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Abstract

Climate change and ecological disturbances are having profound effects on species survival.

Predicting how populations will adapt to these changes relies on our understanding of how en-

vironment affects species’ life-histories, how this feeds back into abundance, and vice versa. In

general, current modelling frameworks over-simplify these relationships, giving spurious predic-

tions. Here, I derive a novel general mathematical modelling framework that links environmen-

tally induced trait variation to population level responses. Applying the framework to classical

Nicholson’s blowfly experiments I demonstrate how predictions of population’s responses to en-

vironmental change made directly from environment-trait relationships do not always hold. I

demonstrate the framework’s accuracy, and how cryptic population dynamics can emerge from

mechanisms of environmentally driven trait variation.

The framework is then applied to the globally invasive dengue mosquito vector, Aedes albopic-

tus. Developing predictions at a global scale is difficult as environmental variation acts on the

vector-pathogen-host triad in complex and non-linear ways. I show how the species population

and trait dynamics explain the location, magnitude, and timing of historical dengue outbreaks.

By representing the effect of mechanisms of variation on epidemiologically important traits ex-

pressed by vectors, I show that the competence of vector populations to transmit disease changes

according to their current and historic experience of the environment. Long-lived individuals

that developed under favourable environmental conditions can persist within the population long

after the environmental conditions that created them have passed and may consequently have
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a disproportionate effect on pathogen transmission. Importantly, this cannot be accounted for

by current modelling approaches that assume all vectors express the same average trait value.

This demonstrates that the representation of mechanisms of trait variation is required to pro-

duce predictions that account for the underlying complexity inherent in population responses to

environmental change, which is required for accurate predictions to inform risk assessment and

mitigation strategies.
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Chapter 1

Introduction

1.1 Aims of the thesis

In this thesis I aim to:

� Develop a general modelling framework to represent the effect of environmentally induced

mechanisms of variation on population’s responses to change.

� Use this framework to predict the population dynamics of the invasive dengue vector Ae.

albopictus and explore how vector trait variation alters the risk of vector-borne disease.

1.2 The role of environmental variation in producing dengue outbreaks

1.2.1 Vector-borne disease

An organism that transmits infectious pathogens between other organisms is called a vector,

and the World Health Organisation estimates that vector-borne viral diseases currently account

for 17% of all disease globally (World Health Organisation, 2017). The incidence of vector-borne

disease is on the rise, representing a significant threat to public health and global economies
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(Jones et al., 2008). Driving this rapid change are anthropogenic factors, such as land use

change, climate change, and increased global connectivity through trade and travel (Norris,

2004; Soriano-Panõs et al., 2020; De La Rocque et al., 2011; Rocklöv, Dubrow, 2020). The

consequences of these disturbances are already evident in the concurrent trends of increasing

of disease burdens in endemic countries and the expansion of diseases to new areas (Kilpatrick,

Randolph, 2012). Implementing effective public health strategies, that will remain robust to the

evolving challenges of an uncertain future, requires a thorough understanding of how the drivers

of vector-borne disease determine the location and intensity of disease outbreaks.

The risk of vector-borne disease in a region is inherently linked to vector ecology. Vectors

encompass a diverse range of taxa and transmit pathogens through a wide range of mechanisms.

Schistosomiasis is a parasitic disease caused by worms and is vectored by aquatic snails through

the release of infectious larvae into fresh-water (McManus et al., 2018). Rats and bats vector

leptospirosis through their urine, a bacterial infection that in its severe form is known as Weil’s

disease (Samrot et al., 2021). However, by far the most prevalent vector-borne diseases are

arboviruses, viruses transmitted through the bites of blood-sucking arthropods (Gubler, 1998).

Vectorial flies, ticks, fleas, midges, and mosquitoes transmit diseases while taking blood meals

from host species. The two most prevalent vector-borne diseases, malaria and dengue, are both

vectored by mosquitoes via this transmission route. While the prevalence of malaria is currently

decreasing thanks to sustained control efforts, it is estimated that the years of lost life to dengue

increased over the period between 2007− 2017 despite widespread and sustained control efforts

and this is of great concern to global health authorities (Roth et al., 2018).

1.2.2 Dengue

Dengue fever is a viral vector-borne disease that in 2017 was responsible for 40, 467 deaths and

an estimated 2, 922, 630 disability-adjusted life years (Zeng et al., 2021). Dengue incidence has

rapidly increased since the mid 20th century (Figure 1.1), and as of 2019 there was evidence
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of dengue transmission in 204 countries or territories with up to 3.97 billion people living in

regions classified as “at risk” making dengue a truly global threat. It is estimated that 75% of

dengue cases are sub-clinical and are either asymptomatic or only mildly symptomatic (Duong

et al., 2015). Of the 25% of cases that present with more severe clinical manifestations, infection

begins with a mild illness referred to as dengue fever which may then progress to the more se-

vere dengue haemorrhagic fever (Guzman et al., 2013). DENV has multiple distinct serotypes,

DENV-I, DENV-2, DENV-3, and DENV-4, and infection by one serotype provides life-long pro-

tection from further infection by viruses of that same serotype (Gibbons et al., 2007). However,

secondary infection by other serotypes is both possible and antibody-dependent enhancement

of infection increases the chances of developing more severe forms of dengue when this occurs

(Guzman et al., 2013).

Figure 1.1: The number of countries reporting dengue and the average number of dengue fever
and dengue haemorrhagic fever cases reported to the WHO between 1955 − 2007. (Geneva:
World Health Organization;, 2009).

Dengue viruses have two primary transmission cycles, a sylvatic cycle between mosquito vectors

and non-human primates hosts, and an urban cycle between Aedes mosquitoes and human

hosts. Sylvatic transmission cycles are thought to be important for the emergence of new

strains of dengue, but have only been confirmed in limited rural regions of Asia and Africa

(Althouse et al., 2015; Valentine et al., 2019). However, unlike arboviruses such as yellow

fever virus, dengue does not rely on the sylvatic cycle and can be maintained solely through
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the urban transmission cycle (Gubler, 2002). Autochthonous instances of dengue transmission

now occur worldwide (Figure 1.2A), but different patterns of disease transmission are observed

across regions that currently experience regular dengue outbreaks. In tropical regions the urban

transmission cycle can be maintained at low levels all year round, with larger outbreaks generally

occurring around once every 3 − 6 years (for example, the outbreak of dengue on La Réunion

reproduced in Figure 1.2B) (Lin et al., 2020). By contrast, in temperate regions the transmission

cycle is interrupted during the cold winter months as conditions become unfavourable for both

virus replication and vector activity (for example, the outbreak of dengue in Tokyo reproduced

in Figure 1.2C) (Watts et al., 1987; Brady et al., 2012). This divides regions where dengue

outbreaks occur into source regions, where the virus is endemic, and sink regions where the

virus must be newly imported each year (Li et al., 2021a).

For an outbreak of dengue to be maintained environmental conditions need to be favourable

both virus and vector, with sufficient contact between vector and host to maintain the infection

within both populations. As mosquitoes are ectotherms, temperature is an important factor

in determining whether a region is at risk of a disease outbreak due to its direct effect on

vector competence and on viral replication rates (Liu et al., 2017). The transmission cycle

(Figure 1.3) begins when an uninfected female mosquito bites an infected human and takes a

bloodmeal, and both the frequency at which mosquitoes bite and the probability of infection

are temperature dependent (Mordecai et al., 2017). Once the mosquito becomes infected the

virus begins replicating in the midgut and once this infection disseminates to the salivary glands

the mosquito becomes infective (Bosio et al., 2000). The time this process takes is called the

extrinsic incubation period (EIP) and the duration of the EIP is also temperature dependent

(Xiao et al., 2014). Finally, the mosquito with a disseminated infection must find and bite an

uninfected host and transmit the infection to complete the pathogen transmission cycle.

By considering the relationship between temperature and each component of the transmission

cycle an understanding can be built of the current patterns of dengue incidence that are observed

around the globe. For example, whenever the temperature is lower than the thermal minimum
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(A)

(B) (C)

Figure 1.2: (A) The geographical distribution of dengue cases in 2021 taken from the ECDC
(ECDC, 2022a). (B) The 2017 − 2020 outbreak of dengue on La Réunion, data from (Santé
publique France, 2022). (C) The number of dengue cases reported in the 2014 outbreak of
dengue in Tokyo, data from (Yuan et al., 2019).
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Figure 1.3: A diagram showing the urban dengue transmission cycle, taken from Guzman
et al. (2016). Mosquitoes become may become infected after taking a bloodmeal from an in-
fected human. After becoming infected the dengue virus must disseminate from the mosquito’s
midgut to the salivary glands, after which the mosquito can transmit the infection after biting
a susceptible human. Once infected a human will enter the viremic phase after a short delay of
4− 7 days and can then infect uninfected mosquitoes.
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or above the thermal maximum required for transmission, the risk of a dengue outbreak is

clearly low. Similarly, regions with temperatures unsuitable for the development and survival

of the mosquito vectors will also not be at risk (Petrić et al., 2021). However, for populations

of mosquitoes in seasonal environments it is unclear how long the temperature would need to

be above the thermal minimum to facilitate an outbreak, nor how disease risk can be compared

between regions using such an approach making this intuition alone inadequate. The presence of

a competent vector alone has not proved sufficient to predict the occurrence of dengue outbreaks,

and in much of Aedes albopictus’ invasive range there is yet to be any evidence of autochthonous

transmission of dengue (Messina et al., 2019). For example, populations of Ae. albopictus are

now widely established throughout Europe, yet despite the wide-spread presence of established

vector populations and regular introductions of dengue into the region, outbreaks are currently

limited to a small geographical range (Schaffner, Mathis, 2014; Gossner et al., 2022). To guide

vector control efforts it will be critical to understand the reasons why some regions with vector

populations experience regular outbreaks and others do not.

1.2.3 Aedes albopictus

Ae. albopictus is a tree hole mosquito originating from South East Asia and is generally consid-

ered to be the secondary vector of dengue (Waldock et al., 2013). The range of Ae. albopictus

is currently at its widest extent and this range is projected to increase in the coming years

(Kraemer et al., 2019). Populations of Ae. albopictus have now spread to temperate regions

that Ae. aegypti has previously been unable to colonise and in this invaded range sporadic out-

breaks of dengue now occur (Brady et al., 2012). Like all mosquitoes Ae. albopictus undergoes

complete metamorphosis over the course of its lifespan moving through four distinct develop-

mental stages (Abd, 2020). Adult female mosquitoes take blood meals from available hosts to

develop eggs, with an evidenced preference for human hosts but also feeding on a wide variety of

other mammals, and a smaller selection of birds (Richards et al., 2006b). Juvenile mosquitoes

require aquatic habitats to complete development, and oviposition sites are selected according to
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a broad range of criteria, including container size, physical chemical properties of the water, the

presence of conspecific and heterospecific mosquito larvae, resource availability, and the presence

of predators (Shragai et al., 2019; Gunathilaka et al., 2018a; Wasserberg et al., 2013).

Ae. albopictus is known to utilise a range of both natural and artificial containers, requiring min-

imal space and resources to complete development and eclose to the aerial adult stage (Li et al.,

2014). The habitats that Ae. albopictus prefers are small and ephemeral and species has several

adaptations that allow for population persistence in the face of these temporary habitats drying

out (Vitek, Livdahl, 2009). Adult mosquitoes engage in skip oviposition behaviour, distributing

their eggs across many containers in a hedge-betting strategy that provides redundancy in the

eventuality that the water in the container habitat completely evaporates (Reinbold-Wasson,

Reiskind, 2021). If the habitat an egg is placed in does dry out, the eggs of Aedes mosquito

species are desiccation resistant and can remain viable through long periods of time out of the

water (Diniz et al., 2017). This allows for the swift colonisation of bodies of water immedi-

ately after rainfall, and for the persistence of populations through extended periods of drought.

By colonising habitats before other species can become established Ae. albopictus both evades

predators and escapes competition from other mosquito species (Binckley, 2017). However, when

sharing a developmental habitat with other mosquito species Ae. albopictus can be an aggres-

sive competitor and has been known to displace populations of the primary dengue vector Ae.

aegypti (Juliano et al., 2004). After finishing development eggs hatch into larvae which compete

for organic matter within the aquatic developmental habitat progressing through four instars

before beginning pupating and subsequently emerging as adults (Abd, 2020).

Ae. albopictus can complete its life-cycle over a broad range of temperatures contributing to the

extraordinary latitudinal gradient over which populations of Ae. albopictus are now established

(Kraemer et al., 2019). Throughout the life-cycle of Ae. albopictus temperature alters vital rates

and this can greatly change the population dynamics that are observed across the species range

(Haramboure et al., 2020; Marini et al., 2017). For example, the time taken for eggs to complete

embryonation has been observed to vary from 2 days at 36°C to 42 days at 15°C (Waldock
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et al., 2013). In some populations of Ae. albopictus the lower thermal limit on development is

extended as under conditions of falling temperatures and photoperiod the production of cold-

resistant diapausing eggs can be triggered (Lacour et al., 2015). Diapausing eggs can remain

viable and dormant over winter until conditions are suitable for larval development in the spring,

allowing populations of Ae. albopictus to persist in temperate regions with cold winters. Larvae

and pupae are similarly sensitive to temperature and both development times and mortality

rates throughout both stages are strongly temperature dependent (Delatte et al., 2009). For

adult mosquitoes temperature alters the expression of traits that determine vector competence

in addition to population dynamics such as adult mortality and biting rates (Mordecai et al.,

2017).

The same mechanisms that allow Ae. albopictus to exploit its environmental niche have also

facilitated its global invasion through international trade routes (Swan et al., 2022) (Figure 1.4).

For long distance dispersal events Ae. albopictus relies on passive dispersal routes, and its des-

iccation and cold resistant eggs have proved capable of remaining viable for extended periods of

time through international shipping routes. The used tire trade was identified as the mode of

introduction to the United States and South Africa and the trade in ornamental plants, specifi-

cally “lucky bamboo” has led to the establishment of a colony of Ae. albopictus in greenhouses in

the Netherlands within which the species is now established (Reiter, 1998; Hofhuis et al., 2009).

Despite the ability of the species to utilise long-range dispersal methods it has been shown that

the global invasion of Ae. albopictus global can be best be described as a dispersal front, and

there are a range of short distance dispersal routes that species has been shown to use (Krae-

mer et al., 2019). The primary mode of dispersal over short-distances appears to be through

vehicles, which have been implicated in the reintroduction of the species in parts Spain after

successful control efforts (Eritja et al., 2017; Goiri et al., 2020). Contrary to previous evidence

Ae. albopictus is not a weak flier and has been observed to fly a distance of 1km from release

sites in mark-recapture experiments and so is capable of actively dispersing (Vavassori et al.,

2019).
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Figure 1.4: A map of the known distribution Ae. albopictus as of 2022, taken from Swan et al.
(2022). The year the species was first recorded in each country is indicated by the colour, and
whether the species became established is indicated by the type of fill.”

1.3 Predicting dengue risk

There are a range of modelling approaches that are commonly used to predict the risk of

mosquito-borne disease. These approaches can be broadly classified as either correlative, mech-

anistic, or a hybrid of both (Kearney et al., 2010; Johnston et al., 2019). Correlative approaches

use statistical associations between information about the population of interest and other data

to identify trends and have been widely used to predict dengue incidence on regional and global

scales (Withanage et al., 2018; Carvajal et al., 2018; Xu et al., 2014; Rogers et al., 2014; Bhatt

et al., 2013). However, the environmental variables that are predicted by correlative approaches

to be associated with dengue incidence are not consistent between locations (Morin et al., 2013).

For example, in some regions it has been shown that precipitation is positively correlated with

dengue incidence, but in others precipitation is either non-significant or negatively associated

(Pinto et al., 2011; Benedum et al., 2018; Su, 2008).

The changing role of environmental variables in driving dengue incidence between regions can

be in part understood by considering how these variables alter the vector processes that un-

derpin disease transmission. For example, it is suggested in regions where there is a positive

10



association between precipitation and dengue incidence, increased precipitation creates larval

habitats, increasing vector abundance and so disease risk (Su, 2008). However, in regions such

as Singapore, where there is a negative association between precipitation and dengue incidence

it instead thought that larval habitats are plentiful (Benedum et al., 2018). In these regions

intense precipitation events can cause the small containers that the species prefers to overflow,

flushing out larvae and decreasing vector abundance and so explaining the negative association

between precipitation and dengue that is observed (Dieng et al., 2012). Producing general-

isable predictions of dengue risk therefore requires the ability to account for how the role of

environment in driving disease transmission cycles changes between regions.

To achieve increased generality one could consider a model that considered the risk of dengue

over a global range. However, predictions made by models predicting the global risk of dengue

incidence also differ. Bhatt et al. (2013) used a Boosted Regression Tree approach to predict

the probability that a dengue outbreak could occur in year 2010. This model considered a range

of environmental, socio-economical, and land-use variables in addition to data relating to the

occurrence and absence of dengue. This approach was subsequently built upon in Messina et al.

(2019) to produce predictions of dengue incidence for the year 2015. These models predict a

limited risk of dengue throughout temperate regions, in contrast to the predictions of the model

by Rogers et al. (2014) who predicted high suitability throughout locations further north. While

these global models may capture the risk of current outbreak, they do not reliably inform us

about how this risk might change in novel environments. This is of concern as the lack of

generality that was observed in regional models of dengue risk is still applies to global models,

and Medley (2010) that found that the predictions made by species distribution models trained

on data from populations of Ae. albopictus over its native range did not generalise to predict

the distribution observed in invaded range and vice versa.
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1.3.1 The basic reproduction number

To predict the intensity of transmission mechanistic models are often used, using expert knowl-

edge of the system they represent to predict population responses from verifiable mechanisms. By

representing the processes underlying the phenomena they aim to estimate mechanistic models

are able to generalise to novel scenarios but are also vulnerable to overlooking important aspects

of the system being represented. Mechanistic models can only account for processes that are

explicitly included within them, and so to use a mechanistic approach to predict the incidence of

vector-borne disease it is important to carefully consider and represent the biological processes

underlying the transmission cycle.

The most widely recognised mechanistic model that predicts the risk of vector-borne disease is

the Ross-MacDonald model for the transmission of malaria (MacDonald, 1952). Although there

are now many formulations of this theory applied to a wide-range of systems, in its most fun-

damental form this approach uses mathematical equations to describe how an infection moves

between host and vector populations (Jin et al., 2020; Auger et al., 2008; Smith et al., 2012).

Using these equations it is possible to predict the conditions under which an infection introduced

into a population will propagate to cause an outbreak. To summarise the behaviour of this sys-

tem the basic reproduction number, R0, is defined to describe the number of new infections

caused by the introduction of single infectious individual into a completely susceptible popula-

tion. This quantity is easy to calculate and interpret making R0 approaches appealing to policy

makers and applicable beyond vector-borne disease (Smith et al., 2012). The equation as defined

by MacDonald has since been reformulated to resolve various issues regarding dimensionality

and to better reflect the times-scale over which disease transmission occurs. A commonly used

formulation of R0 is

R0(T ) =

(
b(T )2vh(T )hv(T )e(−δA(T )τEIP (T ))M(T )

HT rδA(T )

)1/2

(1.1)
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which has been used to predict the transmission of dengue over broad environmental gradients

(Dietz, 1993; Mordecai et al., 2017; Liu-Helmersson et al., 2016).

Equation 1.1 is composed of functions and constants that describe how components of the

transmission cycle respond to temperature, combining parameters relating to vector, host, and

disease in a way prescribed by the underlying population model. In this case b(T ) is biting

rate of which mosquitoes held at temperature T , vh(T ) the proportion of bites by infected

mosquitoes that will transmit the infection from the vector to the host, hv(T ) is the proportion

of bites from infected hosts that transmit the infection to the vector, µ is the mortality rate of

adult mosquitoes, τEIP is the time taken for an mosquito infected by biting an infected human

to become infective (otherwise known as the extrinsic incubation period (EIP)), M(T ) is the

density of adult mosquitoes, HT is the density of humans, and r is the rate at which humans

recover from the infection. This equation formalises the earlier intuition that environmental

variation should alter transmission risk, in a way that is interpretable and generalisable. This

approach is able to produce predictions of relative disease risk that can be compared through

time and between regions from meteorological data (see Figure 1.5 for an example of a prediction

of dengue risk using this approach over Europe).

Although this formulation of R0 can be calculate directly from climatic variables it inherits the

assumptions made in the underlying transmission model which could have a profound impact

on the predicts of disease risk that are made. For example, in Equation 1.1 R0 is dependent

on the density of adult mosquitoes, but because of the difficulty of estimating this parameter

is it common to assume that adult density depends solely on the current temperature or to use

a constant host-to-vector ratio (Liu-Helmersson et al., 2016; Mordecai et al., 2017). Although

convenient these assumptions overlook the complex factors that determine vector abundance

which can vary seasonally, with land-use type, and is known to respond in a delayed manner

to a range of environmental variables (Valentine et al., 2020; Beck-Johnson et al., 2017). By

making simplifying assumptions about how vector density responds to environmental variation

the risk of outbreak may be mis-estimated especially in seasonal environments where vector
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Figure 1.5: A map of the predicted period over which dengue transmission is predicted to be
possible in Europe by the equation defined in Mordecai et al. (2017). The equation is applied
over Europe over the years 2016− 2020 and the average number of consecutive months per year
for which R0 > 1 at each grid cell is reported.

abundances vary through time.

Another assumption often made in this formulation of R0 is that vector trait only varies in-

stantaneously in response to the current environment. For some traits such as human-to-vector

transmission efficacy this assumption seems appropriate but for others, such as adult mortality,

this is a substantial simplification of a complex biological process. The mortality rate of adult

mosquitoes, δA(T ), is known to vary with the instantaneous temperature adults experience,

but also is known to depend on other environmental variables such as humidity, and also the

adult’s historical experience of temperature and intraspecific competition throughout develop-

ment (Brady et al., 2013; Schmidt et al., 2018; Ezeakacha, Yee, 2019). The traits expressed by

adult mosquitoes are therefore inherently linked population dynamics, meaning that by assum-

ing that adult mortality can be adequately estimated from instantaneous relationships that were

validated in individuals a mismatch in scales is introduced (Lord et al., 2014). These simplifying

assumptions are of concern as Equation 1.1 is highly sensitive to this parameter. However, to
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incorporate a more complete description of how vector trait responds to environmental variation

it is necessary to account for the outcome of a series of historical environmental and popula-

tion states. To achieve this generality in a formulation of R0 it will be necessary to formulate

an underlying model of vector dynamics that can account for the relationship between vector

population and trait dynamics.

1.3.2 Using differential equations to model vector population dynamics

In this thesis I develop mechanistic models that use differential equations to describe how the

population dynamics of vector populations alter the ability of those populations to transmit

disease with a special focus on representing the interaction between demographic processes

and trait expression. The central idea behind such models is that by defining equations that

numerically describe a population’s demographic processes, such as the rate of births or deaths,

the evolution of that population through time can be predicted.

The Nisbet and Gurney framework for stage-structured models with variable delay

Over the course of a mosquito’s life-cycle it undergoes complete metamorphosis, and the en-

vironmental stressors and biological processes that are important to determining population

dynamics change throughout the course of development (Rolff et al., 2019). Stage-structured

models are a form of population model widely used in mathematical biology to represent the

population dynamics of species with multiple distinct life-stages (Murdoch et al., 2003). In a

stage-structured model a species’ life-history is categorised into distinct developmental stages,

each of which is then represented in the model by a separate equation that represents stage-

specific processes. These equations are linked, allowing individuals to move through the stage

structure as they develop. Stage-structured models have been previously used to predict the

population dynamics of mosquito species, design vector control campaigns, and to predict the

efficacy of vaccination drives (Ewing et al., 2016; Oliva et al., 2021; Ferguson et al., 2016).
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Existing stage-structured models of mosquito population dynamics vary in complexity from

systems of ordinary differential equations to more complex systems of delay-differential equations

or partial differential equations (Erickson et al., 2010; Huang et al., 2020; Pasquali et al., 2020).

The biological processes included in these models and consequently the assumptions made by

them vary depending on their stated goals, the scale at which they operate, and the data

available when they were parametrised. Although these previous models are often applied over

a wide range of locations they are rarely validated against multiple datasets across the species

global range. There is now widely available data from field populations of Ae. albopictus from

around the globe, often with simultaneous observations of multiple life-stages. For a models

predictions to be considered generalisable across climates the validation of that model should

include a demonstration of an ability to independently predict the dynamics of field populations

from across the species full range.

In the work that follows I develop stage-structured models that build upon the Nisbet and

Gurney for formulating well-posed stage-structured systems of delay-differential equations with

variable delays to predict population dynamics (Nisbet, Gurney, 1983). Models that use this ap-

proach have been previously used to predict the population dynamics of various species including

mosquitoes (Ewing et al., 2016). What follows is intended to provide an intuitive understanding

of how models formulated using this framework function with the rigorous mathematical details

deferred to Chapter 2 where I make similar arguments in full detail.

Assume that there is a population divided into n developmental stages with the number of

individuals in developmental stage i at time t denoted Ni(t). For a given developmental stage

i, individuals are assumed to enter the stage through recruitment, denoted Ri(t), and leave

through either maturation or death, denoted Mi(t) and Di(t) respectively. Individuals enter the

system at life-stage i = 1 through birth and cease development at life-stage n. The assumption

that individuals are born into life-stage 1 means that this recruitment term takes a special form

which can be expressed
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R1(t) =
n∑
i=1

βi(t)Ni(t)

where βi(t) is the per capita rate of production of offspring for individuals in life-stage i. Note

that production of offspring is both stage-specific and variable, allowing the representation of

stage-specific differences in reproductive output. For example if individuals in life-stage 1 are

eggs I am free to choose β1(t) = 0 so that individuals in the eggs stage produce no offspring

and so contribute no new individuals to the sum. That the fecundity of individuals is permitted

to vary with time means that I can represent the effect of biotic and abiotic environmental

variables on the traits of individuals in different stages. For example, for a species where the

per capita rate of production of offspring by individuals in life-stage n depends linearly on the

current temperature this could be expressed as βn(t) = aT (t)+ b, where T (t) is the temperature

at time t, with a, b constants.

After recruitment into life-stage i individuals begin to develop until leaving the stage either

through maturation into life-stage i + 1 or through death. The time it takes for an individual

to develop from recruitment into the stage to maturation out of the stage is referred to as the

stage duration and is denoted τi(t). Stage-duration is permitted to vary, and this can be used

to represent environmentally induced changes in development rates. To describe how the stage

duration, τi(t), evolves through time it is now necessary to account for the cumulative effect of

variation in the stage-specific rate of development, gi(t), and it can be shown that this can be

expressed using the equation

dτi(t)

dt
= 1− gi(t)

gi(t− τi(t))
, for i ∈ 1, ..., n.

To understand how this equation functions consider the scenario where after a long period

of remaining constant, the development rate, gi(t), which for simplicity is assumed here to be

continuous, bounded, monotone, and to achieve its bounds, very slowly tends to its minimal value
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from some non-zero value (additionally requiring that the length of the delay is substantially

smaller than the length of time over which this change takes place). In this situation gi(t) ≤

gi(t − τi(t)) and so 1 − gi(t)
git−τi(t) ≥ 0. Therefore the stage-duration, τi(t), will slowly increase

until the minimum development rate is reached and eventually (after a delay of τi(t)) will also

stop increasing, reaching its maximal value, as at this point gi(t) = gi(t − τi(t)) and therefore

dτi(t)
dt = 0. Consider now that the scenario where after a sufficient period of time the direction

of the change of gi(t) were to be reversed. As the development rate is slowly increased, such

that gi(t) ≥ gi−1(t), then 1 − gi(t)
git−τi(t) ≤ 0 and so the stage-duration slowly decreases towards

its minimum. In either case the rate at which the stage-duration changes at time t depends on

the “steepness” of the function gi(t) in the locality of t, as the faster gi(t) changes the greater

the difference between its value at time t and time t− τi(t) and so the greater the instantaneous

rate of change of the stage-duration is.

After being recruited into life-stage i, and having survived for the stage-duration of the stage,

individuals mature into life-stage i+ 1. At time t the number of individuals maturing into life-

stage i+ 1 from life-stage i is necessarily equal to the number of individuals that were recruited

into the life-stage i at time t − τi(t) and survived. To be able to describe this relationship an

expression that describes the proportion of individuals that survive through the stage is required.

By definition in life-stage i, the number of individuals that die per unit time is denoted Di(t),

and this function is assumed to take the form Di(t) = δi(t)Ni(t), where δi(t) is the mortality

rate of individuals in stage i. As under this formulation it is possible that both the duration of

the life-stage and the stage-specific mortality rates are variable the expression for the number of

individuals that survive for the duration of life-stage i reflects this. The through-stage survival

of individuals that were recruited into life-stage i at time t− τi(t) and mature out of life-stage

i at time t is denoted Pi(t) and is defined

dPi(t)

dt
= Pi(t)

(
gi(t)δi(t− τi(t))
gi(t− τi(t))

− δi(t)
)
, for i ∈ 1, ..., n.
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To understand the behaviour of this equation assume both gi(t) and δi(t) take simple forms

(specifically assume they are continuous, bounded, monotone, and achieve their bounds) and

also assume they take non-zero values. If once again the rate of development slowly tends to its

minimal value, then gi(t) ≤ gi(t − τi(t) and gi(t)
gi(t−τi(t)) < 1. In the bracket the contribution of

δi(t− τi(t)) to the total value of the derivative is reduced as compared to δi(t), and depending

on the behaviour of δi(t) this can have different consequences on the value of Pi(t). If δi(t) =

δi(t − τi(t)) then the term in the bracket becomes negative and so the probability of surviving

through the stage decreases, representing that as the stage-duration increases individuals must

survive for a longer period of time before leaving the stage and so fewer individuals successfully

mature out of the stage. This behaviour continues until gi(t) = gi(t − τi(t)) is reached where

dPi(t)
dt = 0 and the through-stage survival stops changing. If now, as before, gi(t) is slowly

increased to is maximal value the opposite behaviour would be observed as through stage survival

increases as stage-duration decreases. One can make similar arguments to see how when gi(t)

is fixed and the mortality rate δi(t) is slowly varied that the proportion of individuals surviving

through the developmental stage increases or decreases as expected. In a variable environment

where both gi(t) and δi(t) are permitted simultaneously co-vary the probability of surviving

through the stage is therefore represented appropriately by this equation.

The number of individuals maturing out of life-stage i and into life-stage i+ 1 can be expressed

in terms of the number of individuals that were recruited into life-stage i at t − τi(t) units of

time in the past and have completed development by time t by

Mi(t) =
gi(t)

gi(t− τi(t))
Ri(t− τi(t))Pi(t) i ∈ 1, ..., n.

Further, as the number of individuals being recruited into life-stage i + 1 must be equal to

the number of individuals maturing out of life-stage i, then Ri+1(t) = Mi(t). Thus from the

expression for R1(t) I can recursively define all other Ri(t) and Mi(t) for i 6= 1.

The final components necessary to fully specify the model are the initial conditions that describe

19



the state of the system at t = 0, the initial history that defines what the state of the system

was at t < 0 such that the delay terms are always well-defined, and an initial impulse to begin

the dynamics. The impulse function represents the introduction of individuals into the system

from time t = 0 to time t = T . Denote this function I(t) which and define it such that

I(t) = J, for 0 < t ≤ T, (1.2)

= 0, otherwise. (1.3)

Therefore the population dynamics of a species with n developmental stages of variable duration

can be described using the following system of equations

dNi

dt
= Ri(t)−Mi(t)−Di(t), (1.4)

dPi(t)

dt
= Pi(t)

(
gi(t)δi(t− τi(t))
gi(t− τi(t))

− δi(t)
)
, (1.5)

dτi(t)

dt
= 1− gi(t)

gi(t− τi(t))
. (1.6)

for i ∈ 1, ..., n and t > 0 with recruitment terms defined,

Ri(t) =


gi(t)

gi(t−τi(t))Ri(t− τi(t))Pi(t), for i 6= 1∑n
i=1 βiNi(t), for i = 1.

(1.7)

with initial conditions τi(0) = τi0, Pi(0) = exp−δi0τi0, and initial history such that for t ≤ 0,

Ni(t) = 0, and Ri(t) = 0.
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Susceptible-Infected-Resistant models of disease dynamics

To incorporate models of mosquito population dynamics into a prediction of disease risk it is also

necessary to describe both host and disease dynamics. Susceptible-Infected-Resistant models

are a form of compartmental model used to represent the progression of a disease through a

population structured by infection status rather than developmental progress. SIR models are

extensively used to predict the transmission dynamics of dengue vectored by Aedes mosquitoes

and to design intervention campaigns. Although there are many variations upon SIR models the

fundamental idea is to divide the population into classes based upon their current experience

of infection. Usually individuals are classified as either susceptible to the disease, infected with

the disease, or recovered from the disease. The susceptible class consists of individuals that do

not currently have the disease and either have never had the disease or had the disease at a

sufficiently distant point in the past that any acquired specific immunity is no longer present.

After contracting the disease individuals in the susceptible class progress to the infected class

which contains individuals that currently have the infection and are competent to transmit it

through whatever specific mechanism this is achieved. After ceasing to be infectious individuals

proceed to the recovered class, which contains individuals that are no longer susceptible to the

disease due to some form of specific immunity gained from contracting the disease. Depending

on the disease being modelled and the time-frame being considered, individuals in the recovered

class may eventually progress back through to the susceptible class as their immunity fades.

For a vector-borne disease the infection moves through both vector host populations, and so

in addition to modelling the infection status of the host population, the infection status of the

vector population must also be accounted for.

SIR models of dengue transmission vary in complexity and make a broad range of assumptions

about depending on their stated goals. To represent how variation in vector density alters

transmission risk it is common to use a previously derived model to predict vector dynamics.

However, not all models choose to explicitly represent the vector population and may instead
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implicitly represent vector dynamics in transmission terms. Comparisons between models of

dengue transmission with explicit and implicit vector populations indicate that over short pe-

riods and in a location where there is little seasonal variation in mosquito abundance implicit

approaches can perform well (Pandey et al., 2013). Vector traits are often represented either

through constants or through functions that assume they vary instantaneously with the current

temperature. As described when discussing R0 approaches this is a simplification of complex

biological processes and is problematic as the predictions made by SIR models are often particu-

larly sensitive to traits such as the adult mortality rate (Barbazan et al., 2010; Luz et al., 2003).

However, more fully representing the mechanisms by which vector trait varies in response to

environmental variation is not trivial and requires a substantial increase in model complexity.

Incorporating mechanisms of trait variation into predictions of disease risk

The collection of traits an individual expresses is called its phenotype, and all inter-individual

variation can be described through changes in this phenotype. Mechanisms of variation can

be broadly categorised as either genotypic variation, phenotypic plasticity, or epigenetic effects.

Genotypic variation is the ability of individuals expressing different genotypes to express different

traits (Sultan, 2017). Phenotypic plasticity is the ability of individuals expressing the same

genotype to express different phenotypes when exposed to different environmental conditions

(Fusco, Minelli, 2010). Epigenetic variation is the ability of the environmental experience of an

individual to cause changes in the expression of genes in offspring.

Genotypic variation between populations of Ae. albopictus is widely observed and has been a sig-

nificant factor in the species’ global invasion. Ae. albopictus has recently evolved a photoperiodic

diapause response, whereby cold-resistant eggs are produced in response to falling temperatures

and lowering photoperiod. This response allows populations of Ae. albopictus to become es-

tablished in temperate regions but is absent from populations in tropical climates where adult

activity can be maintained all year round (Urbanski et al., 2012). In temperate zones there is
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evidence of latitudinal variation in the critical photoperiod, providing evidence that this trait

remains under strong selection (Hawley et al., 1987). Genotypic variation can also alter the risk

posed by populations of Ae. albopictus indirectly through changes in the genotype of the disease

being vectored. For example, a change in the genotype of the Chikungunya virus, increased

the replication rate of the virus in Ae. albopictus and facilitated the global re-emergence of this

disease (Sam et al., 2012; Carrieri et al., 2011).

The role that phenotypic plasticity plays in producing population responses to environmental

change is less well understood and is currently under vigorous debate (Fusco, Minelli, 2010;

Hulme, 2008). There is plethora of seemingly contradictory evidence from experimental systems

demonstrating how phenotypic plasticity can both help and hinder how populations adapt to

change. For example in 1965 it was hypothesised that species expressing high degrees of phe-

notypic plasticity would make more successful invasive species than species that did not display

strong plastic responses (Baker, Stebbins, 1965). This hypothesis is still debated and meta-

analyses reaching contradictory conclusions were published in the same year (Davidson et al.,

2011; Godoy et al., 2011). Similarly opposing evidence has been found in the role of phenotypic

plasticity in determining populations responses to climate change (Anderson et al., 2012; Chevin

et al., 2010; Henn et al., 2018; Acasuso-Rivero et al., 2019; Valladares et al., 2014; Oostra et al.,

2018). To resolve these and reconcile the role of phenotypic plasticity in population ecology will

require a more complete understanding of how mechanisms of individual variation generalise to

population responses to environmental change (Violle et al., 2012).

Phenotypic plasticity alters the population dynamics of Ae. albopictus throughout the species

life-cycle altering the expression of traits through both instantaneous responses to the current

environment and delayed responses to historic environments (Delatte et al., 2009; Ezeakacha,

Yee, 2019). Instantaneous responses to the current environment such as temperature induced

variation in development and mortality rates, are well represented in models of disease transmis-

sion (Ewing et al., 2021; Mordecai et al., 2017). However, the effects of environmental variation

on trait expression can also be delayed, and the effect of delayed environmental variation on the

23



trait structure of vector populations is rarely considered in models of disease risk (Beckerman

et al., 2002; Cator et al., 2020).

The ability to represent multiple instances of phenotypic plasticity both in response to both

current and historical environmental conditions will be a necessary component of any modelling

approach that hopes to understand how environmental variation alters disease risk. However,

there are currently few modelling tools that allow this sort of flexibility. When a population

has distinct generations integral projection models (IPMs) can be used to represent within pop-

ulation trait variation (Childs et al., 2003; Kuss et al., 2008). Models formulated using this

method define distributions describing how trait is expected to change between time steps and

use these to predict how a populations trait distribution will change through time. However, to

represent the population and trait dynamics of Ae. albopictus a modelling approach that can

also represent detailed intra-generational dynamics will be required and for this physiologically

structured population models (PSPMs) could be considered (De Roos, Persson, 2001). PSPMs

use partial differential equations to link deterministic variation in an individual’s size to pop-

ulation response and resource dynamics. However, for a species such as Ae. albopictus, where

resource dynamics are relatively unexplored and there are stage-specific gaps in the knowledge of

its life-history, such a complete approach cannot be fully utilised and so an alternative modelling

method is needed (Bolnick et al., 2011; Violle et al., 2012; Lipowsky et al., 2015; Johnston et al.,

2019; Sgrò et al., 2016; Hendry, 2016; Turcotte, Levine, 2016; Lloyd-Smith et al., 2005; Lion,

2018).

1.4 Summary of work

In this thesis I develop a novel mathematical modelling framework to represent the effects of

phenotypic plasticity on population dynamics. This framework is applied to two organisms

initially to Nicholson’s blowflies, a well-studied model system and then to the invasive dengue

vector Ae. albopictus. In each case I explore the effect of environmentally driven trait varia-
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tion on population dynamical processes and demonstrate their importance in determining how

population-level processes respond to change.

In Chapter 2 I justify the need for and derive a novel mathematical modelling framework

to represent the effect of phenotypic plasticity on population dynamics. I argue that envi-

ronmentally driven trait variation is currently poorly represented in mathematical modelling

frameworks. I then derive a mathematically rigorous framework that is able is able to rep-

resent trait-environmental feedbacks, using systems of stage-phenotypically structured delay-

differential equations. This framework is then applied to Nicholson’s blowflies, where it is able

to predict cryptic population dynamical behaviour. This demonstrates that predictions made di-

rectly from environment-trait relationships do not necessarily generalise to population response.

This example demonstrates both the efficacy of the model framework and the need to fully

account for the effects of phenotypic plasticity on population dynamics.

In Chapter 3 I then apply the framework derived in Chapter 2 to predict the population and

trait dynamics of the invasive mosquito species Ae. albopictus on a global range. To do this I

identify the ecological and environmental processes important to mosquito population dynamics

and formulate a model to represent this. The model is parametrised and statistically fitted using

laboratory data. I then validate the model against data from field populations of Ae. albopictus

across the species global range, considering populations from 14 countries and territories across

4 continents. The model produces excellent predictions of the population and trait dynamics of

the species that are completely independently of the populations I validate against. This reveals

that there are distinct differences in the trait dynamics of mosquito populations in temperate

and tropical climates driven by environment-trait interactions.

In Chapter 4 the model derived in Chapter 3 is extended to include a Susceptible-Infected-

Resistant model for dengue fever. Following the same process for validation as in the previous

chapter the model is able to predict the timing, magnitude, and locations of dengue outbreaks.

This approach is compared to previous methods and is found to be considerably more specific
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in its predictions and to simultaneously better match real-world dengue transmission. I predict

lower dengue risk throughout Europe and North America than previous approaches, regions

that have not experienced large scale dengue outbreaks vectored by Ae. albopictus. Predictions

for where transmission is possible in these regions align with verified instances of autochthonous

transmission. By contrast I predict that eastern and southern China, a region that experiences

regular, large, outbreaks of dengue vectored by Ae. albopictus, highly suitable for transmission. It

is demonstrated that these highly generalisable results are achieved due to the full representation

of mechanisms of phenotypic plasticity that drive variation in vector trait. Further, in regions

where large outbreaks occurred I find that the majority of vectors were competent to maintain

the dengue transmission cycle, but in regions where small outbreaks occur only a small subset of

vectors expressing high trait values could maintain the pathogen transmission cycle. This shows

the need to consider mechanisms of variation when predicting disease risk between regions.

Chapter 5 is a general discussion of the work presented in the thesis, reviewing the implications

of the work undertaken in the previous chapters and suggest avenues for future research.
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Chapter 2

Deriving a stage-phenotypically structured

model and application to Nicholson’s Blowflies

The work presented in this Chapter forms the basis of a published paper (Brass et al., 2021).

2.1 Abstract

Predicting complex species-environment interactions is crucial for guiding conservation and mit-

igation strategies in a dynamically changing world. Phenotypic plasticity is a mechanism of

trait variation that determines how individuals and populations adapt to changing and novel

environments. For individuals, the effects of phenotypic plasticity can be quantified by measur-

ing environment–trait relationships, but it is often difficult to predict how phenotypic plasticity

affects populations. The assumption that environment–trait relationships validated for indi-

viduals indicate how populations respond to environmental change is commonly made without

sufficient justification. Here we derive a novel general mathematical framework linking trait

variation due to phenotypic plasticity to population dynamics. Applying the framework to the

classical example of Nicholson’s blowflies, we show how seemingly sensible predictions made from
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environment–trait relationships do not generalise to population responses. As a consequence,

trait-based analyses that do not incorporate population feedbacks risk mischaracterising the

effect of environmental change on populations. This framework is used in Chapters 3 and 4 to

predict how phenotypic plasticity in a transmission critical trait alters the ability of populations

of the invasive mosquito Aedes albopictus to maintain dengue transmission cycles across its

global range.

2.2 Introduction

Understanding how mechanisms of individual variation act upon populations is key to predicting

how changes in the biotic and abiotic environment alter population processes. Phenotypic plas-

ticity has been shown to be a mechanism by which species respond to climate change (Seebacher

et al., 2015; Crozier, Hutchings, 2014; Stoks et al., 2014; Boutin, Lane, 2014). There is evidence

that species exhibiting high levels of phenotypic plasticity are more successful at spreading across

environmental gradients (Szabó et al., 2018; Hahn et al., 2012), and it is predicted that pheno-

typic plasticity contributes to determining the outcome of interspecific competition (Palkovacs,

Post, 2009; Buskirk, Mccollum, 2016). Quantifying phenotypic plasticity in individuals is gener-

ally straightforward, but it is often more difficult to measure the effects on populations (Merilä,

Hendry, 2014; Valladares et al., 2006). It is theorised that phenotypic plasticity contributes to

the occurrence of seemingly paradoxical population dynamical behaviours such as the paradox

of enrichment, whereby an increase in available resources causes a destabilisation of population’s

dynamics (Miner et al., 2005), and the hydra effect where an increase in per capita mortality

results in increased population density (Cameron, Benton, 2004). Disentangling the complex

network of inter-dependent individual and population processes necessary to demonstrate how

phenotypic plasticity contributes to species responses to environmental change is inherently dif-

ficult using existing model frameworks (Forsman, 2015). In particular, the population dynamic

consequences of phenotypic plasticity often manifest as delayed-density dependence (Beckerman
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et al., 2002) which is known to cause cryptic dynamical behaviours (Pedraza-Garcia, Cubillos,

2008; Lima et al., 1999).

Despite the potentially complex relationship between individual variation and population re-

sponse, environment-trait relationships observed in individuals are routinely employed to predict

the outcome of population processes (Figure 2.1). For example, in epidemiology environmental-

trait relationships are used in parameter-based approaches for calculating the basic reproduction

number, R0 (Mordecai et al., 2017; Brand et al., 2016; Parham, Michael, 2010). This implicitly

assumes that variation observed in a population’s trait distribution is independent of environ-

mental stressors and population dynamics, such that an averaged trait value suitably represents

the population at any given time and location (Liu-Helmersson et al., 2016). This is the mean-

field approach and there is an increasing body of evidence that this approach under-represents

the importance of variation between individuals and community structure in population ecology

(Violle et al., 2012; McGill et al., 2006; Cator et al., 2019; Fox, Kendall, 2002). Consideration of

purely stochastic forms of variation has demonstrated that the outcome of population processes

such as species persistence do not always follow mean-field predictions (Hart et al., 2016; Moro-

zov et al., 2013). In contrast to environmental or demographic noise, individual variation caused

by phenotypic plasticity has a strong mechanistic component, and so can and should be suitably

accounted for when predicting how population’s respond to changes in their environment (Nylin,

Gotthard, 2002).

To describe the effect phenotypic plasticity has on population dynamics it is key to link trait

and effect mechanistically combining empirically derived relationships with theoretical meth-

ods. Here, I propose a novel general mathematical framework that links experimentally derived

environment-trait relationships to well-parametrised stage-structured population models that

allow trait distributions to emerge from population-trait-environment interactions (Figure 2.1).

I utilise a continuous time stage-structured modelling approach, widely used to model organ-

isms with multiple distinct life stages (Murdoch et al., 2003), adapted to represent the persistent

and delayed effects of phenotypic plasticity across multiple developmental stages. By using this
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Figure 2.1: Current predictive frameworks typically use environment-trait relationships, such
as reaction norms, to predict population responses without consideration of how population
processes may alter the traits individuals express. This framework incorporates environment-
trait relationships that interact with population dynamics and trait distributions. This allows
the framework to account for the effect of interaction between environment, trait, and population
as experienced by many organisms in predictions of population processes.
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framework to represent mechanisms of individual variation in response to environmental change,

it is shown that even simple forms of phenotypic plasticity can lead to complex population

dynamical responses that previous approaches overlook. This is demonstrated by an applica-

tion of the framework to a classical population ecology study, Nicholson’s blowflies (Nicholson,

1957), where it has been hypothesised that previously unexplained population dynamics can

be attributed to phenotypic plasticity. This application reveals a rich set of counter-intuitive

population-dynamical behaviours caused by the interaction between phenotypic plasticity and

population dynamics.

2.3 Methods

2.3.1 Framework overview

I present a modelling framework that dynamically links the expression of phenotypic plastic-

ity in individuals to population dynamics. This consists of a continuous time stage-structured

population model in the form described in Gurney et al. (1983) (as described in Chapter 1 and

shown in Figure 2.2A), widely used to predict the population dynamics of interacting life-stages

(e.g. Gurney et al. (1980)), combined with a set of empirically-derived reaction norms. Models

created using the framework are systems of stage-phenotypically structured delay-differential

equations, within which, cohorts of individuals are tracked based on their cumulative environ-

mental experience. Each cohort is then associated with a unique phenotype (Figure 2.2B).

Within the framework an individual’s phenotype may consist of multiple traits varying in re-

sponse to multiple environmental factors, both current and historic. By tracking this experience

across all individuals a dynamic phenotypic structure is defined allowing multiple phenotypes to

be represented within a population simultaneously. The distribution of traits expressed within

a population is not assumed, as it is in an integral projection matrix (IPM) (Merow et al.,

2014), but instead emerges as a feature of empirically verified mechanistic processes. This links
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individual level variation in life-history traits to population level response and so represents the

effects of phenotypic plasticity on populations. Models derived using the framework are able to

represent both intra- and inter-generational forms of phenotypic plasticity, in response to both

instantaneous and delayed environmental conditions. Moreover, the framework can account for

the effects of multiple environmental cues on single or multiple traits, giving rise to a highly

flexible modelling framework.

(A) (B)

Environmental class

Environm
ental cues

(C) (D)

Figure 2.2: Schematics of the ways phenotypic plasticity in stage-structured populations can
be described by the new model framework. The population being considered in all cases is stage-
structured with n life-stages. The number of individuals in life-stage i, expressing phenotype j
is denoted Ni,j . (A), The Gurney et al. (Gurney et al., 1983) framework for stage-structured
populations that is used as a basis for the novel framework. This framework represents a contin-
uous age structure by a discrete number of developmental classes e.g. eggs, larvae, pupae, and
adults. (B), The most general form of the novel framework, where an individual’s experience
of the environmental cues in each developmental stage determines the phenotype it expresses as
partitioned by the environmental classes. (C), The new framework adapted to represent devel-
opmental plasticity in life-stage 2. It is assumed that individuals experience an environmental
cue in life-stage 1 that does not affect individuals in life-stage 1 but results in the expression
of phenotypic plasticity in subsequent life-stages. This allows the reduction of the phenotypic
structure in life-stage 1 to just a single class, N1,Tot =

∑m
j=1N1,j . (D), The new framework

adapted to represent a maternal effect in response to an environmental cue experienced by par-
ents in life-stage n that manifests as phenotypic plasticity in life-stage 1 which is then assumed
to have no effect on subsequent life-stages.

2.3.2 Incorporating phenotypic plasticity into stage-structured models

Variation caused by phenotypic plasticity is often expressed in terms of a reaction norm, a

function that describes how an individual’s environmental experience alters the phenotype they
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express (Nylin, Gotthard, 1998) (e.g. food consumed as a juvenile predicts adult body mass).

It is assumed that organisms with similar experiences of their environment express the same

phenotype as determined via reaction norms and to represent this multiple linked copies of the

Gurney et al. framework are created (as in Figure 2.2B). Each copy corresponds to a unique

set of environmental conditions and individuals then move through this structure on a path

determined by their current and historical experience of the environment. This allows cohorts

of individuals that share the same environmental history to be tracked and so represents the

effects of phenotypic plasticity on populations.

I consider a stage-structured population with n life-stages where phenotypic plasticity is ex-

pressed according to d reaction norms r1(α), ..., rd(α) in response to z environmental cues

α(t) = (α1(t), ..., αz(t)). For computational tractability, each environmental cue is discretised,

αj(t), into mj subintervals and I denote by αjp the midpoint of the pth subinterval of the dis-

cretisation of αj(t). Define an environmental class to be a vector of length z with entries that

consist of one midpoint from each discretised environmental cue, i.e.

(α1l1 , α2l2 , α3l3 , ..., αzlz),

where lj ∈ {1, ...,mj}. Define g : Rz → Ωα such that

g(α(t)) = (α1l1 , α2l2 , α3l3 , ..., αzlz),

if αj(t) takes values within the lj
th subinterval of αj(t). The function g defines a mapping of α

onto the discretisation of α. The number of environmental classes is given by

m =
z∏

h=1

mh,

and the set of all such vectors (environmental classes) is denoted by Ωα. Assign an ordering
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to the m elements of the set of environmental classes Ωα and let αk denote the kth element of

the ordered set, i.e. the kth environmental class. Thus, g(α) = αk if g(α) is the kth element of

the ordered set Ωα. Environmental classes define cohorts of individuals that have experienced

a shared environmental history.

For example, suppose there are 2 environmental cues α(t) = (α1(t), α2(t)) which are discretised

such that α1(t) is divided into 3 subintervals (m1 = 3) and α2(t) into 2 subintervals (m2 = 2).

In this case an environmental class is a vector of the form

(α1l1 , α2l2), where l1 ∈ {1, 2, 3} and l2 ∈ {1, 2}.

The set of all possible vectors of this type is Ωα. So for example, if α1(t) represents temperature

and α2(t) represents food availability, say, then α(t) may be approximated by an element from

Ωα. To order the elements of the set Ωα an ordering needs to be defined. One common ordering

of such a set is called lexicographic ordering which gives

(Ωα,�) = {(α11, α21), (α11, α22), (α12, α21), (α12, α22), (α13, α21), (α13, α22)}

= {α1,α2,α3,α4,α5,α6}.

So if g(α(t)) = α4 at time t the environment is in state 4 and the temperature is within α12

and food availability is within α22.

It is assumed that an individual’s current and historic experience of the environment completely

determines the phenotype an individual acquires when it matures from life stage i to i+ 1 or is

born into stage life stage 1 at time t. This permits the effects of environmental variation to be

deferred to future developmental stages or generations. As the environmental cues are discretised
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this means there are a discrete number of phenotypes that can arise in the framework. The traits

that these phenotypes express are calculated using the reaction norms according to, rk(g(α)).

This process pre-defines both the traits individuals express and the range of environmental

conditions that give rise to those individuals.

2.3.3 The general framework for representing phenotypic plasticity in stage-structured pop-

ulation models

Denote the number of individuals in life-stage i and environmental class j at time t by Ni,j(t).

Denote by Ri,j(t) the rate of recruitment of individuals into life-stage i and environmental class

j, Mi,j(t) the rate of maturation out of life-stage i and environmental class j, and Di,j(t) the

death rate in life-stage i and environmental class j. The population is described by the system

of equations

dNi,j(t)

dt
= Ri,j(t)−Mi,j(t)−Di,j(t) (2.1)

for i ∈ 1, ..., n, and j ∈ 1, ...,m. The death rate is Di,j(t) = δi,j(t)Ni,j(t) where δi,j(t) is the

mortality rate of individuals in life-stage i and environmental class j. The recruitment term in

Equation 2.1 when i = 1 is given by

R1,j(t) =

m∑
k=1

(
wkj(α(t))

n∑
v=1

βv,k(t)Nv,k(t)

)
(2.2)

for j = 1, ...,m where wkj(α(t)) denotes the proportion of individuals from environmental class

k that transition to environmental class j at time t and βv,k(t) is the birth rate of individuals in

life-stage v and environmental class k. The transition functions, wkj(α(t)), are the mechanism
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through which the environment acts to express phenotypic plasticity within the model. Equa-

tion 2.2 represents the birth of new individuals into the first life-stage and environmental class j

by parents from across all environmental classes and life-stages. The birth term, βv,k(t)Nv,k(t)

describes the number of new individuals produced by parents in life-stage v and environmen-

tal class k, and is summed across all life-stages and environmental-classes to account for all

new individuals entering the population. The transition functions wkj(α(t)) then determine

the proportion of the new births that are assigned to environmental class j dependent on the

environmental state.

The number of individuals recruited into life-stage i and environmental class j is equal to the

number of individuals maturing out of life-stage i−1 that are assigned to environmental class j.

Hence, for i = 2, ..., n and j = 1, ...,m, Ri,j(t) =
∑m

k=1wkj(α(t))Mi−1,k(t). Further, the number

of individuals maturing out of life-stage i and environmental class j is equal to the number of

individuals recruited into life-stage i and environmental class j one developmental period ago

that survived. Denote the duration of life-stage i for individuals in environmental class j by τi,j .

Thus, Mi,j(t) = Ri,j(t − τi,j)Si,j(t) where Si,j(t) is the probability an individual in life-stage i

and environmental class j survives to life-stage i+ 1. Hence,

Ri,j(t) =

m∑
k=1

wkj(α(t))Ri−1,k(t− τi−1,k)Si−1,k(t) (2.3)

for i = 2, ..., n and j = 1, ...,m where Si,j(t) = exp
{
−
∫ t
t−τi,j δi,j(t

′)dt′
}

. Although in this

formulation of the framework the stage duration τi,j is kept constant an extension to variable

stage duration is also possible (Nisbet, Gurney, 1983; Ewing et al., 2016).

The exact form of the transition functions, wkj(α(t)), is left unspecified as the way individuals

transition from one environmental class and life-stage to the next is case specific. However,

the choice of wkj(α(t)) is subject to the constraints 0 ≤ wkj(α(t)) ≤ 1, ∀j, k ∈ 1, ...,m and
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∑m
j=1wkj(α(t)) = 1. Although the transition functions are stage-independent, the environmen-

tal vector α(t) is able to refer the state of each environmental cue independently and so can

consider the sequence of past environments that an individual has encountered. A rigorous

derivation of this framework from first principals is provided in Appendix A.

2.3.4 Some common simplifications

In some circumstances the complexity of the model can be decreased by reducing the number of

environmental classes for developmental stages that do not express plasticity in response to envi-

ronmental conditions. This is analogous to grouping technically distinct but functionally similar

stages in a purely stage-structured model. Denote by Ni,Tot the total number of individuals in

life-stage i over all environmental classes. Similarly define Ri,Tot(t), Mi,Tot(t), Di,Tot(t) as the

rates of recruitment, maturation, and death in life stage i respectively across all environmental

classes. Assuming that the first instance of a cue inducing the expression of plasticity occurs

in life-stage c there is no need to differentiate individuals prior to stage c. From stage c on-

wards individuals are differentiated by phenotype. It is then sufficient to describe the population

dynamics as

dNi,Tot(t)

dt
= Ri,Tot(t)−Mi,Tot(t)−Di,Tot(t) for i < c (2.4a)

dNi,j(t)

dt
= Ri,j(t)−Mi,j(t)−Di,j(t) for i ≥ c j = 1, ...,m. (2.4b)

Similarly, in the case that the expression of phenotypic plasticity ceases in life-stage c, as depicted

in Figure 2.2D, the following formulation is appropriate
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dNi,j(t)

dt
= Ri,j(t)−Mi,j(t)−Di,j(t) for i ≤ c, j = 1, ...,m (2.5a)

dNi,Tot(t)

dt
= Ri,Tot(t)−Mi,Tot(t)−Di,Tot(t) for i > c. (2.5b)

These reduced forms of the model can be substantially less computationally demanding than

the general model in the case that the reductions are appropriate.

2.4 Results

2.4.1 Nicholson’s blowflies

To demonstrate the insights that can be gained from this framework it is applied to Nicholson’s

classical blowfly study (Nicholson, 1957), which aimed to describe how populations adjust in

response to changes in their abiotic environment. In this study, the population dynamics of

Lucilia cuprina (Wiedemann, 1830) were examined under different competitive conditions. In

each culture, food was supplied separately to larvae and adults and both food supplies were

replenished daily. Cultures were maintained for over two years and the number of adults and

eggs present was recorded every two days. The results of Nicholson’s study have been extensively

discussed in theoretical ecology (Gurney et al., 1983; May, 1986; Bakker, 1963; Wood, 2010;

Glyzin, 2018).

In Nicholson’s experiment, blowflies experienced competition for food in their larval and adult

stages. Competition for food between adult blowflies reduces fecundity if individuals cannot

acquire enough protein to mature all their eggs (Vogt et al., 1985). Larval competition for

food reduces adult body size and the probability of survival through the pupal stage (Jannicke

Moe et al., 2002). For blowflies, body size is linearly related to the number of ovarioles an

adult has (Vogt et al., 1985) which determines the maximum number of eggs the adult can
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produce (Jannicke Moe et al., 2002), and so larval competition alters the maximum potential

fecundity of adults. Using the terminology I have previously developed the intensity of larval

competition for food resources can be considered as an environmental cue, altering maximum

potential adult fecundity and through pupal stage survival through developmental plasticity. It

is important to note that maximum potential adult fecundity is distinct from observed adult

fecundity, the former representing the maximum number of eggs an individual could produce

under ideal environmental conditions and the latter representing the actual number of eggs an

individual produces under the environmental conditions that individual experiences.

In Nicholson’s culture (reproduced in Figure 2.4A here), the daily larval food supply was kept

constant, but the amount of adult food supplied was reduced from an “unlimited” amount

to a more limiting 1000mg after around 600 days. The reduction of adult food resulted in

an increased average adult population density, and the stabilisation of the previously regular

population cycles. This is somewhat counter-intuitive, since a decrease in available resource

substantially increased the average number of individuals and stabilised the previously regular

oscillations - an example of the paradox of enrichment (Roy, Chattopadhyay, 2007).

Nicholson hypothesises that the population dynamics observed in the blowfly culture can be

explained by phenotypic plasticity induced by larval competition. Adults in the period of un-

limited adult food were observed to produce many eggs. When these eggs hatched into larvae,

they experienced high levels of competition for larval food. This caused very few larvae to

gain sufficient mass to pupate successfully, resulting in increased pupal mortality and low adult

numbers in the next generation. When adult food was limited, an increase in adult competition

resulted in fewer eggs being produced. The lower number of eggs resulted in fewer larvae and

a larger amount of food being available per larva, subsequently reducing larval competition and

juvenile mortality causing an increase in average adult population density. I evaluate evidence

for Nicholson’s hypothesis and heuristic arguments using the modelling framework derived here

to represent phenotypic plasticity induced by resource competition in blowfly populations.
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2.4.2 Application of model framework to represent phenotypic plasticity in Nicholson’s blowflies

To formulate a model that represents phenotypic plasticity in blowfly populations I extend a pre-

viously derived mean-field model from Gurney et al. 1983, that considered only the instantaneous

effects of adult competition on blowfly population dynamics which is described in Appendix B.

Gurney’s model is adapted to introduce reaction norms relating through pupal-stage survival

(Jannicke Moe et al., 2002) and maximum potential fecundity (maximum number of eggs an

individual could produce in conditions of excess adult food) (Webber, 1954), to the availability

of larval food. As this is an example of developmental plasticity the model takes the form of

Figure 2.2C.

Eggs are laid into a single egg class, within which all individuals express the same phenotype

(i.e. there are no maternal effects). After a fixed developmental period, eggs hatch into a single

larval class where again all individuals express the same phenotype. When a larva matures into

a pupa, the amount of food that it obtained in the larval stage is determined by dividing the

total food provided over the larval period by the number of individuals present in the culture

over that period assuming scramble competition. The food obtained by an individual in the

larval period is subsequently used to determine the traits that individual expresses as a pupa

and as an adult.

For this model the previously introduced Ni,j notation is abbreviated, dropping the i and re-

placing the N by a more descriptive letter reflecting the life-stage, for example, L is used for

larvae and A for adults. Similarly, as adults are the only explicitly modelled life-stage that ex-

presses phenotypic plasticity (pupae are implicitly modelled due to a lack of density dependence

(Gurney et al., 1983)) the j subscript is dropped completely for terms relating to larvae. As

only a single environmental cue is considered (larval food) the set of environmental classes, Ωα,

consists only of the midpoints of α(t).

Denote by L(t) the number of larvae at time t and by Aj(t) the number of adults at time t in

environmental class j. Associated with each environmental class are the maximum fecundity of
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adults qj , and survival through the pupal and juvenile stages SJj . Recruitment into the larval

stage is denoted RL(t) and recruitment of larvae to adults in environmental class j is denoted

RAj (t). The environmental classes are parametrised by discretising an adapted reaction norm

for through pupal-stage survival (Jannicke Moe et al., 2002) and a reaction norm for maximum

adult fecundity is approximated from various sources (Webber, 1954).

As a proxy for the environmental cue, total protein obtained per larvae over the course of the

larval period, I use the average protein available per larvae per day over the course of the larval

period. Assume larvae divide the available food equally allowing the cue to be expressed as

α(t) =
KLτL∫ t

t−τL L(s)ds
. (2.6)

where KL is the amount of larval food supplied daily, and τL is the duration of the larval stage.

This is converted into a derivative for ease of computation, noting that in general the derivative

of f(v)−1 with respect to v is −f ′(v)/f(v)2 provided that f(v)−1 satisfies the usual requirements.

Hence by the Leibniz rule

dα(t)

dt
=
−KLτL(L(t)− L(t− τL))(∫ t

t−τL L(s)ds
)2 .

This can then be simplified using the definition of α(t) such that

dα(t)

dt
=
−α2(t)(L(t)− L(t− τL))

KLτL
.

The model can therefore be described through the equations
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dL(t)

dt
= RL(t)−RL(t− τL)SL − δLL(t) (2.7a)

dAj(t)

dt
= RAj (t)− δAAj(t) for j ∈ 1, ...,m (2.7b)

dα(t)

dt
=
−α2(t)(L(t)− L(t− τL))

KLτL
. (2.7c)

Recruitment terms are given by

RL(t) =

 m∑
j=1

qjAj(t− τE)e−ATot(t−τE)/KA + I(t− τE)

SE (2.8)

RAj (t) =
m∑
j=1

wj(α(t− τP − τJ))RL(t− τL − τP − τJ)SLSJj (2.9)

for j ∈ 1, ...,m where I(t−τE) is an inoculation term that begins the dynamics (Kot, 2001), and

represents the introduction of larvae into the system at t = 0, and qj and SJj are determined

by the reaction norms. It is assumed that adults compete equally for the total available food

regardless of phenotype, and so the instantaneous effects of adult competition are represented

by e−ATot(t−τE)/KA where ATot =
∑m

j=1Aj indicates competition across all phenotypes. The

transition function wj(α(t)), determines the fraction of individuals entering environmental class

Aj(t) at time t, and is defined

wj(α(t)) =


1, if g(α(t)) = αj

0, otherwise,

(2.10)

for j ∈ 1, ...,m. This choice of wj(α(t)) restricts recruitment of individuals into a single environ-

mental class based on that individual’s experience of previous larval competition and indicates
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that maximum adult fecundity is uniquely determined by past experience of larval competition.

This restriction is appropriate, as due to the assumption that all food is split equally, larvae

being recruited at time t will have identical experiences of larval competition over the duration

of the larval period, and so will express the same traits. Further, I assume that this develop-

mental plasticity is irreversible. Although this choice of wj(α(t)) precludes microenvironmental

variation this could be incorporated through a different choice of transition function.

The system is initialised with 9500 larvae at t = 0 with history for t ≤ 0 given by L(t) =

9500, α(t) = KL/9500, Aj(t) = 0 ∀j ∈ {1, ...,m}. Steady-state analysis for this system is

provided in Appendix C. The model was simulated in R (R Core Team, 2022) using the package

PBSddesolve (Couture-Beil et al., 2019). The code used produce the results that follow can be

found at the following repository, https://zenodo.org/record/5078430#.ZCsj8HbMKUk.

2.4.3 Model parametrisation

To parametrise the environmental classes empirically derived reaction norms are selected for

both q, and SJ . The through pupal stage survival, SJ , is calculated using an adapted version of

the functional response parametrised in Moe et al. (2002). This functional response represents

the survival rate through the pupal stage when there were x individuals at the beginning of

the larval stage provided with 20, 000 mg of larval diet every two days. This is presented as a

logistic quadratic regression of the form

G(x) = ln

(
SJ(x)

1− SJ(x)

)
= v1 + v2 ln(x) + v3 ln(x)2 (2.11)

where v1, v2, and v3 are fitted coefficients the values of which can be found in Table 1. This can

equivalently be expressed as
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SJ(x) =
eG(x)

1 + eG(x)
. (2.12)

In the Nicholson culture, food was supplied daily, but in the Jannicke Moe et al. (2002) culture

food was supplied every two days. It is assumed that the 20, 000 mg of food every two days

provided in the Moe et al. culture is approximately equivalent to a supply of 10, 000 mg of food

every day. Further, the amount of larval food supplied in the Nicholson culture accounts only

for protein supplied in the form of ground liver. In the Nicholson experiment this was the only

limited resource with other necessities such as water being “provided in excess”. The experiment

by Moe et al. also provided an excess of non-protein resources, limiting only the protein supplied

to larvae. However, the food supply reported in Moe et al. accounts for both protein and non-

protein resources. The diet provided for the larvae was a mix of 800 ml of water, 50 g of yeast,

20 g of agar, and 200 ml of horse blood per kg of diet. In this diet the main source of protein is

the 200 ml of horse blood, which is proportionally around 19% of the diet. Thus, of the allotted

daily diet only around 2, 000 mg was a source of protein.

The functional response presented in the Moe et al. experiment is in terms of initial larval density

when provided with a set amount of food. As the environmental cue, α(t), is average protein

available per larvae per day, this must be converted to a larval density as if the larvae had been

provided with the Moe et al. diet. After these alterations the functional response becomes

SJ(α(t)) =
e
G
(
KL

5α(t)

)
1 + e

G
(
KL

5α(t)

) . (2.13)

The form of this reaction norm is shown in Figure 2.3A for different fixed values of α(t) .

The plastic trait maximum fecundity of adults, q(α(t)), depends on the average protein available

per larvae per day, the same environmental cue as SJ . The values q(α(t)) takes are calculated
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from the study Webber (1954) and is defined as

q(α(t)) = h1(h2 ln(α(t))− h3)h4 (2.14)

where h1, h2, h3, and h4 are fitted coefficients the values of which can be found in Table 1.The

form of this reaction norm is shown in Figure 2.3B for different fixed values of α(t) .
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Figure 2.3: (A), The reaction norm used to determine through pupal stage survival according
to the amount of protein available per larva per day as calculated by Equation (2.13) for fixed
values of food per larvae per day. (B), The reaction norm used to determine maximum fecundity
of adults according to the amount of protein available per larva per day as calculated by Equation
(2.14) for fixed values of food per larvae per day.

To complete the parametrisation of the model it is left to specify the discretisation of the

environmental cue and consequently the midpoints of the intervals of the discretisation used

to determine the plastic-trait values. Begin by discretising the environmental cue the average

protein obtained by larvae over the course of the larval period, α(t) ∈ [0,∞), into m intervals.

The end points of the discretisation are given by p1 = 0, pm+1 =∞, and

pj = exp

{
(j − 1)

4.82

m− 1

}
, for j ∈ {2, ...,m}.
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The points of the discretisation are on a logarithmic scale to capture the regions of the reaction

norms that undergo the most rapid change. In Readshaw, Cuff (2006) it was found that there

was no change in the traits blowflies express according to larval food after α(t) = 124 and so

pm+1 =∞ and pm = 124. This creates a catch-all environmental class for larval food conditions

beyond the maximum. The midpoints of these intervals are defined

αk =
pk+1 + pk

2
for k ∈ {1, ...,m}.

Thus, the parameters for each environmental class are defined, SJj = SJ(αj) and qj = q(αj).

The definitions of the other non-plastic traits and parameter values can be found in Table 1.

Parameter Interpretation Values Parameter Source
qmax Maximum fecundity of adult blowflies (day)−1 59 Webber et al. (1995)
qmin Minimum fecundity of adult blowflies (day)−1 0 Selected
τE Duration of egg stage (days) 0.6 Gurney et al. (1983)
τL Duration of larval stage (days) 5 Gurney et al. (1983)
τP Duration of pupal and juvenile stages (days) 10 Gurney et al. (1983)
δL Per capita mortality rate of larvae (day)−1 0.004 Gurney et al. (1983)
δA Per capita mortality rate of adults (day)−1 0.27 Gurney et al. (1983)
SE Through stage survival probability of eggs (day)−1 0.959 Gurney et al. (1983)
SL Through stage survival probability of larvae (day)−1 0.980 Gurney et al. (1983)
KA Daily supply of adult food (mg) 1, 200, 2, 000 Nicholson (1957)
KL Daily supply of larval food (mg) 50000 Nicholson (1957)
v1 Constant in functional response for SJ −4.00 Moe et al. (2002)
v2 Constant in functional response for SJ 3.36 Moe et al. (2002)
v3 Constant in functional response for SJ −0.44 Moe et al. (2002)
h1 Constant in functional response for q 3.95 Webber (1954)
h2 Constant in functional response for q 6.90 Webber (1954)
h3 Constant in functional response for q 0.97 Webber (1954)
h4 Constant in functional response for q 0.78 Webber (1954)
αf Lower threshold on environmental cue 1.4 Readshaw and Cuff (1980)
αc Upper threshold on environmental cue 124 Readshaw and Cuff (1980)
C Initial condition 1000 Selected

Table 2.1: Table of parameters used in the phenotypically plastic blowfly model simulated in
Figure 2.4A.
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2.4.4 Simulating population dynamics in the Nicholson blowfly culture under experimental

conditions

The model simulated under replica experimental conditions shows good qualitative and quantita-

tive resemblance to experimental data from Nicholson’s blowfly culture (Figure 2.4A), capturing

the culture’s dynamical behaviour before and after food limitation. Initially, when the adult food

supplied was unlimited, the model predicts the regular population cycles observed in Nicholson’s

data. After the food was restricted to 1000mg at 610 days, the oscillations dampen, and the

average population density substantially increases capturing the change in dynamical behaviour

observed in Nicholson’s culture. Although the population density of the simulated blowflies

matches the experimental data the amplitude of the oscillations does not match. This mismatch

can be explained by the high sensitivity of the model to food supply, a discussion of which,

accompanied by food supplies which correctly predict both amplitudes, is provided in Appendix

D.

Initially, the population exhibits temporal cycles in the dominant phenotypes (Figure 2.4B and

Figure 2.4C). In the time periods where no new adults are being recruited, the phenotypic

composition of the pupal and adult population does not change, resulting in the flat regions of

Figures 2.4B and 2.4C. After food restriction, the range of phenotypes expressed within the

population is greatly reduced. Pupae and adults in this period belong to a group of closely

related environmental classes of individuals with relatively low trait values. As there is no

difference between the distributions of maximum fecundity and through pupal stage survival,

hereafter only fecundity is discussed.

As the model extends a previously derived non-plastic blowfly population model by Gurney et

al. it is natural to question whether the population dynamics observed in Figure 2.4A can be

attributed to the non-plastic population model. To test this, the non-plastic blowfly model (de-

scribed in Appendix B) is simulated under Nicholson’s experimental conditions. The non-plastic

model overestimates the average adult density in both food conditions, predicts a decrease in
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Figure 2.4: Simulation of the Nicholson blowfly culture data using the novel framework to
represent phenotypic plasticity. In the culture adults blowflies were given unlimited food for
610 days, represented by KA = 2, 000mg, which converts to 1800mg of food supplied. After
day 610 the amount of adult food supplied, KA, was then reduced to KA = 1, 200mg, which
converts to 1, 000mg of food supplied daily. (A), Simulation of the new model which incorporates
phenotypic plasticity. The number of environmental classes is n = 64 and each of the coloured
lines represents the number of adults in an environmental class. In (A) the solid black line
indicates the total number of adults over all environmental classes, while the dashed black
line is the original data from Nicholson’s culture. (B-C), Change in the average value and
distribution of the plastic-traits: potential fecundity and through pupal stage survival of the
population simulated in Figure 2.4A.
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adult density when resource availability decreases, and maintains the same population dynamics

before and after the resource change as can be observed in Figure 2.5.
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Figure 2.5: Simulations of a previously derived non-plastic blowfly model from Gurney et al.
(1983) under experimental conditions with adult blowflies initially supplied with KA = 2, 000mg,
which after day 610 is reduced to KA = 1, 200mg. The solid black line indicates the total number
of adults, while the dashed black line is the original data from Nicholson’s culture.

However, to fully determine how much of the behaviour observed in the phenotypically plastic

model can be attributed to the behaviour of the non-plastic Gurney et al. (1983) model it

is necessary to consider the behaviour of the non-plastic model over a wider range of food

conditions. If the competitive release effect or shift in dynamical behaviour can be explained

using the non-plastic model, this would indicate that phenotypic plasticity was not responsible

for generating this effect. To test this the parameters, q and SJ in the Gurney model are

varied. These parameters are the plastic-traits varied in the phenotypically plastic model and

so by varying the values of these parameters in the non-plastic model insight is gained into

how plasticity is altering the system’s dynamics. I simulate the Gurney model both in the case

KA = 1, 200mg, and the case KA = 2, 000mg. If for any values of q and SJ the maximum

population density of the food unlimited population is less than the population density of the

food limited population this would indicate the increase in population density observed in the
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Nicholson blowfly culture can be explained using the non-plastic Gurney et al. formulation of

the model. As can be seen in Figure 2.6, for no parameter values did the non-plastic model

predict the food limited population being larger in size than the population with excess food.

This suggests that the competitive release effect observed in the new phenotypically explicit

model is generated by the inclusion of phenotypic plasticity.
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Figure 2.6: Comparison of the average adult densities observed in the Gurney et al. model in
the case KA = 1, 200mg, and KA = 2, 000mg. Note that for no value of q does the average adult
population density in the case KA = 1, 200mg exceed the average adult population density when
KA = 2, 000mg.

2.4.5 Understanding the wider effects of phenotypic plasticity and population dynamic inter-

actions

To explore how robust the population dynamics observed in the blowfly system are to conditions

beyond those in Nicholson’s experiment, the population trajectories are simulated for a wide

range of possible combinations of adult and larval food supplies. For each food supply I calculate

the average adult population density (Figure 2.7A), the average potential fecundity (maximum

number of eggs an individual could produce in conditions of excess adult food, Figure 2.7B), the
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average observed fecundity (the number of eggs an individual actually produces in the context

of competitive pressures within the population, Figure 2.7C), and the difference between the

average potential and observed fecundities (Figure 2.7D).

(A) (B) (C) (D)

(E)

0

2000

4000

500 600 700 800
Time (Days)

A
du

lt 
P

op
ul

at
io

n

(F)

0

2000

4000

500 600 700 800
Time (Days)

A
du

lt 
P

op
ul

at
io

n

(G)

0

2000

4000

500 600 700 800
Time (Days)

A
du

lt 
P

op
ul

at
io

n

Figure 2.7: (A-D), Results of varying the adult and larval food supplied to a blowfly culture.
The parameter values for the limited food scenario KA = 1, 200mg are indicated by the black x
and those for the unlimited food scenario, KA = 2, 000mg are indicated by the black o. (A),
Average adult density for different amounts of larval and adult food supplied. (B), The average
potential adult fecundity (the maximum number of eggs an individual produces on average in
conditions of excess adult food) for different amount of larval and adult food supplied. (C),
The average observed fecundity (the average number of eggs an individual actually produces in
the context of competitive pressures within the population, Figure 2.7C) of adults for different
amounts of larval and adult food supplied. (D), The difference between the maximum and
observed fecundity of adults. (E-G), Examples of simulations of the blowfly model. The larval
food provided is KL = 50000mg in each simulation and the adult food has been selected such
that the average potential fecundity trait is 25, KA = 351mg, KA = 901mg and KA = 4151mg,
respectively.

The model predicts that the blowfly population exhibits one of three dynamical behaviours.

In the leftmost region of Figures 2.7A-2.7D, increases in larval food supply do not change the

abundance or fecundity (potential or observed) of adults. This suggests that in this region the

population is limited most by the amount of adult food available. The population in this region
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consists of a small number of phenotypes with similar trait values (c.f. the small range of colours

in the lines representing the abundance of individuals in each environmental class in Figure 2.7E

and point (e) in Figures 2.7A-2.7D). In the rightmost region of Figures 2.7A-2.7D, increases in

adult food supply do not change the abundance or fecundity of adults, suggesting that availability

of larval food is a limiting factor. The phenotypes expressed within the population are more

diverse and the population’s phenotypic composition changes during the course of a population

cycle (c.f. the larger range of coloured lines in Figure 2.7G and point (g)). In the central

region (the dark segment in Figure 2.7A), increases in either adult or larval food supply change

the abundance and fecundity of adults. The adult population exhibits dampened oscillations

and a small number of phenotypes with low trait values (Figure 2.7F and point (f)). This

suggests that in this region the population is limited by the availability of both larval food

and adult food. This shows that the balance of resource availability between adult and larval

blowflies governs the dynamical behaviour of the blowfly population. The population dynamics

are therefore characterised by the interaction between the two sources of density dependence: the

instantaneous effects of adult competition and the delayed effects of larval competition through

developmental plasticity.

Nicholson observed that when a culture initially supplied with 50g of larval food was supplied

with 1g of adult food that “the oscillation [of the blowfly population] was comparatively slight

and had lost almost all evidence of periodicity, whereas any appreciable departure from the rate

of one gram of ground liver per day in either direction resulted in the increase in the amplitude

of oscillation.” The model predicts that when a population with a low adult food supply is

supplied with increasingly more adult food that there is a sharp rise and then fall in average

adult density as observed in Figure 2.7A. Similarly, when a population with a relatively low

larval food supply is provided with increasingly more larval food, a similar sharp rise and fall

in average adult density occurs. The behaviour Nicholson describes is precisely the behaviour

that this model predicts, demonstrating that phenotypic plasticity is a mechanism by which the

paradox of enrichment can be reconciled.
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The predictions the model makes about the link between traits expressed by individuals and

population responses are somewhat counter-intuitive and would be difficult to anticipate from

reaction norms alone. From consideration of only reaction norms it would be reasonable to

predict that individuals are most reproductively successful when potential fecundity is high.

However, in Figures 2.7B-2.7D it is seen that the food conditions that produce individuals with

the highest average potential fecundity are also those that prevent this from being exploited and

are associated with low average observed fecundity and consequently low reproductive success.

By comparison, conditions that produce individuals with low average potential fecundity allow

those individuals to achieve this potential, meaning that individuals in these conditions are on

average more reproductively successful despite their lower trait value. Therefore, the relative

contribution of high and low trait-valued individuals to the intensity of future larvae competition

changes dynamically according to the environmental conditions the population is subject to.

This demonstrates that the seemingly reasonable assumption made from the reaction norm

alone, that high trait value corresponds to high reproductive success, does not hold (Reed et al.,

2013).

Individuals with traits that are indicative of high individual performance, such as average po-

tential fecundity and average observed fecundity, arise from environmental conditions where the

population is least abundant and most unstable. When average observed fecundity is highest

(rightmost regions of Figures 2.7A-2.7D) population density is lowest. Conversely, when the pop-

ulation density is highest, and the oscillations are damped (central regions of Figures 2.7A-2.7D),

the average observed fecundity is low, and the average potential fecundity is at a minimum. This

shows that over most food conditions average potential fecundity and average observed fecundity

are poor predictors of individual and population success. Even when average trait value is a

good predictor of observed fecundity (rightmost region of Figures 2.7A-2.7D) the population’s

dynamics are regulated by phenotypic plasticity and so would be misrepresented by an approach

that uses averaged trait values. Conversely, when average trait value is a bad predictor of fecun-

dity (leftmost regions of Figures 2.7A-2.7D) an averaged trait approach correctly predicts the
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population dynamics (as can be observed by comparing Figure 2.5 to Figure 2.7E).

The food amounts supplied in the simulations shown in Figures 2.7E-2.7G were selected to

produce populations with the same average potential adult fecundity. Despite each population

sharing the same average trait value, each population exhibits distinct dynamics and trait dis-

tributions which would be overlooked by an approach using averaged trait values. Only by

accounting for trait variation between individuals arising from the cumulative effect of each

individual’s experience is it possible to capture the population level effects of these three sce-

narios. This highlights the need to consider the individual and population level consequences of

phenotypic plasticity in a unified framework akin to what is derived here.

2.5 Discussion

I demonstrate that the interaction between phenotypic plasticity in individuals and population

level effects can be a source of rich population dynamical phenomena. The disconnect between

individual and population performance demonstrated in the example of Nicholson’s blowflies,

although certainly not universal, provides a mechanistic explanation of how pressures that are

maladaptive for individuals can be beneficial for populations and vice versa (Reed et al., 2013;

Edelaar, Bolnick, 2019; Weiner et al., 2017; Louthan et al., 2013). By representing the mecha-

nisms by which individual variation and population level processes interact, insight is generated

into how populations adapt to changing environments, which is crucial for understanding phe-

nomena such as ecological tipping points (Dakos et al., 2019). Further, these findings support

numerous previous studies proposing that failure to represent the effects of individual variation

on populations is more consequential than simply mis-estimating demography (Bolnick et al.,

2011; Violle et al., 2012; Sgrò et al., 2016; Lloyd-Smith et al., 2005), as it is demonstrated

that patterns in individual variation can drive complete changes in the dynamical behaviour of

the system being considered. This is corroborated by observational studies where it has been

found that the response of populations to interventions was influenced by individual variation
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(Cameron, Benton, 2004; Cameron et al., 2013). The framework is broadly applicable to sys-

tems where interaction between population dynamics and trait is important in determining the

outcome of a process of interest. For example, when considering insect vectors of diseases or

crop pests (e.g. mosquitoes or locusts) both abundance and trait to interact to determine the

health or economic risk posed (Chandrasegaran et al., 2020; Sword et al., 2010).

Developing the model for Nicholson’s blowflies was considerably simplified as I consider a well-

studied model organism under controlled laboratory conditions. Although reaction norms are

widely available across a broad range of taxa, outside of laboratory settings additional sources

of environmental variation require the inclusion of reaction norms of higher dimension (i.e. a

reaction norm considering the effect of temperature and con-specific density on development

rate). However, the framework is designed to represent complex systems and so this should not

pose an obstacle to implementation (see Appendix E for examples of how to represent other

forms of phenotypic plasticity). For species where particular environment-trait relationships are

not fully quantified or are missing entirely, due diligence must be observed in determining how

sensitive the dynamics are to these uncertainties. For example, reaction norms are often most

uncertain at environmental extremes (Brady et al., 2013) and so this uncertainty would need

careful consideration when using the framework to predict dynamics at population range limits.

Individual variation is shown to change and be changed by population processes, but it is not

predicted when trait variation alters the outcome of these processes. In invasion biology, metrics

derived from reaction norms are often used to predict the competitive viability of native and

invasive species (Richards et al., 2006a). Although the approach of using reaction norms di-

rectly accurately predicts the success of some invasive species (Luo et al., 2019; Knop, Reusser,

2012), it fails to explain the success of others (Muth, Pigliucci, 2007). This inconsistency limits

the usefulness of reaction norms as a general predictor of a species invasiveness (Hulme, 2008;

Palacio-López, Gianoli, 2011). Here, it is demonstrated that if one directly compares reaction

norms without also considering a greater ecological context, one may arrive at erroneous con-

clusions. Therefore, it is important to determine more generally when reaction norms alone
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are sufficient to predict population dynamics and in doing so reconcile the role of phenotypic

plasticity in biological invasions and population biology.
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Chapter 3

Predicting the population and trait dynamics

of Ae. albopictus over a global range

3.1 Abstract

The current rapid increase in the incidence of vector-borne disease, driven by anthropogenic

factors, is a growing threat to global public health. A thorough understanding of vector ecology

will be critical for implementing successful control and surveillance campaigns. However, in

current models the response of transmission critical vector traits to environmental variation is

simplified, and this may lead to mis-estimation of the risk posed by vector-borne disease. Here, I

develop a population model for the invasive dengue vector Aedes albopictus that uses mechanisms

of individual variation to predict how transmission critical traits will respond to environmental

variation. This model is validated against data from field populations across the global range of

the species and demonstrates excellent predictive ability across broad environmental gradients.

Mean-field models are shown to lack this generalisability, demonstrating the need to reconsider

how trait variation is accounted for in predictions of vector population dynamics.
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3.2 Introduction

The rapid global invasion of Ae. albopictus has been facilitated by the extraordinary ecological

plasticity displayed the species across its geographical distribution (Paupy et al., 2009). Between

climates the population dynamics expressed by Ae. albopictus change substantially, and this

alters the ability of these populations to vector disease. In temperate regions populations display

strong seasonality in adult abundance, and consequently there is only a short period of time over

which disease can be vectored (Carrieri et al., 2011). By contrast in tropical regions adult activity

can be maintained all year round, and variation in abundance appears to vary primarily with

precipitation (Haramboure et al., 2020; Rozilawati et al., 2007). In between these two extremes

are a diverse range of intermediary dynamical behaviours that even in the same location can vary

substantially between years (Willis, Nasci, 1994; Xia et al., 2018). To understand the current

risk posed by populations of Ae. albopictus across its global range it will be necessary to identify

the mechanisms that drive this variability.

Niche-based distribution models have found that the niche occupied by Ae. albopictus in its

invaded range appears to have shifted from the niche it occupies in the native range in Southeast

Asia (Medley, 2010). One explanation proposed for this shift in niche is that different vector

populations have different genetic structures, a factor that is known to change the vectoriality of

tick populations, and of Anopheline mosquito species (McCoy, 2008; Fontenille, Simard, 2004).

However, investigations into the genetic structure of Ae. albopictus populations around the

globe have found an apparent lack of structure between vector populations across the species

range, attributing much of the variation observed to human-mediated introductions rather than

adaptation (Latreille et al., 2019).

Environmental variation has a complex and multi-faceted effect on the population dynamical

processes of mosquito species, and these cannot be captured solely through association (Purse,

Golding, 2015). However, despite the theorised importance of interactions between environ-

mental variables, trait expression, and population dynamics, explicit mechanisms of individual
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variation are generally omitted in the current models predicting transmission risk (Cator et al.,

2020). It is common to implicitly make broad simplifying assumptions about how environment

acts on trait expression, representing mechanisms of trait variation either through instantaneous

responses to the current climate or omitting them wholly. For example, although variation in

adult longevity is incorporated into predictions of the risk posed by mosquito populations, it

is assumed that this trait varies only in response to the current environmental conditions ex-

perienced by adult mosquitoes (Metelmann et al., 2021; Mordecai et al., 2017). This implicitly

assumes that all individuals have experienced the same historical environmental conditions re-

gardless of their actual experience of the environment through development and therefore the

effect of intraspecific variation is overlooked (Violle et al., 2012). For mosquito populations this

reduces the dynamic trait structures that are observed in the field to a single population average

that cannot account for the population’s historic environmental experience nor how this expe-

rience alters the ability of populations to vector disease (Willis, Nasci, 1994). When tailored

for populations in specific environments mean-field approaches have proven successful and allow

the attribution of environmental processes to population level responses (Ewing et al., 2016;

Ewing, 2017; Ewing et al., 2021). However, mechanistic models are often applied over broad

environmental gradients over which these assumptions are less appropriate and this may lead to

a mis-estimation of disease risk.

The modelling framework developed in Chapter 2 and Brass et al. (2021) is designed to track

the interaction between population and trait dynamics in response to environmental variation

across developmental stages and between generations. This approach allows the attribution of

population responses to specific mechanisms of individual variation, and therefore is ideal for

determining how the trait dynamics of vector populations contribute to outbreak risk. Here,

this approach is used to develop a stage-phenotypically structured population model for Ae.

albopictus, an invasive mosquito species and major vector of dengue (Zhang et al., 2019). This

species is an ideal and important candidate for understanding the effect of environmentally

induced trait variation on disease risk since its wide global range means that its populations are
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subject to a diverse range of environmental conditions. The dynamics exhibited by populations

of Ae. albopictus across its range are very different, with populations in temperate locations

exhibiting strong seasonality but those in more tropical climates active all year round (Carrieri

et al., 2012; Haramboure et al., 2020). In field populations environmental variation shapes trait

distributions and it is theorised that these differences alter the ability of these populations to

transmit disease (Willis, Nasci, 1994; Suzuki et al., 1993). Despite predictions of broad suitability

for the transmission of dengue by Ae. albopictus in much of the invasive range, outbreaks have

so far been limited in size and distribution (Liu-Helmersson et al., 2016; Brady et al., 2012). It is

my hypothesis that by accounting for the effect of environmental variation on the trait structure

and population dynamics of Ae. albopictus both the population dynamics of the species across

its range and the current patterns of disease incidence around the globe can be understood.

3.3 Methods

3.3.1 Model overview

The general framework developed in Chapter 2 is used to derive a model for Ae. albopictus to de-

rive a model that represents the effect of developmental plasticity in adult trait in response to the

environmental experiences of juveniles (Brass et al., 2021). Within the model individuals with

different experiences of the past environment are grouped into different environmental classes

which describe how this experience alters the traits they express now. By linking individual-level

variation to population response the model predicts not only the population’s dynamics but also

the population’s trait structure. As was demonstrated in Chapter 2 this approach is flexible

and able to incorporate the effect, both instantaneous and delayed, of environmental stressors

on multiple traits making it ideal for accounting for the complex life-history of Ae. albopictus.

The model considers the dynamics of a population of mosquitoes arising from a single water-

body of fixed dimension, taking as inputs only environmental variables from the location being
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simulated and outputting predictions of population and trait (Figure 3.1). It is assumed that the

water body only varies in response to changes in temperature, the accumulation of precipitation,

and through evaporation of standing water and is otherwise identical in every respect between

locations. Adult mosquitoes oviposit eggs either onto the surface of the water or around the sides

of the habitat, with the proportion of eggs being placed around the habitat’s sides increasing as

water level decreases (Rey, O’Connell, 2014). The eggs placed into or around the water body

express either a diapausing or non-diapausing phenotype which is determined by a maternal

effect in response to falling temperatures and decreasing photoperiod (Lacour et al., 2015). The

survival of eggs through the egg stage is assumed to be determined solely by temperature (Delatte

et al., 2009). Initially all eggs develop at a temperature-dependent rate and are referred to as

active eggs regardless of location in the habitat or phenotype expressed. Once development

is complete, only eggs on the water’s surface expressing the non-diapausing phenotype hatch

into larvae with all other eggs transitioning into one of two dormancy classes. When eggs

placed around the sides of the habitat finish development they enter egg quiescence, a form of

irregular dormancy that allows persistence through dry periods (Diniz et al., 2017). Quiescence

continues until the dormant egg is inundated by precipitation after which it immediately hatches

if expressing the non-diapausing phenotype and transitions to the diapausing egg class otherwise.

Egg diapause is a form of regular dormancy that allows eggs to withstand cold temperatures, and

is the primary mechanism by which Ae. albopictus populations persist overwinter in temperate

climates (Armbruster, 2016). Once development is complete, provided an inundation event has

occurred if the diapausing egg is also quiescent, diapause eggs remain dormant until a critical

temperature and photoperiod is reached after which they immediately hatch (Lacour et al.,

2015).

Larval mosquitoes compete for available resources in the aquatic habitat and are assumed to

develop at a rate determined by both the current temperature and the intensity of larval com-

petition (Ezeakacha, Yee, 2019). The ecology of larval mosquitoes is complex, and to produce

a coherent model with the data currently available it is necessary to make broad simplifying
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assumptions about the life-history of larvae. I assume that all larvae are functionally identical

regardless of larval instar or previous experience of dormancy during the egg stage and so con-

sider only a single larval class (Poelchau et al., 2013). It is assumed that there is no interspecific

competition either for resource or through predation and that the only intraspecific competi-

tion is from competition for resource and space (Marini et al., 2017; Mastrantonio et al., 2018).

Available resource is assumed to be consumed in its entirety and to be replenished daily, rep-

resenting the product of temperature-dependent metabolic processes in the larval environment.

Once larval development is complete pupation begins with the development of pupae assumed

to depend solely on temperature (Delatte et al., 2009). The container habitats that Ae. albopic-

tus prefers are generally small and vulnerable to flushing, a process whereby the body of water

overflows and individuals are swept away, and drying out (Dieng et al., 2012). To represent

flushing whenever the height of the water in the habitat exceeds the height of the container and

rainfall is sufficiently intense an increase in the mortality of larvae and pupae occurs, and when

the container dries out all non-quiescent juveniles die out.

Adult mosquitoes experience developmental plasticity in response to their experience of tem-

perature and intraspecific competition as larvae (Yoshioka et al., 2012). This is represented by

tracking each individual’s experience of the environment through development and using this to

determine the traits that individuals express as adults. Specifically, each individual’s experience

of the average temperature and the average food available per larvae per day over the course of

the larval period is used to predict that individual’s wing length, which is then used to determine

the fecundity and longevity of that individual as an adult (Blackmore, Lord, 2000). Both fecun-

dity and longevity are then further modified by the current temperature (Delatte et al., 2009;

Brady et al., 2014). The adult resources necessary to survive and complete the reproductive

cycle, such as sugar and blood meals, are always assumed to be in excess and the model does

not represent any effects of competition between adults (Bellini et al., 2014). The production

of cold resistant diapausing eggs is triggered when falling temperatures and photoperiod reach

a critical threshold (Lacour et al., 2015). A schematic representation of the model is shown
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Figure 3.1.

Figure 3.1: Schematic of the model used to represent the population dynamics of Aedes albopic-
tus. I consider a stage structured model with three explicitly modelled life-stages, eggs, larvae,
and adults with pupae only being represented implicitly. The model considers the dynamics of
a population from a single water-body of fixed dimension with a water level that is dependent
solely on precipitation and evaporation. Eggs are divided into three different classes, active eggs
Eγ , diapausing eggs ED, and quiescent eggs EQ depending on the location they are placed in
the pool (active/quiescent) and the phenotype they express (diapausing/non-diapausing). After
hatching eggs proceed to the larval class where development depends on temperature, intraspe-
cific density, and the food available per larvae per day which is assumed to relate to the amount
of water accumulated in the habitat and the current temperature. Once larval development is
complete larvae transition to the pupal class which is represented implicitly. Upon maturation
to adulthood each individual’s experience of its environment as a larva determines the traits
that individual expresses as an adult through developmental plasticity. To represent this wing
length is discretised into m environmental classes, with m sufficiently large to avoid the effects
of discretisation, and assign to each a set of adult traits, with adults in the xth environmental
class denoted Ax.
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3.3.2 Model details

The environment

Environmental variation is incorporated into the model through temperature, photoperiod, evap-

oration, and precipitation from the location in which the simulated population is situated. Me-

teorological data is sourced from the ERA5 climate reanalysis dataset (Muñoz Sabater, 2019).

Climatic variables in this dataset are available at a 0.1◦x0.1◦ resolution at an hourly time in-

terval which is processed to represent either a daily mean temperature or the total accumulated

precipitation and evaporation each day. For use in the model each environmental variable is

extended to continuous time using splines, which were then tested against the climate data

to ensure there were no errors in the interpolation. Splines were created using the function

Spline1D from version 0.5.2 of the Dierckx package, a wrapper from the Fortran library of the

same name (Dierckx, 1995).

The temperature at time t is denoted T (t), and for simplicity I assume that the temperature of

the larval pool and the air temperature are always the same (Paaijmans et al., 2010). Temper-

ature is used throughout the model to instantaneously alter the traits expressed by individuals

in each developmental stage. Temperature plays a further role in two more complex instances

of phenotypic plasticity that are represented in the model. Specifically, an instance of develop-

mental plasticity that uses the average temperature an individual experienced over the larval

period in combination with the average amount of food available per larva per day to determine

the wing lengths of emerging adults. Also included is a maternal effect where the temperature

and the photoperiod at time t, denoted ψ(t), determines the proportion of produced eggs that

express diapausing phenotype. A combination of temperature and photoperiod subsequently

determines when diapausing eggs are released from dormancy.

The total precipitation and evaporation each day, denoted ρ(t) and ε(t) respectively are used to

simulate the dynamics of the aquatic developmental habitat. The model simulates the dynamics

of a single cylindrical water body with a surface area of µmm2 and maximum volume of V mm3.
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Throughout the subsequent analysis these parameters are kept constant across the range of

locations considered and have been selected to be consistent with productive habitats observed

in the field (Toma et al., 1982). Water accumulates in the habitat through precipitation, denoted

ρ(t), and leaves through both evaporation, ε(t), and overspill. Overspill occurs when the amount

of water in the pool would exceed the pools volume, at which point any additional precipitation

is not added to the pools total volume. If an overspill event happens concurrently with an intense

period of precipitation a spike in mortality of the larval and pupal classes occurs, representing

individuals being flushed away (Dieng et al., 2012). The total amount of water in the habitat

on day t after all precipitation and evaporation can therefore be expressed by the series

Wt = min {Wt−1 + µ(ρ(t)− ε(t)), V } (3.1)

with initial condition such that the habitat is full at the start of the simulation, i.e. W0 = V .

This series for daily water level is then extended to continuous time using a spline, such that

the water level at time t is denoted W (t). Whenever W (t) = 0 the container has dried out and

all non-quiescent juvenile stages (active eggs, diapausing eggs, larvae, and pupae) die-off. This

parameter also governs the proportion of eggs produced that are quiescent and when they are

released from dormancy.

Eggs

The number of active, quiescent and diapausing eggs present in the population at time t are

denoted by Eγ(t), EQ(t) and ED(t) respectively. Active eggs develop at a temperature-dependent

rate, immediately hatching once development is complete if they are at or below the current

water level and moving into the quiescent class otherwise (Delatte et al., 2009). Quiescent eggs

remain dormant until inundated by precipitation after which they immediately hatch (Diniz

et al., 2017). Diapausing eggs are cold resistant and are produced in response to a maternal
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effect, they remain dormant until a critical temperature and photoperiod threshold is reached

after which they immediately hatch (Lacour et al., 2015). In other Aedes species it has been

demonstrated that adult body size is related to egg size and that larger egg sizes increase

desiccation resistance (Steinwascher, 1984; Faull, Williams, 2015). Although weak effects of egg

size on survival have been observed in Ae. albopictus, there is insufficient empirical data to justify

the inclusion of such a function in this model. Therefore, it is assumed that the only maternal

effect is whether an egg is active or diapausing (Sota, Mogi, 1992) .

For active eggs, I define τEγ (t), δEγ (t), gEγ (t), and SEγ (t) to be the stage duration, mortality rate,

development rate, and through-stage survival proportion respectively with τEγ (t) = 1/gEγ (t) and

δEγ(t) = −log(SEγ (t))/τEγ (t). The forms of the reaction norms used for egg survival and de-

velopment were selected by fitting data to functional forms that have been used in previous

models, trialling quadratic and Briere functional forms for the development rates, and quadratic

and Gaussian functional forms for through stage survival with each functional form being trun-

cated at a value close to 0 (Mordecai et al., 2017). Functional forms were fit using a weighted

non-linear least squares approach and AIC was used for model selection, using the nls func-

tion in R (R Core Team, 2022). Further explanation of this fitting procedure along with both

the code and life-history traits used to perform the fitting can be found in a repository at

https://zenodo.org/record/7796206#.ZCslmnbMKUk. The parameter values are reported in

Appendix J, and the data used perform this parametrisation was taken from a variety of sources

(Delatte et al., 2009; Li lin et al., 2015; Li et al., 2021b; Blagrove et al., 2013; Calvitti et al., 2010;

Mamai et al., 2019; Maamor et al., 2019; Zhang et al., 2015; Monteiro et al., 2007). The best

fitting functional form for the development rate of active eggs was a quadratic with functional

form

gEγ (T ) = max
{
σ11T

2 + σ12T + σ13, 0.01
}
,

and the best model for the through stage survival of active eggs was a Gaussian with functional
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form

SEγ (T ) =
σ21

σ22

√
2π

exp

(
−1

2

(
T − σ23

σ22

)2
)
.

The result of this fitting is provided in Figures 3.2A and 3.2B respectively.

(A) (B)

Figure 3.2: Reaction norms for active eggs, the black line is the model prediction and each
point represents the data used to fit the model. (A) Development rate of active eggs, gEγ (T ).
(B) Through egg-stage survival of active eggs, SEγ (t).

Egg quiescence is a mechanism of irregular dormancy that ensures there is a reservoir of eggs

able to persist through periods when the habitat has completely dried out (Diniz et al., 2017).

After maturing out of the active stage a proportion of eggs are assumed to enter the quiescent

egg class. The proportion of eggs that enter the quiescent class at time t is represented by the

function Q(t) which is defined

Q(t) =


V−W (t)

V , if W (t) < W (t− 1)

0, otherwise.

(3.2)

This function links the proportion of eggs that become quiescent to the height of the water in

the container habitat. The condition W (t) < W (t−1) ensures eggs only become quiescent if the
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water level on day t is lower than that on day t− 1. This choice of functional form ensures that

when the habitat completely dries out, W (t) = 0, all eggs become quiescent upon maturation

and so Q(t) = 1. As the water level rises a lower proportion of eggs enter the quiescent class

until the habitat is completely filled, W (t) = V , and therefore Q(t) = 0. Within the quiescent

egg class it is assumed that the same temperature-dependent mortality rate used for active eggs

is suitable for quiescent eggs.

As egg quiescence is an irregular form of dormancy, maturation out of the quiescent class is

triggered by inundation rather than the completion of development. This is represented through

the function hQ(t), which describes the proportion of eggs that hatch out of the quiescent class

at time t and is defined

hQ(t) =


1− V−W (t)

V if W (t) > W (t− 1)

0, otherwise.

(3.3)

When the habitat is full, W (t) = V and so hQ(t) = 1, representing that when the habitat is

completely filled all quiescent eggs are inundated and therefore should hatch immediately. The

condition W (t) > W (t − 1) ensures that no eggs are released from quiescence when the water

level at time t is lower than the water level at time t−1 and therefore no new eggs would become

inundated.

Egg diapause is a mechanism of regular dormancy that allows the persistence of populations

through cold winter months and is governed by a maternal effect (Lacour et al., 2015). The

production of diapausing eggs is triggered by the exposure of adults to a critical photoperiod

and temperature. This is represented in this model by the function D(t), which describes the

proportion of adults at time t that are producing non-diapause eggs and is defined
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D(t) =


1− 1

1+15e((ψ(t,l)−φ(l)) , if T (t) ≤ 18, and φ(t) ≤ φ(t− 1)

1, otherwise

(3.4)

with the functional form taken from Lacour et al. (2015) and where φ(l) is the critical pho-

toperiod threshold required to induce the production of diapausing eggs in adults at latitude l

defined

φ(l) = 0.1|l|+ 9.5

according to the relationship determined by Armbruster (2016). Emergence of eggs from dia-

pause is triggered by the current environmental conditions exceeding a critical temperature and

photoperiod threshold (Petrić et al., 2021). This is represented by the function hD(t) which

immediately releases eggs from diapause once the environmental thresholds are reached which

is defined

hD(t) =


1, if T (t) ≥ 12.5, and PP (t) > φ(l), and φ(t) > φ(t− 1)

0, otherwise.

(3.5)

The mortality rate of diapausing eggs is defined

δED(t) =


0.01, if T (t) > −12

0.1, otherwise.

(3.6)

Note in this case that when the temperature is below the thermal limit mortality is not absolute, a
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decision which has been made due to evidence that diapausing eggs can withstand short intervals

of low-temperature conditions (Thomas et al., 2012). This leniency ensures that a brief period of

intense cold does not kill off whole populations whilst ensuring that sustained low temperatures

remain unsuitable.

Larvae

Larval Ae. albopictus consume a range of bacteria, plants and detritus and both the time that

larvae take to develop and the proportion of individuals that survive through the larval stage

is assumed to depend on the intensity of intraspecific competition for resource in addition to

temperature (Ezeakacha, Yee, 2019). To account for resource dynamics in the model requires

the definition of how much resource is in the habitat at any time and how this is expected to

vary. Accurately predicting how much resource is available for larval Ae. albopictus in a con-

tainer habitat from climate data alone would be a significant undertaking for even a limited

geographical range, but the model requires predictions that will hold globally. Resource dynam-

ics are complex, and the amount of resource available in a container habitat varies with location,

micro-climate, and community composition amongst many other factors that are not accounted

for (Kulaš et al., 2021). Instead, I assume that the amount of food available in the container

is temperature-dependent, proportional to the volume of water in the habitat and completely

independent of location. The gross primary productivity of the larval habitat is then defined to

be

F (t) = 10−6log10(0.45 + 0.095T (t))W (t) + fd (3.7)

where the logarithmic term represents the products of respiration and the constant term, fd, is a

reservoir of nutrition from the decay of detritus (White et al., 1991). It is further assumed that

larvae divide the available food equally and completely (i. e. scramble competition) (Gavotte
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et al., 2009). The amount of food available per larvae per day, α(t), can therefore be expressed

by

α(t) =
F (t)

L(t)
.

The functions used to represent larval life-history processes are comprised of multiple components

but are principally constructed from reaction norms for larval development rate, gL(T (t), α(t)),

and through-stage survival independently of hydrological processes, ŜL(T (t), α(t)). To fit the

multi-dimensional reaction norms for larvae I use generalised additive mixed effect models

(GAMMs) using the R package gamm4 version 0.2.6 and both the life-history data used to

parametrise these reaction norms and the code to fit the models can be found in the repository

https://zenodo.org/record/7796206#.ZCslmnbMKUk (R Core Team, 2022; Wood, Scheipl,

2020). I consider models that include different combinations of temperature, density, and an

interaction term between the two variables. As the data used to parametrise these functions

is sourced from laboratory experiments that used populations of Ae. albopictus from different

origin locations and reared larvae on different diets these factors are included as random effects.

For each life-history trait the model with the lowest AIC is selected, the result of which for larval

development rate and through stage survival is shown in Figure 3.3 and the data used for this

fitting was compiled from a variety of sources (Buckner et al., 2016; Calado, Navarro da Silva,

2002; Calvitti et al., 2010; Delatte et al., 2009; Giatropoulos et al., 2022b; Kamimurai et al.,

2002; Li lin et al., 2015; Li et al., 2021a; Lima-Camara et al., 2022; Jong et al., 2017; Maamor

et al., 2019; Mamai et al., 2019; Marini et al., 2020; Monteiro et al., 2007; Mori, 1979; Puggioli

et al., 2017; Reiskind, Lounibos, 2009; Reiskind, Zarrabi, 2012; Riback et al., 2015; Russell,

Cator, 2022; Sauers et al., 2022; Sultana, Tuno, 2021; Yoshioka et al., 2012; Zhang et al., 2015).

The through larval stage duration is defined, τL(T (t), α(t)) = 1/gL(T (t), α(t)), but the larval

mortality term, δL(T (t), α(t)), takes a more complicated form to account for the dynamics of the

container habitat and density dependence. The water level of the container habitat varies with
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(A) (B)

Figure 3.3: The reaction norms used to parametrise the larval stage. (A) The reaction norm
linking larval development rate to temperature and the amount of food available per larva per
day. (B) The reaction norm linking through larval stage survival to temperature and the amount
of food available per larva per day.

evaporation and precipitation and this means spikes in larval mortality can be induced either

through the habitat drying out or through the flushing of larvae when the habitat overflows.

This is represented in the larval mortality rate by setting δL(t) = δd whenever the habitat dries

out, (i. e. W (t) = 0) and similarly setting δL(t) = δf whenever the habitat overflows and the

intensity of rainfall is sufficient to initiate flushing (i. e. W (t) = V and µρ(t) > 0.5V ). The final

component of the larval mortality function is an overcrowding term that increases the mortality

of larvae when the larval density exceeds 3 larvae per ml according to a Gompertz function

(Balestrino et al., 2014). High larval densities are unfavourable for survival, and the term is

necessary in addition to the reaction norms to ensure that the fluctuating water level does not

cause implausibly high larval densities (Leisnham et al., 2021). Therefore the expression for the

mortality rate of larvae is defined

δL(t) =


max

{
− log(ŜL(T (t),α(t)))

τL(T (t),α(t)) + exp
(
− exp

(
1−L(t)/3
W (t)/1000

))
, 1
}
, if 0 < W (t) ≤ V and µρ(t) ≤ 0.5V,

δd, if W (t) = 0,

δf , if W (t) = V and µρ(t) > 0.5V.

(3.8)
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Pupae parameters

Pupal development rate and survival are assumed to depend solely on temperature as there

is a lack of experimental data to quantify carry-over effects from larval stage. Denote these

by gP (t) and SP (t) respectively and with the forms of the reaction norms defining these in

Figure 3.4. These reaction norms are fitted using the same procedure described for the egg

stage, with a Briere function best describing the relationship between pupal development rate

and temperature with form

gP (T ) = max
{
σ31T (T − σ32)(σ33 − T )1/σ34 , 0.01

}
and a quadratic function form for the relationship between through pupal stage survival and

temperature independently of hydrological processes

ŜP (T ) = max
{
σ41T

2 + σ42T + σ43, 0.01
}

parametrised using data from various sources (Briegel, Timmermann, 2001; Calvitti et al., 2010;

Delatte et al., 2009; Jong et al., 2017; Kamimurai et al., 2002; Maamor et al., 2019; Monteiro

et al., 2007; Reiskind, Zarrabi, 2013; Zhang et al., 2015).

(A) (B)

Figure 3.4: The reaction norms used to parametrise the pupal stage. (A) The reaction norm
linking the duration of the pupal stage to temperature. (B) The reaction norm through pupal
stage survival.
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The survival and mortality parameters are modified as in the larval stage to induce mortality

when W (t) = 0 and to account for flushing such that

δP (t) =



− log(ŜP (T (t)))
τP (T (t)) , if 0 < W (t) ≤ V and µρ(t) ≤ 0.5V,

δd, if W (t) = 0,

δf , if W (t) = V and µρ(t) > 0.5V.

(3.9)

Adults parameters

Ae. albopictus experiences developmental plasticity in response to the temperature, food avail-

ability, and conspecific density experienced during juvenile development that contributes towards

temperature-dependent mortality and fecundity of adults (Ezeakacha, Yee, 2019; Blackmore,

Lord, 2000). This is included in the model by using an individual’s experience of larval com-

petition and temperature through development to predict the wing length that individual will

express as an adult. This wing length is then used along with the current temperature to

define the mortality rate of adults and the rate at which eggs are produced. This overlooks

a known crowding effect whereby high densities of larvae inhibit development independently

of competition for resource (Yoshioka et al., 2012). This assumption is necessary as much of

the experimental data used to parametrise reaction norms does not control for larval density

and food availability simultaneously and therefore this relationship cannot be included in the

model. Also omitted are the effects of the availability of adult resource on the production of

eggs, and other varied processes demonstrably important in the life-history of adults (Sultana,

Tuno, 2021; Farjana et al., 2012). Using the same GAMM fitting procedure as described for

larvae, I fit reaction norms for the wing length of emerging adults, as predicted by the average

larval temperature and food available per larvae per day over the course of the larval period,

wL(Tavg(t), ᾱ(t)), and for the time until 50% adult mortality as predicted by wing length and
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temperature, τA50(wL, T (t)). The form of these functions can be seen in Figure 3.5 and are

parameterised using laboratory data from a variety of sources (Alam, Tuno, 2020; Allgood, Yee,

2014; Alto, Juliano, 2001; Alto et al., 2005, 2015, 2008; Armbruster, Hutchinson, 2002; Bara

et al., 2015; Black et al., 1989; Blagrove et al., 2013; Briegel, Timmermann, 2001; Calvitti et al.,

2010; Costanzo et al., 2015, 2018; Deng et al., 2021; Ezeakacha, Yee, 2019; Farjana et al., 2012;

Giatropoulos et al., 2022a; Jong et al., 2017; Li lin et al., 2015; Li et al., 2021b; Lima-Camara

et al., 2022; Mamai et al., 2019; Marini et al., 2020; Mori, 1979; Muturi et al., 2011; Reiskind,

Lounibos, 2009; Reiskind, Zarrabi, 2013; Riback et al., 2015; Russell, Cator, 2022; Sauers et al.,

2022; Shahrudin et al., 2019; Sultana, Tuno, 2021; Sultana et al., 2021; Westbrook, 2010; West-

brook et al., 2010; Wiwatanaratanabutr, Kittayapong, 2006; Yee et al., 2012, 2017; Yoshioka

et al., 2012; Zhang et al., 2015).

(A) (B)

Figure 3.5: The reaction norms used to parametrise the adult stage. (A) The reaction surface
linking historical experience of larval density and temperature to adult wing-length. (B), The
relationship between adult wing length the current temperature and adult longevity. This is
converted into a mortality rate for use in the model.

In this framework the effects of developmental plasticity are represented by assigning each in-

dividual to an environmental class that reflects their experience of the environment through

development. This is achieved by separating adults into m environmental-classes the wing

length they are predicted to express based upon their experience of temperature and resource

availability as larvae according to the function wL. This is achieved by dividing the possible
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wing lengths an adult could express, (wmin, wmax) into m equally spaced subintervals and denote

by wj the midpoint of the jth sub-interval. Then define the function g such that g(w) = wj if

w ∈ R is in the jth subinterval of (wmin, wmax). To determine how much food was available for

an individual maturing into adulthood at time t define

ᾱ(t) =

∫ t−τP (t)
t−τP (t)−τL(t−τP (t))

F (s)
L(s)ds

τL(t− τP (t))
.

Then define the transition function, wj(Tavg(t), ᾱ(t))) such that

wj(Tavg(t), ᾱ(t)) =


1, if g(w(Tavg(t), ᾱ)(t)) = wj

0, otherwise

for j ∈ 1, ...,m.

The fecundity of an individual expressing wing-length w is then given by

q(w) = 0.5 expσ51+σ52w

noting that factor of 0.5 is required as only females produce eggs (Blackmore, Lord, 2000). The

duration of a gonotrophic cycle is assumed to be temperature-dependent and to be the reciprocal

of the biting rate. This is parameterised using a Briere function taken from taken from Mordecai

et al. (2017) of the form

G(T (t)) =
1

max{σ61T (T − σ62)(σ63 − T )
1
2 , 0.01}

from which the rate at which an individual with wing length w produces eggs at temperature

T (t) can be expressed. The rate at which adults in environmental class j produce eggs at time

t is therefore defined
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qj(T (t)) =
q(wj)

G(T (t))
.

Similarly, for individuals in environmental class j that express wing length wj the mortality rate

of adults is defined to be

δAj (T (t)) =
− log(0.5)

τA50(wj , T (t))
.

Population model

The model is defined

dEγ(t)

dt
= REγ (t)−MEγ (t)− δEγ (t)Eγ(t), (3.10)

dED(t)

dt
= RED(t)−MED(t)− δED(t)ED(t), (3.11)

dEQ(t)

dt
= REQ(t)−MEQ(t)− δEQ(t)EQ(t), (3.12)

dL(t)

dt
= RL(t)−ML(t)− δL(t)L(t), (3.13)

dAj(t)

dt
= RAj (t)− δAj (t)Aj(t), for j ∈ 1, ...,m. (3.14)

The variable delay terms are defined such that

dτEγ (t)

dt
= 1−

gEγ (t)

gEγ (t− τEγ (t))
, (3.15)

dτL(t)

dt
= 1− gL(t)

gL(t− τL(t))
, (3.16)

dτP (t)

dt
= 1− gP (t)

gP (t− τP (t))
. (3.17)
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The through stage survival terms are defined such that

dSEγ (t)

dt
= SEγ (t)

(
gEγ (t)δEγ (t− τEγ (t))

gEγ (t− τEγ (t))
− δEγ (t)

)
, (3.18)

dSL(t)

dt
= SL(t)

(
gL(t)δL(t− τL(t))

gL(t− τL(t))
− δL(t)

)
, (3.19)

dSP (t)

dt
= SP (t)

(
gP (t)δJ(t− τP (t))

gP (t− τP (t))
− δP (t)

)
. (3.20)

Recruitment and maturation terms defined,

REγ (t) = D(t)

(∑m
j=1 qjAj(t)

G(t)

)
+ C(t), (3.21)

MEγ (t) =
gEγ (t)

gEγ (t− τE(t)
REγ (t− τEγ (t))SEγ (t), (3.22)

RED(t) = (1−D(t))

(∑m
j=1 qjAj(t)

G(t)

)
, (3.23)

MED(t) = hD(t)ED(t), (3.24)

REQ(t) = Q(t)(MEγ (t) +MED(t)), (3.25)

MEQ(t) = hQ(t)EQ(t), (3.26)

RL(t) = (1−Q(t− τE(t)))(MEγ (t) +MED(t)) +MEQ(t), (3.27)

ML(t) =
gL(t)

gL(t− τL(t))
RL(t− τL(t))SL(t), (3.28)

RAj (t) = wj(α(t))
gP (t)

gP (t− τP (t))
ML(t− τP (t))SP (t), for j ∈ 1, ...,m, (3.29)

and the transition functions defined
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wj(α(t)) =


1, if g(ᾱ(t)) = αj , for j ∈ 1, ...,m

0, otherwise.

(3.30)

The model dynamics are initiated with the initial conditions ED(0) = 100, Eγ(0) = EQ(0) =

L(0) = Aj(0) = 0 for j ∈ 1, ...,m, SX(0) = exp {−τ(T (0))δX(T (0))} for X ∈ E,L, P . With

initial history such that for all t ≤ 0, RX(t) = MX(t) = 0 for X ∈ E,L, P,A. The model was

simulated in Julia version 1.8. using the package DifferentialEquations, and code that can be

used to replicate these results can be found in the repository (Bezanson et al., 2017; Rackauckas,

Nie, 2017).

3.3.3 Validations of the population dynamical model

The model is validated by comparing its predictions to the population and trait dynamics of

field populations of Ae. albopictus from across the species range. The methodologies employed

across the different field datasets used for validation are not standardised, having come from

many different studies with different purposes. The studies in the validation dataset include

collections of eggs from ovitraps, counts of larvae through dipping, full counts of both larvae

and pupae, active and passive adult collection with a large selection of bait types including

human landing collection, and wing length measurements in field and semi-field conditions. The

spatial and temporal resolution of these datasets varies from observations from a single location

every two months for a single year, to weekly average observations taken from large surveillance

networks over many years. Between locations where field studies included in the validation set

were conducted there are further differences in factors such as land-use type and the form and

intensity of mosquito control programs that are not accounted for by the model. Given the great

range in study designs considered I do not aim to use this field data to draw conclusions about

how the model anticipates changes in absolute mosquito abundance between locations. Instead,
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these datasets are used to assess how well the model predicts population dynamics and within

dataset relative abundances.

In many locations it is necessary to compare the model’s predictions of the number of eggs

within the population to the number of eggs that have accumulated in ovitraps over a number

of days. Therefore I convert the predictions of the number of eggs present in the population at

time t to the number of eggs that would be collected in an ovitrap given the dynamics of the

population that are predicted, a quantity which is termed oviposition activity. For a study with

a sampling period of τsample the number of individuals that would collect in an ovitrap sampled

at time t is given by

OA(t) =


∑τsample

i=1

∑m
j=1

qjAj(i)
G(i) −

qjAj(i−τE(i))
G(i−τE(i)) if τ(E(i)) < τsample,∑τsample

i=1

∑m
j=1

qjAj(i)
G(i) −

qjAj(i−τsample)
G(i−τsample) , otherwise.

(3.31)

When studies in the validation dataset did not explicitly report the number of mosquitoes

collected in the field the relevant data has been extracted from graphs using WebPlotDigitizer

(Rohatgi, 2022). How well the predicted dynamics correspond to those observed in the field

population is quantified using R2 as a measure of goodness of fit. As both the field studies

and the model only reflect relative abundance I uniformly apply a scaling factor to the model’s

predictions, further, as the precise time of sampling is often ambiguous I also allow a uniform

time-shift on the date of observation by up to half of the interval between samples. The scaling

factor and time-shift pair are selected by trialling a range of possible values and retaining the

pair that produces the maximum R2. I specifically seek the scaling factor, sf ∈ R and time shift

ts ∈ I such that for field observations yi reported at time ti and model estimates ŷi made at

time ti + t̂i with i ∈ 1, ..., n and τsample ≤ ts ≤ τsample the following quantity,
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R2 = 1−
∑n

i=1(yi − sf ŷi(ti + t̂s))
2∑n

i=1(yi − ȳ)2
.

is maximised. For datasets with multiple years of observations a single scaling factor and time

shift is used for the entire dataset, preserving comparisons of relative density and fit between

years. For each validation both the scaling factor and the time shift are reported in addition to

the value of R2.

3.4 Results

3.4.1 Global validation against field data

The model’s predictions are validated against field populations across the species global range,

with the validation dataset encompassing populations from 41 locations, from 14 countries and

territories, across 4 continents. In Figure 3.6 it can be observed that the model achieves excellent

predictions of the population and trait dynamics of Ae. albopictus across the species’ global

range. The model accurately predicts detailed within season dynamics, the start and end of

the mosquito season, and captures the observed between year variability across a broad range

of locations (see adult numbers in Guangzhou, China (2006-2015), R2 = 0.58, and Rimini,

Italy (2008), R2 = 0.94) (Lacour et al., 2015; Carrieri et al., 2012). When data pertaining

to multiple life-stages is available the model successfully predicts the dynamics of each life-

stage (see adult wing length and adult numbers in Lake Charles, USA (1990), R2 = 995 and

Nagasaki, Japan, R2 = 0.87) (Willis, Nasci, 1994; Suzuki et al., 1993). Good quantitative

correspondence with multi-year data sets, predicting inter-annual variation in abundance and

dynamics (see oviposition activity in Trento, Italy (2010-2020), R2 = 0.68, and adult numbers in

Suffolk, USA (2009-2018), R2 = 0.65) (Museo delle Sceinze, 2021; Xu et al., 2017). The model’s

predictions hold over a broad range of environments and reflect the differences in population

dynamics observed between temperate and tropical environments (see Monmouth, New Jersey,
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USA (2009), R2 = 0.51, and St. Paul, La Réunion (2013), R2 = 0.54) (Fonseca et al., 2013;

Haramboure et al., 2020). These validations demonstrate that, through the careful consideration

of the mechanisms by which environmental variation acts on the life-history of a species, broadly

generalisable predictions of population dynamics can be achieved. The full set of validations

is presented in Appendix G, with full detail of model fit and scaling factors for each location

considered and a detailed example of the model’s outputs from a single location is provided in

Appendix F.

3.4.2 Understand the effects of phenotypic structure using non-plastic and unstructured mod-

els

To demonstrate how these predictions compare to those made by models that omit the interac-

tion between vector population trait dynamics and environmental variation I develop a suite of

model variants that make common simplifying assumptions about how vector trait responds to

environment. For example, a version of the model is derived that assumes all adults share the

same invariant wing length. Under this assumption the only variation in adult trait occurs due to

changes in instantaneous environmental conditions, and so the effects of previous environments

on the expression of trait are ignored. This assumption is common in derivatives of the classical

Ross-MacDonald transmission model and consequently is currently widely made when predict-

ing disease risk (Cator et al., 2020). Also considered are a model where adult wing length varies

instantaneously with the environment adults experience (an assumption similar to that used in

the widely used DENSiM model) and a model that considers the effect of past environments

on the population’s average wing length but does not include an explicit trait structure (Focks

et al., 1995). By comparing the predictions made by these model variants to those made by the

trait-structured model the role of phenotypic plasticity in generating predictions of population

dynamics can be discerned.
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(A)

(B) (C)

Figure 3.6: Validations of the model’s scaled predictions against field data for locations around
the world. In each case the x-axis is time, and the y-axis is either the scaled abundance of
individuals in a specific life-stage or an average trait value. Scaling of the model predictions
follows the methodology described in the validation section of the Methods, and further detail
about each prediction can be found in Appendix G. Each blue line represents the model’s
prediction of the dynamics of the population at the corresponding location, the orange lines
represent field observations from that same location. The colour of the outer box indicates
the type of data that is being compared, yellow boxes are for oviposition activity, which is
the number of eggs predicted to present in an ovitrap, green boxes indicate larval numbers, red
boxes indicate adult numbers, and purple for average wing length. The location and year of each
comparison are indicated below each graph. (A) Comparisons for Europe. (B) Comparisons
for North America. (C) Comparisons for Asia.
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3.4.3 Constant wing length models

The first variant considered is a model that assumes that all adults express the same constant

wing-length. Under this assumption adult trait still varies, but only in response to the current

temperature, and does not vary in response to the intensity of larval competition, nor the average

temperature experienced by individuals through development. This assumption is common in

mechanistic models of vector and disease dynamics and is also comparable to the assumptions

made by metric based R0 models that are widely used to predict the incidence of vector-borne

disease (although these metric-based R0 models often additionally assume a constant host-to-

vector ratio) (Liu-Helmersson et al., 2016; Mordecai et al., 2017). This model is derived by setting

m = 1 in the population dynamical model and selecting a wing-length that all individuals within

the single environmental class express.

To make comparisons of between the model’s predictions the constant wing length model is

simulated in Cagnes-sur-Mer, where the temperate environment causes the population to ex-

press a strong diapause response. In this region the trait structured model predicts that the

cold winter limits the number of generations of adults produced per season and this produces

simple trait structures as shown in Figure 3.7A. It can be observed in Figure 3.7B that not

all constant wing lengths models predict that this location is suitable for populations of Ae.

albopictus, and that between the constant wing length models there is generally disagreement

on the timing end of the active season and the abundance of adults. In general the larger the

constant wing-length selected the fewer adults are produced, which occurs due to the omission

of the instance of developmental plasticity that would reduce adult quality in response to high

larval densities. This results in a small number of large individuals being able to maintain high

larval densities unfavourable for development, which in the full model would be mitigated by a

reduction in adult quality. The exception to this trend are the models for constant wing lengths

1.8 and 2.2mm, where the stressful environmental conditions in combination with the increased

mortality associated with low wing lengths cause the populations to die out. However, besides
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these differences in this location the population dynamics predicted by the constant wing-length

models and the plastic model that includes a full trait structure are generally similar.

(A) (B)

Figure 3.7: (A) The trait dynamics of the full model in Cagnes-sur-Mer. (B) A comparison
of the number of adults predicted by the plastic model and the non-plastic model simulated at
various wing-lengths in Cagnes-sur-Mer.

Consider now the dynamics of both models in Guangzhou where the trait structured model

predicts a more complex trait structure (Figure 3.8A). Although aspects of constant wing-

length models can still be observed within the dynamics of the full model (In Figure 3.8B), the

predictions made by both are evidently more distinct than is the case in Cagnes-sur-Mer. The

constant wing length models disagree with each other on the ability of adults to persist through

the winter, with models with low wing lengths predicting strong seasonality in abundance,

whereas models with high wing lengths predict little inter-annual variation in adult numbers.

The dynamics predicted by the plastic model are distinct from any predicted by the constant

wing length models, with a clear peak in adult numbers towards the end of the season and

variability in the ability of adults to survive through the winter.

Finally, consider the dynamics of the non-plastic model Tokyo. The temperature in Tokyo

is generally favourable in the summer months for the development of Ae. albopictus but the

population experiences regular periods without precipitation inducing intense larval competition.

In Figure 3.9B it can be observed that the different constant wing length models predict distinct
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(A) (B)

Figure 3.8: (A) The trait dynamics of the full model in Guangzhou. (B) A comparison of the
number of adults predicted by the plastic model and the non-plastic model simulated at various
wing-lengths in Guangzhou.

population dynamics despite the strong seasonality observed in this location. Between models

the time of peak abundance, and number of peaks observed per season varies.

(A) (B)

Figure 3.9: (A) The trait dynamics of the full model in Tokyo. (B) A comparison of the
number of adults predicted by the plastic model and the non-plastic model simulated at various
wing-lengths in Tokyo.

3.4.4 Models with instantaneously varying wing length

Although it has been demonstrated that the inclusion of mechanisms of trait variation change the

model’s predictions, there are many simpler ways that trait variation could be represented. The
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simplest possible way that trait variation could be represented is by assuming that wing length

varies instantaneously with the developmental experience of adults as they are recruited. Under

this assumption although adult wing length does change in response to developmental conditions,

the population average trait value does not in any way reflect the population’s environmental

history or trait structure. To derive a model of this type the constant wing length model is

adapted such that the wing length of the single environmental class varies according to the

function that relates average larval temperature and food available per larvae per day to predict

the wing length of emerging adults (Figure 3.5A).

When this model is simulated it can be observed that the similarity between the instantaneous

model and the plastic model varies between locations (see Figure 3.10). In Cagnes-sur-Mer the

instantaneous model predicts similar adult dynamics and abundance to that of the plastic model

despite predicting different trait dynamics (Figures 3.10A and 3.10B). However, towards the

end of the season the sharp decrease in adult trait predicted by the instantaneous model, which

is induced by a brief cold spell, causes the end of the active season sooner than is predicted by

the full model. In Guangzhou the highly variable wing length predicted by the instantaneous

model causes sudden drops in adult abundance throughout the year that are not predicted by

the plastic model (Figures 3.10C and 3.10D). To see that this behaviour is undesirable consider

a population currently held under favourable conditions such that all adults are large. If the

environment was to suddenly become unfavourable, perhaps because of a lack of precipitation

inducing high larval densities, under the instantaneously varying formulation all of the large

adults would shrink, as if they too had developed under these conditions. This would then

cause a corresponding increase in adult mortality and individuals would begin to die off due to

a spike in larval density they never experienced during development. By contrast, in the plastic

model this period of high larval competition does not in any way alter the longevity of adults

currently in the population and so the population persists. This could be somewhat mitigated

by assuming adults express a trait determined by the average developmental conditions over

a suitable interval of time, which would smooth the sharp variation in trait that is currently
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(A) (B)

(C) (D)

(E) (F)

Figure 3.10: A comparison of the predictions made by the full model and the model with
instantaneously varying wing length model for (A) Wing length in Cagnes-sur-Mer. (B) Num-
ber of adults in Cagnes-sur-Mer. (C) Wing length in Guangzhou. (D) Number of adults in
Guangzhou. (E) Wing length in Tokyo. (F) Number of adults Tokyo.
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predicted but would not address the underlying issue which is that the effect of environmental

history on population trait structure is not being adequately represented.

3.4.5 Models with variable average wing length but without population structure

Finally, consider a model that includes all of the same mechanisms of trait variation that are

considered in the plastic model but that forgoes a trait structure in favour of a population average

that varies proportionally with the wing length of adults entering and leaving the population.

The average wing length, denoted wavg(t), varies as individuals mature into the adult stage,

expressing a wing-length representing their larval experience, and as adults expressing the old

population average die. To track this I define a differential equation that describes how the

populations total wing-length varies, defined

dwT
dt

= RA(t)wl(Tavg(t), ᾱ(t))−A(t)δA(T (t),
wT (t)

A(t)
).

This can then be converted to a population average wing length, wavg(t) = wT (t)
A(t) . This popu-

lation average wing-length is used along with temperature in the reaction norms to allow adult

traits to vary according to the current average. As for the previous variants this model is sim-

ulated in Cagnes-sur-Mer, Guangzhou, and Tokyo. This model variant broadly predicts the

same population dynamics and average trait value as the model with full trait structure (Fig-

ure 3.11). However, although at the start of each year the population’s average wing length and

abundance tend to be very similar, as the year continues both average wing length and adult

numbers begin to deviate from each other. In each case by the end of the active season the

average wing length of the full model is higher than is predicted by the constant wing length

model, and the adult density lower. By examining the trait structures in Figure 3.7A, 3.8A,

and 3.9A in each location large individuals produced at the start of the active season are still

present in the population by the end of the active season. Although the plastic model can track

these individuals the unstructured model can only track the population’s average trait value
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and so “forgets” these individuals and this causes the small discrepancy in population dynamics

between the two models.

(A) (B)

(C) (D)

(E) (F)

Figure 3.11: A comparison of the predictions made by the plastic model and the unstructured
model for (A) Wing length in Cagnes-sur-Mer. (B) Adults in Cagnes-sur-Mer. (C) Wing
length in Guangzhou. (D) Adults in Guangzhou. (E) Wing length in Tokyo. (F) Adults in
Tokyo
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The similarity between the predictions made by model variants and those made by the model

with full trait structure depends on the environmental conditions the population being consid-

ered is subject to. In environments where populations exhibit simple trait structures, either

due to short active seasons or little environmental variation (for example, Cagnes-sur-Mer or

La Rèunion respectively) constant wing length models can reproduce the dynamics of the trait

structured model provided the constant wing length has been selected to approximate the pop-

ulation’s average wing length. However, as population average wing length varies between envi-

ronments this shows that models omitting mechanisms of variation entirely are not generalisable.

Similar differences between population dynamics across environments are observed in the two

more sophisticated model variants considered to lesser degrees, with the most epidemiollogically

significant departure between the full model and these variants being differences in the ability

of adults to persist overwinter.

3.4.6 Climatic suitability for Ae. albopictus

I use the model to predict the population dynamics of Ae. albopictus for regions where model

validations were performed, outputting parameters of interest. These predictions should be

interpreted with care as there are factors such as habitat availability, land-use type, or competitor

species that are not accounted for. It is assumed that there is always a suitable water body and

sufficient adult resource, factors that are unlikely to be true in arid environments even if there is

sufficient rainfall to allow a population to persist. Humidity is important in determining adult

mortality rates, and regions of low humidity are unlikely to be able to support populations of

the species regardless of other environmental dynamics. For this reason a requirement is added

that within the active season, as predicted by the model, the average relative humidity should

be above 55%. This means that the maps that follow are more akin to environmental suitability

indices than a true distribution model.

In Figure 3.12 the average abundance of adults as predicted by this model is displayed over the
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regions of Europe, Asia, and North America for which there were validation data sets between

the years 2015 − 2020. The average adult density follows a clear latitudinal gradient, with

populations closer to the equator being more abundant. However, as the species undergoes a

strong diapause response in temperate regions this increased abundance does not necessarily

translate to higher transmission risk, as during the winter months populations temperatures

are not favourable for dengue transmission even in parts of the range where there is still adult

activity. To account for this I also consider the average abundance of adult mosquitoes during

the active season. The active season in this case is defined to be the time between the emergence

of the first adult of the year and the death of the final adult, and so this metric describes the

relative abundance of adult mosquitoes during period there is an active vector population. In

Figure 3.12 it can be observed that during the period when adult mosquitoes are active, the

average abundance of adult mosquitoes is comparable between climatic zones. Given that the

abundance of adults is a critical determining factor in the ability of populations to vector disease

this suggests that differences in the abundance of mosquitoes alone are not sufficient to explain

observed differences in outbreak size between regions. For example, the average abundance

of adults predicted in Guangzhou, China, the location of the largest Ae. albopictus vectored

outbreak of dengue to date, is similar to that predicted in Cagnes-sur-Mer, France, a location

that infrequently experiences isolated instances of autochthonous transmission.

Environmental suitability for Ae. albopictus is predicted throughout the majority of coastal

southern Europe, and the model’s predictions align well with the current known distribution of

the species in this region (ECDC, 2022b). Areas of unsuitability in this region often coincide

with mountain ranges, for example the large patch of unsuitability predicted in Northern Italy

and throughout Switzerland and Austria coincides with the Alps. The Pyrenees, Massif Central,

Apennines, Dinaric Alps, and the Carpathian mountains are similarly outlined. The exception

to this is central Spain, which is predicted to be mostly unsuitable due to low humidity and a

lack of precipitation. Britain and the Brittany and Normandy regions of France are predicted to

have limited suitability for the species which matches the current northern limit of the species
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Figure 3.12: The model’s prediction of the average adult density over the year in (A) North
America, (B) Europe, and (C) Asia.
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Figure 3.13: The model’s prediction of the average adult density over the active season in (A)
North America, (B) Europe, and (C) Asia.
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distribution.

Oliveira et al. (2021) analysed previous distribution model’s predictions of the current climatic

suitability of Europe for Ae. albopictus and produced a consensus map, identifying regions of

agreement and disagreement between these models. The predictions made by the model derived

here generally agree with the current consensus in eastern and central Europe, predicting high

suitability in Italy, the coastal Balkans and Greece and high unsuitability in the Alps (Figure

3.14A). In western Europe there is more uncertainty in the consensus model and the model

derived here disagrees with some aspects of previous predictions. In south-eastern Spain, a

region with established populations of Ae. albopictus, this model predicts high suitability for

populations of Ae. albopictus but the consensus model predicts that this region is generally

unsuitable (ECDC, 2022b). Central Spain is a region of general disagreement between previous

models with some models predicting broad suitability and others predicting unsuitability. The

predictions made here agree with the models that predict limited suitability in this region.

Much of the south of Britain is predicted to be suitable by consensus but is predicted here

to be relatively unfavourable for the establishment of populations, in agreement with previous

mechanistic models for the region (Metelmann et al., 2019).

The model’s predictions over the range considered in Asia also appear to match the species

known distribution throughout the region (Echeverry-Cárdenas et al., 2021; Metelmann et al.,

2021). These predictions also align with the predictions made by species distribution models that

considered this region, with the greatest deviation being the limited suitability that is predicted

here in northern Japan but which is not anticipated by previous models (Zheng et al., 2019;

Kraemer et al., 2015; Benedict et al., 2007; Ding et al., 2017). In Japan, suitability is predicted

throughout the islands of Honshu, Shikoku, and Kyushu, with limited suitability predicted in

southern Hokkaido, matching occurrence records (Kobayashi et al., 2002). In China, the model’s

predictions align well with the species current extent, predicting the distribution limits in the

north and west (Zheng et al., 2019).
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Throughout the majority of the eastern USA I predict broad suitability for Ae. albopictus with

more limited suitability the west coast limited to coastal areas (Figure 3.14C). These predic-

tions align with predictions made by distribution models over this region, which predict similar

suitability (Kramer, Ciota, 2015; Kamal et al., 2018; Johnson et al., 2017; Richards et al., 2019;

Ding et al., 2017; Ogden et al., 2014). In the western USA the general lack of suitability can

be attributed to a combination of desert and mountainous regions. The limits of the species

range as predicted by the model reflect the species current distribution in this region (Kamal

et al., 2018). Populations of Ae. albopictus have been observed along the northern limit that is

predicted by the model with evidence of overwintering populations in Ontario and Wisconsin

(Giordano et al., 2020). However, this is a region where the presence of Ae. aegpyti should

be considered when interpreting this model’s predictions. For example, in Figure 3.12 broad

suitability is predicted for Ae. albopictus throughout the state of Florida. However, in southern

parts of the state Ae. albopictus is largely absent, having been displaced by Ae. aegypti which

is more suited to the regional climatic conditions (Lounibos, Kramer, 2016). This is predicted

by distribution models that consider the species joint distribution, but not by my model as the

effects of interspecific competition are not accounted for in this model’s predictions of suitability

(Khan et al., 2020)

3.5 Discussion

To predict how vector populations and will respond to environmental change it is critical to

account for the mechanisms of variation through which that change occurs, building population

responses out of individual level variation rather than prescribing them through average traits.

The efficacy of such an approach is demonstrated here as without any back-fitting, and despite

making broad assumptions about mosquito ecology, the model accurately predicts the popula-

tion and trait dynamics of field populations of Ae. albopictus across the species global range

from meteorological data. This demonstrates that the diverse population dynamical behaviours
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exhibited by the species over its range can be understood through the effect of environmental

variation on life-history traits. However, vector abundance alone is not sufficient to understand

global trends in dengue incidence, as high abundances are observed in regions where dengue is

endemic and those where dengue is currently absent.

Despite this, the thorough understanding of vector population dynamics developed here will

be invaluable for guiding control activities and interventions. Novel and existing control tech-

niques (transgenic mosquitoes, gene-drives and sterile insect technique) require accurate models

of mosquito population dynamics for risk assessment (Oliva et al., 2021; Bier, 2022). Models of

vector population dynamics are also incorporated into models that guide the roll-out of vaccina-

tion campaigns (Ferguson et al., 2016). In each case, predictions of vector population dynamics

that will remain robust across broad spatial and temporal gradients are integral to designing

effective control efforts. Beyond predictions of vector abundance the ability of this methodology

to link environmental variation to trait may allow intervention campaigns to specifically target

large individuals (Lloyd-Smith et al., 2005). However, the efficacy of such an intervention as

a control method is not currently clear as changing the population’s trait structure may have

unanticipated consequences on transmission dynamics (Cameron et al., 2013).

The ability of the model to predict population dynamics from meteorological variables does

not in any way preclude the importance of local factors in the determining patterns of vector

abundance and consequently the risk of vector-borne disease. The datasets used to validate the

model are generally taken from established vector populations in regions where the species is a

notable nuisance, introducing a site-selection bias for regions where local conditions are suitable

for mosquito development. Land-use, socio-economic factors, and micro-climatic variables are

demonstrably important in determining vector abundance on small geographical scales and can

further be shown to be associated with disease incidence (Gao et al., 2021; Wimberly et al., 2020;

Little et al., 2017; LaDeau et al., 2013). Past attempts to identify container-level variables that

predict the small-scale distribution of Ae. albopictus could no consistent associations between

years (Shragai, Harrington, 2019). To better understand the local factors that drive differences

97



in abundance over small scales, further exploration of the mechanisms by which micro-climate

interacts with the life-histories of mosquito species will be required.

The work undertaken here relies on the extensive and thorough effort that has been expended

in understanding the life-history of Ae. albopictus. For many vectors of neglected or emerging

diseases detailed information about the interaction between trait and environment does not cur-

rently exist and would not be feasible to collect in exhaustive detail. Although concerted efforts

have begun to collate such information and identify gaps in understanding, further work should

also be undertaken to understand the conditions under which trait variation alters population

responses to help effectively target these efforts (Amos et al., 2022). Developing this under-

standing is critical beyond vector-borne disease as mechanisms of individual variation are also

critical in determining the outcome of biological invasions, interspecific competition, and species

responses to climate change (Boutin, Lane, 2014; Hahn et al., 2012; Buskirk, McCollum, 1999).

To produce predictions that are robust to challenges of a changing climate, a fundamental shift

is required in the way that trait is accounted for, moving away from mean-fields and towards a

more complete representation of the mechanisms by which individuals vary.

*
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Chapter 4

Predicting the global transmission dynamics of

dengue vectored by Ae. albopictus

4.1 Abstract

The current alarming increase in the prevalence of dengue is a threat to global public health,

characterised by an intensification of disease burden in endemic regions and the expansion of

dengue to areas it has long been absent. Despite predictions that temperate regions are suitable

for sustained dengue transmission, outbreaks in these areas have so far been small and sporadic.

It has been proposed that this mismatch between prediction and observation may be due to

environmentally induced variation in vector trait changes the ability of vector populations to

transmit disease, but this mechanism is not fully accounted for in current predictive approaches.

Here, I derive a Susceptible-Infected-Resistant model for the spread of dengue by Aedes al-

bopictus, an invasive mosquito species and vector of dengue, that accounts for the relationship

between environment, vector trait, and disease transmission. This model is validated against

historic dengue outbreaks and shows how a vector population’s trait structure can change the

ability of that population to maintain pathogen transmission cycles. Less risk is predicted in
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temperate regions than in previous models, coinciding with the currently observed incidence of

dengue throughout these regions.

4.2 Introduction

In 2014 the largest dengue outbreak vectored principally by Ae. albopictus occurred in Guangzhou,

China, lasting for 7 months, hospitalising 14, 055 people and causing a total of 37, 376 suspected

cases (Luo et al., 2017). Before 2014 there had been regular dengue outbreaks throughout the

Guangdong region since the establishment of Ae. albopictus in 1978, but the 2014 outbreak

caused almost 10 times more cases than the previous 13 years combined and was therefore of

considerable concern to public health authorities (Zhang et al., 2019). Before 2014, outwith the

Guangdong region, the role of Ae. albopictus as a vector of dengue had been fairly minor, and

the species was considered a secondary vector capable of maintaining low levels of infection in

rural areas that could be imported into urban regions infested with Ae. aegpyti, the primary

vector of dengue (Gratz, 2004). Since 2014, outbreaks of dengue vectored by Ae. albopictus have

continued to occur around the globe, though as of yet none have matched the 2014 outbreak in

Guangzhou in magnitude (Brady, Hay, 2020). There are now yearly outbreaks of dengue in Re-

union, where dengue now appears to be endemic, low level autochthonous transmission occurs

regularly throughout Europe during the summer, and isolated moderately sized outbreaks in

Hawai’i and Japan (European Centre for Disease Prevention and Control, 2019). Understand-

ing why Ae. albopictus is capable of maintaining dengue transmission cycles in some areas and

not others is critical first step in predicting when this latent vector population will become a

wide-spread threat to public health.

Vectors, hosts, and diseases frequently have complex relationships with their environments which

can directly influence the transmission cycle. Individual environmental variables act on compo-

nents of the disease transmission cycle in generally straightforward ways but determining how

these components cumulatively determine disease risk over broad spatial and temporal scales is
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substantially more difficult. For ectothermic vectors, traits critical in determining vector com-

petence are often highly sensitive to temperature, directly linking environmental variation to

changes in disease risk (Deutsch et al., 2008; Gilbert et al., 2014; Samuel et al., 2016). For ex-

ample, adult mosquitoes experiencing stressful temperatures often have reduced adult longevity

when compared to adults subject to more favourable environmental conditions (Brady et al.,

2013). Adult longevity determines how likely it is that an individual mosquito will be able to

complete the pathogen transmission cycle, and as such is a trait of epidemiological interest (Bara

et al., 2015). However, adult longevity is also sensitive to the temperature and intensity of com-

petition experienced by larval mosquitoes throughout development, linking trait expression to

population dynamical processes and historical abiotic environmental variables (Ezeakacha, Yee,

2019). Population dynamical processes are in turn linked to environmental variables through

life-history traits such as development rates, through stage survival, and fecundity (Delatte

et al., 2009). This feedback between trait and population dynamics induced by environmental

variation means that to anticipate how disease incidence varies over space and through time it is

necessary to first determine how a complex series of past and present environmental conditions,

population states, and species-specific processes interact to determine the traits that individuals

within a population express (Kramer, Ciota, 2015).

The model framework developed in Chapter 3 proved capable of predicting the population and

trait dynamics of Ae. albopictus over its global range and therefore is an ideal basis for ex-

ploring how environmentally induced trait variation explains current differences in transmission

risk. For this purpose, the population dynamical model is incorporated into an SIR model for

the transmission of dengue. This is then used to predict how changes in vector population’s

trait dynamics alter the competence of these populations to vector disease through variation in

transmission critical traits. Previous mechanistic models of this system omit this mechanism of

individual variation and predict broad suitability for the transmission of dengue by Ae. albopic-

tus (Mordecai et al., 2017; Ryan et al., 2018; Metelmann et al., 2021; Fan, Liu, 2019). By more

completely representing vector trait variation I aim to produce predictions of dengue outbreak
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size and location that better align with currently observed dengue incidence around the globe.

4.3 Methods

4.3.1 SIR Model

The model for the population and trait dynamics of Ae. albopictus that was derived and validated

in Chapter 3 is incorporated into a susceptible-infected-resistant (SIR) model for dengue vec-

tored by Ae. albopictus (Figure 4.1). This model considers the introduction of a single serotype

of dengue into a completely susceptible human population. This simplified representation of the

urban dengue transmission cycle is most applicable to non-endemic regions where the likelihood

of multiple serotypes circulating simultaneously is reduced and therefore the human population

is less likely to develop serious complications (Guzman et al., 2013). The human population

consists of individuals susceptible to infection HS , individuals that are infected HI , and indi-

viduals resistant to infection due to having recovered HR. It is assumed that the size of the

human population is constant with the exception of the entry of infected individuals into the

population. Mosquitoes are assumed to bite at a temperature-dependent rate of b(t) bites per

mosquito per day that is inversely proportional to the length of the gonotrophic cycle such that

b(t) = 1/G(T (t)). The proportion of uninfected mosquitoes that become infected after biting an

infected human is denoted hv(t), a function that takes the form used in Liu-Helmersson et al.

(2016). After the extrinsic incubation period, τEIP (t), the proportion of bites that successfully

transmit an infection from an infected mosquito to an uninfected human is denoted vh(t) (Brady

et al., 2014; Liu-Helmersson et al., 2016). After the intrinsic incubation period, τIIP , the infected

human is capable of transmitting the infection to new mosquitoes and recovers from the infec-

tion after the recovery period, τREC . In this model large individuals are assumed have no direct

advantage in the act of transmission over small individuals and do not bite more aggressively

nor transmit disease more competently. The only advantage large individuals have over small
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is in their extended longevity which allows a greater proportion of individuals contracting an

infection survive to pass that infection on especially under stressful environmental conditions.

Precipitation 

and 


Evaporation
Text
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Figure 4.1: Schematic of the model used to represent the transmission of dengue by Ae.
albopictus. The model retains many of the features of the model defined in Chapter 3. Upon
infection by biting an infected human, HI , uninfected mosquitoes in environmental class j, Aj ,
transition to the corresponding infected mosquito class, Ij . The infection cycle begins when a
susceptible human, HS , is bitten by an infected mosquito after which that individual has chance
to become infected and move into the infected human class HI . After the recovery period
infected humans move into the resistant class, HR, in which they cannot be infected again.

As the population model predicts the number of mosquitoes arising from a single habitat and I

now wish to predict the disease transmission dynamics for a human population it is necessary to

consider how to reconcile both populations to the same spatial scale. Mark and recapture studies

have demonstrated that adult females can disperse up to a mile from their release site (Vavassori

et al., 2019). Further, analysis of dengue epidemics has shown that disease dynamics can best

be understood in 2kmx2km grids (Ren et al., 2018). For these reasons the model is simulated
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at a spatial scale of 4km2, using the number of humans per 4km2 for the human population

in combination with an estimate of the number of larval habitats per 4km2 for the mosquito

population. To estimate the number of productive larval habitats per 4km2, κ, it is assumed

that the number of larval habitats is fixed between locations and within seasons and then select

a number that is comparable to those observed in the field (Evans et al., 2019; Little et al.,

2017; Carrieri et al., 2012; McClure et al., 2018). Ae. albopictus is an opportunistic feeder and

in the absence of humans will bite other species, these bites cannot propagate dengue (outside

of the geographically limited sylvatic transmission cycle (Gubler, 2002)) but do allow for egg

production and so can maintain the mosquito population. To represent this a population of non-

human food sources is included in the model, HB, which is estimated from field observations of

rates of anthropophily and mammal densities (Santini et al., 2022).

To define the SIR model the following additions and modifications are made to the population

model presented in Chapter 3. The structured human population is represented with addition

of the equations

dHS(t)

dt
= −RH(t) (4.1)

dHI(t)

dt
= RH(t− τIIP )−RH(t− τIIP − τREC) + C(t)− C(t− τREC) (4.2)

dHR(t)

dt
= RH(t− τIIP − τREC) + C(t− τREC) (4.3)

where

RH(t) = vh(t)b(t)κ
m∑
j=1

Ij
HS(t)

HT (t)
(4.4)

and HT (t) = HS(t) +HI(t) +HR(t) +HB and C(t) is an impulse defined as in the population
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model that initiates the transmission cycle through the introduction of an infectious individual

at time t. Note that the inclusion of non-human food sources introduces a dilution effect, as

when HB is large in relation to HS(t) the value of RH(t) will be low. This means that when

the human population size is small, and therefore most bloodmeals are assumed to come from

hosts that cannot become infected with dengue, the model predicts that only a low number of

total bites by infected mosquitoes result in susceptible humans becoming infected.

To represent infections in the mosquito population an infectious adult classes are added, one

for each environmental class, denoted Ij(t). The number of mosquitoes in environmental class

j that become infected at time t is denoted RIj (t), and defined

RIj (t) = hv(t)b(t)Aj(t)
HI(t)

HT (t)
,

and the number of mosquitoes in environmental class j that become infectious at time t is

denoted MAj (t) and is defined

MAj (t) = RIj (t− τEIP (t))SEIPj (t)

where SEIPj (t) is the proportion of individuals in environmental class j that survive the infectious

period.

The dynamics of infected mosquitoes can therefore be defined

dIj(t)

dt
= MAj (t)− δIj (t)Ij(t), for j ∈ 1, ...,m (4.5)

dτEIP (t)

dt
= 1− gEIP (t)

gEIP (t− τEIP (t))
(4.6)

dSEIPj (t)

dt
= SEIPj (t)

(
gEIP (t)δAj (t− τEIP (t))

τEIP (t)
− δAj (t)

)
, for j ∈ 1, ...,m (4.7)

(4.8)

105



and the equation for the rate of change of adults in environmental class j is modified to include

a term representing mosquitoes becoming exposed to infected humans and thus leaving the

uninfected adult classes such that

dAj(t)

dt
= RAj (t)− δAj (t)Aj(t)−MAj (t), for j ∈ 1, ...,m. (4.9)

The full SIR model can therefore be expressed by

dEγ(t)

dt
= REγ (t)−MEγ (t)− δEγ (t)Eγ(t), (4.10)

dED(t)

dt
= RED(t)−MED(t)− δED(t)ED(t), (4.11)

dEQ(t)

dt
= REQ(t)−MEQ(t)− δEQ(t)EQ(t), (4.12)

dL(t)

dt
= RL(t)−ML(t)− δL(t)L(t), (4.13)

dAj(t)

dt
= RAj (t)− δAj (t)Aj(t)−MAj (t), for j ∈ 1, ...,m (4.14)

dIj(t)

dt
= MAj (t)− δIj (t)Ij(t), for j ∈ 1, ...,m. (4.15)

(4.16)

The variable delay terms are defined such that

106



dτEγ (t)

dt
= 1−

gEγ (t)

gEγ (t− τEγ (t))
, (4.17)

dτL(t)

dt
= 1− gL(t)

gL(t− τL(t))
, (4.18)

dτP (t)

dt
= 1− gP (t)

gP (t− τP (t))
, (4.19)

dτEIP (t)

dt
= 1− gEIP (t)

gEIP (t− τEIP (t))
. (4.20)

(4.21)

The through stage survival terms are defined such that

dSEγ (t)

dt
= SEγ (t)

(
gEγ (t)δEγ (t− τEγ (t))

gEγ (t− τEγ (t))
− δEγ (t)

)
, (4.22)

dSL(t)

dt
= SL(t)

(
gL(t)δL(t− τL(t))

gL(t− τL(t))
− δL(t)

)
, (4.23)

dSP (t)

dt
= SP (t)

(
gP (t)δP (t− τP (t))

gP (t− τP (t))
− δP (t)

)
, (4.24)

dSEIPj (t)

dt
= SEIPj (t)

(
gEIP (t)δAj (t− τEIP (t))

τEIP (t)
− δAj (t)

)
, for j ∈ 1, ...,m. (4.25)

The same initial conditions as in the non-SIR model are used, with the additional history

HI(0) = HR(0) = 0 with HS(0) being the human population density.

4.3.2 RT derivation

To quantify how disease risk changes between regions I derive an expression for the reproduction

number RT for the SIR model. The reproduction number is distinct from the basic reproduction

number as it reflects how transmission risk varies as the outbreak progresses, accounting for

how changes in the infection structure of the population alter the potential for the outbreak
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to continue as time passes (Wallinga, Teunis, 2004). Assume that a single infected human is

introduced precisely at the end of the intrinsic incubation period, τIIP , and so can be bitten

for the full duration of the infectious period. Let b(t) be the biting rate, HS the number of

the susceptible humans, and Aj(t) the number of uninfected adult mosquitoes in environmental

class j present at time t. The number of bites per day which the infected individual receives

can be expressed

n∑
j=1

b(t)Aj(t)

HT
.

The proportion of mosquitoes that become infected after biting an infectious individual is de-

noted by hv(t). Mosquitoes only go on to transmit the infection if they survive through the

extrinsic incubation period, τEIP (t), the proportion of such surviving mosquitoes is denoted

SEIPj (t). Given that an infected human remains viraemic for around 4 days, τREC (Gubler

et al., 1981) the number of mosquitoes that bite the introduced infectious human, develop an

infection and, survive to transmit the disease per day can be expressed by

n∑
j=1

∫ t+τREC

t

b(s)Aj(s)hv(s)SEIPj (s+ τEIP (s))

HT
ds.

The proportion of bites from infected mosquitoes that transmit the infection to a susceptible

human is denoted vh(t) and the mortality rate of adult mosquitoes in environmental class j is

denoted δAj (t). The number of new infections that a mosquito infected at time t in environmental

class j causes over it’s lifespan can be approximated by

∫ t+1/δAj (t+τEIP (t))+τEIP (t)

t+τEIP (t)

b(s)vh(s)HS

HT
ds.

Note that this is only an approximation of this quantity as 1/δAj (t) is fixed at time t and does

not account for any temperature induced changes in adult mortality that occur between times
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t + τEIP (t) and t + 1/δAj (t + τEIP (t)) + τEIP (t) nor how τEIP (t) varies between time t and

t + τEIP (t). The number of new infections caused by the introduction of a single infectious

human at time t can therefore be approximated by

RT (t) =
n∑
j=1

(∫ t+τREF

t

hv(s)b(s)Aj(s)SEIPj (s+ τEIP (s))

HT

(
∫ s+ 1

δAj
(s+τEIP (s))

+τEIP (s)

s+τEIP (s)

b(u)vh(u)HS

HT
du

)
ds

)
.

(4.26)

When interpreting the RT of dengue in this model the length of the transmission cycles involved

must be considered. When an infected individual is introduced for the infection cycle to continue

mosquitoes must be infected and these mosquitoes may live for up 3 months. This means that

although the value of RT might be high, the subsequent infections may occur over an extended

period of time and so does not necessarily imply the occurrence of a large outbreak. This

is particularly notable in temperate regions where large long-lived individuals are regularly

produced at the start of the active season. For this reason, it is common when comparing

outbreak risk between regions to use the length of time for which RT > 1 rather than the

maximal value, an approach we follow here.

4.3.3 Model validation against dengue outbreaks

For validation the SIR model’s predictions are compared to historical dengue outbreaks where

the primary vector responsible was Ae. albopictus. In each location the number of reported in-

stances of autochthonous dengue transmission are compared to the output of the model over the

same area. The outbreaks considered are the 2013 − 2014 outbreaks of dengue in Guangzhou,

China, the 2014 outbreak in Tokyo, Japan, the 2017 − 2021 outbreak on La Réunion, France,

the 2015 − 2016 outbreak on Hawai’i, USA, and various instances of autochthonous transmis-

sion throughout Europe (Zhang et al., 2019; Yuan et al., 2019; Vincent et al., 2019; European
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Centre for Disease Prevention and Control, 2019; ECDC, 2022a). These outbreaks encompass

a broad range of disease dynamics occurring over a range of spatial scales, from a few isolated

instances of autochthonous transmission in temperate regions of Europe over small areas to a

complex multi-year epidemic over a large portion of the island Réunion. Initiating the model’s

infection dynamics requires the definition of an initial infection scenario which describes how

many infectious individuals are introduced into the human population and when these intro-

ductions occur. In each case reports from each outbreak are used to select a likely introduction

scenario and area over which the outbreak thought to have taken place, although there is of-

ten great uncertainty in both (for each outbreak this is further outlined in Appendix H). This

uncertainty means that, although unlike the outputs from the population dynamical model the

predictions are not rescaled, these validations are primarily intended to demonstrate that the

model can predict both sensible disease dynamics and outbreak magnitude under plausible out-

break scenarios. The code used produce the results that follow can be found in a repository at

https://zenodo.org/record/7796206#.ZCslmnbMKUk.

The model predicts the magnitude, duration, and dynamics of dengue outbreaks across broad

environmental gradients under plausible introduction scenarios (Figure 4.2). In the Alpes-

Maritimes department of France, the model consistently predicts small numbers of autochthonous

transmissions reflecting the limited outbreaks that have been observed in this region. In Tokyo

and Guangzhou model correctly predicts the magnitudes of the medium and large outbreaks

that occurred in these regions. For the complex multi-year outbreak in La Rèunion the model

proves able to accurately predict inter-annual differences in the number of dengue cases across

multiple years as well as the time of peak transmission each year. During each of these outbreaks

there were active vector control campaigns, and this may explain the general reduced resem-

blance of these predictions to field data towards the latter half of each outbreak. For example,

in Guangzhou in 2014 a considerable intensification of vector control activities occurred halfway

through the outbreak to which previous analyses have attributed a substantial reduction in final

outbreak size and duration (Lin et al., 2016b).
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Guangzhou, China (2013-2014)La Réunion, France (2017-2020)

Figure 4.2: Comparisons of the number of instances of autochthonous transmission detected
during historical dengue outbreaks and the model’s predictions. For each outbreak the x-axis is
time and the y-axis is the number of instances of autochthonous transmission, with the blue lines
representing model predictions and the orange lines field observations from that same location.
Note that due to differences in the way dengue cases were reported for different outbreaks the
y-axes may change. The scenarios under which the model was simulated for each scenario are
discussed in detail in Appendix H.

111



4.4 Results

4.4.1 Non-plastic and unstructured models

Exhaustively representing mechanisms of individual variation as in the model developed here is

more complex than standard approaches that make simplifying assumptions about the interac-

tion between trait and environment. To justify this additional complexity I must demonstrate

that by fully representing mechanisms of phenotypic plasticity different predictions of disease

dynamics are produced than would be made by simpler approaches. For this purpose, I consider

the model variants derived in Chapter 3 that make common simplifying assumptions about how

trait interacts with environment. The predictions made by these variant models are compared

to those made by the trait structured model over three of the outbreak locations considered in

Figure 4.2 that encompass a range of outbreak sizes and climates. These are a small outbreak in

Cagnes-sur-Mer, France of around 5 of dengue cases, an outbreak in Tokyo, Japan of around 100

cases, and a large outbreak in Guangzhou, China of 36, 342 cases. In each of these locations the

model was able to predict both the disease and population dynamics observed in the field under

a plausible introduction scenario and so any substantial deviation from the model’s predictions

will indicate a worsening of model performance.

To compare the plastic SIR model and the constant wing length SIR models RT is computed

from equation 4.26 with m = 1 and used to compare the number of dengue cases produced per

day under the same introduction scenarios used in Figure 4.2. In Figure 4.3 it can be observed

that that although the behaviour observed in the expression for the reproduction number, RT ,

is comparable to that in adult numbers, outbreak size can be highly variable by wing-length.

In Cagnes-sur-Mer, France, the constant wing length models all produce similar predictions of

RT and disease dynamics. However, in Guangzhou outbreak size is highly sensitive to wing-

length with the peak of the largest outbreak 20 times higher than that of the smallest outbreak

(Figure 4.3D). When comparing the plastic model’s predictions of adult dynamics to those
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made by the constant wing-length models it could be observed that the population’s average

trait value was often a good indicator of which constant wing length model was most similar

to the plastic model (for example see Figure 3.7A. Here, this is no longer the case and that

the constant wing-length model that produces the most similar dengue dynamics often has

a wing length higher than the population average. For example, in Figures 4.3E and 4.3F

the closest constant wing length model is the model with wing length 3.8mm, considerably

higher than the population average wing length during this period (see Figure 3.9A). This

disparity demonstrates that the mechanisms of variation included in the plastic model produce

quantitatively different predictions of outbreaks size than would be predicted by average trait

alone.

These examples demonstrate that the effect of phenotypic plasticity on disease dynamics varies

from location to location and through time. Although the dynamics of the model with trait

structure can sometimes be well represented by a non-plastic model, anticipating when this

is the case requires an understanding of the population’s trait dynamics. Given that even

relatively small differences in population dynamics can then result in substantive differences in

disease dynamics this justifies representing mechanisms of individual variation in predictions of

disease risk.

The small differences between the population and trait dynamics of the plastic model and the

unstructured model does not seem to justify the inclusion of a trait structure in the model. How-

ever, I now consider the extension of the unstructured model with variable average wing-length

to disease dynamics. I then simulate this model for the 2013 − 2014 outbreak in Guangzhou,

under two different introduction scenarios. The first is under the same introduction scenario

as is used in Figure 4.2 which was selected to match the introductions observed in the out-

break. Under these conditions the unstructured model predicts more dengue transmission than

the plastic model (Figure 4.4A). In the second introduction scenario a small number of cases

are introduced at the start of 2013 and then do not introduce any further cases. Under these

conditions the plastic model predicts an outbreak in 2014 larger than was observed in 2013 and
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(C) (D)

(E) (F)

Figure 4.3: A comparison of the predictions made by the full model and the constant wing
length model for (A) RT in Cagnes-sur-Mer. (B) Number of dengue cases in Cagnes-sur-Mer.
(C) RT in Guangzhou. (D) Number of dengue cases in Guangzhou. (E) RT in Tokyo. (F)
Number of dengue cases in Tokyo.
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the unstructured model predicts very little transmission in 2014, despite predicting more dengue

cases in 2013 (Figure 4.4B). If the simulation is continued the plastic model continues to predict

larger and larger outbreaks, whereas the unstructured model does not predict any transmission

beyond 2014. Despite their similar population and trait dynamics these two models produce

different predictions of disease dynamics that have different implications for vector control. The

plastic model with full trait structure predicts that dengue is now endemic to Guangzhou, but

the unstructured model suggests that Guangzhou is still a dengue sink. As the only difference

between the plastic model and the unstructured model is the presence of a trait structure this

demonstrates that the inclusion of a full trait structure in the model produces quantitatively

different predictions of disease dynamics.

(A) (B)

Figure 4.4: A comparison of the number of dengue cases predicted in the Guangzhou
2013 − 2014 outbreak between the plastic model and the unstructured model under different
introduction scenarios. (A) Under an introduction scenario informed by that observed during
the outbreak. (B) Under an introduction scenario where cases are only imported during 2013.

4.4.2 The role of trait variation in producing disease outbreaks

To understand how environmental history and population trait structure contribute to the pre-

dictions of disease dynamics I consider four of the outbreak locations previously considered

(Figure 4.2) which represent a range of different climate types and outbreak sizes. In each lo-

cation the distribution of adult wing lengths is compared to the distribution of the wing length
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of mosquitoes responsible for each transmission event. In the Alpes-Maritimes Department of

France during the period when infections are increasing (between July and September) the 75th

percentile of the wing length distribution roughly coincides with the 50th percentile of the infec-

tion distribution (Figure 4.5A). This shows that a small number of large individuals, produced

long before dengue transmission begins, are responsible for the majority of transmission events.

This can be demonstrated quantitatively as over the whole outbreak individuals with wing

lengths above the population average of 3mm make up 17% of the population but account for

78% of all transmission events. In this location the extended longevity associated with develop-

ing under favourable conditions confers a transmission advantage over small individuals that are

less able to survive through the period of time between contracting an infection and becoming

infective. This is a factor that would be overlooked if the model had assumed that all individuals

shared the same average wing length, as is common in previous approaches. However, the role

of trait variation in determining the ability of vector populations to maintain disease outbreaks

changes across environments as the population’s underlying trait structure varies. For example,

consider the outbreak on La Réunion where little variance in adult wing length occurs during

periods of peak infection and so there is no substantial deviation between the wing length of

adults and the wing length of infecting adults (Figure 4.5B).

As a population’s trait structure becomes more complex the role of trait in determining transmis-

sion dynamics can no longer be captured by simple summary statistics. For example, in Hawai’i

individuals with wing lengths over 2.7mm make up 18% of the total population but account

for 46% of all transmission over the course of the outbreak, but in Guangzhou, individuals with

wing length over 2.7mm account for 38% of all individuals but are responsible for only 12% of

all transmission. This result can be understood by considering the trait dynamics exhibited by

these populations and the underlying environmental variation that gives rise to them. In both

locations each population’s average wing length oscillates between a maximum in the winter,

when larval densities are low, and a minimum in the summer when larval densities are high.

Large individuals produced in the spring persist throughout the summer creating a dynamic wing
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length distribution that evolves seasonally (see Figure 4.5C and 4.5D). On Hawai’i individuals

substantially larger than the population average are responsible for the majority of transmission

throughout the year. Despite large individuals not being abundant during the summer months

when the temperature is optimal for disease transmission small individuals do not survive long

enough to sustain the dengue transmission cycle. This observation explains the disproportionate

number of transmission events attributable to large individuals and also explains the contrary

result obtained in Guangzhou. In Guangzhou, the environmental conditions are such that the

small individuals that are most abundant in the summer are competent vectors of dengue and

so are responsible for more transmission than large individuals that are most abundant during

the winter, a period that was not favourable for transmission. However, in Guangzhou trait

structure still plays in important role in disease transmission dynamics and large individuals are

responsible for maintaining the transmission cycle through cold winter months, allowing the in-

fection to be maintained in the population between years (Figure 4.5D). Further, at the start of

the outbreak in 2014 these same large individuals are more capable of transmitting dengue than

small individuals, accelerating the spread of dengue at the start of the outbreak and extending

the transmission period.

4.4.3 Global risk predictions of transmission risk

To predict transmission risk over the species global range I apply the novel expression for the

reproduction number, RT , defined in Equation 4.26. This formulation of RT accounts for the

effect of the vector population’s trait structure on the ability of that population to transmit

disease and so produces predictions that reflect how variation in a population’s trait structure

alters the ability of that population to vector disease between climates. RT is computed across

the species global range and the average length of time the environmental conditions were

suitable for the transmission of dengue between 2017 − 2020 is reported (Figure 4.6). It is

predicted that areas of risk are generally restricted to areas of high human population density.

This is a consequence of the dilution effect caused by the population of dead-end non-human
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(C) (D)

Wing lengthInfective

wing length

Normalised 

dengue cases

Normalised 

adult abundanceTemperature

Figure 4.5: A comparison of the distributions of adult wing length and infections attributable
to adults of a specific wing length for four historic dengue outbreaks. In each case the green
line indicates the population’s average wing length at a given time with the bars indicating the
25th and 75th percentiles of the wing length distribution. The orange line indicates the 50th

percentile of the distribution of infections by wing length with the bars indicating the 25th and
75th percentiles of this distribution. The blue and purple lines indicate the normalised number
of dengue cases and adults respectively. Comparison for outbreaks in: (A) Cagnes-sur-Mer,
France (2020); (B) Réunion (2017 − 2021); (C) Hawai’i (2015 − 2017); (D) Guangzhou in
(2013− 2014). 118



hosts incorporated in the SIR model that are used only for blood meals and do not contribute

to the dengue transmission cycle. Further, the presence of a substantial vector populations is

not predicted to be a sufficient condition to maintain the dengue transmission cycle (compare

these predictions to the predictions of suitability for the establishment of populations of Ae.

albopictus in Figure 3.12).

Europe currently experiences limited autochthonous transmission of dengue by Ae. albopictus,

and each of the locations in which dengue transmission has been observed is predicted by the

model (with the exception of an outbreak in Croatia that occurred outside of the period of

time considered) (ECDC, 2022b). In this region only short periods are predicted to be suitable

for transmission which reflects the observed magnitude of these outbreaks. In China, where

dengue outbreaks vectored by Ae. albopictus frequent, I predict longer transmission periods

over a wider area than in Europe. These predictions align with the observed location and

magnitude of historical dengue outbreaks in the region, and the Guangdong region in particular

is a clear hotspot (Yue et al., 2022). Transmission risk is predicted to be low throughout northern

China and is comparable to that observed in southern areas of Europe where outbreaks usually

only consist of a small number of detected cases. In America it is predicted that there are

isolated areas of risk throughout the eastern USA with little suitability for transmission in the

west. The region with highest predicted risk is Miami, Florida, where there have been confirmed

instances of autochthonous transmission vectored Ae. aegpyti which out-competes Ae. albopictus

in this region. The locations of historic outbreaks in Texas are predicted to be able to sustain

transmission, though again the presence of Ae. aegpyti in this region is not accounted for in our

predictions (Brunkard et al., 2007).

Compared to previous statistical models of dengue incidence the predicted area at risk aligns

most closely with that predicted by Messina et al. (2019), though this model additionally con-

siders Ae. aegpyti. Less suitability for transmission is predicted than in the model by Rogers

et al. (2014), especially in northern latitudes. Compared to previous mechanistic models that

do not account for interactions between population, environment, and trait it is predicted that
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Figure 4.6: The length of time for which the model predicts that the reproduction number will
be greater than one (RT > 1) and that predicted by a standard metric-based approach that does
not consider population dynamics or trait variation. Each cell represents the 4 year average for
that location. (A,B,C) The model’s predictions of the duration of time for which RT > 1 in
North America, Europe, and Asia respectively.
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a smaller geographical area is at risk for a shorter period of time (Mordecai et al., 2017; Metel-

mann et al., 2021; Ryan et al., 2018). This is demonstrated in Appendix I where a standard R0

approach is compared to the model’s predictions. To demonstrate that the approximation used

to estimate the value of RT is valid I compare the regions where transmission risk is predicted

to those where the SIR model predicts that the total number of dengue cases is greater than

the number of cases introduced. As the predicted number of dengue cases is not subject to the

approximation needed to compute RT , close correspondence between regions of predicted risk

and regions where the total cases are above the number introduced will demonstrate the validity

of the approximation. To test this correspondence I compute the average total annual number

of dengue cases predicted per grid cell and check if the number of cases predicted by the model

exceeds the sum of the number of cases introduced through the introduction scenario and the

total amount of autochthonous transmission that would occur for over the period of time RT > 1

if instead RT = 1 over the full period. I find that this never occurs and therefore the use of an

approximation has not erroneously predicted an outbreak where the SIR model predicts that an

outbreak could not occur.

4.5 Discussion

I demonstrate how variation in a vector population’s trait structure, as determined by the

environmental conditions that it experiences, alters the ability of that population to transmit

disease. During the large outbreaks that occurred in Guangzhou and La Réunion the majority of

vectors present in the population are predicted to be competent to transmit dengue during the

periods when temperatures are optimal. By contrast in temperate regions, such as Cagnes-sur-

Mer, this is predicted not to be the case and instead only a small proportion of the total vector

population is capable of maintaining the transmission cycle. As mean-field models are often

parametrised under the assumption that all individuals develop under favourable conditions this

may explain the current apparent overestimation of the risk that Ae. albopictus poses (Brady,
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Hay, 2020; Lambrechts et al., 2010). This suggests that although mean-field approaches may

perform well when parametrised for specific environmental conditions in locations where trait

structures are simple, the predictions made by a model tailored for one climate do not necessarily

generalise between climates and so should be interpreted with caution (Cator et al., 2020).

By considering mechanisms of individual variation novel insights are generated pertaining to

systems of biological interest, and the work undertaken here could be extended to other Aedes-

borne diseases and other vectors of epidemiological significance. The obvious candidate for such

an effort is the primary vector of dengue Ae. aegypti which is better adapted to warmer climates

than Ae. albopictus (Kraemer et al., 2019). The life-history of this vector is well studied and

so a similarly detailed modelling approach is both possible and appropriate. Over much of

the range of Ae. aegypti temperature is less variable, and this lack of strong seasonality means

that detecting environmentally induced changes in population and trait dynamics in the field

will be substantially more difficult than for Ae. albopictus. However, this demonstration of

the importance of trait in producing disease dynamics, even in climates with little temperature

variation (see the discussion of the role trait in producing disease dynamics in Hawai’i), motivates

further exploration to better understand the changing global incidence of dengue.

The current risk posed by Ae. albopictus over the majority of the range that has been considered

is predicted here to currently be low, which is in line with both disease incidence data and

analyses of the species vector competence. Even so, the large outbreaks that now regularly

occur on Guangzhou and La Réunion are worrying exceptions and given the current general

trend of increase in the incidence of vector-borne disease careful surveillance and control is

remains critical. Even over the last 20 years the model predicts that developmental habitats

have become more productive, and the length of the transmission season has extended. Warm

summers would allow more vectors to be competent, and this in turn would bring predictions

of risk back in line with previous models. Given that this trend is unlikely to reverse it is

only a matter of time before larger outbreaks vectored by Ae. albopictus begin to occur outside

the limited geographical range they are currently observed. In many regions this could quickly
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change the current status of Ae. albopictus as a nuisance biter into a serious public health risk.
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Chapter 5

Discussion

In the following discussion I recapitulate the work’s principal findings, discussing the content

and drawing conclusions.

5.1 Recapitulation

Chapter 2 pertained to the development of a novel modelling framework to represent the effect

of phenotypic plasticity on population and trait dynamics. A flexible modelling framework

was derived, capable of representing the effect of multiple instances of phenotypic plasticity in

response to multiple environmental drivers. The framework was applied to Nicholson’s classical

blowfly experiments and shown to provide novel insights into a well-studied system. Previously

unexplained cryptic population dynamical behaviour naturally emerged from the system, and

this was demonstrated to be a consequence of the model’s explicit representation of mechanisms

of individual variation.

Chapter 3 applied the framework derived in Chapter 2 to the invasive mosquito species Ae.

albopictus, a vector of dengue. By representing the delayed effects of phenotypic plasticity on

the traits expressed by adult mosquitoes the model is able to predict the population and trait
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dynamics of field populations from meteorological data. The role of trait variation in facili-

tating the model’s high generalisability was demonstrated by considering model variants that

made common simplifying assumptions about the relationship between environmental variation

and trait expression. When model was applied over the species’ global range, the predicted

distribution is shown to broadly agree with both the species currently observed range and the

predictions made by species distribution models.

In Chapter 4 the model derived in Chapter 3 that was used to predict the population and trait

dynamics of Ae. albopictus is incorporated into an SIR model for the transmission of dengue.

This model is validated against historic dengue outbreaks and is able to predict observed trans-

mission dynamics and anticipate differences in outbreak magnitude between locations. When

extended over the species global range the model predicts a shorter time over which the dengue

transmission cycle can be sustained than previous mean-field approaches. The predicted area

of risk is also smaller than that predicted by previous mechanistic models and aligns well with

current disease incidence. Vector trait is shown to be the determining factor in these predictions

of reduced risk, and it is demonstrated that in many temperate environments a large proportion

of vectors within the population are not competent to maintain the pathogen transmission cycle.

5.2 Main findings

This thesis aimed to explore the role of vector trait variation in determining current global

patterns in the incidence of vector-borne diseases. Current models of disease incidence make

simplifying assumptions about how transmission critical traits respond to environmental varia-

tion (Cator et al., 2020). These assumptions produce easily interpretable predictions of disease

risk over broad areas but overlook mechanisms that are known to drive population response

to environmental change (Violle et al., 2012). Improving on previous predictions required an

approach that explicitly accounted for mechanisms of individual variation, which was developed

and shown to provide new insights into complex biological systems. Models derived using this
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framework were able to explain cryptic population dynamical behaviours, such as the para-

dox of enrichment which had previouslly been observed experimentally by Nicholson, and were

shown to predict observed differences in population-level processes across broad environmental

gradients (Nicholson, 1957).

By explicitly representing the effects of a delayed instance of phenotypic plasticity on a trans-

mission critical trait I demonstrate how a vector population’s environmentally induced trait

structure drives disease dynamics. In regions where low levels of transmission occur, only a

small subset of large, long-lived mosquitoes were capable of maintaining the transmission cycle.

By contrast in regions where large dengue outbreaks occurred the majority of individuals within

the vector population were competent to transmit dengue regardless of trait. Between regions

where large outbreaks of dengue occur and those where small outbreaks occur it was demon-

strated that there is little difference in the productivity of developmental habitats at time of

peak transmission. This shows that vector abundance alone is not sufficient to predict disease

incidence across environmental gradients, just as in the experimental blowfly culture patterns

of individual variation did not translate to population-level responses. Only when trait and

population dynamics are considered in concert, in a system that allows the interaction between

the two, were generalisable predictions produced.

More broadly this is part of the growing body of evidence that the way that mechanisms of

individual variation are incorporated into predictions of how population’s will respond to en-

vironmental change needs to be rethought to further our understanding of population ecology

(Bolnick et al., 2011; Hendry, 2016; Johnston et al., 2019; Lion, 2018; Lipowsky et al., 2015;

Lloyd-Smith et al., 2005; Sgrò et al., 2016; Turcotte, Levine, 2016). Mean-field assumptions are

often made implicitly, without consideration for the complex biological processes through which

an individual’s environmental experiences determine its life-history. The increasing availability

of trait data and developments in theory means that now is an ideal time to start directly ac-

counting for mechanisms of variation in predictions of population processes rather than using

implicitly assumed averaged trait approaches (Violle et al., 2012). Trait-based approaches have
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been long advocated for as a way of producing generalisable predictions but despite this there

has only been a limited application of theory to generate predictions on a global scale such

as achieved here (Green et al., 2022). The work undertaken in this thesis demonstrates that

these generalisable predictions are not only attainable but can provide insights into important

biological systems.

5.3 Future directions

The modelling framework developed here has broad applicability beyond the transmission of

dengue by Ae. albopictus and there is scope for substantial building from this body of work.

5.3.1 Improving on model assumptions

The assumptions that were made to derive, parameterise and implement the model to predict

the population dynamics of Ae. albopictus in Chapter 3 were broad and far-reaching. Generally,

these assumptions were made due to gaps in the current understanding of how the life-history

of Ae. albopictus interacts with environmental variables. To substantially improve of on any of

these assumptions would represent a significant amount of experimental work. Yet, exploring

how these factors affect the mechanisms by which the species varies on a more local scale would

provide a deeper understanding into how the incidence of vector-borne will change in the future.

The model for the population dynamics of Ae. albopictus derived in Chapter 3 and used in Chap-

ter 4 assumes that the quantity and physical characteristics of aquatic developmental habitats

remain constant through space and time. This greatly simplifies the model but omits processes

that are demonstrably important in determining the abundance of Ae. albopictus. A field survey

by Evans et al. (2019) has shown that the number of larval habitats fluctuates throughout the

year and that this is associated with changes in adult density. However, predicting how the

availability of larval habitats changes is challenging, due to the cryptic nature of these habitats
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and presence of precipitation independent standing water due to human activity (Nguyen et al.,

2011; Unlu et al., 2014). To scale up surveillance, citizen science projects have proven an effective

solution, but even when the distribution of developmental habitats becomes better understood,

using this knowledge to improve predictions of disease risk will be challenging (Jordan et al.,

2017; Low et al., 2021). The size of larval habitats has been shown to vary with land-use type

and socio-economic variables and this changes the intensity of density dependent competition

(Reiskind, Zarrabi, 2012; Parker et al., 2018). The physical chemical properties of the water in

developmental habitats can change oviposition preferences and has been implicated as a cause of

increased vectorial capacity (Gunathilaka et al., 2018b; Ramasamy et al., 2011; Medeiros-Sousa

et al., 2020). The presence of predatory or competitor species can also change oviposition prefer-

ences, mortality rates, and development rates in a way that changes on a species-to-species basis

and that has been shown to interact with other container-level variables such as food availability,

and habitat complexity (Juliano et al., 2019; Wasserberg et al., 2013; Costanzo et al., 2005; Sil-

berbush, Resetarits, 2017; Cuthbert et al., 2019). To better understand how the characteristics

of developmental habitats changes disease incidence, a deeper understanding of the mechanisms

by which container-level variables interact with the life-history of the species will be required.

The model derived in Chapter 3 also assumes that the temperature in the water experienced

by juveniles and the temperature of the air experienced by adults are always the same. The

difference between air and water temperature have been shown to vary according to a variety of

micro-climatic and environmental factors, including the material the habitat is made from and

the level of shade over the habitat (Kumar et al., 2015; Paaijmans et al., 2008). Improving on

this assumption therefore requires a better understanding of the characteristics of larval habitats

in the field, the difficulties of which have already been outlined. It is further assumed that the

average daily temperature captures the effects of diurnal temperature variation on mosquito

trait. Diurnal temperature variation is predicted to increase the sensitivity of vectors to climate

change through changes in developmental traits (Paaijmans et al., 2013; Zapletal et al., 2018).

However, the effect of diurnal variation on the temperature in the developmental habitat varies
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according to the habitat’s physical characteristics such as the volume of water and material the

habitat is made of. Further complicating the inclusion of diurnal variation in these predictions is

that diurnal variation is not considered in the data used to parametrise the model, the majority

of which is sourced from constant temperature experiments. To more completely represent

the effect of temperature on the life-history of Ae. albopictus therefore requires both a better

understanding of larval habitats, and further experiments exploring the role of temperature

variation on mosquito trait.

Here, it is demonstrated that accurate predictions of the longevity of adult mosquitoes are

critical in determining the ability of vector populations to transmit pathogens. However, there

are multiple factors known to alter the longevity of adult mosquitoes that are not accounted in

the models due to a lack of data regarding their interaction with wing length and temperature.

This lack of data is a known problem and a systematic literature by Schmidt et al. (2018) into

the relationship between humidity, longevity and temperature could not identity a statistically

significant relationship which was attributed to a lack of experimental data over a sufficient range

of conditions. To go a step further than this and define a relationship between, temperature, wing

length, humidity, and longevity is therefore currently impracticable without further extensive

experimental work. Omitted for similar reasons is the demonstrably independent relationship

between larval food availability, larval density, and temperature on adult wing length and age-

specific mortality rates (Yoshioka et al., 2012). The same carry-over effect that alters adult

longevity also has implications for the ability of vectors to transmit disease and there is evidence

that larvae developing under stressful environmental conditions have thinner midguts as adults,

allowing infections to become disseminated faster (Herd et al., 2021). However, the precise nature

of this mechanism is currently unknown and there is also evidence for the opposite relationship

with experiments run at different temperatures and densities reaching the conclusion that low

densities and temperatures accelerated the dissemination of infection (Westbrook et al., 2010;

Nasci, Mitchell, 1994).
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5.3.2 Further applications of the model

Ae. albopictus is an invasive species and each year more regions report the first occurrence of

the species. Considering the dynamics that occur when small numbers of vectors are introduced

into the system at different times of the year would potentially produce useful indices for pre-

dicting invasion risk. Additionally, environmental suitability for vector populations and dengue

transmission is predicted here only for regions where there is data from field populations. Given

the close correspondence between the distribution of vector occurrence and model predictions

over the range considered it would be useful to extend this model to the rest of the globe to

predict the limits of species current environmental niche. A similar approach could be extended

to the SIR model, pairing the dynamical disease model with predictions of dengue importation

such as predicted in the model by Liebig et al. (2019) to convert estimates of how long dengue

transmission is possible to predictions of how likely autochthonous transmission is in a given

region.

The models produce predictions of vector population dynamics that hold across the species global

range, validated against 34 years of data from field populations. This generality should hold

into the future and so using this framework to predict how the distribution of vector populations

and incidence of dengue will evolve in response to future climate change is a natural next step.

Even over the relatively short period considered here the model predicts that larval habitats are

becoming more productive over most of the range considered year on year, and the suitability

for dengue is increasing. Previous mechanistic predictions of the future distribution of dengue

generally predict higher incidence in latitudes already at risk and a northward expansion of

both vector population and dengue incidence. Compared to previous predictions this model

starts from a lower baseline, predicting less suitability for dengue transmission for less time over

a smaller geographical range (Ryan et al., 2018). It is therefore unclear how the model will

predict regions at risk of dengue transmission will change and therefore this promises to be a

productive avenue for future research.
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A final and important direction for further work with this model is to predict the efficacy of

vector control campaigns. There is only limited evidence that current vector control efforts

targeting Aedes species are effective (Roiz et al., 2022). Population models are frequently used

to guide interventions and given this models excellent resemblance to field data it’s predictions

could be invaluable for assessing how to optimally control vector populations. Current control

techniques target different life-stages and determining what combination of control techniques

to apply to efficiently reduce biting adult numbers will be a complex problem due to the delayed

and non-linear effects of density and environment on mosquito life-history. However, an effective

model to evaluate control strategies will likely also require a spatial element to account for local

variables important in determining small-scale mosquito abundance (Falcón-Lezama et al., 2016).

Additionally, human mediated dispersal has implicated in undermining historic control efforts

through regular reintroductions from infested areas (Lee et al., 2021; Goiri et al., 2020). Once

again, a deeper understanding of the distribution and properties of developmental habitats will

be an important first step in being able to predict the outcome of control.

5.3.3 Adaptation of the model

The model derived in Chapter 4 to predict dengue transmission could readily be adapted to

predict the transmission one of the more than 25 other viruses for which Ae. albopictus is a

competent vector (Amraoui et al., 2019). Of these, the three most well-studied and epidemi-

ologically relevant are Chikungunya (CHIKV), Zika (ZIKV), and yellow fever (YFV). Chikun-

gunya is a growing global threat and Ae. albopictus is the primary vector implicated in recent

outbreaks, which now occur across the mosquitoes native and invasive range (Silva, Dermody,

2017). A capacity for both horizontal and vertical transmission of ZIKA by Ae. albopictus

has been demonstrated, which is of growing concern to global public health since the outbreak

throughout the Americas in 2015 (Lai et al., 2020). Ae. albopictus has also been shown to be a

competent vector of yellow fever, though little is currently known about its role in maintaining

outbreaks of the disease (Amraoui et al., 2016). To adapt the model to predict the risk of
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transmission associated with each of these viruses presents different challenges that would need

addressing before specific predictions could be made. However, in each case the primary barrier

to achieving model specificity is the lack of knowledge about how traits such as EIP change with

temperature within Ae. albopictus. Experimental work continues to explore the relationship

between temperature and vectorial capacity for each virus, which will be required to understand

the risk they pose to public health (Mercier et al., 2022).

The population model developed in Chapter 3 could also be used to predict the populations

dynamics of other Aedes species over their ranges and as was briefly discussed in Chapter 4. Ae.

aegypti the primary vector dengue is the obvious candidate. However, although the extension

of the population dynamical model may be fairly straightforward, an extension of the SIR

model to predict the dynamics of dengue outbreaks vectored by Ae. aegypti would require a

substantial amount of further work. The lack of strong seasonality throughout the locations

over which the transmission of dengue by Ae. aegpyti is observed means that outbreaks are

often multi-strain, with multiple serotypes co-circulating simultaneously. This complicates the

mosquito transmission cycle, as mosquitoes can potentially be simultaneously infected with

different DENV serotypes (Pérez-Castro et al., 2016). Different strains of dengue also present

different severities of clinical manifestation and there is evidence of strain-specific differences

in transmission traits (Andrade et al., 2016; Ekwudu et al., 2020). Long-lasting resistance to

further infection in the host population presents a further modelling challenge, as after being

infected by a serotype, life-time immunity is incurred to subsequent infection by viruses of the

same serotype (Gibbons et al., 2007). Further, infection by one serotype induces a period of

cross-immunity against all other serotypes of dengue that can last between 1 − 3 years (Reich

et al., 2013). Tracking the host populations immune status will be critical to understand disease

dynamics but also health risk, as individuals that have experienced infection by one serotype have

a higher change of developing severe complications upon infection by other serotypes (Woodall,

Adams, 2014; Narayan, Tripathi, 2020).

An additional complication in producing accurate predictions of the dengue risk posed by Ae.

133



aegpyti is the presence of Ae. albopictus throughout much of its range (Kraemer et al., 2015). In

many locations where Ae. aegpyti is the primary vector dengue Ae. albopictus often also occurs,

and it has been suggested that each vector species plays a different role in the maintenance of

dengue outbreaks (Lin et al., 2016a). The outcome of competition between these two species is

complex and has been shown to depend on local environmental conditions (Juliano et al., 2004;

Murrell, Juliano, 2008; Lizuain et al., 2022; Lounibos, Kramer, 2016). These same experiments

demonstrate that the relationship between adult wing length temperature, larval density, and

food availability is altered by the degree of interspecific that individuals experience, and so the

ability of Ae. aegypti to maintain dengue outbreaks depends not only on the abundance of Ae.

albopictus but also the degree they overlap in developmental habitats. Incorporating this into

a model would once again require a deeper understanding of the distribution and properties of

larval habitats and further experimental work quantifying the effect of interspecific competition

on developmental plasticity in both species.

Other mosquito vectors would also be amenable to this approach and both the life-history of

West Nile Virus vector Culex pipiens and malarial Anopheles mosquitoes have previously pre-

dicted through delay differential equations (Ewing et al., 2016; Beck-Johnson et al., 2013). The

feasibility of extending these models to incorporate developmental plasticity in response to larval

competition will depend on the availability of experimental data exploring these relationships,

and special care would need to be taken to capture species-specific life-history processes. As

these mosquito species inhabitant larger and less temporary habitats than Ae. albopictus it will

be necessary to start considering the effect of interspecific competition from predators which is

known to greatly affect the dynamics and traits of mosquito species. This could be an important

avenue of future research as the role of reduced adult trait in response to high larval densities

in suppressing malaria outbreaks appears to be complex and evolving (Ijumba, Lindsay, 2001;

Chan et al., 2021).
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5.3.4 The role of phenotypic plasticity

The general modelling framework is a first step in reconciling theory with empirical evidence

regarding the role of phenotypic plasticity in determining population responses to environmen-

tal change. In both systems considered here, complex dynamical behaviours that occurred in

response to changes in environmental conditions emerged naturally as a consequence of mech-

anisms of individual variation. Given the uncertainty in the role of phenotypic plasticity in

mediating population responses ecological disturbances, this approach represents a promising

first step toward a more predictive ecological theory (Hulme, 2008; Violle et al., 2012).

Although the effects of passive developmental plasticity are explored thoroughly here, other

forms of phenotypic plasticity are also likely to have complex effects on population dynamics.

Maternal effects are an inter-generational form of plasticity that can be anticipatory, whereby

the traits expressed by juveniles are determined by adult’s predictions of future environmental

conditions (Bernardo, 1996). When this form of plasticity is active rather than passive it is

prone to cue-anticipation mismatch, where the environmental conditions anticipated by adults

and those experienced by juveniles do not match and so an unfavourable trait is expressed

(Kuijper, Hoyle, 2015). Maternal effects have been found in ecologically important species, for

example both passive and active maternal effects have been observed in desert locusts which

are an invasive crop pest, and species of bee which are currently in broad decline (Preston

et al., 2019; Maeno et al., 2013). Exploring whether the differential action of active and passive

maternal effects on the life-history of these ecologically important species can explain their

different responses to the changing climate could be an important avenue of future research

with implications for food security (Soroye et al., 2020; Meynard et al., 2020).

Models parametrised using this approach are data-hungry and parametrising multi-dimensional

reaction norms requires a substantial amount of life-history data. For vectors of neglected or

emerging tropical disease, this does knowledge base does not yet exist and though data collection

efforts are ongoing understanding which traits to target will require a greater understanding
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of when phenotypic plasticity matters in determining population responses to environmental

change. To facilitate this the phenomenological relationships that were used here to describe

how the traits expressed by Ae. albopictus vary response to the historic environment should

also be informed by rigorous theory, such as is proposed in the metabolic theory of ecology

(Brown et al., 2004). This would for a more complete description of the mechanisms that

are so important in determining population response and this deeper understanding of trait-

environment interactions will be necessary to apply this theory to more complex systems with

species interactions over multiple trophic levels (Wong et al., 2019).

5.4 Summary

In this thesis I have explored the role of trait variation in determining the risk of vector-borne

disease. I derived a novel framework able to represent the effect of environment-trait feedbacks

on population dynamics. This model was validated on Nicholson’s blowflies and then applied

to the invasive mosquito species Ae. albopictus. By parametrising experimentally derived multi-

dimensional reaction norms I represented the effect of developmental plasticity on the longevity

of adult mosquitoes and demonstrate that this approach is able to replicate the population dy-

namics of field populations of vectors across the species global range as well as predict the timing

and magnitude of dengue outbreaks. I demonstrate how the role of trait in determining disease

dynamics changes between climates, and how in many of the historic outbreaks considered a

small number of large individuals accounted for a majority of transmission events. I further

predict, there is currently less risk of dengue transmission in the invaded range than previous

approaches but that this risk is increasing.
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Appendices

A Model derivation from first principles

To demonstrate that the modelling framework is rigorous it must be derived from first principles,

and to do this the derivation of the Gurney et al. (1983) model is extended to include phenotypic

plasticity. This demonstrates that this extension of the Gurney et al. stage-structured delay dif-

ferential equation framework (described in Chapter 1) to represent phenotypic plasticity does

not violate the assumptions made in the Gurney et al. framework and so is mathematically

rigorous. I begin with the continuous Von Foerster equation, a partial differential equation de-

scribing how individuals age, and convert it into a system of coupled delay differential equations

(Kermack, McKendrick, 1927).

Consider a single species with constant sex ratio that expresses phenotypic plasticity in d plastic

traits in response to a set of z environmental cues. Let all individuals with age a, in envi-

ronmental class j at time t have the same per capita reproduction and death rates, βj(a, t),

and δj(a, t) respectively. Note that these per capita rates are age dependent and so functional

forms that reflect demographic processes can be freely chosen. For example, in a species where

sexual maturity is reached at age am the per capita reproduction rate may be chosen such that

βj(a, t) = 0 for a < am. Denote the number of individuals with age in the interval a→ a+da in

environmental class j at time t by fj(a, t). Assuming the system is closed (i.e. no immigration

or emigration) describe the change in population due to ageing and death by the Von Foerster
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equation (Kermack, McKendrick, 1927)

∂fj(a, t)

∂t
= −∂fj(a, t)

∂a︸ ︷︷ ︸
ageing

−δj(a, t)fj(a, t)︸ ︷︷ ︸
death

a > 0. (1)

The rate at which the population produces offspring at time t into environmental class j is

described by the renewal condition

Bj(t) = fj(0, t) =

m∑
l=1

wl,j(α(t))

∫ ∞
0

fl(a, t)βl(a, t) da (2)

where the function wkj(α(t)) determines the fraction of individuals born at time t that acquire

life-history parameters associated with environmental class j. As was stated in the overview it

is required that 0 ≤ wkj(α(t)) ≤ 1, ∀j, k ∈ 1, ...,m and that
∑m

j=1wkj(α(t)) = 1.

The total birth rate of individuals across all phenotypes is then given by

B(t) =

m∑
j=1

Bj(t) =

m∑
j=1

m∑
l=1

wl,j(α(t))

∫ ∞
0

fl(a, t)βl(a, t) da (3)

=

∫ ∞
0

m∑
j=1

m∑
l=1

wl,j(α(t))fl(a, t)βl(a, t) da. (4)

Equation 1 can be solved using the method of characteristics (Kot, 2001) to find fj(a, t), giving

fi(a, t) = fi(0, t− a) exp

(
−
∫ t

t−a
δi(t
′)dt′

)
(5a)

= Bi(t− a)Pi(t− a, a) (5b)
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where Pi(t, a) is the cumulative survival probability that an individual born at time t expressing

phenotype i survives until at least stage a.

Assume stage transitions occur at fixed time intervals, and that the population has n life-stages.

Denote the number of individuals in life-stage i and environmental class j by Ni,j(t). Assume

that all individuals in life-stage i and environmental class j are functionally identical, such that

δj(a, t) = δi,j(t), ∀ ai,j ≤ a ≤ ai+1,j (6)

βj(a, t) = βi,j(t), ∀ ai,j ≤ a ≤ ai+1,j (7)

where ai,j is the age at which an individual enters life-stage i and environmental class j, and

ai+1,j the age when that individual matures to life stage i+ 1. Then divide the population into

stages as follows

Ni,j(t) =

∫ ai+1,j

ai,j

fj(a, t) da. (8)

Furthermore, define Ri,j(t) as the rate of recruitment from stage i − 1 into age class i for

individuals maturing into environmental class j at time t. Similarly, define Mi,j(t) as the rate

of maturation from life-stage i into the life-stage i+ 1 for individuals in environmental class j at

time t. Finally, define Di,j(t) as the rate of death of individuals in life-stage i and environmental

class j. Then,

dNi,j(t)

dt
= Ri,j(t)−Mi,j(t)−Di,j(t). (9)

Integrating Equation (1) over the interval ai,j ≤ a ≤ ai+1,j and then comparing to (9) yields the
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relationship

Ri,j(t) = fi(ai,j , t) (10a)

Mi,j(t) = fi(ai+1,j , t). (10b)

Furthermore, as newborns enter at life-stage i = 1,

R1,j(t) = fj(0, t) =

m∑
k=1

wkj(α(t))

n∑
v=1

βvk(t)Nvk(t) j ∈ 1, ...,m. (11)

Substitution of the solution (5b) into Equations (10a) and (10b) yields

Ri,j(t) = B(t− ai,j)P (t− ai,j , ai,j), i ∈ 2, ..., n, j ∈ 1, ...,m (12a)

Mi,j(t) = B(t− ai+1,j)P (t− ai+1,j , ai+1,j), i ∈ 1, ..., n− 1, j ∈ 1, ...,m. (12b)

Define the following quantities,

τi,j ≡ ai+1,j − ai,j (13)

as the duration of stage i for individuals in environmental class j.

Define
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Si,j(t) =
Pj(t− ai+1,j , ai+1,j)

Pj(t− ai+1,j , ai,j)
(14)

to represent the fraction of individuals recruited into stage i, and environmental class j at time

t− τi,j that survive to be recruited into stage i+ 1 at time t. Note that

Mi,j(t) = Ri,j(t− τi,j)Si,j(t) (15)

and thus

Ri+1,j(t) = Mi,j(t). (16)

Hence, the extension of the Gurney et al. modelling framework to phenotypic plasticity is math-

ematically rigorous.
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B The Gurney, Nisbet and Lawton blowfly model

The phenotypically plastic blowfly model is an extension of the non-plastic blowfly model devel-

oped by Gurney et al. (1983). The model is a stage-structured delay-differential equation model

that considers five life-stages, eggs, larvae, pupae, juvenile adults, and reproductive adults. De-

note the number of eggs at time t by E(t), similarly denote the number of larvae by L(t), pupae

by P (t), juvenile adults by J(t), and mature adults by A(t). Denote by τE , τL, τP , and τJ

the duration of the egg, larval, pupal, and juvenile developmental stages respectively. Denote

by δE , δL, δP , δJ the mortality rate of the egg, larval, pupal, and juvenile developmental stages

respectively. Define SE = e−δEτE to be the probability of surviving the duration of the egg de-

velopmental stage and similarly define SL, SP , and SJ for the larval, pupal, and juvenile stages

respectively. Let q be the fecundity of adult blowflies and KA the amount of adult food supplied

daily.

The model takes the form

˙E(t) = RE(t)−RE(t− τE)SE − δEE(t) (17a)

˙L(t) = RL(t)−RL(t− τL)SL − δLL(t) (17b)

˙P (t) = RP (t)−RP (t− τP )SP − δPP (t) (17c)

˙J(t) = RJ(t)−RJ(t− τJ)SJ − δJJ(t) (17d)

˙A(t) = RA(t)− δAA(t) (17e)

where
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RE(t) = qA(t) exp{−A(t)/KA}+ I(t) (18)

RL(t) = RE(t− τE)SE (19)

RP (t) = RP (t− τL)SL (20)

RJ(t) = RP (t− τP )SP (21)

RA(t) = RJ(t− τJ)SJ (22)

and the inoculation term, I(t), is a function to initiate the dynamics, akin to an initial condition

(Kot, 2001).

Equation 17 can be collapsed down into a single equation for adults given by

dA(t)

dt
= qSA(t− τ) exp{−A(t− τ)/KA} − δAA(t) + SI(t− τ) (23)

where S = SESLSPSJ , and τ = τE + τL + τP + τJ .

The Gurney et al. model describes adult competition, with the assumption that larvae always

acquire sufficient food. Adult blowflies that do not get sufficient protein from food must resorb

oocytes to complete egg maturation, directly reducing fecundity (Vogt et al., 1985), which is

represented by a direct reduction of fecundity when adult density is high. Competition for

adult resources produces was found to explain the population cycles, matching the period of the

oscillations observed by Nicholson (Nicholson, 1957), but underestimated the population peaks.
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C Steady-state analysis

To determine the long-term behaviour of the phenotypically plastic blowfly model stability

analysis is performed, beginning with an analysis of the non-plastic model described in Appendix

A.

C.1 Identification of steady-states of the Gurney et al. blowfly model

The blowfly model presented in Gurney et al. (1983) and described in Equations (17) can be

reduced to

dL

dt
= RL(t)−RL(t− τL)SL − δLL(t) (24)

dA

dt
= RA(t)− δAA(t) (25)

where

RL(t) = qA(t− τE) exp
−A(t−τE)

KA SE (26)

RA(t) = RL(t− τJ)SJ . (27)

This system has a trivial steady state (0, 0), and a single non-trivial steady state given by

L∗ =
−δAKASE(1− SL)

δLSESLSJ
ln

(
δA

qSESLSJ

)
(28)

A∗ = −KA ln

(
δA

qSESLSJ

)
. (29)
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To determine the stability of these steady-states consider a linearisation of the system about

each steady state. For a generic steady-state located at (LEq, AEq), for L̄ = L − LEq, and

Ā = A−AEq the linearisation then takes the form,

 dL̄
dt

dĀ
dt

 = V0

L̄(t)

Ā(t)

+ V1

L̄(t− τE)

Ā(t− τE)

+ V2

L̄(t− τE − τL)

Ā(t− τE − τL)

+ V3

L̄(t− τE − τL − τJ)

Ā(t− τE − τL − τJ)


(30)

where

V0 =

−δL 0

0 −δA

 (31)

V1 =

0 qe
−AEq
KA (1− AEq

KA
)SE

0 0

 (32)

V2 =

0 −qe
−AEq
KA (1− AEq

KA
)SESL

0 0

 (33)

V3 =

0 0

0 qe
−AEq
KA (1− AEq

KA
)SESLSJ

 . (34)

C.2 The stability of the trivial steady-state

I begin by determining the stability of the trivial steady state for different values of the plastic

traits SJ and q. Fix all the remaining parameters at the values given in Gurney et al. model.

When all the delays are infinite, i.e. τE = τL = τJ = ∞, the trivial steady-state is stable

unconditionally. When all the delays are 0, i.e. τE = τL = τJ = 0, the trivial steady-state
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is stable provided δA > qSESLSJ . It can be shown that for the chosen reaction norms this

condition holds provided SJ = 0.

C.3 The stability of the non-trivial steady-state

To determine the stability of the non-trivial steady-state the value of all non-plastic parameters

are fixed to determine what conditions on SJ and q give stability. As in the trivial steady state it

can readily be shown that after linearisation that the non-trivial steady state is unconditionally

stable when the delays are infinite. When the delays are 0 a necessary condition on the stability

of the non-trivial steady-state is, δA > qe
− A∗
KA SESLSJ(1− A∗

KA
). In subsequent analysis the value

of KA is varied, with this in mind note that the substitution of the expression for A∗ into the

condition demonstrates it is independent of the value of KA for fixed q and SJ . The necessary

condition on stability for the non-trivial steady state is satisfied provided, q ≥ 4.853 day−1 and

SJ ≥ 0.056 ∀KA.

Supposing that the condition on stability holds, I now aim to demonstrate that the system is

asymptotically stable independent of the delay. To do this consider Proposition 1 taken from

(Kruthika et al., 2017).

Proposition 1. The time-delay system is asymptotically stable if there exist matrices X > 0,

H1 > 0, H2 > 0, and H3 > 0, such that,

Q =



XV0 + V T
0 G+

∑3
i=1Hi XV1 XV2 XV3

V T
1 X −H1 0 0

V T
2 X 0 −H2 0

V T
3 X 0 0 −H3


< 0 (35)

then the system is asymptomatically stable, independent of the delay.

The condition in Proposition 1 is a linear matrix inequality (LMI), and in this context Q < 0

indicates that the matrix Q should be negative-definite. This condition is evaluated here using
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the YALMIP toolbox (Löfberg, 2004) in MatLab (MATLAB, 2019). Proposition 1 can be used

to estimate the region of stability of the non-trivial steady state finding that the non-trivial

steady-state is stable in the region of q ∈ [5.386, 12.423] and SJ ∈ [0.0594, 0.169].

C.4 Steady-states of the phenotypically plastic blowfly model

Now consider the steady-states of the phenotypically plastic blowfly model created using the

novel framework. At steady-state the larval density is constant, and so only one wj(α(t)) is

non-zero when the system is at steady-state. This means that at any given time all larvae

maturing into adults are in the same environmental class and so share the same life-history

parameters as adults. Thus, the number of non-trivial steady states is at maximum m the

number of environmental classes in the discretisation. To represent both food scenarios used in

the Nicholson culture in the subsequent analysis KA takes one of two values, KA = 1, 200mg

when food is limited and KA = 2, 000mg when food is unlimited.

The system has the trivial steady state and up to m potential non-trivial steady states located

at

L∗j =
−δAKASE(1− SL)

δLSESLSJj
ln

(
δA

qjSESLSJj

)
(36)

A∗j = −KA ln

(
δA

qjSESLSJj

)
for j ∈ 1, ...,m. (37)

Not all of these potential steady-states are truly steady-states as the level of competition asso-

ciated with L∗j may result in adults being recruited in A∗p where p 6= j. If this is the case the

system is still in flux and so these are not true steady states. The number of steady states is

therefore equal to the number of times the L∗ larval steady state intersects the discretisation of

the environmental cue α(t). In Figure C.1 I show that for both values of KA there is only one

point of intersection. This means that for each value of KA the system only has one non-trivial
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steady-state which is now sought.
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Figure C.1: Comparison of the values of the larval steady state and the discretisation of larval
competition take with (A), KA = 1, 200mg, and (B), KA = 2, 000mg. In both cases the models
were parametrised with m = 900, the trait class is indicated by j.

It can be shown that when KA = 1, 200mg these conditions are approximately met when q =

21 day−1, SJi = 0.4823. Based on previous analysis for the Gurney et al. (1983) model the

trivial steady-state is unstable for this parameter combination. Similarly, using Proposition 1

the non-trivial steady state is unstable for this food condition. When KA = 2, 000mg using the

necessary condition on stability I find that the both the trivial and non-trivial steady states do

not meet the conditions for stability. Simulations of the model demonstrate oscillatory solutions

for each adult food value, consistent with this result.
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D Improved fit to the Nicholson culture data

Qualitatively the simulation of the blowfly model under replica experimental conditions in Figure

2a matches the experimental data for early time points but fails to produce oscillations of the

correct amplitude after the amount of adult food supplied is restricted. I hypothesise that the

reason for this is the high sensitivity of the model to small changes in food supply in the region of

parameter space around Nicholson’s experimental conditions as can be observed in Figure 4. By

increasing the larval food supplied throughout the culture by 30%, increasing the initial adult

supply by 20% and decreasing it by 16% after the reduction the dynamical behaviour exhibited

in the Nicholson blowfly culture are better captured as shown in Figure D.1. The simulation

with altered food supplies now exhibits oscillatory behaviour of the correct amplitude and the

models predictions qualitatively match the data from the culture.
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Figure D.1: Simulations of blowfly model with the unlimited food condition, represented by
KA = 2400 which is switched at 607 days to KA = 1000mg, with KL = 65000mg in both periods.
The system is initiated with 48500 larvae when the culture starts when t = 0 days.
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E Worked examples of models made using the framework

E.1 A model for a species that expresses phenotypic plasticity in response to the cumulative

effect of multiple environmental cues across multiple life-stages

Consider a population with i = 3 life-stages N1, N2, and N3 that are each subject to an environ-

mental cue specific to that stage. Define αN1(t) and αN2(t) to be the average exposure to the

environmental cues specific to life stages N1 and N2 respectively that an individual maturing out

of that life-stage at time t experienced. Also define αN3(t) to be the state of the environmental

cue specific to life-stage N3 at time t. Therefore, define the vector of environmental cues to be

α(t) = (αN1(t), αN2(t), αN3(t))

and so in this example z = 3. Each αNi(t) is discretised into mNi subintervals where the pth

subinterval of αNi(t) is denoted αNip. Note that these cues are not precluded from depending

on one another and that such a dependency could be used to represent that an unfavourable

experience in life-stage N1 causes deleterious effects in life-stage N2 and so on. Similarly these

three environmental cues could represent the value of a single environmental variable at three

developmentally important times.

An environmental class in this case is a vector of the form

(αN1l1 , αN2l2 , αN3l3)

where l1 ∈ 1, ...,mN1 , l2 ∈ 1, ...,mN2 , and l3 ∈ 1, ...,mN3 . Define the function g as in the main

text and assign a lexicographical ordering to the set of environmental classes Ωα which has

m = mN1mN2mN3 elements. Let αk denote the kth element of Ωα. This equips us with notation

necessary to refer to any combination of the three environmental cues using a single index. For

example, suppose mN1 = mN2 = mN3 = 4 then define an lexicographical ordering to the set
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of environmental classes such that α1 = (αN11, αN21, αN31), α2 = (αN11, αN21, αN32), α3 =

(αN11, αN21, αN33), α4 = (αN11, αN21, αN34), α5 = (αN11, αN22, αN31) and so on.

Assume that the transition function that governs movement through the phenotypic structure

wkj(α(t)) is defined as in the main text. The transition function describes the proportion of

individuals currently in environmental class k that transition to environmental class j at time

t and is not explicitly stage-dependent. Although this may initially seem like this causes all

individuals at across all life-stages to transition between classes in the same way, this is not

the case as the environmental vector α(t), that the transition function wkj acts upon, can be

(and often is) stage-dependent. This ensures that stage-specific environmental experiences can

be accounted for and that a cohorts environmental history can be tracked. Indeed, at this point

these is freedom to determine how the cumulative consequences of environmental conditions in

previous life-stages is represented through the form of the transition functions which will be

largely determined by the empirical evidence.

For example, I could instead consider a form of wkj(α(t)) where an individual’s transition to

the subsequent environmental class is restricted to closely related environmental classes e.g. an

individual currently in environmental class j can only transition to environmental classes within

j ± 4. Alternatively, I may assign individuals to environmental classes based on a distribution

with skew based on the environmental history of that individual. This would represent some

sort of irreversible effect of previous environmental experiences on subsequent fitness. It may

also be desirable to change the form of the transition functions across different life-stages, and

this is not prohibited.

Define the stage durations τi,j and Si,j(t) as in the main text and assume that individuals

in life-stage N3 produce offspring at a rate β. I now need to specify how the environment

determines the life-history traits of individuals within the model, and this is where specific

forms of phenotypic plasticity are considered. An individual’s mother’s exposure to αN3 in life-

stage N3 determines the mortality rate of individuals in life-stage N1 through a maternal effect.
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An individual’s exposure to αN1 in life-stage N1 has no effect. In life-stage N2 an individual’s

previous experience of the environmental cue αN1(t) in life-stage N1 in combination with the

maternal effect from life-stage N3 is assumed to alter that individual’s mortality rate through

developmental plasticity. In life-stage N3 assume that an individual’s previous experience of

αN1(t) in life-stage N1, of αN2(t) in life-stage N2, and the maternal effect alter the mortality

rate of that individual in life-stage N3.

The parameters in this population that are altered by the expression of phenotypic plasticity are

the stage-specific mortality rates. The mortality rate of individuals in life-stage Ni is determined

by the reaction norm δNi(α(t)). Define the mortality rate of an individual in life-stage Ni and

environmental class j to be δi,j = δNi(α
j). Note that because some life-stages are independent

of certain environmental cues this will introduce redundant environmental classes to the model.

For example, it previously was assumed that the mortality rate of an individual in life-stage N1

is dependent solely upon the experience of the environmental cue αN3(t) by that individual’s

mother in life-stage N3. This means that for environmental classes αv = (αN1v1 , αN2v2 , αN3l),

and αb = (αN1b1 , αN2b2 , αN3l) with v, b ∈ 1, ...,m, b1, v1 ∈ 1, ...,mN1 , b2, v2 ∈ 1, ...,mN2 , and

l ∈ 1, ...,mN3 and δN1v = δN1(αv) = δN1(αb) = δN1b ∀v1, v2, b1, b2. Although this is inelegant

this does not hinder the function of the model and if desired these redundant environmental

classes can be addressed by utilising the simplifications Section 2.3.4.

The model then has the following form

dN1,j

dt
= RN1,j (t)−MN1,j (t)− δN1,jN1(t) (38a)

dN2,j

dt
= RN2,j (t)−MN2,j (t)− δN2,jN2(t) (38b)

dN3,j

dt
= RN3,j (t)− δN3,jN3(t) (38c)

with
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RN1,j(t) =
m∑
k=1

wkj(α(t))βN3,k(t) (39)

RN2,j(t) =
m∑
k=1

wkj((αN1(t), αN2(t), αN3(t− τN1))R1,k(t− τ1,k)S1,k(t) (40)

RN3,j(t) =
m∑
k=1

wkj((αN1(t− τN2), αN2(t), αN3(t− τN1 − τN2))R2,k(t− τ1,k)S2,k(t) (41)

Mi,j(t) =Ri,j(t− τi,j)Si,j(t) (42)

for j ∈ 1, ...,m. Note that delays in the transition functions ensure that ensure that the envi-

ronmental states in previous life-stages correspond to the expression of the trait in the current

life-stage. Observe that despite a complicated life-history, the process of model formulation has

not become substantially more complicated than the blowfly model presented here.

E.2 Example of a model with maternal effects and size based competition

In this example I adapt the blowfly model to also include a maternal effect in response an abiotic

environmental cue that modifies the strength of competitive interactions between larvae. This

is purely a theoretical exercise to demonstrate and is not intended to represent a specific aspect

of blowfly population dynamics.

Consider a population such as described in the blowfly model, with two explicitly represented

life-stages each of which compete for a separate amount of resource that is replenished daily. In

addition to the developmental plasticity previously represented, assume that there is a maternal

effect in response to an abiotic environmental cue experienced in the adult stage that determines

the size of larvae produced by each adult. Further assume that larval size determines the ability

of larva to compete for the shared larval resource, a relatively common form of phenotypic

plasticity (Burgess, Marshall, 2011). The resulting model has a structure similar to that depicted

in Figure 2b.
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Denote the number of larvae with mothers that experienced environmental conditions associated

with environmental class j present in the population at time t by Lj(t), and define LTot(t) =∑m
j=1 Lj(t). Order the environmental classes such that larvae in environmental class 1 are the

smallest and least competitively viable and those in m are largest and most competitively viable

and assume that increased exposure to the abiotic environmental cue increases the size of larvae.

To represent the differing relative strength of interaction between larvae in different classes define

interaction terms γj that describe the rate at which individuals in environmental class j acquire

juvenile resources relative to the other larvae. In this case assume that γj = j
m , and additionally

assume that each day all larval resource is completely consumed and there is no reduction in the

rate of resource acquisition due to satiation. Then define the average amount of food consumed

by a larva in environmental class j per day as

αj(t) =
KLτ

2
Lγj∫ t

t−τL
∑m

r=1 γrLr(s)ds
for j ∈ 1, ...,m. (43)

Once again this can be converted to a derivative for ease of computation

dαj(t)

dt
=
−α2

j (t)(
∑m

r=1 γrLr(t)−
∑m

r=1 γrLr(t− τ))

KLτ2
Lγj

for j ∈ 1, ...,m (44)

Denote the abiotic environmental cue χ(t), and assume that it oscillates with period ζ. The

corresponding transitions function for this cue are denoted ηj(t).

The model then takes the form
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dLj(t)

dt
= RLj (t)−RLj (t− τL)SL − δLLj(t) (45a)

dAj(t)

dt
= RAj (t)− δAAj(t) (45b)

dαj(t)

dt
=
−α2

j (t)(
∑m

r=1 γrLr(t)−
∑m

r=1 γrLr(t− τ))

KLτ2
Lγj

(45c)

dχ(t)

dt
=

2π

ζ
cos

(
2πt

ζ

)
(45d)

for j ∈ 1, ...,m. The recruitment terms are given by

RLj (t) = η(χj(t− τE))

 m∑
j=1

qjAj(t− τE)e−ATot(t−τE)/KA + I(t− τE)

SE (46)

RAj (t) =
m∑
j=1

wj(αj(t− τP − τJ))RL(t− τL − τP − τJ)SLSJj (47)

for j ∈ 1, ...,m where I(t−τE) is an inoculation term that begins the dynamics (Kot, 2001), and

represents the introduction of larvae into the system at t = 0, and qj and SJj are determined

by the reaction norms. The general approach taken here to represent differences in intraspecific

competitive ability between phenotypes could easily be extended to interspecific interactions,

with the addition extra sets of equations to represent different species and appropriately defined

interaction terms. An example of a simulation of this model is provided in Figure E.1.
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Figure E.1: Example simulation of the maternal effects model with KL = 50000 and KA =
1, 200. (A) The dynamics of the larval population. The solid black line is the total number of
larvae across all phenotypes and the coloured lines each represent the number of larvae in an
environmental class. (B) The dynamics of the adult population, with the black line representing
the total number of adults across all environmental classes and the coloured lines representing
the number of adults in each environmental class.
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F Example of model predictions

To demonstrate how model functions before presenting the global validation I begin by consid-

ering the population dynamics predicted by the model in a single location, in this case Rimini,

Italy. This is a temperate location in the species invaded range where in 2007 the population of

Ae. albopictus established in this region facilitated an outbreak of Chikungunya (Carrieri et al.,

2011). In subsequent years a network of ovitraps was set-up throughout the Emilio-Romagna

region, and it is to these observations I compare the models predictions (Carrieri et al., 2012).

F.1 Environment

To simulate the model in this region I input the observed temperature, precipitation, as well as

the latitude of Rimini (Figure F.1). Using these quantities I simulate the model, initiating the

dynamics in the year 2006 to allow a burn-in period for the population dynamics, preventing the

chosen initial conditions from altering the dynamics in the prediction year. Through equation 3.7

these environmental variables are used to determine how the food available to larvae varies

seasonally, as shown in Figure F.1D.

F.2 Eggs

In Figure F.2A the dynamics of the various egg classes as predicted by the model in Rimini are

shown. Active eggs are produced throughout the summer and autumn, before falling temper-

atures and photoperiod trigger the production of diapausing eggs. As the temperature warms

the duration of time taken for active eggs to develop decreases and a greater proportion survive

through to the larval stage (Figures F.2B and F.2C). Diapause eggs are produced in a short

period of time before cold temperatures cause any remaining adults to die off, and these dormant

eggs persist throughout the winter months experiencing a constant low level of mortality. In this

region the temperatures never drop low enough to reach the lower thermal limit on diapause egg
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(A) (B)

(C) (D)

Figure F.1: The environmental variables used to simulate the model in Rimini. (A) Tempera-
ture. (B) Precipitation.(C) Photoperiod. (D) Total food produced in the developmental habitat
per day.
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survival described in Equation 3.6, allowing a sufficient number of eggs to survive through the

winter to allow the population to persist in this region between years. When the critical photope-

riod and temperature are reached these diapause eggs hatch into larvae and allow the life-cycle

to continue. Quiescent eggs are produced in low-levels throughout the year whenever the water

level of the container habitat begins to decrease, immediately hatching when inundated.

(A)

(B) (C)

Figure F.2: Outputs from the model when simulated in Rimini, Italy for the egg stages. (A)
The number of eggs predicted by the model. The blue line is the total number of eggs across
all classes, the orange line is the number of active eggs, the green line represents the number of
diapausing eggs, and the purple line the number of quiescent eggs. (B) How the duration of the
active eggs, τEγ , stage varies throughout the period considered.(C) How the proportion of eggs
that survive through the egg class, SEγ , varies.

To compare the number of eggs predicted by the model to the number of eggs collected in
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ovitraps in Rimini I apply equation 3.31 to the predicted population dynamics to produce a

prediction of oviposition activity (Figure G.1A). The models predictions of total egg number and

the calculated oviposition activity display different dynamics. This occurs due to the varying

duration of the egg stage, temperature induced fluctuations in the length of the gonotrophic

cycle, and variation in adult trait, leading to different numbers of eggs accumulating in the

habitat than are detected in the regularly sampled ovitrap. To make the comparison between

the models prediction and field observation I apply a scaling factor and time-shift to maximize

R2. The scaling factor applied is, sf = 0.007, and I find that no time-shift is required. Under

these transformations the model predicts the observed oviposition activity in Rimini in 2008

accurately with R2 = 0.92.

Figure F.3: A comparison of the predictions of the model (blue line) and field data (orange
points and line) in the Emilio-Romagna region in the year 2008
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F.3 Larvae

In Figure F.4 the abundance and traits that are predicted for larval mosquitoes are shown. The

initial generation of larvae emerges due to the release of dormant eggs from diapause resulting in

the synchronised spike in larval density observed at the start of the active season (Figure F.4A).

After this initial generation of pharate larvae, larval numbers increase over the course of the

year, eventually reaching densities unfavourable for successful development. This leads to low

through stage-survivals towards the latter half of the year, which is compounded by the decrease

in temperature that occurs over the same period.

F.4 Adults

The model’s predictions of adult abundance follow the same seasonal trends exhibited by eggs

and larvae. The wing length of adults varies through the season and between years but generally

in this region the first generation of adults produced from pharate larvae have low wing lengths

due to developing under unfavourable temperatures. Wing length then increases as tempera-

tures increase towards the end of summer and then subsequently decrease as larval competition

intensifies. Between years there is variation in the time of peak adult population, the start and

end of the active season, and in the population’s trait distribution.
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(A)

(B) (C)

Figure F.4: Outputs from the model when simulated in Rimini, Italy for the larval stage. (A)
The number of larvae predicted by the model. (B) How the duration of the larval stage, τL,
varies throughout the period considered.(C) How the proportion of eggs that survive through
the larval stage, SL, varies.
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(A) (B)

Figure F.5: Outputs from the model when simulated in Rimini, Italy for the adult stage. (A)
How the number of adults varies through the year. Each coloured line represents the number
of adults in an environmental class with a specific wing length, and the black line is the total
number of adults across all environmental classes. (B) The model’s prediction of the wing lengths
expressed by adults in Rimini, the orange line is the population average trait and each blue line
represents the proportion of adults within the population that express the corresponding wing
length.

G Validations of the population dynamical model

Here the model derived in Chapter 3 is validated by comparing the predictions the model makes

about the population and trait dynamics of Ae. albopictus to data observed in field studies.

To compare the predicted dynamics to those observed in the field population goodness of fit is

quantified using R2. As both the field studies and the model’s predictions only reflect relative

abundance a scaling factor is uniformly applied to the predictions. The precise time of sampling

is often ambiguous and so a uniform time-shift of observations by up to half of the interval

between samples is also permitted. The scaling factor and time-shift pair is selecting by trialling

a range of possible values and retaining the pair that produces the maximum R2 value. For

datasets with multiple years of observations a single scaling factor and time shift is used for

the entire dataset, preserving comparisons of relative density and fit between years. For each

validation both the scaling factor and the time shift are reported in addition to the value of R2.
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G.1 Europe

Emilio-Romagna, Italy

A network of ovitraps is maintained throughout the Emilio-Romagna region of Italy and the

observations from these traps have been published in the years 2008, 2014, and 2015 (Carrieri

et al., 2012, 2017). The sampling method used in 2008 was different to that used in 2014− 2015

and so although observations in 2014 and 2015 are directly comparable to each other they cannot

be compared to observations from 2008. The model predicts the observed oviposition activity

in 2008 accurately with R2 = 0.92 (Figure G.1A) with a scaling factor of sf = 0.007 and

adjusted time step of ts = 0 days. For the data for the combined years 2014 − 2015 the same

validation process yields R2 = 0.70, ts = 3, sf = 0.04, and the model convincingly reproduces

the difference in oviposition activity between the years (Figure G.1B).

(A) (B)

Figure G.1: A comparison of the predictions of the model (blue line) and field data (orange
points and line) in the Emilio-Romagna region in the years (A) 2008 (B) 2014-2015.

In addition to oviposition activity, nuisance factor was estimated through human landing col-

lections. To replicate this the biting rate as defined in the SIR model is used along with the

predictions of adult abundance to predict the number of bites the simulated population pro-

duces per day, (i. e.
∑m

j=1 b(t)Aj(t)) and compare this the field observations. As can be seen in

Figure G.2 the models prediction of number of bites per day sensibly follows the dynamics of
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the observed nuisance factor.

Figure G.2: A comparison of the predictions of nuisance factor from the model (blue line) and
field data (orange points and line) in the Emilio-Romagna region in the year 2008.

Rome, Italy

Toma et al. (2003) monitored the oviposition activity of Aedes albopictus in Rome, Italy in the

year 2000 (Toma et al., 2003). The model adequately predicts the dynamics of this population

with a fit of R2 = 0.84, sf = 0.008, ts = 0 (Figure G.3).

Como, Italy

Suter et al. (2016) monitored the oviposition activity of Aedes albopictus along the Swiss/Italian

border in an intervention area and non-intervention area over two years (Suter et al., 2016) . The

model is simulated in the non-intervention area in, Como, Italy. In Figure G.4 the comparison

of model prediction to field data is R2 = 0.69, sf = 0.028, ts = −2.
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Figure G.3: A comparison of the predictions of the model (blue line) and field data (orange
points and line) for Rome, Italy in the year 2000.

Figure G.4: A comparison of the predictions of the model (blue line) and field data (orange
points and line) for Como, Italy for the years 2012− 2013.
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Catiania, Italy

Belle et al. (2018) monitored the oviposition activity in Catiania, Italy in the years 2008 and

2013 (Bella et al., 2018). The model is simulated in the citrus orchard, and in Figure G.5 it can

be observed that the model performs well, R2 = 0.82, sf = 0.26, ts = 18.

Figure G.5: A comparison of the predictions of the model (blue line) and field data (orange
points and line) for Catiania, Italy for the years 2008 and 2013.

Trentino, Italy

Roiz et al. (2011) monitored the adult activity in Arco in 2008 (Roiz et al., 2011). The model

achieves a fit of R2 = 0.84, sf = 0.18,ts = −1, as seen in Figure G.6A. Mairini et al. (2017)

monitored adult activity in a range of towns in the region for the years 2014 − 2015 (Marini

et al., 2017). To this data the model achieves a fit of R2 = 0.82, ts = −4, sf = 0.13 as seen

in Figure G.6B. Museo delle Scienze (MUSE) Italy monitored oviposition activity in the years

2010−2020 in Trento (Museo delle Sceinze, 2021). A good fit is achieved to the multi-year data

set with, R2 = 0.68, ts = −5, sf = 0.032, (Figure G.6C) and the model reflects the inter-annual
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differences in abundance that can be observed in this data.

(A) (B)

(C)

Figure G.6: A comparison of the predictions of the model (blue line) and field data (orange
points and line) for data from the Trentino region. (A) Comparison of observed adult from Roiz
et al. (2011) to model predictions in the year 2008. (B) Comparison of observed oviposition
activity from Mairini et al. (2017) to model predictions in the years 2014−2015. (C) Comparison
of observed oviposition activity in Trento collected by MUSE to model predictions in the years
2010− 2020.
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Cosenza, Italy

Bonnacci et al. (2015) observed the oviposition activity of Aedes albopictus in Cosenza, Italy

in 2013 (Bonacci et al., 2015) . It is unclear when exactly the observations were made as each

data point corresponds to a week of the study rather than time of the year. To compare field

observations with the models predictions it is necessary to use contextual clues but this could

be inaccurate by several weeks. The model fit is R2 = 0.50, sf = 0.09, ts = 10 (Figure G.7).

Figure G.7: The predicted oviposition activity of Ae. albopictus in Cosenza, Italy compared
to oviposition data from Bonacci et al. (2015)

Cagnes-sur-Mer, France

Lacour et al. (2015) monitored the oviposition activity of Aedes albopictus in Cagnes-sur-Mer,

France over the years 2011 − 2013 (Lacour et al., 2015). The dynamics of this population are

adequately predicted over multiple years with, R2 = 0.63, sf = 0.018, ts = 7 (Figure G.8)
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Figure G.8: A comparison of the predictions of the model (blue line) and field data (orange
points and line) for Cagnes-sur-Mer, France in the years 2010− 2012.

Novi Sad, Serbia

In 2020 − 2021 the oviposition activity in Novi Sad, Serbia was monitored. This data was

obtained through communication with Dušan Petrić. The model achieves a fit of, R2 = 0.47,

ts = 2, sf = 0.012 found in Figure G.9.

Podgorica, Montenegro

Oviposition activity was monitored in Podgorica, Montenegro in 2013. This data was obtained

through communication with Igor Pajović. The model achieves a fit of R2 = 0.57, ts = 7,

sf = 0.011 (Figure G.10).
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Figure G.9: A comparison of the predictions of the model (blue line) and field data (orange
points and line) for Novi Sad, Serbia over the years 2020− 2021

Figure G.10: A comparison of the predictions of the model (blue line) and field data (orange
points and line) for Podgorica, Montenegro for the year 2013.
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Zambelici, Montenegro

Oviposition activity was monitored in Zambelici, Montenegro in the years 2018 − 2019. This

data was obtained through communication with Igor Pajović. In Figure G.11 it can be observed

that the model achieves a fit of R2 = 0.35, ts = 1, sf = 0.021.

Figure G.11: A comparison of the predictions of the model (blue line) and field data (orange
points and line) for Zambelici, Montenegro over the years 2018− 2019. The dashed purple lines
indicate the times at which control efforts occurred.

Budva, Montenegro

Oviposition activity was monitored in Budva, Montenegro in 2012. This data was obtained

through communication with Igor Pajović. Figure G.12 shows that the model achieves a good

fit to data with R2 = 0.83, ts = −1, sf = 0.015.
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Figure G.12: A comparison of the predictions of the model (blue line) and field data (orange
points and line) for Budva, Montenegro in 2012.

Ludwigshafen, Germany

Becker et al. (2022) monitored oviposition activity in Ludwigshafen in the year 2020 (Becker

et al., 2022). Figure G.13 compares the model’s predictions to the data find good agreement,

R2 = 0.68, ts = −4, sf = 0.027, however note that the model predicts oviposition activity for

two months after it stopped in the field which may be attributable to the control activities in

the area.

Freiburg im Breisgau, Germany

Becker et al. (2022) monitored oviposition activity in Freiburg in Breisgau in the year 2020,

in an area where vector control had been implemented and in an area with no vector control.

Figure G.14 compares the models predictions to the data from the non-intervention area and

finds a good agreement, R2 = 0.98, ts = 2, sf = 0.139.
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Figure G.13: A comparison of the predictions of the model (blue line) and field data (orange
points and line) for Ludwigshafen, Germany, for the year 2020.

Figure G.14: A comparison of the predictions of the model (blue line) and field data (orange
points and line) for Freiburg im Breisgau, Germany in 2020.
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Irun, Spain

Goiri et al. (2020) monitored oviposition activity in Northern Spain over the years 2013− 2018,

with Ae. albopictus being first detected in the region the simulation is based, Irun, in 2015

(Goiri et al., 2020) . This population was actively invading the region at the time of the

study and there were trials of different controls methods concurrent with the sampling. These

control programmes were “non-unified” and “barely effective” and it is likely the control efforts

coincided with continuous introduction events occurring throughout this period (Goiri et al.,

2020).Figure G.15 shows that the models predictions do not consistently match the observed

field data with the model only achieving a fit of R2 = 0.031, ts = −14, sf = 0.01. In Goiri et al. it

is observed that Ae. albopictus populations often take a few years to establish and this combined

with the control efforts in previous years could explain the discrepancy between observed and

predicted oviposition activity. The fit for only 2018 is R2 = 0.50, sf = 0.004,ts = −10.

Figure G.15: A comparison of the predictions of the model (blue line) and field data (orange
points and line) for Irun Spain over the years 2015− 2018. The dashed purple lines indicate the
times at which control efforts occurred.
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Baix Llobregat, Spain

Collantes et al. 2015 report the average oviposition activity observed for each week of the year

in Llobregat, Spain for the years 2006 − 2014 (Collantes et al., 2015). The model is simulated

for these years and calculate the average oviposition activity. Figure G.16 shows the simulation

which achieved a fit of R2 = 0.8, sf = 0.009,ts = 1.

Figure G.16: A comparison of the weekly mean oviposition activity in the years 2006− 2014
as predicted by the model (blue line) and field data (orange points and line) for Baix Llobregat.
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Split, Croatia

Zitko and Merdic report oviposition data from Split, Croatia for the years 2009 − 2010 (Žitko,

Merdić, 2014). Figure G.17 shows that the model predicts the phenology and population dy-

namics of both years well with R2 = 0.77, sf = 0.051,ts = −1.

Figure G.17: A comparison of the predictions of the model (blue line) and field data (orange
points and line) for Split, Croatia in the years 2009− 2010.

Loule, Portugal

Osorio et al. (2020), monitored the oviposition activity and number of adults in Loule, Portugal

in the year 2019 (Osório et al., 2020). SDMs find this area is unsuitable for populations due

to a lack of precipitation (Petrić et al., 2021), but the model predicts that a population can

be maintained and achieves a good fit to the observed field data for both oviposition activity

in Figure G.18A, R2 = 0.78, sf = 0.71,ts = −14, and adult numbers in Figure G.18B with,

R2 = 0.44, sf = 0.31, ts = −13 .
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(A) (B)

Figure G.18: A comparison of the predictions of the model (blue line) and field data (orange
points and line) for Loule, Portugal in the years 2019. (A) Oviposition activity. (B) Adult
numbers.

Athens, Greece

Giatropoulos al. (2012) monitored oviposition activity in Athens, Greece in the years 2009−2010.

Figure G.19 shows that the fit of the model to data is poor R2 = 0.12, sf = 0.03,ts = 4. The

poor fit to the data may be explained by the lack of precipitation in this region making the

larval habitat unsuitable for the development of juveniles. It is likely given the urban nature

of Athens that the field population observed here is at least in part reliant on sources of water

that are not rain-fed.

Figure G.19: A comparison of the predictions of the model (blue line) and field data (orange
points and line) for Athens, Greece in the years 2009− 2010.
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G.2 America

Lake Charles, Louisiana

Willis and Nasci (1994) measured the abundance and average wing length of adult mosquitoes

in Lake Charles, Louisiana in the year 1988 (Willis, Nasci, 1994). Sampling of both host-seeking

adults and of adults emerging from pupae collected from tyres was undertaken and reported sepa-

rately and monthly averages are reported. It was found that the average wing-length of emerging

and host-seeking adults were significantly different, indicating that population dynamical pro-

cesses contribute to trait distribution. This study provides three points of comparison to the

model predictions which are explored in Figure G.20. Figure G.20A shows the comparison of

the model’s predicted wing length to the observed average wing lengths and the average wing

length of emerging adults. The model predicts both the average wing length of host seeking

adults and the average wing length of emerging adults well. Additionally, in Figure G.20B it can

be observed that the model also accurately predicts adult activity with R2 = 0.995, sf = 0.017,

ts = 14.

New Orleans, Louisiana

Comiskey et al. (1999) measured the wing length of Aedes albopictus in New Orleans in 1995, the

method of trapping used is unknown and there was a prevalent infection throughout that altered

both adult and larval mortality, reduced adult wing-length and had its own seasonal dynamics

(Comiskey et al., 1999). Figure G.21A shows that the model fails to capture the average wing

length of the population. However, the resemblance to the observed population dynamics is

better the model comparison to the larval dynamics being, R2 = 0.61, sf = 0.01, ts = 11

(Figure G.21B), and to the adult dynamics with, R2 = 0.37, sf = 0.11, ts = 13 (Figure G.21C).
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(A)

(B)

Figure G.20: Comparison of model predictions to observed field data for a population of Aedes
albopictus in Lake Charles, Louisiana. (A) A comparison of the models predicted average wing
length to that of adults in the field. The green line is the simulated average wing length with
each blue line representing the proportion of adults within the simulated population that express
a particular wing length. The orange line is the observed wing length of host seeking adults,
and the purple line the average wing length of adults that emerged from pupae collected on the
sampling days. (B) A comparison of the number of adults the model predicts are present at
time t and the observed number of adults captured in the field.
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(A)

(B) (C)

Figure G.21: Comparison of model predictions to observed field data for a population of Aedes
albopictus in New Orleans. (A) A comparison of the observed and predicted trait dynamics.
The green line is the simulated average wing length and each blue line represents the proportion
of adults within the simulated population that express a particular wing length. The orange
line is the observed wing length of host seeking adults, and the purple line the maximum wing
length among adults sampled and the red line the minimum. (B) A comparison of observed
and predicted larval dynamics. (C) A comparison of observed and predicted adult dynamics.
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Fort Worth, Texas

We compare the models predictions to adult collections from CDC-gravid traps in Fort Worth,

Texas with data sourced from Vectorbase. For each of the three years the model predicts the

timing of the first population peak accurately but overestimates adult density in the later part

of the year, as can be observed in Figure G.22 (R2 = 0.27, sf = 0.004,ts = 14). One potential

explanation for this overestimation could be the type of trap used in this collection, as gravid

traps target adult mosquitoes that have successfully mated, taken a blood meal, and begun

seeking an oviposition site. It has been previously demonstrated that traps targeting ovipositing

mosquitoes collect larger individuals on average than passive trapping methods (Yeap et al.,

2013). By only considering the abundance of adults with wing lengths greater than 2.7mm a

more convincing fit to the data is achieved (R2 = 0.45, sf = 0.007,ts = −10).

(A) (B)

Figure G.22: Comparison of model predictions to observed field data for a population of Aedes
albopictus in Fort Worth, Texas in the years 2015 − 2017. (A) All adults. (B) Only adults
larger than 2.7mm.

Stratford, Connecticut

Armstrong et al. (2017) monitored the number of adults and larvae in Stratford, Connecticut

in the years 2013 − 2017 (Armstrong et al., 2017). The fit for the adult data is R2 = 0.06,

ts = −7, sf = 0.06 (Figure G.23A), and for the larval data the fit is R2 = 0.13, ts = −1,
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sf = 0.024 (Figure G.23B). The poor fit observed in the model fit to the majority of the data

is potentially due to a failure to capture populations overwintering dynamics as this population

regularly experiences cold winters. Cold tolerance in Ae. albopictus is known to be genotypically

plastic and so the disparity between model predictions and field observations would likely be

improved by a more specific model. This could also be attributed to the lack of life-history data

at lower temperatures meaning that cold weather survival is generally overestimated. Despite

this, in the years 2013 and 2016 when the population is clearly established the model adequately

anticipates the observed dynamics even if failing to capture the changes in relative abundance.

For just these years a fit of R2 = 0.08, ts = 1, sf = 0.78 is achieved to the adult data and a fit

of R2 = 0.39, ts = −1, sf = 0.019 to the larval data.

(A) (B)

Figure G.23: A comparison of the predictions of the model (blue line) and field data (orange
points and line) for Stratford, Connecticut in the years 2013− 2017, for (A) number of adults
(B) number of larvae.

Monmouth, New Jersey

Fonesca et al. (2012) monitored adult numbers and oviposition activity in Mercer and Monmouth

counties in New Jersey over the course of a year in intervention and non-intervention areas

(Fonseca et al., 2013). The dynamics of a population in Monmouth county are simulated and

compared to the non-intervention data. The model achieves a good fit to the observed oviposition
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activity with, R2 = 0.51, sf = 0.002,ts = −7 (Figure G.24A) but not the adult dynamics,

R2 = 0.26, sf = 0.066,ts = 5 (Figure G.24B). Note however, the similarity between the

predicted adult dynamics and those observed in neighbouring Mercer county as described in

Fonesca et al. .

(A) (B)

Figure G.24: A comparison of the predictions of the model (blue line) and field data (orange
points and line) for Monmouth, New Jersey in the years 2009, for (A) oviposition activity (B)
number of adults.

Charlotte, North Carolina

Three different studies monitored the dynamics of Ae. albopictus in Charlotte, North Carolina.

Mundis et al. (2021) measured the average wing-length of adults captured by gravid Aedes traps

and the model’s predictions align well with the observed trait dynamics (Figure G.25A ). Field

data for the oviposition activity of Ae. albopictus in the year 2016 as used in the study Reed

et al. (2018) was obtained from VectorBase (Reed et al., 2019). Figure G.25B shows that the

model achieves the following fit to the oviposition activity data, R2 = 0.38, ts = 14, sf = 0.003.

Whiteman et al. (2018) monitored the number of gravid adults in Charlotte in 2017, the model

achieves a fit of R2 = 0.06, ts = −6, sf = 0.024 (Figure G.25C) (Whiteman et al., 2018).
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(A)

(B) (C)

Figure G.25: A comparison of the predictions of the model (blue line) and field data (orange
points and line) for Charlotte, North Carolina in the year 2016, for (A) Trait values, (B)
Oviposition activity, (C) Adult numbers.
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Raleigh, North Carolina

Reed et al. (2019) monitored the oviposition activity in Raleigh, North Carolina. Figure G.26

shows that the model predicts the observed dynamics with, R2 = 0.80, sf = 0.003,ts = 6.

Figure G.26: A comparison of the predictions of the model (blue line) and field data (orange
points and line) for Raleigh, North Carolina in the year 2016.

Asheville, North Carolina

Reed et al. (2019) monitored the oviposition activity in Asheville, North Carolina. In Figure G.27

the model predicts the observed dynamics with, R2 = 0.51, sf = 0.0018,ts = 3.

Figure G.27: A comparison of the predictions of the model (blue line) and field data (orange
points and line) for Asheville, North Carolina in the year 2016.
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Greenville, North Carolina

Reed et al. (2019) monitored the oviposition activity in Greenville, North Carolina. In Fig-

ure G.28 the model predicts the observed dynamics with, R2 = 0.40, sf = 0.0028,ts = 7.

Figure G.28: A comparison of the predictions of the model (blue line) and field data (orange
points and line) for Greenville, North Carolina in the year 2016.

Indianapolis, Indiana

We obtained adult data from VectorBase for Indianapolis, Indiana for the years 2018− 2020 to

which the model achieves a fit of R2 = 0.69, sf = 0.0012,ts = −3 as seen in Figure G.29.

Figure G.29: A comparison of the predictions of the model (blue line) and field data (orange
points and line) for Indianapolis, Indiana for the years 2019− 2020.

187



Washington, D.C.

From VectorBase adult trapping data was obtained from Washington D. C. . The provenance

of this data is unclear and it features high variation in inter-year abundance and so years where

observed adult densities are within the same order of magnitude are selected summarised by

month, when this is done a fit of R2 = 0.25, sf = 0.12,ts = 2 is achieved (Figure G.30).

Figure G.30: A comparison of the predictions of the model (blue line) and field data (orange
points and line) for Washington, D.C. for the years 2010− 2014.

Colombus, Ohio

From VectorBase adult data was obtained from Colombus, Ohio in 2018. A fit of R2 = 0.1,

sf = 0.038,ts = −8 is achieved (Figure G.31).

Suffolk, Virginia

We obtained adult data from VectorBase for Suffolk, Virginia for the years 2009−2018 to which

the model achieves a fit of R2 = 0.65, sf = 0.16,ts = 8 as seen in Figure G.32.
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Figure G.31: A comparison of the predictions of the model (blue line) and field data (orange
points and line) for Colombus, Ohio for the years 2018.

Figure G.32: A comparison of the predictions of the model (blue line) and field data (orange
points and line) for Suffolk, Virginia in the years 2009− 2018.
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Santa Rosa Beach, Florida

We obtained adult data from VectorBase for Santa Rosa Beach, Florida for the years 2014−2017

to which the model achieves a fit of R2 = 0.18, sf = 0.006,ts = 7 as seen in Figure G.33.

Figure G.33: A comparison of the predictions of the model (blue line) and field data (orange
points and line) for Santa Rosa Beach, Florida in the years 2014− 2017.
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G.3 Asia

Naha, Japan

Toma et al. 1982 monitored the population dynamics of Ae. albopictus in Naha, Japan in the

years 1978− 1979 (Toma et al., 1982). This study is notable as the only validation set to report

data from all life-stages and reports the number of eggs, larvae, pupae, and adults in the years

in which the study was conducted. The model predicts the population dynamics at the start

and the end of the year well for eggs and larvae (Figures G.34A and G.34B) The adult dynamics

(Figure G.34C) are correctly predicted throughout the season. (A) R2 = 0.3, ts = 14, sf = 0.02

(B) R2 = 0.4, ts = 11, sf = 0.04 (C) R2 = 0.41, ts = 14, sf = 0.04.

(A) (B)

(C)

Figure G.34: A comparison of the predictions of the model (blue line) and field data (orange
points and line) for Naha, Japan in the year 1978 for (A) Oviposition activity. (B) Number of
larvae. (C) Number of adults.
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Nagasaki, Japan

Suzuki et al. (1993) monitored the dynamics of a population of Ae. albopictus in Nagasaki,

Japan in (1990) (Suzuki et al., 1993). Figure G.35A shows that to the adult data a good fit

is achieved with, R2 = 0.87, ts = 2, sf = 0.18. The same authors measure the average wing

lengths of adults collected during this period and the model adequately predicts the observed

seasonal variation as can be seen in Figure G.35B.

(A) (B)

Figure G.35: A comparison of the predictions of the model (blue line) and field data (orange
points and line) for Nagasaki, Japan in 1990 for (A) Adults numbers. (B) Average wing length.

Tokyo, Japan

Kori et al. (2020) monitored the number of adults parks around Tokyo in years between 2010

and 2018, and adult and larval numbers in Yoyogi park in the years 2015 − 2017 (Kori et al.,

2020). After a dengue outbreak in 2014 larval habitats were destroyed in the Tokyo metropolitan

area and adulticides and larvicides are now regularly used in these areas and this may explain

the general poor fit the model achieves to the majority of this data. To the adult collections

from all major parks I achieve a fit of R2 = 0.27, ts = 7, sf = 0.023 in Figure G.36A. To the

adult collections from Yoyogi park after the intervention I achieve a fit of R2 = 0.13, ts = −6,

sf = 0.13 in Figure G.36B. To the larval collections from Yoyogi park I achieve a fit of R2 = 0.01,
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ts = 14, sf = 0.028 in Figure G.36C.

(A) (B) (C)

Figure G.36: A comparison of the predictions of the model (blue line) and field data (orange
points and line) for Tokyo, Japan in years between 2010 and 2018 for (A) Adult numbers
observed in major parks around Tokyo. (B) Adult numbers observed in Yoyogi park in the
years 2015− 2017. (C) Larval numbers observed in Yoyogi park in the years 2015− 2017.

Guangzhao, China

In Guangzhao, Xia et al. (2018) measured oviposition activity in 2017 and Xu et al. (2017)

monitored adult numbers in the years 2006 − 2015 (Xia et al., 2018; Xu et al., 2017). In

Figure G.37B it should be noted that in 2015 control activities were increased following a large

dengue outbreak in 2014 explaining the low observed adults that year and so is excluded from

the fitting. The model achieves a fit of, R2 = 0.50, ts = 7, sf = 0.027, to the oviposition activity

data (see Figure G.37A) and a fit of, R2 = 0.58, ts = 8, sf = 0.0045 to the adult data (see

Figure G.37B).
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(A)

(B)

Figure G.37: A comparison of the predictions of the model (blue line) and field data (orange
points and line) for Guangzhao, China over the years 2006− 2018. (A) Oviposition activity for
2017 with data taken from Xia et al. (2019). (B) Adult abundance for the years 2006 − 2015
with data taken from Xu et al. (2017).
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Suwon, South Korea

Hwang et al. (2020) (Hwang et al., 2020) monitored adult numbers in Suwon, South Korea in

the year 2016. Figure G.38 shows the model predicts the observed dynamics with, R2 = 0.90,

ts = 3, sf = 0.042.

Figure G.38: A comparison of the predictions of the model (blue line) and field data (orange
points and line) for Suwon, South Korea in the year 2016.

G.4 Africa

La Réunion

La Réunion has experienced regular outbreaks of dengue vectored by Ae. albopictus since 2015

(Vincent et al., 2019). These outbreaks are notable in the context of this work as they occur in

a tropical region and are as close to endemic dengue dynamics as that are considered here.

Gougna et al. 2010 (Gouagna et al., 2020) monitored oviposition activity and observed around

200 eggs per ovitrap in each sample between October to April, which I find roughly matches

the models predictions of oviposition activity. Harambourne et al. (2020) (Haramboure et al.,

2020) performed larval surveys in five locations across the north of La Réunion in the years

2012 and 2013. Figure G.39 shows that the model adequately predicts observed differences in

larval dynamics between locations and years. In Saint-Paul the model predicts the observed
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population dynamics with, R2 = 0.54, ts = −2, sf = 0.027, see Figure G.39A. In La Possession

the model predicts, R2 = 0.51, ts = −1, sf = 0.027, see Figure G.39B. In Saint-Bennoit I

predict, R2 = 0.002, ts = −3, sf = 0.13, as shown in Figure G.39C. In Saint-Marie I predict,

R2 = 0.17, ts = 2, sf = 0.05 as shown in Figure G.39B.

(A) (B)

(C) (D)

Figure G.39: A comparison of the predictions of the model (blue line) and field data (orange
points and line) for larvae in sites around La Réunion. (A) Saint-Paul (B) La Possession (C)
Saint-Bennoit (D) Saint-Marie.

In Saint-Marie oviposition activity data is available for the years 2013 − 2014 to which a fit of

R2 = 0.19, ts = −6, sf = 0.019 is achieved as shown in Figure G.40.
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Figure G.40: A comparison of the predictions of the model (blue line) and field data (orange
points and line) for oviposition activity in Saint-Marie in the years 2013− 2014

H Validations of the SIR model

To validate the SIR model I compare the daily or weekly number of dengue cases observed

over the course of real-world dengue outbreaks and compare them directly to the model output.

Unlike the validations for the model of the population dynamics of Ae. albopictus no scaling

factors are applied, although a uniform time-shift of 14 days is applied across all locations to

roughly approximate the delay between when a dengue case is contracted and when it is detected

(Yuan et al., 2019). In addition to the usual environmental parameters I must determine an

appropriate human population density per 4km2, define a scenario for the introduction of dengue

into the human population, and choose an area over which to simulate the model. To determine

human population density the Gridded Population of the World, Version 4 (GPWv4) is used

(Palisades, , SEDAC). To determine the introduction of infected humans into the population

I look to contact tracing and imported case detection undertaken during the course of the

outbreak. The area an outbreak has occurred over is determined by consulting maps of the

spatial distribution of dengue cases.

For many of the outbreaks considered the number and timing of case introductions is not pre-

cisely known. Even for those outbreaks where considerable effort was expended on tracking

introduction events the sensitivity of the model to the precise timing of these events and the
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stochastic nature of the initial stages of an outbreak means that there are many reasonable

introduction scenarios I might choose. At each of the outbreak locations different forms of

mosquito control activity were employed and I do not account for these in any way. Control

activities commonly include larval source reduction, the application of adulticides and larvi-

cides, in combination with public health awareness campaigns and so I do not expect the effect

of these control activities to be uniform across outbreak locations. This uncertainty is further

exacerbated by the underlying assumptions that are made by the model for mosquito population

dynamics. The aim of these validations is therefore only to demonstrate that under reasonable

assumptions the model can recreate the dynamics and magnitude of dengue outbreaks. Despite

this, under plausible conditions a good resemblance between observed and predicted dengue

dynamics is achieved over a broad range of environments.

H.1 Cagnes-sur-Mer

In this region of France there are sporadic instances of autochthonous transmission of dengue

that occur between the months of August and October (ECDC, 2022a). These outbreaks are

typical of those currently experienced throughout Europe where despite the regular introduction

of dengue there is little evidence of sustained cycles of disease transmission. I simulate the

SIR model in this region for the years 2018, 2019, and 2020 under an introduction scenario

such that a single infected individual is introduced on the first day of the first month that a

dengue transmission event was reported. In Figure H.1 I see that in each year a very limited

amount of dengue spread is predicted within the same order of magnitude as is observed in

the field. Although the relative size of each outbreak is correctly predicted, there is substantial

uncertainty in the model estimate due to the unknown amount of dengue introduced to each

area, the unknown time of introduction, the role of stochasticity in the size of small outbreaks.
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Figure H.1: A comparison of the total number of dengue cases observed in the Alpes-Maritimes
department of France predicted by the model and observed in the field in the years 2018−2020.

H.2 Guangzhou, China

There are regular dengue outbreaks in the Guangdong region for which Ae. albopictus is the

primary vector, and here the SIR model is used to predict dengue dynamics in the years for

which detailed dengue onset data is available. I specifically consider 2013, in which there was

a relatively small outbreak, and 2014 in which there was a much larger outbreak (Xu et al.,

2017). High numbers of cases were observed over an area of roughly 80km2 in a region in which

there is on average a population density of 32, 000 people per km2 (Yue et al., 2018). Using

the SIR model the infectious individual introduction scenarios described in Luo et al. (2017) are

replicated, introducing 30 infectious individuals over the region of interest through the year in

2014 with a limited initial introduction in 2013. In Figure H.2 it can be seen that under these

conditions convincing dengue dynamics over the years of interest are produced, capturing the

relative magnitude of the outbreaks well in addition to the initial period of infection. Although

in 2013 the dynamics towards the end of the outbreak are convincingly replicated, this seems

not to be the case in 2014. This mismatch likely occurs due to the substantial intervention that

occurred in response to the 2014 outbreak which likely prevented the continued transmission

of disease. The total number of dengue cases observed in 2014 in Guangzhou city was 36, 342
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and a previous study based on time series analysis estimated that the intervention prevented

an additional 23, 302 cases of dengue (Lin et al., 2016b). I broadly agree with this figure and

predict that the intervention prevented an additional 27, 907 cases of dengue in 2014.

Figure H.2: A comparison of the predictions of the model (blue line) and disease incidence
data (orange line) for Guangzhou, China for the years 2013− 2014.

H.3 Tokyo, Japan

In 2014 in Tokyo there was an outbreak of dengue fever centred around Yoyogi park (Yuan

et al., 2019). This outbreak coincided with an international festival that made determining

the initial introduction event difficult, and so I choose an introduction scenario similar to that

used in Cagnes-sur-Mer, with the first case introduced on the 1st day of the first month that

transmission was reported. In Figure H.3 I see that the model predicts the dengue dynamics
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well, and it appears that the intervention had minimal effect on transmission dynamics.

Figure H.3: A comparison of the predictions of the model (blue line) and disease incidence
data (orange line) for Tokyo, Japan for the year 2014.

H.4 Réunion, France

We use the SIR model to predict the dengue dynamics of the 2017−2021 dengue outbreak. This

outbreak began in 2016 with introduction when DENV-II replaced the previously circulating

DENV-I, however the first year in which DENV-II was the dominant serotype was 2017 when it

circulated at low levels. After subsiding transmission was renewed in 2018 resulting in a moderate

outbreak that caused 6, 770 cases of dengue over the whole year. After once again subsiding the

outbreak continued in 2019 reaching a peak of cases and then being replaced by the end of the

year by an outbreak of DENV-I that continued into 2021 (Hafsia S, Haramboure M, Wilkinson

DA, Baldet T, Yemadje-Menudier L, Vincent M, Tran A, Atyame C, 2022). For the prediction

of this outbreak I define an introduction scenario where infected individuals begin entering the

population in 2017 at a level that amounts to 11 individuals each year, which is in line with

the number of introduced dengue cases observed (Vincent et al., 2019). The dynamics are then

simulated until the end of the outbreak in 2021 and I compare the number of cases predicted to

those that were observed. In Figure H.4 it can be observed that the model predicted the relative
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magnitude of outbreaks well and appears to capture the timing of the outbreaks subsidence and

resurgence between years correctly. The model overestimates the amount of transmission during

the winter months, and this might be attributable to control efforts reducing adult densities by

the end of the year, and so reducing the number of infected adults still in the population. The

switch from DENV-I to DENV-II, in 2020 has not appeared to change the similarity between

the dynamics predicted to those observed, implying that the inter-annual variation observed is

driven by environmental factors rather than the human population’s resistance to dengue.

Figure H.4: A comparison of the predictions of the model (blue line) and field data (orange
points and line) of the total number of dengue cases observed per week in La Réunion for the
years 2017− 2021 .
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H.5 Hawai’i

There was an outbreak of dengue on the island of Hawai’i between 2015 − 2016, cases were

clustered predominately in the west of the island but were observed throughout the region

(Johnston et al., 2020). As of 2010 it was estimated that urban clusters in Hawai’i county

covered a land area of 224.7km2 with an average population density of 1322.1 people per km2,

and these are the conditions under which I simulate the model (U.S. Census Bureau, 2011). As

there is no information available about introduction timing I follow the introduction scenario

outlined for Réunion (Figure H.5).

Figure H.5: A comparison of the predictions of the model (blue line) and field data (orange
points and line) for the number of weekly dengue cases in Hawai’i, America.
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I Non-plastic RT

I.1 Comparison to previous R0 equations

To contextualise the predictions of length of time for which regions are suitable for the au-

tochthonous transmission of dengue by Ae. albopictus I compare my predictions to those made

by a previous mechanistic model by Mordecai et al. (2017) that employed a commonly used

metric to calculate a solely temperature-dependent version of R0 for the same species (Morde-

cai et al., 2017). This model considers only the instantaneous response of each component of

the transmission cycle to temperature and therefore can not consider the effect of population

history on transmission dynamics. Consequently, rather than defining the transmission period

to between the first and last time in a year that R0 > 1, when using this approach instead

define the transmission period to be the longest duration for which R0 > 1 continuously, which

is necessary due to the high variability of temperature data. In this equation a(T ) is the biting

rate of mosquitoes, b(T ) is the proportion of infectious bites that successfully transmit an in-

fection from an infected mosquito to an uninfected human, c(T ) is the proportion of uninfected

mosquitoes that become infected upon biting an infected human. The mortality rate of adult

mosquitoes is denoted µ(t), the intrinsic incubation period is PDR(T ), EFD(T ) is the number

of eggs produced per female mosquito per day, MDR(T ) is the development rate of immature

mosquitoes, N is the population density of humans, r is the rate at which humans recover from

infections. The basic reproduction number R0(T ) is then defined

R0(T (t)) =

(
a(T )2b(T )c(T ) exp−µ(t)/PDR(T )EFD(T )pEA(T )MDR(T )

Nrµ(T )3

)1/2

This metric is computed over the full range considered by the trait-structured model and it

can be observed that this non-plastic and non-dynamic approach predicts broad suitability for

transmission of dengue over a considerably larger region (Figure I.1. Regions known to be at high

risk of dengue outbreaks are often indistinct from those that experience little to no transmission.
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For example, the south of Spain where little dengue transmission has occurred appears to be

at similar risk to Guangzhou, the location of the largest Ae. albopictus vectored outbreak of

dengue.

(A)

(B)

(C)

Months RT > 1

0−1

1−2

2−3

3−4

4−5

5−6

6−7

7−8

8−9

9−10

10−11

11−12

Figure I.1: The number of months for which a metric based R0 approach predicts that the
autochthonous transmission of dengue by Ae. albopictus is possible in (A) Europe. (B) America.
(C) Asia. .
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I.2 Non-plastic RT with model parameters

Although for variable temperatures the integrals in Equation 4.26 do not have closed form

solutions, at constant temperatures the mosquito population is at steady state and therefore RT

is constant. When this is the case the equation for RT recovers many of the terms used in the

common form of the Ross-McDonald type R0 equation and can be expressed

RT (T ) =
τInf ( 1

δA?(T ) − τEIP (T ))b2(T )hv(T )vh(T )A?(T )PEIP (T )

HS

where A?(T ) is the adult steady-state of a population held at constant temperature T , and

δA?(T ) is the associated adult mortality rate of this population.

The behaviour of Equation I.2 at different constant temperatures can be seen in Figure I.2A,

and this is similar in form and optimums to previously derived equations for RT that do not

consider phenotypic plasticity or indeed trait-structure. This similarity between my approach

and previous estimates at constant temperature indicates that the differences observed between

the predictions of transmission duration made here and those made by previous approaches are

not attributable to differences in parametrisation.

To demonstrate that this expression for RT is accurate I can simulate the model at constant

temperature without precipitation or evaporation. I select temperatures TMin such that for when

the model is simulated with temperature TMin − ε, RT < 1 and when simulated at TMin + ε,

RT > 1. The infection dynamics are expected to behave such that in the case RT < 1 the

infection eventually dies out, for RT = 1 the infection is stable, and for R > 1 the number of

infections increases (although for sufficiently large time all infections will die out due to the lack

of immigration or birth). I select TMin = 23.64 and set ε = 0.1 and simulate the model with

a single infection introduced at t = 1000. Figures I.2B-I.2D show that under these conditions

that the infection dynamics behave as expected.
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(A)

(B) (C) (D)

Figure I.2: (a) The value of RT when the population is held at different constant temperatures.
(b) The disease dynamics when RT is slightly less than 1. (c) The disease dynamics when RT = 1.
(d) The disease dynamics when RT is slightly above 1.
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J Glossary and parameter values

Parameter Interpretation Values Source

Environmental variables

t Time Variable N/A

T Temperature Variable ERA5 climate reanalysis

Tavg Average temperature of the larval period Variable ERA5 climate reanalysis

ψ Photoperiod Variable N/A

ρ Precipitation Variable ERA5 climate reanalysis

η Evaporation Variable ERA5 climate reanalysis

µ Surface area of developmental habitat 130cm2 Tomo et al. (1982)

V Volume of developmental habitat 500ml Tomo et al. (1982)

W Height of water in developmental habitat Variable Calculated

l Latitude Variable N/A

F Food in developmental habitat Variable N/A

fd Detritus in larval habitat 80 N/A

Eggs

Eγ Active eggs Variable N/A

EQ Quiescent eggs Variable N/A

ED Diapausing eggs Variable N/A

gEγ Development rate of active eggs Variable N/A

σ11 Parameter in gEγ −0.0008256 Fitted

σ12 Parameter in gEγ 0.0334072 Fitted

σ13 Parameter in gEγ −0.0557825 Fitted

τEγ Stage duration of active eggs Variable Inverse of gEγ

SEγ Through stage survival proportion of active eggs Variable N/A

σ21 Parameter in SEγ 12.217 Fitted

σ22 Parameter in SEγ 6.115 Fitted

σ23 Parameter in SEγ 24.672 Fitted

δEγ Mortality rate of active eggs Variable −log(SEγ )/τEγ

Q Proportion of eggs produced that are quiescent Variable N/A

hQ Proportion eggs of released from quiescence Variable N/A

D Proportion eggs produced that are diapausing Variable N/A

φ Critical photoperiod Variable Armbruster et al. (2016)

hD Proportion eggs of released from diapause Variable N/A

δED
Mortality rate of diapausing eggs Variable N/A

Larvae

L Larvae Variable N/A

α Food per larvae per day Variable N/A

ᾱ Average per larvae per day over developmental period Variable N/A

gL Development rate of larvae Variable N/A

τL Stage duration of larvae Variable Inverse of gL

SL Through stage survival proportion of larvae Variable N/A

ŜL Through stage survival proportion of larvae independently

of density and hydrological processes

Variable N/A

δL Mortality rate of larvae Variable N/A

δd Mortality rate of juveniles when the habitat dries out 0.99 N/A

δf Mortality rate of juveniles during overspill 0.2 N/A

Pupae

P Pupae Variable N/A

gP Development rate of pupae Variable N/A
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σ31 Parameter in gP 2.916e− 05 Fitted

σ32 Parameter in gP 1.008e + 01 Fitted

σ33 Parameter in gP 4.768e + 01 Fitted

σ34 Parameter in gP 8.317e− 01 Fitted

τP Stage duration of pupae Variable Inverse of gP

SP Through stage survival proportion of larvae Variable N/A

ŜP Through stage survival proportion of larvae independently

of density and hydrological processes

Variable N/A

σ41 Parameter in ŜP −0.0070628 Fitted

σ42 Parameter in ŜP 0.3331028 Fitted

σ43 Parameter in ŜP −2.9878761 Fitted

δP Mortality rate of pupae Variable N/A

Adults

Aj Adults in environmental class j Variable N/A

wL Wing length of adults Fitted N/A

τA50 Time until 50% mortality of adults Fitted N/A

wmin Minimum wing length of adults 1.5mm N/A

wmax Maximum wing length of adults 4mm N/A

wj Transition function into environmental class j 4mm N/A

q Number of eggs produced per gonotrophic cycle Variable Blackmore and Lord (2000)

σ51 Parameter in q 2.35 Fitted

σ52 Parameter in q 0.69 Fitted

qj Rate at which an adults in environmental class j produce

eggs

N/A

G Length of gonotrophic cycle Variable Mordecai et al. (2017)

σ61 Parameter in G 1.93e− 04 Fitted

σ62 Parameter in G 10.25 Fitted

σ63 Parameter in G 38.32 Fitted

δAj Mortality rate of adults in environmental class j Variable N/A

Model variables

RX Recruitment of individuals into life-stage X Variable N/A

MX Maturation of individuals out of life-stage X Variable N/A

m Number of environmental classes Variable N/A

j Index Variable N/A

C Impulse to initiate dynamics Variable N/A

Dengue transmission variables

b Biting rate Variable Inverse of G

hv Proportion of uninfected mosquitoes that become infect

after biting an infected human

Variable Liu-Helmersson et al. (2014)

vh Proportion of uninfected humans that become infect after

being bitten by an infected mosquito

Variable Liu-Helmersson et al. (2014)

τEIP Length of the extrinsic incubation period (EIP) Variable Brady et al. (2014)

τIIP Length of the intrinsic incubation period (IIP) 4 Chan and Johansson (2012)

τrec Time taken for infected humans to recover from infection 4 Mordecai et al. (2017)

HS Number of susceptible humans Variable NASA SEDAC

HI Number of infected humans Variable N/A

HR Number of resistant humans Variable N/A

Hb Size of buffer population 3750 Various

HT Total population Variable N/A

κ Number of larval habitats per km2 40 Various

Ij Number of infected mosquitoes in environmental class j Variable N/A
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PEIP Proportion of adults in environmental class j that survive

through the EIP

Variable N/A

Table J.1: Table of parameters and variables.
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napaola. Influence of temperature on the life-cycle dynamics of aedes albopictus population
established at temperate latitudes: A laboratory experiment // Insects. 2020. 11, 11. 1–17.

Mastrantonio Valentina, Crasta Graziano, Puggioli Arianna, Bellini Romeo, Urbanelli Sandra,
Porretta Daniele. Cannibalism in temporary waters: Simulations and laboratory experiments
revealed the role of spatial shape in the mosquito Aedes albopictus // PLoS ONE. 2018.

May Robert M. The Search for Patterns in the Balance of Nature : Advances and Retreats //
Ecology. 1986. 67, 5. 1115–1126.

McClure Katherine M., Lawrence Charlotte, Kilpatrick A. Marm. Land use and larval habitat in-
crease Aedes albopictus (Diptera: Culicidae) and Culex quinquefasciatus (Diptera: Culicidae)
abundance in Lowland Hawaii // Journal of Medical Entomology. 2018. 55, 6. 1509–1516.

McCoy K. D. The population genetic structure of vectors and our understanding of disease
epidemiology // Parasite. 2008. 15, August. 444–448.

McGill Brian J., Enquist Brian J., Weiher Evan, Westoby Mark. Rebuilding community ecology
from functional traits // Trends in Ecology and Evolution. 2006. 21, 4. 178–185.

McManus Donald P., Dunne David W., Sacko Moussa, Utzinger Jürg, Vennervald Birgitte J.,
Zhou Xiao Nong. Schistosomiasis // Nature Reviews Disease Primers. 2018. 4, 1. 1–19.

228
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hesh, Pacella Rosana, Pakhale Smita, Pakhare Abhijit P, Pakpour Amir H, Pana Adrian,
Panda-Jonas Songhomitra, Pandian Jeyaraj Durai, Parisi Andrea, Park Eun-Kee, Parry
Charles D H, Parsian Hadi, Patel Shanti, Pati Sanghamitra, Patton George C, Paturi Vish-
nupriya Rao, Paulson Katherine R, Pereira Alexandre, Pereira David M, Perico Norberto, Pe-
sudovs Konrad, Petzold Max, Phillips Michael R, Piel Frédéric B, Pigott David M, Pillay Ju-
lian David, Pirsaheb Meghdad, Pishgar Farhad, Polinder Suzanne, Postma Maarten J, Pour-
shams Akram, Poustchi Hossein, Pujar Ashwini, Prakash Swayam, Prasad Narayan, Purcell
Caroline A, Qorbani Mostafa, Quintana Hedley, Quistberg D Alex, Rade Kirankumar Waman,
Radfar Amir, Rafay Anwar, Rafiei Alireza, Rahim Fakher, Rahimi Kazem, Rahimi-Movaghar
Afarin, Rahman Mahfuzar, Rahman Mohammad Hifz Ur, Rahman Muhammad Aziz, Rai
Rajesh Kumar, Rajsic Sasa, Ram Usha, Ranabhat Chhabi Lal, Ranjan Prabhat, Rao Puja C,
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