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Using the notion of integral distance to analytic functions, we give a characterization 
of Schatten class Hankel operators acting on doubling Fock spaces on the complex 
plane and use it to show that for f ∈ L∞, if Hf is Hilbert-Schmidt, then so is Hf̄ . 
This property is known as the Berger-Coburn phenomenon. When 0 < p ≤ 1, we 
show that the Berger-Coburn phenomenon fails for a large class of doubling Fock 
spaces. Along the way, we illustrate our results for the canonical weights |z|m when 
m > 0.

© 2024 The Authors. Published by Elsevier Inc. This is an open access article 
under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction and main results

Let dA = 1
2idz ∧ dz̄ be the Lebesgue measure on C, and φ be a subharmonic function. For 0 < p < ∞, 

Lp
φ = Lp(C, e−pφdA) is the space of all measurable functions on C such that

‖f‖pp,φ =
∫
C

|f(z)|pe−pφ(z)dA(z) < ∞, (1.1)

and L∞
φ is the space of measurable functions f such that

‖f‖∞,φ = ess sup
z∈C

|f(z)|e−φ(z) < ∞. (1.2)

Moreover, we write Lp(Ω) for the space Lp(Ω, dA) where Ω ⊂ C, and we abbreviate Lp(C, dA) as Lp. 
A positive Borel measure μ on C is called doubling if there exists some constant C > 1 such that
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μ(D(z, 2r)) ≤ Cμ(D(z, r)) (1.3)

for all z ∈ C and r > 0, where D(z, r) is the open disk in C with center z and radius r. The smallest C > 1
is called the doubling constant for μ. Hence, for each z ∈ C, limr→∞ μ(D(z, r)) = ∞. It is well known that 
μ has no point mass, i.e.,

μ(∂D(z, r)) = μ({z}) = 0 for every z ∈ C and r > 0, (1.4)

and is nonzero and locally finite. That is,

0 < μ(D(z, r)) < ∞ for every z ∈ C and r > 0. (1.5)

Note that since for each z ∈ C, limr→∞ μ(D(z, r)) = ∞, the function r �→ μ(D(z, r)) is an increasing 
homeomorphism from (0, ∞) to itself. Therefore, for every z ∈ C, there is a unique positive radius ρ(z)
such that μ(z, ρ(z)) = 1. For more information on doubling measures see [20]. Denote by H(C) the space 
of holomorphic functions on C. Then the doubling Fock space F p

φ is defined by

F p
φ = Lp

φ ∩H(C) (1.6)

where φ is a subharmonic function, not identically zero on C, and dμ = �φ dA is a doubling measure. As 
shown in [16], ρ−2 is a regularization of Δφ. Indeed, Theorem 14 in [16] states that when φ is subharmonic 
and Δφ dA is a doubling measure, there exists a subharmonic function ψ ∈ C∞(C) and C > 0 such that 
|ψ − φ| ≤ C, Δψ dA a doubling measure, and Δψ � ρ−2

ψ � ρ−2
φ . The comparability relation � is explained 

at the beginning of Section 2. Since the spaces of functions and sequences that we consider do not change 
if φ is replaced by ψ, we will assume that φ ∈ C∞(C) and ΔφdA � dA/ρ2 is a doubling measure. Hence, 
up to normalization by a constant, we can consider ρ−2(z)dz ⊗ dz̄ to be the metric tensor describing the 
underlying geometry of our space.

It is well known that (F p
φ , ‖ · ‖p,φ) is a Banach space for 1 ≤ p ≤ ∞ and a quasi-Banach space for 

0 < p < 1. Let Kz = K(·, z) be the reproducing kernel of F 2
φ . Then the orthogonal projection P : L2

φ → F 2
φ

is given by

Pf(z) =
∫
C

f(w)Kz(w)e−2φ(w)dA(w). (1.7)

Then as shown in [18], for any 1 ≤ p ≤ ∞, P is a bounded linear operator from Lp
φ to F p

φ , and for any 
f ∈ F p

φ , f = Pf . Let Γ = span{Kz : z ∈ C}, and consider the class of symbols

S = {f measurable : fg ∈ L2
φ for g ∈ Γ}.

Note that L∞ ⊂ S. Given f ∈ S, define the Toeplitz operator Tf and the Hankel operator Hf on F p
φ by

Tfg = P (fg), Hfg = (I − P )(fg) = fg − P (fg). (1.8)

The doubling Fock spaces as well as some pointwise estimates of the Bergman kernel have been studied in 
seminal papers of Christ [3], and Marco, Massaneda and Ortega-Ceda [16,17]. Oliver and Pascuas [18] studied 
the characterization of boundedness, compactness and the Schatten class membership of Toeplitz operators 
on doubling Fock spaces. In [11], Hu and Virtanen introduced a new space IDA of locally integrable functions 
whose integral distance to holomorphic functions is finite and used it to characterize boundedness and 
compactness of Hankel operators on weighted Fock spaces. Using the same notion, in [9] they characterized 
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Schatten class Hankel operators acting on weighted Fock spaces F 2
Φ, where m ≤ �Φ ≤ M for some m, M > 0. 

Recently, their characterizations of bounded and compact Hankel operators was extended to the setting of 
doubling Fock spaces in [15].

In the present work, we use a generalized version of IDA to study the Schatten class membership of 
Hankel operators on doubling Fock spaces. Of particular interest is the result of Berger and Coburn [2]
which says that, for f ∈ L∞, if Hf is a compact operator acting on the classical Fock space F 2, then so is 
Hf̄ . We refer to this property as the Berger-Coburn phenomenon and note that an analogous statement fails 
both in the Hardy and Bergman spaces (see, e.g., [6]). More recently, Berger and Coburn’s result has been 
extended to Fock spaces with standard weights by Hagger and Virtanen [6] (using limit operator techniques 
as opposed to C∗-algebra techniques and Hilbert space methods) and to generalized Fock spaces F p

Φ by Hu 
and Virtanen [11]. Our approach is similar to that of [11] except that we need to deal with more complicated 
geometry induced by the function ρ arising in the study of doubling Fock spaces.

It is natural to ask whether the Berger-Coburn phenomenon also holds for Schatten class Hankel opera-
tors. Indeed, Bauer [1] was the first to show that this property holds for Hilbert-Schmidt Hankel operators 
on F 2. Recently, Hu and Virtanen in [9] proved that when 1 < p < ∞, Hf acting on F 2

Φ is in the Schatten 
class Sp if and only if Hf̄ is in Sp. This was followed by the work of Xia [21], in which he showed also 
that if f(z) = 1/z for |z| > 1 and f = 0 elsewhere, then Hf acting on the classical Fock space F 2 is in 
the trace class while Hf̄ is not. In his work, Xia employed a rather long and involved calculations using 
the standard basis vectors ek(z) = zk/

√
k! and the reproducing kernel K(z, w) = ezw̄. Observe that for 

non-standard weighted Fock spaces, there are no explicit formulas for the basis vectors or the reproducing 
kernel. To overcome this, Hu and Virtanen [12] used their characterizations of Schatten class Hankel op-
erators to verify that Xia’s example shows that the Berger-Coburn phenomenon fails for Sp(F 2

ϕ, L
2
ϕ) when 

0 < m < Δϕ < M and 0 < p ≤ 1. Here, we use an analogous approach on doubling Fock spaces to prove 
the existence of the Berger-Coburn phenomenon for Hilbert-Schmidt Hankel operators. When 0 < p ≤ 1, 
we show that the Berger-Coburn phenomenon fails for some doubling Fock spaces—the larger the value of 
p, the fewer Fock spaces we can cover.

To state our main results, following [11,14] with a modification according to the doubling property of the 
measure under consideration, we define

(Gq,r(f)(z))q = inf
h∈H(Dr(z))

1
|Dr(z)|

∫
Dr(z)

|f − h|qdA (1.9)

for f ∈ Lq
loc, q ≥ 1 and r > 0. Here |Dr(z)| is the Lebesgue measure of Dr(z) := D(z, rρ(z)). Now, for 

0 < p ≤ ∞, 1 ≤ q ≤ ∞, and α ∈ R, the space IDAp,q,α
r consists of all f ∈ Lq

loc such that ‖f‖IDAp,q,α
r

=
‖ραGq,r(f)‖Lp < ∞. Besides, for f ∈ L1

loc, define f̂r(z) := |Dr(z)|−1 ∫
Dr(z) fdA.

Theorem 1.1 (IDA decomposition). Let φ ∈ C∞(C) be subharmonic such that dμ = ΔφdA is a doubling 
measure. Suppose that 1 ≤ q ≤ ∞, 0 < p < ∞, α ∈ R, and f ∈ Lq

loc. Then for f ∈ IDAp,q,α
r , f = f1 + f2

where f1 ∈ C2(C) and

ρ1+α|∂̄f1| + ρ1+α(̂|∂̄f1|qr)1/q + ρα(̂|f2|qr)1/q ∈ Lp, (1.10)

for some (equivalent any) r > 0, and

‖f‖IDAp,q,α
r

� inf
{
‖ρ1+α(̂|∂̄f1|qr)1/q‖Lp + ‖ρα(̂|f2|qr)1/q‖Lp

}
, (1.11)

where the infimum is taken over all possible decompositions f = f1 + f2, with f1 and f2 satisfying the 
conditions in (3.11).
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Theorem 1.1 was stated in [15] without proof. We believe that the proof is rather technical and not trivial 
at all. It appears that this theorem should be a natural extension of Theorem 3.8 in [11]. However, bounding 
a solution to the ∂̄-equation in the doubling Fock space is problematic.

Theorem 1.2 (Schatten class membership of Hankel operators). Let 0 < p ≤ ∞, and φ ∈ C∞(C) be subhar-
monic such that dμ := ΔφdA is a doubling measure. Then for f ∈ S, the following are equivalent:

(1) Hf : F 2
φ → L2

φ is in Sp,
(2) f ∈ IDAp,2,−2/p

r , for some (equivalent any) r > 0.

Moreover,

‖Hf‖Sp
� ‖f‖IDAp,2,−2/p

r
. (1.12)

Remark. Assuming smoothness of ρ−2, the condition for the Sp membership of the Hankel operator on the 
doubling Fock space is equivalent to the condition that G2,r(f) belongs to the space of Lp functions on C
with the conformal metric ρ−2dz ⊗ dz̄.

To characterize the simultaneous membership of Hf and Hf̄ in Sp, we need to define the space of integral 
mean oscillation. First, for f ∈ L2

loc and r > 0, the mean oscillation of f is defined by

MO2,r(f)(z) =

⎛⎜⎝ 1
|Dr(z)|

∫
Dr(z)

|f − f̂r(z)|2dA

⎞⎟⎠
1/2

. (1.13)

Given 0 < p ≤ ∞ and α ∈ R, we define the space IMOp,2,α
r to be the family of those f ∈ L2

loc such that

‖f‖IMOp,2,α
r

= ‖ραMO2,r(f)‖Lp < ∞. (1.14)

Theorem 1.3. Let 0 < p < ∞ and assume that φ ∈ C∞(C) is subharmonic such that dμ = ΔφdA is a 
doubling measure. Then the following are equivalent.

(1) Both Hf and Hf̄ ∈ Sp(F 2
φ , L

2
φ),

(2) f ∈ IMOp,2,−2/p
r , for some (equivalent any) r > 0. Moreover,

‖Hf‖Sp
+ ‖Hf̄‖Sp

� ‖f‖IMOp,2,−2/p
r

. (1.15)

Using the preceding result, it is easy to show that Hf̄ is not Hilbert-Schmidt on F 2
φ when f is a non-

constant entire function (see Theorem 5.4), which implies an analogous result of Schneider [19] for the 
canonical weights φ(z) = |z|m and f(z) = zk when k is a positive integer and m > 0. However, when we 
restrict our study to bounded symbols, it turns out that Hf̄ ∈ S2 whenever Hf ∈ S2 as seen in the following 
theorem.

Theorem 1.4 (Berger-Coburn phenomenon for Hilbert-Schmidt Hankel operators). Let φ ∈ C∞(C) be sub-
harmonic and suppose that dμ = Δφ dA is a doubling measure. Then for f ∈ L∞, Hf ∈ S2(F 2

φ , L
2
φ) if and 

only if Hf̄ ∈ S2(F 2
φ , L

2
φ), with

‖Hf̄‖S2 � ‖Hf‖S2 . (1.16)
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It is worth emphasizing that the preceding theorem for Hilbert-Schmidt Hankel operators was proved by 
Bauer [1] in 2004, and it took almost two decades until it was proved for other Schatten classes by Hu and 
Virtanen [9]. This leads to the following question.

Open Problem 1.5. Does the Berger-Coburn phenomenon hold true for other Schatten classes Sp when 
1 < p < ∞?

For a discussion on the preceding open problem (involving the Muckenhoupt condition for the bounded-
ness of the Beurling-Ahlfors operator), see Remark 6.1 in Section 6.

Before stating our last theorem, we recall the following growth condition for the function ρ. Given a 
doubling Fock space F 2

φ , there are constants C, η > 0 and 0 ≤ β < 1 such that

C−1|z|−η ≤ ρ(z) ≤ C|z|β (1.17)

for |z| > 1 (see Equation (5) of [16]); we denote the smallest β that satisfies (1.17) by βφ.
The following result shows the Berger-Coburn phenomenon fails for Sp(F 2

φ , L
2
φ) provided that βφ is 

sufficiently small in comparison with the value of p.

Theorem 1.6. Let φ ∈ C∞(C) be subharmonic with dμ = Δφ dA a doubling measure. Then, for 0 < p ≤ 1
with βφ ≤ 1−p

1−p/2 , the Berger-Coburn phenomenon for Schatten class Hankel operators fails; that is, there is 
an f ∈ L∞(C) such that Hf ∈ Sp(F 2

φ , L
2
φ) but Hf̄ /∈ Sp(F 2

φ , L
2
φ).

In particular, when ρ is bounded, the Berger-Coburn phenomenon fails for all 0 < p ≤ 1.

A simple consequence of the preceding theorem is that if F 2
φ is a doubling Fock space, then the Berger-

Coburn phenomenon fails for Sp(F 2
φ , L

2
φ) provided that p is sufficiently small.

Another consequence is the following corollary, in which we consider again the canonical doubling weights 
φ(z) = |z|m and determine when the Berger-Coburn phenomenon fails for these weights.

Corollary 1.7. Let m > 0 and 0 < p ≤ 1. Then the Berger-Coburn phenomenon fails for Sp(F 2
|z|m , L2

|z|m) if

m ≥ p

1 − p
2
.

In particular, if m ≥ 2, then the phenomenon fails for all Schatten classes Sp with 0 < p ≤ 1.

Theorem 1.6 and its corollary lead to the following question.

Open Problem 1.8. Determine whether the Berger-Coburn phenomenon fails for Sp(F 2
φ , L

2
φ) when 0 < p ≤ 1

and Δφ dA is doubling.

The paper is organized as follows. In the next section, we provide preliminaries on the reproducing 
kernel, including global and local estimates, and elaborate more on the radius function ρ and the induced 
metric on the complex plane. In Section 3, we provide useful lemmas and use them to prove Theorem 1.1
(IDA decomposition). In Section 4, we use Toeplitz operators with locally finite positive Borel measures 
to prove Theorem 1.2, which characterizes the Schatten class membership of Hankel operators. Section 5
is devoted to the study of the function space IMO of integral mean oscillation, which we use to prove 
Theorem 1.3. Finally, in Section 6, we prove the Berger-Coburn phenomenon for Hilbert-Schmidt Hankel 
operators on general doubling Fock spaces as stated in Theorem 1.4. We finish the last section with the 
proofs of Theorem 1.6 and Corollary 1.7.
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wz
ρ(z)

ρ(z) + |w − z|

Fig. 1. Relation between ρ(z) and ρ(w).

2. Preliminaries

In this section we recall and prove some key lemmas on the function ρ, the reproducing kernel of F 2
φ , the 

space IDAp,q,α
r , and their related integral and norm estimates.

Notation. We use C to denote positive constants whose value may change from line to line but does not 
depend on the functions being considered. We say that A � B if there exists a constant C > 0 such that 
C−1A ≤ B ≤ CA. Moreover, A � B if A ≤ CB for some positive constant C.

Let φ be a subharmonic function on C such that dμ = ΔφdA is a doubling measure. Recall that there is 
a function ρ such that μ(D(z, ρ(z))) = 1, for every point z ∈ C. In other words, the radius of a disk with 
unit measure depends on the center of the disk. As shown in the Fig. 1, D(z, ρ(z)) ⊂ D(w, |w − z| + ρ(z)). 
Hence, 1 ≤ μ(D(w, |w − z| + ρ(z))), and thus ρ(w) ≤ ρ(z) + |w − z|. By symmetry,

|ρ(w) − ρ(z)| ≤ |w − z|, for every z, w ∈ C. (2.1)

Lemma 2.1 (See [18], Lemma 2.2). For every r > 0 there is a constant cr ≥ 1, depending only on r and the 
doubling constant for μ, such that

c−1
r ρ(z) ≤ ρ(w) ≤ crρ(z), for every z ∈ C and w ∈ Dr(z). (2.2)

Namely, cr = (1 − r)−1, for every 0 < r < 1. In other words, ρ(w) and ρ(z) are equivalent on a disk.

Consider the distance dφ induced by the metric ρ−2dz ⊗ dz̄. Indeed, for any z, w ∈ C,

dφ(z, w) = inf
γ

1∫
0

|γ′(t)|
ρ(γ(t))dt, (2.3)

where the infimum is taken over all piecewise C1 curves γ : [0, 1] → C with γ(0) = z and γ(1) = w.

Lemma 2.2 (See [16], Lemma 4). There exists δ > 0 such that for every r > 0 there exists Cr > 0 such that

C−1
r

|z − w|
ρ(z) ≤ dφ(z, w) ≤ Cr

|z − w|
ρ(z) , for w ∈ Dr(z), (2.4)

and

C−1
r

( |z − w|)δ ≤ dφ(z, w) ≤ Cr

( |z − w|)2−δ
, for w ∈ C \Dr(z), (2.5)
ρ(z) ρ(z)
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Now we can state the following pointwise estimate for the Bergman kernel.

Lemma 2.3.

(1) There exist C, ε > 0 such that

|K(w, z)| ≤ C
eφ(w)+φ(z)

ρ(w)ρ(z) e−
( |z−w|

ρ(z)
)ε
, w, z ∈ C, (2.6)

(2) There exists some r0 > 0 such that for z ∈ C and w ∈ Dr0(z), we have

|K(w, z)| � eφ(w)+φ(z)

ρ(z)2 . (2.7)

(3) kp,z → 0 uniformly on compact subsets of C as z → ∞, where kp,z := Kz

‖Kz‖p,φ
is the normalized Bergman 

kernel of F p
φ .

(4) For any 1 ≤ p ≤ ∞, we have that

‖Kz‖p,φ � eφ(z)ρ(z)2/p−2. (2.8)

Proof. See Theorem 1.1 and Proposition 2.11 of [17] respectively for parts (1) and (2), Lemma 2.3 of [8] for 
part (3), and Proposition 2.9 of [18] for part (4). �

Given a sequence {aj}∞j=1 ⊂ C, and r > 0, we call {aj}∞j=1 an r-lattice if {Dr(aj)}∞j=1 covers C and the 
disks of {Dr/5(aj)}∞j=1 are pairwise disjoint. Moreover, for an r-lattice {aj}∞j=1, and a real number m > 1, 
there exists an integer N such that

1 ≤
∞∑
j=1

χDmr(aj)(z) ≤ N (2.9)

where χE is the characteristic function of a subset E of C. For f, e ∈ L2
φ, the tensor product f ⊗ e as a rank 

one operator on L2
φ is defined by

f ⊗ e(g) = 〈g, e〉f, g ∈ L2
φ. (2.10)

Lemma 2.4. Given r > 0, there is some constant C > 0 such that if Γ is an r-lattice in C, and if {ea : a ∈ Γ}
is an orthonormal set in L2

φ, then ∥∥∥∥∥∑
a∈Γ

k2,a ⊗ ea

∥∥∥∥∥
L2

φ→L2
φ

≤ C, (2.11)

where k2,a := Ka

‖Ka‖2,φ
is the normalized Bergman kernel.

Proof. Note that {λa = 〈g, ea〉2,φ}a∈Γ ∈ l2. Then similar to the proof of Lemma 2.4 in [7],∥∥∥∥∥∑
a∈Γ

λak2,a

∥∥∥∥∥ ≤ C ‖{λa}a∈Γ‖l2 , (2.12)

where the constant C only depends on r. Then similar to the proof of Lemma 2.4 in [9], we have
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∥∥∥∥∥(∑
a∈Γ

k2,a ⊗ ea
)
(g)

∥∥∥∥∥
2

≤ C|〈g, ea〉|2 ≤ C‖g‖2. � (2.13)

We finish this section with a description of ρ for the canonical weights |z|m with m > 0.

Lemma 2.5. Let φ(z) = |z|m with m > 0. Then dμ = ΔφdA is a doubling measure. Moreover, there is an 
R > 0 such that

ρ(z) � |z|1−m/2

for |z| > R. In particular, when m ≥ 2, ρ is bounded.

Proof. Note that Δφ(z) = m2|z|m−2. To show that dμ is a doubling weight, it is enough to prove that for 
any x ≥ 0 and r > 0, ∫

D(x,2r)

|z|m−2dA(z) ≤ C

∫
D(x,r)

|z|m−2dA(z), (2.14)

where the constant C is independent of x and r.
We consider r > x

100 ≥ 0 first. Then D(x, 2r) ⊂ D(0, x + 2r), so that∫
D(x,2r)

dμ(ξ) ≤
∫

|ξ|≤x+2r

|ξ|m−2dA(ξ) ≤
∫

|ξ|≤102r

|ξ|m−2dA(ξ) ≤ C1r
m. (2.15)

On the other hand, if m ≥ 2,∫
D(x,r)

dμ(ξ) ≥
∫

D(x,r)∩{Re ξ≥x}

dμ(ξ) ≥
∫

D(0,r)∩{Re ξ≥0}

dμ(ξ) ≥ C2r
m. (2.16)

From (2.15) and (2.16) we obtain (2.14) for m ≥ 2 and r > x
100 .

Now we suppose 0 < r < x
100 . Then

D(x, 2r) ⊂ {teiθ : x− 2r < t < x + 2r, |θ| < arcsin 2r
x
},

D(x, r) ⊃ {teiθ : x− c1r < t < x + c2r, |θ| < arcsin r

2x},

where c1 and c2 are positive constants independent of x are r. Hence,

∫
D(x,2r)

dμ ≤
x+2r∫

x−2r

rm−1dr

arcsin 2r
x∫

− arcsin 2r
x

dθ � r

x
[(x + 2r)m − (x− 2r)m] (2.17)

� r

x
rxm−1 = r2xm−2,

where the constants in the inequalities � are all independent of x and r. Similarly,

∫
dμ ≥

x+c2r∫
x−c r

rm−1dr

arcsin r
2x∫
r

dθ (2.18)

D(x,r) 1 − arcsin 2x
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� r

x
[(x + c2r)m − (x− c1r)m] � r2xm−2.

Using (2.17) and (2.18), we obtain (2.14).
For 0 < m < 2, and r > x

100 ,∫
D(x,r)

|ξ|m−2dA(ξ) =
∫

D(0,r)

|ξ + x|m−2dA(ξ) ≥
∫

D(0,r)

|ξ|m−2dA(ξ) ≥ C3r
m. (2.19)

From (2.15) and (2.19) we obtain (2.14) for 0 < m < 2 and r > x
100 .

Now notice that using (2.17) and (2.18) and when x is large enough,∫
D(x,x−m−2

2 )

|ξ|m−2dA(ξ) � 1. (2.20)

This, together with the doubling property implies that there exists R > 0 large enough, such that for the 
Fock space F 2

|z|m ,

ρ(z) � |z|−m−2
2 = |z|1−m

2 (2.21)

for |z| ≥ R. �
3. The space IDA

The goal of this section is to prove the IDA decomposition Theorem 1.1. Before proving the theorem, we 
need to see some definitions and lemmas.

Lemma 3.1. Suppose 1 ≤ q < ∞. Then for f ∈ Lq
loc, z ∈ C, and r > 0, there is h ∈ H(Dr(z)) such that

(
̂|f − h|qr(z)

)1/q = Gq,r(f)(z), (3.1)

and for s < r,

sup
w∈Ds(z)

|h(w)| ≤ C‖f‖Lq(Dr(z),dA), (3.2)

where the constant C is independent of f and r.

Proof. This proof is similar to the proof of Lemma 3.3 in [11]. Taking h = 0,

Gq,r(f)(z) ≤
(
|̂f |qr(z)

)1/q
< ∞. (3.3)

Then for j = 1, 2, · · ·, pick hj ∈ H(Dr(z)) such that

(
̂|f − hj |qr(z)

)1/q → Gq,r(f)(z) as j → ∞. (3.4)

Hence for sufficiently large j,(̂|hj |q (z)
)1/q ≤ C{

(
̂|f − hj |q (z)

)1/q +
(
|̂f |q (z)

)1/q} ≤ C
(
|̂f |q (z)

)1/q
. (3.5)
r r r r
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Thus, we can find a subsequence {hjk}∞k=1 and a function h ∈ H(Dr(z)) such that limk→∞ hjk(w) = h(w)
for w ∈ Dr(z). By (3.4),

Gq,r(f)(z) ≤
(
̂|f − h|qr(z)

)1/q ≤ lim inf
k→∞

(
̂|f − hjk |qr(z)

)1/q = Gq,r(f)(z) (3.6)

where in the RHS inequality we have used Fatou’s Lemma. This gives us (3.1).
Now for w ∈ Ds(z), by the mean value Theorem,

|h(w)| ≤
(
|̂h|qs(z)

)1/q ≤ C
(
|̂h|qr(z)

)1/q ≤
(
|̂f |qr(z)

)1/q = C‖f‖Lq(Dr(z),dA). � (3.7)

Now we are ready to define f1 and f2 in Theorem 1.1. Using (2.2) and the triangle inequality, there exists 
m ∈ (0, 1) such that Dmr(w) ⊂ Dr(z), whenever w ∈ Dmr(z). For r > 0, let {aj}∞j=1 be a mr-lattice, and 
let Jz := {j : z ∈ Dr(aj)}, so that |Jz| =

∑∞
j=1 χDr(aj)(z) ≤ N , for some integer N . Let η : C → [0, 1] be 

the following smooth function with bounded derivatives.

η(z) =
{

1 if |z| ≤ 1/2,
0 if |z| ≥ 1.

(3.8)

For each j ≥ 1 we define ηj(z) = η( z−aj

mrρ(aj) ). We can normalize ηj such that 
∫
C ηjdA = 1, for each 

j ≥ 1. Define ψj(z) = ηj(z)∑∞
k=1 ηk(z) . Then one can see that {ψj}∞j=1 is a partition of unity subordinate to 

{Dmr(aj)}j≥1, satisfying the following properties:

Suppψj ⊂ Dmr(aj), ψj(z) ≥ 0,
∞∑
j=1

ψj(z) = 1,

|ρ(aj)∂̄ψj | ≤ C,
∞∑
j=1

∂̄ψj(z) = 0, (3.9)

where the constant C may depend on r.
By Lemma 3.1, for j = 1, 2, · · ·, we can pick hj ∈ H(Dr(aj)) such that

̂|f − hj |qr(aj) = 1
|Dr(aj)|

∫
Dr(aj)

|f − hj |qdA = Gq,r(f)(aj)q. (3.10)

For 1 ≤ q < ∞ and f ∈ Lq
loc, decompose f = f1 + f2 as

f1(z) :=
∞∑
j=1

hj(z)ψj(z), f2(z) := f(z) − f1(z). (3.11)

Lemma 3.2. Let 1 ≤ q < ∞, f ∈ Lq
loc, and r > 0. Decomposing f = f1 +f2 as in (3.11), we have f1 ∈ C2(C)

and

ρ(z)|∂̄f1(z)| + ρ(z)(̂|∂̄f1|qmr)
1/q + (̂|f2|qmr)

1/q ≤ CGq,R(f)(z), (3.12)

for some R > r and m ∈ (0, 1).

Proof. Using the properties of hj and ψj we can easily see that f1 ∈ C2(C). Let z ∈ C, and Jz = {j : z ∈
Dr(aj)}. We know that if z ∈ Dr(aj), then ρ(z) ≤ Cρ(aj). Therefore, knowing 

∑∞
j=1 ∂̄ψj = 0, using (3.9), 

the triangle inequality, and since |hj − h1|q is plurisubharmonic on Dr(aj),
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ρ(z)|∂̄f1(z)| = ρ(z)

∣∣∣∣∣∣∂̄(
∞∑
j=1

hj(z)ψj(z))

∣∣∣∣∣∣ ≤ ρ(z)
∞∑
j=1

|hj(z) − h1(z)||∂̄ψj(z)|

≤ C
∑
j∈Jz

⎡⎢⎣ 1
|Dr(aj)|

∫
Dr(aj)

|hj − h1|qdA

⎤⎥⎦
1/q

ρ(aj)|∂̄ψj(z)|

≤ C
∑
j∈Jz

⎡⎢⎣ 1
|Dr(aj)|

∫
Dr(aj)

{|f − hj |q + |f − h1|q}dA

⎤⎥⎦
1/q

≤ C
∑
j∈Jz

(
̂|f − hj |qr(aj)

)1/q +
(

̂|f − h1|qr(aj)
)1/q

≤ C
∑
j∈Jz

Gq,r(aj) ≤ CGq,s(f)(z), (3.13)

for some s > r, where the last inequality can be shown similarly to Corollary 3.4 in [11], and using the fact 
that |Jz| is finite.

Moreover, note that

ρ(z)
(
̂|∂̄f1|qmr(z)

)1/q = ρ(z)

⎡⎢⎣ 1
|Dmr(z)|

∫
Dmr(z)

|∂̄f1(w)|qdA(w)

⎤⎥⎦
1/q

≤ C

⎡⎢⎣ 1
|Dmr(z)|

∫
Dmr(z)

ρ(w)q|∂̄f1(w)|qdA(w)

⎤⎥⎦
1/q

≤ C

⎡⎢⎣ 1
|Dmr(z)|

∫
Dmr(z)

Gq,s(f)(w)qdA(w)

⎤⎥⎦
1/q

≤ C sup
w∈Dmr(z)

Gq,s(f)(w) ≤ CGq,R(f)(z), (3.14)

for some R > s, where again for the last inequality we use Corollary 3.4 in [11]. Similarly, since 
∑∞

j=1 ψj = 1,

|f2(w)|q = |f(w) −
∞∑
j=1

hj(w)ψj(w)|q ≤
∞∑
j=1

|f(w) − hj(w)|q|ψj(w)|q. (3.15)

Hence, using |ψj | ≤ 1,

(̂|f2|qmr(z)
)1/q ≤

∞∑
j=1

⎡⎢⎣ 1
|Dmr(z)|

∫
Dmr(z)

|f − hj |q|ψj |qdA

⎤⎥⎦
1/q

≤ C
∑
j∈Jz

Gq,r(f)(aj) ≤ CGq,R(f)(z), (3.16)

similar to the previous part for ρ|∂̄f1|. Putting everything together, we can find a big enough R > r such 
that (3.12) holds. �
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Proof of Theorem 1.1. First, we show that if (1.10) holds for some r, then it holds for any r. Let R > 0. 
For 0 < r < R take t = r

2C2R
and take z1, · · ·, zN in the unit disk D(0, 1) so that D(0, 1) ⊂ ∪N

j=1D(zj , t). 
Set aj(z) = z + Rρ(z)zj . Then

DR(z) ⊂ ∪N
j=1D(z + Rρ(z)zj , tRρ(z)) ⊂ ∪N

j=1D(aj(z),
r

2ρ(aj(z)))

= ∪N
j=1D

r/2(aj(z)). (3.17)

Therefore,

∫
C

(
|̂g|qR(z)

)s
dA(z) ≤ C

∫
C

N∑
j=1

(
|̂g|qr/2(aj(z))

)s
dA(z)

≤ C

∫
C

dA(z)
N∑
j=1

1
|Dcr(aj(z))|

∫
Dcr(aj(z))

(
|̂g|qr(u)

)s
dA(u)

= C

∫
C

(
|̂g|qr(u)

)s
dA(u)

N∑
j=1

∫
C

χDcr(aj(z))(u) 1
|Dcr(aj(z))|

dA(z)

≤ C

∫
C

(
|̂g|qr(u)

)s
dA(u), (3.18)

where for the second inequality take c > 0 such that Dcr(aj(z)) ⊂ ∩u∈Dcr(aj(z))D
r(u). Taking s = p/q

implies that (1.10) holds for some r > 0, if and only if it holds for any r.
Now assume that f ∈ IDAp,q,α

r . That is, f ∈ Lq
loc with ‖ραGq,r(f)‖Lp < ∞. Decompose f = f1 + f2 as 

in Lemma 3.2. Then f1 ∈ C2(C), and (3.12) holds. Multiplying both sides with ρα and taking the Lp-norm, 
we obtain (1.10). �
4. Schatten class Hankel operators on doubling Fock spaces

Recall that for a bounded linear operator T : H1 → H2 between two Hilbert spaces, the singular values 
λn are defined by

λn = λn(T ) = inf{‖T −K‖ : K : H1 → H2, rankK ≤ n}. (4.1)

The operator T is compact if and only if λn → 0. Given 0 < p < ∞, we say that T is in the Schatten class 
Sp and write T ∈ Sp(H1, H2), if its singular value sequence {λn} belongs to lp. Then ‖T‖pSp

=
∑∞

n=0 |λn|p
defines a norm when 1 ≤ p < ∞ and a quasinorm when 0 < p < 1. Moreover, for the quasi-Banach case, we 
have the triangle inequality.

‖T + S‖pSp
≤ ‖T‖pSp

+ ‖S‖pSp
, when T, S ∈ Sp, 0 < p < 1, (4.2)

which is called the Rotfel’d inequality. For a positive compact operators T on H and p > 0, T ∈ Sp if and 
only if T p ∈ S1. Moreover, ‖T‖pSp

= ‖T p‖S1 . See [22] for further details on the properties of Schatten class 
operators, as well as the proof of the next two theorems.

Theorem 4.1 (See [22], Theorem 1.26). If T is a compact operator on H and p > 0, then T ∈ Sp if and only 
if |T |p = (T ∗T )p/2 ∈ S1, if and only if T ∗T ∈ Sp/2. Moreover,



G. Asghari et al. / J. Math. Anal. Appl. 540 (2024) 128596 13
‖T‖pSp
= ‖|T |‖pSp

= ‖|T |p‖S1 = ‖T ∗T‖p/2Sp/2
. (4.3)

Consequently, T ∈ Sp if and only if |T | ∈ Sp.

Theorem 4.2 (See [22], Theorem 1.28). Suppose T is a compact operator on H and p ≥ 1. Then T is in Sp

if and only if ∑
|〈Ten, σn〉|p < ∞, (4.4)

for all orthonormal sets {en} and {σn}. If T is positive, we also have

‖T‖Sp
= sup

{[∑
|〈Ten, σn〉|p

]1/p : {en} and {σn} are orthonormal
}
. (4.5)

Given a locally finite positive Borel measure μ on C, we define the Toeplitz operator Tμ with symbol μ
as

Tμf(z) =
∫
C

f(w)Kz(w)e−2φ(w)dμ(w). (4.6)

Moreover, for every r > 0, the r-averaging transform of μ is defined by

μ̂r(z) := μ(Dr(z))
|Dr(z)| � μ(Dr(z))

ρ(z)2 . (4.7)

Theorem 4.3 (See [18], Theorem 4.1). Let μ be a locally finite positive Borel measure on C, and let 0 < p <
∞. Then the following are equivalent.

(1) Tμ ∈ Sp(F 2
φ),

(2) There is r0 > 0 such that any r-lattice {zj}j≥1 with r ∈ (0, r0) satisfies {μ̂r(zj)}j≥1 ∈ lp,
(3) There is an r-lattice {zj}j≥1 such that {μ̂r(zj)}j≥1 ∈ lp,
(4) There is r > 0 such that μ̂r ∈ Lp(C, dσ),

Moreover, ‖Tμ‖pSp
� ‖μ̂r‖Lp(C,dσ), where dσ = dA/ρ2.

The rest of this section is devoted to the proof of the Schatten class membership of the Hankel op-
erators Theorem 1.2. For this purpose, let a ∈ C and r > 0. Let A2(Dr(a), e−2φdA) be the weighted 
Bergman space containing the holomorphic functions in L2(Dr(a), e−2φdA). Let Pa,r : L2(Dr(a), e−2φdA) →
A2(Dr(a), e−2φdA) be the orthogonal projection, and for f ∈ L2(Dr(a), e−2φdA), extend Pa,r(f) to C by 
setting

Pa,r(f)|C\Dr(a) = 0. (4.8)

One can check that for f, g ∈ L2
φ,

P 2
a,r(f) = Pa,r(f), and 〈f, Pa,r(g)〉 = 〈Pa,r(f), g〉. (4.9)

Moreover, for h ∈ F 2
φ ,

Pa,r(h) = χDr(a)h, and 〈h, χDr(a)f − Pa,r(f)〉 = 0. (4.10)
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Proof of Theorem 1.2. Here we borrow an idea from the proof of Proposition 6.8 in [5] and the proof of 
Theorem 1.1 in [9]. First we show that (2) =⇒ (1). Let f ∈ IDAp,2,−2/p

r . Then by Theorem 1.1, f = f1 +f2
with

ρ1−2/p|∂̄f1| + ρ1−2/p(̂|∂̄f1|2r)1/2 + ρ−2/p(̂|f2|2r)1/2 ∈ Lp (4.11)

Applying the definition,

ρ1−2/p(z)(̂|∂̄f1|2r(z))1/2 = ρ1−2/p(z)
{ 1
|Dr(z)|

∫
Dr(z)

|∂̄f1|2dA
}1/2

, (4.12)

and

ρ−2/p(z)(̂|f2|2r(z))1/2 = ρ−2/p(z)
{ 1
|Dr(z)|

∫
Dr(z)

|f2|2dA
}1/2

. (4.13)

Set Φ := ρ|∂̄f1| or Φ = |f2|, and μ := |Φ|2. First, if Φ = ρ|∂̄f1|,

μ̂r(z) := μ(Dr(z))
|Dr(z)| = 1

|Dr(z)|

∫
Dr(z)

|Φ|2dA = 1
|Dr(z)|

∫
Dr(z)

ρ2|∂̄f1|2dA. (4.14)

We claim that for f ∈ IDAp,2,−2/p
r , μ̂r ∈ Lp/2(C, dσ). Note that

‖μ̂r‖p/2Lp/2(C,dσ) =
∫
C

|μ̂r|p/2dA/ρ2

=
∫
C

1
|Dr(z)|p/2

[ ∫
Dr(z)

ρ2|∂̄f1|2dA
]p/2 dA(z)

ρ(z)2 . (4.15)

Since f ∈ IDAp,2,−2/p
r , we have ρ1−2/p(̂|∂̄f1|2r)1/2 ∈ Lp and thus∫

C

ρp−2{ 1
|Dr(z)|

∫
Dr(z)

|∂̄f1|2dA
}p/2

dA(z) < ∞. (4.16)

Recall that in (4.15), w ∈ Dr(z), and therefore there is a constant C such that ρ(w) ≤ Cρ(z). Hence,

‖μ̂r‖p/2Lp/2(C,dσ) ≤
∫
C

Cρ(z)p−2

|Dr(z)|p/2
{ ∫
Dr(z)

|∂̄f1|2dA
}p/2

dA(z) � LHS of (4.16) < ∞. (4.17)

Thus, we can conclude that μ̂r ∈ Lp/2(C, dσ), for μ = ρ2|∂̄f1|2. Now, using Theorem 4.3, Tμ ∈ Sp/2(F 2
φ).

Consider the multiplication MΦ : F 2
φ → L2

φ defined by MΦf := Φf . Then MΦ is bounded for Φ = ρ|∂̄f1|
or Φ = |f2|. For h, g ∈ L2

φ,

〈M∗
ΦMΦg, h〉2,φ = 〈MΦg,MΦh〉2,φ =

∫
C

gh̄e−2φdA = 〈T|Φ|2g, h〉2,φ, (4.18)

so, M∗
ΦMΦ = T|Φ|2 ∈ Sp/2, and thus MΦ ∈ Sp. Moreover,
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‖MΦ‖Sp
� ‖M∗

ΦMΦ‖Sp/2 � ‖Tμ‖Sp/2 � ‖μ̂r‖Lp/2(C,dσ). (4.19)

By equations (3.13) and (3.17) in [15], and using Fock-Carleson measures for F 2
φ , we can see that

‖Hf1g‖2,φ ≤ ‖ρg∂̄f1‖2,φ, and ‖Hf2g‖2,φ ≤ ‖gf2‖2,φ. (4.20)

Therefore,

‖Hf1‖Sp
� ‖MΦ‖Sp

� ‖μ̂r‖Lp/2(C,dσ) � ‖ρ1−2/p(̂|∂̄f1|2r)1/2‖Lp � ‖f‖IDAp,2,−2/p
r

. (4.21)

To complete the proof, it remains to note that when μ = |f2|2, we have

‖μ̂r‖p/2Lp/2(C,dσ) =
∫
C

1
|Dr(z)|p/2

[ ∫
Dr(z)

|f2|2dA
]p/2 dA(z)

ρ(z)2

=
∫
C

[ ρ(z)−2/p

|Dr(z)|1/2 {
∫

Dr(z)

|f2|2dA}1/2]pdA(z)

= ‖ρ−2/p(̂|f2|2r)1/2‖Lp , (4.22)

so that

‖Hf2‖Sp
� ‖f‖IDAp,2,−2/p

r
.

Consequently, ‖Hf‖Sp
� ‖Hf1‖Sp

+ ‖Hf2‖Sp
� ‖f‖IDAp,2,−2/p

r
, and so Hf ∈ Sp(F 2

φ , L
2
φ).

To show (1) =⇒ (2) for p ≥ 1, we proceed as follows. Recall that {aj}∞j=1 is an r-lattice if {Dr(aj)}∞j=1
covers C and Dr/5(aj) ∩Dr/5(ak) = ∅ for j �= k. Let Γ be an r-lattice, and let {ea : a ∈ Γ} be an orthonormal 
basis of F 2

φ . Define linear operators T and B by

T =
∑
a∈Γ

k2,a ⊗ ea, and B =
∑
a∈Γ

ga ⊗ ea, (4.23)

where

ga =

⎧⎨⎩
χDr(a)Hf (k2,a)

‖χDr(a)Hf (k2,a)‖ if ‖χDr(a)Hf (k2,a)‖ �= 0,

0 if ‖χDr(a)Hf (k2,a)‖ = 0.
(4.24)

Since ‖ga‖ ≤ 1 and 〈ga, gb〉 = 0 when a �= b, ‖B‖L2
φ
→ L2

φ ≤ 1. Moreover, by Lemma 2.4, we can see that 
‖T‖ ≤ C for some constant C. Let Hf ∈ Sp. So in particular, Hf is compact. We know from Lemma 2.3
that kp,z → 0 uniformly on compact subsets of C as z → ∞, where kp,z = Kz/‖Kz‖p,φ is the normalized 
Bergman kernel for F p

φ . By compactness of Hf we obtain that

lim
z→∞

‖χDr(z)Hf (k2,z)‖L2
φ

= 0. (4.25)

Note that

〈B∗MχDr(a)HfTea, ea〉 = 〈χDr(a)Hf

∑
b∈Γ

k2,b ⊗ eb(ea),
∑
d∈Γ

gd ⊗ ed(ea)〉

= 〈χDr(a)Hf (k2,a), ga〉 = ‖χDr(z)Hf (k2,z)‖L2
φ
, (4.26)
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and

〈B∗MχDr(a)HfTea, eb〉 = 0, a �= b. (4.27)

Thus, B∗MχDr(a)HfT is a compact positive operator on L2
φ. By Theorem 4.2, and since we are dealing with 

the case of p ≥ 1,

‖B∗MχDr(a)HfT‖pSp
= sup

{∑
|〈B∗MχDr(a)HfTea, ea〉 : {ea}a∈Γ : orthonormal

}
. (4.28)

So, ∑
a∈Γ

|〈B∗MχDr(a)HfTea, ea〉| ≤ ‖B∗MχDr(a)HfT‖pSp
≤ C‖Hf‖pSp

, (4.29)

as ‖B‖ ≤ 1, ‖MχDr(a)‖ ≤ 1, and ‖T‖ ≤ C. Recall that

G2,r(f)(a) = inf

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎝ 1
|Dr(a)|

∫
Dr(a)

|f − h|2dA

⎞⎟⎠
1/2

: h ∈ H(Dr(a))

⎫⎪⎪⎬⎪⎪⎭ , (4.30)

and for 1 ≤ p < ∞, ‖Kz‖p,φ � eφ(z)ρ(z)2/p−2. Moreover, recalling Lemma 2.3 there exists r0 > 0 such that 
for w ∈ Dr0(z),

|K(w, z)| � eφ(w)+φ(z)

ρ(z)2 . (4.31)

Thus for w ∈ Dr0(z),

|kp,z(w)|e−φ(w) = |K(w, z)|
‖Kz‖p,φ

e−φ(w) � eφ(w)+φ(z)e−φ(w)

ρ(z)2eφ(z) ρ(z)−2/p+2 = ρ(z)−2/p > 0, (4.32)

and we can conclude that P (fk2,z)
k2,z

∈ H(Dr(z)). Hence,

G2,r(f)(a) ≤

⎡⎢⎣ 1
|Dr(a)|

∫
Dr(a)

|f − P (fk2,a)
k2,a

|2dA

⎤⎥⎦
1/2

. (4.33)

Moreover,

‖χDr(a)Hf (k2,a)‖L2
φ

=

⎡⎢⎣ ∫
Dr(a)

|fk2,a − P (fk2,a)|2e−2φdA

⎤⎥⎦
1/2

=

⎡⎢⎣ ∫
Dr(a)

|f − P (fk2,a)
k2,a

|2|k2,a|2e−2φdA

⎤⎥⎦
1/2

(4.32)
�

⎡⎢⎣ ∫
r

|f − P (fk2,a)
k2,a

|2ρ(a)−2dA

⎤⎥⎦
1/2
D (a)
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�

⎡⎢⎣ 1
|Dr(a)|

∫
Dr(a)

|f − P (fk2,a)
k2,a

|2dA

⎤⎥⎦
1/2

, (4.34)

where in the last line we have used the equivalence |Dr(z)| � ρ(z)2. Hence,

G2,r(f)(a) � ‖χDr(a)Hf (k2,a)‖L2
φ
, (4.35)

and therefore, ∑
a∈Γ

G2,r(f)(a)p �
∑
a∈Γ

‖χDr(a)Hf (k2,a)‖pL2
φ

=
∑
a∈Γ

|〈B∗MχDr(a)HfTea, ea〉|p ≤ C‖Hf‖pSp
. (4.36)

Now note that

‖f‖p
IDAp,2,−2/p

r

=
∫
C

ρ−2G2,r(f)pdA

≤
∑
a∈Γ

∫
Dr(a)

ρ(z)−2G2,r(f)(z)pdA(z)

≤
∑
a∈Γ

sup
z∈Dr(a)

ρ(z)−2G2,r(f)(z)p|Dr(a)|

= C
∑
a∈Γ

ρ(a)−2G2,r(f)(a)pρ(a)2

= C
∑
a∈Γ

G2,r(f)(a)p

≤ C‖Hf‖pSp
. (4.37)

Now since if Theorem 1.1 holds for some r > 0, it holds for any r, we are done with the proof for p ≥ 1.
Now we finish the proof of Theorem 1.2 by showing that (1) =⇒ (2) for 0 < p < 1. Since Hf ∈

Sp(F 2
φ , L

2
φ), it is in particular bounded. For a ∈ Γ set

ga =

⎧⎨⎩
χDr(a)fk2,a−Pa,r(fk2,a)

‖χDr(a)fk2,a−Pa,r(fk2,a)‖ if ‖χDr(a)fk2,a − Pa,r(fk2,a)‖ �= 0,

0 if ‖χDr(a)fk2,a − Pa,r(fk2,a)‖ = 0.
(4.38)

Then similar as before, ‖ga‖ ≤ 1, and 〈ga, gb〉 = 0 for a �= b. Let J be any finite subcollection of Γ, and 
{ea}a∈J be an orthonormal set of L2

φ. Define

A =
∑
a∈J

ea ⊗ ga : L2
φ → L2

φ. (4.39)

Then A is of finite rank and ‖A‖ ≤ 1. Similarly define

T =
∑
a∈J

k2,a ⊗ ea : L2
φ → F 2

φ . (4.40)

Then as before, since Γ is an r-lattice and thus separated, there is a constant C such that ‖T‖ ≤ C. Then,
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AHfT =
∑

a,τ∈J

〈Hfk2,τ , ga〉ea ⊗ eτ = Y + Z, (4.41)

where

Y =
∑
a∈J

〈Hfk2,a, ga〉ea ⊗ ea, Z =
∑

a,τ∈J,a �=τ

〈Hfk2,τ , ga〉ea ⊗ eτ . (4.42)

Note that

〈Hfk2,a, ga〉2,φ = 〈fk2,a − P (fk2,a), ga〉2,φ = 〈χDr(a)fk2,a − Pa,r(fk2,a), ga〉2,φ
= ‖χDr(a)fk2,a − Pa,r(fk2,a)‖2,φ

=

⎡⎣∫
C

|χDr(a)fk2,a − Pa,r(fk2,a)|2e−2φdA

⎤⎦1/2

=

⎡⎢⎣ ∫
Dr(a)

|fk2,a − Pa,r(fk2,a)|2e−2φdA

⎤⎥⎦
1/2

=

⎡⎢⎣ ∫
Dr(a)

|f − Pa,r(fk2,a)
k2,a

|2|k2,a|2e−2φdA

⎤⎥⎦
1/2

�

⎡⎢⎣ 1
|Dr(a)|

∫
Dr(a)

|f − Pa,r(fk2,a)
k2,a

|2dA

⎤⎥⎦
1/2

≥ G2,r(f)(a), (4.43)

where in the line before the last line we have used (4.32) and |Dr(a)| � ρ(a)2. Thus,

〈Hfk2,a, ga〉2,φ ≥ CG2,r(f)(a). (4.44)

Therefore, there exists some N , independent of f and J such that

‖Y ‖pSp
=
∑
a∈J

〈Hfk2,a, ga〉p2,φ ≥ N
∑
a∈J

G2,r(f)(a)p. (4.45)

On the other hand for 0 < p < 1,

‖Z‖pSp
≤

∑
a,τ∈J,a �=τ

〈Hfk2,τ , ga〉p2,φ. (4.46)

Let Qa,r : L2(Dr(a), dA) → A2(Dr(a), dA) be the Bergman projection. Then fk2,τ − Pa,r(fk2,τ ) and 
Pa,r(fk2,τ ) − k2,τQa,rf are orthogonal, and by Parseval’s identity,

‖fk2,τ − Pa,r(fk2,τ )‖L2(Dr(a),e−2φdA) ≤ ‖fk2,τ − k2,τQa,r(f)‖L2(Dr(a),e−2φdA). (4.47)

Note that by Lemma 2.3, there exist C, ε > 0 such that
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|K(w, z)| ≤ C
eφ(w)+φ(z)

ρ(w)ρ(z) e−
( |z−w|

ρ(z)
)ε
. (4.48)

Besides, by Lemma 6.8 in [18], we can see that given R > 0 and any finite sequence {aj}nj=1 of different 
points in C, it can be partitioned into subsequences such that any different points aj and ak in the same 
subsequence satisfy

|aj − ak| ≥ Rmin(ρ(aj), ρ(ak)). (4.49)

So taking J to be a finite collection of Γ, we can choose an appropriately large R > 0 such that

|a− b| ≥ Rmin(ρ(a), ρ(b)), when a, b ∈ J, a �= b. (4.50)

Putting everything together,

|〈Hfk2,τ , ga〉| = |〈fk2,τ − P (fk2,τ ), ga〉|

= |〈fk2,τ − P (fk2,τ ),
χDr(a)fk2,a − Pa,r(fk2,a)

‖χDr(a)fk2,a − Pa,r(fk2,a)‖
〉|

=
|〈χDr(a)fk2,τ − Pa,r(fk2,τ ), χDr(a)fk2,a − Pa,r(fk2,a)〉|

‖χDr(a)fk2,a − Pa,r(fk2,a)‖
≤ ‖fk2,τ − Pa,r(fk2,τ )‖L2(Dr(a),e−2φdA)

(4.47)
≤ ‖fk2,τ − k2,τQa,r(f)‖L2(Dr(a),e−2φdA)

≤ sup
ξ∈Dr(a)

|k2,τ (ξ)e−φ|‖f −Qa,r(f)‖L2(Dr(a),dA)

(4.48)
≤ sup

ξ∈Dr(a)

C

ρ(ξ)e
−
( |τ−ξ|

ρ(τ)
)ε
‖f −Qa,r(f)‖L2(Dr(a),dA)

� C

ρ(a)e
−
( |τ−a|

ρ(τ)
)ε
‖f −Qa,r(f)‖L2(Dr(a),dA)

� C

|Dr(a)|1/2

⎡⎢⎣ ∫
Dr(a)

|f −Qa,r(f)|2dA

⎤⎥⎦
1/2

e−
( |τ−a|

ρ(τ)
)ε

= CG2,r(f)(a)e−
( |τ−a|

ρ(τ)
)ε
, (4.51)

where in the last line we used the basic properties of Hilbert spaces. Therefore,

‖Z‖pSp

(4.46)
≤

∑
a,τ∈J,a �=τ

G2,r(f)(a)pe−
( |τ−a|

ρ(τ)
)pε

(4.49)
≤
∑
a∈J

G2,r(f)(a)p
∑

a,τ∈J,a �=τ

e−
(R min(ρ(a),ρ(τ))

ρ(τ)
)pε

�
∑
a∈J

G2,r(f)(a)pe−Rpε

. (4.52)

Now we can pick some R large enough such that
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‖Z‖pSp
≤ N

4
∑
a∈J

G2,r(f)(a)p. (4.53)

Using

‖Y ‖pSp
≤ 2‖AHfT‖pSp

+ 2‖Z‖pSp
, (4.54)

we have

N
∑
a∈J

G2,r(f)(a)p ≤ 2‖AHfT‖pSp
+ N

2
∑
a∈J

G2,r(f)(a)p, (4.55)

and since J is finite,

N
∑
a∈J

G2,r(f)(a)p ≤ 2‖AHfT‖pSp

≤ 4‖A‖p
L2

φ→L2
φ
‖Hf‖pSp

‖T‖p
L2

φ→L2
φ

≤ C‖Hf‖pSp
. (4.56)

Since C is independent of f and J , ∑
a∈Γ

G2,r(f)(a)p ≤ C‖Hf‖pSp
. (4.57)

The remaining of the proof is similar to (4.37) and we can conclude that for 0 < p < 1,

‖f‖IDAp,2,−2/p
r

≤ C‖Hf‖pSp
. � (4.58)

5. Simultaneous membership of Hf and Hf̄ in Sp

In this section, we first define the space of functions of integral mean oscillation IMO and prove some of its 
basic properties. In particular, we prove that Hf and Hf̄ are simultaneously in Sp(F 2

φ , L
2
φ) with 0 < p < ∞

if and only if the symbol f satisfies a suitable IMO condition (see Theorem 1.3).

Lemma 5.1. Let 0 < p < ∞ and r > 0. Then for f ∈ L2
loc, f ∈ IMOp,2,α

r if and only if there exists a 
continuous function c(z) on C such that

ρα

⎛⎜⎝ 1
|Dr(z)|

∫
Dr(z)

|f(w) − c(z)|2dA(w)

⎞⎟⎠
1/2

∈ Lp (5.1)

Proof. This proof is similar to the proof of Proposition 2.4 in [13]. We can similarly extend the proposition 
to the case 0 < p < 1, and the doubling weights by introducing ρ as the following. First note that if 
f ∈ IMOp,2,α

r , then (5.1) holds with c(z) = f̂r(z) which is continuous for z ∈ C. Conversely, assume that 
(5.1) holds. By Minkowski inequality,

ρα(z)MO2,r(f)(z) ≤ ρα
( 1
|Dr(z)|

∫
Dr(z) |f − c(z)|2dA

)1/2 + ρα|f̂r(z) − c(z)|. (5.2)

By Hölder’s inequality,
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ρα|f̂r(z) − c(z)| ≤ ρα
( 1
|Dr(z)|

∫
Dr(z) |f − c(z)|2dA

)1/2 ∈ Lp by (5.1). (5.3)

Hence, using (5.2) and (5.3) we can see that f ∈ IMOp,2,α
r . �

Proposition 5.2. Let 0 < p ≤ ∞, r > 0, and f ∈ L2
loc. If for each z ∈ C, there exist h1, h2 ∈ H(Dr(z)) such 

that

ρα(z)
( 1
|Dr(z)|

∫
Dr(z)

|f − h1|2dA
)1/2 ∈ Lp,

and

ρα(z)
( 1
|Dr(z)|

∫
Dr(z)

|f̄ − h2|2dA
)1/2 ∈ Lp, (5.4)

then f ∈ IMOp,2,α
r .

Proof. The proof is a more detailed version of the proof of Proposition 2.5 in [13], extended to the case of 
doubling Fock spaces. For f ∈ L2

loc, recall that

(
|̂f |2r(z)

)1/2 =
( 1
|Dr(z)|

∫
Dr(z)

|f |2dA
)1/2

. (5.5)

By the triangle inequality and using (5.4),

ρα
(
| f+f̄

2 − h1+h2
2 |2
∧

r
(z)
)1/2 ≤ ρα

(
| f−h1

2 |2
∧

r
(z)
)1/2 + ρα

(
| f̄−h2

2 |2
∧

r
(z)
)1/2 ∈ Lp. (5.6)

Since f + f̄ and ρα are real-valued, we can conclude that

ρα
(
| Im h1+h2

2 |2
∧

r
(z)
)1/2 ∈ Lp. (5.7)

As in the proof of the Proposition 2.5 in [13], we know that if v : Dr(z) → R is harmonic, there exists a 
harmonic function u such that u + iv ∈ H(Dr(z)) and

‖u− u(z)‖Lq(Dr(z),dA) ≤ C‖v‖Lq(Dr(z),dA), (5.8)

for all 0 < q < ∞.
Taking q = 2 in (5.8), and since h1 + h2 ∈ H(Dr(z)),

(
|Re h1+h2

2 − Re h1+h2
2 (z)|2
∧

r
(z)
)1/2 ≤ C

(
| Im h1+h2

2 |2
∧

r
(z)
)1/2

. (5.9)

Thus,

ρα
(
| f+f̄

2 − Re h1+h2
2 (z)|2
∧

r
(z)
)1/2 ≤ ρα

(
| f+f̄

2 − Re h1+h2
2 |2
∧

r
(z)
)1/2

+ ρα
(
|Re h1+h2

2 − Re h1+h2
2 (z)|2
∧

r
(z)
)1/2

≤ ρα
(
| f+f̄

2 − h1+h2
2 |2
∧

r
(z)
)1/2

+ Cρα
(
| Im h1+h2

2 |2
∧

r
(z)
)1/2 ∈ Lp, (5.10)
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where the first term in the last line is in Lp by (5.6), and the second term is in Lp by (5.7). Hence,

ρα
(
| f+f̄

2 − Re h1+h2
2 (z)|2
∧

r
(z)
)1/2 ∈ Lp. (5.11)

Similar to (5.6), (5.7), and (5.8), and applying (5.4), we have

ρα
(
| f−f̄

2 − h1−h2
2 |2
∧

r
(z)
)1/2 ≤ ρα

(
| f−h1

2 |2
∧

r
(z)
)1/2 + ρα

(
| f̄−h2

2 |2
∧

r
(z)
)1/2 ∈ Lp (5.12)

Since f−f̄
2 is completely imaginary, we can conclude that

ρα
(
|Re h1−h2

2 |2
∧

r
(z)
)1/2 ∈ Lp. (5.13)

We can exchange u and v in (5.8), and therefore,

(
| Im h1−h2

2 − Im h1−h2
2 (z)|2
∧

r
(z)
)1/2 ≤ C

(
|Re h1−h2

2 |2
∧

r
(z)
)1/2

. (5.14)

Thus by (5.12) and (5.13),

ρα
(
| f−f̄

2 − Im h1−h2
2 (z)|2
∧

r
(z)
)1/2 ≤ ρα

(
| f−f̄

2 − Im h1−h2
2 |2
∧

r
(z)
)1/2

+ ρα
(
| Im h1−h2

2 − Im h1−h2
2 (z)|2
∧

r
(z)
)1/2

≤ ρα
(
| f−f̄

2 − h1−h2
2 |2
∧

r
(z)
)1/2

+ Cρα
(
|Re h1−h2

2 |2
∧

r
(z)
)1/2 ∈ Lp. (5.15)

Hence, analogous to (5.11),

ρα
(
| f−f̄

2 − Im h1−h2
2 (z)|2
∧

r
(z)
)1/2 ∈ Lp. (5.16)

Choose c(z) = Re h1+h2
2 (z) + i Im h1−h2

2 (z). Then by (5.11) and (5.16),

ρα
(
|f − c(z)|2
∧

r(z)
)1/2 ∈ Lp, (5.17)

which is equivalent to

ρα
( 1
|Dr(z)|

∫
Dr(z)

|f − c(z)|2dA
)1/2 ∈ Lp. (5.18)

Thus by Lemma 5.1 we can conclude that f ∈ IMOp,2,α
r . �

Lemma 5.3. Let 0 < p ≤ ∞. Then for f ∈ L2
loc, f ∈ IDAp,2,α

r and f̄ ∈ IDAp,2,α
r if and only if f ∈ IMOp,2,α

r .

Proof. First, we show that

‖f‖IMOp,2,α
r

= ‖ραMO2,r(f)‖Lp � ‖f‖IDAp,2,α
r

+ ‖f̄‖IDAp,2,α
r

. (5.19)

Note that by Lemma 3.1, there exists h1, h2 ∈ H(Dr(z)) such that
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G2,r(f)(z) =
(
|f − h1|2
∧

r(z)
)1/2

, and G2,r(f̄)(z) =
(
|f̄ − h2|2
∧

r(z)
)1/2

. (5.20)

Taking c(z) as in the proof of the previous lemma, and using (5.10), (5.15), (5.6), and (5.12),

ρα
(
|f − c(z)|2
∧

r(z)
)1/2 = ρα

(
| f+f̄

2 − Re h1+h2
2 (z) + f−f̄

2 − i Im h1−h2
2 (z)|2
∧

r
(z)
) 1

2

≤ Cρα
(
G2,r(f)(z) + G2,r(f̄)(z)

)
+ Cρα

{(
| Im h1+h2

2 |2
∧

r
(z)
)1/2 +

(
|Re h1−h2

2 |2
∧

r
(z)
)1/2}

. (5.21)

Note that since L2 is a Hilbert space, we can set h1 = Qz,r(f) and h2 = Qz,r(f̄). Then the linearity of the 
Bergman projection Qz,r : L2(Dr(z), dA) → A2(Dr(z), dA) implies that the last two terms are zero. Thus,

ρα
(
|f − c(z)|2
∧

r(z)
)1/2 ≤ Cρα

(
G2,r(f)(z) + G2,r(f̄)(z)

)
. (5.22)

Hence,

ραMO2,r(f)(z) ≤ ρα
( 1
|Dr(z)|

∫
Dr(z)

|f − c(z)|2dA
)1/2 + ρα|f̂r(z) − c(z)|. (5.23)

By Hölder’s inequality,

|f̂r(z) − c(z)| ≤
( 1
|Dr(z)|

∫
Dr(z) |f − c(z)|2dA

)1/2
. (5.24)

Applying this to (5.23), and using (5.22), we get

ραMO2,r(f)(z) ≤ Cρα
{
G2,r(f)(z) + G2,r(f̄)(z)

}
. (5.25)

Taking the Lp-norms of both sides we can conclude that for 0 < p ≤ ∞,

‖f‖IMOp,2,α
r

� ‖f‖IDAp,2,α
r

+ ‖f̄‖IDAp,2,α
r

. (5.26)

For the inverse inequality, note that using the definition, it is immediate to see that f ∈ IMOp,2,α
r

if and only if f̄ ∈ IMOp,2,α
r . Moreover, f̂r(z) is a constant, and therefore holomorphic. So by definition, 

‖f‖IDAp,2,α
r

≤ ‖f‖IMOp,2,α
r

. Similarly, ‖f̄‖IDAp,2,α
r

≤ ‖f̄‖IMOp,2,α
r

= ‖f‖IMOp,2,α
r

, and we are done. �
We can now give the proof of Theorem 1.3, which shows that both Hf and Hf̄ are in Sp if and only if 

f ∈ IMOp,2,−2/p
r , where 1 < p < ∞.

Proof of Theorem 1.3. By Theorem 1.2, Hf ∈ Sp if and only if f ∈ IDAp,2,−2/p
r for some (equivalent any) 

r > 0. Similarly, Hf̄ ∈ Sp if and only if f̄ ∈ IDAp,2,−2/p
r . An application of Lemma 5.3 shows that this is 

equivalent to f ∈ IMOp,2,−2/p
r , for some (equivalent any) r > 0. Further, the norm estimates in (1.15) follow 

from (1.12) and (5.19). �
As mentioned in the introduction, we obtain the following result as a consequence of Theorem 1.3.

Theorem 5.4. Let f be a non-constant entire function and F 2
φ be a doubling Fock space. Then Hf̄ is not in 

S2(F 2
φ , L

2
φ).
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Proof. Since f is holomorphic, Hf = 0, and thus belongs to the Hilbert-Schmidt class. Applying Theo-
rem 1.3, it is enough to show that f /∈ IMO2,2,−1

1 . First note that f̄ is harmonic on D1(z) and by the 
mean-value property of harmonic functions,

f̂1(z) = 1
|D1(z)|

∫
D1(z)

fdA = f(z).

By the Cauchy estimate,

MO2,1(f)(z) =
(

1
|D1(z)|

∫
D1(z) |f(w) − f(z)|2dA(w)

)1/2

≥ C|∂f(z)|ρ(z).

Hence,

‖f‖IMO2,2,−1
1

=
∫
C

ρ(z)−2MO2,1(f)(z)2dA(z)

≥ C

∫
C

ρ(z)−2|∂f(z)|2ρ(z)2dA(z).

So, since f is entire and non-constant, it follows that f /∈ IMO2,2,−1
1 , and thus Hf̄ is not Hilbert-Schmidt. �

6. Berger-Coburn phenomenon for doubling Fock spaces

This section contains the proofs of Theorems 1.4 and 1.6. We start with the proof of the Berger-Coburn 
phenomenon for Hilbert-Schmidt Hankel operators, that is, we show that for f ∈ L∞, Hf is Hilbert-Schmidt 
if and only if Hf̄ is Hilbert-Schmidt.

Proof of Theorem 1.4. Let Hf ∈ S2. By the assumption, f ∈ L∞, and in particular f ∈ L2
loc. Then by 

Theorem 1.2, f ∈ IDA2,2,−1
r for some (equivalent any) r > 0, and

‖f‖IDA2,2,−1
r

� ‖Hf‖S2 < ∞. (6.1)

Decompose f = f1 + f2 as in (1.10). Thus f1 ∈ C2(C) and

|∂̄f1| + (̂|∂̄f1|2r)1/2 + ρ−1(̂|f2|2r)1/2 ∈ L2. (6.2)

Then the definition

ρ−1(z)(̂|f2|2r(z))1/2 = ρ−1(z)
( 1
|Dr(z)|

∫
Dr(z)

|f2|2dA
)1/2 (6.3)

implies that

ρ−1(̂|f2|2r)1/2 = ρ−1(̂|f̄2|2r)1/2 ∈ L2. (6.4)

By (1.11) and (1.12), Hf̄ ∈ S2. Indeed,

2
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‖Hf̄2
‖S2

(1.12)= ‖f̄2‖IDA2,2,−1
r

(1.11)
� ‖ρ−1(̂|f̄2|2r)1/2‖L2

(6.4)= ‖ρ−1(̂|f2|2r)1/2‖L2

(1.11)
� ‖f‖IDA2,2,−1

r
. (6.5)

To show that ‖Hf̄1
‖S2 � ‖f‖IDA2,2,−1

r
, we need to follow a more complicated argument, inspired by the 

proof of Theorem 1.2 in [10]. Let {aj}∞j=1 be a fixed m1r-lattice for some m1 ∈ (0, 1) and r > 0. Choose a 
partition of unity {ψj}∞j=1 subordinate to {Dm1r(aj)} as in (3.9). By Lemma 3.1 there exists hj ∈ H(Dr(aj))
such that (

|f − hj |2
∧

r(aj)
)1/2 = G2,r(f)(aj), and sup

z∈Dm1r(aj)
|hj(z)| � ‖f‖L∞ . (6.6)

Now we get back to the decomposition f = f1 + f2 as in (1.10) with f1 =
∑∞

j=1 hjψj . Without loss of 
generality we can assume ψj = ψ̄j for all j ≥ 1. Since we assumed that f is bounded, f1 ∈ L∞ and moreover

∂̄f̄1 =
∞∑
j=1

h̄j ∂̄ψj +
∞∑
j=1

ψj ∂̄h̄j = F + H, (6.7)

for F =
∑∞

j=1 h̄j ∂̄ψj and H =
∑∞

j=1 ψj ∂̄h̄j . Similar to (3.13) one has

|F (z)| = ρ−1(z)ρ(z)|
∞∑
j=1

h̄j ∂̄ψj | = ρ−1(z)ρ(z)|
∞∑
j=1

h̄j ∂̄ψj −
∞∑
j=1

h̄1∂̄ψj |

≤ ρ−1(z)ρ(z)
∞∑
j=1

|h̄j(z) − h̄1(z)||∂̄ψj(z)| ≤ Cρ−1(z)G2,r(f)(z). (6.8)

Besides,

‖H‖L2 ≤ ‖∂̄f̄1‖L2 + ‖F‖L2 . (6.9)

By (6.8),

‖F‖L2 ≤ ‖f‖IDA2,2,−1
r

. (6.10)

Lemma 7.1 in [9] implies that

‖∂̄f̄1‖L2 = ‖∂f1‖L2 ≤ C‖∂̄f1‖L2 ≤ C‖f‖IDA2,2,−1
r

, (6.11)

where the last inequality is obtained by multiplying both sides of (3.12) with ρ−1. Hence, we can conclude 
that

‖H‖L2 � ‖f‖IDA2,2,−1
r

. (6.12)

Note that for m1, m2 ∈ (0, 1),

‖Hf̄1
‖2
S2

� ‖f̄1‖2
IDA2,2,−1

r

(1.10)
≤ C

∫
C

[
(|∂̄f̄1|2
∧

mm2r
)1/2
]2
dA

�
∫
C

[
(|F |2
∧

m1m2r
)1/2
]2
dA +

∫
C

[
(|H|2
∧

m1m2r
)1/2
]2
dA, (6.13)
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where for the last inequality we used the equivalence ρ(w) � ρ(z) for w ∈ Dm1m2r(z) and (6.7). Note that 
using (6.8) one has ∫

C

[
(|F |2
∧

m1m2r
)1/2
]2
dA � ‖f‖2

IDA2,2,−1
r

, (6.14)

and thus we are left to compute 
∫
C

[
(|H|2
∧

m1m2r
)1/2
]2
dA. Let z ∈ Dr(aj) ∩ Dr(ak). Since |∂̄(h̄k − h̄j)| =

|∂(hk − hj)|, applying the Cauchy estimate for the boundary of the disk Dm1m2r(z) of radius m1m2rρ(z)
and Hölder’s inequality, we obtain the following.

|∂̄(h̄k(z) − h̄j(z))| ≤
C

ρ(z)
{ ∫
Dm1m2r(z)

|h̄k(w) − h̄j(w)|2dA
}1/2

. (6.15)

Using |h̄k− h̄j |2 = |(f− h̄k) −(f− h̄j)|2 ≤ |f− h̄k|2 + |f− h̄j |2, and the fact that hk and hj are holomorphic, 
we get

|∂̄(h̄k(z) − h̄j(z))| ≤
C

ρ(z)
(
G2,m1m2r(f)(ak) + G2,m1m2r(f)(aj)

)
≤ C

ρ(z)G2,R(f)(z), (6.16)

for some R > m1m2r. Recalling H as in (6.7),

H +
∞∑
j=1

ψj ∂̄(h̄k − h̄j) = H +
∞∑
j=1

ψj ∂̄h̄k −H. (6.17)

Since {ψj}∞j=1 is a partition of unity and therefore 
∑∞

j=1 ψj = 1,

∂̄h̄k =
∞∑
j=1

ψj ∂̄(h̄k − h̄j) + H. (6.18)

Hence,

|∂̄h̄k(z)|2 �
∣∣ ∞∑
j=1

ψj(z)∂̄(h̄k(z) − h̄j(z))
∣∣2 +

∣∣H(z)
∣∣2

�
∑

j∈Dm1r(aj)

ψj(z)|∂̄(h̄k(z) − h̄j(z))|2 + |H(z)|2

�
(
ρ−1(z)G2,R(f)(z)

)2 + |H(z)|2, (6.19)

where the last inequality follows from (6.16). For z ∈ Dm1r(ak), notice that Dm1m2r(z) ⊂ Dm1r(ak) for 
some m2 ∈ (0, 1). Then by subharmonicity,

|∂̄h̄k(z)|2 ≤ 1
|Dm1m2r(z)|

∫
Dm1m2r(z)

|∂̄h̄k(w)|2dA(w)

(6.19)
� 1

|Dm1m2r(z)|

∫
m m r

[∣∣ρ−1(w)G2,R(f)(w)
∣∣2 +

∣∣H(w)
∣∣2]dA(w)
D 1 2 (z)
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� (ρ−1(z))2G2,R̃(f)(z)2 + |H|2
∧

m1m2r
(z), (6.20)

for some R̃ > R.
Now for z ∈ C, there exists w′ ∈ Dm1m2r(z) such that

[
(|H|2
∧

m1m2r
(z))1/2

]2 ≤ max{|H(w)|2 : w ∈ Dm1m2r(z)}

=
∣∣ ∞∑
k=1

ψk(w′)∂̄h̄k(w′)
∣∣2, (6.21)

where the first inequality comes from integration on a bounded domain. Note that G2,R̃(f)(w′)2 �
G2,s(f)(z)2 for some s > R̃, and

[
(|H|2
∧

m1m2r
(w′))1/2

]2 ≤
[
(|H|2
∧

m1r
(z))1/2

]2
, (6.22)

and we can conclude that

[
(|H|2
∧

m1m2r
(z))1/2

]2 (6.21)
≤
∣∣ ∞∑
k=1

ψk(w′)∂̄h̄k(w′)
∣∣2

(6.20)
�

∑
k,ψk(w′) �=0

ψk(w′)
{

(ρ−1(w′))2G2,R̃(f)(w′)2

+ |H|2
∧

m1m2r
(w′)

}
(6.22)
�
(
ρ−1(z))G2,s(f)(z)

)2 + |H|2
∧

m1r
(z). (6.23)

Hence as mentioned in (6.13), and applying Theorem 1.1,

‖Hf̄1
‖2
S2

� ‖f‖2
IDA2,2,−1

s
+
∫
C

[
(|H|2
∧

m1m2r
(z))1/2

]2
dA(z)

� ‖f‖2
IDA2,2,−1

s
+
∫
C

(
ρ−1(z))G2,s(f)(z)

)2
dA(z) +

∫
C

|H|2
∧

m1r
(z)dA(z)

� ‖f‖2
IDA2,2,−1

s
+
∫
C

|H|2dA

� ‖f‖2
IDA2,2,−1

s
, (6.24)

where in the last line we have used (6.12).
This together with (6.5) implies that

‖Hf̄‖S2 � ‖Hf‖S2 . (6.25)

We are done since the proof is symmetric for f and f̄ . �
We make the following remark related to the Berger-Coburn phenomenon for other values of p.
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Remark 6.1. For 1 < p < ∞ we say that ω is a Muckenhoupt weight and write ω ∈ Ap if there is a constant 
C > 0 such that for any disk B ⊂ C, we have

⎛⎝ 1
|B|

∫
B

ωdA

⎞⎠⎛⎝ 1
|B|

∫
B

ω−q/pdA

⎞⎠p/q

≤ C < ∞, (6.26)

where q is the Hölder conjugate of p and |B| is the Lebesgue measure of B. As shown in [4], if ω ∈ Ap and 
1 < p < ∞, then the Ahlfors-Beurling operator

I(f)(z) = p.v.− 1
π

∫
C

f(ξ)
(ξ − z)2 dA(z) (6.27)

is bounded on Lp(ω). Hence, similarly to the proof of Lemma 7.1 in [9], we can show that when f is bounded,

‖∂f‖Lp(ω) ≤ C‖∂̄f‖Lp(ω), (6.28)

where C is a constant depending only on p.
To generalize Theorem 1.4 to the other values of 1 < p < ∞, our approach would require only one 

additional ingredient that ω = ρp−2 is a Muckenhoupt weight (see (6.11)). However, we have not been able 
to prove this condition and also note that Lemma 2.1 does not seem to help because the constants cr in 
(2.2) are not bounded in general.

Next, we consider the case 0 < p ≤ 1. Recently Xia [21] defined the following simple function

f(z) :=
{

1
z if |z| ≥ 1,
0 if |z| < 1,

(6.29)

and used it to show that the Berger-Coburn phenomenon does not hold for trace class Hankel operators 
on the classical Fock space. Hu and Virtanen [12] noticed that when 0 < p ≤ 1 the same example shows 
that there is no Berger-Coburn for Schatten class Hankel operators on generalized Fock spaces. Here we 
use Xia’s example again to prove that the Berger-Coburn phenomenon fails for some Sp(F 2

φ , L
2
φ) while it 

remains open whether it fails for the remaining doubling Fock spaces.

Proof of Theorem 1.6. To prove the theorem, we use Theorems 1.2 and 1.3. The idea is to find a bounded 
function f with f ∈ IDAp,2,−2/p

r such that f /∈ IMOp,2,−2/p
r for some (equivalent any) r > 0. Note that by 

remark 1 in [16], there are constants C, η > 0, and 0 ≤ β < 1 such that for |z| > 1,

C−1|z|−η ≤ ρ(z) ≤ C|z|β . (6.30)

Let f be as in (6.29). By Theorem 1.1, the definition of IDAp,2,−2/p
r is independent of r. So for simplicity, we 

set r = 1. It is easy to see that for a large enough R > 0, and |z| ≥ R, f is holomorphic in D1(z) = D(z, ρ(z)), 
and hence trivially G2,1(fβ)(z) = 0. Indeed, one can see that for |z| ≥ R, D1(z) ∩D(0, 1) = ∅. Moreover, 
for all |z| < R, there is a constant C such that

G2,1(f)(z) < C, (6.31)

as f is bounded in the bounded domain D1(z). Thus,
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‖f‖p
IDAp,2,−2/p

1
= ‖ρ−2/pG2,1(f)‖pLp =

∫
C

ρ−2G2,1(f)pdA

≤ C

∫
|z|<R

ρ−2dA < ∞. (6.32)

Indeed, by Theorem 14 in [16], there is a smooth function ψ, where ΔψdA is doubling and Δψ � ρ−2
ψ � ρ−2. 

Hence,

∫
|z|<R

ρ−2dA �
∫

|z|<R

ΔψdA < ∞, (6.33)

as the doubling measures are locally finite. So by (6.32), f ∈ IDAp,2,−2/p
1 , and Theorem 1.2 implies that 

Hf ∈ Sp.
To show that Hf̄ /∈ Sp, note that if |z| ≥ R, f̄ is harmonic on D1(z) and by the mean-value property of 

harmonic functions,

̂̄f1(z) = 1
|D1(z)|

∫
D1(z)

f̄dA = f̄(z). (6.34)

Moreover, by definition, MO2,r(f)(z) = MO2,r(f̄)(z), and thus for |z| ≥ R,

MO2,1(f)(z) =

⎛⎜⎝ 1
|D1(z)|

∫
D1(z)

|f̄(w) − f̄(z)|2dA(w)

⎞⎟⎠
1/2

=

⎛⎜⎝ 1
|D1(z)|

∫
D1(z)

| 1
w̄

− 1
z̄
|2dA(w)

⎞⎟⎠
1/2

=

⎛⎜⎝ 1
|D1(z)|

∫
D1(z)

|w − z|2
|zw|2 dA(w)

⎞⎟⎠
1/2

. (6.35)

For w ∈ D1(z), we can write w = z + reiθ where 0 ≤ r < ρ(z) and 0 ≤ θ < 2π. Therefore,

∫
D1(z)

|w − z|2
|zw|2 dA(w) = 1

|z|2
∫ ρ(z)
0 r3 ∫ 2π

0
dθdr

|z+reiθ|2 (6.36)

Let z = |z|eiψ. Then

2π∫
0

dθ

|z + reiθ|2 =
∫ 2π
0

dθ∣∣|z|+reiθ
∣∣2 =

∫ 2π
0

dθ
|z|2+r2+2|z|r cos θ . (6.37)

Defining y = r ,
|z|
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1
|z|2

ρ(z)∫
0

2π∫
0

r3dθdr

|z|2 + r2 + 2|z|r cos θ = 1
|z|2

ρ(z)
|z|∫
0

2π∫
0

y3|z|4dθdy
|z|2 + y2|z|2 + 2|z|2y cos θ

=

ρ(z)
|z|∫
0

y3

2y

2π∫
0

dθdy
1+y2

2y + cos θ
.

Let x = 1+y2

2y . Then

2π∫
0

dθ
1+y2

2y + cos θ
=

2π∫
0

dθ

x + cos θ . (6.38)

Taking t = tan θ
2 , we have θ = 2 tan−1(t), dθ = 2dt

1+t2 , and cos θ = 1−t2

1+t2 . Since the cosine function is even, 
one has

2π∫
0

dθ

x + cos θ = 2
π∫

0

dθ

x + cos θ = 2
∞∫
0

2dt
x(1 + t2) + 1 − t2

= 2
∞∫
0

2dt
t2(x− 1) + (x + 1) = 4

x + 1

∞∫
0

dt

1 + (x−1
x+1 )t2

. (6.39)

Taking u =
√

x−1
x+1 t, we obtain

4
x + 1

∞∫
0

dt

1 + (x−1
x+1 )t2

= 2
x + 1

∞∫
0

2
√

x+1
x−1du

u2 + 1 = 2
x + 1

√
x + 1
x− 1

∞∫
0

2du
u2 + 1

= 2
x + 1

√
x + 1
x− 1

π∫
0

dθ = 2π√
(x− 1)(x + 1)

= 2π√
(1+y2

2y − 1)(1+y2

2y + 1)
= 4πy

(1 − y)(1 + y) . (6.40)

Thus,

ρ(z)/|z|∫
0

y3

2y

2π∫
0

dθdy
1+y2

2y + cos θ
=

ρ(z)/|z|∫
0

y2

2
4πydy

(1 − y2) . (6.41)

Let v = y2, then

ρ(z)/|z|∫
0

y2

2
4πydy

(1 − y2) =
(ρ(z)/|z|)2∫

0

v

2
4π

√
vdv

(1 − v)
dv

2
√
v

= π

(ρ(z)/|z|)2∫
v − 1 + 1

1 − v
dv = π

(ρ(z)/|z|)2∫ (
−1 + 1

1 − v

)
dv
0 0
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= π

[
−(ρ(z)|z| )2 − ln (1 − (ρ(z)|z| )2)

]
. (6.42)

Hence,

MO2,1(f)(z) = π

ρ(z)

[
−(ρ(z)|z| )2 − ln (1 − (ρ(z)|z| )2)

]1/2
. (6.43)

Therefore,

‖f‖p
IMOp,2,−2/p

1
=
∫
C

ρ(z)−2 MO2,1(f)(z)pdA(z)

�
∫
C

1
ρ(z)2

1
ρ(z)p

[
−(ρ(z)|z| )2 − ln (1 − (ρ(z)|z| )2)

]p/2
dA(z). (6.44)

Note that taking x = −(ρ(z)/|z|)2, the term in the bracket is x − ln (1 + x) = x − x + x2/2 − x3/3 + · · ·, 
and hence the most contribution comes from the term x2/2. Thus,

‖f‖p
IMOp,2,−2/p

1
�
∫
C

1
ρ(z)p+2

ρ(z)2p

|z|2p dA(z) =
∫
C

1
ρ(z)2−p

1
|z|2p dA(z)

≥
∫

|z|≥R

1
|z|β(2−p)

1
|z|2p dA(z) �

∞∫
R

rdr

r2p+β(2−p)

=
∞∫
R

r1−2p−β(2−p)dr � r2−2p−β(2−p)∣∣∞
r=R

. (6.45)

Note that 2 −2p −β(2 −p) = (2 −p)
(2(1−p)

2−p −β
)
, and since 0 < p ≤ 1, the integral diverges when β ≤ 2(1−p)

2−p . 
So, when p = 1, β must be zero. When p is very close to zero, β can get very close to 1, implying that Xia’s 
example is a counterexample for any doubling measure. �
Remark 6.2. One could also hope to modify (6.29) so that it takes into account the growth condition of ρ; 
see (1.17). However, there are no holomorphic functions that behave like |z|c at infinity unless c is an integer. 
Indeed, suppose that f is holomorphic in the complement of a disk centered at the origin, and assume that 
supθ |f(reiθ)| � rc as r → ∞. Then c ∈ Z. To see this, for such a function f , set g(z) = zkf(1/z), where 
k ≤ c is an integer. Then g has a removable singularity at the origin since |g(reiθ)| = O(rk−c) as r → 0. So 
g is bounded at zero, and hence g has a power series 

∑
akz

k near the origin, which implies that c ∈ Z.
Finally, notice that substituting (6.29) in the proof of Theorem 1.6 by the functions f(z) = 1/zn for 

|z| > 1 and f(z) = 0 elsewhere actually works worse when the integer n is larger than 1.

Proof of Corollary 1.7. We apply Theorem 1.6 to the canonical doubling weights φ(z) = |z|m with m > 0. 
Recall that by Lemma 2.5, there is some R > 0 such that ρ(z) ≤ |z|1−m/2 for |z| ≥ R. Therefore, βφ =
1 −m/2. We can conclude that the Berger-Coburn phenomenon fails for Sp(F 2

|z|m , F 2
|z|m) if 1 −m/2 ≤ 1−p

1−p/2 , 
which is equivalent to m ≥ p

1−p/2 . In particular, if m ≥ 2, then the phenomenon fails for all Schatten classes 
Sp with 0 < p ≤ 1. �
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