communication, electrical/electrochemical signalling

in biofilms allows the bacteria to communicate over large distances within and

between biofilm communities [88]. These signals are caused by the release of

intracellular potassium (K+) ions. This release of potassium (K+) ions causes

neighbouring cells to release K+ ions, which stops the degradation of the sig-

nal as the ions diffuse through the biofilm. The continual release means the

signal’s amplitude does not decay with the distance travelled. This active sig-

nalling allows cells inside a biofilm to communicate with cells closer to the edge

of the biofilm. Oscillations in the membrane potential caused by the release of

K+ of cells show communication between outer cells in the biofilm and inner

cells. The APG-4 dye was used to look at the movement of potassium ions in

the biofilm [80], and by using a potassium blocking dye [89], the formation of

biofilms and signalling in biofilms was hindered. Prindle et al. [80] found that

the signalling was linked to the metabolism of the cells, this means that a wave

of hyperpolarisation coordinates metabolic states among the cells in the biofilm.

This can enhance long-range metabolic co-dependence in biofilms where inte-

rior cells signal their need for greater access to nutrients to exterior cells. This

signalling can also attract free-floating cells of the same or varying strains of

bacteria. These are then incorporated into the biofilm [90], meaning the signal

is species-independent. This allows two biofilms to timeshare resources to avoid

competition [88]. The species-independent nature of the signalling also increases

the biodiversity of the biofilm, which enhances their chances of survival.

Chemical potential also plays a role in biofilm formation. Within the biofilm

micro-environment, chemical gradients arise due to variations in nutrient avail-

ability [80], waste accumulation, and metabolic byproducts. These gradients
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create spatial heterogeneity, dictating microbial localisation and activity within

the biofilm matrix [88]. Chemical potential gradients influence microbial be-

haviour, fostering communication via quorum sensing [91] and guiding cellular

responses such as motility and gene expression. How biofilms are formed de-

pends on the environmental conditions and the strain attributes, which affect

how nutrients diffuse to the cells in the biofilm. This can lead to different pat-

tern formations, characterised into different morphotypes [92]. Morphotypes

allow the grouping of different species of bacteria into groups that form simi-

lar patterns instead of grouping by species. Morphotypes are similar to snake

venom, which can vary even within the same species and is better classified by

venom type [93] [94].

Attempts to model the dynamics between the bacterial density, environ-

mental nutrients and electrical signalling [95] have begun to capture some of

the nature of the behaviour of bacterial colonies. These models start to take

into account the signalling which coordinates this behaviour. Though previ-

ous work either focuses on how the environment affects the morphology of the

colony [92] [96] or looks at the process of electrical signalling in the bacte-

ria [80] [97] [98]. None look at all levels of the chain of events. These levels

include how the environment and different inputs affect the electrical signalling

in the bacteria colony, leading to a morphological change in the shape of the

colony.

1.1.5 Bottom-up Approach

Collective behaviour requires a bottom-up approach to self-organisation. In

the case of ants and bacteria, individuals communicate and have mutual inter-

actions, which lead to collective action. By using the concept of an internal

state, we can build an understanding of how emergent behaviours arise across
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species. The concept of internal states allows us to build a bottom-up approach

to how emergent properties of groups arise. First, there is the individual in-

ternal state. This internal state represents some physiological property of the

individual. In the case of ants, this internal state can represent the ovary devel-

opment of the worker. For the queen, the internal state can regulate her activity

cycle and patrol behaviour. In bacteria, the internal state can represent the

cell’s metabolic activity. In both cases, the individual must convey information

about their internal state to others to elicit a behaviour change. This is done

via mutual interactions with others. For ants, the exchange of internal state

information regulates worker reproduction and the queen’s patrol behaviour.

For bacteria, the exchange of internal state information regulates the flow of

nutrients through the colony, allowing access to resources. These internal states

are essential during mutual interactions to coordinate the colony-level adaptive

emergent behaviour observed in various species. Although each individual is

unaware of the global structure, each contributes to it by participating in the

network of interactions. Cornejo et al. [99] developed a model for the division

of labour, which achieved near-optimal performance in time with respect to the

colony size while implementing rest and active states.

Agent-based modelling can be beneficial for studying emergent phenomena

in a way that does not directly try to replicate them. This allows the connection

between micro and macro interactions to be more easily identified [100] [101].

An example of this is the work done by Sahin and Franks [102]. In this, they

presented a behavioural model of the ant scout for assessing nest size and a

simulation of the behaviour in an ant-bot. They compared the results of their

simulation with real ants and were able to produce similar behaviour. The same

thing can be seen in the work by Marshall et al. [103]. Agent-based modelling

looks to replicate the patterns of collective and emergent behaviour seen in
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nature through the interaction of its agents. Therefore, if the individuals and the

interactions are modelled correctly, it should give rise to emergent behaviour not

explicitly built into the system [5]. While standard mathematical modelling can

replicate system-level behaviour, agent-based modelling gives a kind of “on the

ground” level information [101]. Modularity, flexibility and multi-scale analysis

are further advantages added by agent-based simulation [104] [105]. An example

would be how cells form tissue, which forms organs that all work together to

keep an organism alive.

There are two methodological approaches: trial and error, and reproducing

and simulating distributed living systems. Trial and error is an iterative pro-

cess where agents within a simulation learn and adapt their behaviours based

on the outcomes of their actions. The methodological approach in the PhD is

closer to the second methodological approach with an approximate recreation

of ant colony dynamics. The advantage of this approach is that it can rely on

decades of research to inform it [100]. Starting with modelling individual agents

and their interactions allows us to explore how macro-level patterns and trends

emerge from the decentralised interactions of individual components. There are

limitations [106], such as the lack of a standardised methodology and the cali-

bration and validation of agent-based models due to the number of parameters

and interactions. An example of an application of agent-based simulations is

Boids [107] [108] [109]. ”Boids” is a play on the word ”birds,” reflecting the

primary application of the concept: the simulation of bird flocking behaviour in

a way that mirrors the observed biological phenomena. In summary, modelling

and simulations are essential aspects of the scientific community. While they

cannot give us a complete picture of the actual reality of nature, they are still

helpful in gaining insights into natural phenomena.

Self-organisation and collective behaviour have many applications, including
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in swarm robotics. A swarm robotics system could be developed similarly to the

ant cooperative framework. This system could be used for the autonomous min-

ing of asteroids. The internal state of the individuals could reflect the amount

of material they have collected and their run time so far. One of the individuals

could act as a monitor, reflecting the queen’s role and patrol behaviour. This

would allow operations to run efficiently and with minimal input. A system

developed more aligned with the bacteria framework could be used for search

and rescue. Signals are communicated through the network to indicate signs

of life or the presence of a target. Small drones for things such as home deliv-

ery or fireworks-like displays could increasingly use autonomous drones working

together in this way.

1.1.6 Aim and Thesis structure

The PhD project aims to use a bottom-up approach, using the concept of the in-

ternal state, to explain different aspects of self-organisation observed in ants and

bacteria. Specifically, the project aims to show how the concept of the internal

state and the mutual interactions between agents can explain the following:

1) The ability of the queen in Diacamma cf. Indicum to control the ovary

development of workers using her patrol strategy.

2) The evolution of the reproductive division of labour in Diacamma cf.

Indicum and similar ant species.

3) The morphology of bacteria colonies and how mutual interactions can

characterise these.

The first step is using an agent-based simulation to implement a model for

the queen’s patrol behaviour. The simulation will show how the negative feed-

back loop formed between the internal state of the queen and workers can be

sufficient to regulate worker reproduction in the colony. The second step ex-
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pands the model to investigate the origin of the development of the reproductive

division of labour by introducing a genetic component to the agent-based simu-

lation. Incorporating a genetic algorithm on top of the agent-based simulation

forms an evolutionary agent-based simulation. This new simulation can be used

to probe the landscape of evolutionary possibilities when determining the sta-

bility of altruistic behaviour in workers. The final step is to use the fractal

dimension to quantify bacterial colony morphology changes under different en-

vironmental conditions. We aim to understand these morphological changes

through the lens of internal states and electrochemical communication between

the cells. All of this builds on previous work from Sugawara et al. [75], Ohtsuki

and Tsuji [110], and Wakita et al. [111], as well as many others.

Sugawara et al. [75] introduced the concept of the internal state to explain

the queen’s patrol behaviour but did not use this to investigate the effect of

the patrol behaviour on the internal states of the workers. The mathematical

model Sugawara et al. developed also did not consider the spatial aspect of the

interactions between the queen and workers. Here, we extend their work further

by giving the queen and workers space to move and interact in an agent-based

simulation. We monitor the queen’s patrol behaviour and the worker’s internal

state to discover novel insights into the control mechanism of the reproductive

division of labour in Diacamma cf. Indicum. Using agent-based simulations

allows individual behaviour and pair interactions to be the fundamental aspect

of emergent swarm intelligence. They mimic the underlying mechanisms of

the biological system. With the simulation, we can find how information is

transferred in the system (i.e. how agents interact) by monitoring the encounters

between the queen and the workers. Does the hypothesis of the internal state

explain observed behaviour? All of this is covered in chapter 2 of the thesis.

Ohtsuki and Tsuji [110] used game theory and the inclusive fitness function
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to show the different stages of colony development. They also showed the best

social strategies for the queen and the workers to maximise their inclusive fit-

ness. Their model also did not consider the spatial aspect of the interactions

between the queen and workers. More importantly, rather than attempting to

maximise the inclusive fitness of the queen and workers, in this project, we

introduce a genetic predisposition towards altruism and use inclusive fitness

as a selection method for determining the propagation of this genetic compo-

nent. This is where aspects of the genetic algorithm are implemented. Using

this method, we can investigate the evolution of altruistic behaviour in workers

from a natural history perspective. We can modify various components in the

model to view their effects on the inclusive fitness of the queen and workers

over time. We characterise how this information transfer is related to observed

emergent behaviour, such as colony size dependant behavioural changes in the

queen and workers. These aspects are covered in the third chapter.

For the bacteria colonies, it is a combination of the work by Prindle et

al. [80], Ben-Jacob [92], and Wakita et al. [111]. Wakita et al. developed a

morphology diagram showing the changes in bacteria colony morphology with

environmental conditions. Ben-Jacob used the fractal dimension to quantify

changes in morphology to develop morphological groupings called morphotypes.

Prindle et al. showed that bacteria communicate via potassium (K+) ions

and can communicate their metabolic state to other cells to get nutrients for

themselves. This project uses the fractal dimension to quantify morphology

changes caused by different environmental conditions. The ultimate goal is to

use the electrochemical communication seen in Prindle et al. to explain the

causal chain, which ultimately leads to the changes in morphology seen on a

macro scale. This will be covered in the 4th chapter.

This shows that the internal state is a versatile concept that can explain the

23



emergence of self-organised behaviour in different organisms and can be adapted

appropriately to fit the context. Using agent-based modelling can give us a tool

for analysing the behaviour of different collective systems and how information

spreads within the network of interactions between individuals. These individ-

uals can be ants or bacteria cells. All of this will be brought together in the

final chapter.
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Chapter 2

A real-time feedback system

stabilises the regulation of

worker reproduction under

various colony sizes

2.1 Contributions

This chapter is a reformulated form of the paper published in PLOS Computa-

tional Biology. The experiments were conducted by Tomonori Kikuchi, Kazuki

Tsuji and Kana Maruyama-Onda. The agent-based simulation was developed

and worked on by myself, with input from my supervisor and Ken Sugawara.
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2.2 Introduction

In the realm of social insects, the orchestration of various collective behaviours is

often governed by self-organisation [59]. While extensive research has delved into

understanding the autonomous control of short-term collective behaviours, such

as foraging and movement dynamics, a relative dearth of knowledge concerning

the homeostatic mechanisms that govern societies exists. While the autonomous

regulation of individual organismal functions like breathing, thermoregulation,

and osmoregulation has been thoroughly explored, the autonomous maintenance

of society has garnered less attention.

Each species or population of social insects typically exhibits characteris-

tic social traits, such as colony size and caste ratios. However, colony size

can undergo significant fluctuations over time as the colony grows, akin to the

changes in body size seen in multicellular organisms [112]. Moreover, caste and

age compositions can exhibit shorter-term fluctuations [113] [114] [115]. The

persistence of the reproductive division of labour, a hallmark of insect eusocial-

ity, amidst such changes implies the existence of a size-independent autonomous

control mechanism. However, the detailed mechanisms behind these phenomena

remain elusive [116].

From a phylogenetic perspective, the ancestral state of insect eusociality is

considered to involve physical suppression through dominance behaviour, tran-

sitioning to chemical suppression using queen pheromones as colony size in-

creases [12]. However, challenges in control mechanisms may arise with the

growth of colony size, and addressing these challenges during colony devel-

opment (colonial ontogeny), where physical suppression remains practical, de-

mands further investigation.

While extensive studies have explored mechanisms of reproductive division

of labour, such as dominance behaviour, queen pheromones, and worker policing
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[117] [118] [119], less attention has been devoted to understanding the robustness

and effectiveness of these regulation mechanisms against increases in colony

size [120] [121] [122] [28].

In this chapter, we leverage a computer simulation model to scrutinise the

robustness of the regulation system governing worker reproduction in the face of

changes in colony size. Many Hymenoptera workers are known to refrain from

laying eggs in the presence of the queen, engaging instead in non-reproductive

work—a phenomenon considered an adaptive tactic for inclusive fitness optimi-

sation [110] [123].

In the event of the queen’s death or absence, workers’ ovaries initiate devel-

opment, eventually laying male-destined haploid eggs. In this situation, worker

offspring can contribute to the colony’s survival by contributing to contribute to

the workforce [124]. The switch in reproduction is triggered by the perception

of the queen’s presence. Thus, understanding the mechanism of reproductive

division of labour hinges on deciphering the transmission of information about

the queen’s existence [119] [125] [126] [127].

Empirical studies suggest that queen pheromones, particularly low-volatility

cuticular hydrocarbons (CHCs), play a crucial role in transmitting information

about the queen’s existence in social Hymenopteran taxa like ants, bees, and

wasps [128]. In environments with low-volatility queen pheromones, direct phys-

ical contact between the queen and nest mates is hypothesised to be necessary

for effective transmission.

In this chapter, we turn our attention to Diacamma ants, specifically the

Japanese Diacamma, Diacamma. cf. Indicum, the only Japanese species,

as a model system [129]. The information transmission mechanism of the

gamergate worker (referred to as the queen hereafter) in this species has been

well-established [72]. CHCs code this information, and the transmission oc-
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curs through direct contact between the queen and workers [31]. Notably, the

queen’s patrol activity, which describes the queen’s frequent movement within

the nest [130], becomes more active in larger colonies [72].

This heightened patrol in large colonies is viewed as the queen’s strategy

to counter the potential decrease in the transmission efficiency of the queen

pheromone due to increased colony size. Given that the physiological effects of

the queen pheromone last only around 3 hours [72], maintaining stable control

of worker reproduction necessitates the queen’s awareness of the ever-changing

colony size, allowing her to adjust her patrol effort. However, the specific mech-

anisms through which the queen obtains and utilises information about colony

size remain elusive.

In ants, the frequency of contacts between individuals serves as a local proxy

for population size, and such contact frequency plays a role in behavioural

switching in various contexts, such as nest relocation [131] [132]. Yet, the fun-

damental mechanisms linking different types of perception, including contact

frequency, local density perception, and colony size perception, remain largely

unclear.

Feedback mechanisms are integral for system stability and are identified in

various self-organised collective actions [133] [134] [135]. In Diacamma, the

queen exhibits aggressive behaviour towards reproductive workers, engaging in

queen policing by stealing and destroying eggs laid by worker ants [69]. We

hypothesise that the queen can detect the reproductive status of workers during

her patrol, as suggested by circumstantial evidence [70], laying the groundwork

for subsequent dominance interactions that suppress worker reproduction.

A previous theoretical model by Sugawara et al. [75] proposed a feedback

mechanism influencing Diacamma queen patrol behaviour based on three key

assumptions: (1) Workers losing contact with the queen are released from the
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inhibitory effects of the queen pheromone; (2) such workers initiate ovarian

development and emit chemicals associated with reproduction; (3) the queen,

upon contacting a worker emitting these chemicals, increases her future patrol

effort based on the perceived chemical concentration.

As colony size increases, the contact efficiency of the queen decreases, pro-

viding workers with more opportunities to develop ovaries and emit associated

chemicals. The resulting colony-size-dependent behaviour of the queen is posited

to be a consequence of feedback mechanisms responding to changes in worker

physiological conditions (Fig. 2.1).

Fig 2.1. Feedback Loop Diagram A feedback loop between the queen’s
patrol behaviour and the reproductive activity of workers

Notably, Sugawara et al.’s model assumed a constant rate of queen-worker

contacts as colony size changes, with the contact rate decreasing linearly as

colony size grows, prompting an increase in queen patrol frequency (Fig. 2.1).

However, the constant queen-worker contact rate assumption is not inherently

evident. Worker behaviour might shift as worker density increases in a given

space, potentially responding to changes in contact frequency to reduce the

likelihood of inter-individual contact [136].

While average individual density within an ant nest may remain relatively

stable despite changes in colony size, adjustments to the nest space size and

worker density regulation have been observed [137] [138] [139]. Using an agent-

based simulation in our study provides a novel approach, considering spatial
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aspects and assuming constant worker density per nest space regardless of colony

size. This contrasts with Sugawara et al.’s model, which focused solely on queen

patrol without investigating changes in worker reproductive status.

This study marks the first utilisation of an agent-based simulation to as-

sess the efficacy of queen patrol behaviour by tracking the internal states of

workers. Unlike other biological simulations, such as Boids, where individuals

follow simple rules to replicate complex flocking patterns [107], our simula-

tion incorporates feedback between individual agents. Past simulations have

successfully replicated nest quality assessment behaviour in ants [140], trail for-

mation [103] [135] [141], and reproductive labour division dynamics [75]. Our

agent-based simulation, emphasising internal states and interactions, establishes

a negative feedback loop, shedding light on controlling reproductive labour di-

vision in colonies. Our model could be used to determine the effectiveness of

dominance interactions in other eusocial insects [142].

By leveraging an agent-based simulation, we delve into how colony size

changes impact the reproductive state of workers (ovarian development) and

queen patrol behaviour. Our simulation assumes constant individual density

per nest space, a condition supported by experimental evidence presented in

this chapter. We propose a feedback mechanism linking internal states and

queen patrol behaviour, offering insights into how this mechanism ensures sta-

ble suppression of worker reproduction as colony size increases.

2.3 Materials and Methods

2.3.1 Maintenance and Experimental Procedure

The taxonomic status of species of genus Diacamma is still under revision.

Since it is known that there are only one species of this genus in Japan that
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is very closely related to the Indian species Diacamma Indicum, we tentatively

use the new name Diacamma cf. Indicum (from Japan) following Fujioka et

al. [143] (previously described as Diacamma sp. from Japan). The species has

no morphological castes among females, that is, all females are wingless and

monomorphic. In each colony, a single mated female (queen) functions as the

reproductive queen that produces female eggs, whereas the other females play

the helper-worker role [144].

New colonies are founded via colony fission. When the queen is absent after

fission or due to queen mortality, among the cohort of newly emerged females the

most dominant individual (usually the first emerged) copulates and becomes the

next queen. In the field, colonies contain 20–300 workers, and alates (males) are

produced in large monogynous colonies (where there is only one reproductive

female) and orphan colonies [67] [145]. Unmated workers can potentially lay

male-destined haploid eggs. However, in colonies at the ergonomic (growing)

stage (i.e., ones with fewer than 100 workers), worker reproduction is suppressed

by queen pheromone and, queen and worker policing [31] [67] [69] [71]. Whereas

in colonies at the reproductive stage (containing 100 workers or more) such

suppression is relaxed, and males are produced by worker reproduction [67].

We used colonies of Diacamma cf. indicum collected on the main island

of Okinawa during 2001–2014. Those colonies were maintained in a laboratory

at 25 ±1°C with a light: dark cycle of 12 h:12 h. Each colony was kept in a

plastic container (26.5 cm length × 18.5 cm width × 5 cm height) with a plaster

floor (1.5 cm thick), however, in the natural environment, ants would explore

the surrounding environments to expand the colony space whenever there is an

opportunity. In the middle of the floor, a 13 × 9 cm depression (1 cm deep)

covered with a glass plate was prepared for the ants as an artificial nest. Ants

were fed honey water and mealworms ad libitum three or four times a week.

31



Ants were kept in the laboratory. First, all workers and the queen in each

of the 15 colonies were marked with enamel paint for individual identification.

The number of workers (colony size) was 58, 69, 81, 110, 125, 128, 131, 144,

149, 151, 162, 169, 174, 181, and 214, respectively (mean ± SD = 137.9 ± 42.7).

For the video recording, each colony was moved to another artificial nest, which

was a plastic container (26.5 cm length × 18.5 cm width × 5 cm height) with a

plaster floor (1.5 cm thick). In the middle of the floor, a depression (8 cm length

× 16 cm width × 1 cm depth) covered with a glass plate was prepared for the

ants as an artificial nest. After acclimatisation for a day, we video-recorded each

colony for 12h. By using that video data, we were able to track all queen–worker

contacts.

2.3.2 Agent-Based Simulations

Overview

To validate our hypothesis of the negative feedback loop between the queen and

workers, we ran the agent-based simulations in which the queen and workers

move randomly within the grid space and contact each other. The internal

state of the workers is defined as the hypothetical physiological condition, such

as the hormone level, which controls the ovary development in workers and queen

pheromone secretion in the queen. Within an ant colony, the queen’s perception

of the internal state via contact is largely dependent on the frequency of her

contacts with workers as a function of time. Thus, along with the internal

dynamics of the queen and workers, the spatial distribution of the workers and

the queen as a function of time should play an important role in the patrol

behaviour of queens and the reproductive behaviour of workers. Note that the

density of workers was kept the same though the number of workers (colony

size) increased. This can distinguish the mechanism based on the negative
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feedback loop from those dependent on the perception of density [136]. To

include the spatial degree of freedom, we used an agent-based simulation to

model the behaviour of the queen and individual workers within a certain space

representing the nest.

We first assumed that the internal state of the workers and the queen would

operate differently. For the worker, the internal state would represent their

ovary development and demonstrate a steady increase over time. This could be

suppressed by the queen via direct contact (perception of the queen pheromone).

For the queen, the internal state would represent the probability to become

active. That is, the likelihood that the queen will go from an inactive state to

an active state, at which point she will begin to patrol the colony. The queen’s

internal state steadily decreases (increasing her resting period) but increases

when interacting with workers. This increase is proportional to the internal

state of the worker who has been contacted. Meaning, a worker with a low

internal state has minimal effect on the queen’s internal state but a worker

with a high internal state increases the queen’s internal state and therefore her

likelihood to begin patrolling the colony.

The queen’s movement [64] [146] around the nest was based on her temporal

behaviour: when she is in the active state, she moves around the space, whereas

in the inactive state, she halts within the grid she had moved in. The contact

behaviour of the queen depended on these temporal behavioural patterns of

active–inactive cycles. In this case, the workers also have active-inactive cycles

which determined their movement around the space and were determined a

priori.

The movement of the queen and workers around the colony was a simple

random walk around the nest space. The next position of the agents is gen-

erated randomly from one of 4 directions, North, South, East and West. The
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movements of the agents are asynchronous, with agents only moving when they

are in an active state. The queen walks around the nest space to contact all

workers in the colony to suppress their internal states. The duration of the

simulation was determined by how long it took the queen to contact all workers

at least once. The simulation was then terminated. This was done because the

purpose of the simulation is to determine the effectiveness of the queen’s patrol

behaviour. If the queen were to miss a worker, this would be a hole in her patrol

strategy as that worker can then develop their ovaries. Various variables were

recorded for analysis, including the queen’s active and inactive periods and the

contacts between the queen and workers.

Internal State Dynamics

The rhythmic cycle of the active–inactive state was simplified into the two time

periods of the active time (ta) and the inactive time (tr). For the worker agents,

ta and tr were kept constant (taconstant
= 20 steps, trconstant

= 100 steps). For

the queen agent, ta was kept constant (taconstant = 20 steps), but tr(t) was mod-

ulated by her internal state, Iq(t), using the dynamics of:

tr(t) = trconstant · e−δ·Iq(t) (2.1)

where trconstant
and δ were constant (trconstant

= 100 steps, δ = 20.0). This was

implemented by having the queen switch from inactive to active if the queen

was inactive and had been in such a state for tr(t). For example, if at time t

the queen became inactive, then the queen would become active at time t + tr.

Iq(t) represents the internal state of the queen. This affects the rest time of

the queen and, therefore, determines how long the queen will spend patrolling.

Increases in Iq(t) lead to a decrease in the inactive time, tr(t), of the queen.
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If the queen has a prolonged period where her internal state is low, then tr(t)

approaches trconstant
.

To test our hypothesis about the feedback mechanisms of internal state and

behaviour, we model the dynamics of the internal states of the queen and work-

ers in the following manner. The dynamics of the internal state of the queen

are given by:

Iq(t + 1) = (1 − ϵ) · Iq(t) + α · δ(−→xq −−→xw) · Iw(t) (2.2)

where time is discrete, (1−ϵ)·Iq(t) is a damping factor, ϵ = 0.01 and is constant.

As the reproductive division of labour enables the queen to be the main producer

of offspring in the colony, there is a compromise between patrolling the colony

and laying eggs. As the internal state of the queen represents the likelihood she

will become active, we use the damping factor to decrease the queen’s internal

state over time naturally. This allows the queen to move to a more restful state

with minimal patrol, assuming workers have a low internal state. The second

term, α·δ(−→xq−−→xw)·Iw(t), is an activation factor. The activation factor increases

the probability of the queen becoming active when the queen contacts a worker

with a high internal state. It is also proportional to the number of contacts with

the workers. α = 0.1 and is constant. −→xg and −→xw denote the [X, Y] position of

the queen and worker respectively, in the 2D nest space, with each agent being a

finite size. The term δ(r) denotes Kronecker’s delta, i.e., its value is zero except

when the distance between −→xg and −−→xWi
is zero, then δ(r) = 1.

The dynamics of the internal state of the workers was given by:

Iw(t + 1) = (1 − β) · Iw(t) + γ − κ · δ(−→xq −−→xw) · Iw(t) (2.3)
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γ represents an activation factor that increases the internal state of the worker

over time as a function of time. This levels off over time as Iw(t) approaches

1, depending on your choice of γ and β. In this case, γ and β were set to

0.0001. Here we chose the constants of the activation factor to reflect the pace

of ovary development in workers observed in previous work where the queen

was removed from the colony [72]. The next term only functions to decrease the

internal state of the worker, Iw(t), when the worker is contacted by the queen

with κ = 0.9009, representing an approximately 90% decrease in the worker’s

internal state.

Spatial Behavioural Dynamics

While we understand that the movement of ants in a real colony are less than

random, for simplicity, we implemented spatial dynamics in the following way:

1. The virtual nest was set with a grid size of L × L (Fig.2.2A) with dis-

tance measured in arbitrary units (simply referred to as units). Each agent was

set to be 5 units long. The ants (agents) were distributed randomly throughout

the nest space at the start of the simulation. The size of the nest space was

dependent on the colony size to keep the density ( N
L2 ) approximately constant

(L was set proportional to the square root of N). For example, when N = 20,

L = 100 units. We controlled L to keep the ant density per space constant (this

assumption was based on empirical evidence, as shown in SI 3 - Experiments

and SI 4 - Experiments).
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Fig 2.2. Schematic picture of the simulation environment A) Grid
structure with the queen and workers. The scale of green to brown represents
how low or high the internal state of the worker is. A blue worker is one which
has been contacted by the queen. B) Contact is established when workers are
within range of the queen. In this instance, the threshold was set to 5 units of
length. C) Two ants contacting each other by touching antennae

2. Every time step the agents move randomly in one of four directions: north,
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south, east, or west (Fig.2.2B) in the grid. The agents are prevented from going

outside of the virtual nest space with a simple check of their next position vs the

position of the boundaries of the space. The agents move at a constant velocity

but when they are inactive they do not move at all.

3. Agents are unable to overlap each other within the single grid.

4. A contact is determined when a worker is close to the queen, within the length

of 5 units (see evidence of the ant’s morphology Fig.2.2C). The queen can only

contact one worker in each time step. Therefore we decided that the queen would

not contact the same worker twice in a row. This is to decrease the prospect

of a worker who has already been contacted recently monopolising contact with

the queen despite other workers being in range in a short period of time. When

the queen contacts the worker, the internal state of the queen and the worker

increase and decrease respectively. The increase in the queen’s internal state

is proportional to the internal state of the worker, while the decrease in the

worker’s internal state is constant (approx. a 90% decrease). Contacts are

checked in the same order as these are stored in an array and associated with

the same worker throughout the simulation. This may introduce a bias to the

simulation. However, as each new simulation has randomly generated positions

for the workers and the queen, any bias’ introduced should be cancelled out by

running the simulation multiple times.

Initial Conditions and Analysis

Conditions of workers and the queen were initialised with parameters that rep-

resent the position, direction, velocity and internal state. The internal states

of the workers were randomly assigned a value between 0 and 0.5. The queen

was given an initial internal state of 0.1. The number of ant workers, N , was

predefined to sample the different colony sizes. The initial rest time of the queen

is set to the maximum rest time (trconstant
= 100). The status of the workers
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and queen (whether it is active or inactive) were randomly assigned at the be-

ginning of the simulation. Each agent, either a worker or the queen, has its

internal state, Iw and Iq, respectively. Iw, the internal state, is assumed to de-

crease when the worker contacts the queen but to increase otherwise (Eq. 2.3).

Iq is assumed to increase when the queen encounters a worker with high Iw and

to decrease in the absence of such an encounter (Eq. 2.2). The queen’s internal

state is assumed to be correlated with her patrol behaviour, i.e., a higher Iq

leads to a shorter resting time, tr.

The simulation ended when the queen had contacted all the workers in the

colony at least once. The simulation was repeated 50 times for each of the

colony sizes N = 20 − 200 increasing N in increments of 20. The colony size

coincides with the range of natural Diacamma cf. Indicum colony sizes [72]. In

every trial, the positions of the workers are reset to another random value (dif-

ferent initial conditions for spatial distributions of workers). The total time of

the simulation, patrol frequency and length of the rest time were recorded. The

internal states of the workers and the contacts between agents were recorded.

Using these variables, the effect of the queen’s patrol behaviour could be anal-

ysed by calculating the average internal state of workers over time, as well as

the distribution of these internal states. Contact rates between the queen and

workers were also calculated based on the number of contacts made between

the queen and the workers within the simulation time. All variables used in the

simulation are shown in Table 2.1.

We tested the robustness of our model in several ways. Firstly, we checked

the initialisation of parameters. By increasing the initial internal of the queen,

we assessed its effect on the system. We found that it had little affect and re-

turned to similar values seen in our original initialisation (see SI 8 - Simulations,

S8 Fig, S9 Fig). We then standardised the time across the colony sizes which
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were investigated to mitigate possible effects due to the system not being in a

steady state. We also found this to have little effect (possibly strengthening our

results, see SI 9 - Simulations, S10 Fig). Finally, we increased β and γ to 10x

their original values. While we found a significant difference in the results (see

SI 10 - Simulations, S11 Fig), the dynamics of the system were unchanged.

Table 2.1. Variables, constants, and initial conditions used in the
agent-based simulation

Variable Symbol Variable Name Value
L Grid length and width 100(when N=20)
N Number of workers (colony size) 20,40,60,80,100,120,140,160,180,200
tr(t = 0) Resting time for the queen Randomly assigned between 0 and trconstant

trconstant Maximum resting time 100
taconstant

Maximum active time 20
δ Delta(constant) 20
ϵ Epsilon(constant) 0.01
α Alpha(constant) 0.1
γ Gamma(constant) 0.0001
β Beta(constant) 0.0001
κ Kappa(constant) 0.9009
Iq(t = 0) Queen internal state 0.1
Iw(t = 0) Worker internal state Randomly assigned between 0 and 0.5
−→xq Queen position Randomly assigned between 0 and L for the [X, Y] position
−→xw Worker position Randomly assigned between 0 and L for the [X, Y] position

2.4 Results

In the experimental results, overall in small colonies with fewer than 100 work-

ers, the queen was able to contact more than 80% of workers in the 20 bouts of

patrols, whereas, in large colonies with more than 100 workers, the queens’ per

worker contact frequency dramatically decreased (Fig.2.3). These results sug-

gest that although the queen increased her patrol effort with increasing colony

size, the efficiency of making contacts between the queen and workers dropped

in the large colonies.
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Fig 2.3. Cumulative proportion of workers contacted by the queen
during patrols at various colony sizes during laboratory experiments

The first set of simulation results displays colony size dependent features

of the queen’s patrol behaviour. Fig.2.4 shows the patrol frequency and rest

time of the queen with respect to colony size. In this case, the patrol frequency
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refers to how often the queen patrols the colony at a given colony size. The rest

time is the total amount of time the queen spends inactive for a given colony

size. Fig.2.4A showed an increase in the patrol frequency of the queen with

respect to colony size (see also SI 6 - Simulations, S6 Fig) due to the increased

internal state of workers. A larger colony size could also mean it takes longer for

the queen to contact each worker. However, the increase in patrol frequency is

driven primarily by the internal state of the queen, due to its effect on her rest

time (see 2.1). Inversely, Fig.2.4B showed that the mean resting time for the

queen decreased with colony size, i.e., as the colony size increases, the queen

increases her patrol effort to contact an increasing number of workers in the

colony. The increase in patrol frequency does not lead to constant patrolling by

the queen at large colony sizes, which would be impossible for a real queen due

to physical restrictions.

These results qualitatively agreed with the experimental data reported by

Kikuchi et al. [72]. Kikuchi et al., through colony size manipulation, also showed

that the queen increased her patrol effort with increasing colony size. This was

also confirmed through our own experiments (SI 1 - Experiments, S1 Fig). As

a next step, let us determine the effectiveness of the queen’s patrol behaviour

in controlling the internal state of workers in the colony.
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Fig 2.4. Patrol Frequency and Encounters (A) Patrol frequency of the
queen as a function of the colony size. The patrol frequency of the queen
increases as the colony size increases. This shows an increase in patrol effort
by the queen. (B) Resting time as a function of the colony size shows an
inverse relationship to the patrol frequency. The mean resting time decreases
with colony size as the queen spends more time patrolling

To determine the effectiveness of the queen’s patrol behaviour, distributions

of worker internal states were calculated over time. Figure 2.5 shows the distri-

butions of the internal states of workers (when N = 20), comparing two cases

where real-time feedback was implemented and not implemented (contact with

the queen had no impact on worker state as a control). Here, we could quantify
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the internal states as a function of time in the agent-based simulations, which

cannot be obtained experimentally.

These results indicate that the real-time feedback model of the queen’s patrol

behaviour suppresses the internal states of the workers effectively with smaller

variance than the case when there is no feedback. Results for a larger colony

size, N = 120, show that the feedback model can be effective in controlling

the internal state of workers when compared to no the feedback case (S5 Fig).

However, there appears to be an increase in the mean internal state and the

variance of the distribution. Therefore, as colony size increases, the effectiveness

of the queen’s patrol behaviour decreases.
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Fig 2.5. Probability distribution of worker’s internal state (N=20)
(Top) Probability distribution of workers’ internal states over time in a colony
of 20 workers with (red) and without (blue) real-time feedback. We compared
the results of simulations with real-time feedback and with a no-feedback case
to study how queen patrol behaviour suppresses the internal state of workers.
No feedback (blue) causes a continuous increase in the internal state of
workers over time, both at small colony sizes and larger colony sizes (see
2.6.11). With real-time feedback in relatively small colonies, the average value
of the workers’ internal states decreases from 0.2361 to 0.1344. (Bottom) This
can be seen more clearly in the bottom plot, with the decrease in the internal
state of workers from the initial value. The intensity of the colour shows the
probability density function, with a larger proportion of workers being close to
the mean. The shift of the distribution for real-time feedback demonstrates
that the patrol behaviour is successful in suppressing the internal states of
workers.

The decrease in the efficiency of the queen’s patrol behaviour can be shown

more clearly in Fig. 2.6 which shows the mean internal states of workers over

time for different colony sizes ranging from N = 20 to N = 200. In smaller

colony sizes, we observe a decrease in the mean internal state of workers as a

function of time from the initial random values of the internal states.

This confirms that the suppression of the internal states was realised suffi-

ciently via physical contact by the queen. This indicates that the feedback loops

between the perception of the internal states and the decrease of the rest time

in patrol worked effectively. Also, in the spatial degree of freedom, the queen

(through her random walk) was able to contact all the workers who were also

walking around randomly even though the colony size increases.

When the colony size increases further, there appears to be an inflexion

point, between N = 80 and N = 100 (Fig.2.6), where the mean internal state

begins to increase rather than decrease as a function of time. This shows a

decrease in the effectiveness of the queen’s suppression of worker internal states

or the start of the failure of the patrol behaviour. This can be seen more clearly

in the larger colony sizes (N = 120 to N = 200). The lack of suppression at
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this stage is due to the lack of contact between the queen and workers and not

the physical limitation of the queen i.e. exhaustion from prolonged periods of

patrolling. While there is an increase in the mean internal state with colony

size, there appears to be relative stabilisation in the mean after some time. As

a next step, let us interrogate the mechanism in the spatial degree of freedom,

namely the number of contacts from the queen to the workers, and vice versa.
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Fig 2.6. Average internal state of the colony for various colony sizes
(N = 20–200 at increments of 20 workers) As the internal states of
workers were initialised randomly between 0 and 0.5, the average initial value
for all colony sizes is approximately 0.25. Due to each run of the simulation
having different end times, the average internal state was calculated by taking
the average of the internal states for simulations that had a run time equal to
or more than the average simulation time. This decreases the precision of the
average closer to the end of the simulation. The error bars were calculated
using the ’std’ MATLAB function, which calculated the standard deviation for
the average internal state of the workers. At smaller colony sizes (N = 20, 40,
and 60), the average internal state of workers decreases as a function of time
and stabilises at a point which is lower than the initial value. As the colony
size becomes larger, there appears to be a transition (at N = 80 and 100)
where there is greater fluctuation in the average values over time. At the
largest colony sizes (N = 140 to 200), there is an increase in the average
internal state of workers over time. Here too there is stabilisation but at a
point higher than the initial value.

By logging the number of contacts that occurred during the simulation,

various contact rates could be calculated. These are the queen contact rate, the

per-worker contact rate and the contact rate between workers. The contact rate

is defined as the number of contacts per unit time. Therefore, the queen contact

rate is the rate at which the queen contacts workers per unit time. While the

per-worker contact rate is the average contact rate of a worker in the colony.

These values were calculated separately, with contacts logged for the queen and

individual workers. Theoretically, assuming an even distribution of contacts

between workers, the per-worker contact rate is equivalent to the queen contact

rate divided by the number of workers. However, the per-worker contact rate

conveys the contact efficiency of the queen and, therefore, the effectiveness of

the queen’s patrol behaviour.

Fig.2.7 shows various contact rates between the queen and workers as a

function of the colony size. Distinctions were made for the contact rate during

the rest cycles (Fig.2.7A) and patrol cycles (Fig.2.7B) of the queen. This was

to demonstrate that the majority of the contacts by the queen were made when

the queen was patrolling. Fig.2.7C shows the overall contact rate for the queen

increasing (black line) while the per-worker contact rate decreases (blue line).
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Despite the increased patrol effort by the queen (shown in Fig.2.4), the contact

efficiency of the queen decreases with colony size. This is due to the insufficient

increase in the queen contact rate.

Note here that all the results obtained in the agent-based simulations were

predicated on constant density. The results so far indicate that while the queen

contacts more workers in larger colonies, based on more frequent patrols, the

lower contact per worker leads to an increase in the mean internal state of

workers in the colony due to the decrease in contact efficiency.
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Fig 2.7. Contact rates between the queen and workers (A) The queen
contact rate and per worker contact rate during the rest cycles of the queen.
While there is a slight increase in the queen contact rate, overall the trend is a
decrease in both the queen and per-worker contact rate with colony size. (B)
The queen contact rate and per worker contact rate during the patrol cycles of
the queen. There is an increase in the queen contact rate, showing that more
workers are contacted during the patrol cycles of the queen than during the
rest cycles. However, there is still a decrease in the per-worker contact rate,
similar to Fig.2.7A & 2.7C. (C) The overall queen contact rate and the
per-worker contact rate. The overall queen contact rate increases with colony
size. This reflects an increase in the patrol effort as well as the increase in
colony size. However, the per-worker contact rate decreases with colony size,
showing a decrease in the contact efficiency of the queen.

The loss of contact efficiency may be due to a colony size dependent effect

on the patrol behaviour of the queen.

This should not affect how workers contact each other. To test this, we

quantified the contact rate between workers, shown in Fig.2.8. This contact

rate reflects the general contact rate between workers, i.e. how many times

workers contact each other. The per-worker contact rate here is the contact

rate that worker A has with other workers in the colony. Similar to Fig.2.7C,

the contact rate between workers increases as a function of colony size, but the

per-worker contact rate between workers decreases. Note again that the results

were obtained based on constant density. The per-worker contact rate decreases

for the same reason it decreases for the queen. The contact efficiency is lost at

larger colonies because the agent’s movement is insufficient to cover the space.

However, for the queen, we can relate this to her behaviour because her internal

state is related to her movement.

In comparison, the worker’s movement stays the same at all times. Hence,

the loss in per-worker contact rate between workers is likely more significant than

the drop in per-worker contact rate with the queen. Although there are more

workers than the queen and as the simulation ends once the queen has contacted

every worker at least once, there is a more considerable drop in the per-worker

52



contact rate with the queen in Fig.2.7C than in Fig.2.8. The workers do not

have to have unique contact with other workers. In contrast, the queen does

have unique contacts because she needs to address every worker individually.

Fig 2.8. Contact rate between workers The contact rate between workers
(black line) increases with colony size. An increased colony means more
workers so there will be more contacts in general. When looking at the
per-worker contact rate (blue line), there is a decrease with colony size similar
to that seen in Fig.2.7C. There appears to be a decrease in the contact
efficiency not just between the queen and workers but also between workers.
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2.5 Discussion

Our results from the agent-based simulations revealed that the real-time feed-

back system between a queen and workers can have an influential role in main-

taining and stabilising the internal states of the workers under various colony

sizes. The simulations showed that, with a constant density, the queen in-

creased her patrol frequency as the colony size grew (Fig.2.4A), and as a result,

she could suppress the internal states of workers effectively (Fig.2.5). The un-

derlying feedback mechanism is as follows: When the average internal state of

workers increases, the queen frequently perceives a larger internal state, leading

to an increase in the queen’s internal state (2.2). This increase in the queen’s

internal state in turn leads to an increase in the queen’s patrol frequency by

decreasing her resting time (2.1). In short, as the colony size increases, the per-

worker contact rate (Fig.2.7C, blue line) decreases, which triggers an increase in

the queen’s patrol frequency (Fig.2.4A). Hence, the queen’s sterility-maintaining

behaviour in response to an increasing colony size is revealed. However, this was

only the case until the colony reached certain colony sizes. In larger colonies,

N = 120 to N = 200, the queen contact efficiency became low (Fig.2.7C), and

consequently, the internal states of workers were no longer effectively suppressed,

i.e., the average internal states increased as a function of time (Fig.2.6) and at

the end of the run many workers were ready to perform self-reproduction.

This simulation result was qualitatively consistent with what was observed

in real Diacamma colonies. Namely, a positive association between the queen

patrol effort and colony size (SI 1 - Experiments, S1 Fig, see also [72]), and the

effective suppression of worker reproduction in small colonies and less effective

suppression in larger colonies [145] [67]. The feedback loops through physical

contact between queens and workers are sufficient to suppress the internal state

of workers in small colonies (Fig.2.5). In theory, such colony size dependent
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worker reproduction is beneficial in terms of the inclusive fitness of workers

in monogynous and monandrous hymenopteran colonies [110]. Suppression of

worker’s reproduction when the colony is small (ergonomic stage) contributes

to rapid colony growth. When the colony is large (reproductive stage), worker-

produced eggs are less policed and more likely to survive [67], which can imply

that the selfish option (worker reproduction) may benefit workers.

We are the first to explicitly state a hypothetical proximate mechanism

generating the colony size dependent character expression and the shift from

ergonomic to reproductive stages. More importantly, both the reproductive di-

vision of labour among a queen and workers and the switch in the colony stages

(from ergonomic to reproductive) are simply achieved by the decision-making

of member individuals who just rely on personally acquired local information

of recently encountered individuals. Decentralised control and self-organisation

are thought to be the mechanisms that give rise to various functions of social

insect colonies, such as the allocation of the workforce to various tasks that the

colony needs, and selective recruitment of foragers to better food sources among

the food sources available [147] [148] [149]. These theories commonly argue that

single colony members have access to only limited “local” information, but they

perform adaptively as a whole [3] [150].

So far, the “overall” frequency of encounters with other individuals related

to local density in a nest has been often discussed as a piece of effective colony-

size information for each colony member to decide their behaviour [132] [136].

However, in this study, we assumed that the individual density per nest space

is constant even if the colony size changes. This minimises changes in local

density being the primary cause of the contact frequency. We consider that in

real ants a positive correlation of individual density per space with colony size

can occur. This can occur in situations in which ants have physical difficulty
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in expanding their own nest space. However, in the absence of such a spatial

constraint, it would be more natural to assume that ants extend the housing

architecture of the nest as the colony grows. For this reason, we consider that

local density, or the simple frequency of encounters, does not generally serve

as reliable information on total colony size. Actually, in Diacamma (SI 4 -

Experiments, S4 Fig) individual density per nest space is likely regulated to

be more or less constant. Also, in some ants, workers change their behaviours

depending on density, thereby contact frequency does not linearly increase with

density [136].

In this computational study, we show that even at a constant individual

density per nest space, colony size dependent behaviours both in queens and

workers emerged. This demonstrates that the behavioural changes caused by

the feedback loop (which couples the internal state of the queen and workers)

code the information regarding the contact rate of the individual worker by the

queen. Note that in our simulations all the agents are assumed to exhibit a

random walk, i.e., no grouping or clustering, in a constant individual density

per space. This demonstrates that it is not the simple overall frequency of

encounters, but instead, the two types of specific contact rates that play a role;

the contact rate of the queen with reproductive workers and the contact rate

of the worker with the queen. The former contact rate is a measure of the

inverse of how completely the queen can make contact with workers. The latter

is how often individual workers can be contacted by the queen. Due to the

contact rate of the individual worker decreasing with colony size, the internal

state of the worker increases. Through the resulting change in the internal

states, the queen’s patrol behaviour is controlled as if she perceives the colony

size as discussed previously. Furthermore, the queen patrol efficiency decreases

in very large colonies presumably due to some constraints (see later), which
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leads to the colony stage shifting from the ergonomic stage to the reproductive

one, a general phenomenon considered to be adaptive. This discovery is quite

novel in that it reveals a single real-time feedback system can control both

suppression of worker reproduction in small colonies and its release in large

colonies. In monogynous colonies, where there is only one reproductive female

(queen), when the queen pheromone is transmitted by direct physical contact

between the queen and workers, we consider that this mechanism can generally

operate. When these situations arise, the queen-to-worker ratio in the group

can be of key importance.

Now we consider the generality of the model presented in this thesis in rela-

tion to both Diacamma cf. Indicum and other social insects. As we have shown,

our model is able to replicate the patrol behaviour observed in the queen for

Diacamma cf. Indicum, with increases in the patrol frequency as a function

of colony size. Additionally, previous work [72] has shown the colony size dis-

tribution for Diacamma with most colonies containing less than 120 workers.

From our results (Fig.2.6), we show that there is a transition between N = 80

and N = 120 where the queen’s control on worker internal state weakens, with

an increase in the internal state of workers. Thus, our model adds value in

its explanation of the field observations of real Diacamma colonies. With re-

gards to other social insects, the applicability of our model is dependent on the

way information is transmitted across the colony. For Bumblebees and Honey-

bees [72] where queen presence is transmitted through low volatility CHCs, our

model could be relevant and adapted to investigate the effectiveness of the queen

presence in those colonies and the suppression of worker reproduction. Other

eusocial insects such as Pachycondyla and Dinoponera use dominance interac-

tions from the queen to control worker reproduction in the colony [151] [152].

For such insects, our model could be applicable as a mechanism for the enforce-
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ment of the reproductive division of labour. However, for social insects with

much larger colonies (such as leaf cutter ants) it would likely be impractical

given decreases in queen patrol effectiveness shown in this thesis. Queen patrol

behaviour would have to be observed in such colonies and other mechanisms

would have to be taken into account when determining the importance of such

a behaviour in the dynamics of the colony.

2.6 Supporting Information

2.6.1 SI 1 - Experiments

The frequency of patrols in 12h was positively associated with the colony size

(GLMM, χ2 = 9.396, P = 0.002, S1 Fig A). The mean resting time (time

between two serial patrols) was negatively correlated with the colony size (χ2 =

11.202, P = 0.0008, S1 Fig B). This finding confirms the results of Kikuchi et

al. [72].

2.6.2 SI 2 - Experiments

We focused on the first 20 patrol bouts for each queen. The mean patrol duration

was 40.6 ± 36.0 sec (SD), and each queen contacted on average 13.1 workers

per patrol. The longer the patrol duration, the more workers were encountered

during the patrol (GLMM, χ2 = 475.42, P < 0.001). However, the mean patrol

duration was not significantly correlated with colony size (GLMM, χ2 = 1.148,

P = 0.264). The cumulative percentage of workers that a queen encountered

in 20 patrols was negatively associated with colony size (GLM, colony size:

z = −5.93, P < 0.001, S2 Fig).
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2.6.3 SI 3 - Experiments

Finally, we analysed the spatial distribution of workers and the queen, because

we had an impression that worker density in the vicinity of the queen is regu-

lated to be relatively constant. Note that we provided an artificial nest of the

same design to all 15 colonies. The nest space (the depression of the plaster

floor) seemed wide enough for even the largest colony containing 214 workers.

Inside the nest, workers tended to aggregate around the queen. Within such an

aggregation, spacing between workers seemed more or less constant irrespective

of the colony size: in large colonies, a wide space within the nest was occupied

by such an aggregation, whereas in small colonies, the aggregation used only a

small portion of the nest space (S3 Fig).

2.6.4 SI 4 - Experiments

To test this observation statistically, using the video data for the 15 colonies of

Diacamma, we made a snapshot of the inside of a nest every 2h, for a total of

five times for each colony. We counted the number of workers inside the circle

of 2.5-cm radius, the centre of which was positioned on the petiole of the queen.

We only counted workers who had over 50% of the body area inside the circle.

We excluded snapshot data in which the queen stayed near the wall (within

2.5-cm). The worker density in the circle was not significantly correlated with

the colony size (GLMM, χ2 = 1.302, P = 0.24354, S4 Fig), suggesting that the

local worker density around the queen was kept roughly constant regardless of

colony size (mean ± SD: 7.04 ± 1.89 workers). Thus, for the queen, a simple

encounter frequency with workers is not a reliable proxy of the colony size.
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2.6.5 SI 5 - Simulations

Using data we collected from the agent-based simulation, we plotted the prob-

ability distribution of worker internal states for a larger colony size (N = 120)

to observe the effect of colony size on the distribution over time. Our real-time

feedback was effective in controlling the internal state of workers over time (S5

Fig). With no feedback, workers’ internal states simply increase. Although, at

the larger colony size, there is an increase in the mean internal state and the

variance of the distribution. This reflects a weakening of the control the queen

has on the reproduction of workers at larger colony sizes as opposed to smaller

colonies.

2.6.6 SI 6 - Simulations

Previous work of Kikuchi et al. [72] found that while the rest time of the queen

decreased with colony size, the patrol time did not seem to significantly increase.

We reflected this in the simulation by setting the patrol time of the queen to

be constant. However, as shown in Fig 2.4A, the patrol frequency of the queen

increases with colony size. S6 Fig shows the queen’s activity cycle for N = 20

and N = 200. In the simulation code, when the queen is active (and therefore

patrolling) the variable ”QueenActive” is set to 1, otherwise, it is set to 0.

Though the active time of the queen stays the same, the decrease in the rest

time causes shorter delays between each patrol when the colony size is large.

This is demonstrated in S6 Fig where the increased closeness of the patrols can

be seen for N = 200.

2.6.7 SI 7 - Simulations

The reason for this increase in patrol frequency is the internal state of the queen.

The queen’s internal state is a proxy for a transition probability. If the queen
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is inactive and interacts with workers of a high internal state, it increases the

probability that the queen will become active and patrol the colony. S7 Fig

shows the queen’s internal state over time for colony sizes N = 20, 100 and 200.

As the colony size increases, the internal state of the queen also increases, with

a similar trend for colony sizes. There are periods where the queen’s internal

state is high, followed by significant drops. The larger colony size means that

there are more workers to interact with and patrol. From Fig 2.6 we see that

higher colony sizes have a higher average internal state for the workers. This

is reflected in the queen also as a higher internal state as she interacts with

workers which have an average higher internal state in larger colonies.

2.6.8 SI 8 - Simulations

To check that the dynamics are not influenced by the initialisation of the internal

state of the queen, we also ran simulations where the internal state of the queen

was initialised at 0.8 (instead of the default 0.1). S8 Fig shows that, despite a

different initial value, the queen’s internal state mirrors the trends shown in the

previous figure, with an increase in the queens internal state as the colony size

increases. We also compared directly the internal state of the queen at N = 20

when the initial value was 0.1 and 0.8 (S9 Fig). This confirmed that the queen’s

internal state returns to similar values despite the increase in the initial value

showing the robustness of the dynamics of the system.

2.6.9 SI 9 - Simulations

To further confirm our results, we changed the end criteria of the simulation.

Initially, the simulation would end when the queen had contacted all workers

in a colony. The time it took to accomplish this differed between colony sizes.

Thus, the results may not be reflective of the system at a steady state. To
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account for this, we simulated 300 timesteps across all colony sizes (shown in

S10 Fig). We found that the effectiveness of the queen’s patrol is strengthened.

While there is still an increase in the average internal state of workers as the

colony size increases, the suppression of the internal state of workers continues

for larger colony sizes than what is shown in Fig 2.6. This means that our

results may underestimate the effectiveness of the queen’s patrol behaviour.

2.6.10 SI 10 - Simulations

However, the effectiveness of the queen’s patrol behaviour is also linked to how

the workers develop their internal state. What would happen if workers de-

veloped their internal state more rapidly? To answer this, we increased the

constants β and γ. From Eq. 2.3, β and γ control the rate at which workers

develop their internal state. By increasing their value to 10x the original value,

S11 Fig showed that the effectiveness of the queen’s patrol behaviour in this

model is reliant on the rate that workers develop their internal state. The dy-

namics are similar, with weaker control as the colony size increases, but total

loss of control occurs at smaller colony sizes. In the main results β and γ were

set to approximate the development rate found in the previous work of Kikuchi

et al. [72].
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2.6.11 SI Figures

S1 Fig. Changes in the (A) frequency of patrol behaviour and (B)

mean resting time of the queen at various colony sizes (N = 3 colonies

per colony size)
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S2 Fig. Proportion of workers contacted by the queen at least once

in 20 patrol bouts at various colony sizes (N = 15)
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S3 Fig. Aggregation patterns of Diacamma individuals at various

colony sizes in the artificial nest
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S4 Fig. Density of workers within a 2.5-cm radius of the queen at

various colony sizes (N = 15)
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S5 Fig. Probability distribution of worker’s internal state (N = 120)

(Top) The probability distribution of workers’ internal states over time in a

colony with 120 workers with (red) and without (blue) real-time feedback. The

average value increases from 0.2473 to 0.2888. (Bottom) The mean and variance

are greater at N = 120 compared to N = 20 seen in 2.5. This shows a decrease

in the effectiveness of the queen’s patrol behaviour at larger colony sizes.
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S6 Fig. Activity cycle of the queen at N=20 and N=200 The activity

cycle of the queen changes with colony size. As the colony size increases, the

rest time of the queen decreases. This increases the frequency of patrol for the

queen at larger colony sizes. Here this is seen as clusters of blue lines, with more
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clusters when N = 200.

S7 Fig. Queen internal state over timestep The queen’s internal state

changes over time and is coupled with the internal state of workers. Workers in

a larger colony have a higher average internal state, causing the internal state

of the queen to increase with colony size.
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S8 Fig. Initialising the queen’s internal state at a higher value We

initialised the internal state of the queen at 0.8 rather than 0.1. The initial value

of the queen’s internal state does not affect the dynamics of the system. Given

a higher initial value, the queen’s internal state returns to the normal range

observed in the previous figure, with larger colony sizes causing an increased

internal state as before.
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S9 Fig. Comparison between different initialised value Comparing the

internal state of the queen for the same colony size with different initial values,

we find that there is a convergence in the queen’s internal state after approxi-

mately 400 time steps. This shows that the initialisation of the queen’s internal

state does not affect the dynamics.
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S10 Fig. Running simulation for longer period of time By running the

simulation for a consistent period of time for each colony size, it is more likely

that a steady state is reached during the course of the simulation. With this,

we see greater control by the queen over the internal state of workers. There

is still weakening in the effectiveness of the queen’s patrol behaviour but the

reversal of the suppression occurs much later at the largest colony sizes.
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S11 Fig. Increasing β and γ By increasing β and γ, the rate that workers

develop their internal state, we showed that the queen has weaker control over

the reproduction of workers. Loss of control begins even at smaller colony sizes

such as N = 40.

74



Chapter 3

Investigating the evolution

of altruistic behaviour in

ant colonies using an

evolutionary agent-based

simulation

3.1 Introduction

In eusocial insects, such as ants, there is a division of labour between repro-

ductive and non-reproductive individuals in a colony [42]. In some ant species,

nestmates accept sterile non-nestmates [65], while non-nestmate queens can be

violently attacked. Workers also police each other and enforce the collective
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decision not to produce eggs individually. They allow the queen to make eggs

for the colony instead [67] [68] [69]. In Chapter 2, we focused on the queen’s

role in maintaining the division of labour in Diacamma through her patrol be-

haviour. In the following chapter, we will be looking at the worker’s role and

how the reproductive division of labour benefits them. The evolution of altru-

istic behaviour displayed by non-reproductive individuals is mysterious, given

that direct fitness usually entails passing on one’s genes via reproduction. In

eusocial insects, members of the colony are typically split into different castes.

These include queens who reproduce and workers who forage, construct the nest

and raise the queen’s offspring [11] [59].

Due to caste differences [61] [62], interactions between individuals are depen-

dent on the status of the individuals, with some nestmates being dominant over

others. Dominance is vital in regulating reproduction portioning, and this dom-

inance is determined through physical interactions. In Diacamma cf. indicum

(from Japan), workers retain the ability to produce eggs [31]. The queen sup-

presses the ovary development of workers [31] by making physical contact with

the worker and repressing dopamine levels in the worker’s brain [70], which has

a gonadotropic function i.e. suppresses the ovary development of the worker.

When the queen interacts with a worker, the queen gains information about

the worker’s internal state [31]. Simultaneously, the worker senses the queen’s

presence and suppresses the worker’s ovary development. As the reproductive

division of labour can cause the conflict between the queen and workers [54],

policing is needed to enable cooperation and prevent selfish behaviour [153] [154].

To this end, policing by workers and refraining from reproducing in the

queen’s presence were studied [153]. Worker policing and self-restraint lead

to the inhibition of direct reproduction. These are useful for maintaining the

homeostatic equilibrium of the colony. The queen must regulate reproduction
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to ensure a balance in resource allocation, with workers allocated to different

tasks needed to sustain and increase the survivability of the colony. This balance

includes brood care, foraging, defending the nest site and nest maintenance [54].

Punishments for workers developing ovaries and laying eggs include eating the

eggs of the rule breaker and immobilising the rule breaker [71].

In Diacamma, the cost hypothesis suggests that worker policing behaviours

in ant colonies have evolved as a response to the potential costs associated with

the reproduction of other workers [153] [155]. The cost hypothesis proposes that

worker policing behaviour arises because the colony as a whole may suffer if too

many worker-laid eggs develop into males. This is because male ants do not

contribute to tasks such as foraging, nursing, or colony defence. The relatedness

hypothesis is another explanation for the occurrence of worker policing. This

hypothesis is based on the idea that worker policing evolved as a mechanism

to enhance the relatedness between individuals within the colony [156] [157].

Both of these seek to explain the development of worker policing in Diacamma

because, without a queen, workers begin to develop ovaries [72]. It is worth

noting that the cost and relatedness hypotheses are not mutually exclusive.

Darwinian fitness is based on the survival and reproduction of an individual

[158]. An individual’s offspring inherits its characteristics with slight variation,

which leads to an accumulation of traits that increase the individual’s survival in

a given environment over evolutionary time [159] [160]. Experimental evidence

has shown the different mechanisms which can affect the evolution of different

species and how it may even be possible to predict evolutionary outcomes [161]

[162] [163] [164] [165] [166].

However, Darwinian fitness does not explain the behaviour of workers re-

fraining from reproducing. It seems counterintuitive that workers would refrain

from reproducing to assist the queen’s reproduction. If workers largely refrain
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from reproducing, they cannot produce offspring that inherit their trait of not

reproducing. The lack of offspring would lead to the prediction that individuals

work selfishly to maximise their fitness and pass on their genes via reproduction.

The concept of inclusive fitness, introduced by W.D Hamilton [167] [39],

solves this contradiction. Inclusive fitness accrues benefits beyond the individ-

ual. The rule (known as Hamilton’s Rule) posits that a worker should perform

a costly action if the benefit to a related individual outweighs the cost. Alge-

braically, this can be represented as C < r · B. Where C is the fitness cost

to the individual, r is the genetic relatedness between the actor and the re-

cipient, and B is the benefit to the recipient. Further work has shown how

inclusive fitness provides a conceptual framework for understanding social or-

ganisation [168] [169].

Such organisation includes population structure [170], observed cooperative

behaviours [171] and the balance between cooperation and selfishness [172].

There has been work to relate inclusive fitness to gene propagation and the

mechanisms by which inclusive fitness could affect the genes and phenotype of

organisms [173] [174]. This applies Hamilton’s theoretical work to experimen-

tal work. Inclusive fitness means that if raising the queen’s offspring (highly

related to workers) is more beneficial in terms of their inclusive fitness, workers

contribute to the colony’s maintenance, which increases the colony’s breeding

capacity.

Part of our integrated simulation involves a genetic algorithm. A genetic al-

gorithm (GA) is a method of optimising some attributes using evolutionary and

genetics principles [175] [176] [177] [178]). There is a genetic component to the

expression of social behaviours in workers. This genetic component is affected by

the propagation of genes in the workers over the generations. Therefore, mon-

itoring this change over time is necessary, noting its influence on the worker’s
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inclusive fitness. The genetic algorithm then allows for the maximisation of

inclusive fitness and the ability to study the evolution of altruistic behaviour

from the ground up.

In work by [179], authors provide a set of criteria that could be used for

recognising and analysing genes for altruism. These provide a set of testable

hypotheses which assist in the description of the evolution of genes for altru-

ism. The first of these criteria is satisfying Hamilton’s rule. The rule, named

after W.D Hamilton [167] [39], is related to the number of offspring equiva-

lents the individual saves or raises. The benefits to related individuals must

outweigh the cost of altruistic behaviour. The next criterion is that altruistic

genes should be environmentally sensitive. Meaning the genes are expressed

differently depending on the social context. In the case of social insects, differ-

ent expressions could be found between the reproductive queen and supposedly

non-reproductive workers. The third criterion involves the increasing complex-

ity of the altruistic genes with increased social-behavioural sophistication. The

increased complexity could entail morphological changes that accommodate in-

creased performance in a particular role.

The next criterion entails the co-evolution with/dependence on the evolution

of genes for kin recognition. Kin recognition is also a prerequisite of fulfilling

Hamilton’s rule as the benefits of altruistic behaviour should, preferably, go to

the kin of the selfless individual. Next is the at least partial additive nature of

the altruistic genes. Altruism requires heritable variation, meaning the genes

for altruism should be responsive to kin-mediated selection. The penultimate

criterion is the exhibition of strong pleiotropy of the genes. The final of these

criteria is the genes underlying altruism may reside in regions of low recombina-

tion, exhibit co-expression and show modular genetic architecture. The genes

may become linked into gene complexes that collectively determine worker-like
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and queen-like traits. The criteria laid out will assist in searching for genes that

could code for altruistic behaviour observed in various social insects, including

Diacamma cf. indicum from Japan. Though these are not strict criteria.

In this thesis, we studied the balance in the evolution context between self-

less and selfish genes linked with social behavioural patterns in ant colonies. To

this end, we integrated a genetic algorithm and agent-based simulation to re-

alise reproductive allocation conflict from the perspective of the fitness function,

when workers can directly produce offspring or contribute to the maintenance

of colonies. Our approach in computational biology is to use the fitness func-

tions as an optimisation function in the genetic algorithm over colony genera-

tions, and reflecting the phenotype of genes, use the agent-base simulations and

population dynamics to include the role of queen and workers such as patrol

behaviour, ovary developments, colony maintenance, and so on. Notably, we

investigated the evolution of altruistic social behaviour in workers over genera-

tions of colonies, which leads to behaviours such as worker policing, caring for

the queen’s brood and nest maintenance. The propagation of altruistic genes

over generations could then be observed to study the stability of the genes under

the optimisation of inclusive fitness functions [173] [174] [110].
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3.2 Methods

Table 3.1. Variables and Constants

Variable Symbol Variable Name

x Constant in Eq.3.1b
tt Time since queen contact
TWi

Uncertainty
Mi Memory of worker i
IWi Internal state of worker i
tri Rest time of worker i
tai

Active time of worker i
trmax

Maximum rest time
tamax

Maximum active time
ρ Genetic predisposition towards altruism
si Social strategy of worker i
x Constant in Eq.3.7
Ig Internal state of the queen
tr Rest time of the queen
ta Active time of the queen
σ Breeding capacity
Z Eggs which grow into adulthood per unit work
q Relative fertility of the queen
W Number of workers
V Modulating variable determining when workers lay eggs
mi Worker derived offspring
mj Offspring derived from other workers
V B
A Kin value

φWi Worker inclusive fitness
φQ Queen inclusive fitness
k Queen effective paternity

ρMut
i Mutated genetic predisposition towards altruism
Si Probability of adding or taking away from the gene
ri Mutation range
ai Mutation step
T Final simulation timestep
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3.2.1 Simulation Design

Exploring the Phenomenon of Altruism

For the current work, we introduced a variable representing the genetic predis-

position, ρ, towards altruism. The genetic predisposition for altruistic behaviour

affects time spent on social/selfish behaviour. Workers were assigned a genetic

trait ρ where 0 ≤ ρ ≤ 1. If ρ = 0, the worker is entirely selfish while if ρ = 1, the

worker is completely altruistic. In this case, selfishness means the worker forgoes

nestmate responsibility so it can reproduce for itself. On the other hand, per-

fect altruism means the worker spends all their active time on social behaviours

(nest maintenance, worker policing, etc.) and does not reproduce. The genetic

predisposition towards altruism is shared between every worker in a colony and

uniformly distributed between the initial colonies generated at the beginning of

the simulation, in the range [0,1].

We integrated this along with equations from previous work by [110] to

form an evolutionary agent-based simulation. [110] used dynamic game analysis

to show how workers could maximise their inclusive fitness by changing their

social strategy. The inclusive fitness function was utilised to optimise the social

strategy of the queen and workers during the calculation process [110]. Their

work included calculating the marginal value of new workers, representing the

indirect future benefit of producing new workers. The model by [110] also

allowed the individuals to know the colony’s lifespan, and so the marginal value

of new workers decreases until the end of the colony’s lifespan.

In our study, however, we used the inclusive fitness function as an evaluator

to select colonies with the highest inclusive fitness. This high inclusive fitness

results from the cumulative effects of the mutual interaction between agents

in the colony that are influenced by their genetic predisposition. Our study

is driven by social and genetic factors that determine the selection of colonies
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based on their inclusive fitness. The model does not require the specificity of

particular altruistic genes that code for altruistic behaviour. Altruism could

be due to specific genes or the cumulative minor effects of many genes seen in

complex traits such as intelligence [180]. It’s important to note that ρ does

not necessarily represent a gene ”for” altruistic behaviour. Like there are no

genes ”for” each part of the body, as argued by [181], an organism’s genetics

mediate the development of the body’s features. In this context, ρ represents a

cumulative genetic propensity towards altruistic behaviour. It can be viewed as

a variable that describes the continuity between the two evolutionary strategies

of selfishness and altruism, with each colony having a different balance.

While the work of [110] included terms which consider the proportion of

males and females, there is no explicit inclusion of males in this simulation,

so those terms were excluded from the equations to follow. This was done as

this study is interested in the development of altruistic behaviour in workers,

who are female, and does not directly deal with the conflict between the queen

and workers in terms of male parentage. This is rolled into the dynamics of the

interactions between the queen and workers and how that affects their behaviour

both over time and over the generations. We believe the consequences of this

exclusion to be minor due to the limited role of males with regard to nest

maintenance and brood care. The terms introduced in this chapter are necessary

when investigating the benefit to the worker. Analysing this through the lens of

inclusive fitness requires a genetic component that can be optimised to increase

the inclusive fitness of workers to the maximal extent. This can then be used to

determine what type of behaviour should be expected from workers to maximise

their inclusive fitness. The model in this chapter is an extension of what was

presented in Chapter 2, designed to keep the aspect of the previous work which

showed the effect of the queen’s patrol behaviour on worker reproduction but
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now includes more dynamic behaviour for workers, whose behaviour changes

based on social interactions.

Internal state

Here, we used the population dynamics to allow the agent-based simulations to

consider the workers’ social strategy. The internal state of the worker deter-

mines the social strategy. The internal state of a worker represents its ovary

development. The internal state of the worker is defined as:

IWi
(t + 1) = (1 − β) · IWi

(t) + γ + Mi(t) − (κ · δ(−→xg −−−→xWi
) · IWi

(t)) (3.1)

where time is discrete and IWi
(t) is the internal state of worker i. β and γ

are constants and Mi(t) is the memory of the worker. This formulation takes

into account multiple components. First, without the queen’s contact, workers

increase their internal state over time. Constants β and γ determine the rate

at which the internal state of the worker develops. The constants were chosen

to reflect a rate similar to observations made in previous work [72].

Second, after being recently contacted by the queen, workers exercise re-

straint and do not increase their internal state for some time. This means

workers have a sense of memory concerning the queen’s presence. Ants have

been shown to possess some capacity for learning and cognition [41], so includ-

ing a variable that represents this is not unfounded. This is reflected in the

parameter Mi(t). Mi(t) represents the memory of the worker and is defined as:

Mi(t) =
IWi

(t) · β − γ

TWi(t)
(3.1a)

where TWi
(t) determines how long it takes until the worker forgets the
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queen’s presence. This effectively cancels out the terms (1 − β) · IWi(t) + γ

in Eq.3.1 to give a delay before the internal state of the worker begins to in-

crease. Previous work [182] has explored the role of memory in the foraging

Drosophila and defined memory loss as increasing uncertainty. Here, the un-

certainty relates to the queen’s presence i.e. if the queen is still present in the

colony. If enough time has passed the queen’s presence is forgotten and the

worker begins to develop ovaries. This uncertainty is captured in TWi(t) and is

defined as:

TWi(t) = 1 + e−x+tt (3.1b)

where tt is the elapsed time since the previous contact with the queen. x

is a sufficiently large constant such that at time tt = 0, e−x+tt is small. The

internal state of the worker, with memory, means when the queen has recently

contacted the worker, there is a delay before the worker increases their internal

state. This reflects the restraint shown while the worker is aware of the queen.

The delay can be adjusted by adjusting the constant x in Eq.3.1b.

The final component is the interaction effects with the queen. When workers

interact with the queen, the queen suppresses their ovary development. The

variable κ is a constant representing the effectiveness of suppressing the internal

state of the worker by the queen. In this case, κ = 0.9009. This leads to a 90%

decrease in the worker’s internal state, making the queen’s suppression highly

effective individually. −→xg and −−→xWi are the positions of the queen and worker

i respectively. δ(r) denotes Kronecker’s delta function, i.e. its value is zero

except when the distance between −→xg and −−→xWi is zero, then δ(r) = 1. This

means that when the queen and worker are close together, an interaction takes

place, which decreases the internal state of the worker, thereby suppressing their

reproductive capability.
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In the simulation, workers in each colony were initialised with internal states

uniformly distributed in the range [0,1]. Contact between the queen and the

worker is only established when their distance is within a specific range. This

reflects the physical communication, which would typically be done by extending

the antennae between two ants.

For the queen, the internal state represents the queen’s likelihood of becom-

ing active. The queen patrols the colony when active. This means the queen will

patrol more when her internal state is high; when her internal state is low, the

queen will patrol less. The internal state of the queen is affected by her interac-

tion with workers in the colony. The internal state of the queen is determined

by:

Ig(t + 1) = (1 − ϵ) · Ig(t) + (α · δ(−→xg −−−→xWi
) · IWi

(t)) (3.2)

where ϵ and α are constants (0.01 and 0.1 respectively). The internal state of

the queen generally decreases with no contact with workers, meaning the queen

can spend more time being inactive. When the queen is inactive, she lays more

eggs and produces more workers as necessary. This is captured in the damping

factor (1 − ϵ) · Ig(t). When contact with workers is established, the queen’s

internal state increases and the queen becomes more active in patrolling the

colony and suppressing the development of the worker’s internal state. This is

proportional to the level of development sensed by the queen from the worker.

So, if the queen encountered a worker with a high internal state, that would

make the queen more active than encountering a worker with a low internal

state. This is captured in the delta function, taking into account the positions

of the queen (−→xg) and worker (−−→xWi
). α acts as the sensitivity parameter for the

queen to the internal state of the worker.
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Active and Inactive time

Previous work by [134] has shown the rate of interactions can be a way for

workers to regulate foraging behaviour. Here, rather than the interaction rate,

the interaction itself regulates worker activity, with the inactive time and active

time being linked to the internal state, IWi
(t), of the worker.

The inactive time is defined as:

tri(t) = trmax
· e−δ·IWi

(t) (3.3)

and the active time:

tai
(t) = tamax

− tamax
· e−δ·IWi

(t) (3.4)

where δ is a constant.

trmax and tamax are constants that determine the maximum time spent being

inactive and active, respectively. This formulation means that as the internal

state of the worker increases, the inactive time decreases. On the other hand,

when the internal state of the worker increases, the active time also increases.

When the worker is active, the worker will move around the nest and engage in

various activities. These include both altruistic and selfish behaviours, such as

nest maintenance and taking care of the worker’s offspring respectively. When

the worker is inactive the worker is in a state of rest. While the worker’s inter-

nal state affects the worker’s activity cycle, it also influences worker offspring

production. As the queen can influence the internal state of the worker, this

means the activity cycle of the queen is intertwined with the activity cycle of

the worker and, therefore worker offspring production.

For the queen, the inactive and active time is calculated similarly to the

workers’ and is linked to the queen’s internal state.
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Inactive time:

tr(t) = trmax
· e−δ·Ig(t) (3.5)

Active time:

ta(t) = tamax
− tamax

· e−δ·Ig(t) (3.6)

Ig(t) is the internal state of the queen. During her active time, the queen

patrols the colony to suppress the internal state of workers. The queen’s inac-

tive/rest time is spent laying eggs, which are reared to maturity by the workers

in the colony.

Social strategy of the workers

With the internal state of the workers now established, we integrate this into

the social strategy of the workers. Each worker had a social strategy that

determined the resources the worker invested towards social tasks in the colony.

As workers’ internal state develops and they get closer to laying their eggs, they

will change their social strategy to be less social. This is because, as the worker

gets closer to laying its eggs, it will become more selfish and want to take care

of its offspring. Therefore, the worker social strategy is determined as follows:

si(t) =
1

1 + e−x(1−2·IWi
(t))

(3.7)

where x is a constant (unrelated to x in Eq.3.1b). x is greater than zero and

is sufficiently large such that 1
1+e−x = 1 when IWi

(t) = 0. When the worker has

a low internal state it will be very social, while a high internal state will lead it

to be antisocial. This leads to the next section on population dynamics.
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Population dynamics

The population dynamics determine how the colony changes over the course of

the simulation and the way the interactions between the queen and the workers

affect the production of new workers and worker-derived offspring. This takes

into account the social strategy of workers and the genetic predisposition of the

workers. The genetic predisposition is introduced when determining the rate of

worker production and worker-derived offspring. This is because it allows us to

link the genetic predisposition more directly to the production of related indi-

viduals who have an inclusive fitness benefit to the workers. Higher predilection

towards altruism should lead to a higher rate of worker production, while more

selfish genetic predispositions should lead to a higher rate of worker-derived

offspring.

Breeding Capacity

The breeding capacity is the number of new workers that could be added

to the colony. It is affected by the amount of effort (social strategy) workers in

the colony use towards social activity, in this case, brood care. This means the

breeding capacity can be determined as:

σ(t) = Z ·
∑
i

si(t) (3.8)

where Z is a constant that represents the number of eggs that grow into

adulthood per unit of work. si(t) is the social strategy of worker i. If all

workers are 100% social and work towards the good of the colony, the number

of new workers the queen could produce is equal to Z ·Numberofworkers.

Worker production by the queen (queen derived offspring)
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Taking all of this into account, the rate of workers produced is determined

as:

dW

dt
= (

q

C
σ(t)) · ρ · s(t) (3.9)

where σ(t) is the breeding capacity and C is a normalisation constant. ρ

represents the mean genetic predisposition of workers in the colony and s(t)

represents the average social strategy of workers in the colony. This means

ρ · s(t) is the proportion of resources used to produce more workers. Higher

levels of altruism and more social behaviour in the colony led to the production

of more workers. q is the relative fertility of the queen. q is relative to that of

a worker ovipositing at her maximum speed.

ρ affects the population dynamics and worker policing behaviour in workers.

It also affects their selfish behaviour in terms of their rate of egg production.

This effect can be seen in the extreme cases of ρ = 0 and ρ =1. When ρ = 0,

the workers are selfish, meaning the equation of the production of new workers

is zero (Eq.3.9). Hence, there is no colony growth at this level. Meaning the

output of worker offspring is determined solely by social interactions. When

ρ = 1, the workers are non-selfish, and the pattern is reversed, meaning the

production of new workers is determined solely by social interactions. Workers,

in this situation, do not produce their offspring. Note that worker offspring do

not contribute to the colony size because workers can only produce males. As

workers (who are female) carry out the tasks inside and outside the nest, worker

offspring do not contribute to the production of new workers.

Worker derived offspring

When workers are not 100% social the breeding capacity is split between

the workers and the queen. This means the rate of worker i derived offspring
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can be determined as:

dmi

dt
= V (t) · (1 − si(t)) · (1 − ρi) · (1 − s−i(t) · ρ−i)

C
σ (3.10)

If si represents the social strategy of the worker, where a larger si means

more time spent on social behaviour, (1 − si(t)) is the time spent on selfish

behaviour. Further, if ρ represents the genetic predisposition towards altruism,

(1 − ρi) represents the genetic predisposition towards selfishness. Here, we use

the notation of −i to indicate a complement of i. Therefore, (1 − s−i(t) · ρ−i)

represents the gap in the social behaviour (in particular worker policing) of all

other workers in the colony. Meaning if workers are both perfectly social and

perfectly altruistic, the amount of worker policing would be perfectly applied to

all workers, and no worker would reproduce.

Within a generation, 1-ρ represents the selfishness of a worker. This self-

ishness concerns how much resources it is inclined to put towards its offspring.

The social interactions in the agent-based simulation mitigate this. Within a

given agent-based simulation, 1-ρ is a constant since the genetic predispositions

of the workers do not change. Only the social strategy, s, changes per the social

interactions. In essence, ρ is the innate tendency of a worker, determined by its

genetic predisposition. Meanwhile, the social strategy, s, is determined by social

interactions in the colony. Both contribute to the production of new workers

and worker-derived offspring, which drives the queen’s and workers’ inclusive

fitness functions. V (t) is introduced as a modulating variable that links the

worker’s internal state to the amount of worker offspring that is produced. The

modulating variable is defined as:

V (t) =
1

1 + e−cu(t)+cd(t)
(3.11)
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where

cu(t) = const− const · e−δ·IWi
(t) (3.11a)

and

cd(t) = const · e−δ·IWi
(t) (3.11b)

const is a constant. cu(t) and cd(t) are used to ensure that workers will only

begin to produce offspring when their internal state is very high or close to/equal

to 1. This reflects the worker having fully developed ovaries and beginning to

lay eggs.

The genetic predisposition trait is implemented in the population dynamics

of the simulation. This is because the effects of the behavioural changes which

would occur due to differences in the genes of workers, in relation to fitness,

would occur at the population level. Worker production is determined by how

much work is put into the raising of the eggs laid by the queen. The genetic

predisposition towards altruism affects worker’s willingness to take part in this

social behaviour as well as their social strategy. The same is true for worker-

derived offspring. When workers have a high internal state their social strategy

and genetic predisposition will determine whether they lay eggs as well as the

social strategy and genetic predisposition of other workers in the colony. A

worker with a high internal state in a selfish colony will lay eggs because they

are more selfish and other workers do not police their reproduction. Having the

genetic component implemented at the level of, say, the internal state of the

worker, would lead to the same effect. This would be more in line biologically,

however, this would add the additional effect of having different rates of internal

state development for selfish and selfless workers. Here we assume that all
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workers have the same rate of internal state development. Taken together, the

internal state of the queen and workers drive their behaviour in the agent-based

simulation in conjunction with the genetic predisposition.

Inclusive Fitness of the Workers and the Queen

To test the stability of the genetic predisposition (balance between selfish

and altruistic), we used the inclusive fitness function as an optimisation function

in a genetic algorithm (GA). The genetic algorithm determines which genetic

predisposition is the fittest, i.e. what level of altruism has the highest inclusive

fitness. Colonies compete against each other as all workers have the same genetic

predisposition. The current variable ρ, representing the genetic predisposition

towards altruism, encapsulates four of the points in the criteria listed previously

by [179]. These include satisfying Hamilton’s rule, being environmentally sen-

sitive, a dependence on kin recognition and the partial additive nature of the

genes. The genetic predisposition reflects innate tendencies toward altruistic

social behaviours such as nest maintenance, taking care of the queen’s brood

and refraining from developing ovaries in the queen’s presence. The higher the

value assigned to ρ, the more time is spent on those behaviours and less time

spent laying eggs. Altruism increases inclusive fitness with the production of

more workers. Selfishness increases inclusive fitness with the production of more

worker offspring.

The inclusive fitness function assesses the inclusive fitness of each genetic

predisposition, ρ. The pattern for the average genetic predisposition and the

inclusive fitness is similar due to this link. The simulation’s genetic algorithm

stage optimises ρ to maximise the workers’ inclusive fitness function. With

this integration of the agent-based simulation and the genetic algorithm, we

can investigate genetic influences on the behaviour of workers and the queen
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and how stable the altruistic gene is over the generations while optimising the

inclusive fitness function. Modifying the equations from [110] we defined the

inclusive of the workers and the queen as:

φWi = V Wi

Wj
Wj(T ) + V Wi

mi
mi(T ) +

∑
j

V Wi
mj

mj(T ) (3.12)

φQ = V Q
Wj

Wj(T ) +
∑
j

V Q
mj

mj(T ) (3.13)

where φWi and φQ represent the inclusive fitness of workers and the queen

respectively. V B
A is a kin value which describes the inclusive fitness return to per

capita production of caste A for the individual B [110]. Wj(T ) is the number of

workers produced up to time T in the simulation where T represents the end time

of the simulation. mi(T ) is the number of worker i derived offspring. mj(T ) is

the number of offspring derived from other workers. While workers produced by

the queen and worker-derived offspring both contribute to the inclusive fitness of

workers and the queen, there is tension between them as the increase in the rate

of production of one leads to a decrease in the rate of production of the other

due to the allocation of resources by workers. To maximise inclusive fitness,

given some parameters, what amount of altruism vs. selfishness is needed to

get the maximum inclusive fitness return? The higher the inclusive fitness, the

more effectively genes have been passed on to future generations. As the range

for the genetic predisposition is [0, 1], if the average increases above 0.5, it can

be said that a colony is more altruistic. Otherwise, the colony is more selfish.

Differences in genetic predisposition are accounted for when calculating the

inclusive fitness of the individuals (the individual worker or the queen). It cap-

tures the success of workers with different genetic predispositions to produce

related individuals. Selfish or selfless genes in workers influence behaviour pat-
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terns such as the production of their eggs and contributing to the maintenance

of the colony. On the other hand, the mutual interactions between the queen

and workers change the breeding capacity of the colony.

3.2.2 Simulation Overview

Agent-based Simulation

The simulation begins by forming several colonies which make up the initial

generation. The difference in these colonies is the worker’s genetic predisposition

towards altruistic behaviour, ρ. ρ determines how innately selfish or selfless a

worker is. All workers in a colony have the same genetic predisposition. In this

context, selfishness refers to behaviours which primarily benefit the individual

at the cost of another. This includes not taking care of the queen’s brood and

laying eggs.

In contrast, selflessness or altruism are behaviours that do not immediately

benefit and may negatively impact the individual but benefit others. This in-

cludes spending time on nest maintenance but not laying one’s eggs. When a

colony is initially formed at time t = 0, there is a single queen with a small

population of workers N = 20. These workers have an internal state, IWi
.

The internal state of the workers is defined as the hypothetical physiological

condition, such as the hormone level, which controls the ovary development in

workers and queen pheromone secretion in the queen.

Three main factors determine the rate of production of new workers. These

are the relative fertility of the queen (q), the breeding capacity (σ) and ρ · s(t),

which is the proportion of resources allocated to produce more workers. The

workers determine the balance of resources allocated to produce more workers

as they are the ones who take care of the brood and ensure their survival and

maturation. The feedback loop controls the social strategy as the interactions
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with the queen make workers more social to support the colony members by

suppressing their internal states. The feedback loop influences the population

dynamics of the agent-based simulation by causing changes in workers’ inter-

nal states, which affect the social strategy of workers. This then affects the

breeding capacity, directly affecting the production rate of new workers and

worker-derived offspring. These are also affected by the genetic predisposition

of the workers in the colony. A worker’s social strategy and genetic predispo-

sition toward altruistic behaviour determine how much time they will spend

assisting in producing new workers.

On the other hand, the production rate of worker offspring is determined by

the relative absence of social behaviour and altruistic genes and the absence of

these in other workers (Eq.3.10). Workers who have a selfish social strategy and

selfish genes produce more offspring. Though the behaviour of other workers

limits this as policing is not restricted to just the queen, workers also police

each other.

As there is a trade-off between policing other workers and laying eggs in

workers, more selfish workers will produce more offspring if other workers are

also selfish. An internal trade-off exists between patrolling and laying eggs for

the queen. The time spent patrolling may increase the social behaviour of work-

ers by suppressing their internal state. Still, it is also time that the queen could

have spent laying eggs that would become new workers. The mutual interac-

tions between the queen and workers determine the balance between selfish and

altruistic behaviour. The agent-based simulation can present these delicate bal-

ances in their natural life, which runs from time t = 0 to time T , representing

the end of the agent-based simulation.

A crucial factor in enhancing the fitness function lies in the efficacy of the in-

dividual in transmitting their genetic material to subsequent generations. Either
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directly via their offspring or indirectly via the queen’s offspring, the inclusive

fitness of the queen is determined by the number of workers and the number of

worker offspring (to a lesser extent) at the end of the agent-based simulation

(time T). In comparison, the number of workers determines the inclusive fitness

of workers, i.e., the number of their offspring directly produced and the number

of offspring produced by other workers.

Fig 3.1. Stochastic universal sampling Stochastic universal sampling is
used to select the colonies that will be used to generate the next generation of
colonies. Each colony is assigned a fitness score equal to the average fitness of
workers. The scale represents the total fitness of the population, i.e. all of the
colonies, where F is the total fitness. Pointers are placed at equal distances
from each other, with the first pointer being placed randomly between zero
and 1

N where N is the number of pointers. In this case, the number of pointers
indicated the number of colonies which were selected to produce more colonies

Genetic Algorithm

The method for choosing these colonies is stochastic universal sampling (SUS).

This was chosen because, unlike elitism-prone methods like roulette wheel selec-

tion, SUS mitigates bias against individuals with lower fitness scores and min-

97



imises the risk of premature convergence, where the population quickly stagnates

due to repeated selection of the fittest individuals [183]. Stochastic universal

sampling (shown in Fig.3.1) works by first choosing a random number in the

range 0 ≤ P1 ≤ 1
N . N represents the number of pointers (number of colonies

which will produce future colonies). 1
N represents the distance between the

pointers. Each colony is given space on a line proportional to its fitness. From

Fig.3.1, we see nine colonies and eight pointers. Colony 1 has two pointers,

Colony 2 has three pointers and so on. Two future colonies will initially have

genes from Colony 1, three from Colony 2 and one from Colony 3, 4 and 6.

Once the number of future colonies each present colony will produce has been

found, the genes are transferred from the present colony to the corresponding

future colonies.

There is a 50% chance a mutation will occur. This mutation can either be

small or large, making future colonies more or less altruistic. Once this process is

finished, new colonies are formed with an agent-based simulation as described

above and the process repeats. For this thesis’s results, 11 colonies and five

pointers were used unless stated otherwise. The colonies chosen by the pointers

produce two colonies in the next generation. For the number of colonies to re-

main constant, the fittest colony produces an extra colony to keep the number

of colonies at 11. The number of iterations was 30 generations. This can be

summarised as follows:

1. Regulation Mechanisms =⇒ Social Strategy

2. Social Strategy + ρ = Population Dynamics

3. Fitness Function = Cumulative population dynamics effects

4. Colonies with higher fitness functions are selected, and some are mutated

5. Go back to 1
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3.2.3 Adjusted variables

Here, we discuss the different parameters of the simulation which could have an

effect on the propagation of ρ based on a prediction of how the model behaves.

In this current simulation, these can be categorised at two levels: the agent-

based simulation level and the genetic algorithm level. At the lower agent-based

simulation level, this refers to variables such as the rate of worker internal state

development, amount of worker memory, effective paternity of the queen, the

effectiveness of queen suppression and breeding capacity. The effective paternity

of the queen is the number of males she has mated with. At the higher genetic

algorithm level, this refers to variables such as colony selection, mutation and

the initial distribution of genes in the population. We will first discuss the way

the agent-based simulation variables could affect the results then discuss the

genetic algorithm effects.

The way the worker’s internal state develops in the agent-based simulation

is the most basic way to influence the results of the simulation (Fig.3.2). The

rate at which worker internal states develop determines how quickly workers

begin to reproduce. Given a faster or slower rate of reproduction, this could

lead to different end states of the simulation i.e. whether colonies become more

altruistic after 30 generations. Faster development would lead to more worker

offspring whereas slower development would lead to less worker offspring. Dif-

ferent development rates could be given in line with the genetic predisposition

towards altruism. So more selfish workers may increase their internal state faster

than more selfless workers. Worker memory is also something that could affect

the results of the simulation. Workers exercise restraint in the presence of the

queen. When workers are aware of the queen they do not increase their internal

state. As time passes this fades and they begin to increase their internal state.

This effectively acts as a delay to the development of the worker’s internal state.
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Fig 3.2. Varying rates of internal state development obtained by running a
numerical simulation of the worker’s internal state with varying rates, r, where
r is the value of γ and β in Eq.3.1. Varying rates of internal state development
could affect the effectiveness of the queen’s patrol and the number of offspring
workers can produce. Slower internal state development means the queen can
more easily manage the internal state of the workers and the number of
offspring workers produce

Changing the delay will also affect the development rate of workers. As with

the internal state development rate, more selfish workers could have shorter or

no delay when contacted by the queen as opposed to more selfless workers with

longer delays.

The effectiveness of queen suppression is achieved through physical contact

between the queen and the worker (possibly through the transfer of cuticular

methyl alkanes [184]). The effectiveness of queen suppression in this thesis is

assumed to be constant in its effects on all workers (in this case worker’s internal

state is decreased by 90%). This choice implicitly assumes workers are equally

affected by contact with the queen.
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The effective paternity of the queen changes the fitness return to workers

of other workers. We assume (initially) a singly mated queen, resulting in an

effective paternity close to one. The per capita fitness return to worker Wi for

the production of another worker is determined as:

V Wi

Wj
= 0.25 +

0.5

k
(3.14)

where k is the effective paternity of the queen. This is adapted from the

work of [110]. As the effective paternity of the queen increases, there should be a

decrease in the incentive (from a fitness perspective) to workers to produce other

workers as there is a diminished return to producing new workers. However,

in [110], they note the marginal return of a new worker may be more than a

worker’s child when the colony is small. Specifically, in the short term, it is

better to assist in the creation of new workers. This is because, at this early

stage of the colony, more workers mean more agents capable of doing work, which

means more resources for the colony. This is also linked to the breeding capacity.

A greater number of workers means there is a greater breeding capacity. When

workers are perfectly social, the queen can produce the maximum amount of

new workers but when they are not perfectly social the breeding capacity is

split between the queen and more selfish workers.

On the genetic algorithm level, colony selection is a factor that can signif-

icantly affect the distribution of genes in the population. In this case, colony

selection refers to the number of colonies allowed to reproduce (i.e. produce

future colonies). When colony selection is high, there is a greater convergence

in the gene pool as only the fittest colonies produce future colonies, leading

to a lack of genetic diversity. If colony selection is too low, there is a lack of

competition as more colonies pass on their genes to future generations.

While group selection is seen as controversial ( [185], [186]), [185] and [187]
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argue that formulations of group selection can be seen as equivalent to kin se-

lection. They explicitly propose ways previous group selection models could

be converted to kin selection models. [185] through the application of inclusive

fitness theory and [187] through the proposition of a ”K-G space”, which con-

ceptualises kin and group selection as overlapping regions. The authors would

argue that the formulation of this evolutionary agent-based simulation would

be classed in this way. In our simulation, though selection takes place on the

colony level, the colonies are selected based on the average inclusive fitness of

the workers. The calculation of inclusive fitness considers the individual’s direct

benefit and assesses the colony’s performance as a whole from a fitness perspec-

tive ( [188]). In this way, the simulation allows us to analyse the evolution of

altruistic behaviour in a species (Diacamma) where individuals (other than the

queen), largely refrain from reproducing. [189] analysed microbial data by ap-

plying both group and kin selection. They found that together, they had greater

explanatory power in revealing fitness outcomes that were not captured when

only using one approach. This was done to show that the use of both group

and kin selection is needed for useful applications of theory when interpreting

experimental results. Our simulation offers flexibility as it can be adapted to

combine both approaches.

Mutation is the factor which can introduce new genetic variants due to var-

ious factors such as errors during DNA replication and errors in recombination.

Mutation has two aspects that can affect the individual: the mutation step and

the mutation rate. The mutation step is the size of the variation that occurs

when a mutation takes place, while the mutation rate refers to the probabil-

ity of a mutation taking place. Over time, the accumulation of small genetic

changes can lead to new traits which were not initially present. So, even in a
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perfectly altruistic environment, selfishness can come about. It may even thrive

by taking advantage of its altruistic neighbours. Altruistic behaviour could also

arise in a selfish environment, though the number of other altruistic individuals

to cooperate with could affect the spread of the trait leading to this behaviour.

In this case, mutations were randomly created values that were added/sub-

tracted to the genetic predisposition variable with some probability. This is to

assist in the optimisation of the fitness function. The operator produces small

mutation steps with a higher probability and large mutation steps with a lower

probability. The work of [190] proposes a mutation operator for their Breeder

Genetic Algorithm which is used here in a simplified form. The mutated form

of the genetic predisposition ρMut
i is determined by the equation:

ρMut
i = ρi + Si · ri · ai (3.15)

where ρi is the genetic predisposition shared by workers in colony i before

the mutation has occurred. The parameter Si is the probability of increasing

or decreasing ρi (Si = ±1, randomly distributed). The parameter ri is the

mutation range. This represents the maximum value of the size of the mutation

(mutation step). ai is calculated as 2−u·k and is related to k, the mutation

precision, where u is a random number in the range [0, 1]. The smallest relative

mutation step-size is 2−k (where u = 1) ,with the largest being 20 = 1 (where

u = 0). This means the mutation steps are created inside the interval [ri, ri ·

2−k]. Whether or not ρi increases/decreases and by how much is determined

by Si · ri · ai. It simulates mutation in a way that allows small mutations

to occur more frequently than large mutations. It also has an equal chance

of increasing or decreasing ρi, meaning it’s possible for more selfless or selfish

genetic predisposition to arise given enough time.

The initial environment, the initial distribution of genes in a population can
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affect how a future population might look. If there is a uniform distribution

of altruistic and selfish traits it is more likely altruistic behaviour will win out,

as cooperation between individuals leads to better outcomes. If there is, how-

ever, an asymmetry in the number of selfish and selfless traits then this could

impact how the traits spread through a population. An initial population of

selfish individuals will find it more difficult for cooperation to thrive. A selfless

population may allow some level of selfish behaviour from individuals as long

as it does not affect their survivability.

The interaction between the two levels and the context of the simulation

should be considered. Currently, workers in a colony were initialised with in-

ternal states uniformly distributed in the range [0,1]. All workers in a colony

had the same genetic predisposition towards altruism which was uniformly dis-

tributed between the colonies in the range [0,1]. The agent-based simulation

runs until time T = 1080. This was chosen as a nod to previous work by [72]

which showed that workers could detect the absence of the queen after three

hours. At this point, colony fitness was determined (using average worker fit-

ness), and, using stochastic universal sampling, colonies were chosen to produce

new colonies with a related genetic predisposition. For example, if a colony

where ρ = 0.4 was chosen to produce two further colonies, the genetic predis-

position of these colonies would be ρMut
i . These new colonies would then start

with one queen and 20 workers. For each of the variables that have been pre-

viously outlined, the simulation was run to test the effects of some variables

deemed likely to have the most impact. As these effects can be systematically

documented, they can be used to construct ”scenarios”. Scenarios involve im-

plementing multiple parameter changes to view their cumulative effect on the

results. This includes selfish workers having an increased rate for the develop-

ment of their internal state, shorter delays before beginning to develop their
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internal state (showing less restraint) and having a lower suppression of their

internal state when they were contacted by the queen.

3.3 Results

3.3.1 Conceptual Framework

[191] developed an agent-based simulation that showed how the coupling of

the internal states between the queen and workers could explain the patrol

behaviour of the queen. The internal state of the workers represents their ovary

development. The internal state of the queen controls her activity cycle. By

including the spatial aspect of the interactions between the queen and workers,

[191] showed that the feedback loop formed from the coupling of the internal

states drives the behaviour of the patrol behaviour of the queen. Real-time

feedback allows the queen to control the internal state of the workers, especially

when the colony is small.

The simulation can be broken down into two stages, seen in Fig.3.3 and

Fig.3.4. The first is the agent-based section which involves the internal states

of the queen and workers and the population dynamics. We assumed that the

internal state of the workers and the queen would operate differently. For the

worker, the internal state would represent their ovary development and increase

over time. The queen could suppress this via direct contact. For the queen,

the internal state would represent the probability of becoming active. That

is, the queen will likely go from an inactive state to an active state, at which

point she will begin to patrol the colony. The queen’s internal state, Ig, steadily

decreases (increasing her resting period) but increases when interacting with

workers. This increase is proportional to the internal state of the contacted

worker. A worker with a low internal state has minimal effect on the queen’s
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internal state. However, a worker with a high internal state increases the queen’s

internal state and, therefore, her likelihood to begin patrolling the colony.
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Fig 3.3. Algorithm Process This diagram visually represents the different
aspects of the agent-based simulation. First, beginning with the feedback loop
based on the coupling of the internal states of the worker and the queen.
Mutual social interactions regulate the internal states of the queen by making
her more active and patrolling the colony and the workers by suppressing their
internal state, representing their ovary development. This leads to the
population dynamics, which determine the production rate of new workers and
worker-derived offspring, taking into account the resources dedicated by
workers (the breeding capacity) into each type. Policing by other workers also
suppresses the number of worker-derived offspring. The agent-based
simulation consists of cycling between these two aspects. When the
agent-based simulation ends at time T, the inclusive fitness of workers and the
queen is assessed. The genetic algorithm used inclusive fitness as the basis for
the selection of the colonies, which will propagate their genes into the next
generation.
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Fig 3.4. Evolutionary Agent-based simulation, Genetic Algorithm stage.
Colonies are initialised with the same number of initial workers and each is an
agent-based simulation which has the workers and the queen interact up to
time T. At this point, the inclusive fitness of workers and the queen is
calculated and the average fitness of the colony is used to select which colonies
will produce the next generation. This is then repeated over 30 generations.

The worker’s internal state can also affect a variety of social behaviours in

workers. The social behaviours include their inactive time (tri), spent resting,
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and active time (tai), which workers can spend on selfish or selfless activities.

Whether or not workers spend their active time on selfish or selfless actions

is the social strategy (si) employed by workers, also affected by their internal

state. The higher the internal state of a worker, the more likely they will be more

active, spend active time engaging in selfish activities and lay more eggs. As the

queen and workers can affect each other’s internal state, this serves as a feedback

loop where pairwise interactions can influence individual behaviour [64]. These

interactions then change the population dynamics of the colony. We calculated

the fitness functions for the queen and workers at the end of the agent-based

simulation. Inclusive fitness refers to the measure of an individual’s evolutionary

success based on both direct reproductive success and the indirect impact on

the reproductive success of related individuals.

The second stage of the simulation is the genetic algorithm. A genetic algo-

rithm is an optimisation technique that uses principles of genetics and natural

selection to evolve solutions to a problem over multiple generations. By using

a genetic algorithm, we can look at how average genetic predispositions of the

colonies change over the generations and how this affects their fitness. The

range of the genetic predisposition toward altruistic behaviour is [0, 1] where 0

is entirely selfish, and 1 is completely selfless. If being more altruistic is more

beneficial from an inclusive fitness standpoint, the average genetic predisposi-

tion will be greater than 0.5. Otherwise, it will be less than 0.5. The average

inclusive fitness of workers in a colony is calculated for each colony to determine

this. The colonies with higher inclusive fitness were chosen. These selected

colonies then make future colonies with genes resembling the parent colony. A

mutation operator is used to alter the genes slightly from parent colony to child

colony with some probability.
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3.3.2 Results of the simulation

Fig 3.5. Rise of altruism A) The distribution of the genetic predisposition
over the generations. There is a shift in the distribution of the genetic
predisposition towards more altruistic behaviour. However, workers did not
reach perfect altruistic behaviour. B) The average predisposition towards
altruism shows an increase from the middle point of 0.5, stabilising around
0.75, showing an increase in the prevalence of altruistic genes over time. C)
The average inclusive fitness over the generations. There is an increase in
inclusive fitness from the first to 6th generation, after which the inclusive
fitness seems to stabilise, following a similar pattern seen in B. The error bars
are the standard deviation.

Figure 3.5 shows an increase in the genetic predisposition towards altruistic be-

haviour over time. Inclusive fitness increased with the propagation of more altru-

istic genes. The average inclusive fitness converges, indicating that the colony’s

inclusive fitness benefits from altruistic behaviour. More altruistic workers help

the queen produce more workers and engage in more social behaviours, increas-

ing their inclusive fitness over more selfish workers. More selfish workers split
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the breeding capacity and, therefore, decrease the production rate of new work-

ers. While these workers produce offspring, this does not give them a greater

inclusive fitness benefit. Perfect altruism also does not give a more significant

inclusive fitness benefit. Part of the explanation for the lack of perfect altru-

ism involves the production of worker offspring. Worker offspring adds to the

inclusive fitness of workers and the queen.
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Fig 3.6. Rate of worker offspring production against colony size ρ
represents the different worker predispositions ranging from 0 to 1. The colony
size and worker offspring production evolve with time. The colony size of each
genetic predisposition is different due to the differing rates of worker
production in each condition. Larger colonies have a greater breeding capacity,
which lends itself to greater worker offspring production. The extremes of
ρ = 0 and ρ = 1 show drastically different behaviour due to the characteristics
of these extremes. When ρ = 0, the workers are totally selfish and do not
assist in colony work. This means the colony does not grow, and each fends for
themselves. Conversely, when ρ = 1, workers do not produce offspring,
irrespective of colony size, meaning they never have offspring. Barring the
extremes, when ρ = 0.1, there is a decrease in the rate of worker offspring
production. ρ = 0.2 shows more noisy fluctuations in the production rate with
an increase in worker offspring production as the colony size reaches 30.
However, it could be seen as an inflexion point where the effectiveness of the
queen’s patrol is mixed. ρ = 0.3 to ρ = 0.9 generally show similar trends, with
increasing worker offspring production as the colony size increases.

Figure 3.6 shows the average rate of worker offspring production at various

genetic predispositions (ρ). From ρ = 0.3 to ρ = 0.9, there is a linear increase

in the rate of worker offspring production. The extremes of ρ = 0 and ρ = 1 are
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exceptions due to the characteristics of these extremes, i.e. workers at ρ = 0 do

not help to produce more workers and workers at ρ = 1 never produce offspring.

ρ = 0.1 and ρ = 0.2 differ slightly due to the smaller colony sizes.

In these smaller colonies, the queen can patrol the colony and stop workers

from developing their ovaries [191]. However, in larger colonies, the queen is

less able to control worker reproduction, leading to a linear increase in worker

offspring over time. Perfect altruism hinders inclusive fitness because workers

do not produce offspring. Workers maximise their inclusive fitness by assisting

the queen at smaller colony sizes and producing more offspring at larger colony

sizes.
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Fig 3.7. Average Internal state workers The internal state of the workers
throughout the agent-based simulation in the first generation gives an insight
into the effectiveness of the queen’s patrol behaviour. This allows us to
investigate colony size effects. Generally, there is a decrease in the internal
state of workers for the first 600 time steps of the simulation. Then, the
genetic predispositions (ρ) from ρ = 0.3 to ρ = 1 show an increase in the
internal state of workers until the end of the simulation. There is an increase
in the colony sizes with the genetic predispositions (shown in Fig.3.6). The
increasing colony size means a decrease in the effectiveness of the queen’s
patrol, reflected in the increased internal state of workers.

Figure 3.7 shows the average internal state of workers throughout the sim-

ulation for various worker predispositions. There is a general decrease in the

internal state of workers for the first half of the simulation. As the genetic pre-

disposition increases, there is a more significant increase in the internal states of

workers in the second half of the simulation. This increase is due to the increase

in colony size, with the increase in worker internal states being greater in more

altruistic colonies.

Increasing colony size causes the effectiveness of the queen’s patrol to de-

114



crease as workers are contacted less frequently by the queen. More altruistic

colonies have greater production of new workers due to the increased resources

workers invest in the queen’s eggs vs. their own. Though at larger colony sizes,

workers can benefit from producing their offspring due to a general increase in

the breeding capacity of the colony and a weakening of the enforcement of the

reproductive division of labour.

Fig 3.8. Altruism and worker relatedness The effective paternity of the
queen affects the relatedness between workers. By increasing the effective
paternity of the queen, workers become less related to each other. In an
extreme example, we set the effective paternity of the queen to 10 (as opposed
to 1 previously). Changing the effective paternity of the queen does not have a
general effect on A) The distribution of the genetic predisposition over the
generations and B) The average genetic predisposition over the generations.
These appear to be similar to Fig.3.5. The main difference is in C) The
average inclusive fitness over the generations. While the trend is the same, the
value of the inclusive fitness of workers is less than half of what is seen in
Fig.3.5C. This is due to the lower relatedness between workers, which means
the per unit fitness return of new workers is much less from this perspective.
The error bars are the standard deviation.
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When looking at adjusted variables affecting inclusive fitness, the first point

is the relatedness between workers. In this case, the effective paternity of the

queen, k, determines the relatedness between workers. In Fig.3.5, the effective

paternity of the queen is set to 1, meaning that the workers have a high related-

ness. Figure 3.8 shows the genetic predisposition and inclusive fitness when the

relatedness between the workers is lower (k = 10). There is still an increase in

the genetic propensity towards altruism over the generations, despite a decrease

in workers’ per unit fitness return. Figure 3.8C shows that the inclusive fitness

of workers is lower than in Fig.3.5C but still increases from the initial value.

This means a lower relatedness between workers does not necessarily lead to

more selfish behaviour from workers.
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Fig 3.9. Altruism and relatedness The relatedness between workers is a
factor in determining the level of altruistic behaviour. Here, the relatedness
(as determined by the kin value) between workers is set to zero. A) The
distribution of the genetic predisposition over the generation shows a
convergence of the genetic predisposition. The average does not move much
above the initial average of 0.5. B) The average genetic predisposition over the
generations is seen more clearly. The average over the generations is similar to
the initial genetic predisposition. C) The average inclusive fitness over the
generations is lower than in Fig.3.5 (but similar to Fig.3.8). There is an
increase in the inclusive fitness of workers, but again this increase is less than
in Fig.3.5. Due to the relatedness being set to zero, the inclusive fitness of
workers is more reliant on the production of worker offspring. The error bars
are the standard deviation.

However, relatedness between workers is still important for inclusive fitness.

Figure 3.9 shows when the relatedness between workers is zero. The average

genetic predisposition does not increase above 0.5 (Fig.3.9B). In the case of

zero relatedness, the workers’ inclusive fitness depends on their offspring and

the offspring of other workers. This situation does not lead to a more selfish

predisposition due to the breeding capacity being dependent on the number of
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workers produced by the queen. As this splits the breeding capacity between

worker offspring and the production of new workers, the genetic predisposition

remains balanced. However, worker offspring have a lower kin value, which

lowers the weighting of the inclusive fitness. This means that while the inclusive

fitness increases over the generations (Fig.3.9C), the absolute inclusive fitness

is lower than the default configuration in Fig.3.5.

Fig 3.10. Altruism and fertility The rate of worker production is
determined by the number of resources workers use to raise the queen’s brood
and by the relative fertility of the queen. By decreasing the relative fertility of
the queen (from 1 to 0.1, with Z = 1), the rate of worker production slowed.
This slowdown causes a significant shift in A) The distribution of genetic
predisposition toward altruistic behaviour towards the more selfish side and B)
The average genetic predisposition, which decreases over the generations. C)
The average inclusive fitness of workers over the generations increases, though
the inclusive fitness is lower than in Fig.3.5C. The error bars are the standard
deviation.

While higher relatedness does increase the propagation of altruistic genes,

high relatedness also does not guarantee more altruistic behaviour from workers.
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The relative fertility of the queen changes the rate of worker production. When

the rate of worker production is too low, this affects the propagation of altruistic

genes, as seen in Fig.3.10. A drastic decrease in the rate of worker production

causes a reduction in the genetic predisposition towards altruism (Fig.3.10B).

While there is a similar trend in Fig.3.10C as in previous results, the inclusive

fitness is lower than in Fig.3.5C despite a higher per unit fitness return for the

production of workers than Fig.3.8. This shows high relatedness alone is not

enough to increase the altruistic behaviour of the workers. The queen must also

produce new workers at a specific rate for altruistic behaviour to yield inclusive

fitness benefits.
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Fig 3.11. Altruism and queen suppression The queen plays a significant
role in propagating the genetic predisposition towards altruism. Specifically,
the degree to which the queen can suppress the internal state of workers. By
decreasing κ, which determines the level of worker internal state suppression,
to zero, the workers are free to develop their internal state. κ affects A) The
distribution of genetic predisposition over time. As in previous figures, there is
a convergence in the genetic predisposition. The average genetic predisposition
decreases below 0.5, showing the development of more selfish colonies. B) The
average genetic predisposition can be seen more clearly with a decrease over
time. The workers in the colonies became more selfish over the generations.
Still, not wholly selfish. C) Inclusive fitness does not increase significantly over
the generations. There appears to be a stagnation in inclusive fitness as
workers get most of their inclusive benefits from their offspring despite a lower
kin value and, thus, a lower inclusive fitness return. The error bars are the
standard deviation.

Increasing altruism is not just dependent on the queen’s ability to produce

workers but also the ability to suppress worker reproduction. Figure 3.11 shows

the genetic predisposition when κ is zero. This effectively translates to the

queen’s inability to suppress worker reproduction in the colony. Due to this,

the genetic predisposition decreases over the generations (Fig.3.11B) as workers
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become more selfish. Likely because workers can produce offspring as their

internal state increases without the interruption of queen suppression.

Inclusive fitness does not appear to increase significantly over time but stays

relatively similar. While there is no notable increase in inclusive fitness, the

inclusive fitness is higher than the inclusive fitness in previous figures (except

Fig. 3.5). This is likely due to the maintenance of the relatedness with other

workers. Despite the lower level of altruism likely leading to the production of

fewer workers, there are enough to boost the selfish workers’ inclusive fitness.

These results highlight the queen’s role in the propagation of altruistic genes.

Though very weak suppression may not be enough, we found that only some

suppression of worker reproduction was needed to reverse the trend in the genetic

predisposition, linking natural history with the evolutionary process.
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Fig 3.12. Changes in initial conditions When the initial set of colonies is
selfish (with a genetic predisposition below 0.5), the genetic predisposition
increases over the generations, which can be seen in A) The distribution of the
average genetic predisposition over the generations and B) The average genetic
predisposition over the generations. In both cases, there is an increase in
altruistic genes before reaching a stable point similar to Fig.3.5. However,
reaching this stable point takes approximately 100 generations due to the
lower initial genetic predisposition of the colonies. This suggests the stable
point found in Fig.3.5 is not subject to the initial conditions. C) The average
inclusive fitness over the generations shows the same trend and reaches the
same level as seen in Fig.3.5C. The error bars are the standard deviation.

So far, the initial distribution of the genetic predispositions of the colonies

has been the same. Given a lower initial predisposition towards altruism, it may

be possible that colonies do not reach the level of altruism shown in previous

figures. The initial colonies were initialised with lower genetic predispositions.

Figure 3.12 shows the result of an initial distribution of more selfish colonies.

Though there is initially a collection of more selfish colonies, the colonies

become more altruistic. This indicates more selfless colonies had a consistently
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higher inclusive fitness than other less selfless colonies as shown by the increase

in inclusive fitness in 3.12C. Despite the longer timeline, the average genetic

predisposition reaches above and out of the range of the initial values. It sta-

bilises at a similar point to Fig.3.5. This suggests robustness in the results and

that more altruistic colonies have higher inclusive fitness. Still, perfect altruism

does not offer additional gains.

The results suggest a possible evolutionary stable strategy [192], which shows

an equilibrium between selfishness and altruism, demonstrating the inclusive

fitness effects in a social environment. This evolutionary agent-based simula-

tion could investigate different parameters and their impact on the propaga-

tion of altruistic genes throughout the generations. In summary, we created a

multi-layered simulation which included interactions between the genetic predis-

position, the behavioural algorithm, and population dynamics to examine the

balance between selfish and non-selfish genes during the evolution process.

3.4 Discussion

Darwinian fitness describes the survival and reproduction of an individual [158].

Workers largely refrain from reproducing, meaning they do not produce offspring

that inherit their traits. Standard Darwinian fitness does not explain the be-

haviour of workers refraining from reproducing. Inclusive fitness addresses the

gene contributions of evolutionary success [167] [39]. Using the concept of in-

clusive fitness, Ohtsuki et al. used dynamic game analysis to show how workers

could maximise their inclusive fitness by changing their social strategy [110].

As a new approach, in this chapter, we suggested that the inclusive fitness

functions can be used as an optimisation function in the genetic algorithm,

aiming at the evolutionary success of gene types. Furthermore, we included a

natural history perspective, integrating the agent-based simulation with inclu-
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sive fitness. By adding a genetic component for selfish and non-selfish behaviour

in the genetic algorithm, we could show the stability of altruistic genes over the

generations. There is an inclusive fitness benefit to workers when they help pro-

duce more workers, and it also benefits them to produce offspring directly. This

chapter investigates whether this advantage is significant enough for workers to

forgo personal reproduction to help the queen produce her offspring.

The iterative process of the evolutionary agent-based simulation makes it

possible to track workers’ genetic predispositions over generations. We can then

determine how altruistic behaviour spreads over generations and if a certain

balance of genes can be the most effective fitness strategy.

From the results, colonies with more altruistic workers give a higher fitness

return when compared to colonies that have more selfish workers. ρ initially

starts at 0.5. Over the generations, ρ converges to approximately 0.74, a higher

genetic predisposition towards altruism (Fig.3.5). Altruistic workers allow the

colony to grow and increase colony productivity, improving the colony’s survival.

This means more genes were passed on indirectly through the queen by the

creation of other workers, which are highly related to them. It also allows

workers some selfishness by enabling them to contribute to their inclusive fitness.

Workers can contribute to inclusive fitness by producing eggs when the colony

size is large and queen patrol behaviour is weaker. Their genes were passed

on directly via their offspring and indirectly via the number of workers in the

colony. The results suggest that the optimal level of altruism is not perfect for all

colony members within the number of generations in the simulation (Fig.3.5B).

A level of selfish behaviour is accepted in individuals.

The findings in this chapter were consistent with the conclusions of [110],

which showed that policing is most effective and well-implemented when the

colony is small but becomes less effective or less implemented when the colony
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becomes larger. At this stage (which [110] referred to as the ”reproductive

stage”), workers begin to produce their offspring or at least produce more of

them, as seen in Fig.3.6. The results were also consistent in that there is greater

worker-derived offspring when the colony is large (Fig.3.6). However, the ap-

proach of the current thesis uses a more bottom-up approach, as the feedback

loops and genetic predispositions affect the workers’ behaviour before selection

occurs based on their fitness functions.

The interaction between social or environmental factors and the genetic pre-

dispositions of the workers determines their behaviour. There is an implicit

trade-off between laying eggs and the queen’s patrol behaviour [191]. When the

queen is not patrolling, then, with the help of workers, she lays eggs, which be-

come new workers [31]. The average internal state decreases in the first half of

the agent-based simulation seen in Fig.3.7. The queen’s patrol behaviour is ef-

fective at this stage. Workers’ internal states begin to increase closer to the end

of the simulation even as worker genes become more altruistic (Fig.3.7). This

is likely due to the weakening effect of the queen’s patrol behaviour [72] [191].

The ability to produce offspring is necessary for situations where the queen is

removed from the colony. In these situations, an entirely altruistic colony would

die due to workers refraining from producing offspring even without the queen’s

presence, which would lead to fewer workers (seen in Fig.3.6 for ρ = 1). Fewer

workers would then lead to lower colony survivability due to lower colony capa-

bility in terms of foraging. Even in the simulation, where there are workers who

do not die over time, a larger colony is more productive than a smaller colony.

Some factors would be assumed to change the genetic predisposition towards

altruism. The first would be the effective paternity of the queen, k. k affects

workers’ per capita fitness return to other workers (and the queen). When

k = 10 (Fig.3.8), there appears to be no initial change when looking at the
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distribution and the mean for genetic predisposition over the generations when

comparing Fig.3.8A and Fig.3.5B to Fig.3.5A and Fig.3.8B. However, when

we look at the average inclusive fitness (Fig.3.8C), there is a significant drop

when compared to Fig.3.5C. While workers are less related to each other in this

instance, the production of workers still benefits the colony overall. It is still

better for colonies that can produce more workers (at least initially) than to be

more selfish. At the start of the simulation, all colonies start with 20 workers

and are therefore small and need to expand by producing more workers. More

altruistic colonies produce more workers than selfish colonies (Fig.3.6). There

is a lower need for patrolling by the queen, meaning the queen has more time to

make her offspring. Ultimately, this leads to the proliferation of more altruistic

colonies.

Secondly, the per capita fitness return to the workers is important as it

contributes to the inclusive fitness of the workers. When per capita fitness is

lowered to zero (Fig.3.9), the workers do not become more altruistic, as seen

in Fig.3.8. In this case, there is still an advantage to helping the queen and

producing more workers. With more workers able to help rear offspring, the

breeding capacity is increased (3.8) when there are more workers in the colony.

In this case, workers gain no inclusive fitness benefit from assisting the queen

to produce more workers. However, the increase in the breeding capacity helps

the workers with their offspring (3.9), leading to the genetic predisposition to

balance selflessness and selfishness. However, there is once again a lower abso-

lute inclusive fitness compared to the default configuration (Fig.3.5C). However,

there has been an increase in inclusive fitness over the generations.

Third, a factor that decreases the genetic predisposition is the queen’s rela-

tive fertility, q. When q = 0.1, the queen is 10 times slower at producing eggs

than a worker. Figure 3.10 shows the distribution (A) and mean (B). There is
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a sharp decrease in genetic predisposition over the generations from ρ = 0.5 to

approx. ρ = 0.09. The average inclusive fitness is lower than previous results

(approx. 44 rather than 116), though it shows the same trend of generally in-

creasing over time. The decrease in altruistic behaviour is because of the speed

at which the queen produced new workers.

While workers, in this case (q = 0.1), were more related to other workers,

it was not worth the sacrifice to forgo their reproduction to take care of the

queen’s brood. Without the increase in productivity that comes with the in-

crease in colony size, workers can more effectively increase their inclusive fitness

by increasing their internal state and laying eggs. This is despite the higher per

capita fitness return from new workers.

Another factor that decreases the genetic predisposition is the queen’s abil-

ity to suppress worker reproduction. Repressing worker reproduction is crucial

as it shapes the workers’ social strategy and interactions with the queen. When

we removed queen suppression of worker reproduction (Fig.3.11), there was a

decrease in altruism over the generations. Here, selfish workers are not punished

for developing their ovaries and laying eggs, producing more offspring than al-

truistic workers. However, this does not translate clearly to an inclusive fitness

benefit. Unlike other configurations, there is no apparent increase in inclusive

over the generations (Fig.3.11C). This may be because workers can be more

selfish and boost their inclusive fitness in the short term. However, in the long

term, selfishness restricts the number of new workers created in the colony and,

therefore, limits the inclusive fitness of workers.

Mutation is a crucial aspect of genetic variation. Here, we introduced mu-

tation through the use of a mutation operator. The benefit of using a mutation

operator is that there are no constraints to the initial values chosen at the be-

ginning of the simulation. It is possible to start from any point and reach an
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equilibrium. While some scenarios decrease the genetic predisposition over the

generations, the equilibrium found in the initial results is stable. We lowered

the initial range of values for the genetic predisposition ([0, 0.5] rather than

[0, 1]). After starting from more selfish colonies, the genetic predisposition can

become more altruistic (Fig.3.12). The stable point in Fig. 3.5 is consistent.

The results show high stability in the genetic predisposition and explain the

prevalence of altruistic behaviour in workers, at least in the earlier stages of

colony development.

The present chapter presents an agent-based simulation examining the reg-

ulation of reproduction in a nest by investigating the feedback loop between the

queen and the workers’ internal states and their interactions [191]. Note that

regulating foraging behaviour may differ from regulating worker reproduction,

distinguishing their study from previous work on foraging regulation [132]. Our

simulation results reveal that, unlike previous studies where density/encounter

rate was the primary driver of behaviour, interactions and their influence on the

queen and workers’ internal state drive behaviour in the current study (Fig.3.7).

Maintaining the global density in the simulation showed that density/encounter

rate is not the primary driver of behaviour across colony sizes.

By integrating the agent-based model summarised in the paragraph above,

the genetic algorithm determines which genetic predisposition has the high-

est inclusive fitness. Inclusive fitness determines the individual’s reproductive

success (see Eq.3.12,3.13), and we took the colony average. When competing,

colonies with the genetic predisposition for more altruistic behaviour increase

over the generations (Fig.3.5). Perfect altruism is not needed. A certain level

of selfish behaviour is accepted within a colony (Fig.3.5). From a biological

perspective, selfish behaviour is helpful in situations when a colony is orphaned,

and the queen is no longer available to produce workers. In this situation, an
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utterly altruistic colony would need more individuals to make workers for the

colony. From a modelling perspective, there may be no greater inclusive fitness

to being more selfless than necessary, or the marginal fitness return diminishes.

On the other hand, if all the workers are selfish, the colony does not grow.

While the queen affects the social strategy of the workers by suppressing their

internal states (see Eq.3.2), the selfish genes lead to the situation where the

workers still do not assist in the production of new workers (Fig.3.6). In effect,

the queen only changes the rate of worker reproduction in this instance. Since

the workers use no resources to produce new workers, the colony does not grow.

However, this is an extreme case.

Different factors can affect the propagation of altruistic genes. These in-

clude the effective paternity of the queen and the relative fertility of the queen.

Altruistic behaviour may not seem helpful in terms of direct reproduction. In

this case, the abdication of reproductive responsibility to the queen appears

antithetical to the direct propagation of one’s genes [160]. On closer inspec-

tion, though, altruistic behaviour confers an inclusive fitness advantage to the

individual, which the individual cannot gain if they acted independently. This

highlights the evolutionary intricacies of altruistic behaviour [67] [68] [69]. More-

over, the rise of altruistic behaviour in the results supports Hamilton’s theory

of inclusive fitness, providing a robust framework for understanding these so-

cial dynamics [167] [39]. Our data further corroborate the role of patrolling

and policing in sustaining the colony’s social structure, acting as a regulatory

mechanism that aligns with inclusive fitness benefits [153].

The workers’ genes are passed on indirectly through the queen by their

higher relatedness to their siblings. Even in cases of lower relatedness, there

is an advantage to altruistic behaviour, because of the increase in productivity

at the early stage of the colony. Workers can then produce their offspring at a
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later stage in colony growth (see Fig. 3.6, Fig. 3.7). This means that the right

balance of altruistic and selfish genes can maximise the inclusive fitness function

(see 3.12, 3.13) by producing the maximum amount of related offspring.

As our integrated GA agent-based simulation was set for all individuals in

a colony to have the same genetic predisposition, in the future, the algorithm

could be adapted to work at the individual level. From the perspective of in-

clusive fitness functions, workers would compete directly. While workers do not

compete directly with each other, there is a conflict with the queen over male

parentage which was not directly tested here [110]. By tweaking the parameters

of the simulation, we can test the effect of more direct interaction between self-

ish and selfless individuals. In this framework, the positive impact of altruistic

behaviour, i.e., in which workers can share between equally altruistic nestmates,

may be diminished due to selfish individuals taking advantage of the altruism

of less selfish individuals. The simulation gives a tool to investigate different

scenarios and evaluate how these scenarios can affect individuals’ inclusive fit-

ness and help elucidate the evolutionary pathway to the modern behaviours we

see in present social insect species.

Our simulation introduces a methodology that integrates natural history and

evolution over generations, which allows proof-of-concept modelling to fill in the

conceptual gaps that may be difficult to grapple with empirically [193] [194].

The simulation allows us to study the evolution of this behaviour at the

relevant time scales within a natural history perspective. First, there is the

real-time perspective on the behaviour of colony members. Real-time covers,

first, immediate interactions between the queen and workers and how these

interactions affect the internal state of the agents. There is then the mid-term

time scale looking at the population dynamics of the colony. These involve

the social strategy and how the internal states of workers affect the production
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of new workers versus the production of worker offspring. Finally, there is

the evolutionary time scale, using inclusive fitness as a metric for selecting the

propagation of the genes over the generations.
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Chapter 4

Bacteria biofilms -

Morphology and Electric

Fields

4.1 Introduction

In this chapter, we will investigate the changes in the morphology of the species

Bacillus subtilis using different media conditions. This builds on previous work

by Wakita et al. [111], who developed a morphological diagram. A morphological

diagram shows how different environmental conditions affect the morphology of

the bacteria colony. This allows us to view a landscape of morphology and the

different patterns that can be generated. Going beyond the phase diagram as

a function of conventional environmental factors, in this study, we employed a

new environmental factor, the application of electric fields to bacteria colonies.

Applications of electric fields and direct stimulation to biofilms, which examine
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how they affect the biofilm, have been done to some extent. For example,

previous work has shown that depending on the stimulation [195], exposure to

an electric field or current can increase the effectiveness of antibiotics. Exposure

to an electric field or current can also decrease the number of bacteria which

grow on a surface and change the direction of movement for bacteria [196].

We will also take this further by characterising the changes in morphology

using the fractal dimension. Fractals have been used to describe living and

non-living systems [197]. The fractal dimension (Df ) refers to a measure of the

complexity or irregularity of the shape of bacterial colonies. Fractal dimension

quantifies the degree of self-similarity or repeating patterns at different scales

[198] and can be used to characterise the intricate, irregular shapes of bacterial

colonies. There are multiple methods for calculating the fractal dimension of

an object, including box-counting, Bouligand-Minkowski and Fourier Transform

[198]. The box-counting method was used to analyse the change in morphology

for this project. The box-counting method is based on dividing the space of the

object to be analysed into a grid of squares (boxes). At each iteration of the

method, a different side length, r, for the boxes in the grid is used. The fractal

dimension is the slope of a straight line fitted to the curve of the function: N(r) x

r in a log-log scale where N(r) is the number of boxes of length r which intersect

the fractal object. This means that the fractal dimension can be written as

Df = log(N)
log(r) .

Ben-Jacob et al. [92] use the fractal dimension to describe changes in the

morphology of the bacteria colony when exposed to antibiotics. The morphol-

ogy of the bacterial colony can show the effect of stress on the colony when

exposed to external forces. Ben-Jacob et al. explore these changes concerning

antibiotic stress [92]. They exposed the bacteria Paenibacillus dendritiformis to

a non-lethal concentration of antibiotics. They found a change in their chemo-
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tactic signalling, bacteria length and increased metabolic load. The change

in chemotactic signalling relates to the electrochemical signalling in Prindle et

al. [80]. The bacteria communicate about their environment (the presence of

low levels of antibiotics) and form different growth patterns than they would

without the presence of antibiotics. These growth patterns are similar to frac-

tal patterns seen in non-living systems. In that way, they grouped bacteria by

the bacteria colony’s pattern formation (morphotype). They looked at how the

fractal dimension was affected by the presence of antibiotics in the media. There

was a decrease in the fractal dimension due to a decrease in the complexity of

the self-organised colony. By using a non-linear diffusion model to replicate

the growth patterns of one of the morphotypes, Ben-Jacob et al. show that an

increase in maintenance cost for the bacteria leads to lower complexity. This is

an example of how the fractal dimension can be used to investigate changes in

the morphology of biofilms and bacterial communities when exposed to different

stimuli.

While it is interesting to view the patterns generated by different environ-

mental conditions, we can characterise more quantitatively the changes in mor-

phology brought about by the changing environment using the fractal dimen-

sion. In this way, we develop the morphological diagram based on different

environmental factors and a fractal dimensional morphology diagram showing

the consistent effect of one environmental change versus another. Little has been

done on how the application of an electric field affects electrochemical signalling

in a biofilm [80]. Based on previous works, we hypothesise that the electric field

can also affect the biofilm’s morphology because of its potential effects on the

bacterial membrane of individual cells, which disturbs the formation of biofilms.

Direct effects include bacterial membrane damage and bacterial proliferation in-

hibition [195]. It is vital to consider the indirect ways biofilm growth can be
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affected. This includes exposure to an electric current, change in pH and toxic

electrolysis products (H2O2), which impede bacteria growth [196].

All variables should be considered when exploring how they affect the elec-

trical signalling in the biofilm and the subsequent morphological changes which

occur. Different bacteria move to different electrodes when exposed to the elec-

tric field [199]. Large amounts of potassium were put opposite the biofilm [90].

Free cells were attracted to the potassium rather than the biofilm. The bacterial

biofilm can be somewhat directed to move using an electric field. By considering

how the cells communicate within the biofilm, the way the directional change

information is distributed through the biofilm might be determined.

4.2 Methods

4.2.1 Experimental Procedure

Experiments were done using B.subtilis, type 3610 and PY79. Dr Asally Mune-

hiro from the University of Warwick kindly provided this. Liquid Lysogeny

Broth (LB) was used to produce an overnight culture kept at 37 degrees Celcius

(plus/minus 1). This liquid culture inoculated the media with a (theoretically)

consistent number of bacteria cells. The solid media on which the bacteria were

grown was produced using a method similar to that described by Wakita et

al. [111]. A phosphate buffer was used, which used a mix of potassium hydro-

gen phosphate mono-basic and di-basic to maintain the pH at 7.1 after being

adjusted by adding 1M sodium hydroxide. The phosphate buffer also included

5 g/litre of sodium chloride. The solution was then mixed with various agar and

peptone concentrations, which determined the growth environment. The solu-

tion was autoclaved, and 20 ml was poured into sterilised 90 mm plastic Petri

dishes. After solidification at room temperature, the agar plates were dried in
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the incubator for 60 mins at 37 degrees.

3 µl of the liquid culture was inoculated at the centre of each agar plate.

The liquid droplet was allowed to dry before being wrapped in parafilm and

incubated for 3-4 days at 37 degrees. The concentrations of agar used included

0.75%, 1%, 1.5%, 1.75% and 2%. Only three peptone concentrations were used,

1 g/l, 2 g/l and 5 g/l. These were chosen as they are similar to Ben-Jacob et

al. [92]. The bacteria were exposed to an electric field ranging from 1 V/cm to

8 V/cm using copper electrodes on either side of the media. The field strength

was calculated as the voltage divided by the space between the electrodes. The

cells were exposed to the electric field for their entire growth period. In this

case, the growth period of the cells was at least seven days at room temperature.

4.2.2 Fractal Dimension and Image Analysis

A program was developed in MATLAB to calculate the fractal dimension of

bacteria using the box-counting method described above. Firstly, to check that

the code written for calculating the fractal dimension worked correctly, the

bacteria images (Fig 12A and 12B) from Ben-Jacob et al. [92] were used for

testing.

A program was developed in MATLAB to calculate the fractal dimension of

bacteria colonies using the box-counting method described above. To test the

accuracy of the program, images from Ben-Jacob et al. [92] were used. Specif-

ically, Fig. 1. The fractal dimensions for other figures in Ben-Jacob et al. [92]

were not given, so it was assumed that the fractal dimensions reported were

consistent across all of their samples. The method of measuring the fractal

dimension was also not given. For the bacteria they used, (Paenibacillus den-

dritiformis), the fractal dimension, Df , is 2 without antibiotics. In contrast,

in the presence of antibiotics, Df is approximately equal to 1.8. From our own
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measure of the fractal dimension of Paenibacillus dendritiformis, a Df of 1.91

was found without antibiotics a Df of 1.79 with antibiotics. This difference in

the measured fractal dimension could be due to differences in image process-

ing before fractal analysis (cropping the image and the contrast of the image)

and a difference between the methods for measuring the fractal dimension [198].

Applying the same program to other figures in Ben-Jacob et al., we found a

consistent effect in terms of the lowering of the fractal dimension with the pres-

ence of antibiotics. This was taken as an indication that the program worked

in the intended manner. After the bacteria were allowed to grow, the fractal

dimension was assessed using the code. The images were taken using the Sam-

sung Galaxy S21 Ultra camera system. Petri dishes were laid on a light pad set

to the highest brightness, and the images were taken from above.

4.3 Results

First, we developed a morphological diagram, following in the footsteps of

Wakita et al. [111]. Figure 4.1A shows the morphological diagram for B.subtilis

3610. The results of Wakita et al. have been replicated with increasing colony

size occurring with increased peptone concentration and different morphologies

seen under different environmental conditions. Their work is taken further by

the fractal morphological diagram seen in Fig. 4.1B. The local dimension re-

flects the local fractal dimension at each point on the curve of the function: N(r)

x r in a log-log scale. This was calculated using the gradient MATLAB func-

tion. The ”overall” fractal dimension, Df , is given for environmental conditions

and is again calculated specifically as Df = (Log(N)2 − Log(N)1)/(r2 − r1).

Here we find that the fractal dimension appears to decrease with increasing pep-

tone concentration, from Df = 1.85 to Df = 1.82 at 1.75% agar concentration

and from Df = 1.88 to Df = 1.85 at 1.5% agar concentration. The fractal

137



dimension also seems to decrease with an increase in the agar concentration

for 1 g/l peptone and 5 g/l peptone, although this was only tested using two

agar concentrations. Also, we can show that the fractal dimension can distin-

guish differences in morphology and act as a more quantitative measure of those

differences.
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Fig 4.1. Bacteria morphology and fractal dimension: Sample 1 A)
B.subtilis 3610 strain grown under different environmental conditions where
N = 5 for each condition. The colonies chosen are meant to represent the
replicates of each condition. The peptone concentration ranges from 1 g/l to 5
g/l. The agar concentrations used were 1.5% and 1.75%. The growth period
was 10 days at approximately 20 degrees. As peptone was used as the source
of nutrients in the colony the greater the peptone concentration in the media
the larger the bacteria colony grew during the growth period B) The fractal
dimension of the corresponding peptone and agar concentrations. Increasing
peptone concentration appeared to decrease the fractal dimension of the
colony. This is consistent for both agar concentrations. Increasing agar
concentration also decreased the fractal dimension of the colony. This is also
consistent at a given peptone concentration

Figure 4.2 shows another morphological diagram for B.subtilis 3610. Here,

the growth conditions are slightly different, with the bacteria being grown at

higher temperatures in the incubator rather than on the temperature-controlled

lab bench. Again, we see increased colony size occurring with increased peptone

concentration. As seen in the previous figure, we also see a decrease in the fractal

dimension with increasing peptone concentration, from Df = 1.87 to Df = 1.83

at 1.75% agar concentration and from Df = 1.90 to Df = 1.86 at 1.5% agar

concentration. This shows a consistent result across the samples. While the

fractal dimension varies across samples, there is a consistency in the effects of

peptone and agar concentration on the fractal dimension of the colony.
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Fig 4.2. Bacteria morphology and fractal dimension: Sample 2 A)
B.subtilis 3610 strain grown under different environmental conditions where
N = 5 for each condition. The colonies chosen are meant to represent the
replicates of each condition. The peptone concentration ranges from 1 g/l to 5
g/l. The agar concentrations used were 1.5% and 1.75%. The growth period
was 5 days at approximately 35 degrees. Peptone concentration increases the
growth rate of the bacteria. Also, the higher temperature used for this growth
period increases the growth rate compared to 4.1 B) The fractal dimension of
the bacteria at different peptone and agar concentrations. Increasing peptone
concentration appeared to decrease the fractal dimension of the colony.
Increasing agar concentration also appeared to decrease the fractal dimension
of the colony. As there is variation between samples there is a lack of
consistency in the fractal dimension. However, the changes in the fractal
dimension appear to be consistent across samples

The PY79 strain was also cultivated, showing different growth patterns in

different parts of the colony (Fig.4.3). When comparing the fractal dimensions

of different regions, we find differences based on the observed growth patterns.

Figure 4.3B shows a region of the colony where the growth is more branching.

This region shows a higher fractal dimension than the colony overall (Df = 1.95

compared to Df = 1.92). The second region, shown in Fig. 4.3C also shows a

higher fractal dimension, Df = 1.95, when compared to the whole colony, Df =

1.92. The fractal dimension can be used to characterise changes in morphology

between different environments and regions of an established bacteria colony

when different growth patterns are observed.
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Fig 4.3. Regional fractal dimension When looking at the PY79 strain of
B.subtilis, there are different growth patterns compared to the 3610 strain.
The growth period was 5 days at 35 degrees. The agar concentration was
1.5%, and the peptone concentration was 5 g/l A) PY79 has a more branching
structure than the 3610 strain. Different regions of the colony show different
growth patterns and these give different fractal dimensions B) Region 1 shows
greater branching and gives a higher fractal dimension when compared to the
fractal dimension of the entire colony C) Region 2 also gives a higher fractal
dimension when compared to the whole colony but similar to the fractal
dimension seen in B

B.subtilis has been know to respond to electrical stimulation [200] [201].

Here, we applied an electric field to investigate potential morphology differences

and determine if a fractal dimension change could capture those differences.
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Figure 4.4 shows the bacteria grown with and without the presence of the electric

field (A and B respectively). The colony grown without the field shows a layering

in the growth pattern while the colony grown with the field appears much more

smooth. Previous work has shown the ability to manipulate cell behaviour to

generate interesting patterns (such as forming a smiley face [202] [203]). In

this work, the field appears to be causing a smoothing in the growth pattern

of the bacteria. This smoothing effect was not consistent across the samples

or different agar and peptone concentrations. Although it did appear the most

at the highest peptone concentration. The field also appears to increase the

fractal dimension of the colony. This increase is likely due to the smoothing of

the colony.
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Fig 4.4. Effects of the electric field: Sample 1 Strain 3610. N = 4 and
the images shown are meant to represent the replicates of each condition. The
agar concentration is 2% and the peptone concentration is 5 g/l A) Concentric
rings appear during the growth of B.subtilis strain 3610. Different
environmental conditions can give rise to different growth patterns [204]. B)
We exposed the bacteria to an electric field with a field strength of 4 V/cm for
the entire growth period which in this case was 5 days at approximately 20
degrees. It was assumed that the field lines ran parallel to each other from one
electrode to another. The electric field appears to have caused a smoothing
effect in the growth pattern of the bacteria colony and increased the fractal
dimension of the colony
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When investigating the effects of the electric field on morphology there is the

question of the growth asymmetry and also the field lines. This asymmetry was

observed in some of the growth samples, one of which is shown in Fig.4.5. These

bacteria were grown in a 3D-printed petri dish, which was printed to be 60W

x 20H x 60D. This was used to decrease the distance between the electrodes

to increase the field strength. Fig.4.5B shows asymmetric growth of the colony.

This growth is perpendicular (i.e., downward) to the electrodes placed on the

left and right sides of the dish just out of frame. Again, the electric field did

not cause consistent differences in observed morphology (there does not appear

to be a smoothing effect). Although again the field caused an increase in the

fractal dimension, albeit a smaller increase than in Fig.4.4. The field lines were

assumed to be straight, as shown in the top part of Fig.4.5B. However, given

the circular nature of the agar, it is possible for the field lines to be curved or

slightly distorted as they travel from one electrode to another. This could mean

that the effect of the electric field is felt differently at different places on the

agar rather than uniformly as pictured. This would then lead to different colony

morphology.
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Fig 4.5. Effects of the electric field: Sample 2 Bacteria were also grown
in a 3D printed petri dish, which was designed to be smaller to increase the
field strength of the electric field. Here, we see strain 3610 grown over a period
of 6 days at room temperature. N = 4 and the images shown are meant to
represent the replicates of each condition. The agar concentration used was
1% with a peptone concentration of 5 g/l A) The colony grows as expected
without the influence of the electric field B) The bacteria were exposed to a
field strength of 8 V/cm over the course of the growth period. There appears
to be an asymmetry in the growth of the bacteria colony, with the growth
occurring perpendicular to the field
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4.4 Discussion

Previous work has investigated morphological differences in bacteria growth

with respect to changing environmental conditions. From this they developed

a morphological diagram which shows the effects of nutrient concentration (in

the form of peptone) and agar concentration on the growth pattern of the bac-

teria. Previous research has also used the fractal dimension to characterise

changes in morphology, but not to the extent of this project. From the results,

we developed a morphological diagram which shows the changes in morphology

with changing agar and peptone concentration (Fig.4.1A & Fig.4.2A). Increas-

ing peptone concentration increases the growth of bacteria, as expected, with

higher concentration agar impeding the growth of the bacteria, possibly due to

the increased hardness of the media. The fractal dimension more qualitatively

measures the changes in morphology, giving us the fractal morphological dia-

gram seen in Fig.4.1B & Fig.4.2B. The effects of the changing environmental

conditions appear consistent across the samples, with increasing peptone con-

centration decreasing the fractal dimension. Increasing agar concentration also

decreased the fractal dimension of the colony.

Different strains are known to have different growth patterns. Hence, Ben-

Jacobs use of morphotypes as a method of categorisation [92]. The B.subtilis

strain PY79 showed different growth patterns in different regions of the colony

(Fig.4.3). There was variation in the fractal dimension based on the region of

the colony that was analysed. There were observable differences in regions of the

bacteria colony. One of the regions analysed had a more branching structure

forming more intricate patterns (Fig.4.3B) while another region had thicker

branches with more intricate sections. The fractal dimension of these regions

varied from that of the overall colony, showing that even with one bacteria

colony, there can be regional differences in the propagation of cells through the

148



media. Previous work has investigated this ”sector formation” [205] with models

developed to describe their formation. With the use of the fractal dimension,

the differences in morphology for these sectors can be catalogued. Combining

this with numerical simulations would yield new ways of predicting changes in

morphology due to different factors and environmental conditions, allowing us

more control over how the colony grows.

Electrical stimulation can be used to control how the colony grows [195]

[200] [206]. Here, the colony was under constant exposure to the electric field,

as opposed to previous work where the colony was only exposed to electrical

stimulation for a certain time during the colony’s growth period. The effects

of the field on colony morphology were not consistent when looking at the ob-

served differences in bacteria growth from one sample to another (Fig.4.4 to

Fig. 4.5). One sample showed a smoothing effect of the electric field on colony

growth (Fig.4.4). Another sample showed an asymmetry in the morphology of

the colony exposed to the field (Fig.4.5). However, in both cases, the fractal

dimension was determined to increase when the colony was exposed to the elec-

tric field. As there was no consistency in the observed colony morphology, it

is possible that the increase in fractal dimension is coincidental. Previous work

by Rajnicek et al. [200] showed that electric fields induced curved growth in the

cells of various bacteria species, including B.subtilis. Rajnicek et al. exposed

the bacteria to the field for 1-1.5 hours and showed that the cells returned to

normal when the field was off. With this curved growth in mind, it would not

be surprising to see an asymmetry in the growth of the bacteria colony when

exposed to a constant electric field. However, the curved growth observed by

Rajnicek was toward the anode. This was confirmed when the polarity of the

field was switched and the cells began to bend in the direction of the new anode.

Here, the asymmetrical growth occurred perpendicular (i.e. downward) to the
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electrodes, which were placed on the left and right side of the dish just out of

the frame and is therefore unlikely to be caused solely by the curved growth of

the cells. Symmetry breaking is also occurring, with the growth only occurring

in one direction. This could be due to a stronger form of the chirality which

was observed by Ben-Jacob et al. [92]. However, the weak chirality they found

was due to the elongation of the bacterial cells. Here, it is unclear if elongation

is the cause of the symmetry-breaking growth seen in Fig.4.5.

Multiple mechanisms could be at play when determining how the growth

pattern of the colony should change based on the colony’s exposure to the elec-

tric field. First, there is the aforementioned curvature of the cells when exposed

to the electric field. One would imagine that curved cells divide and lead to more

curved cells, eventually leading to an asymmetric growth pattern. Even so, the

curved growth observed in Rajnicek et al. occurred in cells which were more

spaced apart. The colonies observed in the figures here would contain many

more cells which are more closely packed together. It is currently unknown

what effects the curved growth of the cells would have on the morphology of the

colony at a macro scale when the cells are more closely packed. The curvature

effect could be mitigated by all the cells attempting to curve the same way,

with some in different orientations causing differences in the amount of curva-

ture experienced by different cells. Another mechanism is the electrochemical

communication that can occur between the cells [90]. Disruptions in this sig-

nalling caused by the electric field [199] would change the morphology of the

colony. Whether this would conflict with the curved growth of the cells is yet

to be determined. In either case, the strength of the effect of curvature vs com-

munication disruption would need to be measured. It is possible that curved

growth also causes disruptions in signalling between cells, further exacerbating

the expected change in morphology.
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In this chapter, we investigated changes in the morphology of the species

B.subtilis with different media environments. To demonstrate observed changes

in morphology on the macro scale we used a morphological diagram, first devel-

oped by Wakita et al. The changes in morphology were then characterised us-

ing the fractal dimension to measure the differences in morphology between the

media conditions. While there were some basic findings, the fractal dimension

proved a useful tool in evaluating morphological change in a more quantitative

manner. This was further applied to potential differences in morphology caused

by exposure to an electric field. While there were no consistent observed differ-

ences between colonies exposed to the field and those that were not, there was a

consistent increase in the fractal dimension when the colony had been exposed

to the electric field.
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Chapter 5

Discussion, Conclusion and

Future work

5.1 Results Summary

5.1.1 Internal states and reproductive control

Social insects demonstrate adaptive behaviour for a given colony size. Remark-

ably, most species do this even without visual information in a dark environ-

ment. However, how they achieve this still needs to be discovered. In the ant

Diacamma cf. Indicum (from Japan), the queen spends more effort on queen

pheromone-transmitting behaviour (patrolling) in response to the growth of

colony size to inhibit worker ovary development. We used an agent-based simu-

lation to understand the mechanism of the colony size dependent behaviour of

the queen. Through repeated physical contact between the queen and individual

workers, individual colony members monitor the physiological states of others,

reflecting such contact information in their physiology and behaviour.
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We showed two things. First, the queen follows a feedback loop mediated

by the mutual contact between her and the workers. In other words, the queen

patrols the workers more often when she has recently encountered workers with

developed ovaries. The queen can exhibit adaptive behaviour patterns for the

increase in colony size. We found that this self-regulatory mechanism worked

even when the worker density per space was constant. Second, we showed that

physical constraints could underlie the adaptive switching of colony stages from

successful patrol behaviour to unsuccessful patrol behaviour. This switch leads

to constant ovary development in workers. Essentially, despite such feedback,

the effectiveness of the queen patrol and, thus, the suppression of worker ovarian

activity decreased with increasing colony size. This indicates a colonial phase

shift from the ergonomic stage to the reproductive stage, a general phenomenon

in social insect colonies, emerged as the colony grew.

Feedback between the sensing of physiological states and the corresponding

behaviour patterns leads to self-organisation, with colonies shifting according to

size. The feedback loops embedded in the queen between the perception of the

internal states of the workers and behavioural patterns can explain the adaptive

behaviour as a function of colony size. In this computational study, we show

that even at a constant individual density per nest space, colony size dependent

behaviours both in queens and workers emerged. This demonstrates that the

behavioural changes caused by the feedback loop (which couples the internal

state of the queen and workers) code the information regarding the contact rate

of the individual worker by the queen.

5.1.2 Altruism from a Natural History perspective

Inclusive fitness, first introduced by W.D Hamilton, provides a framework for

understanding the development of altruistic behaviour in related individuals.
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Specifically, the development of altruistic behaviour in individuals who do not

produce offspring directly but instead invest in the offspring of others. This

study investigates the evolution and stability of ant workers’ genetic predispo-

sition toward altruism. By integrating an agent-based simulation and a genetic

algorithm, the main result showed increased genetic predisposition towards al-

truistic behaviour over time (Fig.3.5). Inclusive fitness increased with the prop-

agation of more altruistic genes. Still, it seemed to level off, indicating a ceiling

to the colony’s inclusive fitness benefits of altruistic behaviour. However, the

inclusive fitness of more altruistic colonies is generally greater than that of more

selfish colonies. More altruistic workers help the queen produce more workers

and engage in more social behaviours, increasing their inclusive fitness over more

selfish workers. More selfish workers split the breeding capacity and, therefore,

decreased the production rate of new workers. While these workers produce

offspring, this does not give them a greater inclusive fitness benefit.

The stable point of the genetic predisposition also did not require perfect

altruism, leaving room for the expression of selfish behaviours by workers. This

finding reveals how workers can continue to have functioning ovaries despite

refraining from reproducing or being suppressed by the workers’ interaction

with the queen. By linking the genetic predisposition to the workers’ behaviour

in a digital nest space, the evolutionary agent-based simulation allows the ex-

ploration of parameters that can influence the propagation of altruistic genes.

The findings in this thesis were consistent with the conclusions of Ohtsuki and

Tsuji [110]. Policing is most effective and well-implemented when the colony is

small but becomes less effective or less implemented when the colony becomes

larger. At this stage (the “reproductive stage”), workers begin to produce their

offspring or at least produce them more, as seen in Fig.3.6.

Different factors can affect the propagation of altruistic genes. These include
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the effective paternity of the queen and the relative fertility of the queen. Al-

truistic behaviour may not seem helpful in terms of reproduction. In this case,

the abdication of reproductive responsibility to the queen appears antithetical

to the direct propagation of one’s genes. On closer inspection, though, we see

altruistic behaviour, as presented here, confers an inclusive fitness advantage to

the individual, which the individual cannot gain if they acted independently.

5.1.3 Morphology and fractal dimension

The fractal dimension is a value (Df ) which characterises the self-similarity of

an object independent from the observation scale of the object [198]. There

are multiple methods for calculating the fractal dimension of an object. A

program was developed in MATLAB to calculate the fractal dimension of the

bacteria colony. Here the box-counting method was used to analyse the change

in morphology in B.subtilis colonies. The morphology of the bacterial colony

can show the effect of stress on the colony when exposed to external forces. We

developed a morphological diagram, following Wakita et al. [111]. Their work

was extended by including a fractal morphological diagram (Fig. 4.1B), which

was used to quantify the observed changes in morphology.

We found that the fractal dimension appears to decrease with increasing

peptone concentration. The fractal dimension also decreases with an increase in

the agar concentration. We hypothesised that the harder agar means bacteria

cannot grow uniformly. Instead, branches grow to reflect the slight differences in

the hardness of the media. In Ben-Jacob et al. [92], when looking more closely

at the edges of the bacteria colony, the effect of antibiotics decreases the density

and curvature of the branches. We know that cells communicate about their

internal state to others using electrical signalling [90], which is linked to their

metabolism [80]. A larger surface area for the boundary at the bacteria colony’s
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edge effectively means greater sensory information for the colony. Increasing

surface area could mean more cells are exposed to the environment and could

communicate its effects to inner cells. A higher fractal dimension means a higher

surface area to take up nutrients.

We exposed B.subtilis to an electric field to view its effects on the colony’s

growth. Multiple mechanisms could be involved when determining the growth

pattern of the colony based on the colony’s exposure to the electric field. First,

there is the curvature of the cells when exposed to the electric field [200].

Curved cells would divide, and the colony would grow asymmetrically. However,

such asymmetric growth was not consistently found in experiments. Previous

work looking at the curvature of the cells [200] showed that different bacteria

species respond and curve differently compared to each other. The curvature in

B.subtilis is much lower at a given field strength. A much stronger electric field

could be applied to see consistent asymmetric growth patterns in the bacteria

colony. Second, disruptions in electrochemical signalling caused by the electric

field could affect morphology [199]. The level of disruption could not be mea-

sured. However, it would no doubt affect the propagation of cells in the colony

and, therefore, the macro morphology of the colony. In either case, exposure to

the electric field appeared to increase the fractal dimension of the colony.

Overall, the morphological diagram demonstrated some primary findings re-

garding the environmental effects on colony morphology. The fractal dimension

proved a helpful tool in evaluating morphological change more quantitatively.
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5.2 Discussion

5.2.1 Self-organisation and Emergent functions

Self-organisation and collective behaviour is concerned with the interactions of

individuals in loosely organised groups. Collective behaviour can have advan-

tages both in the short and long term. These advantages require collective

cohesion and stability, meaning group homeostasis is needed. Group homeosta-

sis involves processes needed to maintain the group’s survival. Eusocial insect

species (specifically Hymenoptera) show complex group behaviours. In the case

of eusocial insects, group homeostasis involves the division of labour which puts

individuals into castes. Typical castes include reproductive queens and non-

reproductive workers.

In the species Diacamma cf. Indicum (from Japan), the queen patrols

the colony and suppresses worker ovary development to maintain the repro-

ductive division of labour. The macroscopic details of policing behaviour are

known [56] [57] [63] [67] [68] [69] but the details of how the policing behaviour is

carried out are understudied. Sugawara et al. [75] introduced the concept of the

internal state to explain the details of the queen’s patrol behaviour. The PhD

project aimed to describe the details of the reproductive division of labour. Us-

ing an agent-based simulation, we used a model to demonstrate that the queen

could use information from interactions with workers to determine her patrol

behaviour. We showed the colony’s transition from the ergonomic stage, where

more workers are produced, to the reproductive stage. The model was extended

further to develop an evolutionary agent-based simulation which showed how

altruistic behaviour could evolve. This altruistic behaviour leads to the repro-

ductive division of labour seen in modern Diacamma. The model also captures

the ability of workers to maintain their reproductive capacity even if they refrain

from reproducing in the queen’s presence. The agent-based simulation allows
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for incorporating the mutual interactions integral to self-organised systems.

Emergent behaviour arose from these mutual interactions using models based

on experimental observations. As with any model, there were a few assumptions

underlying the development of specific parameters. For example, the non-linear

development of the worker’s internal state. However, the model’s parameters

are grounded in the observed behaviours of Diacamma. The evolutionary agent-

based simulation is more difficult to validate experimentally. The advantage of

the simulation in being able to explore different variables is also its weakness. It

is currently impossible to experimentally evolve a series of colonies with tunable

traits as done here. Although, there is some basis for the validity of the model. It

predicts the current state of worker behaviour observed in actual colonies. It was

also consistent with previous findings on policing behaviour in the nest and the

movement from one colonial development stage to another. It is an extension

of the previous section, which looked at the enforcement of the reproductive

division of labour but incorporated a Natural history perspective.

B.subtilis has shown similar co-operative behaviour with cells communicat-

ing and sharing resources [80]. Cells use electrochemical signalling to communi-

cate their metabolic state to others [80]. The fractal dimension has been used to

characterise changes in morphology caused by external stress [92]. We use the

fractal dimension to quantify the differences in morphology and use previous

research to explain differences in morphology based on environmental effects.

One of these is the electric field, which affects the cells differently. While we

could not show consistent effects, the conceptual framework for understanding

the collective behaviour of ants and bacteria is the same. Individuals must com-

municate their inner state with others in the group; this affects their behaviour,

shaping the colony. This leads to self-organisation in both cases. For ants, this

self-organisation takes place in the form of the colony’s reproductive division of
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labour and task allocation. For the bacteria, this self-organisation occurs in the

form of observed macroscopic morphology.

5.2.2 Field Contributions and Novelty

There are several novel aspects of the work presented here. The first is using

an agent-based simulation to investigate the reproductive division of labour and

the patrol behaviour of the queen. Previous work that has looked at behavioural

changes in workers focuses on the changes in density and encounter rate as a way

of determining worker behaviour [45] [131] [132]. While density is important for

regulating behaviour, it needs to consider a deeper information transfer that

occurs during the interactions. Repeated interactions with workers can change

worker behaviour as the sum of the interactions causes the worker to change

their behaviour. However, this does not consider dominance interactions or

the policing of workers by the queen. For any dominance interaction to occur,

the individuals must recognise each other and convey information. Hence, the

use of the internal state. By keeping the density the same, we show the effect

of information transfer from the mutual interactions between the queen and

workers. We are the first to state a proximate mechanism which generates

colony size dependant behaviour and the shift from ergonomic to reproductive

stages, with experimental results to validate the model.

Another novel aspect is the development of an evolutionary agent-based

simulation, which showed the emergence of a non-selfish genetic predisposition

toward altruistic behaviour. The simulation predicted that workers would be

more altruistic and refrain from reproducing when the colony size is small but

begin producing offspring when the colony size is large. This reflects what has

been shown in previous work with live Diacamma colonies, where workers refrain

from reproducing but begin developing their ovaries when they are unaware of
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the queen’s presence [153] [31] [72]. Therefore, the simulation helps explain the

rise in altruistic behaviour in workers and can be used to probe questions about

inclusive fitness. The simulation allows for a unique look into the evolution

of altruistic genes in workers, how they arise and become widespread, and the

stability of altruism as an evolutionary strategy. While the work is based on

Ohtsuki and Tsuji [110], there is a crucial distinction in the method for max-

imising inclusive fitness. There is an iterative process to the simulation, which

allows for long-term evolutionary strategies. The evolutionary agent-based sim-

ulation allows tracking of altruistic genes’ prevalence over time and determining

the most effective fitness strategy for a given set of parameters.

The final novel point uses the fractal dimension to quantify the changes

in bacteria colony morphology in response to different environmental factors.

While colony morphology has been studied before, this usually involves striking

images which look at the more easily observed differences in morphology. The

fractal dimension has been used to study differences in morphology but only

when looking at changes in one environmental factor. Here, we use it to view

a landscape of morphological changes and also attempt to quantify the fractal

dimension of the colony when exposed to the electric field for the first time. We

then used findings from previous work on the effects of the electric field and

electric signalling as possible explanations for changes in morphology, from the

individual cell on the microscale to the entire colony on the macroscale. Over-

all, this shows that the internal state is a versatile concept that can explain the

emergence of self-organised behaviour in different organisms. It can be adapted

appropriately to fit the context. Using agent-based modelling can give us a

tool for analysing the behaviour of different collective systems and how infor-

mation spreads within the network of interactions between individuals. These

individuals can be ants or bacteria cells.
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5.3 Conclusion and Future work

A fundamental assumption of our real-time feedback model is that the queen can

perceive a worker’s reproductive status (an internal physiological state) when

she contacts it. More importantly, the model also assumes that contact with

a reproductive worker(s) increases the frequency of queen patrols. These are,

however, necessary to empirically demonstrate in experiments using Diacamma.

There is another issue that remains to be addressed. Why should the queen’s

patrol behaviour peak at a specific rate in real Diacamma colonies, even if the

colony size expands further? The peak queen patrol time is only 20% to 30% of

the total time available (S1 Fig). Thus, the queen could afford to increase her

patrol effort further. If queens could significantly increase the frequency of their

patrol behaviour, the suppression of worker reproduction would be achieved

even in large colonies. To understand the adaptive strategies of queens, we must

clarify the limiting factor of the queen’s investment in patrolling large colonies.

One hypothesis is that excessive investment in patrolling might have some fitness

costs. These include diminished survival and fecundity, which should also be

empirically studied.

The evolutionary agent-based simulation could be helpful for this in deter-

mining the fitness costs of increased patrol behaviour. Roulette wheel selection

combined with elitism based on fitness parameters offers a mechanism for se-

lecting individuals within a population for reproduction and genetic diversity

maintenance [207]. Roulette wheel selection assigns probabilities to individuals

based on their fitness values, allowing fitter individuals a higher chance of selec-

tion while still affording less fit individuals a probability of being chosen. This

approach ensures that the selection process remains stochastic and unbiased,

reflecting the diversity inherent in natural selection. By incorporating elitism,

where the best individuals from each generation are preserved, the algorithm
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can maintain a high-performing subset of the population while still allowing for

exploration and evolution.

Also, as to proximate mechanisms of reproductive division of labour in Di-

acamma, we have to consider other mechanisms, such as dominance behaviour

between workers and worker policing. Dominance behaviour is a worker-worker

aggressive interaction over the right to produce own male offspring. Dominance

behaviour occurs both in the queen’s absence [130] and in the queen’s presence.

Finally, it forms a linear hierarchy among workers [57] [208]. Interestingly,

similar to the patrol behaviour of queens, ritualised aggressive behaviours by

dominant individuals can have an inhibitory effect on the reproductive physi-

ology of subordinate workers [70]. The frequency of dominance behaviours is

known to increase with colony size in queen-right colonies [72]. This might have

a complementary effect of suppressing worker reproduction when the efficiency

of queen patrol declines. Worker policing, destruction of worker-produced eggs

and aggression to an ovary-developed worker by other workers exist in Dia-

camma [69] [71]. The occurrence is also colony-size dependent [67]. Future

studies need to develop a simulation model that involves these two mechanisms

simultaneously operating.

The evolutionary agent-based simulation considers these behaviours in the

form of the social strategy of the worker. However, it does not explicitly have

dominance interactions when workers contact each other. Future research direc-

tions discussed above will further enhance our understanding of the mechanisms

of the reproductive division of labour in social insects.

While observation and characterisation of the electric signalling in a bacteria

colony are not novel, little has been done to see how the signalling might change

due to external factors. Especially when investigating how the application of an

electric field affects the signalling in a bacteria colony and, in turn, affects the
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morphology. All of this looks at how information is processed in the bacteria

colony, where individuals signal their internal states via electrical signalling.

This gives access to nutrients for cells that lack them and maintains the colony’s

homeostatic balance while leading to sustainable growth.

Future work in this area includes visualising membrane potential changes

characteristic of electric signalling in a bacteria colony similar to Prindle et

al. [80]. The fluorescent dye ThT could be used to visualise changes in electric

signalling caused by environmental changes such as a nutrient gradient [209].

Fluorescence imaging would be needed to measure the fluorescence intensity

in the dye. The fluorescence of ThT is proportional to its concentration in

the cells. It acts as a Nernstian dye, which shows changes in the membrane

potential. These experiments could be carried out using a microfluidic system

developed using the PiFlow [210] pump. The fluorescence observed in Prindle et

al. may only be possible in a microfluidic environment. In this case, developing

a microfluidic system could be needed to refine the conditions with which the

bacteria are grown. This could be done with the piezoelectric pump, a 3D

printed static mixer [211], and a microfluidic bacteria plate.

This implementation is more cost-effective than buying a traditional mi-

crofluidic system. In this context, the fractal dimension could help dive deeper

into colony morphology and reveal the causal chain from environmental stimuli

to electrical signalling in the colony to the observed macroscopic morphology.

Ways of disrupting and manipulating the electrical signalling could be explored,

with the ability to shape the colony if the underlying morphology-forming mech-

anism is understood. Such disruptions include exposure to an electric field and

exposure to antibiotics. Though it is likely to have a disruptive effect, it is

unknown how antibiotic exposure affects the colony’s electrical signalling.

Results could be improved by isolating cells at specific phases [212]. By
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isolating cells at specific phases we can study the behaviour, gene expression,

and cellular processes that are characteristic of each growth phase in a con-

trolled manner. This can lead to more consistent and reproducible experimen-

tal results, as the variability introduced by asynchronous cultures is minimised.

This also allows for more accurate comparisons between different experiments

and conditions. Saccharomyces cerevisiae, a model organism commonly used

in yeast studies, may not be the most appropriate choice for synchronising cul-

tures through centrifugation-based selection. While S.cerevisiae shares certain

cellular processes and pathways with bacteria, its eukaryotic nature introduces

additional complexities such as the use of chemical inhibitors [213] [214].

While bacteria in biofilms are relatively stationary, bacteria can spread over

a moist surface via collective motion known as “surface swarming”. This is

usually studied by inoculating bacteria on a soft agar gel, which contains essen-

tial nutrients for their growth and proliferation and allows the bacteria to grow

freely. Various things can affect this swarming behaviour. These include bacte-

ria with the absence of pili (pilus is a hair-like appendage found on the surface

of many bacteria) and viscous agents which decrease swarming [215] [216]. Sur-

factants which reduce surface and interfacial tension enhance swarming [216].

Water flow can account for the effects of swarming through a porous medium.

This is known as Darcy’s Law (reduced flow of water from the agar gets to the

swarm front, causing a decrease in swarming) [216]. More needs to be done on

the processes which lead to particular pattern formation.

After investigating various ways environmental factors can affect colony for-

mation, an agent-based simulation could be developed. In the same way as

previous simulations, it would model the communication in the bacteria colony.

There would be input from the environment and other colony members. This

would help us better understand the coupling between internal states and the
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global morphology of the colony and their adaptive nature, following in the

footsteps of previous work [96] [217]. Work started by Mikami et al. [95] could

be used as a guide for developing an agent-based model based on the internal

state of individual cells.

Stephen Wolfram’s work on cellular automata [218] could also be used as

a point of reference for future research areas. Cellular automata are simple

computational models consisting of a grid of cells, each of which can be in a

finite number of states. The state of each cell evolves over discrete time steps

according to a set of rules based on the states of neighbouring cells. Wolfram

classified cellular automata into four classes based on their behaviour: Class

1, where patterns quickly stabilise into a homogeneous state; Class 2, where

simple localised structures emerge; Class 3, where complex and chaotic patterns

emerge; and Class 4, where complex and structured behaviour emerges that

can support universal computation [218]. It is easy to see how this could be

relevant in the investigation into self-organised behaviour in different systems,

as cellular automata provide a framework for studying how simple local inter-

actions between individual components can give rise to complex and emergent

behaviour at the global level. It would be an alternative approach to the agent-

based simulation presented in this thesis, as a method for exploring how local

interactions and feedback mechanisms give rise to global patterns, structures,

and dynamics. All of this would further our understanding of self-organisation

in both ant and bacteria colonies.

165



Acknowledgements

I want to thank Melissa Winder for assisting in running the simulations. I

would also like to thank Oliver Back for his feedback on improving the clarity

of the writing. I want to thank Yuka Fujito, Nao Fujiwara-Tsuji, Shun-ichi

Kawabata and Ryohei Yamaoka for discussions that helped shape the text’s flow

in the second chapter. I appreciate Ken Sugawara for discussing his work, which

provided a basis for this work. I am grateful to Toshiharu Akino for helping with

a behavioural bioassay and to Ryo Hosomi and Nao Shigenari, who collected

preliminary data in their graduation theses at Toyama University. I would like

to thank the external examiner Wolfram Moebius for his feedback and time

on my viva and subsequent corrections. Finally, I appreciate my supervisor

Yoshikatsu Hayashi’s guidance and feedback on my work over the years.

166



Bibliography

[1] F. Heylighen et al., “The science of self-organization and adaptivity,” The

encyclopedia of life support systems, vol. 5, no. 3, pp. 253–280, 2001.

[2] E. Karsenti, “Self-organization in cell biology: a brief history,” Nature

reviews Molecular cell biology, vol. 9, no. 3, pp. 255–262, 2008.

[3] E. Bonabeau, G. Theraulaz, J.-L. Deneubourg, S. Aron, and S. Camazine,

“Self-organization in social insects,” Trends in ecology & evolution, vol. 12,

no. 5, pp. 188–193, 1997.

[4] M. M. Millonas, “A connectionist type model of self-organized foraging

and emergent behavior in ant swarms,” Journal of Theoretical Biology,

vol. 159, no. 4, pp. 529–552, 1992.

[5] Z. Li, C. H. Sim, and M. Y. H. Low, “A survey of emergent behavior

and its impacts in agent-based systems,” in 2006 4th IEEE International

Conference on Industrial Informatics, pp. 1295–1300, IEEE, 2006.

[6] C. R. Reid and T. Latty, “Collective behaviour and swarm intelligence in

slime moulds,” FEMS Microbiology Reviews, vol. 033, pp. 798–806, 2016.

[7] J. Kennedy, “Swarm intelligence,” in Handbook of nature-inspired and

innovative computing, pp. 187–219, Springer, 2006.

167



[8] G. Powell, “Experimental analysis of the social value of flocking by star-

lings (Sturnus vulgaris) in relation to predation and foraging,” Animal

Behaviour, vol. 22, pp. 501–505, may 1974.

[9] I. D. Couzin, J. Krause, R. James, G. D. Ruxton, and N. R. Franks,

“Collective memory and spatial sorting in animal groups,” Journal of

theoretical biology, vol. 218, no. 1, pp. 1–11, 2002.

[10] M. Romenskyy, J. E. Herbert-Read, A. J. Ward, and D. J. Sumpter, “Body

size affects the strength of social interactions and spatial organization of a

schooling fish (pseudomugil signifer),” Royal Society open science, vol. 4,

no. 4, p. 161056, 2017.

[11] N. Plowes, “An introduction to eusociality,” Nature Education Knowledge,

vol. 3, no. 10, p. 7, 2010.

[12] R. Beckers, J. L. Deneubourg, S. Goss, and J. M. Pasteels, “Collective

decision making through food recruitment,” Insectes Sociaux, vol. 37,

pp. 258–267, sep 1990.

[13] J. T. Emlen, “Flocking behavior in birds,” The Auk, vol. 69, no. 2, pp. 160–

170, 1952.

[14] I. L. Bajec and F. H. Heppner, “Organized flight in birds,” Animal Be-

haviour, vol. 78, no. 4, pp. 777–789, 2009.

[15] C. Carere, S. Montanino, F. Moreschini, F. Zoratto, F. Chiarotti, D. San-

tucci, and E. Alleva, “Aerial flocking patterns of wintering starlings, stur-

nus vulgaris, under different predation risk,” Animal Behaviour, vol. 77,

no. 1, pp. 101–107, 2009.

168



[16] J. E. Herbert-Read, J. Buhl, F. Hu, A. J. Ward, and D. J. Sumpter, “Ini-

tiation and spread of escape waves within animal groups,” Royal Society

open science, vol. 2, no. 4, p. 140355, 2015.

[17] A. Attanasi, A. Cavagna, L. Del Castello, I. Giardina, T. S. Grigera,
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