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A B S T R A C T

Testing hypotheses regarding how individual survey respondents form their expectations is
susceptible to the multiple testing problem. The probability of falsely rejecting the null
hypothesis for one or more respondents will exceed the nominal single-hypothesis significance
level. The Bonferroni correction and related approaches control the family-wise error rate, but
are conservative and result in low power when the null hypotheses are false.

We compare controlling the family-wise error rate with the effect of controlling the false
discovery rate and the false discovery proportion, in terms of the conclusions we draw about
forecaster behaviour.

The effects of adjustments for multiple testing are investigated for tests of weak efficiency
and the over-reaction hypothesis, for beliefs about the persistence of shocks to output growth,
and for the accuracy of survey respondents’ perceptions of the uncertainty they face.

. Introduction

Studies of the properties of the expectations of survey respondents at the individual level involve multiple hypothesis tests.
n this paper we consider the effects of adjustments or corrections for multiple testing (MT) on findings in the literature on how
rofessional forecasters form their expectations. The studies we consider test a null hypothesis for each of a number of survey
espondents individually. The multiple testing problem arises because, as we increase the number of respondents being tested, the
hances of rejecting a true null hypothesis will increase, simply because of chance. The classical approach to the MT problem is to
ontrol the family-wise error rate (FWER). The FWER is the probability of rejecting at least one true null hypothesis. Controlling
he FWER requires carrying out the multiple tests in such a way that the probability of rejecting at least one true null hypothesis
the FWER) is less than or equal to a given probability, often take to be the significance level 𝛼 at which each individual hypothesis
est is carried out. The best-known approach to controlling FWER is the Bonferroni correction of the individual 𝑝-values, but this is
nown to be conservative, and alternatives to Bonferroni have been developed.

In the context of testing a given null hypothesis for each of a number of survey respondents, the classical approach of controlling
he FWER may result in low power. Rather than controlling the FWER, control of the false discovery rate (FDR) - the expected
alse discovery proportion (FDP) (i.e., the proportion of rejections of the null which are false) — has been used in genomewide
ssociation studies (GWAS), and also in finance.1 FDR control has been proposed for situations where only a small proportion of the

E-mail address: m.p.clements@reading.ac.uk.
1 GWAS test the effects of thousands of genes — whether a particular gene being ‘on’ (or ‘expressed’) is associated with a particular disease. There is a null

ypotheses for each gene, that disease status is independent of that gene. Even if the null of no effect of gene 𝑖 were true for each gene, 1 = 1,… , 𝑠 (where the
ull for gene 𝑖, 𝐻𝑖, is no difference between the gene expression levels for the patients and controls for gene 𝑖), testing each null at the 𝛼 percent level would
esult in a probability that at least one null is rejected of 1 − (1 − 𝛼)𝑠. This probability would be close to one for 𝑠 of the magnitude typical in GWAS, but in
xcess of a half even for modest numbers of tests, such as 𝑠 = 20, for the conventional 𝛼 = 0.05 significance level.
In empirical finance, applications that consider fund manager performance, or trading strategies, also result in very many null hypotheses: Chordia et al.

2020) consider over two million strategies (see also Barras et al., 2010, inter alia.) On the other hand, FDR has been applied to cases where 𝑠 is much smaller
167-2681/© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
http://creativecommons.org/licenses/by/4.0/).
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null hypotheses are likely to be false — as in GWAS. GWAS hypotheses are typically ‘disinterred in explorations’, as opposed to being
‘predesignated hypotheses’2 with theoretical foundations. When most null hypotheses in the set are true, (unadjusted) inference will
result in rejections of the null which are mainly false, resulting from ‘luck’, yielding a high proportion of false discoveries. Controlling
the false discovery rate (the FDR) as in Benjamini and Hochberg (1995) controls the expected proportion of the hypotheses that are
alsely rejected. That is, FDR controls the expected error rate for hypotheses for which the null is rejected. If the FDR is set at 5%,
hen no more than 5% of the rejected nulls would be expected to be true (that is, false discoveries). The FDR focuses on whether
he rejections are legitimate, whereas FWER is concerned with the probability of obtaining false positives. Benjamini and Yekutieli
2001) (p. 1169) argue that ‘The control of FDR assumes that when many of the tested hypotheses are rejected it may be preferable
o control the proportion of errors rather than the probability of making even one error’.

A hallmark of survey-based macroeconomic expectations is that there appears to be persistent differences between individual
espondents in a number of dimensions: for example, Jain (2019) finds heterogeneity in individuals’ perceptions of the persistence
n inflation, and Clements (2024) considers the heterogeneity of inflation expectations through the lens of individual Phillips curve
odels. Both studies consider the extent to which the heterogeneity depends upon the times at which the respondents were active
articipants. That is, of interest is understanding why such heterogeneity occurs: why we might reject a particular hypothesis for
ne individual, but not for another. Relatedly, there is an interest in the implications of whether a hypothesis holds, in terms of
hether this is related to other behavioural hypotheses. For example, Clements (2022) considers whether the rejection of forecast
fficiency suggests such individuals are more or less likely to make accurate forecasts, or to produce ‘‘contrarian’’ forecasts, than
‘efficient’’ forecasters. This means we are interested in identifying the individual forecasters for whom we reject, rather than in
imply determining the number or proportion of forecasters for whom we reject.3

In this paper we are interested in the MT problem applied to survey expectations data, and so we do not consider the reasons
ehind the rejections.4 We report the results as the proportion of rejections, simply as a way of summarizing and comparing the
ffects of different forms of MT correction.5 Our interest is in obtaining a reliable estimate of the number or proportion of respondents
hose behaviour is consistent with a particular null hypothesis. But it matters who those respondents are, and this motivates our

esting approach. Given the low power of approaches which control FWER, we investigate whether less conservative approaches
uch as FDR provide more reliable estimates of the number of true and false nulls.

A key question is then whether making an allowance for MT (either using a type of FWER or FDR control) affects the conclusions
e draw regarding various aspects of macroeconomic expectations formation. Does it make a material difference to our overall

onclusions about whether survey respondents’ forecasts are consistent with various postulates (e.g., respondents forecasts are
eakly efficient, in the sense of Mincer and Zarnowitz (1969), or that they over-react to news)? Looking ahead to our findings, we

ind it does matter. For example, we reject the null hypothesis of forecast efficiency of short-horizon forecasts for around half of the
espondents when no correction is made for MT. The standard method of controlling the FWER reduces the proportion of rejections
rom 1 in 2 to around 1 in 6. The making of inefficient forecasts becomes an affliction of a small minority of respondents, when
e correct for MT in the usual way. Other approaches to correcting for MT have broadly similar effects. However, MT correction
atters much less for long-horizon forecast efficiency. We contend that these findings, and those for the analysis of individual

orecasters’ perceptions of the persistence of output growth, and for an analysis of the accuracy of forecasters’ perceptions of the
ncertainty they face, could not have been foreseen in advance of carrying out the analysis. We are not aware of any applications
f MT corrections to hypotheses concerning individual-level survey expectations, despite the widespread use of controls for MT in
any disciplines and subject areas. Multiple hypothesis testing and the control of error rates is a potential issue in all disciplines

hat draw inferential conclusions from data.
We consider a number of ways of controlling FWER and FDR which appear most promising for multiple testing of individual

urvey respondents. We argue for the use of simple methods which can be applied without bootstrapping the underlying forecast
ata, and for the use of approaches which perform well when the test statistics (𝑝-values) are dependent. We avoid simulation

techniques such as bootstrapping, because of the complications that arise with missing data. In the macro survey data we use
there are many missing forecasts, which would complicate the application of block-bootstrap methods (such as those advocated
by Romano and Wolf, 2005). In our context 𝑝-values are likely to be dependent: we often consider forecast errors, which are based
on a realization of the actual value common to all; individuals’ forecasts draw on public information, etc.

The plan of the remainder of the paper is as follows. In Section 2 we briefly review FWER and FDR control. Section 3 presents a
Monte Carlo study that examines the performance of the MT strategies for numbers of forecasters and forecast sample sizes typical

— see e.g., the re-analysis by Glickman et al. (2014) of two studies. In one 𝑠 = 28, and in the other 𝑠 = 55. Hence even though the number of hypotheses is
ypically far fewer for survey expectations than for GWAS, and in some finance applications, MT issues may need to be addressed.

2 These terms are due to Mayo (2018), p. 275.
3 We are grateful to a referee for making the point that if one were only interested in the proportion or number of rejections of a hypothesis, other approaches

hat sidestep the need to consider multiple hypotheses, and hence MT issues, might be worth considering. We take the view that generally one would be interested
n why we reject for one individual rather than another, and whether that is influenced by the macro-environment at the time the individual was active, for
xample.

4 However, as an example, the empirical application in Section 4.1 is taken from Clements (2022), who considers the implications of the rejection of efficiency
or accuracy and disagreement.

5 If we were to consider tests based on aggregate quantities, such as regressions of mean forecast errors on revisions to mean forecasts, as in Coibion and
orodnichenko (2012, 2015), then MT issues would not arise, but we would not necessarily be testing the behavioural hypotheses of interest (as discussed in
ection 4.1).
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of those available in surveys of macroeconomic expectations. The data generating process and models in the Monte Carlo are based
on the empirical application of Section 4.1 illustration. Section 4.1 applies multiple-testing adjustments to individual-level tests of
forecast efficiency, and to tests of the over-reaction hypothesis. Section 4.2 applies multiple-testing adjustments to individual-level
tests of whether professional forecasters believe output shocks are permanent. Section 4.3 applies multiple-testing adjustments to
tests of the equality of ex ante and ex post uncertainty at the individual level. These applications are of individual-level testing of
ypotheses concerning expectations formation by professional forecasters.6 Section 5 concludes and summarizes our findings on the

effects of multiple-testing adjustments for macro survey expectations.

2. Controlling error rates

We provide a brief review of methods of controlling error rates. These methods can all be applied relatively simply, in that they
do not require bootstrapping. They control either the FWER or the FDR, and do so allowing for different types of dependence in the
𝑝-values.

2.1. FWER control

Given a set of null hypotheses, 𝐻𝑖, 𝑖 = 1,… , 𝑠, let 𝑝𝑖, 𝑖 = 1,… , 𝑠, denote the 𝑝-values associated with these hypotheses. The ordered
-values are denoted by 𝑝(𝑖), 𝑖 = 1,… , 𝑠, where 𝑝(1) is the smallest. The FWER is the probability of one or more false rejection in the
family’, so that FWER ≤ 𝛼 controls the FWER at level 𝛼 = 0.05. The Bonferroni correction (Bonferroni, 1936) achieves this control
y rejecting 𝐻𝑖 if 𝑝𝑖 ≤ 𝛼∕𝑠, but may be quite conservative, when 𝑠 is ‘large’, or if the 𝑝-values are highly positively correlated.7 For
xample, if 𝑠 = 100, 𝑝𝑖, has to be smaller than 0.0005 to reject the null at level 𝛼. When the set of hypotheses under consideration,
𝑖, 𝑖 = 1,… , 𝑠, consists of hypotheses which are mostly true, few true null hypotheses would be rejected — the desired outcome.
owever, when the set is largely populated by false hypotheses, the Bonferroni correction results in low power (or high type 2
rror) and the likely failure to reject false hypotheses.

A more powerful procedure is available if we are willing to allow more than one false rejection. Letting 𝑘-FWER denote the
robability of rejecting 𝑘 or more true null hypotheses, then controlling 𝑘-FWER at level 𝛼 can be achieved by rejecting 𝐻𝑖 if
𝑖 ≤ 𝑘𝛼∕𝑠 (see Lehmann and Romano, 2005). (1-FWER is of course FWER.)

More power can be achieved while maintaining control of the FWER or 𝑘 -FWER by using ‘stepdown’ procedures in place of the
nestep comparison of 𝑝𝑖 to 𝛼∕𝑠 for all 𝑖 (or 𝑝𝑖 to 𝑘𝛼∕𝑠 for all 𝑖 for 𝑘-FWER). The stepdown procedure suggested by Holm (1979)
eneralizes Bonferroni by rejecting 𝐻(𝑖), for 𝑖 = 1,… , 𝑠, provided:

𝑝(𝑖) ≤ 𝛼𝑖, where 𝛼𝑖 = 𝛼∕ (𝑠 − 𝑖 + 1) , (1)

nd 𝐻(1),… ,𝐻(𝑖−1) have all been rejected.8 No hypotheses are rejected if 𝑝(1) > 𝛼1 = 𝛼∕𝑠.
Similarly, for 𝑘-FWER, Lehmann and Romano (2005) suggest a Holm-type stepdown procedure aimed at boosting the power.

hoose the largest 𝑟 such that the following inequalities hold:

𝑝(1) ≤ 𝛼1, . . . , 𝑝(𝑟) ≤ 𝛼𝑟 (2)

here 𝛼𝑖 = 𝑘𝛼∕𝑠, for 𝑖 ≤ 𝑘, and 𝛼𝑖 = 𝑘𝛼∕ (𝑠 + 𝑘 − 𝑖), for 𝑖 > 𝑘. Reject the set of hypotheses 𝐻(1),. . . , 𝐻(𝑟). In the event that 𝑝(1) > 𝛼1,
no hypotheses are rejected.

The Holm procedure improves the ability to reject false hypotheses, and 𝑘 -FWER control improves power at the cost of allowing
𝑘 (𝑘 > 1) or more true nulls to be rejected. Nevertheless, it has been argued that the (Holm, 1979) stepdown procedure is only
a little less conservative than Bonferroni (see, e.g., Efron and Hastie, 2016, p. 284–5, and Romano and Wolf, 2005). We consider
whether these refinements make much difference to the application of MT adjustment to survey expectations.

Lehmann and Romano (2005) show that the onestep and stepdown procedures control 𝑘 -FWER without requiring any
restrictions on the admissible dependence structures for the 𝑝-values. While this might appear to be a desirable property of these
approaches, Romano and Wolf (2005) note the conservativeness of these approaches stems from a failure to take into account
the dependence structure.9 Romano and Wolf (2005) propose a stepwise multiple testing strategy that accounts for the underlying
dependence strategy, and improves on the approaches reviewed here. The Romano and Wolf (2005) strategy extends the ‘reality

6 The three case studies we consider are representative of a wider literature on the specific issues addressed. Many other studies address related issues, but
ometimes consider aggregate quantities, such as consensus forecasts, where MT issues do not arise.

7 The correction is based on the Bonferroni inequality 𝑃
(

𝐴1,𝐴2 ,… , 𝐴𝑠
)

≥ 1 −
∑𝑠

𝑖=1 𝑃
(

𝐴𝑖

)

, where 𝐴𝑖 is the event that test 𝐴𝑖 does not reject, that is,
|

|

𝑡𝑖|| < 𝑡𝛿∕2, where 𝑡𝑖 is the test statistic and 𝑡𝛿∕2 the critical value for a 𝛿-level test. 𝐴𝑖 is the complement of 𝐴𝑖, so that 𝑃
(

𝐴𝑖

)

= 𝛿. The inequality implies that
(

𝐴1,𝐴2 ,… , 𝐴𝑠
)

≥ 1 − 𝑠𝛿, so that setting 𝛿 = 𝛼∕𝑠 results in an FWER (at least one 𝐴1 is false) of 1 − 𝑃
(

𝐴1,𝐴2 ,… , 𝐴𝑠
)

≤ 𝛼.
8 Simes (1986) also provides a modification of the Bonferroni test procedure, but this is a test of 𝐻0 =

⋂𝑠
𝑖=1 𝐻0𝑖 (the intersection or joint null hypothesis,

that all hypotheses are jointly true), rather than of the individual 𝐻0𝑖 ’s. Cheng and Sheng (2017) consider testing joint null hypotheses and provide a review of
ome classical methods, but these are not our focus of interest. We suppose that some 𝐻𝑖 ’s might be true and others false, and wish to discover how many are
rue and how many false.

9 Romano and Wolf (2005) explain that ‘‘Loosely speaking, they achieve control of the FWE by assuming a worst-case dependence structure’’ (p. 1244) and
o illustrate, note that if there were perfect dependence amongst the 𝑝-values, that is, identical 𝑝-values, rejecting 𝐻𝑖 if 𝑝𝑖 ≤ 𝛼 would control FWER, and rejecting
𝐻 if 𝑝 ≤ 𝛼∕𝑠 would be too conservative.
340
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check’ approach of White (2000), but as in White (2000), requires bootstrapping. The missing values in the series of forecasts for
the individual respondents, and that the respondents may have been active participants at different times, would complicate the
application of approaches that require bootstrapping, and we choose to avoid these.

When an allowance is made for MT, whether we reject a particular hypothesis, 𝐻𝑖, may depend on the number of other hypotheses
we consider, and on the results we obtain for the other hypotheses. What is included in the ‘family’ becomes relevant when such
adjustments are entertained (see Section 4.1 for an illustration). The role of the number of hypotheses in the ‘family’ (i.e., 𝑠) is
obvious for the Bonferroni correction.

2.2. FDR control

The false discovery proportion (FDP) is the number of false rejections (𝐹 ) divided by the total number of rejections (𝑅). The
FDP is defined as being zero when the denominator 𝑅 = 0. Control of the FDP supposes one is willing to tolerate an increasing
number of false rejections (i.e., ‘false discoveries’, 𝐹 ) as the number of rejections 𝑅 increases. That is, false rejections are permitted
provided these are made at an acceptably low rate relative to the number of discoveries. Expected FDP (that is, FDR) control at level
𝑞 requires that 𝐸 (𝐹𝐷𝑃 ) ≤ 𝑞. This can be achieved using a simple algorithm due to Benjamini and Hochberg (1995), referred to as
BH henceforth.

For the ordered 𝑝-values, define 𝑖max as the largest 𝑖 for which:

𝑝(𝑖) ≤
𝑖
𝑠
𝑞, (3)

where 𝑞 is the desired FDR. Then reject 𝐻(𝑖) for 𝑖 ≤ 𝑖max. (If 𝑝(𝑖) >
𝑖
𝑠 𝑞 for all 𝑖, reject no null hypotheses). BH prove that this method

is valid under the assumption that the 𝑝-values are independent. This method results in FDR being equal to 𝜋0𝑞, where 𝜋0 is the
roportion of true null hypotheses, 𝑁0∕𝑠 ≤ 1, where 𝑁0 = 𝑠 − 𝐹 is the number of true null hypotheses. Hence 𝐹𝐷𝑅 ≤ 𝑞. When
0 ≪ 1, the FDR is markedly lower than 𝑞. Methods of estimating 𝜋0 are discussed in the next section.

A variant of FDR control suggested by Benjamini and Yekutieli (2001) (BY) allows for some forms of dependence in the 𝑝-values.
Y replaces (3) by:

𝑝(𝑖) ≤
𝑖

𝑠 × 𝐶𝑠
𝑞 (4)

where 𝐶𝑠 =
∑𝑠

𝑖=1
1
𝑖 . BY is obviously stricter than BH: the inequality is satisfied by hypotheses with lower 𝑝-values.

Rather than controlling the expected FDP, the FDR, Lehmann and Romano (2005) suggest controlling the FDP, in the sense that:

𝑃 {𝐹𝐷𝑃 > 𝛾} ≤ 𝛼. (5)

his can be achieved with a stepdown procedure, that compares the 𝑝(𝑖) to 𝛼𝑖 defined by:

𝛼𝑖 =
([𝛾𝑖] + 1) 𝛼

𝑠 + [𝛾𝑖] + 1 − 𝑖
. (6)

(Here, [𝑧] is the greatest integer less than or equal to 𝑧.)
As above, if 𝑝(1) > 𝛼1, no hypotheses are rejected. Otherwise, 𝑟 is the largest value that satisfies (2) with 𝛼𝑖 defined by (6), and the

set of hypotheses 𝐻(1),. . . , 𝐻(𝑟) are rejected. Lehmann and Romano (2005) show that this procedure satisfies (5) with only relatively
weak restrictions on the admissible dependence structures on the 𝑝-values.

Methods which control the FDP or FDR will be more liberal than controlling FWER. For example, from (3) it follows immediately
that BH will likely generate more rejections (‘discoveries’) than the Bonferroni correction. If we suppose 𝑞 = 𝛼, then the
Bonferroni-adjusted threshold for rejection is smaller than the FDR threshold for all but the smallest 𝑝-value hypothesis (𝑝(1)) since:

𝛼
𝑠
< 𝑖𝛼

𝑠
for 𝑖 = 2,… , 𝑠 (7)

nd is the same for 𝑖 = 1.
Under FDR control, the dependence of the finding for 𝐻𝑖 on the tests of the other hypotheses is readily apparent, because the

osition of 𝑖 in the set of ordered 𝑝-values will be higher the smaller the other 𝑝𝑗 ’s. Hence 𝑝𝑖 will be compared to 𝑘
𝑠 𝑞 with a higher

𝑘 (where 𝑝𝑖 is the 𝑘th smallest 𝑝-value). The greater the ‘effect sizes’ (equivalently, the smaller 𝑝-values) of the other hypotheses
the more likely 𝐻𝑖 will be rejected. In this sense FDR control depends on the evidence against the null of all the hypotheses in the
family.

2.2.1. 𝑞-values and estimating the proportion of true null hypotheses
Given the

{

𝑝(𝑖)
}

, we can estimate ‘𝑞-values’ for each of the hypotheses. The 𝑞-value for hypothesis 𝑖 is the expected proportion of
false positives when hypothesis 𝑖 is deemed significant. Note the 𝑞-value is not the probability that hypothesis 𝑖 is a false positive. It
is the minimum possible FDR at which hypothesis 𝑖 is rejected. This mirrors the 𝑝-value - the minimum possible false positive rate
at which we reject the null.

Storey and Tibshirani (2003) provide the following simple algorithm for calculating 𝑞 -values. For the 𝑠 ordered hypotheses,
𝑝(1) ≤ 𝑝(2) … ≤ 𝑝(𝑠), the 𝑞-value for the largest 𝑝-value hypothesis is:

𝑞
(

𝑝
)

= �̂� 𝑝 (8)
341
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where �̂�0 is an estimate of 𝜋0, the proportion of true null hypotheses. Then for 𝑖 = 𝑠 − 1, 𝑠 − 2,… , 1:

𝑞
(

𝑝(𝑖)
)

= min
( �̂�0𝑠𝑝(𝑖)

𝑖
, 𝑞

(

𝑝(𝑖+1)
)

)

(9)

where 𝑞
(

𝑝(𝑖)
)

is the estimated 𝑞 -value for the 𝑖th most significant (smallest 𝑝-value hypothesis).
The conservative approach is to assume 𝜋0 = 1. When we set �̂�0 = 1, then the algorithm set out in (8) to (9) is equivalent to the

rule (3) of BH. That is, if we reject hypotheses for which the application of (8) to (9) result in 𝑞
(

𝑝(𝑖)
)

< 0.05, the set of rejections
will exactly match BH control with 𝑞 = 0.05.

Storey and Tibshirani (2003) propose an algorithm for estimating �̂�0. For a given 𝜆, Storey and Tibshirani (2003) suggest
calculating:

�̂�0 (𝜆) =

∑𝑠
𝑖 1(𝑝𝑖>𝜆)
𝑁

× 1
1 − 𝜆

(10)

for a grid of values 𝜆 = 0, 0.01, 0.02… , 0.95, and then fitting a natural cubic spline with 3 degrees of freedom of �̂�0 (𝜆) on 𝜆, denoted
𝑓 , and estimating 𝜋0 by 𝑓 (𝜆 = 1). Barras et al. (2010) (see also Glickman et al., 2014) find that simply setting 𝜆 = 1

2 say works
easonably well, and little is gained by selecting over a grid of values for 𝜆.10

𝑞-values can be calculated with �̂�0 < 1, as suggested by (8) to (9), or one could equivalently adjust the BH rule to:

𝑝(𝑖) ≤
𝑖

𝑠�̂�0
𝑞 (11)

where 𝑠𝜋0 = 𝑠0, so that relative to BH, (11) replaces 𝑠 by an estimate of 𝑠0, the number of true null hypotheses.
We use �̂�0 = 1 in our empirical work, but indicate how the results would change if for example we set �̂�0 = 1

2 . As noted above,
using a unit value is the conservative assumption for FDR, and this allows a fair comparison with the Bonferroni correction.

2.2.2. Bayesian interpretation
It is illuminating that FDR can be given a Bayesian interpretation, and thus stands in stark contrast to the control of the type

1 error rate (or the extension to FWER) of classical frequentist hypotheses testing: see Efron and Hastie (2016) (section 15.3) for
details.

Here we simply note that BH control amounts to rejecting 𝐻𝑖 when the empirical Bayes posterior probability of hypothesis 𝑖
eing null is ‘too small’ (given that we have observed the ‘effect size’ and corresponding 𝑝 -value), where by ‘too small’ is meant
hat it is less than 𝜋0𝑞.

. Monte Carlo

We carry out a Monte Carlo to provide evidence on the reliability of the testing procedures in Section 2 applied in the context
f macro survey expectations. Specifically, we consider the MT strategies for the numbers of forecasters and forecast sample sizes
ypical of those available in surveys of macroeconomic expectations. The Monte Carlo aligns with the first of the empirical studies
f survey expectations: the study of forecast efficiency and the reaction to news in Section 4.1. Section 4.1 provides additional
iscussion and motivation for the formulation below.

We consider the performance of the approaches when the null is true for all respondents, and when it is false for all respondents.

.1. Data generation process and forecaster behaviour

The data generation process loosely matches U.S. quarterly output growth:

𝑦𝑡 = 𝛽0 + 𝛽𝑦𝑡−1 + 𝜂𝑡 (12)

where 𝜂𝑡 is an iid Gaussian innovation, 𝜂𝑡 ∼ 𝑁
(

0, 𝜎2𝜂
)

. Each agent is assumed to receive a noisy signal on the state of the economy
𝑦𝑡, give by:

𝑠𝑖𝑡 = 𝑦𝑡 + 𝜀𝑖𝑡, (13)

where 𝜀𝑖𝑡 ∼ 𝑁
(

0, 𝜎2𝜀𝑖

)

, and 𝜎2𝜀𝑖 = 𝜎2𝜀 ∀𝑖 assuming homogeneity. Agent 𝑖’s information set at time 𝑡, 𝑖,𝑡 =
{

𝑠𝑖𝑡, 𝑠𝑖𝑡,𝑡−1,…
}

comprises
the history of signals received by agent 𝑖 through 𝑡, with past values of 𝑦 unobserved. The optimal forecast of 𝑡, 𝑓𝑖𝑡|𝑡, incorporates
𝑠𝑖𝑡 via:

𝑓𝑖𝑡|𝑡 = 𝐾𝑠𝑖𝑡 + (1 −𝐾) 𝑓𝑖𝑡|𝑡−1
= 𝑓𝑖𝑡|𝑡−1 +𝐾

(

𝑠𝑖𝑡 − 𝑓𝑖𝑡|𝑡−1
)

, (14)

10 The motivation for this approach is that true null 𝑝-values are 𝑈 (0, 1). The majority of 𝑝-values larger than a high enough threshold 𝜆, say 𝜆 = 1
2
, are for

true 𝐻𝑖. Eq. (10) calculates the proportion of such forecasters, and then scales this (by the (1 − 𝜆)−1 factor) over the whole region between 0 and 1.
This approach has been proposed in the context of genomewide studies where thousands of genes (i.e., null hypotheses) are being considered.
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where 𝐾 is the Kalman gain. Eq. (14) updates the forecast of 𝑡 based on information through 𝑡 − 1, 𝑓𝑖𝑡|𝑡−1, using the optimal (in a
Minimum Mean Squared Error sense) weight 𝐾, where 𝐾 = 𝛴∕

(

𝛴 + 𝜎2𝜀
)

, and:

𝛴 = 1
2

(

−
(

1 − 𝛽2
)

𝜎2𝜀 + 𝜎2𝜂 +

√

[

(

1 − 𝛽2
)

𝜎2𝜀 − 𝜎2𝜂
]2

+ 4𝜎2𝜀𝜎2𝜂

)

(15)

(see, e.g., Bordalo et al., 2020). The 1-step forecast is given by 𝑓𝑖,𝑡+1|𝑡 = 𝛽0 + 𝛽𝑓𝑖𝑡|𝑡, and so on.
We report tests for the two hypotheses considered in Section 4.1: the test of forecast efficiency, and the optimal reaction to news.

he first is based on estimating for each individual:

𝑦𝑡+ℎ − 𝑓𝑖,𝑡+ℎ|𝑡 = 𝛼𝑖 + 𝛽𝑖𝑓𝑖,𝑡+1|𝑡 + 𝑢𝑖,𝑡+ℎ. (16)

The null is the simple hypothesis 𝐻𝑖: 𝛽𝑖 = 0. (We consider only the slope, and leave the intercept unrestricted.) We consider only
ℎ = 1.

The test of the reaction to news is based on:

𝑦𝑡+ℎ − 𝑓𝑖,𝑡+ℎ|𝑡 = 𝛼𝑖 + 𝛽𝑖
(

𝑓𝑖,𝑡+ℎ|𝑡 − 𝑓𝑖,𝑡+ℎ|𝑡−1
)

+ 𝑢𝑖,𝑡+ℎ (17)

and the null is again 𝐻𝑖: 𝛽𝑖 = 0, with ℎ = 1.
For forecasts generated by Eqs. (13) to (15), 𝐻0𝑖 is true both when we test for forecast efficiency and for the optimal reaction

to news. (See Section 4.1 for further discussion).
We model the departure from optimality by assuming Diagnostic Expectations (DE), as in Bordalo et al. (2020), although another

possibility would be to allow incorrect values of the law of motion parameters, 𝛽0 and 𝛽, in (12). Under DE, (14) becomes:

𝑓𝑖𝑡|𝑡 = 𝑓𝑖𝑡|𝑡−1 + (1 + 𝜃)𝐾
(

𝑠𝑖𝑡 − 𝑓𝑖𝑡|𝑡−1
)

. (18)

where 𝜃 > 0 indicates news is over-weighted relative to the optimal amount given by the Kalman gain 𝐾.
Forecasters are assumed to know the parameters 𝛽0, 𝛽, and the variances of the disturbances and signals, and hence 𝐾.
The model is loosely calibrated on U.S. real quarterly GDP growth. We suppose 𝛽0 = 0.50, and 𝛽 = 0.36. This reproduces the

unconditional growth rate of quarterly real GDP of 0.78 for the period 1947:1 – 2018:2 (2018:3 data vintage). The AR(1) model
estimated standard error is 𝜎𝜂 = 0.88. These values are used for 𝛽0, 𝛽 and 𝜎𝜂 throughout.

We set 𝜎𝜀 = 1
2 and 3, and assume homogeneous forecasters for simplicity, so that 𝜎2𝜀𝑖 = 𝜎2𝜀 for all 𝑖. For the higher value of 𝜎𝜀

the forecasters’ signals are less informative, and their forecasts less accurate, other things being equal.
Under the alternative (that is, under DE), we set 𝜃 = 1

2 in (18).

3.2. Simulation results

The number of replications is 10,000. We consider 𝑇 = 25, 50, which affects the estimation of the 𝑡-statistic/𝑝-value for 𝐻𝑖. We
set 𝑁 = 50 throughout. 𝑁 = 50 is typical of the number of respondents to the U.S. SPF who have responded sufficiently often to
provide a useable number of forecasts.

Table 1 reports the results for the test of forecast efficiency. We consider BH and BY, and Bonferroni, but omit the other FWER
control techniques to save space. Table 2 has the results for the test of the reaction to news.

Consider first Table 1, Panel A, 𝜋0 = 1, when all the null hypotheses are true. The results show that the liberal strategy (making
no allowance for MT) fails to control false discoveries (column 3), and the FWER (column 4). The proportion of replications for
which the ratio of false discoveries to total rejections is less than 5% is lower than 25% when 𝜎𝜀 = 3, for both values of 𝑇 . For this
alue of 𝜎𝜀, the FWER (the proportion of replications for which the true null is rejected for one or more forecasters) is around 98%.
Y is generally superior to BH in terms of controlling the FDP on around 99% of the replications, and resulting in an FWER of less
han 10% when 𝑇 takes on the larger value (𝑇 = 50). Bonferroni works well when 𝜎𝜀 =

1
2 , but less well when 𝜎𝜀 = 3.

Panel B 𝜋0 = 0 shows the results for the other extreme when 𝐻𝑖 is false for all forecasters. Now FDP control is achieved for all
approaches by construction, because all rejections are true discoveries. (Similarly for FWER control. All rejections are correct.) The
rejection rate by Bonferroni is much lower when 𝜎𝜀 =

1
2 . The lower value of 𝜎𝜀 corresponds to positively-correlated 𝑝-values across

tests, because the signals are more informative and the forecasts are closer to the true values. The positive correlation accounts for
the lower power of Bonferroni. However, BY is also low for this value of 𝜎𝜀. When 𝜎𝜀 = 3 BY clearly outperforms Bonferroni.

The results in Table 2 for the test based on (17) are qualitatively similar.
To briefly summarize the findings of the Monte Carlo: BY works reasonably well for the relatively small samples of forecasters

(𝑁 = 50) and numbers of forecasts (𝑇 = 25, 50) typically available in macro-surveys. BY outperforms the Liberal approach – when
𝜋0 = 1 – by controlling ‘false discoveries’, and rejects one or more true nulls (FWER) for a similar proportion of replications as
Bonferroni. When 𝜋0 = 0, BY exhibits greater power than Bonferroni. However, Bonferroni is not markedly less powerful than BY
(the preferred FDR technique) in the setups we consider, and this is also evident in some of our empirical results in Section 4 where
343
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Table 1
Noisy information DGP, Test of forecast efficiency.

Liberal BH BY Bonferroni

2 3 4 5 6 7 8 9 10 11 12 13
Rej FD FWER Rej FD FWER Rej FD FWER Rej FD FWER

Panel A. 𝜋0 = 1

25, 1
2

0.071 0.750 0.409 0.020 0.957 0.061 0.006 0.985 0.025 0.004 0.982 0.052

50, 1
2

0.065 0.776 0.370 0.017 0.968 0.042 0.004 0.989 0.016 0.003 0.987 0.034

25, 3 0.094 0.180 0.987 0.010 0.953 0.309 0.003 0.995 0.141 0.007 0.990 0.295

50, 3 0.088 0.231 0.981 0.007 0.973 0.232 0.002 0.997 0.094 0.005 0.995 0.222

Panel B. 𝜋0 = 0

25, 1
2

0.254 1 0 0.140 1 0 0.057 1 0 0.034 1 0

50, 1
2

0.369 1 0 0.233 1 0 0.103 1 0 0.059 1 0

25, 3 0.842 1 0 0.807 1 0 0.638 1 0 0.468 1 0

50, 3 0.980 1 0 0.978 1 0 0.932 1 0 0.818 1 0

For each method we show the average (across replications) proportion of rejections, ‘Rej’; the proportion of replications for which the proportion of false
discoveries was less than 0.05, ‘FD’; and the proportion of replications for which one or more true nulls were rejected, ‘FWER’.
𝑎, 𝑏 in the first column refer to the sample size 𝑇 and 𝜎𝜖 .

Table 2
Noisy information DGP, Test of reaction to new information.

Liberal BH BY Bonferroni

2 3 4 5 6 7 8 9 10 11 12 13
Rej FD FWER Rej FD FWER Rej FD FWER Rej FD FWER

Panel A. 𝜋0 = 1

25, 1
2

0.056 0.785 0.397 0.014 0.970 0.044 0.004 0.988 0.018 0.003 0.986 0.037

50, 1
2

0.052 0.799 0.376 0.012 0.976 0.032 0.002 0.993 0.011 0.002 0.992 0.025

25, 3 0.063 0.428 0.943 0.004 0.990 0.149 0.001 0.999 0.059 0.003 0.999 0.143

50, 3 0.056 0.508 0.920 0.002 0.996 0.090 0.001 1.000 0.028 0.002 1.000 0.088

Panel B. 𝜋0 = 0

25, 1
2

0.213 1 0 0.105 1 0 0.040 1 0 0.024 1 0

50, 1
2

0.344 1 0 0.204 1 0 0.081 1 0 0.046 1 0

25, 3 0.807 1 0 0.754 1 0 0.529 1 0 0.357 1 0

50, 3 0.978 1 0 0.976 1 0 0.914 1 0 0.759 1 0

For each method we show the average (across replications) proportion of rejections, ‘Rej’; the proportion of replications for which the proportion of false
discoveries was less than 0.05, ‘FD’; and the proportion of replications for which one or more true nulls were rejected, ‘FWER’.
𝑎, 𝑏 in the first column refer to the sample size 𝑇 and 𝜎𝜖 .

4. Survey expectations applications

The illustrations in this section use the U.S. Survey of Professional Forecasters (SPF).11 The SPF is a quarterly survey of macro-
economic forecasters of the U.S. economy that began in 1968, originally run by the American Statistical Association (ASA) and the
National Bureau of Economic Research (NBER), and since June 1990 by the Philadelphia Fed (see Croushore, 1993). A recent survey
of professional forecasters’ expectations by Clements et al. (2023) discusses the SPF in some detail, reviews the types of analyses
which have been conducted, and some of the findings, concluding that individual-level forecaster heterogeneity is a key feature of
the forecasts.

4.1. Weak efficiency tests and forecast error — forecast revision regressions

Much of the recent literature on survey expectations seeks to explain forecaster disagreement in terms of theories of informational
rigidities and ‘rational inattention’12, and the responsiveness of expectations to news, and this motivates our first two sets of

11 https://www.philadelphiafed.org/surveys-and-data/real-time-data-research/survey-of-professional-forecasters
12 On sticky information, see inter alia Mankiw and Reis (2002) and Mankiw et al. (2003), and Coibion and Gorodnichenko (2012), and on noisy

information, Woodford (2002), Sims (2003) and Coibion and Gorodnichenko (2012), inter alia.
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behavioural hypotheses. The Monte Carlo in Section 3 tests for the responsiveness to news (and the closely-related notion of
forecaster efficiency) assuming noisy information.

In essence, under dispersed noisy information, agents receive noisy signals, as described in Section 3, but provided they update
ptimally, their forecast errors will be unrelated with their forecast revisions and their forecasts. Intuitively, each forecaster makes
ptimal use of their signal, and the forecast error is not systematically related to the forecast revision (or forecast). Each forecaster
orrectly downweights his/her information because it is noisy, but because the private noise cancels in the aggregate, the average
orecast under-responds to the new information.13

Our interest is in testing 𝛼𝑖 = 0 and 𝛽𝑖 = 0 for 𝑖 = 1,… , 𝑠, in Eqs. (16) and (17). As we wish to allow for the possibility that 𝐻𝑖
is true for a set of forecasters, but false for the remainder, pooled or fixed effects panel regressions (where the slope is the same
across all respondents) are not appropriate. Both Broer and Kohlhas (2021) and Bordalo et al. (2020) apply the test based on (17),
and find forecasters are over-confident, in the sense that they over -react to new information: 𝛽 is found to be negative. The test
based on (16) is the test of weak-efficiency of Mincer and Zarnowitz (1969), as reported by Clements (2022), Table 2. When the null
is true, the forecast is efficient in the sense that the resulting forecast error is not systematically related to the forecast. Clements
(2022) shows that forecast efficiency can hold without the forecaster 𝑖 making use of all relevant information, and in the presence
f private information.14

For both tests the right-hand-side actual values
{

𝑦𝑡+ℎ
}

are the advance estimates, and inference is based on a HAC estimator of
he variance–covariance matrix.

We consider the impact of allowing for MT for both tests.
To match the sample period and variables used by Clements (2022), we use the SPF multi-horizon forecasts of real GDP,

onsumption, and investment from 1990:4 to 2017:2 (that is, from when the SPF was administered by the Philadelphia Fed). We
onsider the 𝑠 = 50 individuals who made the most forecasts during this period. The average number of forecasts per person for this
roup was 55 (for each variable and at each forecast horizon), with a minimum and maximum of 31 and 98 attesting to the large
umber of missing forecasts for some respondents.

Since we use the point forecasts, a maintained assumption throughout is that the point forecasts are the means of the respondents’
ubjective distributions.15

.1.1. Empirical findings
Consider firstly the weak-efficiency (Mincer and Zarnowitz, 1969) test results reported by Clements (2022), Table 2. The null

ypothesis is that 𝛼𝑖 = 0 and 𝛽𝑖 = 0, and the test statistic uses a HAC estimator of the variance–covariance matrix. When no
djustment is made for multiple testing, the row for ‘Liberal’ in Table 3, Panel A shows that using a 5% significance level, the null is
ejected for 40% or more of the U.S. SPF respondents’ current-quarter (ℎ = 0) forecasts of consumption, investment and GDP growth.

For their four quarter ahead (ℎ = 4) forecasts, the null was rejected for more than three-quarters of respondents (and for all but 3
of the 50 respondents for GDP growth). The Bonferroni correction reduces the significance level to 0.05∕50 for each combination
of variable and forecast horizon (when we have 50 respondents). The Bonferroni correction results in the null only being rejected
for around 1 in 6 respondents for the short-horizon forecasts. The proportions of rejections at the longer horizon are reduced but
remain above a half of all respondents. The Holm procedure is expected to be more powerful than Bonferroni, while still controlling
the FWER (here, at the 5% level), but in our case its application yields very similar results to Bonferroni.

BH control at 𝑞 = 0.05 has no effect on the proportion of respondents for whom we reject at the longer horizon, but reduces
the rejections at the short horizon. However, as noted in Section 2, BH FDR control requires independence of the 𝑝-values, which
may not hold. BY does not require independence, and consequently is stricter than BH. The use of BY approximately halves the
number of rejections for the short-horizon forecasts, compared to BH, but at the longer horizon has a more benign effect, where
the proportion of rejections remains above two thirds for all 3 variables. In fact short-horizon rejections are markedly reduced for
all methods of correcting for MT other than BH. Holm 𝑘 -FWER with 𝑘 = 2 generates only a small additional number of rejections
relative to when 𝑘 = 1 (Holm, in the table), and is similar to BY.

Finally, if we were to use an estimated value of 𝜋0 in an MT adjustment strategy ((e.g., (11))), we would be able to control
the FDR at 5% while rejecting a greater number of null hypotheses, given that the estimated 𝑝-values suggest a 𝜋0 well below one.
If 𝜋0 = 1 the distribution of the 𝑝-values would be roughly uniform on the unit interval. The histogram of the 𝑝-values for the
current-quarter consumption growth forecast MZ tests is shown in Fig. 1, and that for the four-quarter ahead consumption growth
forecasts in Fig. 2.16 Both figures confirm the excess number of low 𝑝-values, relative to a uniform, casting doubt on 𝜋0 = 1 for
both horizons. This suggests that setting 𝜋0 = 1 is conservative, especially for the short-horizon forecasts, but we do not explicitly
consider other values of 𝜋0.17

13 Hence for aggregate forecast quantities, the regression of the aggregate forecast error on the aggregate forecast revision, between origins 𝑡 − 1 and 𝑡, say,
will result in a positive coefficient, related to 𝐾, given by (1 −𝐾) ∕𝐾 > 0 (see, e.g., Coibion and Gorodnichenko, 2015). That is, aggregate forecasts under-react,
resulting in a positive correlation between the error and the revision.

14 Fuhrer (2018) argues that the forecast rather than the revision to the forecast has the greater predictive power for the forecast error in most cases, and
suggests this weakens the interpretation that there is over-response to the ‘news’ embodied in the revision.

15 This need not be the case. The SPF does not specify that respondents should report their means, and they may report other measures of central tendency,
and what they report may vary over forecast rounds. However, the interpretation of the point forecasts as mean values is a commonly-made assumption. There
are a number of papers that compare the respondents histogram forecasts and point forecasts (e.g., Engelberg et al., 2009 and Clements, 2009).

16 These are broadly representative of the findings for investment and output growth, which are not shown to save space.
17 In the Appendix we provide details of the application of the strategies for each individual in Tables 6 and 7, and illustrate how the findings change for

other values of 𝜋 .
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Fig. 1. 𝑝-values for tests of the MZ efficiency hypothesis for each respondent’s current-quarter consumption growth forecasts.

Fig. 2. 𝑝-values for tests of the MZ efficiency hypothesis for each respondent’s 4-quarter ahead consumption growth forecasts.

We also consider the impact of MT on the optimal response to news hypothesis, based on the forecast error — forecast revision
egression of ((17)). Table 3, Panel B shows that the Liberal strategy leads to fewer rejections than for weak-efficiency (MZ) tests,
specially at ℎ = 4, where there are only half as many. This is consistent with the findings of Fuhrer (2018). However, to what
xtent is this due to neglecting MT issues? The Bonferroni correction approximately halves the ℎ = 4 respondent rejection rates: a

much larger impact than for the MZ tests. In addition, the Bonferroni rejection rates are little more than 1 in 10 at most. As for the
MZ efficiency tests, more powerful tests than Bonferroni generally result in similarly low numbers of rejection. Only FDR control
by BH has a muted effect relative to the Liberal approach.

In summary, we find that controlling for MT results in a sizeable reduction in the number of rejections for the over-reaction
hypothesis, and for the short-horizon MZ hypotheses, but not for the long-horizon MZ hypotheses. With the exception of FDR control
by BH, it makes little difference whether we control the FDR or the FWER, and which variant of these two types of control is used.
We have assumed that hypotheses regarding short and long-horizon forecast behaviour belong in different families when we consider
multiple testing. This seems reasonable ex post given that the test results for the two seem somewhat different. Moreover, there are
theoretical reasons to suppose forecaster-behaviour at the two horizons may differ. Short-term forecasting or nowcasting may be
accomplished by projecting current trends and considering recent indicators, whereas forecasting a year-ahead may require more
expertise, and possibly an economic model. Hence we consider hypotheses related to short and long-horizon forecast performance
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Table 3
Multiple testing and individual forecast efficiency and over-reaction regressions.

Consumption Investment Output

ℎ = 0 ℎ = 4 ℎ = 0 ℎ = 4 ℎ = 0 ℎ = 4

Panel A. Forecast Efficiency Regression

Liberal 0.56 0.76 0.40 0.90 0.42 0.94
BH 0.44 0.76 0.32 0.90 0.32 0.94
BY 0.20 0.68 0.18 0.76 0.20 0.82
FDP 0.16 0.66 0.18 0.76 0.14 0.92
Bonferroni 0.16 0.52 0.16 0.62 0.14 0.72
Holm 0.16 0.56 0.18 0.66 0.14 0.74
Holm 𝑘-FWER 0.20 0.66 0.20 0.76 0.20 0.82

Panel B. Over-reaction Regression

Liberal 0.52 0.37 0.32 0.55 0.26 0.54
BH 0.30 0.24 0.10 0.45 0.22 0.48
BY 0.16 0.16 0.04 0.33 0.10 0.25
FDP 0.16 0.12 0.04 0.29 0.10 0.23
Bonferroni 0.16 0.12 0.04 0.29 0.10 0.23
Holm 0.16 0.12 0.04 0.29 0.10 0.23
Holm 𝑘-FWER 0.18 0.18 0.08 0.33 0.12 0.25

The table shows the proportion of U.S. SPF respondents for whom the null is rejected at the 5% level when no allowance is made for
multiple testing (Liberal), and for controlling the FWER or the FDR. BH is Benjamini and Hochberg (1995) FDR control at the 5% level.
BY is Benjamini and Yekutieli (2001) control at the 5% level. FDP sets the probability that the false discovery proportion exceeds 5%
at less than 5%. Bonferroni controls the FWER at 5%. Holm is a stepdown generalization of Bonferroni. Holm 𝑘-FWER is a stepdown
implementation of 𝑘-FWER control (at the 5% level), with 𝑘 = 2.
The figures for the liberal strategy for the forecast efficiency regression correspond to those in Clements (2022), Table 2, page 547.
The actual values are the Bureau of Economic Analysis advance estimates, as made available in the Real Time Data Set for
Macroeconomists (RTDSM) maintained by the Federal Reserve Bank of Philadelphia: (Croushore and Stark, 2001).

Table 4
Multiple testing and individual forecasters’ perceptions of the
persistence of output growth.

Annual 10 year

Liberal 0.8519 0.4815
BH 0.8519 0.2963
BY 0.7778 0.0741
FDP 0.8148 0.0741
Bonferroni 0.7778 0.0741
Holm 0.7778 0.0741
Holm 𝑘-FWER 0.8148 0.2222

The table shows the proportion of U.S. SPF respondents for whom
the null is rejected at the 5% level when no allowance is made
for multiple testing (Liberal), and for controlling the FWER or
the FDR.
The figures for the liberal strategy correspond to those in
Clements (2020), Table 1.
See notes to Table 3 for details of testing approaches, or the
main text.

as constituting two different families of hypotheses, and do not explore the consequences of considering them as a single family
here.18

4.2. Forecasters’ perceptions of persistence

The second study we consider is the analysis of forecasters’ perceptions of output growth persistence of Clements (2020).
Following on from Krane (2011) and Bluedorn and Leigh (2018) and others, Clements (2020) investigates the beliefs or perceptions
of professional forecasters regarding the persistence of shocks to output, and in particular whether they are believed to be permanent,
or only have a temporary effect. We regress the revision to the long-horizon (10 year) average annual growth on the revision in the
quarterly forecast growth rate at 𝑡:

𝑟𝑡
[

𝛥𝑦𝑡,10
]

= 𝛼𝑖 + 𝛽10,𝑖.𝑟𝑡
[

𝛥𝑦𝑡,𝑡
]

+ 𝑣𝑖,𝑡 (19)

18 A case could also be made for treating hypotheses regarding the forecasts of the different variables as members of the same family.
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Fig. 3. 𝑝-values for tests of forecasters’ perceptions of output persistence for each respondent, using 10-year growth forecasts.

here 𝑟𝑡
[

𝛥𝑦𝑡,10
]

is the revision in the 10-year average forecasts made in the first quarters of the years 𝑡 and 𝑡 − 1, and 𝑟𝑡
[

𝛥𝑦𝑡,𝑡
]

is
the revision in the current-quarter growth rate (for the first quarter of the year) between the first quarters of the years 𝑡 and 𝑡 − 1.
The 10-year annual-average real GDP growth forecasts (SPF variable identifier RGDP10) were only collected for first quarter of the
year surveys, accounting for the pattern of revisions we adopt.

We also estimate a regression which replaces 𝑟𝑡
[

𝛥𝑦𝑡,10
]

by the revision in the current-year annual growth rate 𝑟𝑡
[

𝛥𝑦𝑡,𝑎
]

(between
the first quarters of the years 𝑡 and 𝑡 − 1). The right-hand-side variable is again the revision to the current-quarter growth rate
between the same two forecast origins.

4.2.1. Empirical findings
Regressions are run for each individual, and are shown in Clements (2020, Table 1). The estimates of 𝛽 are found to vary widely,

from −0.09 to 0.19 for the 10-year annual average growth rate, and from 0.053 to 0.782 for the annual average. Just under a half
of the twenty seven 𝛽 estimates are significantly different from zero for the 10-year forecasts, at the 5% level, while the null that
the slope coefficient is zero is rejected for 24 out of the 27 forecasters for the annual forecasts, again at the 5% level.

Clements (2020) considers whether the times of participation as a survey respondent help explain the cross-sectional differences
in the estimates of the perceptions of persistence, and whether the differences can partly be accounted for by small-sample variability
in the estimates. Our interest is instead whether the estimates of medium term and long-run (10-year) persistence hold up once an
allowance is made for MT.

Table 4 reports the findings, and Fig. 3 and Fig. 4 plot the 𝑝-values for each individual for the 10-year and annual forecasts.
Firstly, consider the annual forecasts in the first column. Making an allowance for multiple testing has little discernible effect. The
conservative Bonferroni correction reduces the number of rejections from 23 (out of 27) to 21, while BH results in the same number
of rejections of the null as for the Liberal approach. Fig. 4 plots the 𝑝-values. The large number of low values explains why controlling
either FWER of FDR has little effect on the number of ‘positive’ results.

For the 10-year forecasts (see the second column of the table), the pattern is rather different. As is evident from Fig. 3, there are
fewer low 𝑝-values compared to Fig. 4. The Bonferroni correction reduces the rejections from just under 1 in 2 to less than 1 in 10,
and the other FWER control techniques have the same effect. The effect of FDR control is now more sensitive to whether we use BH
or BY control. Siding with BY, to allow for dependence in the 𝑝-values, matches FWER control, leading to the overall conclusion of
little evidence of long-run (10-year) persistence.

4.3. Forecasters’ perceptions of uncertainty

Lastly, we re-analyse the study by Clements (2014) of the accuracy of individual forecasters’ beliefs about the uncertainty they
face. Clements (2014) considers whether professional forecasters tend to be under- or over-confident, and whether this depends on
the forecast horizon. In summary, Clements (2014) finds that forecasters tend to over-confidence at horizons in excess of one year,
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Fig. 4. 𝑝-values for tests of forecasters’ perceptions of output persistence for each respondent, using annual growth forecasts.

istograms – remains at a high level compared to the ex post measure as the horizon shortens. These findings are again based on
the U.S. SPF.19 We consider whether the overall findings are affected by making an allowance for multiple testing.

The histograms underpinning the estimates of ex ante uncertainty refer to the annual change from the previous year to the year
of the survey, as well as of the survey year to the following year. As an example, a Q1 survey will provide a 4-step ahead forecast
of the current year’s growth rate, and an 8-step ahead forecast of next years’ growth rate, and a Q4 survey will provide a 1-step
ahead forecast of the current year’s growth rate, and a 5-step ahead forecast of next period’s growth rates. This generates sequences
of fixed-event histogram forecasts, with horizons from 8 down to 1 quarter ahead, for the annual growth rates of GDP and the GDP
deflator inflation rate for each year. The histogram variance is the estimate of ex ante uncertainty. The variance can be calculated
by assuming the probability mass is uniform within each of the histogram bins, or that it is located at the mid-points of the bins, or
by fitting a parametric distribution. Clements (2014) follows Engelberg et al. (2009) and fits generalized beta distributions. Here we
fit normal distributions, with similar results, and triangular distributions when probabilities are assigned to one or two histogram
bins (following Engelberg et al., 2009). Clements (2014) uses the surveys from 1981:3 up to 2010:4. Point forecasts are provided
for the same horizons and quantities (i.e., annual average growth rates) as the histograms, and these are used to construct forecast
errors using real-time actual values.20 The (squares of the) forecast errors are used to proxy ex post uncertainty, and are compared
to ex ante uncertainty as described below.

4.3.1. Empirical findings
A formal test of whether a respondent’s subjective assessments of uncertainty deviate systematically from their ex post uncertainty

is constructed as follows. For respondent 𝑖, and horizon ℎ, the ex ante 𝜎𝑖,𝑡∣𝑡−ℎ and ex post (based on the forecast error, 𝑒𝑖,𝑡∣𝑡−ℎ)
uncertainty assessments are compared by calculating 𝑤𝑖,𝑡∣𝑡−ℎ = 𝑒𝑖,𝑡∣𝑡−ℎ∕𝜎𝑖,𝑡∣𝑡−ℎ, and then testing the null 𝐸

(

𝑤2
𝑖,𝑡∣𝑡−ℎ

)

= 1 using a
wo-sided alternative. Here 𝑡 indexes years, and ℎ the horizon, so e.g., ℎ = 1 indicates a fourth quarter survey forecast of the current
ear, and ℎ = 5 a fourth quarter survey forecast of the following year.

Following Clements (2014), Table 5 reports the results for all the within-year forecasts taken together (‘1-4’ in the table), and
or all the next-year forecasts taken together (‘5-8’). Within-year forecasts are of the current-year annual growth rates (relative to
he previous year), and next-year forecasts are of the year after the survey quarter year, relative to the survey quarter year.

Tests are also run which adjust for potential bias in the point forecasts, by replacing 𝑤𝑖,𝑡∣𝑡−ℎ = 𝑒𝑖,𝑡∣𝑡−ℎ∕𝜎𝑖,𝑡∣𝑡−ℎ with 𝑤𝑖,𝑡∣𝑡−ℎ =
𝑒𝑖,𝑡∣𝑡−ℎ − 𝑒𝑖,ℎ)∕𝜎𝑖,𝑡∣𝑡−ℎ, where 𝑒𝑖,ℎ is the sample mean of the forecast errors.

When no adjustment is made for multiple testing, Table 5 shows that the null is rejected for around a quarter of all respondents
or GDP growth (current and within-year), and for over a half of respondents for within-year inflation forecasts, and closer to a

19 Using the same approach, Knüppel and Schultefrankenfeld (2019) report similar findings for the inflation uncertainty forecasts from the Bank of England, the
anco Central do Brasil, the Magyar Nemzeti Bank and the Sveriges Riksbank. That is, these central banks’ uncertainty forecasts also tend to be underconfident
t short horizons and overconfident at longer horizons.
20 These are again taken from the Real Time Data Set for Macroeconomists(RTDSM) maintained by the Federal Reserve Bank of Philadelphia: (Croushore and
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Table 5
Summary of tests of individuals — proportion of regressions for which we reject 𝐸

(

𝑤𝑖,𝑡∣𝑡−ℎ
)2 = 1.

NBA BA NBA BA

1–4 5–8 1–4 5–8 1–4 5–8 1–4 5-8

Output growth Inflation

Liberal 0.28 0.28 0.27 0.31 0.57 0.29 0.64 0.28
BH 0.21 0.00 0.24 0.03 0.55 0.08 0.63 0.13
BY 0.14 0.00 0.20 0.00 0.47 0.03 0.55 0.07
FDP 0.13 0.00 0.17 0.00 0.45 0.03 0.48 0.07
Bonferroni 0.13 0.00 0.16 0.00 0.41 0.03 0.43 0.07
Holm 0.13 0.00 0.17 0.00 0.41 0.03 0.45 0.07
Holm 𝑘-FWER 0.14 0.00 0.19 0.02 0.43 0.03 0.48 0.07

For a given forecast horizon, for each individual with a sufficient number of forecast observations, we regress either 𝑤2
𝑖,𝑡∣𝑡−ℎ (‘NBA’ -

No Bias Adjustment) or [(𝑒𝑖,𝑡∣𝑡−ℎ − 𝑒𝑖,ℎ)∕𝜎𝑖,𝑡∣𝑡−ℎ]2 (‘BA’ - Bias Adjusted’), on a constant, and test the hypothesis that the constant is one.
We report rejection rates for the 5% significance levels. We consider together all the within-year forecasts (denoted ‘1-4’) and all the
next-year forecasts (denoted ‘5-8’).
The results in the first 4 columns replicate part of Clements (2014), Table 5, which ignores multiple testing issues. (The results are similar
but not exactly the same. Here we fit Gaussian distributions to the histograms. Clements (2014) fits Generalized Beta distributions).
See notes to Table 3 for details of testing approaches, or the main text.

quarter for next-year inflation forecasts. (The within-year forecast rejections are mainly due to under-confidence, and the next-year
due to over-confidence, but we only report two-sided tests here). These findings are not much affected by whether or not a bias
adjustment is made.

What happens if we make an allowance for MT? For next-year forecasts of output growth, any of the corrections result in no
rejections. The evidence against the null for the current-year forecasts is also reduced, with rejections for 1 in 6 or fewer, with little
variation across the form of FDR or FWER control.

For inflation we observe a similar outcome for the longer-horizon forecasts: rejections are greatly reduced (to less than 1 in 10,
apart from for the more liberal BH FDR control when a bias correction to the forecast errors has been applied). But MT leaves the
null hypothesis rejections largely intact for the within-year inflation forecasts. BH results in a few more rejections than the other
MT strategies, while BY and FDP, and the FWER strategies, all generate similar numbers of rejections.

We conclude that the null is rejected for nearly a half of the respondents at within-year horizons for inflation when an allowance
is made for MT. For output growth, MT reduces the rejections of the null to 1 in 6 at the within-year horizons, and removes all
evidence against the null at the longer horizons.

5. Conclusions

In health and medical research studies where a large number of null hypotheses are tested (e.g., in genomewide association
studies), the potential inferential problems of multiple testing are apparent. Following on from Benjamini and Hochberg (1995),
controlling the false discovery rate (FDR) has become increasingly popular, as an alternative to controlling the family-wise error
rate (FWER).

We investigate the consequences of making an allowance for multiple testing for testing hypotheses about individual respondents’
expectations. Typically far fewer hypotheses are run than in medical research or finance settings. Depending on the behavioural
hypothesis of interest, for quarterly macro surveys of professional forecasters, such as the U.S. SPF, there may be 50 or fewer
individuals to be tested. The results of a Monte Carlo study suggest that the relatively small numbers of hypotheses being tested
(relative to the number in genomewide association studies) does not invalidate the use of FDR. We investigate whether controlling
for the MT makes a material difference to the inferences we make about macro-expectations formation for a number of recent
studies. We find that whether or not controlling for MT matters depends on the hypothesis being tested. However, one of our key
findings is that the FWER and FDR approaches, with the exception of FDR-BH, tend to generate similar numbers of rejections. The
BH approach is more liberal, and closer to the unadjusted rejected rates. BH requires the independence of the 𝑝 -values, so may not
be appropriate.

To the best of our knowledge there are no other papers that address multiple testing in the context of individuals’ expectations
using macro surveys.

Multiple testing adjustments are considered for three papers that investigate forecaster behaviour by testing hypotheses for
individual forecasters. The first is Clements (2022), who considers whether forecasters are weakly efficient, in the sense of Mincer
and Zarnowitz (1969). In addition to considering whether multiple testing considerations affect the findings for weak efficiency, the
results for testing the closely related notion of the optimal response to news are also investigated. Without any adjustments, weak
efficiency is rejected for nearly half the respondents for short horizon forecasts, and for more than three-quarters of respondents’
year ahead forecasts. Bonferroni correction reduces the number of rejections to low proportions for the short-term forecasts. Other
approaches to controlling the FWER that are expected to be less conservative deliver similar numbers of rejections to Bonferroni.
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FDR-BH control at 5% has little effect on the number of rejections of efficiency, but allowing for dependence in the test outcomes
using FDR-BY again reduces the proportions of rejections to low levels for the short-horizon forecasts. The longer-horizon forecasts
are much less affected by MT adjustments, and the number of rejections are always above 1 in 2.

The effects of adjusting for multiple-testing on the optimal-reaction hypothesis (see, e.g., Fuhrer, 2018) were qualitatively
imilar: all corrections except for FDR-BH tend to markedly reduce the respondent rejection rates to low levels, especially for the
hort-horizon forecasts.

For the second paper, the study of forecasters’ perceptions of output growth persistence by Clements (2020), the effects of making
n allowance for multiple testing depend on whether we consider the ‘medium term’ or the ‘long term’. There is little effect from
ny of the FWER or FDR approaches on the number of rejections when we consider perceptions of medium-term growth prospects.
or the 10-year forecasts, however, all the approaches (other than FDR-BH and 𝑘-FWER) reduce the proportion of rejections from

just under 1 in 2 to less than 1 in 10.
Finally, in the third study of the accuracy of individual forecasters’ uncertainty assessments by Clements (2014), making any

adjustment for multiple testing removes the evidence for over-confidence at the longer horizons, but leaves the evidence for
under-confidence at within-year horizons for inflation largely intact.

We have adopted the conservative assumption that 𝜋0 = 1 in implementing FDR control, but in the Appendix, for selective cases,
indicate how the results would change for 𝜋0 less than one.

Overall our findings suggest the researcher would do well to consider multiple-testing adjustments when analysing individual
survey expectations. However, it may not matter much whether FWER or FDR control is used given the likely numbers of tests that
would be run for quarterly macro survey data.
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Appendix

Table 6 provides the details of the inference made for each individual respondent, for current-quarter consumption growth
forecast efficiency (MZ) tests. (The aggregate results are given in Table 3, Part A column 1). The first column gives the respondent
identifier, and the second column the sorted 𝑝-values. The liberal approach of ignoring MT issues results in rejecting for the 56%
of respondents with 𝑝-values smaller than 0.05 (at the 5% level: the respondents above and including respondent id463). With
Bonferroni correction (column (8)), we only reject the null for 16% of respondents. (In this column, a 1 indicates Reject. The
proportion of rejections is shown in the final row). For Holm in column (9), we present the 𝛼𝑖 values from Eq. (1), which are
compared to the sorted 𝑝 -values, 𝑝(𝑖), and turns out to give the same rejections as Bonferroni. Column (10) records the values of
𝛼𝑖 following (2) for Holm 𝑘-FWER control. Column (4) indicates rejections for FDR BH, from comparing the sorted 𝑝-values to the
values in column (3), BY (column (5)) results in fewer 𝑝-values being deemed significant relative to BH (column (4)). Column (6)
ecords the 𝑞-values for each test statistic. The interpretation of the 𝑞-value of 0.03739 for id 518 is that a rejection of the null for
his respondent comes with a concomitant expected proportion of false positives of 4.91% (which is admissible for our assumed
DR of 5%). The next largest 𝑞-value is 0.05176 (id 557), and we do not reject, as to do so would occur with a FDR above 5%.
rom Eq. (11) it is apparent that setting �̂�0 = 1

2 , say, will double the values in column (3). The effect of different values of 𝜋0 can
asily be determined — for �̂�0 =

1
2 the proportion of rejections increases from 0.44 for BH to 0.56, the proportion of rejections when

no allowance is made for MT. The effects on other approaches such as BY can also easily be determined. Column (7) records the 𝛼𝑖
(defined in (6)) against which the 𝑝 -values are compared to control the FDP. FDP control delivers the same rejections as Holm.

Table 7 provides another example, for the 4-quarter consumption growth reaction-to-news (The aggregate results are given in
Table 3, Part B, column 2). In this case, setting �̂�0 = 1

2 increases the BH rejection rate of 0.25 to 0.31, compared to the liberal
strategy of 0.37.
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Table 6
Illustration of the effects of Bonferroni correction and FDR control for forecast efficiency tests of ℎ = 0 forecasts of Consumption.

Individual 𝑝-value (𝑖∕𝑁) × 𝑞 BH BY 𝑞-value FDP Bonf. Holm 𝛼𝑖 Holm 𝑘-FWER 𝛼𝑖
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

20 0.0000 0.001 1 1 0.0000 0.0010 1 0.0010 0.0020
548 0.0000 0.002 1 1 0.0002 0.0010 1 0.0010 0.0020
484 0.0000 0.003 1 1 0.0003 0.0010 1 0.0010 0.0020
99 0.0000 0.004 1 1 0.0005 0.0011 1 0.0011 0.0021

428 0.0001 0.005 1 1 0.0006 0.0011 1 0.0011 0.0021
456 0.0002 0.006 1 1 0.0019 0.0011 1 0.0011 0.0022
426 0.0009 0.007 1 1 0.0059 0.0011 1 0.0011 0.0022
498 0.0009 0.008 1 1 0.0059 0.0012 1 0.0012 0.0023
420 0.0015 0.009 1 1 0.0083 0.0012 0 0.0012 0.0023
512 0.0017 0.010 1 1 0.0083 0.0012 0 0.0012 0.0024
433 0.0037 0.011 1 0 0.0161 0.0013 0 0.0013 0.0024
483 0.0039 0.012 1 0 0.0161 0.0013 0 0.0013 0.0025
524 0.0042 0.013 1 0 0.0161 0.0013 0 0.0013 0.0026
407 0.0056 0.014 1 0 0.0199 0.0014 0 0.0014 0.0026
526 0.0060 0.015 1 0 0.0199 0.0014 0 0.0014 0.0027
431 0.0084 0.016 1 0 0.0262 0.0014 0 0.0014 0.0028
414 0.0114 0.017 1 0 0.0301 0.0015 0 0.0015 0.0029
446 0.0114 0.018 1 0 0.0301 0.0015 0 0.0015 0.0029
439 0.0115 0.019 1 0 0.0301 0.0016 0 0.0016 0.0030
507 0.0128 0.020 1 0 0.0319 0.0031 0 0.0016 0.0031
508 0.0159 0.021 1 0 0.0375 0.0032 0 0.0017 0.0032
518 0.0165 0.022 1 0 0.0375 0.0033 0 0.0017 0.0033
557 0.0249 0.023 0 0 0.0518 0.0034 0 0.0018 0.0034
429 0.0255 0.024 0 0 0.0518 0.0036 0 0.0019 0.0036
506 0.0259 0.025 0 0 0.0518 0.0037 0 0.0019 0.0037
556 0.0284 0.026 0 0 0.0546 0.0038 0 0.0020 0.0038
405 0.0301 0.027 0 0 0.0558 0.0040 0 0.0021 0.0040
463 0.0471 0.028 0 0 0.0842 0.0042 0 0.0022 0.0042
527 0.0641 0.029 0 0 0.1086 0.0043 0 0.0023 0.0043
84 0.0654 0.030 0 0 0.1086 0.0045 0 0.0024 0.0045

535 0.0673 0.031 0 0 0.1086 0.0048 0 0.0025 0.0048
94 0.0714 0.032 0 0 0.1100 0.0050 0 0.0026 0.0050

423 0.0734 0.033 0 0 0.1100 0.0053 0 0.0028 0.0053
421 0.0748 0.034 0 0 0.1100 0.0056 0 0.0029 0.0056
510 0.0812 0.035 0 0 0.1161 0.0059 0 0.0031 0.0059
411 0.1046 0.036 0 0 0.1452 0.0063 0 0.0033 0.0063
542 0.1252 0.037 0 0 0.1692 0.0067 0 0.0036 0.0067
40 0.1437 0.038 0 0 0.1890 0.0071 0 0.0038 0.0071

422 0.1612 0.039 0 0 0.2067 0.0077 0 0.0042 0.0077
516 0.1764 0.040 0 0 0.2205 0.0115 0 0.0045 0.0083
472 0.1863 0.041 0 0 0.2271 0.0125 0 0.0050 0.0091
546 0.1959 0.042 0 0 0.2332 0.0136 0 0.0056 0.0100
555 0.2328 0.043 0 0 0.2708 0.0150 0 0.0063 0.0111
553 0.2703 0.044 0 0 0.3071 0.0167 0 0.0071 0.0125
520 0.2902 0.045 0 0 0.3203 0.0188 0 0.0083 0.0143
504 0.2947 0.046 0 0 0.3203 0.0214 0 0.0100 0.0167
404 0.5058 0.047 0 0 0.5381 0.0250 0 0.0125 0.0200
540 0.5886 0.048 0 0 0.6131 0.0300 0 0.0167 0.0250
528 0.6270 0.049 0 0 0.6398 0.0375 0 0.0250 0.0333
424 0.8193 0.050 0 0 0.8193 0.0500 0 0.0500 0.0500

0.56 0.44 0.20 . 0.16 0.16 0.16 0.20
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Table 7
Illustration of the effects of Bonferroni correction and FDR control for the reaction-to-news tests of ℎ = 4 forecasts of Consumption.

Individual 𝑝-value (𝑖∕𝑁) × 𝑞 BH BY 𝑞-value FDP Bonf. Holm 𝛼𝑖 Holm 𝑘-FWER 𝛼𝑖
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

20 0.0000 0.0010 1 1 0.0000 0.0010 1 0.0010 0.0020
405 0.0000 0.0020 1 1 0.0000 0.0010 1 0.0010 0.0020
99 0.0000 0.0031 1 1 0.0000 0.0011 1 0.0011 0.0021

414 0.0000 0.0041 1 1 0.0003 0.0011 1 0.0011 0.0021
498 0.0001 0.0051 1 1 0.0010 0.0011 1 0.0011 0.0022
404 0.0003 0.0061 1 1 0.0025 0.0011 1 0.0011 0.0022
527 0.0015 0.0071 1 1 0.0101 0.0012 0 0.0012 0.0023
535 0.0016 0.0082 1 1 0.0101 0.0012 0 0.0012 0.0023
439 0.0022 0.0092 1 0 0.0117 0.0012 0 0.0012 0.0024
94 0.0042 0.0102 1 0 0.0204 0.0013 0 0.0013 0.0024

507 0.0046 0.0112 1 0 0.0204 0.0013 0 0.0013 0.0025
557 0.0118 0.0122 1 0 0.0483 0.0013 0 0.0013 0.0026
548 0.0159 0.0133 0 0 0.0600 0.0014 0 0.0014 0.0026
426 0.0258 0.0143 0 0 0.0887 0.0014 0 0.0014 0.0027
431 0.0271 0.0153 0 0 0.0887 0.0014 0 0.0014 0.0028
506 0.0368 0.0163 0 0 0.1080 0.0015 0 0.0015 0.0029
429 0.0375 0.0173 0 0 0.1080 0.0015 0 0.0015 0.0029
504 0.0464 0.0184 0 0 0.1263 0.0016 0 0.0016 0.0030
456 0.0553 0.0194 0 0 0.1426 0.0016 0 0.0016 0.0031
84 0.0599 0.0204 0 0 0.1469 0.0032 0 0.0017 0.0032

508 0.0710 0.0214 0 0 0.1609 0.0033 0 0.0017 0.0033
421 0.0722 0.0224 0 0 0.1609 0.0034 0 0.0018 0.0034
483 0.0883 0.0235 0 0 0.1880 0.0036 0 0.0019 0.0036
433 0.1087 0.0245 0 0 0.2219 0.0037 0 0.0019 0.0037
484 0.1166 0.0255 0 0 0.2285 0.0038 0 0.0020 0.0038
555 0.1354 0.0265 0 0 0.2551 0.0040 0 0.0021 0.0040
542 0.1494 0.0276 0 0 0.2712 0.0042 0 0.0022 0.0042
446 0.1749 0.0286 0 0 0.3061 0.0043 0 0.0023 0.0043
40 0.1845 0.0296 0 0 0.3118 0.0045 0 0.0024 0.0045

520 0.2310 0.0306 0 0 0.3773 0.0048 0 0.0025 0.0048
540 0.2397 0.0316 0 0 0.3789 0.0050 0 0.0026 0.0050
528 0.2633 0.0327 0 0 0.4032 0.0053 0 0.0028 0.0053
411 0.2974 0.0337 0 0 0.4299 0.0056 0 0.0029 0.0056
407 0.2983 0.0347 0 0 0.4299 0.0059 0 0.0031 0.0059
510 0.4027 0.0357 0 0 0.5540 0.0063 0 0.0033 0.0063
526 0.4070 0.0367 0 0 0.5540 0.0067 0 0.0036 0.0067
518 0.4309 0.0378 0 0 0.5706 0.0071 0 0.0038 0.0071
424 0.5142 0.0388 0 0 0.6631 0.0077 0 0.0042 0.0077
422 0.5589 0.0398 0 0 0.7022 0.0083 0 0.0045 0.0083
546 0.6012 0.0408 0 0 0.7364 0.0125 0 0.0050 0.0091
428 0.6274 0.0418 0 0 0.7498 0.0136 0 0.0056 0.0100
524 0.6840 0.0429 0 0 0.7980 0.0150 0 0.0063 0.0111
420 0.8290 0.0439 0 0 0.9446 0.0167 0 0.0071 0.0125
516 0.8747 0.0449 0 0 0.9741 0.0188 0 0.0083 0.0143
512 0.9245 0.0459 0 0 0.9764 0.0214 0 0.0100 0.0167
553 0.9354 0.0469 0 0 0.9764 0.0250 0 0.0125 0.0200
556 0.9447 0.0480 0 0 0.9764 0.0300 0 0.0167 0.0250
472 0.9565 0.0490 0 0 0.9764 0.0375 0 0.0250 0.0333
463 0.9952 0.0500 0 0 0.9952 0.0500 0 0.0500 0.0500

0.37 . 0.25 0.16 . 0.12 0.12 0.12 0.18
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