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Abstract

Climate change and ecological disturbances are having profound effects on species survival.
Predicting how populations will adapt to these changes relies on our understanding of how en-
vironment affects species’ life-histories, how this feeds back into abundance, and vice versa. In
general, current modelling frameworks over-simplify these relationships, giving spurious predic-
tions. Here, I derive a novel general mathematical modelling framework that links environmen-
tally induced trait variation to population level responses. Applying the framework to classical
Nicholson’s blowfly experiments I demonstrate how predictions of population’s responses to en-
vironmental change made directly from environment-trait relationships do not always hold. I
demonstrate the framework’s accuracy, and how cryptic population dynamics can emerge from

mechanisms of environmentally driven trait variation.

The framework is then applied to the globally invasive dengue mosquito vector, Aedes albopic-
tus. Developing predictions at a global scale is difficult as environmental variation acts on the
vector-pathogen-host triad in complex and non-linear ways. I show how the species population
and trait dynamics explain the location, magnitude, and timing of historical dengue outbreaks.
By representing the effect of mechanisms of variation on epidemiologically important traits ex-
pressed by vectors, I show that the competence of vector populations to transmit disease changes
according to their current and historic experience of the environment. Long-lived individuals
that developed under favourable environmental conditions can persist within the population long

after the environmental conditions that created them have passed and may consequently have



a disproportionate effect on pathogen transmission. Importantly, this cannot be accounted for
by current modelling approaches that assume all vectors express the same average trait value.
This demonstrates that the representation of mechanisms of trait variation is required to pro-
duce predictions that account for the underlying complexity inherent in population responses to
environmental change, which is required for accurate predictions to inform risk assessment and

mitigation strategies.
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Chapter 1

Introduction

1.1 Aims of the thesis
In this thesis I aim to:

e Develop a general modelling framework to represent the effect of environmentally induced

mechanisms of variation on population’s responses to change.

e Use this framework to predict the population dynamics of the invasive dengue vector Ae.

albopictus and explore how vector trait variation alters the risk of vector-borne disease.

1.2 The role of environmental variation in producing dengue outbreaks

1.2.1 Vector-borne disease

An organism that transmits infectious pathogens between other organisms is called a vector,
and the World Health Organisation estimates that vector-borne viral diseases currently account
for 17% of all disease globally (World Health Organisation, 2017). The incidence of vector-borne

disease is on the rise, representing a significant threat to public health and global economies



(Jones et al., 2008). Driving this rapid change are anthropogenic factors, such as land use
change, climate change, and increased global connectivity through trade and travel (Norris,
2004; Soriano-Pands et al., 2020; De La Rocque et al., 2011; Rocklév, Dubrow, 2020). The
consequences of these disturbances are already evident in the concurrent trends of increasing
of disease burdens in endemic countries and the expansion of diseases to new areas (Kilpatrick,
Randolph, 2012). Implementing effective public health strategies, that will remain robust to the
evolving challenges of an uncertain future, requires a thorough understanding of how the drivers

of vector-borne disease determine the location and intensity of disease outbreaks.

The risk of vector-borne disease in a region is inherently linked to vector ecology. Vectors
encompass a diverse range of taxa and transmit pathogens through a wide range of mechanisms.
Schistosomiasis is a parasitic disease caused by worms and is vectored by aquatic snails through
the release of infectious larvae into fresh-water (McManus et al., 2018). Rats and bats vector
leptospirosis through their urine, a bacterial infection that in its severe form is known as Weil’s
disease (Samrot et al., 2021). However, by far the most prevalent vector-borne diseases are
arboviruses, viruses transmitted through the bites of blood-sucking arthropods (Gubler, 1998).
Vectorial flies, ticks, fleas, midges, and mosquitoes transmit diseases while taking blood meals
from host species. The two most prevalent vector-borne diseases, malaria and dengue, are both
vectored by mosquitoes via this transmission route. While the prevalence of malaria is currently
decreasing thanks to sustained control efforts, it is estimated that the years of lost life to dengue
increased over the period between 2007 — 2017 despite widespread and sustained control efforts

and this is of great concern to global health authorities (Roth et al., 2018).

1.2.2 Dengue

Dengue fever is a viral vector-borne disease that in 2017 was responsible for 40,467 deaths and

an estimated 2,922,630 disability-adjusted life years (Zeng et al., 2021). Dengue incidence has

Oth

rapidly increased since the mid 20" century (Figure 1.1), and as of 2019 there was evidence
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of dengue transmission in 204 countries or territories with up to 3.97 billion people living in
regions classified as “at risk” making dengue a truly global threat. It is estimated that 75% of
dengue cases are sub-clinical and are either asymptomatic or only mildly symptomatic (Duong
et al., 2015). Of the 25% of cases that present with more severe clinical manifestations, infection
begins with a mild illness referred to as dengue fever which may then progress to the more se-
vere dengue haemorrhagic fever (Guzman et al., 2013). DENV has multiple distinct serotypes,
DENV-I, DENV-2, DENV-3, and DENV-4, and infection by one serotype provides life-long pro-
tection from further infection by viruses of that same serotype (Gibbons et al., 2007). However,
secondary infection by other serotypes is both possible and antibody-dependent enhancement
of infection increases the chances of developing more severe forms of dengue when this occurs

(Guzman et al., 2013).
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Figure 1.1: The number of countries reporting dengue and the average number of dengue fever
and dengue haemorrhagic fever cases reported to the WHO between 1955 — 2007. (Geneva:
World Health Organization;, 2009).

Dengue viruses have two primary transmission cycles, a sylvatic cycle between mosquito vectors
and non-human primates hosts, and an urban cycle between Aedes mosquitoes and human
hosts. Sylvatic transmission cycles are thought to be important for the emergence of new
strains of dengue, but have only been confirmed in limited rural regions of Asia and Africa
(Althouse et al., 2015; Valentine et al., 2019). However, unlike arboviruses such as yellow

fever virus, dengue does not rely on the sylvatic cycle and can be maintained solely through
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the urban transmission cycle (Gubler, 2002). Autochthonous instances of dengue transmission
now occur worldwide (Figure 1.2A), but different patterns of disease transmission are observed
across regions that currently experience regular dengue outbreaks. In tropical regions the urban
transmission cycle can be maintained at low levels all year round, with larger outbreaks generally
occurring around once every 3 — 6 years (for example, the outbreak of dengue on La Réunion
reproduced in Figure 1.2B) (Lin et al., 2020). By contrast, in temperate regions the transmission
cycle is interrupted during the cold winter months as conditions become unfavourable for both
virus replication and vector activity (for example, the outbreak of dengue in Tokyo reproduced
in Figure 1.2C) (Watts et al., 1987; Brady et al., 2012). This divides regions where dengue
outbreaks occur into source regions, where the virus is endemic, and sink regions where the

virus must be newly imported each year (Li et al., 2021a).

For an outbreak of dengue to be maintained environmental conditions need to be favourable
both virus and vector, with sufficient contact between vector and host to maintain the infection
within both populations. As mosquitoes are ectotherms, temperature is an important factor
in determining whether a region is at risk of a disease outbreak due to its direct effect on
vector competence and on viral replication rates (Liu et al., 2017). The transmission cycle
(Figure 1.3) begins when an uninfected female mosquito bites an infected human and takes a
bloodmeal, and both the frequency at which mosquitoes bite and the probability of infection
are temperature dependent (Mordecai et al., 2017). Once the mosquito becomes infected the
virus begins replicating in the midgut and once this infection disseminates to the salivary glands
the mosquito becomes infective (Bosio et al., 2000). The time this process takes is called the
extrinsic incubation period (EIP) and the duration of the EIP is also temperature dependent
(Xiao et al., 2014). Finally, the mosquito with a disseminated infection must find and bite an

uninfected host and transmit the infection to complete the pathogen transmission cycle.

By considering the relationship between temperature and each component of the transmission
cycle an understanding can be built of the current patterns of dengue incidence that are observed

around the globe. For example, whenever the temperature is lower than the thermal minimum
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or above the thermal maximum required for transmission, the risk of a dengue outbreak is
clearly low. Similarly, regions with temperatures unsuitable for the development and survival
of the mosquito vectors will also not be at risk (Petrié¢ et al., 2021). However, for populations
of mosquitoes in seasonal environments it is unclear how long the temperature would need to
be above the thermal minimum to facilitate an outbreak, nor how disease risk can be compared
between regions using such an approach making this intuition alone inadequate. The presence of
a competent vector alone has not proved sufficient to predict the occurrence of dengue outbreaks,
and in much of Aedes albopictus’ invasive range there is yet to be any evidence of autochthonous
transmission of dengue (Messina et al., 2019). For example, populations of Ae. albopictus are
now widely established throughout Europe, yet despite the wide-spread presence of established
vector populations and regular introductions of dengue into the region, outbreaks are currently
limited to a small geographical range (Schaffner, Mathis, 2014; Gossner et al., 2022). To guide
vector control efforts it will be critical to understand the reasons why some regions with vector

populations experience regular outbreaks and others do not.

1.2.3 Aedes albopictus

Ae. albopictus is a tree hole mosquito originating from South East Asia and is generally consid-
ered to be the secondary vector of dengue (Waldock et al., 2013). The range of Ae. albopictus
is currently at its widest extent and this range is projected to increase in the coming years
(Kraemer et al., 2019). Populations of Ae. albopictus have now spread to temperate regions
that Ae. aegypti has previously been unable to colonise and in this invaded range sporadic out-
breaks of dengue now occur (Brady et al., 2012). Like all mosquitoes Ae. albopictus undergoes
complete metamorphosis over the course of its lifespan moving through four distinct develop-
mental stages (Abd, 2020). Adult female mosquitoes take blood meals from available hosts to
develop eggs, with an evidenced preference for human hosts but also feeding on a wide variety of
other mammals, and a smaller selection of birds (Richards et al., 2006b). Juvenile mosquitoes

require aquatic habitats to complete development, and oviposition sites are selected according to
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a broad range of criteria, including container size, physical chemical properties of the water, the
presence of conspecific and heterospecific mosquito larvae, resource availability, and the presence

of predators (Shragai et al., 2019; Gunathilaka et al., 2018a; Wasserberg et al., 2013).

Ae. albopictus is known to utilise a range of both natural and artificial containers, requiring min-
imal space and resources to complete development and eclose to the aerial adult stage (Li et al.,
2014). The habitats that Ae. albopictus prefers are small and ephemeral and species has several
adaptations that allow for population persistence in the face of these temporary habitats drying
out (Vitek, Livdahl, 2009). Adult mosquitoes engage in skip oviposition behaviour, distributing
their eggs across many containers in a hedge-betting strategy that provides redundancy in the
eventuality that the water in the container habitat completely evaporates (Reinbold-Wasson,
Reiskind, 2021). If the habitat an egg is placed in does dry out, the eggs of Aedes mosquito
species are desiccation resistant and can remain viable through long periods of time out of the
water (Diniz et al., 2017). This allows for the swift colonisation of bodies of water immedi-
ately after rainfall, and for the persistence of populations through extended periods of drought.
By colonising habitats before other species can become established Ae. albopictus both evades
predators and escapes competition from other mosquito species (Binckley, 2017). However, when
sharing a developmental habitat with other mosquito species Ae. albopictus can be an aggres-
sive competitor and has been known to displace populations of the primary dengue vector Ae.
aegypti (Juliano et al., 2004). After finishing development eggs hatch into larvae which compete
for organic matter within the aquatic developmental habitat progressing through four instars

before beginning pupating and subsequently emerging as adults (Abd, 2020).

Ae. albopictus can complete its life-cycle over a broad range of temperatures contributing to the
extraordinary latitudinal gradient over which populations of Ae. albopictus are now established
(Kraemer et al., 2019). Throughout the life-cycle of Ae. albopictus temperature alters vital rates
and this can greatly change the population dynamics that are observed across the species range
(Haramboure et al., 2020; Marini et al., 2017). For example, the time taken for eggs to complete

embryonation has been observed to vary from 2 days at 36°C to 42 days at 15°C (Waldock
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et al., 2013). In some populations of Ae. albopictus the lower thermal limit on development is
extended as under conditions of falling temperatures and photoperiod the production of cold-
resistant diapausing eggs can be triggered (Lacour et al., 2015). Diapausing eggs can remain
viable and dormant over winter until conditions are suitable for larval development in the spring,
allowing populations of Ae. albopictus to persist in temperate regions with cold winters. Larvae
and pupae are similarly sensitive to temperature and both development times and mortality
rates throughout both stages are strongly temperature dependent (Delatte et al., 2009). For
adult mosquitoes temperature alters the expression of traits that determine vector competence
in addition to population dynamics such as adult mortality and biting rates (Mordecai et al.,

2017).

The same mechanisms that allow Ae. albopictus to exploit its environmental niche have also
facilitated its global invasion through international trade routes (Swan et al., 2022) (Figure 1.4).
For long distance dispersal events Ae. albopictus relies on passive dispersal routes, and its des-
iccation and cold resistant eggs have proved capable of remaining viable for extended periods of
time through international shipping routes. The used tire trade was identified as the mode of
introduction to the United States and South Africa and the trade in ornamental plants, specifi-
cally “lucky bamboo” has led to the establishment of a colony of Ae. albopictus in greenhouses in
the Netherlands within which the species is now established (Reiter, 1998; Hofhuis et al., 2009).
Despite the ability of the species to utilise long-range dispersal methods it has been shown that
the global invasion of Ae. albopictus global can be best be described as a dispersal front, and
there are a range of short distance dispersal routes that species has been shown to use (Krae-
mer et al., 2019). The primary mode of dispersal over short-distances appears to be through
vehicles, which have been implicated in the reintroduction of the species in parts Spain after
successful control efforts (Eritja et al., 2017; Goiri et al., 2020). Contrary to previous evidence
Ae. albopictus is not a weak flier and has been observed to fly a distance of 1km from release
sites in mark-recapture experiments and so is capable of actively dispersing (Vavassori et al.,

2019).
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Figure 1.4: A map of the known distribution Ae. albopictus as of 2022, taken from Swan et al.
(2022). The year the species was first recorded in each country is indicated by the colour, and
whether the species became established is indicated by the type of fill.”

1.3 Predicting dengue risk

There are a range of modelling approaches that are commonly used to predict the risk of
mosquito-borne disease. These approaches can be broadly classified as either correlative, mech-
anistic, or a hybrid of both (Kearney et al., 2010; Johnston et al., 2019). Correlative approaches
use statistical associations between information about the population of interest and other data
to identify trends and have been widely used to predict dengue incidence on regional and global
scales (Withanage et al., 2018; Carvajal et al., 2018; Xu et al., 2014; Rogers et al., 2014; Bhatt
et al., 2013). However, the environmental variables that are predicted by correlative approaches
to be associated with dengue incidence are not consistent between locations (Morin et al., 2013).
For example, in some regions it has been shown that precipitation is positively correlated with
dengue incidence, but in others precipitation is either non-significant or negatively associated

(Pinto et al., 2011; Benedum et al., 2018; Su, 2008).

The changing role of environmental variables in driving dengue incidence between regions can
be in part understood by considering how these variables alter the vector processes that un-

derpin disease transmission. For example, it is suggested in regions where there is a positive
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association between precipitation and dengue incidence, increased precipitation creates larval
habitats, increasing vector abundance and so disease risk (Su, 2008). However, in regions such
as Singapore, where there is a negative association between precipitation and dengue incidence
it instead thought that larval habitats are plentiful (Benedum et al., 2018). In these regions
intense precipitation events can cause the small containers that the species prefers to overflow,
flushing out larvae and decreasing vector abundance and so explaining the negative association
between precipitation and dengue that is observed (Dieng et al., 2012). Producing general-
isable predictions of dengue risk therefore requires the ability to account for how the role of

environment in driving disease transmission cycles changes between regions.

To achieve increased generality one could consider a model that considered the risk of dengue
over a global range. However, predictions made by models predicting the global risk of dengue
incidence also differ. Bhatt et al. (2013) used a Boosted Regression Tree approach to predict
the probability that a dengue outbreak could occur in year 2010. This model considered a range
of environmental, socio-economical, and land-use variables in addition to data relating to the
occurrence and absence of dengue. This approach was subsequently built upon in Messina et al.
(2019) to produce predictions of dengue incidence for the year 2015. These models predict a
limited risk of dengue throughout temperate regions, in contrast to the predictions of the model
by Rogers et al. (2014) who predicted high suitability throughout locations further north. While
these global models may capture the risk of current outbreak, they do not reliably inform us
about how this risk might change in novel environments. This is of concern as the lack of
generality that was observed in regional models of dengue risk is still applies to global models,
and Medley (2010) that found that the predictions made by species distribution models trained
on data from populations of Ae. albopictus over its native range did not generalise to predict

the distribution observed in invaded range and vice versa.
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1.3.1 The basic reproduction number

To predict the intensity of transmission mechanistic models are often used, using expert knowl-
edge of the system they represent to predict population responses from verifiable mechanisms. By
representing the processes underlying the phenomena they aim to estimate mechanistic models
are able to generalise to novel scenarios but are also vulnerable to overlooking important aspects
of the system being represented. Mechanistic models can only account for processes that are
explicitly included within them, and so to use a mechanistic approach to predict the incidence of
vector-borne disease it is important to carefully consider and represent the biological processes

underlying the transmission cycle.

The most widely recognised mechanistic model that predicts the risk of vector-borne disease is
the Ross-MacDonald model for the transmission of malaria (MacDonald, 1952). Although there
are now many formulations of this theory applied to a wide-range of systems, in its most fun-
damental form this approach uses mathematical equations to describe how an infection moves
between host and vector populations (Jin et al., 2020; Auger et al., 2008; Smith et al., 2012).
Using these equations it is possible to predict the conditions under which an infection introduced
into a population will propagate to cause an outbreak. To summarise the behaviour of this sys-
tem the basic reproduction number, Ry, is defined to describe the number of new infections
caused by the introduction of single infectious individual into a completely susceptible popula-
tion. This quantity is easy to calculate and interpret making Ry approaches appealing to policy
makers and applicable beyond vector-borne disease (Smith et al., 2012). The equation as defined
by MacDonald has since been reformulated to resolve various issues regarding dimensionality
and to better reflect the times-scale over which disease transmission occurs. A commonly used

formulation of Ry is

B b(T) 205, (T ) ho (T) (0T (D) N (T) 12
Ro(T) = ( Hyro(T) )
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which has been used to predict the transmission of dengue over broad environmental gradients

(Dietz, 1993; Mordecai et al., 2017; Liu-Helmersson et al., 2016).

Equation 1.1 is composed of functions and constants that describe how components of the
transmission cycle respond to temperature, combining parameters relating to vector, host, and
disease in a way prescribed by the underlying population model. In this case b(T) is biting
rate of which mosquitoes held at temperature 7', v,(T") the proportion of bites by infected
mosquitoes that will transmit the infection from the vector to the host, h,(7T') is the proportion
of bites from infected hosts that transmit the infection to the vector, u is the mortality rate of
adult mosquitoes, T7grp is the time taken for an mosquito infected by biting an infected human
to become infective (otherwise known as the extrinsic incubation period (EIP)), M(T) is the
density of adult mosquitoes, Hr is the density of humans, and r is the rate at which humans
recover from the infection. This equation formalises the earlier intuition that environmental
variation should alter transmission risk, in a way that is interpretable and generalisable. This
approach is able to produce predictions of relative disease risk that can be compared through
time and between regions from meteorological data (see Figure 1.5 for an example of a prediction

of dengue risk using this approach over Europe).

Although this formulation of Ry can be calculate directly from climatic variables it inherits the
assumptions made in the underlying transmission model which could have a profound impact
on the predicts of disease risk that are made. For example, in Equation 1.1 Ry is dependent
on the density of adult mosquitoes, but because of the difficulty of estimating this parameter
is it common to assume that adult density depends solely on the current temperature or to use
a constant host-to-vector ratio (Liu-Helmersson et al., 2016; Mordecai et al., 2017). Although
convenient these assumptions overlook the complex factors that determine vector abundance
which can vary seasonally, with land-use type, and is known to respond in a delayed manner
to a range of environmental variables (Valentine et al., 2020; Beck-Johnson et al., 2017). By
making simplifying assumptions about how vector density responds to environmental variation

the risk of outbreak may be mis-estimated especially in seasonal environments where vector
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Figure 1.5: A map of the predicted period over which dengue transmission is predicted to be
possible in Europe by the equation defined in Mordecai et al. (2017). The equation is applied
over Europe over the years 2016 — 2020 and the average number of consecutive months per year
for which Ry > 1 at each grid cell is reported.

abundances vary through time.

Another assumption often made in this formulation of Ry is that vector trait only varies in-
stantaneously in response to the current environment. For some traits such as human-to-vector
transmission efficacy this assumption seems appropriate but for others, such as adult mortality,
this is a substantial simplification of a complex biological process. The mortality rate of adult
mosquitoes, d4(7), is known to vary with the instantaneous temperature adults experience,
but also is known to depend on other environmental variables such as humidity, and also the
adult’s historical experience of temperature and intraspecific competition throughout develop-
ment (Brady et al., 2013; Schmidt et al., 2018; Ezeakacha, Yee, 2019). The traits expressed by
adult mosquitoes are therefore inherently linked population dynamics, meaning that by assum-
ing that adult mortality can be adequately estimated from instantaneous relationships that were
validated in individuals a mismatch in scales is introduced (Lord et al., 2014). These simplifying

assumptions are of concern as Equation 1.1 is highly sensitive to this parameter. However, to
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incorporate a more complete description of how vector trait responds to environmental variation
it is necessary to account for the outcome of a series of historical environmental and popula-
tion states. To achieve this generality in a formulation of Ry it will be necessary to formulate
an underlying model of vector dynamics that can account for the relationship between vector

population and trait dynamics.

1.3.2 Using differential equations to model vector population dynamics

In this thesis I develop mechanistic models that use differential equations to describe how the
population dynamics of vector populations alter the ability of those populations to transmit
disease with a special focus on representing the interaction between demographic processes
and trait expression. The central idea behind such models is that by defining equations that
numerically describe a population’s demographic processes, such as the rate of births or deaths,

the evolution of that population through time can be predicted.

The Nisbet and Gurney framework for stage-structured models with variable delay

Over the course of a mosquito’s life-cycle it undergoes complete metamorphosis, and the en-
vironmental stressors and biological processes that are important to determining population
dynamics change throughout the course of development (Rolff et al., 2019). Stage-structured
models are a form of population model widely used in mathematical biology to represent the
population dynamics of species with multiple distinct life-stages (Murdoch et al., 2003). In a
stage-structured model a species’ life-history is categorised into distinct developmental stages,
each of which is then represented in the model by a separate equation that represents stage-
specific processes. These equations are linked, allowing individuals to move through the stage
structure as they develop. Stage-structured models have been previously used to predict the
population dynamics of mosquito species, design vector control campaigns, and to predict the

efficacy of vaccination drives (Ewing et al., 2016; Oliva et al., 2021; Ferguson et al., 2016).
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Existing stage-structured models of mosquito population dynamics vary in complexity from
systems of ordinary differential equations to more complex systems of delay-differential equations
or partial differential equations (Erickson et al., 2010; Huang et al., 2020; Pasquali et al., 2020).
The biological processes included in these models and consequently the assumptions made by
them vary depending on their stated goals, the scale at which they operate, and the data
available when they were parametrised. Although these previous models are often applied over
a wide range of locations they are rarely validated against multiple datasets across the species
global range. There is now widely available data from field populations of Ae. albopictus from
around the globe, often with simultaneous observations of multiple life-stages. For a models
predictions to be considered generalisable across climates the validation of that model should
include a demonstration of an ability to independently predict the dynamics of field populations

from across the species full range.

In the work that follows I develop stage-structured models that build upon the Nisbet and
Gurney for formulating well-posed stage-structured systems of delay-differential equations with
variable delays to predict population dynamics (Nisbet, Gurney, 1983). Models that use this ap-
proach have been previously used to predict the population dynamics of various species including
mosquitoes (Ewing et al., 2016). What follows is intended to provide an intuitive understanding
of how models formulated using this framework function with the rigorous mathematical details

deferred to Chapter 2 where I make similar arguments in full detail.

Assume that there is a population divided into n developmental stages with the number of
individuals in developmental stage i at time ¢ denoted N;(¢). For a given developmental stage
i, individuals are assumed to enter the stage through recruitment, denoted R;(t), and leave
through either maturation or death, denoted M;(t) and D;(t) respectively. Individuals enter the
system at life-stage ¢ = 1 through birth and cease development at life-stage n. The assumption
that individuals are born into life-stage 1 means that this recruitment term takes a special form

which can be expressed
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where 3;(t) is the per capita rate of production of offspring for individuals in life-stage i. Note
that production of offspring is both stage-specific and variable, allowing the representation of
stage-specific differences in reproductive output. For example if individuals in life-stage 1 are
eggs I am free to choose £1(t) = 0 so that individuals in the eggs stage produce no offspring
and so contribute no new individuals to the sum. That the fecundity of individuals is permitted
to vary with time means that I can represent the effect of biotic and abiotic environmental
variables on the traits of individuals in different stages. For example, for a species where the
per capita rate of production of offspring by individuals in life-stage n depends linearly on the
current temperature this could be expressed as 3, (t) = aT'(t) + b, where T'(¢) is the temperature

at time t, with a, b constants.

After recruitment into life-stage ¢ individuals begin to develop until leaving the stage either
through maturation into life-stage i + 1 or through death. The time it takes for an individual
to develop from recruitment into the stage to maturation out of the stage is referred to as the
stage duration and is denoted 7;(t). Stage-duration is permitted to vary, and this can be used
to represent environmentally induced changes in development rates. To describe how the stage
duration, 7;(t), evolves through time it is now necessary to account for the cumulative effect of
variation in the stage-specific rate of development, g;(t), and it can be shown that this can be

expressed using the equation

dri(t) _,  gi(t)
dt gi(t—n(t))

, for i e 1,..n.

To understand how this equation functions consider the scenario where after a long period
of remaining constant, the development rate, g;(t), which for simplicity is assumed here to be

continuous, bounded, monotone, and to achieve its bounds, very slowly tends to its minimal value
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from some non-zero value (additionally requiring that the length of the delay is substantially
smaller than the length of time over which this change takes place). In this situation g;(¢) <

gi(t — 7i(t)) and so 1 — gifii(;?(t) > 0. Therefore the stage-duration, 7;(t), will slowly increase

until the minimum development rate is reached and eventually (after a delay of 7;(¢)) will also

stop increasing, reaching its maximal value, as at this point ¢;(t) = ¢;(t — 7;(t)) and therefore

dri(t)
dt

= 0. Consider now that the scenario where after a sufficient period of time the direction

of the change of g;(t) were to be reversed. As the development rate is slowly increased, such

that ¢;(t) > ¢i—1(t), then 1 — 7 fi(;?(t) < 0 and so the stage-duration slowly decreases towards
its minimum. In either case the rate at which the stage-duration changes at time ¢ depends on
the “steepness” of the function g¢;(¢) in the locality of ¢, as the faster g;(t) changes the greater

the difference between its value at time ¢ and time ¢ — 7;(¢) and so the greater the instantaneous

rate of change of the stage-duration is.

After being recruited into life-stage 4, and having survived for the stage-duration of the stage,
individuals mature into life-stage ¢ 4+ 1. At time ¢ the number of individuals maturing into life-
stage i + 1 from life-stage 4 is necessarily equal to the number of individuals that were recruited
into the life-stage i at time ¢t — 7;(¢) and survived. To be able to describe this relationship an
expression that describes the proportion of individuals that survive through the stage is required.
By definition in life-stage i, the number of individuals that die per unit time is denoted D;(t),
and this function is assumed to take the form D;(t) = 0;(¢t)N;(t), where 6;(¢) is the mortality
rate of individuals in stage i. As under this formulation it is possible that both the duration of
the life-stage and the stage-specific mortality rates are variable the expression for the number of
individuals that survive for the duration of life-stage ¢ reflects this. The through-stage survival
of individuals that were recruited into life-stage i at time ¢t — 7;(¢) and mature out of life-stage

i at time ¢ is denoted P;(t) and is defined

dp;(t) 9i(t)di(t — 7i(1)) :
e Pi(t) < Gl —r0) 5i(t)> Jorie 1,..n.
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To understand the behaviour of this equation assume both g;(t) and d;(t) take simple forms
(specifically assume they are continuous, bounded, monotone, and achieve their bounds) and
also assume they take non-zero values. If once again the rate of development slowly tends to its
minimal value, then g;(t) < g;(t — 7(t) and gi(fii% < 1. In the bracket the contribution of
0i(t — 7i(t)) to the total value of the derivative is reduced as compared to d;(t), and depending
on the behaviour of ¢;(¢) this can have different consequences on the value of P;(t). If 6;(t) =
0i(t — 7;(t)) then the term in the bracket becomes negative and so the probability of surviving
through the stage decreases, representing that as the stage-duration increases individuals must
survive for a longer period of time before leaving the stage and so fewer individuals successfully

mature out of the stage. This behaviour continues until g;(t) = ¢;(t — 7;(t)) is reached where

dP;(t)
dt

= 0 and the through-stage survival stops changing. If now, as before, g;(t) is slowly
increased to is maximal value the opposite behaviour would be observed as through stage survival
increases as stage-duration decreases. One can make similar arguments to see how when g;(t)
is fixed and the mortality rate 0;(t) is slowly varied that the proportion of individuals surviving
through the developmental stage increases or decreases as expected. In a variable environment
where both g¢;(¢t) and 0;(t) are permitted simultaneously co-vary the probability of surviving

through the stage is therefore represented appropriately by this equation.

The number of individuals maturing out of life-stage ¢ and into life-stage ¢ + 1 can be expressed
in terms of the number of individuals that were recruited into life-stage i at ¢ — 7;(¢t) units of

time in the past and have completed development by time ¢ by

9i(t)

Milt) = e m)

Ri(t—m(t)P(t) i€ 1,..n.

Further, as the number of individuals being recruited into life-stage ¢ + 1 must be equal to
the number of individuals maturing out of life-stage 4, then R;i1(f) = M;(¢). Thus from the

expression for R;(t) I can recursively define all other R;(¢) and M;(t) for i # 1.

The final components necessary to fully specify the model are the initial conditions that describe
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the state of the system at t = 0, the initial history that defines what the state of the system
was at ¢ < 0 such that the delay terms are always well-defined, and an initial impulse to begin
the dynamics. The impulse function represents the introduction of individuals into the system

from time ¢ = 0 to time ¢t = T'. Denote this function I(¢) which and define it such that

I(t)y=J, for 0<t<T, (1.2)

=0, otherwise. (1.3)

Therefore the population dynamics of a species with n developmental stages of variable duration

can be described using the following system of equations

L= Rift) — My(t) — Di(o), (1.4)
dR(t) o (g8t —n(t)

dt _B(t)< gi(t — 7(t)) 51(75))’ )
dri(t) _ . gi(t)

@t T G- n) o

fori € 1,...,n and t > 0 with recruitment terms defined,

—9i) Rt — 7;(t))Pi(t), fori1
Ri(t) = gi(t—7:(1)) (1.7)

o BiNi(t), for s = 1.

with initial conditions 7;(0) = 70, P;(0) = exp —d;oTi0, and initial history such that for ¢ < 0,

Nl(t) = 0, and Rz(t) = 0.
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Susceptible-Infected-Resistant models of disease dynamics

To incorporate models of mosquito population dynamics into a prediction of disease risk it is also
necessary to describe both host and disease dynamics. Susceptible-Infected-Resistant models
are a form of compartmental model used to represent the progression of a disease through a
population structured by infection status rather than developmental progress. SIR models are
extensively used to predict the transmission dynamics of dengue vectored by Aedes mosquitoes
and to design intervention campaigns. Although there are many variations upon SIR models the
fundamental idea is to divide the population into classes based upon their current experience
of infection. Usually individuals are classified as either susceptible to the disease, infected with
the disease, or recovered from the disease. The susceptible class consists of individuals that do
not currently have the disease and either have never had the disease or had the disease at a
sufficiently distant point in the past that any acquired specific immunity is no longer present.
After contracting the disease individuals in the susceptible class progress to the infected class
which contains individuals that currently have the infection and are competent to transmit it
through whatever specific mechanism this is achieved. After ceasing to be infectious individuals
proceed to the recovered class, which contains individuals that are no longer susceptible to the
disease due to some form of specific immunity gained from contracting the disease. Depending
on the disease being modelled and the time-frame being considered, individuals in the recovered
class may eventually progress back through to the susceptible class as their immunity fades.
For a vector-borne disease the infection moves through both vector host populations, and so
in addition to modelling the infection status of the host population, the infection status of the

vector population must also be accounted for.

SIR models of dengue transmission vary in complexity and make a broad range of assumptions
about depending on their stated goals. To represent how variation in vector density alters
transmission risk it is common to use a previously derived model to predict vector dynamics.

However, not all models choose to explicitly represent the vector population and may instead
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implicitly represent vector dynamics in transmission terms. Comparisons between models of
dengue transmission with explicit and implicit vector populations indicate that over short pe-
riods and in a location where there is little seasonal variation in mosquito abundance implicit
approaches can perform well (Pandey et al., 2013). Vector traits are often represented either
through constants or through functions that assume they vary instantaneously with the current
temperature. As described when discussing Ry approaches this is a simplification of complex
biological processes and is problematic as the predictions made by SIR models are often particu-
larly sensitive to traits such as the adult mortality rate (Barbazan et al., 2010; Luz et al., 2003).
However, more fully representing the mechanisms by which vector trait varies in response to

environmental variation is not trivial and requires a substantial increase in model complexity.

Incorporating mechanisms of trait variation into predictions of disease risk

The collection of traits an individual expresses is called its phenotype, and all inter-individual
variation can be described through changes in this phenotype. Mechanisms of variation can
be broadly categorised as either genotypic variation, phenotypic plasticity, or epigenetic effects.
Genotypic variation is the ability of individuals expressing different genotypes to express different
traits (Sultan, 2017). Phenotypic plasticity is the ability of individuals expressing the same
genotype to express different phenotypes when exposed to different environmental conditions
(Fusco, Minelli, 2010). Epigenetic variation is the ability of the environmental experience of an

individual to cause changes in the expression of genes in offspring.

Genotypic variation between populations of Ae. albopictus is widely observed and has been a sig-
nificant factor in the species’ global invasion. Ae. albopictus has recently evolved a photoperiodic
diapause response, whereby cold-resistant eggs are produced in response to falling temperatures
and lowering photoperiod. This response allows populations of Ae. albopictus to become es-
tablished in temperate regions but is absent from populations in tropical climates where adult

activity can be maintained all year round (Urbanski et al., 2012). In temperate zones there is
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evidence of latitudinal variation in the critical photoperiod, providing evidence that this trait
remains under strong selection (Hawley et al., 1987). Genotypic variation can also alter the risk
posed by populations of Ae. albopictus indirectly through changes in the genotype of the disease
being vectored. For example, a change in the genotype of the Chikungunya virus, increased
the replication rate of the virus in Ae. albopictus and facilitated the global re-emergence of this

disease (Sam et al., 2012; Carrieri et al., 2011).

The role that phenotypic plasticity plays in producing population responses to environmental
change is less well understood and is currently under vigorous debate (Fusco, Minelli, 2010;
Hulme, 2008). There is plethora of seemingly contradictory evidence from experimental systems
demonstrating how phenotypic plasticity can both help and hinder how populations adapt to
change. For example in 1965 it was hypothesised that species expressing high degrees of phe-
notypic plasticity would make more successful invasive species than species that did not display
strong plastic responses (Baker, Stebbins, 1965). This hypothesis is still debated and meta-
analyses reaching contradictory conclusions were published in the same year (Davidson et al.,
2011; Godoy et al., 2011). Similarly opposing evidence has been found in the role of phenotypic
plasticity in determining populations responses to climate change (Anderson et al., 2012; Chevin
et al., 2010; Henn et al., 2018; Acasuso-Rivero et al., 2019; Valladares et al., 2014; Oostra et al.,
2018). To resolve these and reconcile the role of phenotypic plasticity in population ecology will
require a more complete understanding of how mechanisms of individual variation generalise to

population responses to environmental change (Violle et al., 2012).

Phenotypic plasticity alters the population dynamics of Ae. albopictus throughout the species
life-cycle altering the expression of traits through both instantaneous responses to the current
environment and delayed responses to historic environments (Delatte et al., 2009; Ezeakacha,
Yee, 2019). Instantaneous responses to the current environment such as temperature induced
variation in development and mortality rates, are well represented in models of disease transmis-
sion (Ewing et al., 2021; Mordecai et al., 2017). However, the effects of environmental variation

on trait expression can also be delayed, and the effect of delayed environmental variation on the
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trait structure of vector populations is rarely considered in models of disease risk (Beckerman

et al., 2002; Cator et al., 2020).

The ability to represent multiple instances of phenotypic plasticity both in response to both
current and historical environmental conditions will be a necessary component of any modelling
approach that hopes to understand how environmental variation alters disease risk. However,
there are currently few modelling tools that allow this sort of flexibility. When a population
has distinct generations integral projection models (IPMs) can be used to represent within pop-
ulation trait variation (Childs et al., 2003; Kuss et al., 2008). Models formulated using this
method define distributions describing how trait is expected to change between time steps and
use these to predict how a populations trait distribution will change through time. However, to
represent the population and trait dynamics of Ae. albopictus a modelling approach that can
also represent detailed intra-generational dynamics will be required and for this physiologically
structured population models (PSPMs) could be considered (De Roos, Persson, 2001). PSPMs
use partial differential equations to link deterministic variation in an individual’s size to pop-
ulation response and resource dynamics. However, for a species such as Ae. albopictus, where
resource dynamics are relatively unexplored and there are stage-specific gaps in the knowledge of
its life-history, such a complete approach cannot be fully utilised and so an alternative modelling
method is needed (Bolnick et al., 2011; Violle et al., 2012; Lipowsky et al., 2015; Johnston et al.,
2019; Sgro et al., 2016; Hendry, 2016; Turcotte, Levine, 2016; Lloyd-Smith et al., 2005; Lion,
2018).

1.4 Summary of work

In this thesis I develop a novel mathematical modelling framework to represent the effects of
phenotypic plasticity on population dynamics. This framework is applied to two organisms
initially to Nicholson’s blowflies, a well-studied model system and then to the invasive dengue

vector Ae. albopictus. In each case I explore the effect of environmentally driven trait varia-
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tion on population dynamical processes and demonstrate their importance in determining how

population-level processes respond to change.

In Chapter 2 I justify the need for and derive a novel mathematical modelling framework
to represent the effect of phenotypic plasticity on population dynamics. 1 argue that envi-
ronmentally driven trait variation is currently poorly represented in mathematical modelling
frameworks. I then derive a mathematically rigorous framework that is able is able to rep-
resent trait-environmental feedbacks, using systems of stage-phenotypically structured delay-
differential equations. This framework is then applied to Nicholson’s blowflies, where it is able
to predict cryptic population dynamical behaviour. This demonstrates that predictions made di-
rectly from environment-trait relationships do not necessarily generalise to population response.
This example demonstrates both the efficacy of the model framework and the need to fully

account for the effects of phenotypic plasticity on population dynamics.

In Chapter 3 I then apply the framework derived in Chapter 2 to predict the population and
trait dynamics of the invasive mosquito species Ae. albopictus on a global range. To do this I
identify the ecological and environmental processes important to mosquito population dynamics
and formulate a model to represent this. The model is parametrised and statistically fitted using
laboratory data. I then validate the model against data from field populations of Ae. albopictus
across the species global range, considering populations from 14 countries and territories across
4 continents. The model produces excellent predictions of the population and trait dynamics of
the species that are completely independently of the populations I validate against. This reveals
that there are distinct differences in the trait dynamics of mosquito populations in temperate

and tropical climates driven by environment-trait interactions.

In Chapter 4 the model derived in Chapter 3 is extended to include a Susceptible-Infected-
Resistant model for dengue fever. Following the same process for validation as in the previous
chapter the model is able to predict the timing, magnitude, and locations of dengue outbreaks.

This approach is compared to previous methods and is found to be considerably more specific
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in its predictions and to simultaneously better match real-world dengue transmission. I predict
lower dengue risk throughout Europe and North America than previous approaches, regions
that have not experienced large scale dengue outbreaks vectored by Ae. albopictus. Predictions
for where transmission is possible in these regions align with verified instances of autochthonous
transmission. By contrast I predict that eastern and southern China, a region that experiences
regular, large, outbreaks of dengue vectored by Ae. albopictus, highly suitable for transmission. It
is demonstrated that these highly generalisable results are achieved due to the full representation
of mechanisms of phenotypic plasticity that drive variation in vector trait. Further, in regions
where large outbreaks occurred I find that the majority of vectors were competent to maintain
the dengue transmission cycle, but in regions where small outbreaks occur only a small subset of
vectors expressing high trait values could maintain the pathogen transmission cycle. This shows

the need to consider mechanisms of variation when predicting disease risk between regions.

Chapter 5 is a general discussion of the work presented in the thesis, reviewing the implications

of the work undertaken in the previous chapters and suggest avenues for future research.
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Chapter 2

Deriving a stage-phenotypically structured

model and application to Nicholson's Blowflies

The work presented in this Chapter forms the basis of a published paper (Brass et al., 2021).

2.1 Abstract

Predicting complex species-environment interactions is crucial for guiding conservation and mit-
igation strategies in a dynamically changing world. Phenotypic plasticity is a mechanism of
trait variation that determines how individuals and populations adapt to changing and novel
environments. For individuals, the effects of phenotypic plasticity can be quantified by measur-
ing environment—trait relationships, but it is often difficult to predict how phenotypic plasticity
affects populations. The assumption that environment—trait relationships validated for indi-
viduals indicate how populations respond to environmental change is commonly made without
sufficient justification. Here we derive a novel general mathematical framework linking trait
variation due to phenotypic plasticity to population dynamics. Applying the framework to the

classical example of Nicholson’s blowflies, we show how seemingly sensible predictions made from
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environment—trait relationships do not generalise to population responses. As a consequence,
trait-based analyses that do not incorporate population feedbacks risk mischaracterising the
effect of environmental change on populations. This framework is used in Chapters 3 and 4 to
predict how phenotypic plasticity in a transmission critical trait alters the ability of populations
of the invasive mosquito Aedes albopictus to maintain dengue transmission cycles across its

global range.

2.2 Introduction

Understanding how mechanisms of individual variation act upon populations is key to predicting
how changes in the biotic and abiotic environment alter population processes. Phenotypic plas-
ticity has been shown to be a mechanism by which species respond to climate change (Seebacher
et al., 2015; Crozier, Hutchings, 2014; Stoks et al., 2014; Boutin, Lane, 2014). There is evidence
that species exhibiting high levels of phenotypic plasticity are more successful at spreading across
environmental gradients (Szabd et al., 2018; Hahn et al., 2012), and it is predicted that pheno-
typic plasticity contributes to determining the outcome of interspecific competition (Palkovacs,
Post, 2009; Buskirk, Mccollum, 2016). Quantifying phenotypic plasticity in individuals is gener-
ally straightforward, but it is often more difficult to measure the effects on populations (Merila,
Hendry, 2014; Valladares et al., 2006). It is theorised that phenotypic plasticity contributes to
the occurrence of seemingly paradoxical population dynamical behaviours such as the paradox
of enrichment, whereby an increase in available resources causes a destabilisation of population’s
dynamics (Miner et al., 2005), and the hydra effect where an increase in per capita mortality
results in increased population density (Cameron, Benton, 2004). Disentangling the complex
network of inter-dependent individual and population processes necessary to demonstrate how
phenotypic plasticity contributes to species responses to environmental change is inherently dif-
ficult using existing model frameworks (Forsman, 2015). In particular, the population dynamic

consequences of phenotypic plasticity often manifest as delayed-density dependence (Beckerman
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et al., 2002) which is known to cause cryptic dynamical behaviours (Pedraza-Garcia, Cubillos,

2008; Lima et al., 1999).

Despite the potentially complex relationship between individual variation and population re-
sponse, environment-trait relationships observed in individuals are routinely employed to predict
the outcome of population processes (Figure 2.1). For example, in epidemiology environmental-
trait relationships are used in parameter-based approaches for calculating the basic reproduction
number, Ry (Mordecai et al., 2017; Brand et al., 2016; Parham, Michael, 2010). This implicitly
assumes that variation observed in a population’s trait distribution is independent of environ-
mental stressors and population dynamics, such that an averaged trait value suitably represents
the population at any given time and location (Liu-Helmersson et al., 2016). This is the mean-
field approach and there is an increasing body of evidence that this approach under-represents
the importance of variation between individuals and community structure in population ecology
(Violle et al., 2012; McGill et al., 2006; Cator et al., 2019; Fox, Kendall, 2002). Consideration of
purely stochastic forms of variation has demonstrated that the outcome of population processes
such as species persistence do not always follow mean-field predictions (Hart et al., 2016; Moro-
zov et al., 2013). In contrast to environmental or demographic noise, individual variation caused
by phenotypic plasticity has a strong mechanistic component, and so can and should be suitably
accounted for when predicting how population’s respond to changes in their environment (Nylin,

Gotthard, 2002).

To describe the effect phenotypic plasticity has on population dynamics it is key to link trait
and effect mechanistically combining empirically derived relationships with theoretical meth-
ods. Here, I propose a novel general mathematical framework that links experimentally derived
environment-trait relationships to well-parametrised stage-structured population models that
allow trait distributions to emerge from population-trait-environment interactions (Figure 2.1).
I utilise a continuous time stage-structured modelling approach, widely used to model organ-
isms with multiple distinct life stages (Murdoch et al., 2003), adapted to represent the persistent

and delayed effects of phenotypic plasticity across multiple developmental stages. By using this
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Figure 2.1: Current predictive frameworks typically use environment-trait relationships, such
as reaction norms, to predict population responses without consideration of how population
processes may alter the traits individuals express. This framework incorporates environment-
trait relationships that interact with population dynamics and trait distributions. This allows
the framework to account for the effect of interaction between environment, trait, and population
as experienced by many organisms in predictions of population processes.
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framework to represent mechanisms of individual variation in response to environmental change,
it is shown that even simple forms of phenotypic plasticity can lead to complex population
dynamical responses that previous approaches overlook. This is demonstrated by an applica-
tion of the framework to a classical population ecology study, Nicholson’s blowflies (Nicholson,
1957), where it has been hypothesised that previously unexplained population dynamics can
be attributed to phenotypic plasticity. This application reveals a rich set of counter-intuitive
population-dynamical behaviours caused by the interaction between phenotypic plasticity and

population dynamics.

2.3 Methods

2.3.1 Framework overview

I present a modelling framework that dynamically links the expression of phenotypic plastic-
ity in individuals to population dynamics. This consists of a continuous time stage-structured
population model in the form described in Gurney et al. (1983) (as described in Chapter 1 and
shown in Figure 2.2A), widely used to predict the population dynamics of interacting life-stages
(e.g. Gurney et al. (1980)), combined with a set of empirically-derived reaction norms. Models
created using the framework are systems of stage-phenotypically structured delay-differential
equations, within which, cohorts of individuals are tracked based on their cumulative environ-
mental experience. Each cohort is then associated with a unique phenotype (Figure 2.2B).
Within the framework an individual’s phenotype may consist of multiple traits varying in re-
sponse to multiple environmental factors, both current and historic. By tracking this experience
across all individuals a dynamic phenotypic structure is defined allowing multiple phenotypes to
be represented within a population simultaneously. The distribution of traits expressed within
a population is not assumed, as it is in an integral projection matrix (IPM) (Merow et al.,

2014), but instead emerges as a feature of empirically verified mechanistic processes. This links
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individual level variation in life-history traits to population level response and so represents the
effects of phenotypic plasticity on populations. Models derived using the framework are able to
represent both intra- and inter-generational forms of phenotypic plasticity, in response to both
instantaneous and delayed environmental conditions. Moreover, the framework can account for
the effects of multiple environmental cues on single or multiple traits, giving rise to a highly

flexible modelling framework.
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Figure 2.2: Schematics of the ways phenotypic plasticity in stage-structured populations can
be described by the new model framework. The population being considered in all cases is stage-
structured with n life-stages. The number of individuals in life-stage ¢, expressing phenotype j
is denoted N; ;. (A), The Gurney et al. (Gurney et al., 1983) framework for stage-structured
populations that is used as a basis for the novel framework. This framework represents a contin-
uous age structure by a discrete number of developmental classes e.g. eggs, larvae, pupae, and
adults. (B), The most general form of the novel framework, where an individual’s experience
of the environmental cues in each developmental stage determines the phenotype it expresses as
partitioned by the environmental classes. (C), The new framework adapted to represent devel-
opmental plasticity in life-stage 2. It is assumed that individuals experience an environmental
cue in life-stage 1 that does not affect individuals in life-stage 1 but results in the expression
of phenotypic plasticity in subsequent life-stages. This allows the reduction of the phenotypic
structure in life-stage 1 to just a single class, Ny 1ot = Z;ﬂ:l Nij. (D), The new framework
adapted to represent a maternal effect in response to an environmental cue experienced by par-
ents in life-stage n that manifests as phenotypic plasticity in life-stage 1 which is then assumed
to have no effect on subsequent life-stages.

2.3.2 Incorporating phenotypic plasticity into stage-structured models

Variation caused by phenotypic plasticity is often expressed in terms of a reaction norm, a

function that describes how an individual’s environmental experience alters the phenotype they
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express (Nylin, Gotthard, 1998) (e.g. food consumed as a juvenile predicts adult body mass).
It is assumed that organisms with similar experiences of their environment express the same
phenotype as determined via reaction norms and to represent this multiple linked copies of the
Gurney et al. framework are created (as in Figure 2.2B). Each copy corresponds to a unique
set of environmental conditions and individuals then move through this structure on a path
determined by their current and historical experience of the environment. This allows cohorts
of individuals that share the same environmental history to be tracked and so represents the

effects of phenotypic plasticity on populations.

I consider a stage-structured population with n life-stages where phenotypic plasticity is ex-
pressed according to d reaction norms 7i(a),...,74(a) in response to z environmental cues
a(t) = (ai(t), ..., ax(t)). For computational tractability, each environmental cue is discretised,
;(t), into m; subintervals and I denote by «j, the midpoint of the p'* subinterval of the dis-
cretisation of a(t). Define an environmental class to be a vector of length z with entries that

consist of one midpoint from each discretised environmental cue, i.e.

(alll y Q24 0{313, ceey azlz)7

where [; € {1,...,m;}. Define g : R* — Q such that

g<a<t)) = (a1l17a2l27 Q355 ey CYZ[Z),

if o;(t) takes values within the ljth subinterval of «;(t). The function g defines a mapping of

onto the discretisation of ae. The number of environmental classes is given by

z
m = H mMp,
h=1
and the set of all such vectors (environmental classes) is denoted by 4. Assign an ordering
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to the m elements of the set of environmental classes Q) and let a® denote the k" element of
the ordered set, i.e. the k' environmental class. Thus, g(a) = o if g(a) is the k™" element of
the ordered set €. Environmental classes define cohorts of individuals that have experienced

a shared environmental history.

For example, suppose there are 2 environmental cues a(t) = (a1 (t), aa(t)) which are discretised
such that aq(¢) is divided into 3 subintervals (m; = 3) and as(t) into 2 subintervals (mg = 2).

In this case an environmental class is a vector of the form

(o1y,, a91,), where I3 € {1,2,3} and Iy € {1,2}.

The set of all possible vectors of this type is ,. So for example, if oy (t) represents temperature
and s (t) represents food availability, say, then a(t) may be approximated by an element from
Qq. To order the elements of the set €2, an ordering needs to be defined. One common ordering

of such a set is called lexicographic ordering which gives

(Qa, j) = {(0411, 0421), (0411, 0422), (0412, 0621), (0612, 0422), (0413, 0421), (04137 a22)}

= {a!,a? a3 at a® ab}.
So if g(a(t)) = a* at time t the environment is in state 4 and the temperature is within oz

and food availability is within ass.

It is assumed that an individual’s current and historic experience of the environment completely
determines the phenotype an individual acquires when it matures from life stage ¢ to i + 1 or is
born into stage life stage 1 at time ¢. This permits the effects of environmental variation to be

deferred to future developmental stages or generations. As the environmental cues are discretised
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this means there are a discrete number of phenotypes that can arise in the framework. The traits
that these phenotypes express are calculated using the reaction norms according to, 7 (g()).
This process pre-defines both the traits individuals express and the range of environmental

conditions that give rise to those individuals.

2.3.3 The general framework for representing phenotypic plasticity in stage-structured pop-

ulation models

Denote the number of individuals in life-stage ¢ and environmental class j at time ¢ by N; ;(¢).
Denote by R; j(t) the rate of recruitment of individuals into life-stage ¢ and environmental class
J, M; j(t) the rate of maturation out of life-stage i and environmental class j, and D; ;(t) the
death rate in life-stage ¢ and environmental class j. The population is described by the system

of equations

dN; ;(t)

o = ) = M) = Diy (1) 21)

fori € 1,..,n, and j € 1,...,m. The death rate is D; ;(t) = 6;;(t)N; ;(t) where 6; ;(¢) is the
mortality rate of individuals in life-stage i and environmental class j. The recruitment term in

Equation 2.1 when ¢ = 1 is given by

m

Rij(t) =) (wkj(a(t)) > Bv,k(t)Nv,k(t)) (2.2)
v=1

k=1

for j = 1,...,m where wy;(c(t)) denotes the proportion of individuals from environmental class
k that transition to environmental class j at time ¢t and 3, x(t) is the birth rate of individuals in

life-stage v and environmental class k. The transition functions, wy;(c(t)), are the mechanism
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through which the environment acts to express phenotypic plasticity within the model. Equa-
tion 2.2 represents the birth of new individuals into the first life-stage and environmental class j
by parents from across all environmental classes and life-stages. The birth term, 3, x(¢) Ny 1 (t)
describes the number of new individuals produced by parents in life-stage v and environmen-
tal class k, and is summed across all life-stages and environmental-classes to account for all
new individuals entering the population. The transition functions wy;(c(t)) then determine
the proportion of the new births that are assigned to environmental class j dependent on the

environmental state.

The number of individuals recruited into life-stage ¢ and environmental class j is equal to the
number of individuals maturing out of life-stage ¢ — 1 that are assigned to environmental class j.
Hence, for i =2,...,nand j =1,...,m, R; j(t) = > ;" wy;(a(t))M;_; 1 (t). Further, the number
of individuals maturing out of life-stage ¢ and environmental class j is equal to the number of
individuals recruited into life-stage 7 and environmental class j one developmental period ago
that survived. Denote the duration of life-stage 7 for individuals in environmental class j by 7; ;.
Thus, M; ;(t) = R;;j(t — 7;;)S:,;(t) where S; ;(t) is the probability an individual in life-stage 4

and environmental class j survives to life-stage ¢ + 1. Hence,

t) = Z wyj(a(t))Ri—y 1 (t — Tim1k)Si—1,%(1) (2.3)

for i = 2,...,n and j = 1,...,m where S;;(t) = exp{ ft - i 5( dt'}. Although in this
formulation of the framework the stage duration 7;; is kept constant an extension to variable

stage duration is also possible (Nisbet, Gurney, 1983; Ewing et al., 2016).

The exact form of the transition functions, wy;(a(t)), is left unspecified as the way individuals
transition from one environmental class and life-stage to the next is case specific. However,

the choice of wyj(a(t)) is subject to the constraints 0 < wyj(a(t)) < 1, Vj,k € 1,...,m and

36



> je; wij(ex(t)) = 1. Although the transition functions are stage-independent, the environmen-
tal vector a(t) is able to refer the state of each environmental cue independently and so can
consider the sequence of past environments that an individual has encountered. A rigorous

derivation of this framework from first principals is provided in Appendix A.

2.3.4 Some common simplifications

In some circumstances the complexity of the model can be decreased by reducing the number of
environmental classes for developmental stages that do not express plasticity in response to envi-
ronmental conditions. This is analogous to grouping technically distinct but functionally similar
stages in a purely stage-structured model. Denote by N; 1ot the total number of individuals in
life-stage ¢ over all environmental classes. Similarly define R; tot(t), M;tot(t), Ditot(t) as the
rates of recruitment, maturation, and death in life stage i respectively across all environmental
classes. Assuming that the first instance of a cue inducing the expression of plasticity occurs
in life-stage ¢ there is no need to differentiate individuals prior to stage c. From stage ¢ on-
wards individuals are differentiated by phenotype. It is then sufficient to describe the population

dynamics as

dNi,Tot (t)

i = Rz‘,Tot (t) — Mi,Tot(t) — Dz‘,Tot (t) for i<ec (2.4&)
dNj ;(t
d’i() = Ri,j(t) - Mi,j(t) - DZ'J(t) for 1 Z C ] = 1, ceey M (24b)

Similarly, in the case that the expression of phenotypic plasticity ceases in life-stage ¢, as depicted

in Figure 2.2D, the following formulation is appropriate
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dN; ;(t)

dt = R@j(i) - Miﬂ'(t) - Diﬂ'(t) for 1 < C, j = 1, e, m (2.5&)
dN; ot (t .
5;() = Rimot(t) — My 1ot (t) — Dyor(t)  for i > . (2.5b)

These reduced forms of the model can be substantially less computationally demanding than

the general model in the case that the reductions are appropriate.

2.4 Results

2.4.1 Nicholson's blowflies

To demonstrate the insights that can be gained from this framework it is applied to Nicholson’s
classical blowfly study (Nicholson, 1957), which aimed to describe how populations adjust in
response to changes in their abiotic environment. In this study, the population dynamics of
Lucilia cuprina (Wiedemann, 1830) were examined under different competitive conditions. In
each culture, food was supplied separately to larvae and adults and both food supplies were
replenished daily. Cultures were maintained for over two years and the number of adults and
eggs present was recorded every two days. The results of Nicholson’s study have been extensively
discussed in theoretical ecology (Gurney et al., 1983; May, 1986; Bakker, 1963; Wood, 2010;
Glyzin, 2018).

In Nicholson’s experiment, blowflies experienced competition for food in their larval and adult
stages. Competition for food between adult blowflies reduces fecundity if individuals cannot
acquire enough protein to mature all their eggs (Vogt et al., 1985). Larval competition for
food reduces adult body size and the probability of survival through the pupal stage (Jannicke
Moe et al., 2002). For blowflies, body size is linearly related to the number of ovarioles an

adult has (Vogt et al., 1985) which determines the maximum number of eggs the adult can
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produce (Jannicke Moe et al., 2002), and so larval competition alters the maximum potential
fecundity of adults. Using the terminology I have previously developed the intensity of larval
competition for food resources can be considered as an environmental cue, altering maximum
potential adult fecundity and through pupal stage survival through developmental plasticity. It
is important to note that maximum potential adult fecundity is distinct from observed adult
fecundity, the former representing the maximum number of eggs an individual could produce
under ideal environmental conditions and the latter representing the actual number of eggs an

individual produces under the environmental conditions that individual experiences.

In Nicholson’s culture (reproduced in Figure 2.4A here), the daily larval food supply was kept
constant, but the amount of adult food supplied was reduced from an “unlimited” amount
to a more limiting 1000mg after around 600 days. The reduction of adult food resulted in
an increased average adult population density, and the stabilisation of the previously regular
population cycles. This is somewhat counter-intuitive, since a decrease in available resource
substantially increased the average number of individuals and stabilised the previously regular

oscillations - an example of the paradox of enrichment (Roy, Chattopadhyay, 2007).

Nicholson hypothesises that the population dynamics observed in the blowfly culture can be
explained by phenotypic plasticity induced by larval competition. Adults in the period of un-
limited adult food were observed to produce many eggs. When these eggs hatched into larvae,
they experienced high levels of competition for larval food. This caused very few larvae to
gain sufficient mass to pupate successfully, resulting in increased pupal mortality and low adult
numbers in the next generation. When adult food was limited, an increase in adult competition
resulted in fewer eggs being produced. The lower number of eggs resulted in fewer larvae and
a larger amount of food being available per larva, subsequently reducing larval competition and
juvenile mortality causing an increase in average adult population density. I evaluate evidence
for Nicholson’s hypothesis and heuristic arguments using the modelling framework derived here

to represent phenotypic plasticity induced by resource competition in blowfly populations.
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2.4.2 Application of model framework to represent phenotypic plasticity in Nicholson's blowflies

To formulate a model that represents phenotypic plasticity in blowfly populations I extend a pre-
viously derived mean-field model from Gurney et al. 1983, that considered only the instantaneous
effects of adult competition on blowfly population dynamics which is described in Appendix B.
Gurney’s model is adapted to introduce reaction norms relating through pupal-stage survival
(Jannicke Moe et al., 2002) and maximum potential fecundity (maximum number of eggs an
individual could produce in conditions of excess adult food) (Webber, 1954), to the availability
of larval food. As this is an example of developmental plasticity the model takes the form of

Figure 2.2C.

Eggs are laid into a single egg class, within which all individuals express the same phenotype
(i.e. there are no maternal effects). After a fixed developmental period, eggs hatch into a single
larval class where again all individuals express the same phenotype. When a larva matures into
a pupa, the amount of food that it obtained in the larval stage is determined by dividing the
total food provided over the larval period by the number of individuals present in the culture
over that period assuming scramble competition. The food obtained by an individual in the
larval period is subsequently used to determine the traits that individual expresses as a pupa

and as an adult.

For this model the previously introduced N;; notation is abbreviated, dropping the i and re-
placing the IV by a more descriptive letter reflecting the life-stage, for example, L is used for
larvae and A for adults. Similarly, as adults are the only explicitly modelled life-stage that ex-
presses phenotypic plasticity (pupae are implicitly modelled due to a lack of density dependence
(Gurney et al., 1983)) the j subscript is dropped completely for terms relating to larvae. As
only a single environmental cue is considered (larval food) the set of environmental classes, Qq,

consists only of the midpoints of «/(t).

Denote by L(t) the number of larvae at time ¢ and by A;(¢) the number of adults at time ¢ in

environmental class j. Associated with each environmental class are the maximum fecundity of
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adults ¢;, and survival through the pupal and juvenile stages S;,. Recruitment into the larval
stage is denoted Ry (t) and recruitment of larvae to adults in environmental class j is denoted
R4, (t). The environmental classes are parametrised by discretising an adapted reaction norm
for through pupal-stage survival (Jannicke Moe et al., 2002) and a reaction norm for maximum

adult fecundity is approximated from various sources (Webber, 1954).

As a proxy for the environmental cue, total protein obtained per larvae over the course of the
larval period, I use the average protein available per larvae per day over the course of the larval

period. Assume larvae divide the available food equally allowing the cue to be expressed as

Kprp

olt) = ftt_TL L(s)ds

(2.6)
where K7, is the amount of larval food supplied daily, and 77, is the duration of the larval stage.
This is converted into a derivative for ease of computation, noting that in general the derivative
of f(v)~! with respect to v is — f’(v)/f(v)? provided that f(v)~! satisfies the usual requirements.

Hence by the Leibniz rule

da(t)  —Kprp(L(t) — L(t — TL)).

dt (ftt,TL L(S)d5>2

This can then be simplified using the definition of «(t) such that

da(t)  —o?(t)(L(t) — L(t — 1))

dt K,

The model can therefore be described through the equations
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dL(t)

7 :RL(t) —RL(t—TL)SL —(5LL(t) (2.7&)
A
d Cgt(t) = RAJ- (t) —04A;(t) for jel,..,m (2.7b)
—o? — —
dat) _ —a*(®)(L(H) = L(t = 1)) .70
dt Ky,
Recruitment terms are given by
RL(t) = | > qjA;(t — mp)e Art=p)/Ka 4 It — 15) | S (2.8)
j=1
RA]. (t) = ij(a(t —Tp — TJ))RL(t — T —Tp — TJ)SLSJJ- (29)
j=1

for j € 1,...,m where I(t—7g) is an inoculation term that begins the dynamics (Kot, 2001), and
represents the introduction of larvae into the system at ¢ = 0, and ¢; and S, are determined
by the reaction norms. It is assumed that adults compete equally for the total available food
regardless of phenotype, and so the instantaneous effects of adult competition are represented
by e ATet(t=TE)/Ka where Ary = >_j=1 Aj indicates competition across all phenotypes. The
transition function w;(«(t)), determines the fraction of individuals entering environmental class

A;(t) at time ¢, and is defined

1, if g(a(t)) =a’
wy(a(t)) = ! (2.10)

0, otherwise,

for j € 1,...,m. This choice of w;(a(t)) restricts recruitment of individuals into a single environ-

mental class based on that individual’s experience of previous larval competition and indicates
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that maximum adult fecundity is uniquely determined by past experience of larval competition.
This restriction is appropriate, as due to the assumption that all food is split equally, larvae
being recruited at time ¢ will have identical experiences of larval competition over the duration
of the larval period, and so will express the same traits. Further, I assume that this develop-
mental plasticity is irreversible. Although this choice of w;(a(t)) precludes microenvironmental

variation this could be incorporated through a different choice of transition function.

The system is initialised with 9500 larvae at ¢ = 0 with history for ¢ < 0 given by L(t) =
9500, a(t) = Kr/9500, A;(t) = 0 Vj € {1,..,m}. Steady-state analysis for this system is
provided in Appendix C'. The model was simulated in R (R Core Team, 2022) using the package
PBSddesolve (Couture-Beil et al., 2019). The code used produce the results that follow can be

found at the following repository, https://zenodo.org/record/5078430%#.ZCs j8HbMKUk.

2.4.3 Model parametrisation

To parametrise the environmental classes empirically derived reaction norms are selected for
both ¢, and S;. The through pupal stage survival, Sy, is calculated using an adapted version of
the functional response parametrised in Moe et al. (2002). This functional response represents
the survival rate through the pupal stage when there were = individuals at the beginning of
the larval stage provided with 20,000 mg of larval diet every two days. This is presented as a

logistic quadratic regression of the form

Sy(x)

G(x) =1In <1 —5,()

) =1 4+ vy In(z) + v3In(z)? (2.11)

where v1, v9, and v3 are fitted coefficients the values of which can be found in Table 1. This can

equivalently be expressed as
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G(z)

Ss(@) = I ow

(2.12)
In the Nicholson culture, food was supplied daily, but in the Jannicke Moe et al. (2002) culture
food was supplied every two days. It is assumed that the 20,000 mg of food every two days
provided in the Moe et al. culture is approximately equivalent to a supply of 10,000 mg of food
every day. Further, the amount of larval food supplied in the Nicholson culture accounts only
for protein supplied in the form of ground liver. In the Nicholson experiment this was the only
limited resource with other necessities such as water being “provided in excess”. The experiment
by Moe et al. also provided an excess of non-protein resources, limiting only the protein supplied
to larvae. However, the food supply reported in Moe et al. accounts for both protein and non-
protein resources. The diet provided for the larvae was a mix of 800 ml of water, 50 g of yeast,
20 g of agar, and 200 ml of horse blood per kg of diet. In this diet the main source of protein is
the 200 ml of horse blood, which is proportionally around 19% of the diet. Thus, of the allotted

daily diet only around 2,000 mg was a source of protein.

The functional response presented in the Moe et al. experiment is in terms of initial larval density
when provided with a set amount of food. As the environmental cue, «(t), is average protein
available per larvae per day, this must be converted to a larval density as if the larvae had been

provided with the Moe et al. diet. After these alterations the functional response becomes

(2.13)

The form of this reaction norm is shown in Figure 2.3A for different fixed values of a(t) .

The plastic trait maximum fecundity of adults, g(a(t)), depends on the average protein available

per larvae per day, the same environmental cue as S;. The values ¢(«a(t)) takes are calculated
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from the study Webber (1954) and is defined as

q(a(t)) = hy(hoIn(au(t)) — h3) (2.14)

where hq, ho, hg, and h4 are fitted coefficients the values of which can be found in Table 1.The

form of this reaction norm is shown in Figure 2.3B for different fixed values of a(t) .
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Figure 2.3: (A), The reaction norm used to determine through pupal stage survival according
to the amount of protein available per larva per day as calculated by Equation (2.13) for fixed
values of food per larvae per day. (B), The reaction norm used to determine maximum fecundity
of adults according to the amount of protein available per larva per day as calculated by Equation
(2.14) for fixed values of food per larvae per day.

To complete the parametrisation of the model it is left to specify the discretisation of the
environmental cue and consequently the midpoints of the intervals of the discretisation used
to determine the plastic-trait values. Begin by discretising the environmental cue the average
protein obtained by larvae over the course of the larval period, a(t) € [0,00), into m intervals.

The end points of the discretisation are given by p; = 0, pm4+1 = 00, and

4.82

m—1

pj = exp {(j -1) } for j € {2,...,m}.
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The points of the discretisation are on a logarithmic scale to capture the regions of the reaction

norms that undergo the most rapid change. In Readshaw, Cuff (2006) it was found that there

was no change in the traits blowflies express according to larval food after a(t) = 124 and so

Pma1 = 00 and p,, = 124. This creates a catch-all environmental class for larval food conditions

beyond the maximum. The midpoints of these intervals are defined

of = Prr1itPE

for ke {1,....,m}.

Thus, the parameters for each environmental class are defined, S;;, = S 7(a?) and ¢; = g(a?).

The definitions of the other non-plastic traits and parameter values can be found in Table 1.

Parameter | Interpretation Values Parameter Source
Gmaz Maximum fecundity of adult blowflies (day)~! 59 Webber et al. (1995)
Qmin Minimum fecundity of adult blowflies (day)~! 0 Selected

TE Duration of egg stage (days) 0.6 Gurney et al. (1983)
TL Duration of larval stage (days) 5 Gurney et al. (1983)
TP Duration of pupal and juvenile stages (days) 10 Gurney et al. (1983)
or, Per capita mortality rate of larvae (day)~! 0.004 Gurney et al. (1983)
dA Per capita mortality rate of adults (day)~! 0.27 Gurney et al. (1983)
SE Through stage survival probability of eggs (day) ! 0.959 Gurney et al. (1983)
St Through stage survival probability of larvae (day)~! | 0.980 Gurney et al. (1983)
Ka Daily supply of adult food (mg) 1,200, 2,000 | Nicholson (1957)

K, Daily supply of larval food (mg) 50000 Nicholson (1957)

U1 Constant in functional response for S —4.00 Moe et al. (2002)

Vg Constant in functional response for S 3.36 Moe et al. (2002)

V3 Constant in functional response for S —0.44 Moe et al. (2002)

hy Constant in functional response for ¢ 3.95 Webber (1954)

ha Constant in functional response for ¢ 6.90 Webber (1954)

hs Constant in functional response for ¢ 0.97 Webber (1954)

ha Constant in functional response for ¢ 0.78 Webber (1954)

ag Lower threshold on environmental cue 1.4 Readshaw and Cuff (1980)
Qe Upper threshold on environmental cue 124 Readshaw and Cuff (1980)
C Initial condition 1000 Selected

Table 2.1: Table of parameters used in the phenotypically plastic blowfly model simulated in

Figure 2.4A.
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2.4.4 Simulating population dynamics in the Nicholson blowfly culture under experimental

conditions

The model simulated under replica experimental conditions shows good qualitative and quantita-
tive resemblance to experimental data from Nicholson’s blowfly culture (Figure 2.4A), capturing
the culture’s dynamical behaviour before and after food limitation. Initially, when the adult food
supplied was unlimited, the model predicts the regular population cycles observed in Nicholson’s
data. After the food was restricted to 1000mg at 610 days, the oscillations dampen, and the
average population density substantially increases capturing the change in dynamical behaviour
observed in Nicholson’s culture. Although the population density of the simulated blowflies
matches the experimental data the amplitude of the oscillations does not match. This mismatch
can be explained by the high sensitivity of the model to food supply, a discussion of which,
accompanied by food supplies which correctly predict both amplitudes, is provided in Appendix
D.

Initially, the population exhibits temporal cycles in the dominant phenotypes (Figure 2.4B and
Figure 2.4C). In the time periods where no new adults are being recruited, the phenotypic
composition of the pupal and adult population does not change, resulting in the flat regions of
Figures 2.4B and 2.4C. After food restriction, the range of phenotypes expressed within the
population is greatly reduced. Pupae and adults in this period belong to a group of closely
related environmental classes of individuals with relatively low trait values. As there is no
difference between the distributions of maximum fecundity and through pupal stage survival,

hereafter only fecundity is discussed.

As the model extends a previously derived non-plastic blowfly population model by Gurney et
al. it is natural to question whether the population dynamics observed in Figure 2.4A can be
attributed to the non-plastic population model. To test this, the non-plastic blowfly model (de-
scribed in Appendix B) is simulated under Nicholson’s experimental conditions. The non-plastic

model overestimates the average adult density in both food conditions, predicts a decrease in
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Figure 2.4: Simulation of the Nicholson blowfly culture data using the novel framework to
represent phenotypic plasticity. In the culture adults blowflies were given unlimited food for
610 days, represented by K4 = 2,000mg, which converts to 1800mg of food supplied. After
day 610 the amount of adult food supplied, K4, was then reduced to K4 = 1,200mg, which
converts to 1,000mg of food supplied daily. (A), Simulation of the new model which incorporates
phenotypic plasticity. The number of environmental classes is n = 64 and each of the coloured
lines represents the number of adults in an environmental class. In (A) the solid black line
indicates the total number of adults over all environmental classes, while the dashed black
line is the original data from Nicholson’s culture. (B-C), Change in the average value and
distribution of the plastic-traits: potential fecundity and through pupal stage survival of the
population simulated in Figure 2.4A.
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adult density when resource availability decreases, and maintains the same population dynamics

before and after the resource change as can be observed in Figure 2.5.
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Figure 2.5: Simulations of a previously derived non-plastic blowfly model from Gurney et al.
(1983) under experimental conditions with adult blowflies initially supplied with K 4 = 2,000mg,
which after day 610 is reduced to K4 = 1,200mg. The solid black line indicates the total number
of adults, while the dashed black line is the original data from Nicholson’s culture.

However, to fully determine how much of the behaviour observed in the phenotypically plastic
model can be attributed to the behaviour of the non-plastic Gurney et al. (1983) model it
is necessary to consider the behaviour of the non-plastic model over a wider range of food
conditions. If the competitive release effect or shift in dynamical behaviour can be explained
using the non-plastic model, this would indicate that phenotypic plasticity was not responsible
for generating this effect. To test this the parameters, ¢ and S; in the Gurney model are
varied. These parameters are the plastic-traits varied in the phenotypically plastic model and
so by varying the values of these parameters in the non-plastic model insight is gained into
how plasticity is altering the system’s dynamics. I simulate the Gurney model both in the case
K4 = 1,200mg, and the case K4 = 2,000mg. If for any values of ¢ and S; the maximum
population density of the food unlimited population is less than the population density of the

food limited population this would indicate the increase in population density observed in the
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Nicholson blowfly culture can be explained using the non-plastic Gurney et al. formulation of
the model. As can be seen in Figure 2.6, for no parameter values did the non-plastic model
predict the food limited population being larger in size than the population with excess food.
This suggests that the competitive release effect observed in the new phenotypically explicit

model is generated by the inclusion of phenotypic plasticity.
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Figure 2.6: Comparison of the average adult densities observed in the Gurney et al. model in
the case K4 = 1,200mg, and K4 = 2,000mg. Note that for no value of ¢ does the average adult
population density in the case K4 = 1,200mg exceed the average adult population density when
K4 =2,000mg.

2.4.5 Understanding the wider effects of phenotypic plasticity and population dynamic inter-

actions

To explore how robust the population dynamics observed in the blowfly system are to conditions
beyond those in Nicholson’s experiment, the population trajectories are simulated for a wide
range of possible combinations of adult and larval food supplies. For each food supply I calculate
the average adult population density (Figure 2.7A), the average potential fecundity (maximum

number of eggs an individual could produce in conditions of excess adult food, Figure 2.7B), the
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average observed fecundity (the number of eggs an individual actually produces in the context
of competitive pressures within the population, Figure 2.7C), and the difference between the

average potential and observed fecundities (Figure 2.7D).
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Figure 2.7: (A-D), Results of varying the adult and larval food supplied to a blowfly culture.
The parameter values for the limited food scenario K4 = 1,200mg are indicated by the black x
and those for the unlimited food scenario, K4 = 2,000mg are indicated by the black o. (A),
Average adult density for different amounts of larval and adult food supplied. (B), The average
potential adult fecundity (the maximum number of eggs an individual produces on average in
conditions of excess adult food) for different amount of larval and adult food supplied. (C),
The average observed fecundity (the average number of eggs an individual actually produces in
the context of competitive pressures within the population, Figure 2.7C) of adults for different
amounts of larval and adult food supplied. (D), The difference between the maximum and
observed fecundity of adults. (E-G), Examples of simulations of the blowfly model. The larval
food provided is Ky = 50000mg in each simulation and the adult food has been selected such
that the average potential fecundity trait is 25, K4 = 351mg, K4 = 901lmg and K4 = 4151mg,
respectively.

The model predicts that the blowfly population exhibits one of three dynamical behaviours.
In the leftmost region of Figures 2.7A-2.7D, increases in larval food supply do not change the
abundance or fecundity (potential or observed) of adults. This suggests that in this region the

population is limited most by the amount of adult food available. The population in this region
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consists of a small number of phenotypes with similar trait values (c.f. the small range of colours
in the lines representing the abundance of individuals in each environmental class in Figure 2.7E
and point (e) in Figures 2.7A-2.7D). In the rightmost region of Figures 2.7A-2.7D, increases in
adult food supply do not change the abundance or fecundity of adults, suggesting that availability
of larval food is a limiting factor. The phenotypes expressed within the population are more
diverse and the population’s phenotypic composition changes during the course of a population
cycle (c.f. the larger range of coloured lines in Figure 2.7G and point (g)). In the central
region (the dark segment in Figure 2.7A), increases in either adult or larval food supply change
the abundance and fecundity of adults. The adult population exhibits dampened oscillations
and a small number of phenotypes with low trait values (Figure 2.7F and point (f)). This
suggests that in this region the population is limited by the availability of both larval food
and adult food. This shows that the balance of resource availability between adult and larval
blowflies governs the dynamical behaviour of the blowfly population. The population dynamics
are therefore characterised by the interaction between the two sources of density dependence: the
instantaneous effects of adult competition and the delayed effects of larval competition through

developmental plasticity.

Nicholson observed that when a culture initially supplied with 50g of larval food was supplied
with 1g of adult food that “the oscillation [of the blowfly population] was comparatively slight
and had lost almost all evidence of periodicity, whereas any appreciable departure from the rate
of one gram of ground liver per day in either direction resulted in the increase in the amplitude
of oscillation.” The model predicts that when a population with a low adult food supply is
supplied with increasingly more adult food that there is a sharp rise and then fall in average
adult density as observed in Figure 2.7A. Similarly, when a population with a relatively low
larval food supply is provided with increasingly more larval food, a similar sharp rise and fall
in average adult density occurs. The behaviour Nicholson describes is precisely the behaviour
that this model predicts, demonstrating that phenotypic plasticity is a mechanism by which the

paradox of enrichment can be reconciled.
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The predictions the model makes about the link between traits expressed by individuals and
population responses are somewhat counter-intuitive and would be difficult to anticipate from
reaction norms alone. From consideration of only reaction norms it would be reasonable to
predict that individuals are most reproductively successful when potential fecundity is high.
However, in Figures 2.7B-2.7D it is seen that the food conditions that produce individuals with
the highest average potential fecundity are also those that prevent this from being exploited and
are associated with low average observed fecundity and consequently low reproductive success.
By comparison, conditions that produce individuals with low average potential fecundity allow
those individuals to achieve this potential, meaning that individuals in these conditions are on
average more reproductively successful despite their lower trait value. Therefore, the relative
contribution of high and low trait-valued individuals to the intensity of future larvae competition
changes dynamically according to the environmental conditions the population is subject to.
This demonstrates that the seemingly reasonable assumption made from the reaction norm
alone, that high trait value corresponds to high reproductive success, does not hold (Reed et al.,

2013).

Individuals with traits that are indicative of high individual performance, such as average po-
tential fecundity and average observed fecundity, arise from environmental conditions where the
population is least abundant and most unstable. When average observed fecundity is highest
(rightmost regions of Figures 2.7A-2.7D) population density is lowest. Conversely, when the pop-
ulation density is highest, and the oscillations are damped (central regions of Figures 2.7A-2.7D),
the average observed fecundity is low, and the average potential fecundity is at a minimum. This
shows that over most food conditions average potential fecundity and average observed fecundity
are poor predictors of individual and population success. Even when average trait value is a
good predictor of observed fecundity (rightmost region of Figures 2.7A-2.7D) the population’s
dynamics are regulated by phenotypic plasticity and so would be misrepresented by an approach
that uses averaged trait values. Conversely, when average trait value is a bad predictor of fecun-

dity (leftmost regions of Figures 2.7A-2.7D) an averaged trait approach correctly predicts the
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population dynamics (as can be observed by comparing Figure 2.5 to Figure 2.7E).

The food amounts supplied in the simulations shown in Figures 2.7E-2.7G were selected to
produce populations with the same average potential adult fecundity. Despite each population
sharing the same average trait value, each population exhibits distinct dynamics and trait dis-
tributions which would be overlooked by an approach using averaged trait values. Only by
accounting for trait variation between individuals arising from the cumulative effect of each
individual’s experience is it possible to capture the population level effects of these three sce-
narios. This highlights the need to consider the individual and population level consequences of

phenotypic plasticity in a unified framework akin to what is derived here.

2.5 Discussion

I demonstrate that the interaction between phenotypic plasticity in individuals and population
level effects can be a source of rich population dynamical phenomena. The disconnect between
individual and population performance demonstrated in the example of Nicholson’s blowflies,
although certainly not universal, provides a mechanistic explanation of how pressures that are
maladaptive for individuals can be beneficial for populations and vice versa (Reed et al., 2013,;
Edelaar, Bolnick, 2019; Weiner et al., 2017; Louthan et al., 2013). By representing the mecha-
nisms by which individual variation and population level processes interact, insight is generated
into how populations adapt to changing environments, which is crucial for understanding phe-
nomena such as ecological tipping points (Dakos et al., 2019). Further, these findings support
numerous previous studies proposing that failure to represent the effects of individual variation
on populations is more consequential than simply mis-estimating demography (Bolnick et al.,
2011; Violle et al., 2012; Sgro et al., 2016; Lloyd-Smith et al., 2005), as it is demonstrated
that patterns in individual variation can drive complete changes in the dynamical behaviour of
the system being considered. This is corroborated by observational studies where it has been

found that the response of populations to interventions was influenced by individual variation
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(Cameron, Benton, 2004; Cameron et al., 2013). The framework is broadly applicable to sys-
tems where interaction between population dynamics and trait is important in determining the
outcome of a process of interest. For example, when considering insect vectors of diseases or
crop pests (e.g. mosquitoes or locusts) both abundance and trait to interact to determine the

health or economic risk posed (Chandrasegaran et al., 2020; Sword et al., 2010).

Developing the model for Nicholson’s blowflies was considerably simplified as I consider a well-
studied model organism under controlled laboratory conditions. Although reaction norms are
widely available across a broad range of taxa, outside of laboratory settings additional sources
of environmental variation require the inclusion of reaction norms of higher dimension (i.e. a
reaction norm considering the effect of temperature and con-specific density on development
rate). However, the framework is designed to represent complex systems and so this should not
pose an obstacle to implementation (see Appendix E for examples of how to represent other
forms of phenotypic plasticity). For species where particular environment-trait relationships are
not fully quantified or are missing entirely, due diligence must be observed in determining how
sensitive the dynamics are to these uncertainties. For example, reaction norms are often most
uncertain at environmental extremes (Brady et al., 2013) and so this uncertainty would need

careful consideration when using the framework to predict dynamics at population range limits.

Individual variation is shown to change and be changed by population processes, but it is not
predicted when trait variation alters the outcome of these processes. In invasion biology, metrics
derived from reaction norms are often used to predict the competitive viability of native and
invasive species (Richards et al., 2006a). Although the approach of using reaction norms di-
rectly accurately predicts the success of some invasive species (Luo et al., 2019; Knop, Reusser,
2012), it fails to explain the success of others (Muth, Pigliucci, 2007). This inconsistency limits
the usefulness of reaction norms as a general predictor of a species invasiveness (Hulme, 2008;
Palacio-Lépez, Gianoli, 2011). Here, it is demonstrated that if one directly compares reaction
norms without also considering a greater ecological context, one may arrive at erroneous con-

clusions. Therefore, it is important to determine more generally when reaction norms alone
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are sufficient to predict population dynamics and in doing so reconcile the role of phenotypic

plasticity in biological invasions and population biology.
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Chapter 3

Predicting the population and trait dynamics

of Ae. albopictus over a global range

3.1 Abstract

The current rapid increase in the incidence of vector-borne disease, driven by anthropogenic
factors, is a growing threat to global public health. A thorough understanding of vector ecology
will be critical for implementing successful control and surveillance campaigns. However, in
current models the response of transmission critical vector traits to environmental variation is
simplified, and this may lead to mis-estimation of the risk posed by vector-borne disease. Here, 1
develop a population model for the invasive dengue vector Aedes albopictus that uses mechanisms
of individual variation to predict how transmission critical traits will respond to environmental
variation. This model is validated against data from field populations across the global range of
the species and demonstrates excellent predictive ability across broad environmental gradients.
Mean-field models are shown to lack this generalisability, demonstrating the need to reconsider

how trait variation is accounted for in predictions of vector population dynamics.
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3.2 Introduction

The rapid global invasion of Ae. albopictus has been facilitated by the extraordinary ecological
plasticity displayed the species across its geographical distribution (Paupy et al., 2009). Between
climates the population dynamics expressed by Ae. albopictus change substantially, and this
alters the ability of these populations to vector disease. In temperate regions populations display
strong seasonality in adult abundance, and consequently there is only a short period of time over
which disease can be vectored (Carrieri et al., 2011). By contrast in tropical regions adult activity
can be maintained all year round, and variation in abundance appears to vary primarily with
precipitation (Haramboure et al., 2020; Rozilawati et al., 2007). In between these two extremes
are a diverse range of intermediary dynamical behaviours that even in the same location can vary
substantially between years (Willis, Nasci, 1994; Xia et al., 2018). To understand the current
risk posed by populations of Ae. albopictus across its global range it will be necessary to identify

the mechanisms that drive this variability.

Niche-based distribution models have found that the niche occupied by Ae. albopictus in its
invaded range appears to have shifted from the niche it occupies in the native range in Southeast
Asia (Medley, 2010). One explanation proposed for this shift in niche is that different vector
populations have different genetic structures, a factor that is known to change the vectoriality of
tick populations, and of Anopheline mosquito species (McCoy, 2008; Fontenille, Simard, 2004).
However, investigations into the genetic structure of Ae. albopictus populations around the
globe have found an apparent lack of structure between vector populations across the species
range, attributing much of the variation observed to human-mediated introductions rather than

adaptation (Latreille et al., 2019).

Environmental variation has a complex and multi-faceted effect on the population dynamical
processes of mosquito species, and these cannot be captured solely through association (Purse,
Golding, 2015). However, despite the theorised importance of interactions between environ-

mental variables, trait expression, and population dynamics, explicit mechanisms of individual
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variation are generally omitted in the current models predicting transmission risk (Cator et al.,
2020). It is common to implicitly make broad simplifying assumptions about how environment
acts on trait expression, representing mechanisms of trait variation either through instantaneous
responses to the current climate or omitting them wholly. For example, although variation in
adult longevity is incorporated into predictions of the risk posed by mosquito populations, it
is assumed that this trait varies only in response to the current environmental conditions ex-
perienced by adult mosquitoes (Metelmann et al., 2021; Mordecai et al., 2017). This implicitly
assumes that all individuals have experienced the same historical environmental conditions re-
gardless of their actual experience of the environment through development and therefore the
effect of intraspecific variation is overlooked (Violle et al., 2012). For mosquito populations this
reduces the dynamic trait structures that are observed in the field to a single population average
that cannot account for the population’s historic environmental experience nor how this expe-
rience alters the ability of populations to vector disease (Willis, Nasci, 1994). When tailored
for populations in specific environments mean-field approaches have proven successful and allow
the attribution of environmental processes to population level responses (Ewing et al., 2016;
Ewing, 2017; Ewing et al., 2021). However, mechanistic models are often applied over broad
environmental gradients over which these assumptions are less appropriate and this may lead to

a mis-estimation of disease risk.

The modelling framework developed in Chapter 2 and Brass et al. (2021) is designed to track
the interaction between population and trait dynamics in response to environmental variation
across developmental stages and between generations. This approach allows the attribution of
population responses to specific mechanisms of individual variation, and therefore is ideal for
determining how the trait dynamics of vector populations contribute to outbreak risk. Here,
this approach is used to develop a stage-phenotypically structured population model for Ae.
albopictus, an invasive mosquito species and major vector of dengue (Zhang et al., 2019). This
species is an ideal and important candidate for understanding the effect of environmentally

induced trait variation on disease risk since its wide global range means that its populations are
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subject to a diverse range of environmental conditions. The dynamics exhibited by populations
of Ae. albopictus across its range are very different, with populations in temperate locations
exhibiting strong seasonality but those in more tropical climates active all year round (Carrieri
et al., 2012; Haramboure et al., 2020). In field populations environmental variation shapes trait
distributions and it is theorised that these differences alter the ability of these populations to
transmit disease (Willis, Nasci, 1994; Suzuki et al., 1993). Despite predictions of broad suitability
for the transmission of dengue by Ae. albopictus in much of the invasive range, outbreaks have
so far been limited in size and distribution (Liu-Helmersson et al., 2016; Brady et al., 2012). It is
my hypothesis that by accounting for the effect of environmental variation on the trait structure
and population dynamics of Ae. albopictus both the population dynamics of the species across

its range and the current patterns of disease incidence around the globe can be understood.

3.3 Methods

3.3.1 Model overview

The general framework developed in Chapter 2 is used to derive a model for Ae. albopictus to de-
rive a model that represents the effect of developmental plasticity in adult trait in response to the
environmental experiences of juveniles (Brass et al., 2021). Within the model individuals with
different experiences of the past environment are grouped into different environmental classes
which describe how this experience alters the traits they express now. By linking individual-level
variation to population response the model predicts not only the population’s dynamics but also
the population’s trait structure. As was demonstrated in Chapter 2 this approach is flexible
and able to incorporate the effect, both instantaneous and delayed, of environmental stressors

on multiple traits making it ideal for accounting for the complex life-history of Ae. albopictus.

The model considers the dynamics of a population of mosquitoes arising from a single water-

body of fixed dimension, taking as inputs only environmental variables from the location being
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simulated and outputting predictions of population and trait (Figure 3.1). It is assumed that the
water body only varies in response to changes in temperature, the accumulation of precipitation,
and through evaporation of standing water and is otherwise identical in every respect between
locations. Adult mosquitoes oviposit eggs either onto the surface of the water or around the sides
of the habitat, with the proportion of eggs being placed around the habitat’s sides increasing as
water level decreases (Rey, O’Connell, 2014). The eggs placed into or around the water body
express either a diapausing or non-diapausing phenotype which is determined by a maternal
effect in response to falling temperatures and decreasing photoperiod (Lacour et al., 2015). The
survival of eggs through the egg stage is assumed to be determined solely by temperature (Delatte
et al., 2009). Initially all eggs develop at a temperature-dependent rate and are referred to as
active eggs regardless of location in the habitat or phenotype expressed. Once development
is complete, only eggs on the water’s surface expressing the non-diapausing phenotype hatch
into larvae with all other eggs transitioning into one of two dormancy classes. When eggs
placed around the sides of the habitat finish development they enter egg quiescence, a form of
irregular dormancy that allows persistence through dry periods (Diniz et al., 2017). Quiescence
continues until the dormant egg is inundated by precipitation after which it immediately hatches
if expressing the non-diapausing phenotype and transitions to the diapausing egg class otherwise.
Egg diapause is a form of regular dormancy that allows eggs to withstand cold temperatures, and
is the primary mechanism by which Ae. albopictus populations persist overwinter in temperate
climates (Armbruster, 2016). Once development is complete, provided an inundation event has
occurred if the diapausing egg is also quiescent, diapause eggs remain dormant until a critical
temperature and photoperiod is reached after which they immediately hatch (Lacour et al.,

2015).

Larval mosquitoes compete for available resources in the aquatic habitat and are assumed to
develop at a rate determined by both the current temperature and the intensity of larval com-
petition (Ezeakacha, Yee, 2019). The ecology of larval mosquitoes is complex, and to produce

a coherent model with the data currently available it is necessary to make broad simplifying
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assumptions about the life-history of larvae. I assume that all larvae are functionally identical
regardless of larval instar or previous experience of dormancy during the egg stage and so con-
sider only a single larval class (Poelchau et al., 2013). It is assumed that there is no interspecific
competition either for resource or through predation and that the only intraspecific competi-
tion is from competition for resource and space (Marini et al., 2017; Mastrantonio et al., 2018).
Available resource is assumed to be consumed in its entirety and to be replenished daily, rep-
resenting the product of temperature-dependent metabolic processes in the larval environment.
Once larval development is complete pupation begins with the development of pupae assumed
to depend solely on temperature (Delatte et al., 2009). The container habitats that Ae. albopic-
tus prefers are generally small and vulnerable to flushing, a process whereby the body of water
overflows and individuals are swept away, and drying out (Dieng et al., 2012). To represent
flushing whenever the height of the water in the habitat exceeds the height of the container and
rainfall is sufficiently intense an increase in the mortality of larvae and pupae occurs, and when

the container dries out all non-quiescent juveniles die out.

Adult mosquitoes experience developmental plasticity in response to their experience of tem-
perature and intraspecific competition as larvae (Yoshioka et al., 2012). This is represented by
tracking each individual’s experience of the environment through development and using this to
determine the traits that individuals express as adults. Specifically, each individual’s experience
of the average temperature and the average food available per larvae per day over the course of
the larval period is used to predict that individual’s wing length, which is then used to determine
the fecundity and longevity of that individual as an adult (Blackmore, Lord, 2000). Both fecun-
dity and longevity are then further modified by the current temperature (Delatte et al., 2009;
Brady et al., 2014). The adult resources necessary to survive and complete the reproductive
cycle, such as sugar and blood meals, are always assumed to be in excess and the model does
not represent any effects of competition between adults (Bellini et al., 2014). The production
of cold resistant diapausing eggs is triggered when falling temperatures and photoperiod reach

a critical threshold (Lacour et al., 2015). A schematic representation of the model is shown
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Figure 3.1.
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Figure 3.1: Schematic of the model used to represent the population dynamics of Aedes albopic-
tus. 1 consider a stage structured model with three explicitly modelled life-stages, eggs, larvae,
and adults with pupae only being represented implicitly. The model considers the dynamics of
a population from a single water-body of fixed dimension with a water level that is dependent
solely on precipitation and evaporation. Eggs are divided into three different classes, active eggs
E,, diapausing eggs Ep, and quiescent eggs Fg depending on the location they are placed in
the pool (active/quiescent) and the phenotype they express (diapausing/non-diapausing). After
hatching eggs proceed to the larval class where development depends on temperature, intraspe-
cific density, and the food available per larvae per day which is assumed to relate to the amount
of water accumulated in the habitat and the current temperature. Once larval development is
complete larvae transition to the pupal class which is represented implicitly. Upon maturation
to adulthood each individual’s experience of its environment as a larva determines the traits
that individual expresses as an adult through developmental plasticity. To represent this wing
length is discretised into m environmental classes, with m sufficiently large to avoid the effects
of discretisation, and assign to each a set of adult traits, with adults in the 2" environmental
class denoted A,.
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3.3.2 Model details
The environment

Environmental variation is incorporated into the model through temperature, photoperiod, evap-
oration, and precipitation from the location in which the simulated population is situated. Me-
teorological data is sourced from the ERAS climate reanalysis dataset (Munoz Sabater, 2019).
Climatic variables in this dataset are available at a 0.1°x0.1° resolution at an hourly time in-
terval which is processed to represent either a daily mean temperature or the total accumulated
precipitation and evaporation each day. For use in the model each environmental variable is
extended to continuous time using splines, which were then tested against the climate data
to ensure there were no errors in the interpolation. Splines were created using the function
SplinelD from version 0.5.2 of the Dierckx package, a wrapper from the Fortran library of the

same name (Dierckx, 1995).

The temperature at time ¢ is denoted T'(t), and for simplicity I assume that the temperature of
the larval pool and the air temperature are always the same (Paaijmans et al., 2010). Temper-
ature is used throughout the model to instantaneously alter the traits expressed by individuals
in each developmental stage. Temperature plays a further role in two more complex instances
of phenotypic plasticity that are represented in the model. Specifically, an instance of develop-
mental plasticity that uses the average temperature an individual experienced over the larval
period in combination with the average amount of food available per larva per day to determine
the wing lengths of emerging adults. Also included is a maternal effect where the temperature
and the photoperiod at time ¢, denoted (), determines the proportion of produced eggs that
express diapausing phenotype. A combination of temperature and photoperiod subsequently

determines when diapausing eggs are released from dormancy.

The total precipitation and evaporation each day, denoted p(t) and €(t) respectively are used to
simulate the dynamics of the aquatic developmental habitat. The model simulates the dynamics

of a single cylindrical water body with a surface area of umm? and maximum volume of Vmms3.
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Throughout the subsequent analysis these parameters are kept constant across the range of
locations considered and have been selected to be consistent with productive habitats observed
in the field (Toma et al., 1982). Water accumulates in the habitat through precipitation, denoted
p(t), and leaves through both evaporation, €(t), and overspill. Overspill occurs when the amount
of water in the pool would exceed the pools volume, at which point any additional precipitation
is not added to the pools total volume. If an overspill event happens concurrently with an intense
period of precipitation a spike in mortality of the larval and pupal classes occurs, representing
individuals being flushed away (Dieng et al., 2012). The total amount of water in the habitat

on day t after all precipitation and evaporation can therefore be expressed by the series

Wi = min{Wi_1 + p(p(t) — €(t)), V} (3.1)

with initial condition such that the habitat is full at the start of the simulation, i.e. Wy = V.
This series for daily water level is then extended to continuous time using a spline, such that
the water level at time ¢ is denoted W (t). Whenever W (¢) = 0 the container has dried out and
all non-quiescent juvenile stages (active eggs, diapausing eggs, larvae, and pupae) die-off. This
parameter also governs the proportion of eggs produced that are quiescent and when they are

released from dormancy.

Eggs

The number of active, quiescent and diapausing eggs present in the population at time t are
denoted by E(t), Eq(t) and Ep(t) respectively. Active eggs develop at a temperature-dependent
rate, immediately hatching once development is complete if they are at or below the current
water level and moving into the quiescent class otherwise (Delatte et al., 2009). Quiescent eggs
remain dormant until inundated by precipitation after which they immediately hatch (Diniz

et al., 2017). Diapausing eggs are cold resistant and are produced in response to a maternal
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effect, they remain dormant until a critical temperature and photoperiod threshold is reached
after which they immediately hatch (Lacour et al., 2015). In other Aedes species it has been
demonstrated that adult body size is related to egg size and that larger egg sizes increase
desiccation resistance (Steinwascher, 1984; Faull, Williams, 2015). Although weak effects of egg
size on survival have been observed in Ae. albopictus, there is insufficient empirical data to justify
the inclusion of such a function in this model. Therefore, it is assumed that the only maternal

effect is whether an egg is active or diapausing (Sota, Mogi, 1992) .

For active eggs, I define 75 (t), g, (t), ge, (t), and Sg_ (t) to be the stage duration, mortality rate,
development rate, and through-stage survival proportion respectively with 7¢_ () = 1/gg. (t) and
0p, ) = —log(SE,(t))/7E,(t). The forms of the reaction norms used for egg survival and de-
velopment were selected by fitting data to functional forms that have been used in previous
models, trialling quadratic and Briere functional forms for the development rates, and quadratic
and Gaussian functional forms for through stage survival with each functional form being trun-
cated at a value close to 0 (Mordecai et al., 2017). Functional forms were fit using a weighted
non-linear least squares approach and AIC was used for model selection, using the nls func-
tion in R (R Core Team, 2022). Further explanation of this fitting procedure along with both
the code and life-history traits used to perform the fitting can be found in a repository at
https://zenodo.org/record/7796206#.ZCs1lmnbMKUk. The parameter values are reported in
Appendix J, and the data used perform this parametrisation was taken from a variety of sources
(Delatte et al., 2009; Li lin et al., 2015; Li et al., 2021b; Blagrove et al., 2013; Calvitti et al., 2010;
Mamai et al., 2019; Maamor et al., 2019; Zhang et al., 2015; Monteiro et al., 2007). The best
fitting functional form for the development rate of active eggs was a quadratic with functional

form

ge,(T) = max {011T2 + o191 + 013, 0.01} ,
and the best model for the through stage survival of active eggs was a Gaussian with functional
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E’y( ) 09 /727_[_ exp < 2 < 099 > )

The result of this fitting is provided in Figures 3.2A and 3.2B respectively.
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Figure 3.2: Reaction norms for active eggs, the black line is the model prediction and each
point represents the data used to fit the model. (A) Development rate of active eggs, gr. (7).
(B) Through egg-stage survival of active eggs, Sg. (t).

Egg quiescence is a mechanism of irregular dormancy that ensures there is a reservoir of eggs
able to persist through periods when the habitat has completely dried out (Diniz et al., 2017).
After maturing out of the active stage a proportion of eggs are assumed to enter the quiescent

egg class. The proportion of eggs that enter the quiescent class at time ¢ is represented by the

function Q(t) which is defined

VW i W) < W(t—1)

Qt) = (3.2)

0, otherwise.

This function links the proportion of eggs that become quiescent to the height of the water in

the container habitat. The condition W (t) < W (t—1) ensures eggs only become quiescent if the
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water level on day t is lower than that on day ¢t — 1. This choice of functional form ensures that
when the habitat completely dries out, W (t) = 0, all eggs become quiescent upon maturation
and so Q(t) = 1. As the water level rises a lower proportion of eggs enter the quiescent class
until the habitat is completely filled, W (¢) = V, and therefore Q(¢) = 0. Within the quiescent
egg class it is assumed that the same temperature-dependent mortality rate used for active eggs

is suitable for quiescent eggs.

As egg quiescence is an irregular form of dormancy, maturation out of the quiescent class is
triggered by inundation rather than the completion of development. This is represented through
the function hg(t), which describes the proportion of eggs that hatch out of the quiescent class

at time ¢ and is defined

1- Y220 W) > Wit —1)
Vv
hq(t) = (3.3)
0, otherwise.

When the habitat is full, W(t) = V and so hg(t) = 1, representing that when the habitat is
completely filled all quiescent eggs are inundated and therefore should hatch immediately. The
condition W (t) > W (¢ — 1) ensures that no eggs are released from quiescence when the water
level at time t is lower than the water level at time ¢ — 1 and therefore no new eggs would become

inundated.

Egg diapause is a mechanism of regular dormancy that allows the persistence of populations
through cold winter months and is governed by a maternal effect (Lacour et al., 2015). The
production of diapausing eggs is triggered by the exposure of adults to a critical photoperiod
and temperature. This is represented in this model by the function D(t), which describes the

proportion of adults at time ¢ that are producing non-diapause eggs and is defined
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| — sewan—swys i T(t) <18, and ¢(t) < ¢(t — 1)
D(t) _ 1+15e((@ (D) —o@) (3'4)

1, otherwise

with the functional form taken from Lacour et al. (2015) and where ¢(l) is the critical pho-
toperiod threshold required to induce the production of diapausing eggs in adults at latitude [

defined

o(1) = 0.1]1| + 9.5

according to the relationship determined by Armbruster (2016). Emergence of eggs from dia-
pause is triggered by the current environmental conditions exceeding a critical temperature and
photoperiod threshold (Petrié¢ et al., 2021). This is represented by the function hp(t) which
immediately releases eggs from diapause once the environmental thresholds are reached which

is defined

1, i T(t) > 12.5, and PP(t) > ¢(1), and ¢(t) > ¢(t — 1)
hp(t) = (3.5)

0, otherwise.

The mortality rate of diapausing eggs is defined

0.01, if T(t) > —12
Or, (t) = (3.6)

0.1, otherwise.

Note in this case that when the temperature is below the thermal limit mortality is not absolute, a
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decision which has been made due to evidence that diapausing eggs can withstand short intervals
of low-temperature conditions (Thomas et al., 2012). This leniency ensures that a brief period of
intense cold does not kill off whole populations whilst ensuring that sustained low temperatures

remain unsuitable.

Larvae

Larval Ae. albopictus consume a range of bacteria, plants and detritus and both the time that
larvae take to develop and the proportion of individuals that survive through the larval stage
is assumed to depend on the intensity of intraspecific competition for resource in addition to
temperature (Ezeakacha, Yee, 2019). To account for resource dynamics in the model requires
the definition of how much resource is in the habitat at any time and how this is expected to
vary. Accurately predicting how much resource is available for larval Ae. albopictus in a con-
tainer habitat from climate data alone would be a significant undertaking for even a limited
geographical range, but the model requires predictions that will hold globally. Resource dynam-
ics are complex, and the amount of resource available in a container habitat varies with location,
micro-climate, and community composition amongst many other factors that are not accounted
for (Kulas et al., 2021). Instead, I assume that the amount of food available in the container
is temperature-dependent, proportional to the volume of water in the habitat and completely
independent of location. The gross primary productivity of the larval habitat is then defined to
be

F(t) = 10" %1l0g;((0.45 4 0.095T(t))W (t) + f4 (3.7)

where the logarithmic term represents the products of respiration and the constant term, fy, is a
reservoir of nutrition from the decay of detritus (White et al., 1991). It is further assumed that

larvae divide the available food equally and completely (i. e. scramble competition) (Gavotte
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et al., 2009). The amount of food available per larvae per day, a(t), can therefore be expressed

by

The functions used to represent larval life-history processes are comprised of multiple components
but are principally constructed from reaction norms for larval development rate, g7, (T'(t), a(t)),
and through-stage survival independently of hydrological processes, Sp,(T(t), a(t)). To fit the
multi-dimensional reaction norms for larvae I use generalised additive mixed effect models
(GAMMs) using the R package gamm4 version 0.2.6 and both the life-history data used to
parametrise these reaction norms and the code to fit the models can be found in the repository
https://zenodo.org/record/7796206#.ZCslmnbMKUk (R Core Team, 2022; Wood, Scheipl,
2020). I consider models that include different combinations of temperature, density, and an
interaction term between the two variables. As the data used to parametrise these functions
is sourced from laboratory experiments that used populations of Ae. albopictus from different
origin locations and reared larvae on different diets these factors are included as random effects.
For each life-history trait the model with the lowest AIC is selected, the result of which for larval
development rate and through stage survival is shown in Figure 3.3 and the data used for this
fitting was compiled from a variety of sources (Buckner et al., 2016; Calado, Navarro da Silva,
2002; Calvitti et al., 2010; Delatte et al., 2009; Giatropoulos et al., 2022b; Kamimurai et al.,
2002; Li lin et al., 2015; Li et al., 2021a; Lima-Camara et al., 2022; Jong et al., 2017; Maamor
et al., 2019; Mamai et al., 2019; Marini et al., 2020; Monteiro et al., 2007; Mori, 1979; Puggioli
et al., 2017; Reiskind, Lounibos, 2009; Reiskind, Zarrabi, 2012; Riback et al., 2015; Russell,
Cator, 2022; Sauers et al., 2022; Sultana, Tuno, 2021; Yoshioka et al., 2012; Zhang et al., 2015).

The through larval stage duration is defined, 77,(7(t), «(t)) = 1/gr(T(t),a(t)), but the larval
mortality term, 07, (7'(t), a(t)), takes a more complicated form to account for the dynamics of the

container habitat and density dependence. The water level of the container habitat varies with
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Figure 3.3: The reaction norms used to parametrise the larval stage. (A) The reaction norm
linking larval development rate to temperature and the amount of food available per larva per
day. (B) The reaction norm linking through larval stage survival to temperature and the amount
of food available per larva per day.

evaporation and precipitation and this means spikes in larval mortality can be induced either
through the habitat drying out or through the flushing of larvae when the habitat overflows.
This is represented in the larval mortality rate by setting d7,(t) = d4 whenever the habitat dries
out, (i. e. W(t) = 0) and similarly setting dr,(t) = d; whenever the habitat overflows and the
intensity of rainfall is sufficient to initiate flushing (i. e. W(t) =V and up(t) > 0.5V). The final
component of the larval mortality function is an overcrowding term that increases the mortality
of larvae when the larval density exceeds 3 larvae per ml according to a Gompertz function
(Balestrino et al., 2014). High larval densities are unfavourable for survival, and the term is
necessary in addition to the reaction norms to ensure that the fluctuating water level does not
cause implausibly high larval densities (Leisnham et al., 2021). Therefore the expression for the

mortality rate of larvae is defined

—log(SL(T(t),0(t 1—L(t)/3 .
max{ EL((JL“((t),(oc)(t))( D) 4 exp (— exp (W)) ,1} , if 0<W(t) <V and pp(t) < 0.5V,

or(t) = 64, if W(t) =0,

d¢, if W(t) =V and pup(t) > 0.5V.
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Pupae parameters

Pupal development rate and survival are assumed to depend solely on temperature as there
is a lack of experimental data to quantify carry-over effects from larval stage. Denote these
by gp(t) and Sp(t) respectively and with the forms of the reaction norms defining these in
Figure 3.4. These reaction norms are fitted using the same procedure described for the egg
stage, with a Briere function best describing the relationship between pupal development rate

and temperature with form

gp(T) = max {0‘31T(T — 039) (033 — T) M/ 734, 0.01}

and a quadratic function form for the relationship between through pupal stage survival and

temperature independently of hydrological processes

SP(T) = max {U41T2 + 049 + 043, 0.01}

parametrised using data from various sources (Briegel, Timmermann, 2001; Calvitti et al., 2010;
Delatte et al., 2009; Jong et al., 2017; Kamimurai et al., 2002; Maamor et al., 2019; Monteiro
et al., 2007; Reiskind, Zarrabi, 2013; Zhang et al., 2015).

(A) (B)

ough stage survival, Sp

Thre

20 20
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Figure 3.4: The reaction norms used to parametrise the pupal stage. (A) The reaction norm
linking the duration of the pupal stage to temperature. (B) The reaction norm through pupal
stage survival.
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The survival and mortality parameters are modified as in the larval stage to induce mortality

when W (t) = 0 and to account for flushing such that

(

—log(S .
—oslBR )i 0 < W(t) <V and pp(t) < 0.5V,

6p(t) =< 64, if W(t) =0, (3.9)

dp, if W(t) =V and pup(t) > 0.5V.

Adults parameters

Ae. albopictus experiences developmental plasticity in response to the temperature, food avail-
ability, and conspecific density experienced during juvenile development that contributes towards
temperature-dependent mortality and fecundity of adults (Ezeakacha, Yee, 2019; Blackmore,
Lord, 2000). This is included in the model by using an individual’s experience of larval com-
petition and temperature through development to predict the wing length that individual will
express as an adult. This wing length is then used along with the current temperature to
define the mortality rate of adults and the rate at which eggs are produced. This overlooks
a known crowding effect whereby high densities of larvae inhibit development independently
of competition for resource (Yoshioka et al., 2012). This assumption is necessary as much of
the experimental data used to parametrise reaction norms does not control for larval density
and food availability simultaneously and therefore this relationship cannot be included in the
model. Also omitted are the effects of the availability of adult resource on the production of
eggs, and other varied processes demonstrably important in the life-history of adults (Sultana,
Tuno, 2021; Farjana et al., 2012). Using the same GAMM fitting procedure as described for
larvae, I fit reaction norms for the wing length of emerging adults, as predicted by the average
larval temperature and food available per larvae per day over the course of the larval period,

wr(Tavg(t), @(t)), and for the time until 50% adult mortality as predicted by wing length and

74



temperature, 7a,,(wr,T(t)). The form of these functions can be seen in Figure 3.5 and are
parameterised using laboratory data from a variety of sources (Alam, Tuno, 2020; Allgood, Yee,
2014; Alto, Juliano, 2001; Alto et al., 2005, 2015, 2008; Armbruster, Hutchinson, 2002; Bara
et al., 2015; Black et al., 1989; Blagrove et al., 2013; Briegel, Timmermann, 2001; Calvitti et al.,
2010; Costanzo et al., 2015, 2018; Deng et al., 2021; Ezeakacha, Yee, 2019; Farjana et al., 2012;
Giatropoulos et al., 2022a; Jong et al., 2017; Li lin et al., 2015; Li et al., 2021b; Lima-Camara
et al., 2022; Mamai et al., 2019; Marini et al., 2020; Mori, 1979; Muturi et al., 2011; Reiskind,
Lounibos, 2009; Reiskind, Zarrabi, 2013; Riback et al., 2015; Russell, Cator, 2022; Sauers et al.,
2022; Shahrudin et al., 2019; Sultana, Tuno, 2021; Sultana et al., 2021; Westbrook, 2010; West-
brook et al., 2010; Wiwatanaratanabutr, Kittayapong, 2006; Yee et al., 2012, 2017; Yoshioka
et al., 2012; Zhang et al., 2015).
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Figure 3.5: The reaction norms used to parametrise the adult stage. (A) The reaction surface
linking historical experience of larval density and temperature to adult wing-length. (B), The
relationship between adult wing length the current temperature and adult longevity. This is
converted into a mortality rate for use in the model.

In this framework the effects of developmental plasticity are represented by assigning each in-
dividual to an environmental class that reflects their experience of the environment through
development. This is achieved by separating adults into m environmental-classes the wing
length they are predicted to express based upon their experience of temperature and resource

availability as larvae according to the function wy. This is achieved by dividing the possible
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wing lengths an adult could express, (Wmin, Wmaz) into m equally spaced subintervals and denote
by w; the midpoint of the 4% sub-interval. Then define the function g such that g(w) = wj if
w € R is in the jth subinterval of (Win, Wmaz). To determine how much food was available for
an individual maturing into adulthood at time ¢ define

t—7p(t) F(s)
a(t) = Dmretn=re) T

TL(t — 7P (1))

Then define the transition function, w;(Tayg(t), @(t))) such that

Wi (Tavg(t), a(t)) = L i g(w(Tag (1), @)(1)) = w;

0, otherwise
for j €1,...,m.
The fecundity of an individual expressing wing-length w is then given by

o51+052W

g(w) = 0.5exp

noting that factor of 0.5 is required as only females produce eggs (Blackmore, Lord, 2000). The
duration of a gonotrophic cycle is assumed to be temperature-dependent and to be the reciprocal
of the biting rate. This is parameterised using a Briere function taken from taken from Mordecai

et al. (2017) of the form

1

G(T(t) = maz{oq T(T — o62) (063 — T)%,0.01}

from which the rate at which an individual with wing length w produces eggs at temperature
T'(t) can be expressed. The rate at which adults in environmental class j produce eggs at time

t is therefore defined
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Similarly, for individuals in environmental class j that express wing length w; the mortality rate

of adults is defined to be

04,(T(t)) =

Population model

The model is defined

—log(0.5)
Taso (wj, T(t)) .

The variable delay terms are defined such that

dTE,Y (t) _

dt

drp(t)

dt
drp(t)
dt

-1—

9g, (t)

e, (t—T1E, (1)

_gi()
gLt — (1))’

gp(t)
gp(t —7p(t))

77

(3.10)
(3.11)
(3.12)
(3.13)

(3.14)

(3.15)
(3.16)

(3.17)



The through stage survival terms are defined such that

dsflz ® _ S, (1) <9Ewg(25(? _(tT; T( f;)(t)) g, (t)) , (3.18)

(S ).
Recruitment and maturation terms defined,
> o1 444 (t)

Rp. () = D(t) <G(t)> o), (3.21)

95, (1)
Mg, (t) = mREW (t =78, (t)SE, (D), (3.22)
g A (t

R, (t) = (1 - D(1)) (W) , (3.23)

Mg, (t) = hp(t)Ep(1), (3.24)

R, (t) = Q@) (ME, (t) + Mg, (1)), (3.25)

Mg, (t) = hq(t)Eq(t), (3.26)

Rp(t) = (1—-Q(t —76(1))(ME,(t) + Mg, (1)) + Mg, (t), (3.27)

9@ .
Mi(t) = ot — TL<t))RL(t £(t))SL(?), (3.28)
Ra, (1) = wj(a(t)— 22D apy (¢ — mp(0))Sp(t), for j € 1, ., (3.29)

gp(t —7p(t))

and the transition functions defined
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1, if g(a(t)=a’, for j€1,...m
wila(t) = ! ! (3.30)

0, otherwise.

The model dynamics are initiated with the initial conditions Ep(0) = 100, E,(0) = Eg(0) =
L(0) = Aj(0) =0 for j € 1,...,m, Sx(0) = exp{—7(T(0))éx(T(0))} for X € E,L,P. With
initial history such that for all t < 0, Rx(t) = Mx(t) =0 for X € E,L, P, A. The model was
simulated in Julia version 1.8. using the package DifferentialEquations, and code that can be
used to replicate these results can be found in the repository (Bezanson et al., 2017; Rackauckas,

Nie, 2017).

3.3.3 Validations of the population dynamical model

The model is validated by comparing its predictions to the population and trait dynamics of
field populations of Ae. albopictus from across the species range. The methodologies employed
across the different field datasets used for validation are not standardised, having come from
many different studies with different purposes. The studies in the validation dataset include
collections of eggs from ovitraps, counts of larvae through dipping, full counts of both larvae
and pupae, active and passive adult collection with a large selection of bait types including
human landing collection, and wing length measurements in field and semi-field conditions. The
spatial and temporal resolution of these datasets varies from observations from a single location
every two months for a single year, to weekly average observations taken from large surveillance
networks over many years. Between locations where field studies included in the validation set
were conducted there are further differences in factors such as land-use type and the form and
intensity of mosquito control programs that are not accounted for by the model. Given the great
range in study designs considered I do not aim to use this field data to draw conclusions about

how the model anticipates changes in absolute mosquito abundance between locations. Instead,
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these datasets are used to assess how well the model predicts population dynamics and within

dataset relative abundances.

In many locations it is necessary to compare the model’s predictions of the number of eggs
within the population to the number of eggs that have accumulated in ovitraps over a number
of days. Therefore I convert the predictions of the number of eggs present in the population at
time ¢ to the number of eggs that would be collected in an ovitrap given the dynamics of the
population that are predicted, a quantity which is termed oviposition activity. For a study with
a sampling period of Tsgmpre the number of individuals that would collect in an ovitrap sampled

at time t is given by

Tsample m A(’L) qA(Z_TE(Z)) 3 o
S ple S U e — A if 7(E(7)) < Tsample,
OA(t) = ' <t '
(

)

ZTsample Zm QjAj Z) _ q]'Aj(i_TSGmPlE)
i=1 j:1 G(Z G(i_Tsample) ’

otherwise.

When studies in the validation dataset did not explicitly report the number of mosquitoes
collected in the field the relevant data has been extracted from graphs using WebPlotDigitizer
(Rohatgi, 2022). How well the predicted dynamics correspond to those observed in the field
population is quantified using R? as a measure of goodness of fit. As both the field studies
and the model only reflect relative abundance I uniformly apply a scaling factor to the model’s
predictions, further, as the precise time of sampling is often ambiguous I also allow a uniform
time-shift on the date of observation by up to half of the interval between samples. The scaling
factor and time-shift pair are selected by trialling a range of possible values and retaining the
pair that produces the maximum R?. I specifically seek the scaling factor, s ¢ € R and time shift
ts € I such that for field observations y; reported at time t; and model estimates g; made at

time ¢; +¢; with i € 1,...,n and Tsample < ts < Tsampie the following quantity,
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Sy (yi — spdilti + ts))?

R*=1- - ‘
Zi:l(?/i - 9)2

is maximised. For datasets with multiple years of observations a single scaling factor and time
shift is used for the entire dataset, preserving comparisons of relative density and fit between
years. For each validation both the scaling factor and the time shift are reported in addition to

the value of R2.

3.4 Results

3.4.1 Global validation against field data

The model’s predictions are validated against field populations across the species global range,
with the validation dataset encompassing populations from 41 locations, from 14 countries and
territories, across 4 continents. In Figure 3.6 it can be observed that the model achieves excellent
predictions of the population and trait dynamics of Ae. albopictus across the species’ global
range. The model accurately predicts detailed within season dynamics, the start and end of
the mosquito season, and captures the observed between year variability across a broad range
of locations (see adult numbers in Guangzhou, China (2006-2015), R? = 0.58, and Rimini,
Italy (2008), R? = 0.94) (Lacour et al., 2015; Carrieri et al., 2012). When data pertaining
to multiple life-stages is available the model successfully predicts the dynamics of each life-
stage (see adult wing length and adult numbers in Lake Charles, USA (1990), R? = 995 and
Nagasaki, Japan, R? = 0.87) (Willis, Nasci, 1994; Suzuki et al., 1993). Good quantitative
correspondence with multi-year data sets, predicting inter-annual variation in abundance and
dynamics (see oviposition activity in Trento, Italy (2010-2020), R? = 0.68, and adult numbers in
Suffolk, USA (2009-2018), R? = 0.65) (Museo delle Sceinze, 2021; Xu et al., 2017). The model’s
predictions hold over a broad range of environments and reflect the differences in population

dynamics observed between temperate and tropical environments (see Monmouth, New Jersey,
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USA (2009), R? = 0.51, and St. Paul, La Réunion (2013), R? = 0.54) (Fonseca et al., 2013;
Haramboure et al., 2020). These validations demonstrate that, through the careful consideration
of the mechanisms by which environmental variation acts on the life-history of a species, broadly
generalisable predictions of population dynamics can be achieved. The full set of validations
is presented in Appendix G, with full detail of model fit and scaling factors for each location
considered and a detailed example of the model’s outputs from a single location is provided in

Appendix F.

3.4.2 Understand the effects of phenotypic structure using non-plastic and unstructured mod-

els

To demonstrate how these predictions compare to those made by models that omit the interac-
tion between vector population trait dynamics and environmental variation I develop a suite of
model variants that make common simplifying assumptions about how vector trait responds to
environment. For example, a version of the model is derived that assumes all adults share the
same invariant wing length. Under this assumption the only variation in adult trait occurs due to
changes in instantaneous environmental conditions, and so the effects of previous environments
on the expression of trait are ignored. This assumption is common in derivatives of the classical
Ross-MacDonald transmission model and consequently is currently widely made when predict-
ing disease risk (Cator et al., 2020). Also considered are a model where adult wing length varies
instantaneously with the environment adults experience (an assumption similar to that used in
the widely used DENSiM model) and a model that considers the effect of past environments
on the population’s average wing length but does not include an explicit trait structure (Focks
et al., 1995). By comparing the predictions made by these model variants to those made by the
trait-structured model the role of phenotypic plasticity in generating predictions of population

dynamics can be discerned.

82



(A)

Catolonia
(Average from Cagnes-sur-Mer Trento (2011-2012)
2004- 2014) (2011) & (2014-2015)

%

|
|
M
\

AN Y

A /|
7\ )

/ — Model prediction \

Field observation

( | Oviposition activity

( ) Number of larvae

: Number of adults
\[: Average wing Iengtu

Rimini (2008) Split (2009-2010) Budva (2012)
(B) (©)
Suffolk (2016-2018) ianapolis (2019) (2009) Suwon (2016) Nagasaki (1990) Tokyo (2018)

Lake Charles (1988) New Orleans (1995) Charlotte (2017) Guangzhou (2017 & 2010-2012) Naha (1988)

Figure 3.6: Validations of the model’s scaled predictions against field data for locations around
the world. In each case the x-axis is time, and the y-axis is either the scaled abundance of
individuals in a specific life-stage or an average trait value. Scaling of the model predictions
follows the methodology described in the validation section of the Methods, and further detail
about each prediction can be found in Appendix G. Each blue line represents the model’s
prediction of the dynamics of the population at the corresponding location, the orange lines
represent field observations from that same location. The colour of the outer box indicates
the type of data that is being compared, yellow boxes are for oviposition activity, which is
the number of eggs predicted to present in an ovitrap, green boxes indicate larval numbers, red
boxes indicate adult numbers, and purple for average wing length. The location and year of each
comparison are indicated below each graph. (A) Comparisons for Europe. (B) Comparisons
for North America. (C) Comparisons for Asia.
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3.4.3 Constant wing length models

The first variant considered is a model that assumes that all adults express the same constant
wing-length. Under this assumption adult trait still varies, but only in response to the current
temperature, and does not vary in response to the intensity of larval competition, nor the average
temperature experienced by individuals through development. This assumption is common in
mechanistic models of vector and disease dynamics and is also comparable to the assumptions
made by metric based Ry models that are widely used to predict the incidence of vector-borne
disease (although these metric-based Ry models often additionally assume a constant host-to-
vector ratio) (Liu-Helmersson et al., 2016; Mordecai et al., 2017). This model is derived by setting
m = 1 in the population dynamical model and selecting a wing-length that all individuals within

the single environmental class express.

To make comparisons of between the model’s predictions the constant wing length model is
simulated in Cagnes-sur-Mer, where the temperate environment causes the population to ex-
press a strong diapause response. In this region the trait structured model predicts that the
cold winter limits the number of generations of adults produced per season and this produces
simple trait structures as shown in Figure 3.7A. It can be observed in Figure 3.7B that not
all constant wing lengths models predict that this location is suitable for populations of Ae.
albopictus, and that between the constant wing length models there is generally disagreement
on the timing end of the active season and the abundance of adults. In general the larger the
constant wing-length selected the fewer adults are produced, which occurs due to the omission
of the instance of developmental plasticity that would reduce adult quality in response to high
larval densities. This results in a small number of large individuals being able to maintain high
larval densities unfavourable for development, which in the full model would be mitigated by a
reduction in adult quality. The exception to this trend are the models for constant wing lengths
1.8 and 2.2mm, where the stressful environmental conditions in combination with the increased

mortality associated with low wing lengths cause the populations to die out. However, besides
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these differences in this location the population dynamics predicted by the constant wing-length

models and the plastic model that includes a full trait structure are generally similar.
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Figure 3.7: (A) The trait dynamics of the full model in Cagnes-sur-Mer. (B) A comparison
of the number of adults predicted by the plastic model and the non-plastic model simulated at
various wing-lengths in Cagnes-sur-Mer.

Consider now the dynamics of both models in Guangzhou where the trait structured model
predicts a more complex trait structure (Figure 3.8A). Although aspects of constant wing-
length models can still be observed within the dynamics of the full model (In Figure 3.8B), the
predictions made by both are evidently more distinct than is the case in Cagnes-sur-Mer. The
constant wing length models disagree with each other on the ability of adults to persist through
the winter, with models with low wing lengths predicting strong seasonality in abundance,
whereas models with high wing lengths predict little inter-annual variation in adult numbers.
The dynamics predicted by the plastic model are distinct from any predicted by the constant
wing length models, with a clear peak in adult numbers towards the end of the season and

variability in the ability of adults to survive through the winter.

Finally, consider the dynamics of the non-plastic model Tokyo. The temperature in Tokyo
is generally favourable in the summer months for the development of Ae. albopictus but the
population experiences regular periods without precipitation inducing intense larval competition.

In Figure 3.9B it can be observed that the different constant wing length models predict distinct
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Figure 3.8: (A) The trait dynamics of the full model in Guangzhou. (B) A comparison of the
number of adults predicted by the plastic model and the non-plastic model simulated at various
wing-lengths in Guangzhou.

population dynamics despite the strong seasonality observed in this location. Between models

the time of peak abundance, and number of peaks observed per season varies.
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Figure 3.9: (A) The trait dynamics of the full model in Tokyo. (B) A comparison of the
number of adults predicted by the plastic model and the non-plastic model simulated at various
wing-lengths in Tokyo.

3.4.4 Models with instantaneously varying wing length

Although it has been demonstrated that the inclusion of mechanisms of trait variation change the

model’s predictions, there are many simpler ways that trait variation could be represented. The
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simplest possible way that trait variation could be represented is by assuming that wing length
varies instantaneously with the developmental experience of adults as they are recruited. Under
this assumption although adult wing length does change in response to developmental conditions,
the population average trait value does not in any way reflect the population’s environmental
history or trait structure. To derive a model of this type the constant wing length model is
adapted such that the wing length of the single environmental class varies according to the
function that relates average larval temperature and food available per larvae per day to predict

the wing length of emerging adults (Figure 3.5A).

When this model is simulated it can be observed that the similarity between the instantaneous
model and the plastic model varies between locations (see Figure 3.10). In Cagnes-sur-Mer the
instantaneous model predicts similar adult dynamics and abundance to that of the plastic model
despite predicting different trait dynamics (Figures 3.10A and 3.10B). However, towards the
end of the season the sharp decrease in adult trait predicted by the instantaneous model, which
is induced by a brief cold spell, causes the end of the active season sooner than is predicted by
the full model. In Guangzhou the highly variable wing length predicted by the instantaneous
model causes sudden drops in adult abundance throughout the year that are not predicted by
the plastic model (Figures 3.10C and 3.10D). To see that this behaviour is undesirable consider
a population currently held under favourable conditions such that all adults are large. If the
environment was to suddenly become unfavourable, perhaps because of a lack of precipitation
inducing high larval densities, under the instantaneously varying formulation all of the large
adults would shrink, as if they too had developed under these conditions. This would then
cause a corresponding increase in adult mortality and individuals would begin to die off due to
a spike in larval density they never experienced during development. By contrast, in the plastic
model this period of high larval competition does not in any way alter the longevity of adults
currently in the population and so the population persists. This could be somewhat mitigated
by assuming adults express a trait determined by the average developmental conditions over

a suitable interval of time, which would smooth the sharp variation in trait that is currently
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Figure 3.10: A comparison of the predictions made by the full model and the model with
instantaneously varying wing length model for (A) Wing length in Cagnes-sur-Mer. (B) Num-
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predicted but would not address the underlying issue which is that the effect of environmental

history on population trait structure is not being adequately represented.

3.4.5 Models with variable average wing length but without population structure

Finally, consider a model that includes all of the same mechanisms of trait variation that are
considered in the plastic model but that forgoes a trait structure in favour of a population average
that varies proportionally with the wing length of adults entering and leaving the population.
The average wing length, denoted wgyq(t), varies as individuals mature into the adult stage,
expressing a wing-length representing their larval experience, and as adults expressing the old
population average die. To track this I define a differential equation that describes how the

populations total wing-length varies, defined

dwr _ wT(t)
L RAB) W (T (1), @) — A5 4(T(2),
L = Ra(t)un(Tuny (0). 6(0) — AT (0. TS
This can then be converted to a population average wing length, wqug(t) = UX(S). This popu-

lation average wing-length is used along with temperature in the reaction norms to allow adult
traits to vary according to the current average. As for the previous variants this model is sim-
ulated in Cagnes-sur-Mer, Guangzhou, and Tokyo. This model variant broadly predicts the
same population dynamics and average trait value as the model with full trait structure (Fig-
ure 3.11). However, although at the start of each year the population’s average wing length and
abundance tend to be very similar, as the year continues both average wing length and adult
numbers begin to deviate from each other. In each case by the end of the active season the
average wing length of the full model is higher than is predicted by the constant wing length
model, and the adult density lower. By examining the trait structures in Figure 3.7A, 3.8A,
and 3.9A in each location large individuals produced at the start of the active season are still
present in the population by the end of the active season. Although the plastic model can track

these individuals the unstructured model can only track the population’s average trait value
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and so “forgets” these individuals and this causes the small discrepancy in population dynamics

between the two models.
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Figure 3.11: A comparison of the predictions made by the plastic model and the unstructured
model for (A) Wing length in Cagnes-sur-Mer. (B) Adults in Cagnes-sur-Mer. (C) Wing

length in Guangzhou. (D) Adults in Guangzhou. (E) Wing length in Tokyo. (F) Adults in
Tokyo
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The similarity between the predictions made by model variants and those made by the model
with full trait structure depends on the environmental conditions the population being consid-
ered is subject to. In environments where populations exhibit simple trait structures, either
due to short active seasons or little environmental variation (for example, Cagnes-sur-Mer or
La Reunion respectively) constant wing length models can reproduce the dynamics of the trait
structured model provided the constant wing length has been selected to approximate the pop-
ulation’s average wing length. However, as population average wing length varies between envi-
ronments this shows that models omitting mechanisms of variation entirely are not generalisable.
Similar differences between population dynamics across environments are observed in the two
more sophisticated model variants considered to lesser degrees, with the most epidemiollogically
significant departure between the full model and these variants being differences in the ability

of adults to persist overwinter.

3.4.6 Climatic suitability for Ae. albopictus

I use the model to predict the population dynamics of Ae. albopictus for regions where model
validations were performed, outputting parameters of interest. These predictions should be
interpreted with care as there are factors such as habitat availability, land-use type, or competitor
species that are not accounted for. It is assumed that there is always a suitable water body and
sufficient adult resource, factors that are unlikely to be true in arid environments even if there is
sufficient rainfall to allow a population to persist. Humidity is important in determining adult
mortality rates, and regions of low humidity are unlikely to be able to support populations of
the species regardless of other environmental dynamics. For this reason a requirement is added
that within the active season, as predicted by the model, the average relative humidity should
be above 55%. This means that the maps that follow are more akin to environmental suitability

indices than a true distribution model.

In Figure 3.12 the average abundance of adults as predicted by this model is displayed over the
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regions of Europe, Asia, and North America for which there were validation data sets between
the years 2015 — 2020. The average adult density follows a clear latitudinal gradient, with
populations closer to the equator being more abundant. However, as the species undergoes a
strong diapause response in temperate regions this increased abundance does not necessarily
translate to higher transmission risk, as during the winter months populations temperatures
are not favourable for dengue transmission even in parts of the range where there is still adult
activity. To account for this I also consider the average abundance of adult mosquitoes during
the active season. The active season in this case is defined to be the time between the emergence
of the first adult of the year and the death of the final adult, and so this metric describes the
relative abundance of adult mosquitoes during period there is an active vector population. In
Figure 3.12 it can be observed that during the period when adult mosquitoes are active, the
average abundance of adult mosquitoes is comparable between climatic zones. Given that the
abundance of adults is a critical determining factor in the ability of populations to vector disease
this suggests that differences in the abundance of mosquitoes alone are not sufficient to explain
observed differences in outbreak size between regions. For example, the average abundance
of adults predicted in Guangzhou, China, the location of the largest Ae. albopictus vectored
outbreak of dengue to date, is similar to that predicted in Cagnes-sur-Mer, France, a location

that infrequently experiences isolated instances of autochthonous transmission.

Environmental suitability for Ae. albopictus is predicted throughout the majority of coastal
southern Europe, and the model’s predictions align well with the current known distribution of
the species in this region (ECDC, 2022b). Areas of unsuitability in this region often coincide
with mountain ranges, for example the large patch of unsuitability predicted in Northern Italy
and throughout Switzerland and Austria coincides with the Alps. The Pyrenees, Massif Central,
Apennines, Dinaric Alps, and the Carpathian mountains are similarly outlined. The exception
to this is central Spain, which is predicted to be mostly unsuitable due to low humidity and a
lack of precipitation. Britain and the Brittany and Normandy regions of France are predicted to

have limited suitability for the species which matches the current northern limit of the species
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Figure 3.12: The model’s prediction of the average adult density over the year in (A) North
America, (B) Europe, and (C) Asia.
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Figure 3.13: The model’s prediction of the average adult density over the active season in (A)
North America, (B) Europe, and (C) Asia.
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distribution.

Oliveira et al. (2021) analysed previous distribution model’s predictions of the current climatic
suitability of Europe for Ae. albopictus and produced a consensus map, identifying regions of
agreement and disagreement between these models. The predictions made by the model derived
here generally agree with the current consensus in eastern and central Europe, predicting high
suitability in Italy, the coastal Balkans and Greece and high unsuitability in the Alps (Figure
3.14A). In western Europe there is more uncertainty in the consensus model and the model
derived here disagrees with some aspects of previous predictions. In south-eastern Spain, a
region with established populations of Ae. albopictus, this model predicts high suitability for
populations of Ae. albopictus but the consensus model predicts that this region is generally
unsuitable (ECDC, 2022b). Central Spain is a region of general disagreement between previous
models with some models predicting broad suitability and others predicting unsuitability. The
predictions made here agree with the models that predict limited suitability in this region.
Much of the south of Britain is predicted to be suitable by consensus but is predicted here
to be relatively unfavourable for the establishment of populations, in agreement with previous

mechanistic models for the region (Metelmann et al., 2019).

The model’s predictions over the range considered in Asia also appear to match the species
known distribution throughout the region (Echeverry-Cérdenas et al., 2021; Metelmann et al.,
2021). These predictions also align with the predictions made by species distribution models that
considered this region, with the greatest deviation being the limited suitability that is predicted
here in northern Japan but which is not anticipated by previous models (Zheng et al., 2019;
Kraemer et al., 2015; Benedict et al., 2007; Ding et al., 2017). In Japan, suitability is predicted
throughout the islands of Honshu, Shikoku, and Kyushu, with limited suitability predicted in
southern Hokkaido, matching occurrence records (Kobayashi et al., 2002). In China, the model’s
predictions align well with the species current extent, predicting the distribution limits in the

north and west (Zheng et al., 2019).
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Throughout the majority of the eastern USA I predict broad suitability for Ae. albopictus with
more limited suitability the west coast limited to coastal areas (Figure 3.14C). These predic-
tions align with predictions made by distribution models over this region, which predict similar
suitability (Kramer, Ciota, 2015; Kamal et al., 2018; Johnson et al., 2017; Richards et al., 2019;
Ding et al., 2017; Ogden et al., 2014). In the western USA the general lack of suitability can
be attributed to a combination of desert and mountainous regions. The limits of the species
range as predicted by the model reflect the species current distribution in this region (Kamal
et al., 2018). Populations of Ae. albopictus have been observed along the northern limit that is
predicted by the model with evidence of overwintering populations in Ontario and Wisconsin
(Giordano et al., 2020). However, this is a region where the presence of Ae. aegpyti should
be considered when interpreting this model’s predictions. For example, in Figure 3.12 broad
suitability is predicted for Ae. albopictus throughout the state of Florida. However, in southern
parts of the state Ae. albopictus is largely absent, having been displaced by Ae. aegypti which
is more suited to the regional climatic conditions (Lounibos, Kramer, 2016). This is predicted
by distribution models that consider the species joint distribution, but not by my model as the
effects of interspecific competition are not accounted for in this model’s predictions of suitability

(Khan et al., 2020)

3.5 Discussion

To predict how vector populations and will respond to environmental change it is critical to
account for the mechanisms of variation through which that change occurs, building population
responses out of individual level variation rather than prescribing them through average traits.
The efficacy of such an approach is demonstrated here as without any back-fitting, and despite
making broad assumptions about mosquito ecology, the model accurately predicts the popula-
tion and trait dynamics of field populations of Ae. albopictus across the species global range

from meteorological data. This demonstrates that the diverse population dynamical behaviours
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exhibited by the species over its range can be understood through the effect of environmental
variation on life-history traits. However, vector abundance alone is not sufficient to understand
global trends in dengue incidence, as high abundances are observed in regions where dengue is

endemic and those where dengue is currently absent.

Despite this, the thorough understanding of vector population dynamics developed here will
be invaluable for guiding control activities and interventions. Novel and existing control tech-
niques (transgenic mosquitoes, gene-drives and sterile insect technique) require accurate models
of mosquito population dynamics for risk assessment (Oliva et al., 2021; Bier, 2022). Models of
vector population dynamics are also incorporated into models that guide the roll-out of vaccina-
tion campaigns (Ferguson et al., 2016). In each case, predictions of vector population dynamics
that will remain robust across broad spatial and temporal gradients are integral to designing
effective control efforts. Beyond predictions of vector abundance the ability of this methodology
to link environmental variation to trait may allow intervention campaigns to specifically target
large individuals (Lloyd-Smith et al., 2005). However, the efficacy of such an intervention as
a control method is not currently clear as changing the population’s trait structure may have

unanticipated consequences on transmission dynamics (Cameron et al., 2013).

The ability of the model to predict population dynamics from meteorological variables does
not in any way preclude the importance of local factors in the determining patterns of vector
abundance and consequently the risk of vector-borne disease. The datasets used to validate the
model are generally taken from established vector populations in regions where the species is a
notable nuisance, introducing a site-selection bias for regions where local conditions are suitable
for mosquito development. Land-use, socio-economic factors, and micro-climatic variables are
demonstrably important in determining vector abundance on small geographical scales and can
further be shown to be associated with disease incidence (Gao et al., 2021; Wimberly et al., 2020;
Little et al., 2017; LaDeau et al., 2013). Past attempts to identify container-level variables that
predict the small-scale distribution of Ae. albopictus could no consistent associations between

years (Shragai, Harrington, 2019). To better understand the local factors that drive differences

97



in abundance over small scales, further exploration of the mechanisms by which micro-climate

interacts with the life-histories of mosquito species will be required.

The work undertaken here relies on the extensive and thorough effort that has been expended
in understanding the life-history of Ae. albopictus. For many vectors of neglected or emerging
diseases detailed information about the interaction between trait and environment does not cur-
rently exist and would not be feasible to collect in exhaustive detail. Although concerted efforts
have begun to collate such information and identify gaps in understanding, further work should
also be undertaken to understand the conditions under which trait variation alters population
responses to help effectively target these efforts (Amos et al., 2022). Developing this under-
standing is critical beyond vector-borne disease as mechanisms of individual variation are also
critical in determining the outcome of biological invasions, interspecific competition, and species
responses to climate change (Boutin, Lane, 2014; Hahn et al., 2012; Buskirk, McCollum, 1999).
To produce predictions that are robust to challenges of a changing climate, a fundamental shift
is required in the way that trait is accounted for, moving away from mean-fields and towards a
more complete representation of the mechanisms by which individuals vary.

*
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Chapter 4

Predicting the global transmission dynamics of

dengue vectored by Ae. albopictus

4.1 Abstract

The current alarming increase in the prevalence of dengue is a threat to global public health,
characterised by an intensification of disease burden in endemic regions and the expansion of
dengue to areas it has long been absent. Despite predictions that temperate regions are suitable
for sustained dengue transmission, outbreaks in these areas have so far been small and sporadic.
It has been proposed that this mismatch between prediction and observation may be due to
environmentally induced variation in vector trait changes the ability of vector populations to
transmit disease, but this mechanism is not fully accounted for in current predictive approaches.
Here, I derive a Susceptible-Infected-Resistant model for the spread of dengue by Aedes al-
bopictus, an invasive mosquito species and vector of dengue, that accounts for the relationship
between environment, vector trait, and disease transmission. This model is validated against
historic dengue outbreaks and shows how a vector population’s trait structure can change the

ability of that population to maintain pathogen transmission cycles. Less risk is predicted in
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temperate regions than in previous models, coinciding with the currently observed incidence of

dengue throughout these regions.

4.2 Introduction

In 2014 the largest dengue outbreak vectored principally by Ae. albopictus occurred in Guangzhou,
China, lasting for 7 months, hospitalising 14, 055 people and causing a total of 37,376 suspected
cases (Luo et al., 2017). Before 2014 there had been regular dengue outbreaks throughout the
Guangdong region since the establishment of Ae. albopictus in 1978, but the 2014 outbreak
caused almost 10 times more cases than the previous 13 years combined and was therefore of
considerable concern to public health authorities (Zhang et al., 2019). Before 2014, outwith the
Guangdong region, the role of Ae. albopictus as a vector of dengue had been fairly minor, and
the species was considered a secondary vector capable of maintaining low levels of infection in
rural areas that could be imported into urban regions infested with Ae. aegpyti, the primary
vector of dengue (Gratz, 2004). Since 2014, outbreaks of dengue vectored by Ae. albopictus have
continued to occur around the globe, though as of yet none have matched the 2014 outbreak in
Guangzhou in magnitude (Brady, Hay, 2020). There are now yearly outbreaks of dengue in Re-
union, where dengue now appears to be endemic, low level autochthonous transmission occurs
regularly throughout Europe during the summer, and isolated moderately sized outbreaks in
Hawai’i and Japan (European Centre for Disease Prevention and Control, 2019). Understand-
ing why Ae. albopictus is capable of maintaining dengue transmission cycles in some areas and
not others is critical first step in predicting when this latent vector population will become a

wide-spread threat to public health.

Vectors, hosts, and diseases frequently have complex relationships with their environments which
can directly influence the transmission cycle. Individual environmental variables act on compo-
nents of the disease transmission cycle in generally straightforward ways but determining how

these components cumulatively determine disease risk over broad spatial and temporal scales is
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substantially more difficult. For ectothermic vectors, traits critical in determining vector com-
petence are often highly sensitive to temperature, directly linking environmental variation to
changes in disease risk (Deutsch et al., 2008; Gilbert et al., 2014; Samuel et al., 2016). For ex-
ample, adult mosquitoes experiencing stressful temperatures often have reduced adult longevity
when compared to adults subject to more favourable environmental conditions (Brady et al.,
2013). Adult longevity determines how likely it is that an individual mosquito will be able to
complete the pathogen transmission cycle, and as such is a trait of epidemiological interest (Bara
et al., 2015). However, adult longevity is also sensitive to the temperature and intensity of com-
petition experienced by larval mosquitoes throughout development, linking trait expression to
population dynamical processes and historical abiotic environmental variables (Ezeakacha, Yee,
2019). Population dynamical processes are in turn linked to environmental variables through
life-history traits such as development rates, through stage survival, and fecundity (Delatte
et al., 2009). This feedback between trait and population dynamics induced by environmental
variation means that to anticipate how disease incidence varies over space and through time it is
necessary to first determine how a complex series of past and present environmental conditions,
population states, and species-specific processes interact to determine the traits that individuals

within a population express (Kramer, Ciota, 2015).

The model framework developed in Chapter 3 proved capable of predicting the population and
trait dynamics of Ae. albopictus over its global range and therefore is an ideal basis for ex-
ploring how environmentally induced trait variation explains current differences in transmission
risk. For this purpose, the population dynamical model is incorporated into an SIR model for
the transmission of dengue. This is then used to predict how changes in vector population’s
trait dynamics alter the competence of these populations to vector disease through variation in
transmission critical traits. Previous mechanistic models of this system omit this mechanism of
individual variation and predict broad suitability for the transmission of dengue by Ae. albopic-
tus (Mordecai et al., 2017; Ryan et al., 2018; Metelmann et al., 2021; Fan, Liu, 2019). By more

completely representing vector trait variation I aim to produce predictions of dengue outbreak
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size and location that better align with currently observed dengue incidence around the globe.

4.3 Methods

4.3.1 SIR Model

The model for the population and trait dynamics of Ae. albopictus that was derived and validated
in Chapter 3 is incorporated into a susceptible-infected-resistant (SIR) model for dengue vec-
tored by Ae. albopictus (Figure 4.1). This model considers the introduction of a single serotype
of dengue into a completely susceptible human population. This simplified representation of the
urban dengue transmission cycle is most applicable to non-endemic regions where the likelihood
of multiple serotypes circulating simultaneously is reduced and therefore the human population
is less likely to develop serious complications (Guzman et al., 2013). The human population
consists of individuals susceptible to infection Hg, individuals that are infected Hj, and indi-
viduals resistant to infection due to having recovered Hp. It is assumed that the size of the
human population is constant with the exception of the entry of infected individuals into the
population. Mosquitoes are assumed to bite at a temperature-dependent rate of b(t) bites per
mosquito per day that is inversely proportional to the length of the gonotrophic cycle such that
b(t) = 1/G(T(t)). The proportion of uninfected mosquitoes that become infected after biting an
infected human is denoted h,(t), a function that takes the form used in Liu-Helmersson et al.
(2016). After the extrinsic incubation period, 7grp(t), the proportion of bites that successfully
transmit an infection from an infected mosquito to an uninfected human is denoted vy, (t) (Brady
et al., 2014; Liu-Helmersson et al., 2016). After the intrinsic incubation period, 777p, the infected
human is capable of transmitting the infection to new mosquitoes and recovers from the infec-
tion after the recovery period, Trpc. In this model large individuals are assumed have no direct
advantage in the act of transmission over small individuals and do not bite more aggressively

nor transmit disease more competently. The only advantage large individuals have over small
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is in their extended longevity which allows a greater proportion of individuals contracting an

infection survive to pass that infection on especially under stressful environmental conditions.
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Figure 4.1: Schematic of the model used to represent the transmission of dengue by Ae.
albopictus. The model retains many of the features of the model defined in Chapter 3. Upon
infection by biting an infected human, H;, uninfected mosquitoes in environmental class j, A;,
transition to the corresponding infected mosquito class, I;. The infection cycle begins when a
susceptible human, Hyg, is bitten by an infected mosquito after which that individual has chance
to become infected and move into the infected human class Hj. After the recovery period
infected humans move into the resistant class, Hg, in which they cannot be infected again.

As the population model predicts the number of mosquitoes arising from a single habitat and 1
now wish to predict the disease transmission dynamics for a human population it is necessary to
consider how to reconcile both populations to the same spatial scale. Mark and recapture studies
have demonstrated that adult females can disperse up to a mile from their release site (Vavassori
et al., 2019). Further, analysis of dengue epidemics has shown that disease dynamics can best

be understood in 2kmx2km grids (Ren et al., 2018). For these reasons the model is simulated
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at a spatial scale of 4km?, using the number of humans per 4km? for the human population
in combination with an estimate of the number of larval habitats per 4km? for the mosquito
population. To estimate the number of productive larval habitats per 4km?, &, it is assumed
that the number of larval habitats is fixed between locations and within seasons and then select
a number that is comparable to those observed in the field (Evans et al., 2019; Little et al.,
2017; Carrieri et al., 2012; McClure et al., 2018). Ae. albopictus is an opportunistic feeder and
in the absence of humans will bite other species, these bites cannot propagate dengue (outside
of the geographically limited sylvatic transmission cycle (Gubler, 2002)) but do allow for egg
production and so can maintain the mosquito population. To represent this a population of non-
human food sources is included in the model, Hpg, which is estimated from field observations of

rates of anthropophily and mammal densities (Santini et al., 2022).

To define the SIR model the following additions and modifications are made to the population
model presented in Chapter 3. The structured human population is represented with addition

of the equations

dfi;;(t) _ _Re®) (4.1)
dIZSG) = Ru(t —7r1p) = Ru(t = m11p — TREC) + C(t) = C(t = TREC) (4.2)
d]ili(t) = Ry(t — 711p — TREC) + C(t — TREC) (4.3)

where

Hs(t)
Hr(t)

Ry (t) = op(t)b(t)r Y I

=1

(4.4)

and Hp(t) = Hg(t) + Hy(t) + Hgr(t) + Hp and C(t) is an impulse defined as in the population
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model that initiates the transmission cycle through the introduction of an infectious individual
at time t. Note that the inclusion of non-human food sources introduces a dilution effect, as
when Hp is large in relation to Hg(t) the value of Ry (t) will be low. This means that when
the human population size is small, and therefore most bloodmeals are assumed to come from
hosts that cannot become infected with dengue, the model predicts that only a low number of

total bites by infected mosquitoes result in susceptible humans becoming infected.

To represent infections in the mosquito population an infectious adult classes are added, one
for each environmental class, denoted I;(¢). The number of mosquitoes in environmental class

j that become infected at time ¢ is denoted Ry, (t), and defined

and the number of mosquitoes in environmental class j that become infectious at time ¢ is

denoted Mg, (t) and is defined

My, (t) = R, (t — Te1p(t))SEIP, (1)

where Sgyp,(t) is the proportion of individuals in environmental class j that survive the infectious

period.

The dynamics of infected mosquitoes can therefore be defined

) _ s, ()~ 81,(DL 1), for j € 1,.oom (45)

dTE[p(t) 4 gEIP(t)
Ta ge1p(t — TEIp(t)) o
dSECIlfj(t) — Spin (1) <9E1P(t)5;zl(}t)(—t)7'mp(t)) —5Aj(75)> , for jel,...m (4.7)
(4.8)
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and the equation for the rate of change of adults in environmental class j is modified to include
a term representing mosquitoes becoming exposed to infected humans and thus leaving the

uninfected adult classes such that

dA;(t)
dt

= Ra,(t) — 64, (t)A;(t) — My, (t), for j€1,..,m. (4.9)

The full SIR model can therefore be expressed by

= B, (t) — Mg, (t) o, () B, (1), (4.10)
dECZ(t) = Rpp(t) — Mg, (t) — 05, (1) Ep(?), (4.11)
dEZ(t) = Rp,(t) — Mg, (t) — 5, (1) Eqg(t), (4.12)

dfiz(ft) = Ro(t) = Mo(t) = o ()L (D), (4.13)
dz(t) = R, (t) = 04, ()A;(t) — Ma,(t), for j€1,....m (4.14)
dfglt(t) = My, (t) - o1, (t)1;(t), for je1,..,m. (4.15)

(4.16)

The variable delay terms are defined such that
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drg,(t) 98, (1)

T ) (4.17)
e gp<tgi(23<t>)’ 19
dTE;f(U —1- gEIP(iEiPT(;)IP ol (4.20)
(4.21)

The through stage survival terms are defined such that
dSZ; (t) _ Se.(1) (ng g(;)é(f _(tT;r(?)v)(t)) o (t)> , (4.22)
S = (M ) 42
0 (L)
dSE;ff(t) = Sprp;(t) (gE’P(t)éin(_t)TElp(t)) - 5Aj(t)> L for jE€1,...,m. (4.25)

The same initial conditions as in the non-SIR model are used, with the additional history

H;(0) = Hg(0) = 0 with Hg(0) being the human population density.

4.3.2 Ryp derivation

To quantify how disease risk changes between regions I derive an expression for the reproduction
number R7 for the SIR model. The reproduction number is distinct from the basic reproduction
number as it reflects how transmission risk varies as the outbreak progresses, accounting for

how changes in the infection structure of the population alter the potential for the outbreak
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to continue as time passes (Wallinga, Teunis, 2004). Assume that a single infected human is
introduced precisely at the end of the intrinsic incubation period, 7;7p, and so can be bitten
for the full duration of the infectious period. Let b(¢) be the biting rate, Hg the number of
the susceptible humans, and A;(t) the number of uninfected adult mosquitoes in environmental
class j present at time t. The number of bites per day which the infected individual receives
can be expressed

(1) A;(t)

Hr

j=1
The proportion of mosquitoes that become infected after biting an infectious individual is de-
noted by hy(t). Mosquitoes only go on to transmit the infection if they survive through the
extrinsic incubation period, 7grp(t), the proportion of such surviving mosquitoes is denoted
Sgrp;(t). Given that an infected human remains viraemic for around 4 days, Trgc (Gubler
et al., 1981) the number of mosquitoes that bite the introduced infectious human, develop an

infection and, survive to transmit the disease per day can be expressed by

n

ds.

/HTREC b(s)A;(s)hy(s)SErp; (s + TEIP(S))
il Hrp

The proportion of bites from infected mosquitoes that transmit the infection to a susceptible
human is denoted v, (t) and the mortality rate of adult mosquitoes in environmental class j is

denoted d 4, (). The number of new infections that a mosquito infected at time ¢ in environmental

class j causes over it’s lifespan can be approximated by

/t+1/5Aj(t+TEIP(t))+TE1P(t) b(S)Uh(S)HSd
N RN g,
t

+7erp(t) Hr

Note that this is only an approximation of this quantity as 1/d4,(t) is fixed at time ¢ and does

not account for any temperature induced changes in adult mortality that occur between times
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t +7prp(t) and t + 1/64;(t + Terp(t)) + 7Erp(t) NOr how TErp(t) varies between time ¢ and
t + 7erp(t). The number of new infections caused by the introduction of a single infectious

human at time ¢ can therefore be approximated by

n

RT(t) _ </tt+7'REF hv(S)b(S)Aj(S)SE;Pj(S + TEIP(S)) <

/ s ) oA Y\
s HT

+7'E‘IP(5)

When interpreting the R7 of dengue in this model the length of the transmission cycles involved
must be considered. When an infected individual is introduced for the infection cycle to continue
mosquitoes must be infected and these mosquitoes may live for up 3 months. This means that
although the value of Ry might be high, the subsequent infections may occur over an extended
period of time and so does not necessarily imply the occurrence of a large outbreak. This
is particularly notable in temperate regions where large long-lived individuals are regularly
produced at the start of the active season. For this reason, it is common when comparing
outbreak risk between regions to use the length of time for which Ry > 1 rather than the

maximal value, an approach we follow here.

4.3.3 Model validation against dengue outbreaks

For validation the SIR model’s predictions are compared to historical dengue outbreaks where
the primary vector responsible was Ae. albopictus. In each location the number of reported in-
stances of autochthonous dengue transmission are compared to the output of the model over the
same area. The outbreaks considered are the 2013 — 2014 outbreaks of dengue in Guangzhou,
China, the 2014 outbreak in Tokyo, Japan, the 2017 — 2021 outbreak on La Réunion, France,
the 2015 — 2016 outbreak on Hawai’i, USA, and various instances of autochthonous transmis-

sion throughout Europe (Zhang et al., 2019; Yuan et al., 2019; Vincent et al., 2019; European
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Centre for Disease Prevention and Control, 2019; ECDC, 2022a). These outbreaks encompass
a broad range of disease dynamics occurring over a range of spatial scales, from a few isolated
instances of autochthonous transmission in temperate regions of Europe over small areas to a
complex multi-year epidemic over a large portion of the island Réunion. Initiating the model’s
infection dynamics requires the definition of an initial infection scenario which describes how
many infectious individuals are introduced into the human population and when these intro-
ductions occur. In each case reports from each outbreak are used to select a likely introduction
scenario and area over which the outbreak thought to have taken place, although there is of-
ten great uncertainty in both (for each outbreak this is further outlined in Appendix H). This
uncertainty means that, although unlike the outputs from the population dynamical model the
predictions are not rescaled, these validations are primarily intended to demonstrate that the
model can predict both sensible disease dynamics and outbreak magnitude under plausible out-
break scenarios. The code used produce the results that follow can be found in a repository at

https://zenodo.org/record/7796206#.ZCs1lmnbMKUk.

The model predicts the magnitude, duration, and dynamics of dengue outbreaks across broad
environmental gradients under plausible introduction scenarios (Figure 4.2). In the Alpes-
Maritimes department of France, the model consistently predicts small numbers of autochthonous
transmissions reflecting the limited outbreaks that have been observed in this region. In Tokyo
and Guangzhou model correctly predicts the magnitudes of the medium and large outbreaks
that occurred in these regions. For the complex multi-year outbreak in La Reunion the model
proves able to accurately predict inter-annual differences in the number of dengue cases across
multiple years as well as the time of peak transmission each year. During each of these outbreaks
there were active vector control campaigns, and this may explain the general reduced resem-
blance of these predictions to field data towards the latter half of each outbreak. For example,
in Guangzhou in 2014 a considerable intensification of vector control activities occurred halfway
through the outbreak to which previous analyses have attributed a substantial reduction in final

outbreak size and duration (Lin et al., 2016b).
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Figure 4.2: Comparisons of the number of instances of autochthonous transmission detected
during historical dengue outbreaks and the model’s predictions. For each outbreak the x-axis is
time and the y-axis is the number of instances of autochthonous transmission, with the blue lines
representing model predictions and the orange lines field observations from that same location.
Note that due to differences in the way dengue cases were reported for different outbreaks the
y-axes may change. The scenarios under which the model was simulated for each scenario are
discussed in detail in Appendix H.
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4.4 Results

4.4.1 Non-plastic and unstructured models

Exhaustively representing mechanisms of individual variation as in the model developed here is
more complex than standard approaches that make simplifying assumptions about the interac-
tion between trait and environment. To justify this additional complexity I must demonstrate
that by fully representing mechanisms of phenotypic plasticity different predictions of disease
dynamics are produced than would be made by simpler approaches. For this purpose, I consider
the model variants derived in Chapter 3 that make common simplifying assumptions about how
trait interacts with environment. The predictions made by these variant models are compared
to those made by the trait structured model over three of the outbreak locations considered in
Figure 4.2 that encompass a range of outbreak sizes and climates. These are a small outbreak in
Cagnes-sur-Mer, France of around 5 of dengue cases, an outbreak in Tokyo, Japan of around 100
cases, and a large outbreak in Guangzhou, China of 36, 342 cases. In each of these locations the
model was able to predict both the disease and population dynamics observed in the field under
a plausible introduction scenario and so any substantial deviation from the model’s predictions

will indicate a worsening of model performance.

To compare the plastic SIR model and the constant wing length SIR models Ry is computed
from equation 4.26 with m = 1 and used to compare the number of dengue cases produced per
day under the same introduction scenarios used in Figure 4.2. In Figure 4.3 it can be observed
that that although the behaviour observed in the expression for the reproduction number, Ry,
is comparable to that in adult numbers, outbreak size can be highly variable by wing-length.
In Cagnes-sur-Mer, France, the constant wing length models all produce similar predictions of
Rr and disease dynamics. However, in Guangzhou outbreak size is highly sensitive to wing-
length with the peak of the largest outbreak 20 times higher than that of the smallest outbreak

(Figure 4.3D). When comparing the plastic model’s predictions of adult dynamics to those
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made by the constant wing-length models it could be observed that the population’s average
trait value was often a good indicator of which constant wing length model was most similar
to the plastic model (for example see Figure 3.7A. Here, this is no longer the case and that
the constant wing-length model that produces the most similar dengue dynamics often has
a wing length higher than the population average. For example, in Figures 4.3E and 4.3F
the closest constant wing length model is the model with wing length 3.8mm, considerably
higher than the population average wing length during this period (see Figure 3.9A). This
disparity demonstrates that the mechanisms of variation included in the plastic model produce
quantitatively different predictions of outbreaks size than would be predicted by average trait

alone.

These examples demonstrate that the effect of phenotypic plasticity on disease dynamics varies
from location to location and through time. Although the dynamics of the model with trait
structure can sometimes be well represented by a non-plastic model, anticipating when this
is the case requires an understanding of the population’s trait dynamics. Given that even
relatively small differences in population dynamics can then result in substantive differences in
disease dynamics this justifies representing mechanisms of individual variation in predictions of

disease risk.

The small differences between the population and trait dynamics of the plastic model and the
unstructured model does not seem to justify the inclusion of a trait structure in the model. How-
ever, I now consider the extension of the unstructured model with variable average wing-length
to disease dynamics. I then simulate this model for the 2013 — 2014 outbreak in Guangzhou,
under two different introduction scenarios. The first is under the same introduction scenario
as is used in Figure 4.2 which was selected to match the introductions observed in the out-
break. Under these conditions the unstructured model predicts more dengue transmission than
the plastic model (Figure 4.4A). In the second introduction scenario a small number of cases
are introduced at the start of 2013 and then do not introduce any further cases. Under these

conditions the plastic model predicts an outbreak in 2014 larger than was observed in 2013 and
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Figure 4.3: A comparison of the predictions made by the full model and the constant wing
length model for (A) Rr in Cagnes-sur-Mer. (B) Number of dengue cases in Cagnes-sur-Mer.
(C) Rr in Guangzhou. (D) Number of dengue cases in Guangzhou. (E) Rr in Tokyo. (F)
Number of dengue cases in Tokyo.
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the unstructured model predicts very little transmission in 2014, despite predicting more dengue
cases in 2013 (Figure 4.4B). If the simulation is continued the plastic model continues to predict
larger and larger outbreaks, whereas the unstructured model does not predict any transmission
beyond 2014. Despite their similar population and trait dynamics these two models produce
different predictions of disease dynamics that have different implications for vector control. The
plastic model with full trait structure predicts that dengue is now endemic to Guangzhou, but
the unstructured model suggests that Guangzhou is still a dengue sink. As the only difference
between the plastic model and the unstructured model is the presence of a trait structure this
demonstrates that the inclusion of a full trait structure in the model produces quantitatively

different predictions of disease dynamics.
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Figure 4.4: A comparison of the number of dengue cases predicted in the Guangzhou
2013 — 2014 outbreak between the plastic model and the unstructured model under different
introduction scenarios. (A) Under an introduction scenario informed by that observed during
the outbreak. (B) Under an introduction scenario where cases are only imported during 2013.

4.4.2 The role of trait variation in producing disease outbreaks

To understand how environmental history and population trait structure contribute to the pre-
dictions of disease dynamics I consider four of the outbreak locations previously considered
(Figure 4.2) which represent a range of different climate types and outbreak sizes. In each lo-

cation the distribution of adult wing lengths is compared to the distribution of the wing length
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of mosquitoes responsible for each transmission event. In the Alpes-Maritimes Department of
France during the period when infections are increasing (between July and September) the 75t
percentile of the wing length distribution roughly coincides with the 50" percentile of the infec-
tion distribution (Figure 4.5A). This shows that a small number of large individuals, produced
long before dengue transmission begins, are responsible for the majority of transmission events.
This can be demonstrated quantitatively as over the whole outbreak individuals with wing
lengths above the population average of 3mm make up 17% of the population but account for
78% of all transmission events. In this location the extended longevity associated with develop-
ing under favourable conditions confers a transmission advantage over small individuals that are
less able to survive through the period of time between contracting an infection and becoming
infective. This is a factor that would be overlooked if the model had assumed that all individuals
shared the same average wing length, as is common in previous approaches. However, the role
of trait variation in determining the ability of vector populations to maintain disease outbreaks
changes across environments as the population’s underlying trait structure varies. For example,
consider the outbreak on La Réunion where little variance in adult wing length occurs during
periods of peak infection and so there is no substantial deviation between the wing length of

adults and the wing length of infecting adults (Figure 4.5B).

As a population’s trait structure becomes more complex the role of trait in determining transmis-
sion dynamics can no longer be captured by simple summary statistics. For example, in Hawai’i
individuals with wing lengths over 2.7mm make up 18% of the total population but account
for 46% of all transmission over the course of the outbreak, but in Guangzhou, individuals with
wing length over 2.7mm account for 38% of all individuals but are responsible for only 12% of
all transmission. This result can be understood by considering the trait dynamics exhibited by
these populations and the underlying environmental variation that gives rise to them. In both
locations each population’s average wing length oscillates between a maximum in the winter,
when larval densities are low, and a minimum in the summer when larval densities are high.

Large individuals produced in the spring persist throughout the summer creating a dynamic wing
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length distribution that evolves seasonally (see Figure 4.5C and 4.5D). On Hawai’i individuals
substantially larger than the population average are responsible for the majority of transmission
throughout the year. Despite large individuals not being abundant during the summer months
when the temperature is optimal for disease transmission small individuals do not survive long
enough to sustain the dengue transmission cycle. This observation explains the disproportionate
number of transmission events attributable to large individuals and also explains the contrary
result obtained in Guangzhou. In Guangzhou, the environmental conditions are such that the
small individuals that are most abundant in the summer are competent vectors of dengue and
so are responsible for more transmission than large individuals that are most abundant during
the winter, a period that was not favourable for transmission. However, in Guangzhou trait
structure still plays in important role in disease transmission dynamics and large individuals are
responsible for maintaining the transmission cycle through cold winter months, allowing the in-
fection to be maintained in the population between years (Figure 4.5D). Further, at the start of
the outbreak in 2014 these same large individuals are more capable of transmitting dengue than
small individuals, accelerating the spread of dengue at the start of the outbreak and extending

the transmission period.

4.4.3 Global risk predictions of transmission risk

To predict transmission risk over the species global range I apply the novel expression for the
reproduction number, Rr, defined in Equation 4.26. This formulation of Ry accounts for the
effect of the vector population’s trait structure on the ability of that population to transmit
disease and so produces predictions that reflect how variation in a population’s trait structure
alters the ability of that population to vector disease between climates. Rp is computed across
the species global range and the average length of time the environmental conditions were
suitable for the transmission of dengue between 2017 — 2020 is reported (Figure 4.6). It is
predicted that areas of risk are generally restricted to areas of high human population density.

This is a consequence of the dilution effect caused by the population of dead-end non-human
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hosts incorporated in the SIR model that are used only for blood meals and do not contribute
to the dengue transmission cycle. Further, the presence of a substantial vector populations is
not predicted to be a sufficient condition to maintain the dengue transmission cycle (compare
these predictions to the predictions of suitability for the establishment of populations of Ae.

albopictus in Figure 3.12).

Europe currently experiences limited autochthonous transmission of dengue by Ae. albopictus,
and each of the locations in which dengue transmission has been observed is predicted by the
model (with the exception of an outbreak in Croatia that occurred outside of the period of
time considered) (ECDC, 2022b). In this region only short periods are predicted to be suitable
for transmission which reflects the observed magnitude of these outbreaks. In China, where
dengue outbreaks vectored by Ae. albopictus frequent, I predict longer transmission periods
over a wider area than in Europe. These predictions align with the observed location and
magnitude of historical dengue outbreaks in the region, and the Guangdong region in particular
is a clear hotspot (Yue et al., 2022). Transmission risk is predicted to be low throughout northern
China and is comparable to that observed in southern areas of Europe where outbreaks usually
only consist of a small number of detected cases. In America it is predicted that there are
isolated areas of risk throughout the eastern USA with little suitability for transmission in the
west. The region with highest predicted risk is Miami, Florida, where there have been confirmed
instances of autochthonous transmission vectored Ae. aegpyti which out-competes Ae. albopictus
in this region. The locations of historic outbreaks in Texas are predicted to be able to sustain
transmission, though again the presence of Ae. aegpyti in this region is not accounted for in our

predictions (Brunkard et al., 2007).

Compared to previous statistical models of dengue incidence the predicted area at risk aligns
most closely with that predicted by Messina et al. (2019), though this model additionally con-
siders Ae. aegpyti. Less suitability for transmission is predicted than in the model by Rogers
et al. (2014), especially in northern latitudes. Compared to previous mechanistic models that

do not account for interactions between population, environment, and trait it is predicted that
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Figure 4.6: The length of time for which the model predicts that the reproduction number will
be greater than one (R > 1) and that predicted by a standard metric-based approach that does
not consider population dynamics or trait variation. Each cell represents the 4 year average for
that location. (A,B,C) The model’s predictions of the duration of time for which Ry > 1 in
North America, Europe, and Asia respectively.
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a smaller geographical area is at risk for a shorter period of time (Mordecai et al., 2017; Metel-
mann et al., 2021; Ryan et al., 2018). This is demonstrated in Appendix I where a standard Ry
approach is compared to the model’s predictions. To demonstrate that the approximation used
to estimate the value of R is valid I compare the regions where transmission risk is predicted
to those where the SIR model predicts that the total number of dengue cases is greater than
the number of cases introduced. As the predicted number of dengue cases is not subject to the
approximation needed to compute R, close correspondence between regions of predicted risk
and regions where the total cases are above the number introduced will demonstrate the validity
of the approximation. To test this correspondence I compute the average total annual number
of dengue cases predicted per grid cell and check if the number of cases predicted by the model
exceeds the sum of the number of cases introduced through the introduction scenario and the
total amount of autochthonous transmission that would occur for over the period of time Ry > 1
if instead R = 1 over the full period. I find that this never occurs and therefore the use of an
approximation has not erroneously predicted an outbreak where the SIR model predicts that an

outbreak could not occur.

4.5 Discussion

I demonstrate how variation in a vector population’s trait structure, as determined by the
environmental conditions that it experiences, alters the ability of that population to transmit
disease. During the large outbreaks that occurred in Guangzhou and La Réunion the majority of
vectors present in the population are predicted to be competent to transmit dengue during the
periods when temperatures are optimal. By contrast in temperate regions, such as Cagnes-sur-
Mer, this is predicted not to be the case and instead only a small proportion of the total vector
population is capable of maintaining the transmission cycle. As mean-field models are often
parametrised under the assumption that all individuals develop under favourable conditions this

may explain the current apparent overestimation of the risk that Ae. albopictus poses (Brady,
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Hay, 2020; Lambrechts et al., 2010). This suggests that although mean-field approaches may
perform well when parametrised for specific environmental conditions in locations where trait
structures are simple, the predictions made by a model tailored for one climate do not necessarily

generalise between climates and so should be interpreted with caution (Cator et al., 2020).

By considering mechanisms of individual variation novel insights are generated pertaining to
systems of biological interest, and the work undertaken here could be extended to other Aedes-
borne diseases and other vectors of epidemiological significance. The obvious candidate for such
an effort is the primary vector of dengue Ae. aegypti which is better adapted to warmer climates
than Ae. albopictus (Kraemer et al., 2019). The life-history of this vector is well studied and
so a similarly detailed modelling approach is both possible and appropriate. Over much of
the range of Ae. aegypti temperature is less variable, and this lack of strong seasonality means
that detecting environmentally induced changes in population and trait dynamics in the field
will be substantially more difficult than for Ae. albopictus. However, this demonstration of
the importance of trait in producing disease dynamics, even in climates with little temperature
variation (see the discussion of the role trait in producing disease dynamics in Hawai’i), motivates

further exploration to better understand the changing global incidence of dengue.

The current risk posed by Ae. albopictus over the majority of the range that has been considered
is predicted here to currently be low, which is in line with both disease incidence data and
analyses of the species vector competence. Even so, the large outbreaks that now regularly
occur on Guangzhou and La Réunion are worrying exceptions and given the current general
trend of increase in the incidence of vector-borne disease careful surveillance and control is
remains critical. Even over the last 20 years the model predicts that developmental habitats
have become more productive, and the length of the transmission season has extended. Warm
summers would allow more vectors to be competent, and this in turn would bring predictions
of risk back in line with previous models. Given that this trend is unlikely to reverse it is
only a matter of time before larger outbreaks vectored by Ae. albopictus begin to occur outside

the limited geographical range they are currently observed. In many regions this could quickly
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change the current status of Ae. albopictus as a nuisance biter into a serious public health risk.
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Chapter 5

Discussion

In the following discussion I recapitulate the work’s principal findings, discussing the content

and drawing conclusions.

5.1 Recapitulation

Chapter 2 pertained to the development of a novel modelling framework to represent the effect
of phenotypic plasticity on population and trait dynamics. A flexible modelling framework
was derived, capable of representing the effect of multiple instances of phenotypic plasticity in
response to multiple environmental drivers. The framework was applied to Nicholson’s classical
blowfly experiments and shown to provide novel insights into a well-studied system. Previously
unexplained cryptic population dynamical behaviour naturally emerged from the system, and
this was demonstrated to be a consequence of the model’s explicit representation of mechanisms

of individual variation.

Chapter 3 applied the framework derived in Chapter 2 to the invasive mosquito species Ae.
albopictus, a vector of dengue. By representing the delayed effects of phenotypic plasticity on

the traits expressed by adult mosquitoes the model is able to predict the population and trait
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dynamics of field populations from meteorological data. The role of trait variation in facili-
tating the model’s high generalisability was demonstrated by considering model variants that
made common simplifying assumptions about the relationship between environmental variation
and trait expression. When model was applied over the species’ global range, the predicted
distribution is shown to broadly agree with both the species currently observed range and the

predictions made by species distribution models.

In Chapter 4 the model derived in Chapter 3 that was used to predict the population and trait
dynamics of Ae. albopictus is incorporated into an SIR model for the transmission of dengue.
This model is validated against historic dengue outbreaks and is able to predict observed trans-
mission dynamics and anticipate differences in outbreak magnitude between locations. When
extended over the species global range the model predicts a shorter time over which the dengue
transmission cycle can be sustained than previous mean-field approaches. The predicted area
of risk is also smaller than that predicted by previous mechanistic models and aligns well with
current disease incidence. Vector trait is shown to be the determining factor in these predictions
of reduced risk, and it is demonstrated that in many temperate environments a large proportion

of vectors within the population are not competent to maintain the pathogen transmission cycle.

5.2 Main findings

This thesis aimed to explore the role of vector trait variation in determining current global
patterns in the incidence of vector-borne diseases. Current models of disease incidence make
simplifying assumptions about how transmission critical traits respond to environmental varia-
tion (Cator et al., 2020). These assumptions produce easily interpretable predictions of disease
risk over broad areas but overlook mechanisms that are known to drive population response
to environmental change (Violle et al., 2012). Improving on previous predictions required an
approach that explicitly accounted for mechanisms of individual variation, which was developed

and shown to provide new insights into complex biological systems. Models derived using this
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framework were able to explain cryptic population dynamical behaviours, such as the para-
dox of enrichment which had previouslly been observed experimentally by Nicholson, and were
shown to predict observed differences in population-level processes across broad environmental

gradients (Nicholson, 1957).

By explicitly representing the effects of a delayed instance of phenotypic plasticity on a trans-
mission critical trait I demonstrate how a vector population’s environmentally induced trait
structure drives disease dynamics. In regions where low levels of transmission occur, only a
small subset of large, long-lived mosquitoes were capable of maintaining the transmission cycle.
By contrast in regions where large dengue outbreaks occurred the majority of individuals within
the vector population were competent to transmit dengue regardless of trait. Between regions
where large outbreaks of dengue occur and those where small outbreaks occur it was demon-
strated that there is little difference in the productivity of developmental habitats at time of
peak transmission. This shows that vector abundance alone is not sufficient to predict disease
incidence across environmental gradients, just as in the experimental blowfly culture patterns
of individual variation did not translate to population-level responses. Only when trait and
population dynamics are considered in concert, in a system that allows the interaction between

the two, were generalisable predictions produced.

More broadly this is part of the growing body of evidence that the way that mechanisms of
individual variation are incorporated into predictions of how population’s will respond to en-
vironmental change needs to be rethought to further our understanding of population ecology
(Bolnick et al., 2011; Hendry, 2016; Johnston et al., 2019; Lion, 2018; Lipowsky et al., 2015;
Lloyd-Smith et al., 2005; Sgro et al., 2016; Turcotte, Levine, 2016). Mean-field assumptions are
often made implicitly, without consideration for the complex biological processes through which
an individual’s environmental experiences determine its life-history. The increasing availability
of trait data and developments in theory means that now is an ideal time to start directly ac-
counting for mechanisms of variation in predictions of population processes rather than using

implicitly assumed averaged trait approaches (Violle et al., 2012). Trait-based approaches have
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been long advocated for as a way of producing generalisable predictions but despite this there
has only been a limited application of theory to generate predictions on a global scale such
as achieved here (Green et al., 2022). The work undertaken in this thesis demonstrates that
these generalisable predictions are not only attainable but can provide insights into important

biological systems.

5.3 Future directions

The modelling framework developed here has broad applicability beyond the transmission of

dengue by Ae. albopictus and there is scope for substantial building from this body of work.

5.3.1 Improving on model assumptions

The assumptions that were made to derive, parameterise and implement the model to predict
the population dynamics of Ae. albopictus in Chapter 3 were broad and far-reaching. Generally,
these assumptions were made due to gaps in the current understanding of how the life-history
of Ae. albopictus interacts with environmental variables. To substantially improve of on any of
these assumptions would represent a significant amount of experimental work. Yet, exploring
how these factors affect the mechanisms by which the species varies on a more local scale would

provide a deeper understanding into how the incidence of vector-borne will change in the future.

The model for the population dynamics of Ae. albopictus derived in Chapter 3 and used in Chap-
ter 4 assumes that the quantity and physical characteristics of aquatic developmental habitats
remain constant through space and time. This greatly simplifies the model but omits processes
that are demonstrably important in determining the abundance of Ae. albopictus. A field survey
by Evans et al. (2019) has shown that the number of larval habitats fluctuates throughout the
year and that this is associated with changes in adult density. However, predicting how the

availability of larval habitats changes is challenging, due to the cryptic nature of these habitats

128



and presence of precipitation independent standing water due to human activity (Nguyen et al.,
2011; Unlu et al., 2014). To scale up surveillance, citizen science projects have proven an effective
solution, but even when the distribution of developmental habitats becomes better understood,
using this knowledge to improve predictions of disease risk will be challenging (Jordan et al.,
2017; Low et al., 2021). The size of larval habitats has been shown to vary with land-use type
and socio-economic variables and this changes the intensity of density dependent competition
(Reiskind, Zarrabi, 2012; Parker et al., 2018). The physical chemical properties of the water in
developmental habitats can change oviposition preferences and has been implicated as a cause of
increased vectorial capacity (Gunathilaka et al., 2018b; Ramasamy et al., 2011; Medeiros-Sousa
et al., 2020). The presence of predatory or competitor species can also change oviposition prefer-
ences, mortality rates, and development rates in a way that changes on a species-to-species basis
and that has been shown to interact with other container-level variables such as food availability,
and habitat complexity (Juliano et al., 2019; Wasserberg et al., 2013; Costanzo et al., 2005; Sil-
berbush, Resetarits, 2017; Cuthbert et al., 2019). To better understand how the characteristics
of developmental habitats changes disease incidence, a deeper understanding of the mechanisms

by which container-level variables interact with the life-history of the species will be required.

The model derived in Chapter 3 also assumes that the temperature in the water experienced
by juveniles and the temperature of the air experienced by adults are always the same. The
difference between air and water temperature have been shown to vary according to a variety of
micro-climatic and environmental factors, including the material the habitat is made from and
the level of shade over the habitat (Kumar et al., 2015; Paaijmans et al., 2008). Improving on
this assumption therefore requires a better understanding of the characteristics of larval habitats
in the field, the difficulties of which have already been outlined. It is further assumed that the
average daily temperature captures the effects of diurnal temperature variation on mosquito
trait. Diurnal temperature variation is predicted to increase the sensitivity of vectors to climate
change through changes in developmental traits (Paaijmans et al., 2013; Zapletal et al., 2018).

However, the effect of diurnal variation on the temperature in the developmental habitat varies
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according to the habitat’s physical characteristics such as the volume of water and material the
habitat is made of. Further complicating the inclusion of diurnal variation in these predictions is
that diurnal variation is not considered in the data used to parametrise the model, the majority
of which is sourced from constant temperature experiments. To more completely represent
the effect of temperature on the life-history of Ae. albopictus therefore requires both a better
understanding of larval habitats, and further experiments exploring the role of temperature

variation on mosquito trait.

Here, it is demonstrated that accurate predictions of the longevity of adult mosquitoes are
critical in determining the ability of vector populations to transmit pathogens. However, there
are multiple factors known to alter the longevity of adult mosquitoes that are not accounted in
the models due to a lack of data regarding their interaction with wing length and temperature.
This lack of data is a known problem and a systematic literature by Schmidt et al. (2018) into
the relationship between humidity, longevity and temperature could not identity a statistically
significant relationship which was attributed to a lack of experimental data over a sufficient range
of conditions. To go a step further than this and define a relationship between, temperature, wing
length, humidity, and longevity is therefore currently impracticable without further extensive
experimental work. Omitted for similar reasons is the demonstrably independent relationship
between larval food availability, larval density, and temperature on adult wing length and age-
specific mortality rates (Yoshioka et al., 2012). The same carry-over effect that alters adult
longevity also has implications for the ability of vectors to transmit disease and there is evidence
that larvae developing under stressful environmental conditions have thinner midguts as adults,
allowing infections to become disseminated faster (Herd et al., 2021). However, the precise nature
of this mechanism is currently unknown and there is also evidence for the opposite relationship
with experiments run at different temperatures and densities reaching the conclusion that low
densities and temperatures accelerated the dissemination of infection (Westbrook et al., 2010;

Nasci, Mitchell, 1994).
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5.3.2  Further applications of the model

Ae. albopictus is an invasive species and each year more regions report the first occurrence of
the species. Considering the dynamics that occur when small numbers of vectors are introduced
into the system at different times of the year would potentially produce useful indices for pre-
dicting invasion risk. Additionally, environmental suitability for vector populations and dengue
transmission is predicted here only for regions where there is data from field populations. Given
the close correspondence between the distribution of vector occurrence and model predictions
over the range considered it would be useful to extend this model to the rest of the globe to
predict the limits of species current environmental niche. A similar approach could be extended
to the SIR model, pairing the dynamical disease model with predictions of dengue importation
such as predicted in the model by Liebig et al. (2019) to convert estimates of how long dengue
transmission is possible to predictions of how likely autochthonous transmission is in a given

region.

The models produce predictions of vector population dynamics that hold across the species global
range, validated against 34 years of data from field populations. This generality should hold
into the future and so using this framework to predict how the distribution of vector populations
and incidence of dengue will evolve in response to future climate change is a natural next step.
Even over the relatively short period considered here the model predicts that larval habitats are
becoming more productive over most of the range considered year on year, and the suitability
for dengue is increasing. Previous mechanistic predictions of the future distribution of dengue
generally predict higher incidence in latitudes already at risk and a northward expansion of
both vector population and dengue incidence. Compared to previous predictions this model
starts from a lower baseline, predicting less suitability for dengue transmission for less time over
a smaller geographical range (Ryan et al., 2018). It is therefore unclear how the model will
predict regions at risk of dengue transmission will change and therefore this promises to be a

productive avenue for future research.
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A final and important direction for further work with this model is to predict the efficacy of
vector control campaigns. There is only limited evidence that current vector control efforts
targeting Aedes species are effective (Roiz et al., 2022). Population models are frequently used
to guide interventions and given this models excellent resemblance to field data it’s predictions
could be invaluable for assessing how to optimally control vector populations. Current control
techniques target different life-stages and determining what combination of control techniques
to apply to efficiently reduce biting adult numbers will be a complex problem due to the delayed
and non-linear effects of density and environment on mosquito life-history. However, an effective
model to evaluate control strategies will likely also require a spatial element to account for local
variables important in determining small-scale mosquito abundance (Falcén-Lezama et al., 2016).
Additionally, human mediated dispersal has implicated in undermining historic control efforts
through regular reintroductions from infested areas (Lee et al., 2021; Goiri et al., 2020). Once
again, a deeper understanding of the distribution and properties of developmental habitats will

be an important first step in being able to predict the outcome of control.

5.3.3 Adaptation of the model

The model derived in Chapter 4 to predict dengue transmission could readily be adapted to
predict the transmission one of the more than 25 other viruses for which Ae. albopictus is a
competent vector (Amraoui et al., 2019). Of these, the three most well-studied and epidemi-
ologically relevant are Chikungunya (CHIKV), Zika (ZIKV), and yellow fever (YFV). Chikun-
gunya is a growing global threat and Ae. albopictus is the primary vector implicated in recent
outbreaks, which now occur across the mosquitoes native and invasive range (Silva, Dermody,
2017). A capacity for both horizontal and vertical transmission of ZIKA by Ae. albopictus
has been demonstrated, which is of growing concern to global public health since the outbreak
throughout the Americas in 2015 (Lai et al., 2020). Ae. albopictus has also been shown to be a
competent vector of yellow fever, though little is currently known about its role in maintaining

outbreaks of the disease (Amraoui et al., 2016). To adapt the model to predict the risk of
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transmission associated with each of these viruses presents different challenges that would need
addressing before specific predictions could be made. However, in each case the primary barrier
to achieving model specificity is the lack of knowledge about how traits such as EIP change with
temperature within Ae. albopictus. Experimental work continues to explore the relationship
between temperature and vectorial capacity for each virus, which will be required to understand

the risk they pose to public health (Mercier et al., 2022).

The population model developed in Chapter 3 could also be used to predict the populations
dynamics of other Aedes species over their ranges and as was briefly discussed in Chapter 4. Ae.
aegypti the primary vector dengue is the obvious candidate. However, although the extension
of the population dynamical model may be fairly straightforward, an extension of the SIR
model to predict the dynamics of dengue outbreaks vectored by Ae. aegypti would require a
substantial amount of further work. The lack of strong seasonality throughout the locations
over which the transmission of dengue by Ae. aegpyti is observed means that outbreaks are
often multi-strain, with multiple serotypes co-circulating simultaneously. This complicates the
mosquito transmission cycle, as mosquitoes can potentially be simultaneously infected with
different DENV serotypes (Pérez-Castro et al., 2016). Different strains of dengue also present
different severities of clinical manifestation and there is evidence of strain-specific differences
in transmission traits (Andrade et al., 2016; Ekwudu et al., 2020). Long-lasting resistance to
further infection in the host population presents a further modelling challenge, as after being
infected by a serotype, life-time immunity is incurred to subsequent infection by viruses of the
same serotype (Gibbons et al., 2007). Further, infection by one serotype induces a period of
cross-immunity against all other serotypes of dengue that can last between 1 — 3 years (Reich
et al., 2013). Tracking the host populations immune status will be critical to understand disease
dynamics but also health risk, as individuals that have experienced infection by one serotype have
a higher change of developing severe complications upon infection by other serotypes (Woodall,

Adams, 2014; Narayan, Tripathi, 2020).

An additional complication in producing accurate predictions of the dengue risk posed by Ae.
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aegpyti is the presence of Ae. albopictus throughout much of its range (Kraemer et al., 2015). In
many locations where Ae. aegpyti is the primary vector dengue Ae. albopictus often also occurs,
and it has been suggested that each vector species plays a different role in the maintenance of
dengue outbreaks (Lin et al., 2016a). The outcome of competition between these two species is
complex and has been shown to depend on local environmental conditions (Juliano et al., 2004;
Murrell, Juliano, 2008; Lizuain et al., 2022; Lounibos, Kramer, 2016). These same experiments
demonstrate that the relationship between adult wing length temperature, larval density, and
food availability is altered by the degree of interspecific that individuals experience, and so the
ability of Ae. aegypti to maintain dengue outbreaks depends not only on the abundance of Ae.
albopictus but also the degree they overlap in developmental habitats. Incorporating this into
a model would once again require a deeper understanding of the distribution and properties of
larval habitats and further experimental work quantifying the effect of interspecific competition

on developmental plasticity in both species.

Other mosquito vectors would also be amenable to this approach and both the life-history of
West Nile Virus vector Culex pipiens and malarial Anopheles mosquitoes have previously pre-
dicted through delay differential equations (Ewing et al., 2016; Beck-Johnson et al., 2013). The
feasibility of extending these models to incorporate developmental plasticity in response to larval
competition will depend on the availability of experimental data exploring these relationships,
and special care would need to be taken to capture species-specific life-history processes. As
these mosquito species inhabitant larger and less temporary habitats than Ae. albopictus it will
be necessary to start considering the effect of interspecific competition from predators which is
known to greatly affect the dynamics and traits of mosquito species. This could be an important
avenue of future research as the role of reduced adult trait in response to high larval densities
in suppressing malaria outbreaks appears to be complex and evolving (Ijumba, Lindsay, 2001;

Chan et al., 2021).
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5.3.4 The role of phenotypic plasticity

The general modelling framework is a first step in reconciling theory with empirical evidence
regarding the role of phenotypic plasticity in determining population responses to environmen-
tal change. In both systems considered here, complex dynamical behaviours that occurred in
response to changes in environmental conditions emerged naturally as a consequence of mech-
anisms of individual variation. Given the uncertainty in the role of phenotypic plasticity in
mediating population responses ecological disturbances, this approach represents a promising

first step toward a more predictive ecological theory (Hulme, 2008; Violle et al., 2012).

Although the effects of passive developmental plasticity are explored thoroughly here, other
forms of phenotypic plasticity are also likely to have complex effects on population dynamics.
Maternal effects are an inter-generational form of plasticity that can be anticipatory, whereby
the traits expressed by juveniles are determined by adult’s predictions of future environmental
conditions (Bernardo, 1996). When this form of plasticity is active rather than passive it is
prone to cue-anticipation mismatch, where the environmental conditions anticipated by adults
and those experienced by juveniles do not match and so an unfavourable trait is expressed
(Kuijper, Hoyle, 2015). Maternal effects have been found in ecologically important species, for
example both passive and active maternal effects have been observed in desert locusts which
are an invasive crop pest, and species of bee which are currently in broad decline (Preston
et al., 2019; Maeno et al., 2013). Exploring whether the differential action of active and passive
maternal effects on the life-history of these ecologically important species can explain their
different responses to the changing climate could be an important avenue of future research

with implications for food security (Soroye et al., 2020; Meynard et al., 2020).

Models parametrised using this approach are data-hungry and parametrising multi-dimensional
reaction norms requires a substantial amount of life-history data. For vectors of neglected or
emerging tropical disease, this does knowledge base does not yet exist and though data collection

efforts are ongoing understanding which traits to target will require a greater understanding
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of when phenotypic plasticity matters in determining population responses to environmental
change. To facilitate this the phenomenological relationships that were used here to describe
how the traits expressed by Ae. albopictus vary response to the historic environment should
also be informed by rigorous theory, such as is proposed in the metabolic theory of ecology
(Brown et al., 2004). This would for a more complete description of the mechanisms that
are so important in determining population response and this deeper understanding of trait-
environment interactions will be necessary to apply this theory to more complex systems with

species interactions over multiple trophic levels (Wong et al., 2019).

5.4 Summary

In this thesis I have explored the role of trait variation in determining the risk of vector-borne
disease. I derived a novel framework able to represent the effect of environment-trait feedbacks
on population dynamics. This model was validated on Nicholson’s blowflies and then applied
to the invasive mosquito species Ae. albopictus. By parametrising experimentally derived multi-
dimensional reaction norms I represented the effect of developmental plasticity on the longevity
of adult mosquitoes and demonstrate that this approach is able to replicate the population dy-
namics of field populations of vectors across the species global range as well as predict the timing
and magnitude of dengue outbreaks. I demonstrate how the role of trait in determining disease
dynamics changes between climates, and how in many of the historic outbreaks considered a
small number of large individuals accounted for a majority of transmission events. I further
predict, there is currently less risk of dengue transmission in the invaded range than previous

approaches but that this risk is increasing.
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Appendices

A Model derivation from first principles

To demonstrate that the modelling framework is rigorous it must be derived from first principles,
and to do this the derivation of the Gurney et al. (1983) model is extended to include phenotypic
plasticity. This demonstrates that this extension of the Gurney et al. stage-structured delay dif-
ferential equation framework (described in Chapter 1) to represent phenotypic plasticity does
not violate the assumptions made in the Gurney et al. framework and so is mathematically
rigorous. I begin with the continuous Von Foerster equation, a partial differential equation de-
scribing how individuals age, and convert it into a system of coupled delay differential equations

(Kermack, McKendrick, 1927).

Consider a single species with constant sex ratio that expresses phenotypic plasticity in d plastic
traits in response to a set of z environmental cues. Let all individuals with age a, in envi-
ronmental class j at time ¢ have the same per capita reproduction and death rates, §;(a,t),
and ¢;(a,t) respectively. Note that these per capita rates are age dependent and so functional
forms that reflect demographic processes can be freely chosen. For example, in a species where
sexual maturity is reached at age a,, the per capita reproduction rate may be chosen such that
Bj(a,t) = 0 for a < a,,. Denote the number of individuals with age in the interval a — a+da in
environmental class j at time ¢t by f;(a,t). Assuming the system is closed (i.e. no immigration

or emigration) describe the change in population due to ageing and death by the Von Foerster

137



equation (Kermack, McKendrick, 1927)

8fj(a7t) _ _afj(aﬂt)

ot o0 —5j (a, t)fj(a, t) a > 0. (1)
o death

The rate at which the population produces offspring at time ¢ into environmental class j is

described by the renewal condition

Bj(t) = £;(0,t) = Zwl] )/Ooofl(a,t)ﬁl(a,t)da (2)

where the function wy;(a(t)) determines the fraction of individuals born at time ¢ that acquire
life-history parameters associated with environmental class j. As was stated in the overview it

is required that 0 < wy;(a(t)) <1, Vj,k € 1,...,m and that Z T wgi(a(t)) = 1.

The total birth rate of individuals across all phenotypes is then given by

B =Y Biit) =3 3wl / fat)fu(at) da 5
= /OOO o> wigle®) fila, )Bia, t) da. (1)
7j=11=1

Equation 1 can be solved using the method of characteristics (Kot, 2001) to find f;(a,t), giving

fi(a,t) = fi(0,t — a) exp (— 5i(t')dt’> (5a)

t—a

= Bi(t —a)P;(t — a,a) (5b)
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where P;(t, a) is the cumulative survival probability that an individual born at time ¢ expressing

phenotype ¢ survives until at least stage a.

Assume stage transitions occur at fixed time intervals, and that the population has n life-stages.
Denote the number of individuals in life-stage i and environmental class j by N; ;(t). Assume

that all individuals in life-stage ¢ and environmental class j are functionally identical, such that

dia,t) =6;(t), Vai; <a<ait1; (6)

Bila,t) = Bi;(t), Vaij <a<aii; (7)

where a; ; is the age at which an individual enters life-stage ¢ and environmental class j, and
a;+1,; the age when that individual matures to life stage ¢ + 1. Then divide the population into

stages as follows

Qit1,5
Nty = [ sty da. )
;5
Furthermore, define R;;(t) as the rate of recruitment from stage i — 1 into age class i for
individuals maturing into environmental class j at time ¢. Similarly, define M; ;(¢) as the rate
of maturation from life-stage ¢ into the life-stage ¢ + 1 for individuals in environmental class j at
time ¢. Finally, define D; ;(t) as the rate of death of individuals in life-stage ¢ and environmental

class j. Then,

dN; ;(t)

S5 = Rij(t) = Mij(t) - Dij0). (9)

Integrating Equation (1) over the interval a; ; < a < a;41,; and then comparing to (9) yields the
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relationship

R;;(t) = fi(ai;,t)

M; ;(t) = fi(ait1,t).

Furthermore, as newborns enter at life-stage ¢ = 1,

Rlvj(t) = fj(O,t) :Zwk](a(t)) Zﬁvk(t)va(t) jel,....,m.
k=1 v=1

Substitution of the solution (5b) into Equations (10a) and (10b) yields

Ri,j(t) = B(t — ai’j)P(t — ai’j,ai,j), 1€ 2, e n, j c 1, e, m

M; j(t) = B(t — ai+1,)P(t — ait15,ai14), 1€1,..,n—1, j€1,...,m.

Define the following quantities,

Tiyj = Qi1j — i

as the duration of stage ¢ for individuals in environmental class j.

Define
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(12a)

(12b)

(13)



Si (1) = Pi(t — ait1,5, @it1,5) (14)
v Pj(t = aiy14, i)

to represent the fraction of individuals recruited into stage 7, and environmental class j at time

t — 7;,; that survive to be recruited into stage ¢ + 1 at time ¢. Note that

M; j(t) = R; j(t — 7i7)Si,;(t) (15)

and thus

Rit1,(t) = M ;(1). (16)

Hence, the extension of the Gurney et al. modelling framework to phenotypic plasticity is math-

ematically rigorous.
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B The Gurney, Nisbet and Lawton blowfly model

The phenotypically plastic blowfly model is an extension of the non-plastic blowfly model devel-
oped by Gurney et al. (1983). The model is a stage-structured delay-differential equation model
that considers five life-stages, eggs, larvae, pupae, juvenile adults, and reproductive adults. De-
note the number of eggs at time ¢ by E(t), similarly denote the number of larvae by L(t), pupae
by P(t), juvenile adults by J(¢), and mature adults by A(t). Denote by 7z, 71, 7p, and 77
the duration of the egg, larval, pupal, and juvenile developmental stages respectively. Denote
by dg,dr,dp, 05 the mortality rate of the egg, larval, pupal, and juvenile developmental stages
respectively. Define S = e 9E7E to be the probability of surviving the duration of the egg de-
velopmental stage and similarly define St, Sp, and S; for the larval, pupal, and juvenile stages
respectively. Let g be the fecundity of adult blowflies and K 4 the amount of adult food supplied

daily.

The model takes the form

E(t) = Rp(t) — Re(t — mi)Sp — 0pE(t) (17a)
L{t) = Rp(t) — Rp(t — 71)Sp — 6, L(1) (17b)
P(t) = Rp(t) — Rp(t — 7p)Sp — pP(t) (17c)
J(t) = R;(t) — Ry(t — 17)S; — 65J(t) (17d)
A(t) = Ra(t) — 64 A(t) (17e)

where
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Rp(t) = qA(t) exp{—A(t)/Ka} + 1(t) (18)

Ry(t) = Ry(t — 75)Sk (19)
Rp(t) = Rp(t — 71)SL (20)
Ry(t) = Rp(t — 7p)Sp (21)
Ra(t) = Ry(t —7)Sy (22)

and the inoculation term, I(t), is a function to initiate the dynamics, akin to an initial condition

(Kot, 2001).

Equation 17 can be collapsed down into a single equation for adults given by

dfh@ =qSA(t —1)exp{—A(t —7)/Ka} — 4A(t) + SI(t — 7) (23)

where S = SgSLSpSy, and T =1 + 7 +Tp + TJ.

The Gurney et al. model describes adult competition, with the assumption that larvae always
acquire sufficient food. Adult blowflies that do not get sufficient protein from food must resorb
oocytes to complete egg maturation, directly reducing fecundity (Vogt et al., 1985), which is
represented by a direct reduction of fecundity when adult density is high. Competition for
adult resources produces was found to explain the population cycles, matching the period of the

oscillations observed by Nicholson (Nicholson, 1957), but underestimated the population peaks.
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C Steady-state analysis

To determine the long-term behaviour of the phenotypically plastic blowfly model stability
analysis is performed, beginning with an analysis of the non-plastic model described in Appendix

A.

C.1 Identification of steady-states of the Gurney et al. blowfly model

The blowfly model presented in Gurney et al. (1983) and described in Equations (17) can be

reduced to
dL
o= Rp(t) — Rp(t —11)Sr — 0. L(t) (24)
dA
’ = RA(t) — (5,414(15) (25)
t
where
—A(t—Tg)
Rp(t) = qA(t —Tp)exp K4 Sp (26)
Ra(t) = Rp(t —7)Sy. (27)

This system has a trivial steady state (0,0), and a single non-trivial steady state given by

. —5AKASE(1—SL) 04
L* = 1 2
555, "\ 4sesis, (28)
oA
A* = —K4l - . 2
AT <qSE5L5J> (29)
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To determine the stability of these steady-states consider a linearisation of the system about
each steady state. For a generic steady-state located at (Lgq, Agpq), for L =1- Lgq, and

A = A — Ag, the linearisation then takes the form,

dL 7 7 7 7
oL L(t Lt —7g L(t—715 —711 Lit—Tmg—T1—1TJ
= 7() W 7( ) + Vs 7( ) + Vs 7( )
ad A(t) At —p) At — 15 — 1) Alt =15 — 11— 7J)
(30)
where
) 0
v=| (31)
0 -4
,AE"I E
0 ge Ka (1-—42)g9
Vi = 1 (1= 5r)Se (32)
0 0
_AEq E
Vy — 0 —ge Ka (1 — ’?(Aq)SESL (33)
0 0
0 0
‘/3 - _AEq . (34)

0 qe Ka (1—1?;:)SESLSJ

C.2  The stability of the trivial steady-state

I begin by determining the stability of the trivial steady state for different values of the plastic
traits S; and ¢. Fix all the remaining parameters at the values given in Gurney et al. model.
When all the delays are infinite, i.e. 7 = 7, = 75 = oo, the trivial steady-state is stable

unconditionally. When all the delays are 0, i.e. 75 = 71, = 77 = 0, the trivial steady-state
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is stable provided d4 > ¢SgSrSy;. It can be shown that for the chosen reaction norms this

condition holds provided S; = 0.

C.3 The stability of the non-trivial steady-state

To determine the stability of the non-trivial steady-state the value of all non-plastic parameters
are fixed to determine what conditions on S; and ¢ give stability. As in the trivial steady state it
can readily be shown that after linearisation that the non-trivial steady state is unconditionally
stable when the delays are infinite. When the delays are 0 a necessary condition on the stability
of the non-trivial steady-state is, d4 > qe_%S SLSy(1— %)' In subsequent analysis the value
of K4 is varied, with this in mind note that the substitution of the expression for A* into the
condition demonstrates it is independent of the value of K4 for fixed ¢ and S;. The necessary

1

condition on stability for the non-trivial steady state is satisfied provided, ¢ > 4.853 day™ " and

Sy >0.056 VK4.

Supposing that the condition on stability holds, I now aim to demonstrate that the system is
asymptotically stable independent of the delay. To do this consider Proposition 1 taken from
(Kruthika et al., 2017).

Proposition 1. The time-delay system is asymptotically stable if there exist matrices X > 0,

Hy >0, Hy >0, and Hs > 0, such that,

XVo+VIG+Y2 Hy XVi XV XV3
viEx -Hy 0 0
Q= <0 (35)
Vi X 0 —-Hy O
Vi X 0 0 —Hs

then the system is asymptomatically stable, independent of the delay.

The condition in Proposition 1 is a linear matrix inequality (LMI), and in this context @ < 0

indicates that the matrix ) should be negative-definite. This condition is evaluated here using
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the YALMIP toolbox (Lofberg, 2004) in MatLab (MATLAB, 2019). Proposition 1 can be used
to estimate the region of stability of the non-trivial steady state finding that the non-trivial

steady-state is stable in the region of ¢ € [5.386,12.423] and S; € [0.0594,0.169].

C.4 Steady-states of the phenotypically plastic blowfly model

Now consider the steady-states of the phenotypically plastic blowfly model created using the
novel framework. At steady-state the larval density is constant, and so only one w;(a(t)) is
non-zero when the system is at steady-state. This means that at any given time all larvae
maturing into adults are in the same environmental class and so share the same life-history
parameters as adults. Thus, the number of non-trivial steady states is at maximum m the
number of environmental classes in the discretisation. To represent both food scenarios used in
the Nicholson culture in the subsequent analysis K4 takes one of two values, K4 = 1,200mg

when food is limited and K4 = 2,000mg when food is unlimited.

The system has the trivial steady state and up to m potential non-trivial steady states located

at

64K ASp(1— Sp) ( 5 )
LY = In 36
g 6L.SESLS, 4jSESLS; (36)
oA ) .
Al = -Kqgln| ————— for je1,..,m. 37
=Ky (quESLSJj j (37)

Not all of these potential steady-states are truly steady-states as the level of competition asso-
ciated with L7 may result in adults being recruited in A7 where p # j. If this is the case the
system is still in flux and so these are not true steady states. The number of steady states is
therefore equal to the number of times the L* larval steady state intersects the discretisation of
the environmental cue a(t). In Figure C.1 I show that for both values of K 4 there is only one

point of intersection. This means that for each value of K4 the system only has one non-trivial
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steady-state which is now sought.
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