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Abstract
Fundamental to the theory of data assimilation is that the data (i.e., the observa-
tions and the background) provide an unbiased estimate of the true state. There
are many situations when this assumption is known to be far from valid; and
without bias correction (BC), significant biases will be present in the resulting
analysis. Here, we compare two methods to account for biases in the background
that do not require a change to the data assimilation algorithm: explicit BC and
covariance inflation (CI). When the background bias is known perfectly it is
clear that the BC method outperforms the CI method, in that it can completely
remove the effect of the background bias whereas the CI method can only reduce
it. However, the background bias can only be estimated when unbiased obser-
vations are available. A lack of unbiased observations means that the estimate
of the background bias will always be subject to sample errors and structural
errors due to poor assumptions about how the bias varies in space and time.
Given these difficulties in estimating the background bias, the robustness of the
two methods in producing an unbiased analysis is studied within an idealised
linear system. It is found that the CI method is much less sensitive to errors in
the background bias estimate and that a smooth estimate of the bias is crucial
to the success of the BC method. However, the CI method is more sensitive to
uncorrected biases in the observations.

K E Y W O R D S

covariance inflation, offline bias correction

1 INTRODUCTION

Data assimilation, the systematic blending of observa-
tions with models, has proven to be essential to the
skill of modern-day numerical weather prediction, and its
potential in other areas of geophysics is now increasingly

being realised Carrassi et al. (2018). Fundamental to the
theory of data assimilation is that the observations and
the background (the best guess of the model state, usually
given by a previous forecast) provide an unbiased estimate
of the true state. The assimilation of unbiased data will
then provide a new estimate of the state (known as the
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2 FOWLER

analysis) that is also unbiased. Therefore, the problem of
data assimilation can be formulated in terms of finding the
state with the minimum error covariance (Kalnay, 2003).
Unfortunately, there are many situations when the biases
in the background and observations are far from negligi-
ble; therefore, the analysis will also be biased.

Here, we concentrate solely on correcting biases in
the background, assuming (rightly or wrongly) that the
observations are unbiased—possibly because the observa-
tions are of relatively high quality, have been carefully
bias-corrected before assimilation, or an online bias cor-
rection (BC) method Auligné et al. (2007) has successfully
been implemented). The background biases may be caused
by systematic errors in the numerical model propagat-
ing the analysis from the previous assimilation cycle to
become the background at the current assimilation cycle,
as well as biases in the previous analysis itself. The biases
in the model arise due to missing physical processes,
inadequate parametrisations, or systematic errors in the
boundary forcing, to name but a few. The complex sources
of the bias that manifests in the background mean that it
can be difficult to untangle them, and the background bias
may vary in time and space (Bonavita et al., 2012).

Two general approaches that could be taken to reduce
the bias in the analysis are:

• If the biases are known then they may be removed from
the background before assimilation, without attempting
to correct the source of the bias.

• If the biases are known then they may be used to inflate
the background error covariances, resulting in the unbi-
ased observations having more weight—as discussed in
Dee and Da Silva (1998). We shall refer to this method
hereafter as “covariance inflation” (CI).

A third approach could be to perform anomaly correc-
tion so that the model climatology is maintained during
the assimilation. This has the advantage of avoiding shocks
due to the assimilation of observations and the informa-
tion loss as the model returns to its climatology (Smith
et al., 2013). Post-processing can then be used to remove
the bias thereafter. This approach has gained popularity in
seasonal forecasting but has fewer advantages when inter-
ested in shorter lead times. As such, in the remainder of
this article we focus on the first two approaches.

If the biases are known exactly then explicit BC is the
most optimal approach to providing an unbiased analysis,
whereas the CI approach can only reduce the bias in the
analysis and is done so at the expense of increasing the
random error in the analysis, as will be discussed further
in Section 2.2. Explicit BC has therefore been the more
typical approach to treating background biases (e.g., Lea
et al., 2008; Laloyaux et al., 2020). The potential for CI has,

however, been acknowledged in a few applications, but it
is generally seen as a “blunt tool” to bias reduction and is
applied somewhat ad hoc, as stated by Bonavita and Laloy-
aux (2020). For example, in the ensemble Kalman filter, the
use of CI is common to counteract problems with under-
sampling due to the limited sample size but has also been
shown to reduce analysis bias (Raanes et al., 2019). Often,
the inflation is based on a simple scaling factor and is
unable to consider the spatial structure of the bias (Ander-
son, 2009; Miyoshi et al., 2010). Alternatively, the inflation
is generated using different random realisations of model
error in each ensemble member, encapsulating the ran-
dom model error but not explicitly the bias. For a review of
the different approaches to CI in the ensemble Kalman fil-
ter, see Houtekamer and Zhang (2016). In contrast, within
the UK Met Office’s implementation of ocean data assim-
ilation via NEMOVAR, the background error correlations
are modelled as the sum of two Gaussians, one with a
longer length scale to allow for a correction of large-scale
errors due to atmospheric forcing (Mirouze et al., 2016).
Again, this is a very simple way of addressing the bias
and does not address spatial and temporal variations in
the background bias. It has also been shown to sometimes
cause problems when assimilating sparse subsurface pro-
file observations. The use of CI to explicitly account for
significant background biases was applied to marine bio-
geochemistry data assimilation by Fowler et al. (2022) on
the northwest European Shelf seas. They found that the
skill of the analysis and forecast was very sensitive to the
use of CI and could cause large degradations as well as
improvements. They concluded that this sensitivity may be
due to the coarse binning of the bias when applying the CI
and, as such, the estimated bias did not give a good rep-
resentation of the bias characteristics in all regions across
the complex domain of the shelf seas.

In practice, the background bias can be estimated from
a historic sample of innovations (observation–background
differences). However, these will always be limited to
where high-quality, unbiased observations are available.
To reduce sampling error, assumptions about ergodicity
and homogeneity need to be imposed, which will limit the
amount of detail that can be provided about how the bias
varies in space and time. Methods to learn the bias online,
such as weak-constraint four dimensional variational data
assimilation (WC-4DVar Laloyaux et al., 2020), have also
been developed but are still constrained by the available
data and assumptions about how the biases vary in space
and time.

Given the difficulty in estimating the background bias,
this article aims to compare the performance of explicit
BC and CI in reducing the biases in the analysis state
in the case when the properties of the biases are only
approximately known. The robustness of each method
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FOWLER 3

to sample and/or structural errors in the estimate of
the bias is explored. In Section 2 we first present the
theory for how the biases in the background propagate
through to the analysis and the impact this has on the
analysis mean-square error (MSE) when the bias is unac-
counted for and when it is accounted for using explicit
BC (Section 2.1) and using CI (Section 2.2). In Section 2.3
the problem of estimating the bias in the background is
discussed and the necessary trade-off between the sample
size and the number of parameters used to model the bias.
In Section 3 numerical results are presented to demon-
strate how robust the two different approaches to BC are to
uncertainties in the estimate of the bias. Experiments are
performed when all observations are unbiased as well as
when one instrument has a systematic error in measuring
the same variable.

2 THEORY

We first present the general theory for when no attempt is
made to correct the biases in the data.

In variational data assimilation, the analysis of the
state at time i is found by minimising the following cost
function with respect to the state xi ∈ Rn:

J(xi) = (xi − xi
b)

T(Bi)−1(xi − xi
b)

+
(
yi − h(xi)

)T(Ri)−1(yi − h(xi)
)
, (1)

where yi ∈ Rpi are the observations relevant to xi and h(⋅) ∶
Rn → Rpi is the vector function mapping the state vari-
ables to those observed (this may include interpolation to
account for differences in location of the observations to
the model grid, a change of variables, or a dynamical model
to account for observations at different times). Ri ∈ Rpi×pi

is the observation error covariance matrix. xi
b ∈ Rn is the

background state vector at time i, and Bi ∈ Rn×n is the
background error covariance matrix.

The analysis that minimises Equation (1) is the state
with the minimum error variance assuming xi

b ∼ N(xi
t,B

i)
and yi ∼ N(h(xi

t),R
i); that is, the background and obser-

vation errors are Gaussian-distributed, unbiased estimates
of the truth xi

t, and their error covariances are accurately
given by Bi and Ri. It is also assumed that the observation
and background errors are uncorrelated with one another.
An analytical expression for the analysis that minimises
Equation (1) as a first-order approximation is then

xi
a = xi

b + Ki(yi − h(xi
b)), (2)

where Ki is the Kalman gain matrix given by a function
of Bi and Ri and the observation operator linearised about
the state, Hi:

Ki = Bi(Hi)T(HiBi(Hi)T + Ri)−1
. (3)

The error in the analysis given by 𝜀i
a = xi

a − xi
t has the

following covariance matrix:

Pi
a = (I − KiHi)Bi; (4)

see (Kalnay, 2003).
If biases are present in the background or observations,

then the analysis given by Equation (2) will still be the
state with the minimum error variance, as described by
Equation (4), but the analysis will now be biased. It fol-
lows from Equation (2) that the bias in the analysis will be
given by

𝜷 i
a = 𝜷 i

b + Ki(𝜷 i
y − h(𝜷 i

b)), (5)

where 𝜷 i
b and 𝜷 i

y are the biases in the background and
observations respectively. In the remainder of this article,
we assume, for simplicity, that the observation operator is
linear such that Equation (5) may be written as

𝜷 i
a = (I − KiHi)𝜷 i

b + Ki𝜷 i
y. (6)

From Equation (6), we see that if the observations are unbi-
ased (𝜷 i

y = 0) then the reduction in the bias in the analysis
compared with the background depends on the weighting
given to the observations (K). In regions where there is lit-
tle information in the observations, the bias in the analysis
will remain close to that of the background.

The expected outer product of the error (EOPE) of the
analysis, E[(xi

a − xi
t)(x

i
a − xi

t)
T] = Pi

a + 𝜷 i
a(𝜷 i

a)T, is then

EOPEi
a = (I − KiHi)Bi

+ (I − KiHi)𝜷 i
b𝜷

i
b

T(I − KiHi)T

+ Ki𝜷 i
y𝜷

i
y

TKiT + (I − KiHi)𝜷 i
b𝜷

i
y

TKiT

+ Ki𝜷 i
y𝜷

i
b

T(I − KiHi)T. (7)

Note that the mean of the diagonal values of the EOPE
matrix, (1∕N)trace(EOPE), gives the MSE.

The bias in the analysis will be propagated to become
the bias in the background at the following assimilation
cycle by the forecast model  and will include the bias in
the model accumulated over the forecast, bi:

𝜷 i+1
b = (𝜷 i

a) + bi. (8)

Similarly, the analysis error covariance will be propa-
gated to become the background error covariance matrix
at the following assimilation cycle by the linearised fore-
cast model M and will include the error covariance of the
model accumulated over the forecast, Q:

Bi+1 = MPi
aMT + Q. (9)
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4 FOWLER

If the model error is truly a bias and deterministic then this
will not contribute to Q. As such, for this study, we will not
consider Q further.

2.1 Explicit BC

If 𝜷 i
b is known then this can be removed from the back-

ground before assimilation. The analysis bias is then given
by the weighted observation bias only:

𝜷
BC,i
a = Ki𝜷 i

y. (10)

The BC superscript is used to label all vectors and matrices
derived using the explicit BC. Thereafter, the bias in the
background—see Equation (8)—will be

𝜷
BC,i+1
b = (Ki𝜷 i

y) + bi, (11)

which could continue to be removed at each assimilation
time. The analysis error covariance is unchanged by the
BC, and so is of the same form as Equation (4):

PBC,i
a = Pi

a = (I − KiHi)Bi. (12)

The EOPE of the analysis in this case is given by

EOPEBC,i
a = PBC,i

a + Ki𝜷 i
y𝜷

i
y

T(Ki)T. (13)

Instead of removing the background bias in one step,
a correction to the model could instead be applied at each
time step of the model evolution between the current anal-
ysis time and the next. This may be advantageous in terms
of the stability of the model and counteracting the effects
of the nonlinearity of the model on the developing bias but
does not impact the theory presented here.

2.2 Covariance inflation

In the presence of a background bias, Dee and Da
Silva (1998) showed that the analysis with the smallest
MSE ( 1

N
trace(Pa + 𝜷a(𝜷a)T)) is given by assimilating the

data using a background error covariance matrix inflated
by the outer product of the background bias:

B̃i = Bi + 𝜷 i
b(𝜷

i
b)T. (14)

The analytical expression for the analysis then has the
same form as Equation (2) but with K replaced by

K̃i = B̃i(Hi)T(HiB̃i(Hi)T + Ri)−1. (15)

The modified Kalman gain matrix means less weight is
given to the background and so the assimilation is given

more freedom to fit to the observations. Inflating not only
the variances but also the correlations means that the
observations can correct biases over large regions and
spread the correction to unobserved areas and variables.
Inflation is a much gentler approach to correcting the
bias, as only information on the magnitude of the bias is
provided and not the sign.

In this case, the bias in the analysis is given by

𝜷
CI,i
a = (I − K̃iHi)𝜷 i

b + K̃i
𝜷 i

y. (16)

The CI superscript is used to label all vectors and matrices
derived using the CI. The CI means that more weight is
given to the observations such that (I − K̃H) < (I − KH).
Therefore, if the observations are unbiased, 𝜷CI

a < 𝜷a. The
bias reduction is largest when the inflation is greatest,
which is when the background bias is largest. In the scalar
case, the ratio between the bias in the analysis with CI and
without (again assuming the observations are unbiased) is
given by

𝛽CI
a

𝛽a
=

𝜎2
y + 𝜎2

b

𝜎2
y + 𝜎2

b + 𝛽2
b

. (17)

Therefore, from Equation (17), we also see that the bias
reduction is also greatest when the observation and back-
ground error standard deviations are small compared with
the bias; that is, the bias is significant compared with the
random error.

If the observations are biased, 𝜷 i
y ≠ 0, then the CI

will also give more weight to the biased observations and
spread this bias via the inflated background error corre-
lations. Therefore, CI could be more susceptible to biased
observations than explicit BC.

The analysis error covariance matrix when CI is
applied is given by

PCI,i
a = (I − K̃iHi)B̃i − (I − K̃iHi)𝜷 i

b𝜷
iT
b (I − K̃iHi)T. (18)

This includes a correction term to account for the fact
that the true B matrix (i.e., the covariance of the ran-
dom background errors only) is not used during the
assimilation—see Eyre and Hilton (2013). The correction
term is subtracted as the overestimation of the background
error covariances will also lead to an overestimation of the
analysis error covariances if evaluated using Equation (4).
In the scalar case it is simple to show that PCI

a > Pa. The
generalisation of this result to the multivariate case is
discussed in Eyre and Hilton (2013).

The EOPE of the analysis is then

EOPECI,i
a = (I − K̃iHi)B̃i + K̃i

𝜷 i
y(K̃

i
𝜷 i

y)T

+ (I − K̃iHi)𝜷 i
b𝜷

i
y

TK̃iT

+ K̃i
𝜷 i

y𝜷
i
b

T(I − K̃iHi)T. (19)
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FOWLER 5

If the observations are unbiased (i.e., 𝜷y = 0) this will be
consistent with the minimum MSE possible for assimilat-
ing the given data.

The smaller analysis bias when using CI will be prop-
agated to become the bias in the background at the next
assimilation time using Equation (8). Similarly, the larger
analysis error covariance matrix using CI will be propa-
gated to become the background error covariance matrix
at the next assimilation time using Equation (9).

2.3 Estimating the bias

In applying both the explicit BC and CI methods, knowl-
edge of the bias in the background is needed. In practice,
the background bias cannot be known precisely. This is in
part due to the multifarious nature of the sources of the
background bias making it a function of many different
parameters causing it to vary in time and space. The back-
ground bias, however, can be estimated in regions of dense
and unbiased observations (Laloyaux et al., 2022).

A sample estimate of the background bias in the 𝑗th
state variable may be given by

𝛽b,𝑗 =
1

N𝑗

∑

k∈𝑗

[y(k) − h(xb,𝑗(k))], (20)

where y(𝑗) is the subset of unbiased observations relevant
to estimating the bias in the variable x𝑗 and N𝑗

is the size
of this sample.

Let the error in the sample estimate of 𝜷b be given by

𝝐 = 𝜷b − 𝜷b. (21)

The expectation of 𝝐 is zero; that is, 𝜷b is an unbiased
estimate of the bias if the samples are independent (Lewis
et al., 2006). This means that if 𝜷b was calculated repeat-
edly with different draws of the random variables y and xb
then, on average, we would have a good representation of
the background bias. In practice, though, the bias will only
be estimated at most once for each assimilation time.

The variance of the error in the sample estimate for the
𝑗th variable is given by

var(𝝐𝑗) =
𝜎2

d,𝑗

N𝑗

(22)

Lewis et al. (2006), where 𝜎2
d,𝑗 is the error variance of

the innovation given by R + HBHT in the multivariate
case. Therefore, the error in the sample estimate will
increase as the variance in the observations and back-
ground error increases and the sample size N𝑗

decreases.
The dependence of the sample error on the observation

and background error variances can be compared back to
Equation (17), the ratio of the bias in the analysis when cor-
rected using CI to no correction. We see that the conditions
that allow for the potential of the CI to reduce the bias to
be the greatest compared with not accounting for the bias
(small error variance in the observations and background)
is also when the error in the sample estimate of the bias
should be its smallest. This is a clear advantage of the CI
method, although the opposite is also true: when the bias
should have the least of an effect it is also most difficult to
estimate.

To increase the sample size and reduce the variance of
the sample error, Equation(22), we can reduce the num-
ber of parameters used to model the background bias. For
example, we may assume that the bias is constant over
a given time period or spatial region, effectively making
assumptions about the ergodicity and homogeneity of the
background bias—see Bonavita and Laloyaux (2020) for a
discussion of this in the context of numerical weather pre-
diction. It is not straightforward to determine the best way
to parametrise the background bias, meaning that there
will always be a trade-off between the number of parame-
ters (the model complexity for the bias) and the sampling
noise. Simple assumptions of ergodicity and homogene-
ity may be particularly unsuitable in geophysical models
where, for example, the domain can have complex bound-
ary conditions, such as coastlines and model dynam-
ics between different components of the Earth systems
are coupled (e.g., atmosphere–land–sea). The parametri-
sation of model bias is, therefore, a good candidate for
machine-learning tools, which may be expanded to learn
nonlinear relationships, and has been the subject of pre-
vious studies Farchi et al. (2021); Bonavita and Laloy-
aux (2020); Bocquet et al. (2020); Brajard et al. (2020).
Choosing how to parametrise the bias can also benefit
from physical knowledge to ensure the BC does not dis-
rupt balances within the model and to avoid unphysical
instabilities, for example, Bonavita and Laloyaux (2020)
pointed out the need to ensure that the learned cor-
rections are vertically balanced. However, even with the
most sophisticated machine learning algorithms the prob-
lems of sample size are still a challenge, and structural
errors due to an oversimplification of how the bias varies
remain.

The error in the estimate of the bias from a sample of
innovations will have an impact on the explicit BC theory
presented in Section 2.1. Owing to the error in the sample
estimate of the background bias, BC will no longer com-
pletely remove the background bias contribution to the
analysis bias—previously given by Equation (10). Instead,
the bias in the background will now be

𝜷
BC,i
b = 𝝐. (23)
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6 FOWLER

In the analysis, this will be reduced to (ignoring for now
any possible observation bias)

𝜷
BC,i
a = (I − KiHi)𝝐, (24)

which will then be propagated to the next assimilation
time as in Equation (8).

The uncertainty in the bias estimate from the innova-
tion sample used to correct the background will increase
the error standard deviation of the background, to become

B̂ = B + P̂, (25)

where P̂ is the sample error covariance projected into state
space given by

P̂ = 𝚪ZDZT𝚪T. (26)

𝚪 is the mapping from the parameter space of the back-
ground bias to the state space, Z is the mapping from
observation to parameter space, and D is the covariance
of the innovation scaled by the size of the sample, as in
Equation 22). For example, if the background bias is esti-
mated from N observations that fully observe the state at
each grid point and the bias is estimated for each state
variable then P̂ = (1∕N)(R + B). If the bias estimate is
parametrised at a much coarser resolution than the model
grid then 𝚪Z will have the effect of introducing larger
length scales into B̂.

If the uncertainty due to the sample estimate is not
accounted for then this will impact the analysis error
covariance, and instead of Equation (12), the following will
be true:

P̂
BC,i
a = (I − KiHi)Bi + (I − KiHi)P̂(I − KiHi)T. (27)

The EOPE of the BC method then taking into account
sample error will be

ÊOPE
BC,i
a = P̂

BC,i
a + (I − KiHi)𝝐𝝐T(I − KiHi)T. (28)

We could then propose a modification to the BC method
that takes into account the uncertainty in the bias estimate.
This could be achieved in a way that again does not require
changes to the data assimilation algorithm by inflating
the B matrix to include the sample error uncertainty as
in Equation (25) and will be discussed in the numerical
experiments in Section 3.

As the bias estimate is not used to directly correct the
state in the application of the CI method, it will not affect
the theory presented in Section 2.2. This may have the
benefit of allowing CI to be more robust to the sample
errors than BC. However, it will no longer be true that the

CI method (when observations are unbiased) provides the
minimum MSE analysis.

To increase the sample size and overcome the restric-
tions of the available observing systems, aspects of the
model bias could also be learnt from the analysis incre-
ments, (Bonavita & Laloyaux, 2020). However, the 𝜷b esti-
mated from analysis increments will still be limited by
the availability of unbiased observations. The bias esti-
mated will also be subject to the specified B matrix and the
accuracy of the multivariate correlations and biases in the
observation (Laloyaux et al., 2022). For these reasons, esti-
mating the uncertainty in the bias estimate derived from
analysis increments, to get an equivalent of Equation (26),
is more challenging.

Lastly, we comment on WC-4DVar, which aims to esti-
mate and correct the model bias online given a first guess
of the model bias and an estimate of the error covariance
of that first guess. This is advantageous over explicit BC, in
that it is acknowledged that the estimated bias has some
error. By using a window of observations, WC4D-Var will
also be more likely to find a BC that does alter the sta-
bility of the model. However, WC4D-Var is still reliant on
the presence of unbiased observations and is restricted by
the assumptions made about the structure of the model
bias (Laloyaux et al., 2020). WC4D-Var also has a disadvan-
tage in that it requires the data assimilation algorithm to
be modified and the size of the state to be optimised to be
increased, making the assimilation problem more complex
and more nonlinear.

In the next section, we illustrate how explicit BC and
CI are sensitive to the estimate of the background bias,
including the effects of sample noise, structural errors, and
smoothing the bias spatially.

3 NUMERICAL EXPERIMENTS

3.1 Idealised data assimilation system

To illustrate the ability of the explicit BC method and
the CI method to give an unbiased analysis we set up an
idealised linear system in which, without any methods
to control the bias, the background error covariance and
background bias remain constant as the assimilation sys-
tem is cycled. That is, the growth of the errors due to model
evolution is perfectly counteracted by the contraction of
the errors that occurs at each assimilation time step; that
is, 𝜷 i+1

b = 𝜷 i
b and trace(Bi+1) = trace(Bi).

For an optimal system where K uses the correct covari-
ance matrices and Q = 0, combining Equations 4 and 9
finds that for trace(B) to remain constant M would satisfy

MTM = (I − KH)−1. (29)
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FOWLER 7

Variable

B
M
M
M
M

F I G U R E 1 Experiment set-up. Given B matrix (left) and resulting linear model M (middle). On the right is the given background bias
(blue) and resulting model bias when observations are unbiased (orange), one instrument measuring variable 15 has a bias of −1 (dashed
green), one instrument measuring variable 30 has a bias of −1 (dash-dotted red), and one instrument measuring variable 30 has a bias of 1
(dotted purple). [Colour figure can be viewed at wileyonlinelibrary.com]

For the background bias 𝜷b to remain constant, combining
Equations 6 and 8 finds that the model bias must satisfy

b = [I − M(I − KH)]𝜷b − MK𝜷y. (30)

In the following experiments the state is given by a vari-
able on a periodic domain discretised into 60 grid points.
The B matrix is given by a circulant matrix with the corre-
lation between two points separated in distance by rk given
by the second-order autoregressive function

ck = (1 + rk∕L) exp(−rk∕L) (31)

with length-scale L = 2 and an error variance of 1 for each
of the 60 variables. The coupling between the two halves
of the domain is weakened by multiplying the covariances
between the two halves by 0.5, illustrated in the left-hand
panel of Figure 1.

The observations directly observe the state variables,
such that H = I. To compensate for this dense observ-
ing network, which would be unlikely in most appli-
cations, the error variance is set to 5 for each obser-
vation. The observation errors are uncorrelated, so that
R = 5 × I .

Given these prescribed B, R, and H matrices we then
compute MTM using Equation (29). To define the lin-
ear model M we apply eigendecomposition such that
U𝚲UT = MTM and choose M = U𝚲1∕2UT. This symmet-
ric M is illustrated in the middle panel of Figure 1. The
weak coupling in the background error covariances means
that the model is also weakly coupled between the two
halves of the domain. Note that there are many other M
matrices that would be consistent with Equations (29);
for example, V𝚲1∕2UT, where V is any orthonormal
matrix.

The background bias, which is constant in time, is
defined for the 𝑗th grid point as

𝜷b,𝑗 =
1
2

cos(2𝜋𝑗∕60). (32)

This is shown by the blue line in the right-hand panel of
Figure 1. The magnitude of the background bias peaks at
the edges of the two halves of the domain. This could be
consistent with a source of model bias coming from sys-
tematic error in the coupling of the two subdomains. The
maximum magnitude of the background bias, 0.5, is half
the background error standard deviation.

In the following experiments, we consider four cases
for the observation biases: (a) no biases are present in
the observations; (b) one instrument measuring variable
15 (where the background bias is zero) has a bias of −1;
(c) one instrument measuring variable 30 (where the
background bias is −0.5) has a bias of −1; and (d) one
instrument measuring variable 30 has a bias of +1. The
relatively large observation bias (compared with the back-
ground bias) was chosen to emphasise its impact in the
following experiments; however, it is still much less than
the observation error standard deviation of

√
5.

To maintain this background bias with the given M,
B, R, and H, the model bias is given by Equation (30).
In the first case, no observation biases, the model bias
is shown by the orange line in Figure 1. The weak cou-
pling means that the model bias is locally decreased at
the edge of the subdomain as less information from the
observations can constrain this region and so the model
bias needed to maintain the background bias is less. When
the observations are biased, this affects the model bias
needed to maintain the background bias. When the obser-
vation bias increases the mean innovation (as is the case
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8 FOWLER

Sample size = 10,000 Sample size = 100 Sample size = 10

Variable Variable Variable

A
S

F I G U R E 2 Top: Sample approximations to the true initial background bias (black line) for sample sizes of 10,000 (left), 100 (middle),
and 10 (right). The intensity of the colour indicates the spatial averaging of the sample estimate (see legend). Bottom: Absolute sample error.
[Colour figure can be viewed at wileyonlinelibrary.com]

when the observation bias is negative; green dashed and
red dash-dotted lines), a smaller model bias is needed in
the region of the biased observation compared with when
the observations are unbiased. When the observation bias
decreases the mean innovation (as is the case when the
observation bias is positive; purple dotted line), a larger
magnitude of the model bias is needed in this region. This
response of the model bias to the observation bias is very
contrived and not expected in practice but provides a clear
baseline of a constant background bias across the different
experiments.

3.2 Sample estimates of the
background bias

The background bias is estimated from a sample of inno-
vations as in Equation (20), assuming direct observations,
where the kth sample for the ith assimilation cycle is given
by

d(k)
i = 𝜼

(k)
y − 𝜼

(k)
b,i , (33)

with 𝜼
(k)
y ∼ N(𝜷y,R) and 𝜼

(k)
b,i ∼ N(𝜷b,i,Bi). Note, we only

need to draw samples of the errors as the underlying truth
will cancel when taking the difference in Equation (33).

In the following experiments, the background bias is
estimated from a sample of 10,000, 100, and 10 innova-
tions at each grid point. In practice, these sample sizes are
unrealistically large. The choice of 10,000 is to allow for
the performance of the schemes to be compared when the
sampling error is negligible. The sample size of 100 and
10 may potentially be obtained from a time series of obser-
vations, with the assumption that the background bias is
sufficiently constant over the sample.

Even if the model bias is constant in time, as we have
imposed in our system, the background bias will change
in time depending on how it is being corrected. To remove
this complication from the interpretation of the results we
draw a new sample of the innovations, Equation (33), at
each time so that only the effect of sampling error is seen
and not the added complexity of assuming the bias does
not change in time.

As discussed in Section 2, to reduce the effect of the
sampling error it is common to parametrise the bias. In the
following, estimates of the bias for each grid box are com-
pared with estimating the bias as a constant over 10 grid
boxes (reducing the number of parameters from 60 to 6 and
increasing the sample size for each bin 10 times).

The effect of the sample noise in estimating the initial
background bias for each of these assumptions is shown
in Figure 2 when the observations are unbiased. With a
sample size of 10,000 (left-hand panels) and estimating the
bias for every grid point, we see that we have a near-perfect
estimate (the error in the estimate is about 5% of the mag-
nitude of the maximum bias of 0.5). This allows us to see
the effect of the binning of the data. With only six bins the
variability in the bias is no longer captured and the error in
the sample estimate is increased to about 50% of the maxi-
mum magnitude of the bias, particularly at the edge of the
bins.

As the sample size is reduced, the larger bin sizes
become more beneficial for reducing the error in the esti-
mate of the bias. When the sample size is 10, without
the binning of the data the error in the estimate is about
200% of the magnitude of the bias, reduced to 100% the
magnitude of the bias when the estimate is coarsened.

To remove the discontinuous effect of the large bin size,
additional smoothing can be applied so that an estimate of
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FOWLER 9

the bias is given for each grid box as a weighted combina-
tion of the estimate from the two nearest values depending
on the distance from the centre of the bins. The effect
of this is shown in Figure 2 by the dashed lines. The
additional smoothing reduces the sampling error in each
case.

If an instrument used to estimate the background bias
from Equation (33) itself has a bias, then this will be
included in the estimate of the background bias. If only one
instrument has a bias then the impact on the estimate of
the background bias will be negligible when the estimate
is coarsened or smoothed.

4 RESULTS

4.1 Accounting for bias when the bias
is known perfectly

For the experimental set-up described in Section 3, we first
compare the performance of the explicit BC and CI when
the background bias is perfectly known as a baseline for
the experiments when the bias is not known exactly. The
left-hand panels in Figure 3 show the background statis-
tics, and the right-hand panels show the analysis statistics
for the case when there are no biases present in the obser-
vations as a function of 10 assimilation cycles.

Without any BC (the control, black line) the bias in the
analysis is reduced to an average value of 0.08 compared
with 0.31 in the background (a reduction of approximately
70%), whereas the mean error variance is reduced from 1
in the background to 0.382 in the analysis (a reduction of
approximately 60%).

At the initial cycle, the CI (red lines) background bias
is the same as in the control and the background error
variances are also the same. After, the initial cycle, how-
ever, the CI background bias reduces but the error variance
increases; however, overall, the MSE of the CI background
is reduced compared with the control. On the other hand,
as the bias is perfectly corrected in the BC (blue lines) back-
ground, the background bias remains constantly zero as
the assimilation cycles progress and the BC background
MSE is constantly equal to one. After assimilation, we see
that CI reduces the analysis bias by about 50% compared
with the control and increases the analysis error variances
by about 0.4%. So, overall, the MSE is reduced by 1%. In
contrast, the BC completely removes the bias and leaves
the analysis error variances unchanged, reducing the MSE
by 2%.

For comparison, we also show the case when only
the variances are inflated and no change is made to the
correlations in the B matrix (VI, green lines). This is a sim-
plification of the CI method. Compared with CI, this has a

much more limited ability to reduce the analysis bias and
has a much more dramatic impact on inflating the analy-
sis error variances as the assimilation is cycled, so that the
analysis MSE is overall much worse than not accounting
for the bias at all.

The importance of inflating the correlations as well as
the variances is further illustrated in Figure 4, in which
the effect of including the outer product of the bias on the
covariance structure of B and subsequently the sensitivity
of the analysis to the observations given by K̃ is shown. In
the left-hand panel, the structure of K (no CI) is shown.
We see that the sensitivities on the diagonal (the so-called
self-sensitivities) are about 0.2. The off-diagonal elements
(the cross-sensitivities) then show how the information
from the observations is spread to the neighbouring points,
with reduced spreading at the edge of the subdomains. The
CI causes large changes in the structure of the inflated B
(middle panel of Figure 4, cf. Figure 1), giving both positive
and negative correlations at much larger distances than
without inflation and increasing the coupling between the
two subdomains. The change in the B matrix has the effect
of increasing the self-sensitivities and cross-sensitivities in
the regions where the bias is of the same sign but giving
negative cross-sensitives between the regions where the
bias has a different sign (as seen in K̃ − K in the right-hand
panel of Figure 4). The change to the K matrix that the CI
causes allows a single observation to reduce the bias across
the domain. However, if the inflation is not applied cor-
rectly then this could have a large impact on the balances
implied by the B matrix.

Experiments in which one instrument contained a
bias, as described in Section 3, were also performed in
the case when the background bias was perfectly known
and accounted for with the two methods and compared
with the control when no attempt is made to account
for the bias. The effect of the observation bias on the
analysis mean and MSE at the 10th assimilation cycle
is summarised in Table 1. We see that the sensitivity of
the different methods to the observation bias depends on
how the bias in the observations relates to the bias in
the background. If the observation bias reduces the mean
innovation (as is the case when the observation of variable
30 has a positive bias) then the presence of the observa-
tion bias generally has a smaller negative impact than if
the observation bias increases the mean innovation. How-
ever, as anticipated, the CI method is the most sensitive to
the presence of an observation bias, particularly in terms
of the analysis bias.

The effect of the observation bias on the analysis
bias with the different methods is even more evident in
Figure 5, in which the analysis bias is plotted as a func-
tion of the variables for the 10th assimilation cycle. We
see how in each case the analysis bias is pulled towards
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10 FOWLER

(a) (b)Optimal Optimal

Control

M M

M

M

B

A

F I G U R E 3 The mean absolute bias (top), mean error
variance (middle) and mean-square error (MSE; bottom) for the
background (left) and analysis (right) as a function of the
assimilation cycle. The blue and red lines are when bias correction
(BC) and covariance inflation (CI) are applied respectively and the
bias is known exactly. The green line is when only the variances
are inflated (VI) as an approximation to the CI method. This can be
compared with the control when no attempt is made to correct the
bias (black line). Note the control mean error variance cannot be
seen as it lies directly under BC line. [Colour figure can be viewed
at wileyonlinelibrary.com]

F I G U R E 4 Left: the Kalman gain matrix, Equation (3); middle: the inflated background error covariance matrix, Equation (14), at the
initial time; right: the difference between the Kalman gain with inflation, Equation (15), and without inflation. [Colour figure can be viewed
at wileyonlinelibrary.com]

the observation bias. When the observation bias is in the
instrument observing variable 15 (where the background
bias is zero), we see that locally the analysis bias is simi-
lar for all three methods. When the observation bias is −1
in the instrument observing variable 30 (where the back-
ground bias is −0.5), we see that locally the CI method has
a larger analysis bias than the BC method, but both have a

smaller bias than the control. When the observation bias is
1 in the instrument observing variable 30 (where the back-
ground bias is−0.5), we see that locally the BC method has
a marginally larger analysis bias than the CI method, but
both have a larger bias than the control. It is not obvious
from these plots that the effect of the observation bias is
spread further with the CI method.
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FOWLER 11

T A B L E 1 Mean analysis bias, 𝛽a, and MSE after 10 assimilation cycles for experiments with different observation biases, as described
in Section 3.

Control BC CI

Ob bias (variable) 𝜷a MSE 𝜷a MSE 𝜷a MSE

None 0.080 0.391 0 0.382 0.04 0.386

−1 (15) 0.090 (↑12.5%) 0.392 (↑0.25%) 0.015 0.382 0.052 (↑30%) 0.387 (↑0.3%)

−1 (30) 0.090 (↑12.5%) 0.395 (↑1%) 0.015 0.382 0.055 (↑37.5%) 0.389 (↑0.8%)

1 (30) 0.070 (↓12.5%) 0.389 (↓0.5%) 0.012 0.382 0.035 (↓12.5%) 0.385 (↓0.3%)

Note: The percentage change in the statistic compared with when the observations are unbiased is given in parentheses. BC: bias correction; CI: covariance
inflation; MSE: mean-square error.

Variable Variable Variable Variable

N O O O

A

C

F I G U R E 5 Analysis bias as a function of variable for the 10th assimilation cycle for when the background bias is unaccounted for
(black) and accounted for using bias correction (BC; blue) and covariance inflation (CI; red). The different panels from left to right are for
when the observations are unbiased, observation of variable 15 has a bias of −1, observation of variable 30 has a bias of −1, and observation of
variable 30 has a bias of 1. The dashed lines are the analysis bias when the observations are unbiased. [Colour figure can be viewed at
wileyonlinelibrary.com]

4.2 Accounting for background bias
when the bias is not known perfectly

Next, we look at the effect of the sampling error in the
estimate of the background bias on the performance of
the two methods when the observations are unbiased. The
assimilation experiments are cycled in time with the two
different methods for bias treatment (BC, CI) when the
background bias is estimated from a sample of 10,000, 100,
and 10 innovations at each grid point (see Section 3.2).

The results from performing 10 assimilation cycles are
shown in Figure 6. When the sample size is large (first
column) and the bias is estimated for every variable (dark
lines) we see that the sampling noise has a limited impact
on the effectiveness of the BC and CI methods. Therefore,
the analysis statistics are very similar to when the bias was
known exactly (cf. Figure 3) and so the BC method still
outperforms the CI method.

When the sample size is large but the bias estimate is
coarsened by decreasing the bins (light solid lines), the per-
formance of both BC and CI deteriorates and results in an
MSE that is worse after a couple of assimilation cycles than

not attempting to correct for the bias at all. However, the
CI method is more robust and performs better than the
BC method. The bias for the BC method with coarsening
increases rapidly with each cycle as the errors in perform-
ing the BC are propagated and make the bias estimation in
the next cycle more difficult. With additional smoothing
(light dashed lines) the performance of both BC and CI is
again close to optimal.

As the sample size is reduced both BC and CI degrade
when estimating the bias at every grid point. But again
the CI method seems to be more robust, with the analysis
bias using the CI method remaining smaller than the con-
trol when the sample size is 100 and similar to the control
when the sample size is 10. In both cases, the analysis bias
of the BC method is larger than the control. However, if the
bin width is increased and additional smoothing is applied
(dashed lines) then the performance of the two schemes
is improved and the MSE is reduced again compared with
not accounting for the bias.

Figure 7 shows the analysis bias as a function of the
state variable for the 10th assimilation cycle. It can be seen
how the sensitivity of the BC method can be explained
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12 FOWLER

Sample size = 10,000 Sample size = 100 Sample size = 10
M

M
A

Cycle Cycle Cycle

F I G U R E 6 Mean absolute analysis bias (top row), mean analysis error variance (middle row), and analysis mean-square error (MSE;
bottom row) as a function of the assimilation cycle when the background bias is estimated. In each column, the bias is estimated from a
sample of innovations using Equation (20) with a sample size of 10,000 (left), 100 (middle), and 10 (right) with different numbers of bins. The
background bias is then accounted for using bias correction (BC; blue lines) and covariance inflation (CI; red lines). The darker lines are
when 60 bins are used, lighter lines are when six bins are used, and the dashed lines are when six bins are used with additional smoothing, as
illustrated in Figure 2. In each panel, the black dashed line is the value achieved when the bias is not accounted for (i.e., the control in
Figure 3). [Colour figure can be viewed at wileyonlinelibrary.com]

by the heterogeneity in the bias that is caused by the
noise in the sample estimate. Both the CI and BC analy-
sis biases are distributed about the optimal values given in
the first panel (cf. Figure 5). However, the BC estimates
suffer more from the sample noise; so, although centred
on zero, they have much greater variability. The noise in
the analysis will then propagate through to the forecast
and can be expected to increase instabilities and decrease
forecast skill.

Within these experiments, the differences between the
different methods caused by the errors in the bias esti-
mate tend to be greater than the differences caused by the
presence of observation bias (cf. Table 1 and Figure 5).

The experiments were designed such that the domain
was split in two with the two halves weakly coupled. This
was done so that the change in the covariance structure
caused by the inflation (cf. Figure 4) would reduce this
property of the system. Within the experiments shown it
is difficult to see any impact of this experimental design;
however, experiments were also performed with differ-
ing background bias structures and differing coupling
strengths between the two domains. Similar overall con-
clusions in terms of the two methods’ sensitivity to the
sample noise in the bias estimate can be drawn. From
these experiments, however, it was additionally noticed
that the bias in the analysis is more sensitive to error in
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FOWLER 13

Optimal Sample size = 10,000 Sample size = 100 Sample size = 10

Variable Variable Variable Variable

A

M

F I G U R E 7 Analysis bias as a function of the state variable for the 10th cycle. Bias correction (BC; blue lines) and covariance inflation
(CI; red lines) are performed when the bias is known exactly (first column, compared with the black line when not accounting for the bias),
and estimated from a sample size of 10,000 (second column) and 100 (third column), and 10 (last column) with different numbers of bins (see
legend). In each panel, the black dashed line shows the model error accumulated over each cycle. [Colour figure can be viewed at
wileyonlinelibrary.com]

the background bias estimate as the assimilation is cycled
in regions where the model bias is relatively small and
at the interface of the subdomains when the coupling is
weakened. Again, these sensitivities are greater for the BC
method than the CI method.

5 SUMMARY AND CONCLUSIONS

The aim of this short study was to provide insight on
the relative advantages and disadvantages of two simple
methods for accounting for background bias, namely
explicit BC and CI. Each method relies on having an esti-
mate of the background bias. When the background bias
is well known BC outperforms CI, as it is able to remove
the bias in the assimilation system completely and does
not increase the analysis error covariances. However, in
practice, the background bias must be inferred from a
dataset of unbiased observations; and owing to the lack
of observations and knowledge of how the bias changes
spatially and temporally, the estimate of the bias will
always be subject to error. Options for reducing the sam-
ple error include parametrising the bias so that it can be
described by fewer variables than the model grid. Choos-
ing the correct parameters is itself a challenge, and choos-
ing too few could result in too coarse a representation
of the background bias; we refer to this as a structural
error within the bias estimate. Parametrising the bias is an
obvious application for machine-learning techniques, but
even with the most sophisticated techniques some uncer-
tainty in the bias estimate will remain. Given this fact,
this study showed that CI proved to be much more robust
to errors in the bias estimate than the BC method, both
in terms of sample noise and structural errors in the bias
estimate.

This advantage of the CI method arises from its gentler
approach to correcting the bias, allowing the observations

to have greater freedom to correct for the background bias.
In addition, the resulting increase in the analysis uncer-
tainty has the benefit of acknowledging the presence of
the underlying bias, whereas the BC method imposes a
strict removal without any acknowledgement of the pro-
cess. It was also shown that inflating the background error
variances alone is not useful for reducing the background
bias; therefore, the alteration of the covariance structure
is crucial to the success of CI method. Although only
experiments with a fully observed system were performed,
the correlations would be even more essential when the
system is only sparsely observed.

The effect of the sensitivity of the BC method to errors
in the bias estimate was shown most evidently in the spa-
tial plots of the analysis bias (see Figure 7). Here, it was
clear that the noise in the analysis caused by errors in
the bias estimate with the BC method are magnified as
the assimilation system is cycled. Smoothing the bias esti-
mate is therefore essential for the BC method. When the
bias is parametrised in terms of spatial regions, then apply-
ing a smoothing algorithm is straightforward; however, for
more complex parametrisation schemes (e.g., that might
arise from machine learning), smoothing may be more dif-
ficult to implement, and so the application of machine
learning should be done with this in mind.

For both methods, it is assumed in theory that the
observations are unbiased. Experiments were performed
to understand how a bias in an instrument observing a
single variable might impact the analysis when the back-
ground bias is accounted for by the two methods. It was
shown that the CI method is much more sensitive to the
presence of an observation bias; but, depending on how
the observation bias affects the mean innovation bias, the
analysis bias in the vicinity of the biased observation could
be largest with either the CI method, BC method, or not
accounting for background bias at all (see Figure 5). The
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differences between the methods were illustrated for the
case when observations were available of every grid point.
However, it can be anticipated that the problem of obser-
vation biases would be greater when the observations are
much sparser, such as with infrequent profiler observa-
tions available in the ocean.

The inadequacies of these simple approaches to
accounting for background bias are overcome to a degree
by WC4D-Var. The approach of WC4D-Var is to specify a
first guess for the model bias normally accumulated over
one time step and to then model the uncertainty in this
with an error covariance matrix Q. The estimate of the
model bias is then updated given observations over a time
window. The correlation structure in Q can be used to
ensure that the updates to the bias estimate are smooth,
and by taking a window of observations this will also help
to mitigate instabilities being introduced that will be mag-
nified as the model is propagated. However, WC4D-Var is
still reliant on having many unbiased observations, and
the specification of Q is non-trivial (Laloyaux et al., 2020).
Also, for many applications, this approach is simply not an
option, due to the added complexities of the algorithm.

The application of the BC method with an inflated
background error covariance matrix to account for the
sampling error in the estimate of the background bias was
also explored. Like WC4D-Var, this enhances the ability of
the observations to make corrections to the BC applied.
However, in our experiments (not shown), this was not
found to be especially beneficial and was unable to coun-
teract the noise already introduced by the BC.

These results were all illustrated in a univariate lin-
ear model, designed such that without BC the background
error covariance matrix and background bias were static
with successive assimilation cycles. This meant that the
background bias to correct was clearly defined, which
would not be the case if the model error also had a random
component. This choice of model allowed for easy com-
parison between the different methods, removing the com-
plexity of nonlinear effects on the analysis bias. However,
the simplicity of this model has limited some of the con-
clusions that can be drawn. In future work, the impact of
the different methods of BC on the stability of the dynam-
ics will be studied in a model in which balances should be
preserved during the assimilation. A multivariate model
will also allow for a comparison of the BC methods when
the bias can only be estimated for parts of the system due
to the incomplete coverage of unbiased observations.
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