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Abstract 

Proteins play a crucial role in the biological machinery of living organisms, with their structures 

dictating functions essential for life processes. Disruptions in protein function lead to diseases. 

Therefore, knowledge of proteins is vital for biomedical sciences and biotechnology. Protein 

structures are experimentally determined by NMR or X-ray crystallography, but computational 

methods have gained prominence due to their speed and accuracy. Recent advances in protein 

structure prediction provide high-accuracy 3D models, challenging quality estimation methods. 

Predicting residue contacts can be useful in obtaining significant information that may be used 

to improve the performance of quality estimation methods. Contact prediction methods have 

evolved, utilising diverse protein databases and approaches to enhance 3D protein model 

accuracy. However, challenges persist in modelling certain targets. This study proposes 

consensus approaches, combining data from deep learning-based contact prediction methods 

from CASP13 and CASP14, leading to measurable advancements in accuracy.  

We then investigated the role of consensus contact prediction in improving the performance of 

ModFOLD9 using the CDA score. The experiment expanded to integrate various quality scores 

derived from the pure-single model and quasi-single model methods to further enhance 

ModFOLD9's accuracy. The consensus algorithms and contact prediction improved 

ModFOLD9's local quality estimations for tertiary structure models. This strategy was 

extended to enhance the IntFOLD7 and ModFOLDdockS servers. We analysed the 

performance of the improved servers using two gold-standard blind experiments: CAMEO and 

CASP15. The evaluation of these servers validated their improved performance and 

highlighted the impact of contact prediction on enhancing both local tertiary structure model 

quality estimations and quaternary structure model quality estimates for interface residues. 

Overall, our study demonstrated the importance of contact prediction in improving the 

performance of model quality estimation tools in the field of protein structure prediction. 
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1.1 Proteins 

Four major macromolecules sustain life in living organisms: polysaccharides, lipids, nucleic 

acids, and proteins. Proteins are essential components in the composition of all cells and tissues, 

constituting approximately 15.1 % of the body weight (Wang et al., 2003; Ma et al., 2022). 

Proteins are involved in most biological systems and are critical in many activities, such as 

immunological defence, structural support, the catalysis of chemical processes, and hormone 

regulation (Nahirñak et al., 2012; Stollar and Smith, 2020; Ma et al., 2022). The unique shapes 

of proteins determine their functions in different activities. Therefore, understanding the 

structure-function relationship of proteins is crucial for studying their roles in biological 

processes and developing therapeutic interventions. 

 

1.1.1 The Native Structures of Proteins 

Proteins are carbon-based structures, as carbon (C) atoms are the major constituents of the 

amino acid building blocks. Amino acids have three common components: an amino group (-

NH2), a carboxylic acid group (-COOH) and an alpha carbon (Cα) atom. Amino acids are then 

linked by peptide bonds, constituting linear chains of polypeptides. The amino acids are 

distinguished by the R group or side chain attached to Cα atom. The R group has a varied 

chemical nature, giving each amino acid its unique properties, such as polarity and 

hydrophobicity (Figure 1.1). This group diversifies the amino acids' functionality, allowing 

proteins to perform a vast array of functions in the body (Stollar and Smith, 2020). 

Protein structures fold through both covalent (disulfide) and non-covalent interactions between 

amino acids within the polypeptide chains. These non-covalent bonds are weak and reversible, 

which means they could be broken and reformed during the protein dynamic movements. The 

non-covalent bonds include hydrogen bonds, ionic bonds, van der Waals forces as well as 

hydrophobic interactions. The different chemical properties of the amino acid side chains allow 
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a protein to adopt its three-dimensional (3D) structures to perform the function needed (Stollar 

and Smith, 2020).  

 

Figure 1.1. The general biochemical structure of amino acid. The amino acid is a carbon-

based structure (carbon alpha) consisting of three chemical molecules: amino group (-NH2), 

carboxylic acid group(-COOH), and hydrogen (H). The amino acid has an R group attached to 

Cα, which makes it unique from other organic compounds.  
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Specific sequences of amino acids form proteins with specific shapes and functions. The 

interaction between side chain and backbone atoms guides the protein folding process, which 

shapes the protein into its specific 3D structure. The specific protein structure is crucial in 

function as it determines how it interacts with other molecules in biological systems. Proteins 

perform versatile functions, such as acting as enzymes in metabolic reactions, acting as 

messengers in genetic translation by serving as transcription factors that regulate the initiation 

of RNA synthesis, or providing structural scaffolds in cell building. Therefore, changes in 

protein structure can cause malfunctioning cellular systems, which can lead to disease. For 

example, sickle cell disease is caused by a mutation in the structure of haemoglobin, a blood 

protein responsible for carrying oxygen into cells. The mutation alters a single amino acid, 

resulting in a change in the shape of haemoglobin. The modified shape of sickle haemoglobin 

prevents it from effectively binding with oxygen, leading to various health complications. 

Hence, understanding protein structures can help us learn more about the biological systems 

for developing treatments and interventions for diseases caused by protein structure 

abnormalities (Stollar and Smith, 2020). 

Protein structures form and fold in four levels: primary, secondary, tertiary and quaternary. The 

primary structure refers to protein sequence, the specific linear arrangement of amino acids. In 

protein sequence, each amino acid is a residue, and a series of peptide bonds between carbon 

and nitrogen atoms constitute the backbone chain of the protein. The secondary structure is 

formed by organising the primary structure due to hydrogen bonds between each residue's 

carbonyl (C=O) and amino group. The backbone chain can rotate around the Cα atoms, forming 

two types of secondary structures: alpha-helices and beta-sheets. Tertiary structures refer to the 

3D shape or fold of the protein. At this level, the protein fold is stabilised with longer-range 

interactions. Hydrophobic interactions, ionic bonds, Van der Waals forces and disulfide bridges 

between the amino acid residues help fold up the chain and organise the secondary structures 
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in 3D. The specific 3D folds confer specific functions and allow specific interactions between 

chains. The quaternary structure level is composed of multiple folded subunits with two or 

more interacting polypeptide chains (Figure 1.2) (Stollar and Smith, 2020).  

 

 

Figure 1.2. The levels of protein structure. A) A primary structure represents amino acid 

sequences, which is a simple level of protein structure. B) Beta sheet is one type of secondary 

structure that represents a local structure of protein and is determined by linking amino acid 

sequences through hydrogen bonds. C) Tertiary structure forms a 3D structure of Polypeptide 

chains created by interacting side chains of amino acid sequences. D) Quaternary level is a 

complex of secondary structure units linked by non-covalent interaction. The example query 

protein is an active KRAS G12D (GPPCP) dimer in a complex with BI-5747(PDB ID: 7ACA). 

The 3D structure was visualised by Mol*Viewer (Sehnal et al., 2021). Adapted from (Kessel 

and Ben-Tal, 2018). 

  

Tertiary level 

Quaternary level 

Secondary level 

Primary level 
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1.2 The Protein Folding Problem 

Research on the folding of protein sequences into their tertiary structures has received much 

attention for decades because of its importance to biomedical sciences, biotechnology and other 

fields in the life sciences. Understanding how protein sequences fold into (3D) structures is 

fundamental and helps us to solve biological problems based on the sequence-structure-

function paradigm. Using knowledge of protein 3D structures, researchers can better 

understand the pathways of biological systems and disease mechanisms. Experimental 

approaches, including cryo-electron microscopy (cryo-EM), X-ray crystallography and nuclear 

magnetic resonance (NMR) spectroscopy, have been developed to determine protein structures 

(Breda et al., 2008; Rangwala and Karypis, 2010; Suh et al., 2021; Bertoline et al., 2023).  

 

The cryo-EM uses a freezing method to analyse protein samples with an electron microscope. 

NMR applies a magnetic field to analyse the responses of atomic nuclei in protein samples. X-

ray crystallography involves crystallising a protein sample and subjecting it to X-ray analysis. 

These techniques uncovered protein structures, enriching our understanding through 

experimentally derived structural data (Ma et al., 2022). However, these methods have 

drawbacks, as they are expensive, and the effort required to resolve structures can be time-

consuming, with some structures taking many years to solve. Conversely, obtaining DNA and 

protein sequences is comparatively very rapid and inexpensive. Therefore, as a result of this 

disparity, there is a notable gap between the number of protein sequence entries in protein 

databases (at the time of writing this chapter there are 251,600,768 sequences in UniProt: 

https://www.ebi.ac.uk/uniprot/TrEMBLstats) and the number of protein structures that 

experimental methods in the PDB have determined is 211,103 

(https://www.rcsb.org/stats/growth/growth-released-structures) (Emerson and Amala, 2017; Li 

et al., 2020; Pearce and Zhang, 2021b; Bertoline et al., 2023).  

https://www.ebi.ac.uk/uniprot/TrEMBLstats
https://www.rcsb.org/stats/growth/growth-released-structures
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This means that most protein sequences have unknown structures and functions, requiring 

extensive time and effort to resolve these all experimentally. Fortunately, computational 

methods have been developed, which provide a rapid and cost-efficient way to elucidate 

structures compared to experimental structure determination procedures. These methods can 

work quickly and reasonably accurately to predict three-dimensional (3D) models for protein 

sequences with unknown structures. Recent biomedical studies used computational methods 

for modelling protein-related diseases (Anderegg et al., 2022; Bhojwani and Joshi, 2022; Fathi, 

Sakhteman and Solhjoo, 2023; Sathiyamani et al., 2023). Hence, continued computational 

research in protein structure and function will contribute to advancements in various fields, 

including medicine, biotechnology, and bioengineering. 

 

1.3 Protein Structure and Function Prediction 

Computational studies for protein structure and function prediction include three major 

categories: protein tertiary structure prediction (a.k.a single chain prediction), protein complex 

structure prediction, and protein function prediction. In each of these fields, computational 

tools were developed to predict or assess certain aspects related to the protein prediction field. 

The tertiary structure prediction field is interested in solving the prediction problem for single 

protein structures. The computational methods of tertiary structure prediction also involve the 

subcategories of modelling, quality assessment, refinement, and contact prediction (Farhadi, 

2018; Pereira et al., 2021; Huang et al., 2023). Here, the prediction goal is to predict 3D 

coordinates of proteins from their target sequences with high accuracy (Jumper et al., 2021b; 

Pereira et al., 2021).   

The protein complex structure prediction field intends to predict 3D models for protein 

interactions, including quaternary structures and the interactions with other biological 

macromolecules such as nucleic acids (Puton et al., 2012). Various protein complex prediction 
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approaches have been developed to predict the structures and interaction interfaces of large 

assemblies (Puton et al., 2012; Zahiri et al., 2020). Finally, protein function prediction methods 

attempt to identify the functions and/or model the functional regions. or binding sites in protein 

structures. In this field, the predictors aim to design methods to predict the potential functional 

parts of protein in biological systems, such as the ligand-binding sites in 3D models (Roche, 

Buenavista and McGuffin, 2013; Bonetta and Valentino, 2020; Ma et al., 2022). Our main 

initial focus will be to develop methods to help improve quality estimates for protein tertiary 

structure prediction, however, aspects of our approach might also be applied to quaternary 

structure prediction and function prediction in future.  

 

 1.4. Computational Methods for Tertiary Structure Prediction: 

Classical computational studies sought to understand the native state of protein structures based 

on principles of physical law. The earlier computational analysis of protein structures started 

in the 1960s when Shneior Lifson extended molecular mechanics modelling to include large 

molecules (Hagler and Lifson, 1974; Hagler, Huler and Lifson, 1974; Wodak et al., 2023). The 

technique aimed to compute a protein's physical and chemical characteristics in a vacuum. 

After that, computational investigations were conducted to study the behaviour of amino acid 

residues and determine their electrostatics in solution state by designing the computational 

models based on molecular mechanics and continuum electrostatics (Eisenberg and 

McLachlan, 1986; Gilson, Sharp and Honig, 1988; Onufriev, Case and Bashford, 2002; Marcu, 

Tăbîrcă and Tangney, 2022; Wodak et al., 2023). This physical-based method aimed to use a 

force field function to estimate the forces between residues and the potential energy, which had 

limited accuracy in predicting the native states of protein structures (Onufriev, Bashford and 

Case, 2004; Ho and Dill, 2006; Wodak et al., 2023).  

The next move in modelling prediction was designing knowledge-based methods to employ 
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statistical algorithms such as coarse-grained potentials. Such algorithms were used to model 

small protein structures from their amino acids as well as been used for ranking and scoring 

the models (Levitt, 1976; Jernigan and Bahar, 1996; Shen and Sali, 2006; Kmiecik et al., 2016; 

Marcu, Tăbîrcă and Tangney, 2022; Wodak et al., 2023).  

With the exponential growth of protein databases in the 1990s, the predictors started to exploit 

the benefits of experimental structure data to design computational modelling methods. The 

experimental structures were used as templates in modelling methods to predict the unknown 

protein structures from the same family. This kind of method was known as template-based 

modelling (TBM) as they predicted protein structures based on evolutionary similarity, or 

homology, to proteins with solved structures. In other words, the TBM methods were developed 

based on the assumption that homologous proteins with similar sequences will adopt similar 

structures. The methods were designed to align the target sequence of interest with the template 

and then copy the equivalent template residue coordinates to produce a predicted 3D model 

(Zhang, 2008; Zhang, 2009b; Kuhlman and Bradley, 2019; Dhingra et al., 2020; Elofsson, 

2023; Wodak et al., 2023). These TBM approaches and available experimental structures can 

provide structural information for a significant portion of known protein families (Ovchinnikov 

et al., 2017; Kuhlman and Bradley, 2019). 

Protein targets, whose similar experimental structures were not discovered, were predicted 

based purely on their sequences to derive their physical and chemical features (Bonneau et al., 

2001). Such prediction approaches were traditionally called de novo prediction or ab initio 

prediction methods. As these methods did not use templates to apply structural similarity 

techniques, they are now known as template-free modelling (FM) methods in the tertiary 

structure prediction field (Kuhlman and Bradley, 2019; Dhingra et al., 2020; Wodak et al., 

2023). Template-free modelling was one of the remaining challenges in protein structure 

prediction, as it was difficult to model protein structures without templates. Unlike TBM 
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methods, FM methods required intensive computational resources and often led to predicted 

models with lower accuracy than those obtained via TBM (Kuhlman and Bradley, 2019). 

The accuracy of the prediction methodology was the foremost concern in the protein structure 

prediction field. Therefore, incremental development had significantly enhanced the predictive 

performance. For improving the ab initio prediction, fragment-based assembly procedures were 

introduced to assemble parts (fragments) derived from related protein structures into the model 

being studied (Bonneau et al., 2001; Jones, 2001; Zhang, 2009a; Kuhlman and Bradley, 2019; 

Marcu, Tăbîrcă and Tangney, 2022; Elofsson, 2023; Wodak et al., 2023).  

A significant development in modelling approaches was incorporating the evolutionary 

information from multiple sequence alignments (MSAs). One of the proposed uses for this 

evolutionary data was to use it to derive predicted contacts between amino acids within the 

folded chain (Göbel et al., 1994). This approach is based on the hypothesis that if two residues 

at different positions in the sequence show simultaneous mutations in the sequence alignments, 

then the mutations are correlated and therefore, these two residues are likely in contact with 

3D structures (Kuhlman and Bradley, 2019; Wodak et al., 2023). However, the performance 

was modest for these early “correlated mutation” based methods as this approach was affected 

by the transitive correlations in alignment, where two residues might be indirectly correlated 

with the third residue, leading to noisy results. To solve this issue, statistical approaches such 

as direct coupling analysis pseudolikelihood optimisation were introduced to minimise the 

noise in the alignment (Morcos et al., 2011; Ekeberg et al., 2013; Kamisetty, Ovchinnikov and 

Baker, 2013; Wodak et al., 2023). However, even using statistical-based methods, the resulting 

predicted models had limited accuracy.  

As the technology developed, modelling methods were improved by integrating the statistical-

based methods with machine learning methods to improve contact prediction accuracy (Wang, 
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Sun, et al., 2017; Pearce and Zhang, 2021a; Zheng et al., 2021; Elofsson, 2023). The modelling 

methods integrating evolutionary-based approaches with deep learning neural networks, which 

are so-called ‘meta-servers’, advanced the modelling prediction and improved the accuracy of 

3D models (Wodak et al., 2023). The performance of such methods was attributed to the ability 

of deep learning algorithms to learn and extract the hidden patterns in the experimental data 

(Lee et al., 2022). These algorithms subsequently advanced to such an extent that they gained 

phenomenal attention - it was claimed that the single protein chain prediction problem was 

effectively “solved” by AlphaFold2 (AF2) (Jumper et al., 2021a). The second version of 

AlphaFold was developed using an end-to-end learning approach based on transformer models 

that incorporated the evolutionary data and geometric and physical restrictions (Lee et al., 

2022; Marcu, Tăbîrcă and Tangney, 2022; Wodak et al., 2023). Following the lead of AF2, 

other methods, such as RoseTTAFold (Baek et al., 2021), were developed by expanding its 

transformer architecture and adding a three-track neural network. These two methods predicted 

3D models with comparable accuracy to experimental structures (Baek et al., 2021; Wodak et 

al., 2023). However, it must be stated that they still have significant local errors for many 

targets (Akdel et al., 2022; Liang et al., 2022; Pak et al., 2023; Wodak et al., 2023).  

 

1.4.1 Quality Estimation Prediction 

Protein structure modelling pipelines often involve several stages, including predicting contact 

and distance maps, building 3D models, scoring of model quality to identify any local errors 

and then model refinement to fix the errors. In the modelling process, often many alternative 

models are generated, and these need to be ranked based on their quality in order to select the 

ones closest to the native structures. Thus, this assessment and ranking by model quality is 

crucial in various stages of protein structure prediction, from refinement to model selection 

(Won et al., 2019). 
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To assess the quality of the generated models, scoring methods known as quality estimation 

(QE) or quality assessment (QA) methods have been developed. These methods aim to evaluate 

the models at two levels: local and global. Local assessment focuses on detecting errors in 

specific localised regions of the model, i.e., how accurately the modelled residue coordinates 

are predicted to match up with their corresponding residue coordinates in the reference 

structures. Local quality assessment helps us to estimate discrepancies and errors in the local 

regions of the model, producing scores for each residue. Global assessment aims to evaluate 

the overall quality of the model, and these scores can be compared to rank alternative models. 

A single global score is applied, which considers each model in its entirety and estimates its 

overall similarity to the native structure (Won et al., 2019). 

Various scoring methods were developed to assess individual models of proteins using different 

algorithms. For example, Benkert et al. (2011) proposed a method to estimate the absolute 

quality of individual protein structure models. Their method combines various scoring 

functions to assess the local and global quality of the models (Benkert, Biasini and Schwede, 

2011). Melo and Feytmans (1998) developed a non-local atomic interaction energy-based 

method to assess protein structures. This method considers the interactions between atoms in 

the protein structure to estimate its quality. 

McGuffin’s research group introduced the quasi-single model approach, which is effective in 

providing accurate assessments of model quality given only a single model. The approach starts 

with generating alternative conformations based on the target sequence and then compares 

them with the target model using a clustering-based approach (Roche, Buenavista and 

McGuffin, 2014). McGuffin's group was the pioneer of this approach, which was first applied 

in the third version of ModFOLD (McGuffin and Roche, 2010), a leading web server that is 

designed to estimate the accuracy of 3D model of proteins (McGuffin, 2008). These 

advancements were built upon to improve the predictive performance of ModFOLD in 
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subsequent versions, and the sixth version of ModFOLD used a combination of various 

alternative model quality scoring methods as inputs to a neural network. It used a sliding 

window of per-residue score inputs from each method and was trained to output a single quality 

score for each residue in a model (Figure 1.3) (Maghrabi and McGuffin, 2017).  

The development of ModFOLD6 further demonstrated the potential of adding more data to 

neural networks to improve QE methods (see Chapter 3 for more details) (Maghrabi and 

McGuffin, 2017; Cheng et al., 2019; Maghrabi, 2019; McGuffin et al., 2021; McGuffin et al., 

2023). With the recent innovations in tertiary structure modelling, the accurate assessment of 

very high-quality models became a new challenge for QE methods, as it is harder to 

discriminate between them. However, with the development of many methods that are either 

on par with or surpass AF2 in terms of modelling performance, it becomes more important for 

users to be able to discriminate between models from different sources using consistent, 

unbiased and independent model quality estimates. 
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Figure 1.3. An illustration of a neural network-based approach using a sliding window to 

integrate the per-residue scores in ModFOLD6. The standard MLP is multi-layer perceptron 

neural network. The window size is 5 residues with 6 quality scores for each residue. The per-

residue scores produced from six methods, which are ModFOLDclust_single (MFcs), 

ModFOLDclustQ_single (MFcQs), ProQ2, Contact Distance Agreement (CDA), Disorder B-

factor Agreement (DBA), and Secondary Structure Agreement (SSA). The input of each 

residue is 30 scores (5 X 6) feeding the first layer of the neural network. The scoring procedure 

was conducted in hidden layers with 15 neurons. The neural network processes the input scores 

and generates a quality score (Si score) as an output for each residue in the protein model 

(Maghrabi and McGuffin, 2017; Maghrabi, 2019).  
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1.5. Residue-Residue Contact Prediction 

As previously discussed, the quality of protein structure models is crucial if they are to be used 

in biomedical fields such as drug discovery. Therefore, protein structure prediction methods 

have been developed iteratively over the years in order to increase the accuracy of the 3D 

models that they produce (Heo and Feig, 2020; El-Rashidy et al., 2021; Kryshtafovych, Moult, 

et al., 2021). This development involves incorporating various protein features from their 

sequences and structures, such as the inter-residue contact maps, into protein structure 

prediction pipelines (Zheng et al., 2019; Yang et al., 2020; Pakhrin et al., 2021). When protein 

sequences fold, the amino acid residues interact to form 3D structures by creating non-covalent 

bonds between their atoms (McMurry et al., 2013). Thus, residue interaction predictions, or 

contact maps, can provide valuable information describing the tertiary structure, which can be 

exploited to reconstruct 3D models, leading to enhanced quality (Figure 1.4) (Konopka et al., 

2014; Hou et al., 2019). This information is derived from predicting pairwise contacts in a 

protein sequence and is employed by many researchers to predict protein folding, for example, 

by restricting the conformational space of ab initio modelling (Lundström et al., 2008; Wang, 

Sun and Xu, 2018; Adiyaman and McGuffin, 2019; Jing et al., 2019). Moreover, protein 

contact prediction methods have been integrated in model quality estimation servers to detect 

both the local (per-residue) and global errors in models (Cheng et al., 2019; Jing et al., 2019; 

McGuffin et al., 2021; McGuffin et al., 2023). Furthermore, in refinement processes, contact 

prediction has been used as part of a “gradual restraint strategy” (Adiyaman and McGuffin, 

2021). For transmembrane proteins, predicting contacts between the transmembrane alpha-

helices helps to elucidate the protein fold, which can, in turn, help to predict functions (Fang 

et al., 2020). 

Due to their potential usefulness for predicting protein folding, methods for the prediction of 

contacts between residues have been in development since the early 1990s (Pearce and Zhang, 
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2021b). Covell and Jernigan (1990) used the lattice model to represent amino acid residue 

contacts for restricting a conformational space of globular proteins to predict all possible chain 

conformations. This approach was useful for predicting a small group of protein structures. In 

1996, contact prediction was introduced as a part of the ab initio category for secondary and 

tertiary structure prediction in the second round of the Critical Assessment of Structure 

Prediction (CASP2) (see section 1.6 about CASP). In this experiment round, contact prediction 

methods were developed using the principle of correlated mutation of coevolutionary residues 

(Lesk, 1997; Monastyrskyy et al., 2011). 

  



Chapter 1 

 

18 
 

 

 

Figure 1.4. A diagram illustrates the role of a contact map. The role contact maps can play 

in enhancing the accuracy of 3D protein modelling. The diagram shows the experimental 

structure, the predicted 3D model, and the siderophore reductase FoxB contact map (PDB ID: 

7awb). The protein's experimental structure was determined via X-ray diffraction. The contact 

map was predicted using RaptorX-Contact (Wang, Li, et al., 2017; Wang, Sun, et al., 2017; 

Wang, Sun and Xu, 2018; Xu, 2019; Xu and Wang, 2019), and residue pairs predicted to be in 

contact are visually represented by red circles. The 3D model of protein predicted by trRosetta 

(Yang et al., 2020).The protein models were visualised using PyMOL (pymol.org). The Figure 

taken from (Alharbi and McGuffin, 2023). 
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1.5.1 Residue Contact Prediction Definitions 

Contacting residue pairs in protein structures can be identified by calculating the distance 

between carbon atoms of the amino acid residues at a specific threshold. The distance threshold 

between carbon atoms of residue pairs in a protein structure has different values depending on 

the goal of the contact prediction. For predicting helix-helix interactions in transmembrane 

proteins, contacts between residues are defined as distances less than 5.5 Å between two heavy 

atoms of the side chain or backbone. An alternative definition considers the contact distance 

threshold to be less than 8 Å between beta carbon (Cβ) atoms of side chains (Wang et al., 2011; 

Jing et al., 2019). For modelling the 3D structures of proteins, contacts have been defined 

between Cβ atoms (or between Cα atoms in the case of Gly) using different distance cut-offs 

of between 7 and 11 Å (Duarte et al., 2010; Wang et al., 2011; Yuan, Chen and Kihara, 2012; 

Adhikari and Cheng, 2016). However, in the contact prediction evaluation process of the CASP 

experiments (see section 1.6), the formal definition is that residue pairs are in contact if the 

distance between their Cβ atoms (Cα in Gly) is less than 8 Å (Monastyrskyy et al., 2011; 

Monastyrskyy et al., 2014; Monastyrskyy et al., 2016; Schaarschmidt et al., 2018; Jing et al., 

2019; Shrestha et al., 2019). All these threshold values are in a range that allows non-covalent 

interactions to be measured as protein sequences folded up into 3D shapes (Emerson and 

Amala, 2017). 

 

1.5.2 Contact Maps 

To represent contacts between residues computationally, “contact maps” have been devised as 

two-dimensional (2D) matrices (N × N), where N is the length of the protein sequence. The 

contacting residue pairs are set to 1 if the distance between their atoms is less than or equal to 

a given cut-off value; otherwise, 0 indicates the residue pairs that are non-contacting. The 
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distance between the same residue position is also set to 0 and represents the diagonal line in 

the contact matrix. Thus, a contact between each residue can be represented as a dot and the x- 

and y-axes represent residue positions along the sequence length (Figure 1.5) (Emerson and 

Amala, 2017; Jisna and Jayaraj, 2021; Suh et al., 2021).  

Furthermore, the type of contact is particularly important in determining protein structures. To 

classify contact types, the number of residues between two residue pairs that are predicted to 

be in contact determines the type of contact. In other words, if there are more than 24 separate 

predicted residue pairs, their contact is classified as being long-range; if there are more than 12 

but less than 23 residues, the predicted contact is classified as medium-range; and if there are 

more than 6 residues but less than 12, predicted contacts are classified as short-range 

(Monastyrskyy et al., 2011; Monastyrskyy et al., 2014; Schaarschmidt et al., 2018; Jing et al., 

2019; Shrestha et al., 2019). The long-range contacts contribute to improving the quality of 3D 

models as they assist in positioning the secondary structures at the right distance. Therefore, 

this type of contact can be used as a restraint for conformational spaces in predicting the 

structures ab initio (Latek and Kolinski, 2008; Yuan, Chen and Kihara, 2012; Jing et al., 2019; 

Jisna and Jayaraj, 2021). According to the CASP evaluation system, each residue pair predicted 

to be in contact can be assigned by calculating the probability score. The length of the target 

domain (L) with the greatest probability value is used to divide each contact range into subsets 

(L/5, L/2, L, FL, where FL indicates all predicted contacts in these sets). In this chapter, we 

will refer to the accuracy of contact prediction by machine learning approaches as L/5 long-

range contacts for template-free or free-modelling (FM) targets (Schaarschmidt et al., 2018; 

Shrestha et al., 2019).  
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Figure 1.5. An illustration of a protein contact map. The contact map depicted here is for 

the TCR-017 ectodomain protein (PDB ID:7EA6). A diagonal line on the map indicates a 

residue that is in contact with itself and has a value of 0. Black dots indicate residue pairs that 

are in contact. The prediction of this contact map was conducted using RaptorX-Contact 

(Wang, Li, et al., 2017; Wang, Sun, et al., 2017; Wang, Sun and Xu, 2018; Xu, 2019; Xu and 

Wang, 2019; Xu, McPartlon and Li, 2021). The Figure taken from (Alharbi and McGuffin, 

2023). 
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1.6 The Critical Assessment of Protein Structure Prediction (CASP) Community  

Numerous computational tools have been developed to predict protein structure, which raised 

concerns among scientists regarding the dependability and applicability of these methods in 

other related fields. This brought to light the necessity for unbiased and genuine evaluation 

materials to criticise the viability of protein structure prediction techniques. In 1994, John 

Moult and his colleagues introduced the CASP experiment as a large-scale test to assess 

computational methods in protein structure prediction. Every two years, the CASP experiment 

evaluates the performance of bioinformatic methods in predicting protein structures (Moult et 

al., 1995). 

The CASP experiments have been assessing and promoting developments in protein structure 

prediction for about thirty years. Since the beginning, the assessment of single protein chain 

structural modelling has been at the core of the CASP programme (Simpkin et al., 2023). 

Focusing on the main category of tertiary structure prediction, the previous assessment 

additionally covers prediction techniques related to different subcategories, such as tertiary 

structure model, refinement, quality estimation and contact residue prediction in protein 

structures (Kryshtafovych et al., 2019). The recent experiment (CASP15) categories have been 

adopted to address new challenges that have emerged after the success of AF2 in advancing 

solutions to the tertiary structure prediction problem.  

The CASP is a blind test where participants are asked to predict models of protein sequences 

whose experimental structures have yet to be publicly released. The predictor participants are 

classified into two types of groups: the human groups and the automatic servers. The predictors 

who use their tools with human intervention are classified as human groups, whereas those who 

use their servers without human intervention are assigned to automatic servers. Official 

assessors then evaluate predicted models from all groups. The assessors use advanced 

evaluation methods that assess the performance of the prediction tools, which have 
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continuously improved over successive years (Wodak et al., 2023). Hence, the CASP 

experiment has highlighted the progress in protein structure prediction, providing valuable 

insights into new ideas to elevate the performance of computational methods. 

 

1.7. Advancements in Contact Prediction Methods through Successive CASP 

Experiments 

Contact prediction was introduced in the early years of CASP. In CASP3, predicted residue 

contacts were introduced as a separate category, apart from the assessment methods for protein 

structure prediction (Orengo et al., 1999). However, a renewed interest in predicted residues 

contacts occurred in 2008 with CASP8 (Ezkurdia et al., 2009). Predictor groups developed 

their methods by using different approaches based on extracting correlated mutations in MSAs, 

applying machine learning on contact maps, or a combination of approaches. These earlier 

methods with low accuracy might be an aid in selecting the best models of FM targets, which 

might be employed by consensus prediction tools for predicting the harder targets (Tress and 

Valencia, 2010). 

In CASP9, methods for predicting contacts in a protein structure had improved a little further. 

The same sorts of methods that had been assessed in CASP8 were further developed through a 

combination of the different approaches, where correlated mutation methods to predict residues 

had been integrated with machine learning methods (Monastyrskyy et al., 2011). In addition, 

there was a method that used information, which was obtained from templates of homologous 

protein, e.g. HMMSTR-CM (Shao and Bystroff, 2003; Monastyrskyy et al., 2011). Although 

most of the contact prediction methods have been steadily improved upon, the servers based 

on machine learning had the best accuracy overall in the contact prediction category 

(Monastyrskyy et al., 2011). 
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Regarding CASP10, there was a considerable advance in contact prediction servers, where 

some servers had been improved by further integrating machine learning strategies with 

features of protein sequences (Monastyrskyy et al., 2014). Interestingly, some studies indicated 

that the contact information was accurate enough to be used for the improvement of 3D 

modelling in tertiary structure prediction methods. However, the performance of contact 

prediction methods only achieved ~20 % accuracy, the same level as that in previous CASP 

experiments. In contrast, the accuracy of contact prediction on difficult targets took a leap 

forward, reaching 27 % in CASP11, meaning that the information from contacting residues 

was even more useful for the improvement of 3D models (Monastyrskyy et al., 2016).  

A major breakthrough in the improvement of contact prediction methods was seen in CASP12 

with the advent of hybrid methods, representing a merger of coevolution information with 

machine learning (Schaarschmidt et al., 2018), which the majority of the most successful 

methods exploited. Furthermore, some of the methods used the outputs of hybrid approaches 

as the inputs for deep networks, resulting in further substantial improvements in their 

performance. In addition, the exponential increases in the sizes of the databases of protein 

sequences allowed methods to extract substantially better evolutionary information from 

deeper alignments, which further boosted accuracy. Therefore, contact prediction has achieved 

an unprecedented 20 % increase in the percentage accuracy (to 47 %) in CASP12 

(Schaarschmidt et al., 2018). Since CASP12, predictors have been consistently working on the 

improvement of deep neural network-based methods, which have been the major focus in the 

development of contact prediction methods. By CASP13, the best method with the top 

performance was developed by exploiting advanced deep convolutional neural networks to 

interpret sequence alignment data. This outstanding combination produced a further 

unprecedented 23 % increase in the accuracy of contact prediction, reaching 70 % for the first 

time (Shrestha et al., 2019). 
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The contact prediction methods assessed in CASP14 were significantly advanced in terms of 

their input features, MSA construction, and the training process of deep learning models. The 

accuracy of contact prediction depends on two key aspects: the quality of MSA analysis and 

the training phase of deep neural networks. Advanced MSA analysis approaches were used for 

predicting the distance between residues. In addition, deep neural networks were trained using 

distance information, increasing the accuracy of contact prediction. The use of distance and 

orientation prediction has significantly improved contact prediction methods, which in turn has 

helped improve the accuracy of 3D protein structure prediction (Senior et al., 2020; Yang et 

al., 2020; Li and Xu, 2021; Ruiz‐Serra et al., 2021). The distance matrix, which provides 

information on the distances between every pair of residues in a protein, offers more detailed 

and comprehensive data compared to a contact matrix. This increased level of detail in the 

distance matrix translates to a greater number of physical constraints and a more 

comprehensive training signal for protein structure prediction algorithms (Xu and Wang, 2019; 

Senior et al., 2020; Ruiz‐Serra et al., 2021). Despite these advancements, the contact prediction 

accuracy in this round reached 64 %. CASP14 assessors stated that this accuracy may suggest 

a regression in contact prediction approaches; it is essential to consider the increased 

complexity of the CASP14 targets, which could have influenced the observed advancements 

(Ruiz‐Serra et al., 2021). In CASP15, contact prediction with two categories, refinement and 

model accuracy estimation for monomeric targets, were eliminated due to significant progress 

in modelling individual protein structures (Kryshtafovych et al., 2023). Since this is the latest 

experiment of CASP, the finding had not been published at the time of writing. 

 

1.8. Application of Contact Prediction Methods (quality estimation, refinement) 

As mentioned, the most successful protein structure prediction pipelines include modelling of 

the tertiary structures (using template-based and/or template-free methods), evaluating these 
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models based on quality assessment scoring functions, and then finally refining them to fix any 

errors in conformation, thereby obtaining higher accuracy of 3D models that are closer to the 

native structures (Adiyaman and McGuffin, 2019). Many predictors have also adopted state-

of-the-art methods of contact prediction and combined them into their servers at these different 

stages in order to boost the performance of their prediction pipelines. 

1.8.1 Estimation of Model Accuracy (EMA) or Model Quality Assessment (QA) 

Protein structure prediction methods may produce many dozens or even hundreds of alternative 

models that vary in their accuracy, both at the local or per-residue level and, overall, at the 

global level. To detect these errors and to select the optimal model from among alternatives, 

QA methods have been employed to provide estimates of the model accuracy (Olechnovič and 

Venclovas, 2017) based on scoring local and global accuracy. QA methods have been 

developed by integrating various protein features, for example, predicted secondary structure 

and solvent accessibility (Maghrabi and McGuffin, 2017; Olechnovič and Venclovas, 2017). 

Residue-residue contact predictions are an important additional feature that has played a key 

role in the enhancement of recently developed model quality assessment programs (MQAPs). 

Protein contact predictions have been used for scoring the local and global accuracy in various 

model quality estimation servers. These servers can be classified into single-model methods 

and consensus-model methods depending on their inputs. Single-model methods only consider 

models individually and have been designed for evaluating local and global accuracy based 

purely on features of the input model, whereas consensus-model methods make multiple 

structural comparisons of all models for a given target in order to produce global and local 

scores and to select those of optimal quality (Studer, Biasini and Schwede, 2014; Uziela and 

Wallner, 2016; Won et al., 2019). One of the top single model methods in CASP11 was QAcon. 

This method was developed by adding residue contact information with different protein 

features (Cao et al., 2017). Contact scores were calculated by executing the PSICOV and 
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DNcon approaches (see section Approaches of Contact Prediction Methods) and have been 

used as an input with 11 feature scores to predict the global quality of a model (Jones et al., 

2012; Cao et al., 2017). Based on QAcon results, Cao et al. (2017) determined that contact 

prediction can have an impact on the performance of model quality assessment, and this impact 

depends on the accuracy of that prediction. In terms of local model quality prediction accuracy, 

ProQ2 was one of the best methods based on the results of CASP12 (Kryshtafovych et al., 

2016). The process of ProQ2 can be described as inferring protein model properties from its 

sequence and structure and then combine these feature scores by using a machine learning 

method called support vector machines (SVM) for eventually predicting the final score of 

model accuracy (Ray, Lindahl and Wallner, 2012). Structural features of a model in ProQ2 

included atom-atom contact, residue-residue contact and secondary structure. Residue-residue 

contacts have been reweighted with other features for predicting the local quality. Ray et al. 

(2012) point out that one reason for the performance improvement of ProQ2 could be attributed 

to the profile weighting of residue contacts and surface area features, which helped to increase 

the accuracy of predicted local quality. Therefore, CASP12 assessors have been recommended 

the users for using ProQ2 if they are interested in the local accuracy of a model. Additionally, 

ProQ2 has been ranked as one of the top-performing quality model assessment in terms of the 

accuracy of global prediction, which can be calculated by computing the average of local 

features scores on the length of protein sequence (Ray, Lindahl and Wallner, 2012; 

Kryshtafovych et al., 2016). It is clear that much of the improvement of QA methods can be 

attributed to predicting residue contacts accurately, as this provides valuable information that 

is useful in identifying the errors in protein structure models. 

1.8.2 Refinement of Models 

Refinement of 3D models is a vital part in most successful protein structure prediction 

pipelines. The main purpose of the refinement method is to fix any errors that have resulted 
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from the modelling process, adding further value to the model by bringing it closer to the native 

structure. In general, refinement servers include two stages: sampling for generating alternative 

3D models and scoring for assessing the accuracy of these models. In the sampling stage, 

refinement approaches can be categorised into fully automated server-based programs and non-

server-based programs (Adiyaman and McGuffin, 2019). Methods that rely upon automated 

servers and use the knowledge of protein structures have had some success at improving parts 

in the starting models, according to the results of the refinement category in early CASP 

experiments (MacCallum et al., 2009; MacCallum et al., 2011; Read et al., 2019). 

Success in the refinement of 3D models of protein structures is reliant on an accurate energy 

function and a sufficient conformational search (Park et al., 2019). However, due to the large 

search space, the refined models generated by refinement methods can often deviate greatly 

from the initial structures, and there is a large chance that they can result in lower quality 

models (Adiyaman and McGuffin, 2019; Read et al., 2019). Although refinement could 

improve homology models with low resolution, even with unrestrained large-scale searches for 

the lowest energy states, it is clear that refinement of closer to native models with higher 

resolution can be achieved by restraining the conformational search space (Jagielska, 

Wroblewska and Skolnick, 2008; Park et al., 2019). Conformational searches can be restrained 

by using structural information from the starting models as input for refinement methods (Park 

et al., 2019). These restraints are used as parameters that help to reduce the deviation between 

the starting and native models. 

Most state-of-the-art refinement methods have been improved by combining Molecular 

Dynamics (MD) simulation algorithms with physics-based force fields. Although these 

methods have performed well, they were often inefficient due to the lack of restraints for 

limiting and guiding conformational searches (Adiyaman and McGuffin, 2019). Recently, the 

utilisation of restraints in refining starting models has led to improvements in refinement 
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performance, but this success depends on the appropriateness of the restraints used. Strong 

restraints can restrict the refinement, but the weak restraints improve the refinement process of 

a model (Feig, 2017; Adiyaman and McGuffin, 2019). Various types of restraints have been 

derived from different sources of data (Adiyaman and McGuffin, 2019). For example, Zhang 

et al. (2011) have used a distance map derived from high-resolution starting models as restraints 

to optimise the energy funnel for MD simulations. However, restraints might be more effective 

when specific parts of models need to be refined, so the guidance of refinement towards fixing 

the local errors within models instead of the whole models could also be helpful in improving 

performance. 

Improving locally inaccurate regions in 3D models still represents a challenge for refinement 

methods because of the difficulty in determining these regions (Park et al., 2019). An 

alternative strategy is to instead rely on the predicted residue contacts interaction for 

determining restraints. Information derived from residue-residue contact prediction can be used 

as restraints for guiding in refinement methods to enhance 3D models locally. For example, the 

GREMLIN tool has been used for restraining the search space based on co-evolution 

information derived from residue contacts prediction (Park et al., 2019). McGuffin’s research 

group has also investigated the use of contact-based restraints, which have been incorporated 

into the latest version of ReFOLD method (Adiyaman and McGuffin, 2021), so the accuracy 

of the predicted contact data that McGuffin’s research group will rely upon will be a high 

priority. 
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1.9 Approaches of Contact Prediction Methods 

Contact prediction accuracy should be sufficient to capture the correct contacts that could be 

used to bring 3D models as close as possible to the native structures of proteins. Therefore, 

increasing the accuracy of predicted residue–residue contacts became a core challenge in the 

field of structural bioinformatics. Many approaches and algorithms have been used to extract 

accurate contact predictions between residue pairs in protein sequences. Using the evolutionary 

theory of protein folding, correlated mutation-based methods were developed based on the 

hypothesis that residue pairs in protein sequences are more likely to have correlated mutations 

to maintain the stability of protein structures. In other words, if one residue is mutated, then 

the corresponding interacting residue(s) will also be mutated in a co-evolutionary process to 

stabilise the protein structure, and these residues could be identified in MSAs (Wu and Zhang, 

2008). Therefore, to extract co-evolutionary information, MSA methods are used to identify 

homologous proteins using various rapid algorithms (Jing et al., 2019; Yang et al., 2020; 

Pearce and Zhang, 2021b). 

 

The evolutionary theory of protein folding suggests that proteins tend to conserve their 

structures and function over the evolution period, including homologous proteins, even when 

their amino acid sequences display variability. The protein structural conservation restricts the 

variability in homologous sequences. In other words, the changes in the sequences have to 

maintain the overarching structure and function. Therefore, different amino acid residues in the 

sequence are forced to coevolve (Morcos et al., 2014). The biological meaning of co-evolution 

is when two or more molecules affect each other's evolution to maintain the functionality of 

proteins. Certain protein characteristics, such as 3D structures or catalytic sites, can remain 

consistent throughout evolution (Thompson et al., 2011; De Juan, Pazos and Valencia, 2013).  
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Various computational approaches were developed to examine the co-evolutionary features of 

proteins. The aim of computational tools for the co-evolution of amino acid residues is the 

identification of residue pairs that could affect their evolution, which could help to predict the 

functional or structural interaction between protein residues. These methods were designed to 

analyse the evolutionary modifications in the proteins. Hence, evolution-related methods could 

help to identify the co-evolution patterns, the repeating changes between residues in a single 

protein (De Juan, Pazos and Valencia, 2013). 

The computational methods of protein co-evolution were designed based on the covarion 

model. This model recognised the amino acid residues in a protein with interdependent changes 

over evolution. These approaches relied on the MSA strategy of homologous proteins to 

identify the correlated mutations between their residues (Thompson et al., 2011; De Juan, 

Pazos and Valencia, 2013). MSA strategy was used to examine the protein sequence within the 

context of the total family, which can help to determine the crucial attributes that define large-

scale protein functions. These attributes could include 3D structures or catalytic sites that have 

remained the same (conserved) throughout evolution (Thompson et al., 2011). Various 

bioinformatic tools, such as HHblits, PSI-Blast, and Jackmmer, were used to generate MSAs 

(Adhikari and Cheng, 2016).  

Such correlated mutations that were derived from MSA determine the associated changes 

between residues within a protein, which could indicate close residues such as those in direct 

contact or those that collaborate in catalytic or binding sites. Thus, the co-evolutionary 

modification could lead to folding the protein correctly to maintain the stability or functionality 

of the protein in the face of evolutionary pressures (De Juan, Pazos and Valencia, 2013). 
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1.9.1 Statistical Algorithms for Correlation-based Methods 

Earlier contact prediction studies started exploiting the benefit of correlated mutation methods 

to predict the contact patterns between residues within a single chain. These studies attempted 

to interpret the mutation correlation features derived from MSAs using statistical 

independence-based approaches such as correlation coefficients and mutual information (Jing 

et al., 2019). These methods assumed that residue pairs are statistically separated from 

neighbouring residue pairs (Horner, Pirovano and Pesole, 2007; Marks, Hopf and Sander, 

2012; Jing et al., 2019). They only considered the specific pair when calculating mutation 

information, ignoring the effects of other residues (Jing et al., 2019). 

The correlation coefficient-based algorithms aimed to detect pairs of positions or two columns 

in a MSA with dependent amino acid frequencies or showed similar patterns of amino acid 

substitutions. These methods used substitution matrices to calculate the frequency of residues 

at the positions across different sequences and compute the linear correlation of residue pairs 

to assess how similar they were. Such methods could capture residue pairs with close proximity 

within the protein's 3D structure, proposing that they may be in physical contact (Göbel et al., 

1994; Olmea and Valencia, 1997; De Juan, Pazos and Valencia, 2013; Jing et al., 2019). 

The mutual information-based methods focused on computing the distribution of each residue 

in multiple sequences for a specific position. The main principle was to assess the extent of the 

mutual dependence between two positions by quantifying the occurrence or absence of an 

amino acid in a particular position (Gomes et al., 2012; De Juan, Pazos and Valencia, 2013). 

The accuracy of statistical independence-based methods was modest due to indirect correlation 

issues. This could lead to misleading information in a covariance analysis of correlated 

mutation data, resulting in incorrect contact prediction. To address this issue, global statistical 

algorithms were employed to remove the noisy data in co-evolutionary information (Jing et al., 

2019). 
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Global statistical approaches, such as direct coupling analysis (DCA), were introduced to solve 

the transitive interaction problem (Jing et al., 2019). DCA-based methods achieved a 

breakthrough in the contact prediction field as they could distinguish between the direct and 

indirect correlation between residues, which helps to improve the accuracy of contact 

prediction (Zhang et al., 2021). These methods used various statistical inference algorithms to 

analyse co-evolutionary data into direct and indirect correlations between pairs of residues. An 

example of DCA-based methods is mfDCA (Morcos et al., 2011), which was developed by 

combining mean-field approximation of DCA with covariance analysis of co-evolutionary 

data. This method demonstrated its ability to detect strong correlations between distant residue 

pairs in a more significant number of domain sequences (Morcos et al., 2011; Morcos et al., 

2014).  

Another global statistical method used sparse inverse covariance estimation, a graphical 

inference technique. Jones et al. (2012) used this technique to develop the PSICOV method. In 

PSICOV, sparse inverse covariance estimation eliminated indirect correlations by eliminating 

their values and keeping the direct correlation values. This method, thus, renders the correlation 

matrix sparser and more straightforward to understand, allowing for the more accurate 

identification of residues that coevolve (Jones et al., 2012; Jing et al., 2019). A noteworthy 

study demonstrated that a maximum entropy model deduced meaningful co-evolutionary 

signals from random correlations. This statistical approach was used to calculate "couplings" 

between residue pairs on protein sequences by analyzing patterns of similarity (homologues) 

across various proteins. These couplings represent the strength of co-evolution between residue 

pairs; if two residues have a strong coupling, they are likely close to each other in the 3D shape 

of the protein. Notably, the strength of these inferred couplings was established to be an 

exceptional predictor of the proximity of residues in folded protein structures. When the pairs 

of residues with the highest coupling scores were examined, they were accurately and evenly 
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defined in the 3D protein fold (Marks et al., 2011). 

Correlated mutation-based methods have demonstrated their benefits in capturing long-range 

interactions, analysing sizeable MSAs, and achieving high accuracy and precision in contact 

prediction (Weigt et al., 2009; Marks et al., 2011; Morcos et al., 2011; Jones et al., 2012). 

However, the statistical approaches were insufficient to identify contact information between 

residues because of their inability to extract a precise mutation correlation between pairs of 

protein residues. In addition, traditional methods for contact prediction have been dependent 

on the existence of homologous sequences in protein databases, and the accuracy relied on the 

number of aligned sequences (the alignment depth) (He et al., 2017; Pearce and Zhang, 2021b; 

Zhang et al., 2021). Therefore, many researchers have sought to exploit the advantages of 

machine learning to improve the accuracy of contact prediction methods. 

 

1.9.2 Machine Learning Algorithms in Contact Prediction Methods 

Machine learning approaches are computational algorithms that adapt a fitted model for 

detecting meaningful patterns within data. In the contact prediction field, they learn to identify 

contact networks among residues through their properties from protein sequences and structural 

data. Machine learning methods are trained from protein structures by creating contact maps 

based on known coordinates. Protein sequence features are then fed into algorithm models, 

such as support vector machines, neural networks, and random forests, which are trained to 

predict the contact maps (Figure 1.6). Many machine learning-based contact prediction 

methods are freely accessible; some have web interfaces, and others are provided as 

downloadable binaries and/or open-source code (Table 1.1). The output of the machine learning 

models typically consists of lists of scores (or p-values) for pairs of contacting residues, which 

inform users how likely each residue pair is in contact. These models can combine large sets 

of protein features and learn from them, which makes them less dependent on the depth of 
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MSAs and thereby reduces the prediction accuracy when fewer homologous sequences can be 

identified (Wu and Zhang, 2008; Xue, Faraggi and Zhou, 2009; He et al., 2017; Greener et al., 

2022). In this chapter, we will refer to the accuracy of machine learning approaches to predict 

long-range contacts as being L/5 for template-free targets or those that follow free-modelling 

approaches (FM). 
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Figure 1.6. General schematic of contact prediction procedure. Starting with extracting 

protein features from a query sequence. These features are input data fed into machine learning 

algorithms to predict a contact between each residue pair. The output is a contact map of the 

query sequence, which can be used to aid 3D-structure prediction. The example query protein 

is TCR-017 ectodomain PDB ID: 7EA6. The contact map was predicted by RaptorX-Contact 

(Wang, Li, et al., 2017; Wang, Sun, et al., 2017; Wang, Sun and Xu, 2018; Xu, 2019; Xu and 

Wang, 2019; Xu, McPartlon and Li, 2021), and the 3D structure was visualised by Mol*Viewer 

(Sehnal et al., 2021). The figure taken from (Alharbi and McGuffin, 2023). 
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Table 1.1. The available contact prediction methods based on machine learning 

algorithms. 

Methods Brief description URL or web interface Citation 

DEEPCON Deep learning-based method 

using covariance and 

sequences features as in 

DNCON2 and DeepCov and 

integrating these features 

into four models of fully 

residual convolutional 

neural networks with 

dropout layers and dilated 

convolution layers. 

https://github.com/ba-

lab/DEEPCON 

(Adhikari, 

2020) 

DeepConPred2 The second version of 

DeepConPred is developed 

based on three models: the 

first and second models are 

deep belief networks, and 

the third model is a ResNet. 

https://github.com/THU

-

gonglab/DeepConPred2 

(Ding et 

al., 2018) 

SPOT-Contact A deep learning-based 

method designed based on 

Recurrent neural networks 

with LSTM cells and input 

features predicted from 

SPIDER3, CMMPred and 

DCA. 

https://sparks-

lab.org/server/spot-

contact/ 

(Hanson et 

al., 2018) 

SVMcon The method was developed 

based on a support vector 

machine with many 

features. 

https://multicom-

toolbox.mu.hekademeia

.org/SVMcon%201.0.ht

ml 

(Cheng and 

Baldi, 

2007) 

DNCON2 The deep learning-based 

method improved by 

predicting protein features 

from PSIPRED, SCRATCH, 

CCMpred, FreeContact and 

PSICOV, which were fed 

into two-level CNN, where 

the first level had five 

CNNs and the second one 

has one CNN. 

https://github.com/multi

com-toolbox/DNCON2 

(Adhikari, 

Hou and 

Cheng, 

2018) 

RaptorX-Contact Deep learning-based method 

was developed by designing 

two ResNets models for 

integrating 1D and 2D 

protein features. 

http://raptorx.uchicago.

edu/ContactMap/ 

(Wang, Sun 

and Xu, 

2018) 

ResPRE A method developed by 

integrating a precision 

matrix into fully residual 

convolutional neural 

https://zhanggroup.org/

ResPRE/ 

https://github.com/leeya

ng/ResPRE 

(Li, Hu, et 

al., 2019) 

https://github.com/ba-lab/DEEPCON
https://github.com/ba-lab/DEEPCON
https://github.com/THU-gonglab/DeepConPred2
https://github.com/THU-gonglab/DeepConPred2
https://github.com/THU-gonglab/DeepConPred2
https://sparks-lab.org/server/spot-contact/
https://sparks-lab.org/server/spot-contact/
https://sparks-lab.org/server/spot-contact/
https://multicom-toolbox.mu.hekademeia.org/SVMcon%201.0.html
https://multicom-toolbox.mu.hekademeia.org/SVMcon%201.0.html
https://multicom-toolbox.mu.hekademeia.org/SVMcon%201.0.html
https://multicom-toolbox.mu.hekademeia.org/SVMcon%201.0.html
https://github.com/multicom-toolbox/DNCON2
https://github.com/multicom-toolbox/DNCON2
http://raptorx.uchicago.edu/ContactMap/
http://raptorx.uchicago.edu/ContactMap/
https://zhanggroup.org/ResPRE/
https://zhanggroup.org/ResPRE/
https://github.com/leeyang/ResPRE
https://github.com/leeyang/ResPRE
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networks.  

MapPred Developed by combining 

two methods, DeepMSA 

and DeepMeta, into a 

dilated residual neural 

network model. 

https://yanglab.nankai.e

du.cn/MapPred/ 

 

(Wu, Peng, 

et al., 

2020) 

DeepMetaPSICOV Developed based on a deep, 

fully convolutional residual 

neural network with a set of 

features predicted from 

PSICOV, MetaPSICOV, 

PSICOV, CCMpred and 

FreeContact. 

https://github.com/psipr

ed/DeepMetaPSICOV 

(Kandathil, 

Greener 

and Jones, 

2019) 

TripletRes Deep learning-based method 

was developed by 

integrating three 

coevolutionary matrices into 

a residual neural network 

model. 

https://zhanggroup.org/

TripletRes/ 

(Li et al., 

2021a) 

NeBcon Developed by designing a 

naïve Bayes classifier 

(NBC) to combine eight 

contact prediction methods, 

then the NBC output with 

other features were fed into 

a neural network model. 

https://zhanggroup.org/

NeBcon/ 

(He et al., 

2017) 

SVMSEQ A machine learning-based 

method was developed to 

predict contact maps based 

on SVM software. 

https://zhanggroup.org/

SVMSEQ/  

(Wu and 

Zhang, 

2008) 

DeepDist Developed to predict real-

value inter-residue distances 

based on four models of 

ResNet. 

https://github.com/multi

com-toolbox/deepdist 

(Wu et al., 

2021) 

DeepECA Developed based on an end-

to-end learning neural 

network to predict contact 

maps directly from MSAs. 

https://github.com/tomii

lab/DeepECA 

(Fukuda 

and Tomii, 

2020) 

 

  

https://yanglab.nankai.edu.cn/MapPred/
https://yanglab.nankai.edu.cn/MapPred/
https://github.com/psipred/DeepMetaPSICOV
https://github.com/psipred/DeepMetaPSICOV
https://zhanggroup.org/TripletRes/
https://zhanggroup.org/TripletRes/
https://zhanggroup.org/NeBcon/
https://zhanggroup.org/NeBcon/
https://zhanggroup.org/SVMSEQ/
https://zhanggroup.org/SVMSEQ/
https://github.com/multicom-toolbox/deepdist
https://github.com/multicom-toolbox/deepdist
https://github.com/tomiilab/DeepECA
https://github.com/tomiilab/DeepECA
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1.9.2.1 Hidden Markov Models 

A Hidden Markov Model (HMM) is a statistical model that estimates hidden events using 

observable events. HMMs comprise one category of machine learning algorithms that have 

been used broadly in structural bioinformatics. In the protein structure prediction field, HMMs 

have been applied for fold recognition pipelines and have been used to enhance performance 

since CASP2 (Björkholm et al., 2009). FragHMMent is a HMM-based residue-residue contact 

prediction tool (Stecking and Schebesch, 2005). The HMMs have been applied to detect local 

protein neighbourhoods that include all inter-residue contacts at different ranges (short-, 

medium- and long-range) (Stecking and Schebesch, 2005). To this purpose, Björkholm et al. 

(2009) used local descriptors of protein structures to identify local neighbourhoods of amino 

acids. The local structural descriptors comprise all residues in the neighbourhood’s area of 

desired residue pairs. These descriptors, in turn, were used to construct multiple backbone 

segments arranged close together. Hence, The HMMs were trained by combining sequence 

signals in structurally similar neighbourhoods, with two protein features derived from the 

secondary structure and evolutionary information to create a predicted contact map. It is worth 

mentioning that the identification of long-range contacts is particularly difficult for ab initio 

structure prediction. Interestingly, FragHMMent has proven to be particularly accurate for 

proteins with novel folds and is mostly fold-independent, and thus may be useful in this difficult 

application field (Stecking and Schebesch, 2005; Jing et al., 2019). 

 

1.9.2.2 Support Vector Machines 

A Support Vector Machine (SVM) is a classification algorithm that maps high-dimensional 

input as vectors into nonlinear and linear models to solve binary classification problems (Zhao 

and Karypis, 2003; Cheng and Baldi, 2007). The performance of machine learning in contact 
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prediction depends on the feature sets and model designs used. Feature sets can be embedded 

into SVM models in order to classify residues that are either in contact or non-contact in protein 

structures, and more sufficient input features can be used to program such models to explore 

the contact patterns between residues (Horner, Pirovano and Pesole, 2007). As previously 

mentioned, contact prediction accuracy is often associated with the quality of the MSA 

analysis. Furthermore, it may be dependent on the secondary structure prediction accuracy and 

the frequency of β-sheets (Cheng and Baldi, 2007). A key advantage of SVMs is that they 

integrate linear and nonlinear methods: they can be used to design nonlinear models by 

representing input data nonlinearly into feature space while simultaneously classifying input 

dots in feature space utilising linear methods (Cheng and Baldi, 2007). Cheng and Baldi (2007) 

exploited this benefit when creating their contact prediction method SVMcon. they used an 

SVM model with a large set of protein features, including secondary structure, mutual 

information, solvent accessibility, and the global and local features of amino acid residues 

(Cheng and Baldi, 2007; Horner, Pirovano and Pesole, 2007). Another contact prediction 

method is SVMSEQ, which employs an SVM with two windows to predict protein residue 

contacts. The first window comprises local window features, including three protein features: 

position-specific scoring matrices (PSSMs), secondary structure predictions and solvent 

accessibility predictions. The second window comprises in-between segment feature sets 

involving sequence separations, which are the number of residues separating an interesting 

residue pair, the secondary structure content, the distribution of residues between residue pairs 

predicted to be in contact and the local properties of five residues distributed evenly in the 

middle of a desired residue pair (Wu and Zhang, 2008). SVM-based methods improved the 

accuracy of contact prediction for template-free and template-based modelling targets by 

approximately 25–40 % (Björkholm et al., 2009). They have also been integrated with other 

methods into other server pipelines, such as the Yang-Server and Zhang_Contact server, which 
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were ranked as top-performing methods in CASP12 (Schaarschmidt et al., 2018). 

1.9.2.3 Random Forest Algorithms 

Random Forest (RF) is a model constructed by merging several decision tree algorithms to 

obtain a final decision based on the most “votes”. RFs are often used because they can solve a 

variety of problems at once, making them particularly suited to dealing with large, high-

dimensional datasets and identifying noisy input information. They can also be used to build 

classification models rapidly (Li, Fang and Fang, 2011; Zheng et al., 2012). A standard RF 

encompasses a set of classification models (“trees”), each of which creates a classifier and 

“votes” for one of the two classes (positive or negative) (Zheng et al., 2012). Once it has been 

designed to consider predicting residue-residue contact as a classification problem, an RF 

model can be trained to identify residue pairs as being in contact (positive) or non-contacting 

(negative). 

RF models have been used and incorporated with other algorithms to predict residue-residue 

contact maps. When using a sufficient dataset to derive protein properties, an RF model can 

extract accurate contact information from known protein structures. The first RF-based method 

for contact prediction was ProC_S3, developed by Li et al. (2011). The RF model they used 

constructed 500 classification trees for the training and prediction stages and was trained on a 

large dataset including 1,490 protein structures and feature sets, which considered “the average 

of [the] maximum accessible surface areas and isoelectric points of the amino acids in two local 

windows (four features) [and the] f-mean of the between segment (20 features and [the seven] 

features of the central residue of the segment” (Li, Fang and Fang, 2011, p. 3383). Since 

ProC_S3 was based on an RF algorithm, it acquired selected features which could determine 

the relevance of protein features to residue contacts (Li, Fang and Fang, 2011). To investigate 

the usefulness of this feature selection, the RF-based method TMhhcp was designed to predict 

contacts in alpha-helical transmembrane proteins based on all their features and the selected 
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feature set (Wang et al., 2011). All features constructed from the evolutionary profiles of the 

residue pairs included the TM helix numbers, residue distance in the sequence, relative distance 

of two residues in between two helices, residue conservation scores and correlated mutation 

scores calculated by covariance algorithms, resulting in 408 feature vectors. From this 

construction, 10 feature subsets have been selected by using the correlation-based feature 

selection (CFS) (Wang et al., 2011). The selected features experiment was conducted to 

identify a range of distinguishing features which have a greater individual capacity to predict 

the class (contact) but minimal inter-correlation (Wang et al., 2011). Two models, named 

TMhhcp1 and TMhhcp2, were built based on training data with all the features, and two others, 

named TMhhcp_cfs1 and TMhhcp_cfs2, were built with selected features. In the latter two 

models, three protein features were found to produce particularly accurate contact predictions: 

the residue separation in the main sequence, the relative distance between two residues in helix-

helix interaction and the correlated mutation score (Wang et al., 2011). Other algorithms 

incorporating RF models included PhyCMAP, combining an RF model and an integer linear 

program, which predicts contact maps by integrating evolutionary and physical constraints 

(Wang and Xu, 2013; Zhang et al., 2016). In general, RF-based methods have demonstrated 

reliable improvement with regard to the accuracy of contact prediction. 

 

 1.9.2.4 Naïve Bayes Classifiers 

A Naïve Bayes Classifier (NBC) is a simple probability classifier based on the assumption that 

each feature value has an independent effect on a particular class. NBCs improve the accuracy 

of contact prediction in a complementary way for proteins which lack homologous sequences. 

NeBcon is a meta-server for contact prediction, which combines a Bayes classifier and a neural 

network to predict an accurate contact map by exploiting coevolutionary features and machine 

learning-based contact methods (He et al., 2017; Peng, Zhou and Zhang, 2022). An NBC was 
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used in this server to compute the contact probability scores of eight contact prediction 

methods; it was also given a set of posterior probability values for predicted contacts. 

Subsequently, the output of the NBC, along with six structural features extracted from the target 

protein sequence, was fed into a neural network model to predict the final contact map (He et 

al., 2017). The improvement of the performance of NeBcon was attributed to the integration 

of the complementary coevolutionary information from eight methods into the NBC model and 

the structural features using neural networks (He et al., 2017). He et al. (2017) demonstrated 

that the combination of machine learning-based methods with coevolution methods into NBC 

model improved the accuracy of contact prediction from hard targets, which tends to have low 

accuracy predicted contacts by coevolution methods. 

 

1.9.2.5 Neural Networks 

Neural Network (NN) is an artificial neural network composed of a number of computing units 

known as neurons. These units are linked together by connections, each of which has a weight 

attached to it (Hapudeniya, 2010). NNs have had a considerable impact on the advancement of 

machine learning and on the accuracy of contact prediction methods. One of the first 

applications of NNs to the problem of contact prediction was when Fariselli and Casadio (1999) 

used them to extract the relationship between contact maps and the chemical interaction 

between protein residues. The NN had a high level of adaptability through the combination of 

different input features such as secondary structure prediction, chemicophysical properties of 

residues and evolutionary features extracted from MSA in its first layer, leading to adequate 

learning to increase its prediction power (Fariselli and Casadio, 1999; Shackelford and Karplus, 

2007). Shackelford and Karplus (2007; cited in Wu and Zhang, 2008) demonstrated that NNs 

could play a vital role in improving contact prediction accuracy by integrating several protein 

features and training on large data sets. This confirmed the observation by Fariselli et al. 
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(2001), who showed that the performance of NNs in predicting a contact map improved when 

the amount of input data was raised. In prior NN models, input features, including protein 

sequences and predicted secondary structures, mutational information from MSAs, and 

hydrophobicity scores, were investigated for their importance in improving contact prediction 

accuracy through the design of different NN models, which included different input data 

(Fariselli and Casadio, 1999; Fariselli et al., 2001; Liu et al., 2005; Shackelford and Karplus, 

2007). Fariselli and Casadio (1999) had initially demonstrated that protein features can improve 

the accuracy of contact prediction if they are combined using NNs. They subsequently showed 

that evolutionary information from structure-sequence alignments can provide accurate 

predicted contacts for proteins with less than 170 residues, while the sequence context, which 

are five potential couplings for each residue into parallel and antiparallel pairings encoded into 

three-amino-acid window, plays a role in the accuracy of contact prediction for proteins with 

sizes more than 170 (Schneider, De Daruvar and Sander, 1997; Fariselli and Casadio, 1999). 

The accuracy of contact prediction is computed by dividing the correctly predicted contacts by 

the total predicted contacts. Each protein’s accuracy is evaluated separately before being 

averaged throughout the whole protein dataset (Fariselli et al., 2001). By integrating a variety 

of protein features, contact prediction accuracy achieved a more reliable value (21 % of average 

accuracy in CASP3) (Fariselli et al., 2001), however, alternative NN models have since been 

developed to further improve the accuracy. For example, Xue et al. (2009) developed SPINE-

2D by designing a deeper NN model with two hidden layers to extract information from residue 

solvent accessibility and backbone torsion angle features, resulting in increasing average 

contact accuracy at 26 % in CASP8. Although this NN improved upon previous neural 

network-based methods, its accuracy did not achieve a sufficient level to be used for 

confidently modelling tertiary structures. Therefore, researchers were encouraged to employ 

deeper NN models, including residual convolutional neural networks (ResNets), recurrent 
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neural networks, and end-to-end learning models, which will be discussed in the next section. 

 

1.9.2.5.1 Deep Neural Networks 

Deep neural networks are complex architectures of NNs designed to obtain extensive 

knowledge from high-level data. Deep models of NNs differ from shallow models in terms of 

architectural construction. While shallow architectures are constructed from two layers (input 

and output) and a small number of hidden layers, deep models are designed from “deep stacks” 

of classical NNs with a large number of hidden layers (Fariselli and Casadio, 1999; Xue, 

Faraggi and Zhou, 2009; Torrisi, Pollastri and Le, 2020). Deep learning-based methods often 

perform better when the depth of NN layers is increased, enabling them to extract accurate 

information from very large datasets with numerous input features (Jing et al., 2019). Since 

2008, deep neural networks have been employed in contact prediction methods and have led to 

improvements in their accuracy. NNcon was an early deep learning-based contact prediction 

method designed with a 2D recursive neural network for predicting tertiary and secondary 

structure contacts (β-sheet). In CASP8, NNcon was ranked as one of the top-performing 

methods (Tegge et al., 2009; Jing et al., 2019). Later, in 2012, Di Lena et al. (2012) designed 

“a 3D of stack of neural networks” that could extract contact information, where each stack 

consisted of three NN layers (one input, one hidden, and one output). This method improved 

the accuracy of contact prediction by nearly 30 % (from 28 % to 35 %), which indicated that 

deep NNs could learn more efficiently than shallow NN models (Di Lena, Nagata and Baldi, 

2012; Jing et al., 2019). Due to the rapid development in Graphics Processing Units (GPUs), 

researchers have been focusing on improving deep neural network models by exploiting the 

increasing GPU card capabilities, which have allowed efficient training on big data sets with 

complex NN architectures. Another approach was developed by Eickholt and Cheng (2012) 

who designed DNcon, which uses several deep models from restricted Boltzmann machines, 



Chapter 1 

 

46 
 

combined with the boosting ensemble method. Restricted Boltzmann machines are neural 

networks with two layers, visible and hidden, with symmetric weights connecting the nodes of 

both layers. Several restricted Boltzmann machines were combined to construct deep networks 

(DNs). Many layers were added to each DN in the boosted ensemble model, and DNs were 

then trained in a stepwise, semi-supervised manner (Eickholt and Cheng, 2012; Eickholt and 

Cheng, 2013). They attributed the improved prediction performance of DNcon to its use of a 

feature set with a deep architecture (Eickholt and Cheng, 2012; Eickholt and Cheng, 2013; Jing 

et al., 2019). Many alternative methods have been developed, which employ various deep 

model architectures with different input data sets, and have shown improvements in contact 

prediction performance over successive CASP experiments (Wang, Sun and Xu, 2018; Ruiz‐

Serra et al., 2021; Zhang et al., 2021). A different approach has also been taken in recent years 

after MSA analysis tools were developed. These tools help to enhance alignment approaches 

for extracting correlated mutation features, which is what contact prediction methods have 

often depended on. The new feature extraction approach uses mutual information predicted 

from coevolution methods as input data for deep neural networks (Monastyrskyy et al., 2016). 

The success of this approach was demonstrated when Jones et al. (2015; cited in Torrisi, 

Pollastri and Le, 2020) designed MetaPSICOV by integrating the PSICOV, FreeContact, and 

CCMpred methods with a two-stage neural network model. The CASP11 evaluations revealed 

that MetaPSICOV outperformed all contact prediction methods, and the accuracy of contact 

prediction exceeded 30 % (Monastyrskyy et al., 2016). Researchers were inspired by 

MetaPSICOV and developed their own servers through the inclusion of coevolutionary features 

derived from MSAs and structural properties in a variety of deep neural networks. 

Consequently, a milestone was achieved when the accuracy of contact prediction in CASP12 

reached 47 % (Schaarschmidt et al., 2018). 
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1.9.2.5.1.1 Residual Convolutional Neural Networks 

A convolutional neural network (CNN) is a deep neural network comprised of varied layers (or 

filters), in which each layer has neurons with larger local receptive fields than the previous one. 

The input matrix of the CNN model is divided into submatrices, and each submatrix is filtered 

by each local receptive field to encode the local map. The output consists of multiple local 

maps, and this operation is called convolution. Following that, the pooling operation, which 

consists of pooling submatrix values from the convolution output into single values, results in 

size minimisation. Eventually, the classification stage operates in the last layers of CNN and 

transforms the output probabilities to a range between 0 and 1, with the sum equal to 1 (Jisna 

and Jayaraj, 2021). 

CNN models often have the problem of overfitting because each neuron in each layer is fully 

connected with all neurons of the previous layer, which ultimately reduces the accuracy of 

these models. To fix this problem, a skip connection is applied by designing two residual blocks 

between layers, creating a residual neural network (ResNet). ResNets have been used in protein 

contact predictions because of the consistent spatial regularity of amino acid residues on the 

protein sequence. A ResNet can apply the same local filters over all residue positions by 

requiring a limited number of weights to be adjusted in relation to the input layer and the next 

layer’s dimensionality. This leads to improved computational implementation and output 

accuracy (Jisna and Jayaraj, 2021; Pakhrin et al., 2021). Therefore, protein sequence 

alignments can be analysed by ResNets to predict contact maps with far higher accuracy above 

40 % (Schaarschmidt et al., 2018). 

As with previous machine learning approaches, a ResNet needs a large set of features to extract 

accurate contact patterns between protein residues. However, designing the best architecture 

for certain features is the key to improving contact prediction accuracy and therefore method 

performance (Kuhlman and Bradley, 2019). Wang et al. (2018) developed RaptorX-Contact 
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with a deep model consisting of two ResNet modules. The first module was designed to be 

one-dimensional (1D) to learn from 1D protein features, including sequence profile, predicted 

secondary structure, and solvent accessibility. The second module was built in 2D 

representation to learn from 2D pairwise properties. To extract contact patterns, the output of 

the 1D module was converted to a 2D matrix and fed into a 2D module simultaneously with 

the pairwise features. In the last step, the probability values of contact prediction are computed 

by integrating the output of the second module into logistic regression (Wang, Sun and Xu, 

2018; Pearce and Zhang, 2021a). This designed model has the ability to capture contact 

existence between residues from the complex protein features, increasing contact prediction 

accuracy (to 47 % in CASP12) substantially. RaptorX-Contact was independently 

benchmarked for the first time in CASP12 and was among the top-performing contact 

prediction tools (Wang, Sun and Xu, 2018; Xu, 2019). 

ResNets have been employed in various contact prediction servers with various input protein 

features and architectures, and most are designed to analyse the MSAs resulting from searches 

of massive sequence databases. In CASP13, Kandathil et al. (2019) developed 

DeepMetaPSICOV, a method that improved the accuracy of protein contact prediction by 

combining multiple protein properties with a deep convolutional residual network and using 

MSAs from a large sequence dataset. 

Another contact-map predictor, ResPRE, was developed by combining coevolution-derived 

precision matrices that improved the analysis of MSA using deep ResNets (Li, Hu, et al., 2019; 

Zheng et al., 2019; Jisna and Jayaraj, 2021). Along with other methods, ResPRE was integrated 

into the meta-predictor method called NeBcon (described in the previous section). In this 

predictor, the confidence values of predicted contacts from these methods were fed into an 

NBC. The output of NBC was integrated with different sequence data in 350 units of a hidden 

layer connected to NN to refine the contact prediction model (Zheng et al., 2019). The 
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combination of ResNets with other machine learning methods and the use of large sequence 

datasets to derive the input MSAs has helped to greatly improve the predictive performance, 

so much so that the performance of deep learning-based methods raised the accuracy of contact 

prediction to 70 % in CASP13 (Shrestha et al., 2019). 

Deep residual convolutional networks achieved success with other aspects of residue-residue 

contact prediction and the development of alignment techniques. Recent studies demonstrated 

that residue-residue contacts predicted as binary classification provide restricted information. 

On the other hand, predicting the actual distance between residues produces more precise 

information, and ResNet models that are trained in the universal network of inter-residual 

distances allow for the capture of higher-order residue relationship (Li et al., 2021a; Li et al., 

2021b; Ruiz‐Serra et al., 2021). Thus, the cutting-edge contact prediction methods now expand 

to predict distances in their pipelines. For example, DeepPotential was developed by modifying 

the deep ResNet by adding 10 residual blocks as 1D and 2D representations for predicting inter-

residue contacts within different ranges of distances. Additionally, to predict all inter-residue 

interactions, another fully ResNet was fed by the outputs of 1D and 2D ResNet and trained by 

cross-entropy loss. The inter-residue distances considered in this method are side chain contact, 

backbone contact, torsional angle, and hydrogen-bond interaction at different distance 

thresholds, ranging from 2 to 10, 13, 16, and 20 Å (Li et al., 2021b; Zheng et al., 2021). 

TripletRes is ranked as a top-performing method in the most recent CASP experiment (Ruiz‐

Serra et al., 2021). In this method, Zhang’s group first developed an alignment strategy to 

improve the quality of MSA inputs for coevolutionary information extraction. The strategy was 

to construct a deep MSA using several rounds of HHblits, then extract “covariance features 

(COV), precision matrix features (PRE), and a coupling parameter matrix approximated by 

pseudolikelihood maximization (PLM)”. These features were combined into the ResNets 

model with four sets of residual blocks and trained by loss function examining a discrete map 



Chapter 1 

 

50 
 

of the distance information between each residue pair (Pakhrin et al., 2021). Li et al. (2021a) 

demonstrated that one of the success factors of TripletRes was incorporating deep neural 

networks with the three sets of coevolutionary features, which enabled the capture of more 

accurate contacts. This indicates that ResNets has made an invaluable contribution to the 

accuracy of contact prediction methods, whether or not they were used in conjunction with the 

prediction of absolute distances. 

 

 1.9.2.5.1.2 Recurrent Neural Network 

Recurrent neural network (RNN) is an advanced architecture of neural networks in which nodes 

are connected in a recurrent pattern to process sequential data (Graves, Fernández and 

Schmidhuber, 2007). RNNs have been employed to predict protein secondary structures and 

they have been designed to extract these structural features from MSA data. The RNN was used 

to predict coarse contact and orientation of secondary structures, while a further deep neural 

network architecture was then used to generate final, more refined contact predictions (Di Lena, 

Nagata and Baldi, 2012; KC, 2017; Jing et al., 2019). For contact map prediction, two-

dimensional, bidirectional, recurrent long short-term memory (2D-BRLSTM) networks have 

been employed with residual convolution neural networks for the SPOT-Contact method. The 

SPOT-Contact method was designed to combine 2D-RNNs with long short-term memory 

(LSTM) cells. LSTM cells can learn the complicated context of long-range contacts between 

residues for the whole protein sequence, while 2D-RNNs can generate an accurate model 

because of their capacity to identify misleading data in all input variables (Hanson et al., 2018; 

Jisna and Jayaraj, 2021). SPOT-Contact is ranked as one of the top-performing methods in 

CASP13 according to the independent blind evaluation of contact prediction methods (Wu 

Peng, et al., 2020). The improvement in mean accuracy of neural network-based contact 

prediction methods during the CASP experiments can be seen in Figure 1.7. 
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Figure 1.7. Timeline for the development of neural network-based methods and their 

average accuracy based on the CASP evaluation procedures. The accuracy of contact 

prediction is based on L/5 long-range contacts for FM targets. 
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1.9.2.5.1.3 End-to-end Learning Models 

The previously discussed deep neural networks are built with multiple layers and successful at 

detecting coevolution-based features from MSAs, but they gain no information concerning the 

natural relationship between sequence and structure for proteins if no sequence homologs can 

be detected. To fix this issue, another class of methods was developed, which use end-to-end 

differentiable deep learning models based on an explanatory structure-to-sequence maps 

(AlQuraishi, 2019). In such methods, end-to-end differentiability indicates the ability to use a 

single approach to optimise a sophisticated multi-stage pipeline from input to output without 

relying explicitly on coevolutionary information, in which the whole prediction process is 

represented by a single deep neural network (AlQuraishi, 2019; Jisna and Jayaraj, 2021). Thus, 

end-to-end approaches have been employed to enhance contact prediction accuracy in the 

absence of deep MSAs. The method DeepECA was developed by Fukuda and Tomii to predict 

contact maps from both deep and shallow MSAs directly in a single neural network. With the 

availability of homologous sequences, correlated information can be extracted using a 

covariance matrix (COV), then the coevolution values from this matrix can be used as input 

for the deep neural network model. The model used was a 1×1 CNN using end-to-end learning 

to weight each sequence of an MSA, which helped to eliminate the noisy information from the 

abundant sequences. The weighting process in the end-to-end model was used to optimise the 

quality of the MSA analysis and provided the most relevant homologous sequences to the target 

protein sequence. This method showed an improvement in the contact prediction accuracy, 

even though predictions were made directly from an MSA alone without any other encoded 

features. In the case of shallow MSAs, the accuracy of contact prediction can be increased by 

adding other protein features with correlation information in the CNN model extended to a 

multi-task model (Karplus et al., 1997; Vaz and Balaji, 2021). It is worth noting that employing 

an end-to-end model to improve the procedure of extracting pure and accurate mutation 
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information not only enhances the predictive power of contact predictions for tertiary 

structures, it may also be used for the currently unresolved problem of predicting protein-

protein interactions (Laine et al., 2021). 

 

1.10 Research Objectives 

Our research aims to explore the potential benefits of contact prediction in enhancing the 

accuracy of protein tertiary structure prediction. In this chapter, we provide a comprehensive 

literature review, discuss the advancements made in protein structure modelling, and emphasize 

the role of contact prediction in this process. We explain the concept of contact prediction, 

provide an overview of the latest contact prediction methods, and discuss their accuracy as 

evaluated by the CASP experiments. Additionally, we elaborate on the traditional and advanced 

approaches employed to improve the accuracy of contact prediction. Finally, we demonstrate 

the application of contact prediction methods in other relevant areas, such as model quality 

estimation and refinement. 

 

1.10.1 Improvement of Deep Learning-based Contact Prediction Methods using 

Consensus Approaches 

In chapter 2 we address our initial objective, which is to improve the accuracy of contact 

prediction further. To achieve this objective, we utilize the consensus approach, which has 

demonstrated promising potential in boosting the accuracy of protein structure prediction tools. 

Our study tests the benefits of the consensus approach to enhance the accuracy of contact 

prediction. We choose this method because it provides confident results, reduces errors in 

prediction data, and obtains accurate outcomes by combining the strengths of various methods. 

For our computational study, we select six top-performing methods in contact prediction based 

on the assessment in CASP13 and CAPS14. We use these six methods to design the consensus-

based methods using the mean scores in two stages: consensus of two methods and consensus 
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of three. We then compare and assess the consensus-based contact prediction methods with 

individual methods. The evaluation findings in Chapter 2 highlight the advantages and 

disadvantages of consensus approaches in improving the accuracy of contact prediction 

methods. 

 

1.10.2 Development of Consensus CDA scores for Model Quality Estimates 

With the advancement in modelling methods addressing the single chain prediction problem, 

the focus has shifted to developing model QE methods that assess the local regions of high-

quality models of tertiary protein structures. The study’s objective in Chapter 3 is to test the 

usefulness of consensus contact prediction in improving the local assessment performance of 

ModFOLD9, a quality estimation method for tertiary structure models. The study is conducted 

in response to the developments in the protein structure prediction field, which has highlighted 

the difficulty in evaluating high-quality 3D models of tertiary structures. To integrate contact 

prediction into the scoring estimation system, we use a pure-single model quality estimation 

approach based on Contact Distance Agreement (CDA) scoring. We aim to derive six new CDA 

scores from six contact prediction methods and combine them using two versions of a 

Multilayer Perceptron (MLP) neural network to apply a new consensus approach. The two 

versions of the MLP are trained to learn from CDA-based contact prediction score inputs and 

predict two local quality scores: the S-score and the lDDT score. The MLP hyperparameters 

are fine-tuned to optimize performance. The approach is tested and trained on CASP14 data, 

and its performance is evaluated using correlation and ROC analysis.  
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1.10.3 Development of Consensus QA Methods for The ModFOLD9 Quality Estimation 

Server 

The next objective is to investigate the integration of further scores from two types of quality 

scoring methods: pure-single and quasi-single model methods. These methods excel at 

estimating the local accuracy of 3D models, and leveraging their advantages in our ModFOLD9 

server could lead to better local estimation performance. The study conducts a two-stage 

computational study. The first stage involves the consensus of six CDA scores integrating 

quality scores from pure-single methods, and the second stage involves combining the scores 

of the first stage with additional quality scores of quasi-single methods. Again, here we use two 

versions of the MLP to combine the scores and train them to predict either the S-score or the 

lDDT score. To optimise the MLP predictive performance, we implement fine-tuning in the 

two stages. We evaluate the consensus quality scores' performance in improving the accuracy 

of ModFOLD9's local quality assessment against established methods, using a similar 

evaluation as in Chapter 3. 

 

1.10.4 Benchmarking of ModFOLD9 and ModFOLDdock Performance during the 

CASP15 Experiment and using the CAMEO Resource 

Our final objective is to investigate how ModFOLD9 contributes to the predictive capabilities 

of our servers from parallel projects. Our approach is to utilize ModFOLD9 as the accuracy 

self-estimate server for the IntFOLD7 3D models submitted to the CASP15 experiment. In 

addition, we incorporate a similar consensus approach and integrated contact prediction data 

into our new ModFOLDdockS method for evaluating quaternary structure models in CASP15. 

To further evaluate the effectiveness of the ModFOLD9 enhancements, we also conduct 

extensive tests using the CAMEO resource. Chapter 5 presents a comprehensive analysis of 

the performance of the improved servers based on data obtained from these two independent 

blind tests (CASP and CAMEO). Through this evaluation, we can determine the performance 
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of our IntFOLD7 and ModFOLDdockS servers at CASP15, as well as the extent of the 

improvements achieved in CAMEO compared with previous versions of ModFOLD because 

of these enhancements.



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 2 Improvement of Deep Learning-based Contact 

Prediction Methods Using Consensus Approaches 
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2.1 Introduction 

The advances in contact prediction technologies have led to a significant increase in contact 

prediction accuracy. More specifically, the predictive performance of contact prediction 

methods has been improved in three major ways: MSA construction, input features, and a deep 

model of neural networks. MSA construction techniques have been developed along with the 

exponential growth in protein databases, allowing for the extraction of abundant coevolution 

information (Ovchinnikov et al., 2017; Ovchinnikov et al., 2018; Kandathil, Greener and 

Jones, 2019; Zheng et al., 2019; Wen et al., 2020; Wu, Peng, et al., 2020; Zhang et al., 2021); 

here protein structure and sequence properties are derived from known structures and used as 

input features (Adhikari and Cheng, 2016; Reza et al., 2021; Zhang et al., 2021). Deep neural 

network models are used to infer the contact distribution between protein residues from 

evolutionary-based data with enough input features; these data can assist deep neural networks 

in improved training (Jing et al., 2019; Shrestha et al., 2019; Zhang et al., 2021). This 

advancement results in the production of highly accurate contact map matrices of the target 

proteins. 

Contact prediction methods differ in terms of the advanced algorithms used in MSA analysis 

and the designed deep model of neural networks, as well as the use of distance and orientation 

prediction. Prediction methods have employed one or two out of three different types of 

statistical matrices to analyse MSA. These matrices are the precision matrix, the COV matrix 

and the pseudolikelihood maximisation of the Potts model (PLM) (Li, Zhang,  et al., 2019; Suh 

et al., 2021). The first two matrices have been used to capture regional coevolutionary patterns 

between two residue positions (Li et al., 2021a). To consider all evolutionary information, these 

metrics were combined with the PLM, which derives the global features of other residue 

positions (Li, Zhang, et al., 2019; Li et al., 2021a). Additionally, tools have been employed in 
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various contact prediction methods for constructing deep MSAs, such as DeepMSA and 

DeepAln, which have led to further improvement in their performance (Li, Zhang, et al., 2019; 

Zheng et al., 2019; Wu, Hou, et al., 2020; Zhang et al., 2020; Wu et al., 2021). However, the 

depth and number of homologous sequences influence the quality of MSA (Guo et al., 2021). 

Some studies have demonstrated that deep MSAs can produce inaccurate data that could reduce 

the accuracy of contact predictions (Kandathil, Greener and Jones, 2019; Guo et al., 2021). In 

other words, deep MSA may include divergent sequences, which can issue misalignment or a 

loss of protein structure information or profile drift, causing sequence mismatches. These 

problems could render it difficult to reliably predict the evolutionary relationship between the 

residues of homologous proteins, which could reduce contact prediction accuracy (Kandathil, 

Greener and Jones, 2019). To avoid this, other contact prediction methods have considered 

using shallow MSAs in their servers (Fukuda and Tomii, 2020). 

The use of deep neural networks has led to significant performance gains for contact prediction 

methods. Different deep model designs have been used, and the most common type is ResNets 

(Wang, Sun and Xu, 2018; Li, Zhang, et al., 2019; Li et al., 2020; Li et al.,  2021b; Yang et 

al., 2020; Jayaraj, 2021; Suh et al., 2021). However, the capability of deep models relies on the 

training function and input data (Suh et al., 2021). In most contact prediction methods, a binary 

cross-function is used to train a deep model to classify the input data into contacting and non-

contacting residues (Jones and Kandathil, 2018; Kandathil, Greener and Jones, 2019; Adhikari, 

2020; Yang et al., 2020; Wu et al., 2021). In the top-performing methods, a new loss function 

helps to improve the predictive performance of deep learning models using discretised distance 

matrix prediction (Yang et al., 2020; Li et al., 2021a). Input data can include evolutionary 

information derived from MSA, protein profiles, secondary structure prediction, solvent 

accessibility, and other physicochemical properties (Hanson et al., 2018; Fukuda and Tomii, 

2020; Li et al., 2020; Li et al., 2021a; Yang et al., 2020). Annotation features have been 
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considered as input features to derive contacts, including distance and orientation prediction 

(Yang et al., 2020; Li et al., 2021a; Li et al., 2021b; Peng, Zhou and Zhang, 2022). As a result 

of this variation in methodology, the different contact algorithms have predicted distinct contact 

maps with varying degrees of accuracy for different targets (Shrestha et al., 2019). Hence, 

combining the strengths of the top-performing methods using a consensus approach may aid in 

achieving optimal contact prediction accuracy. 

 

2.1.1 Contact Prediction Methods 

In this section, we will present deep learning-based contact prediction methods which ranked 

as top-performing methods based on the assessments of two CASP experiments (CASP13, 

CASP14) (Shrestha et al., 2019; Ruiz‐Serra et al., 2021). These methods include 

DeepMetaPSICOV (Jones-UCL group), SPOT-Contact (ZHOU-Contact group) and NeBcon 

(Zhang_Contact group) from CASP13, and TripletRes, trRosetta (Yang_FM group) and 

DeepDist2 (MULTICOM group) from CASP14. The methods are publicly available as 

standalone programs and were therefore chosen for designing our consensus-based methods.  

 

2.1.1.1 Deep Learning-based Contact Prediction Methods in CASP13  

2.1.1.1.1 DeepMetaPSICOV (Jones-UCL group) 

DeepMetaPSICOV (DMP) was developed by Kandathil et al. (2019). This was an improved 

approach that combined two methods: MetaPSICOV and DeepCov. DMP’s concept is to 

exploit a large context from sequence features by employing deep, fully convolutional residual 

networks. This method generated MSAs from sequence databases during the prediction 

process, leading to increased precision in contact prediction. The DMP method was divided 

into two stages. The first stage contained 501 channels of input features derived from MSAs to 

form covariance matrices (441 channels from DeepCov and 58 channels from MetaPSICOV2); 
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in addition, there were two channels representing sequence separation and sequence bounds. 

The second stage was a model of a deep, fully convolutional 77-layer residual network. In the 

first layer, the input features were reduced to 64 channels, and the output in the last layer was 

the probability of predicting each residue pair to be in contact. The final mode was predicted 

from five models trained in different numbers of random seeds. During the prediction process, 

sequence alignments were trained by applying data augmentation strategies such as loop 

sampling and feature interpolation, which led to improving and generalising the DMP model. 

This step enhanced the performance of the DMP server to predict accurate residue-residue 

contacts in the 3D protein structure (Kandathil, Greener and Jones, 2019). 

 

2.1.1.1.2. SPOT-Contact (ZHOU-Contact) 

 SPOT-Contact was a novel method designed by the ZHOU-Contact group using two ultra-

deep neural networks with sets of two input features: one set contained the sequence-based 

features and the other evolutionary coupling-based features (Hanson et al., 2018). The neural 

networks include ResNets and two-dimensional bidirectional recurrent long-term short-term 

memory (LSTM) networks. The latter were formed through a combination of 2D-RNNs which 

can predict an accurate model because of their ability to distinguish misrepresented data in all 

input dimensions, and LSTM cells, which were capable of assembling the complex relationship 

context of nonlocal residues for the whole protein sequence (Hanson et al., 2018). 

The architecture of the SPOT-Contact was a collection of six models, where the base model 

comprises four components. The first component was data preparation, which was a 

concatenating sequence featuring an in-depth way to transform them from one-dimensional 

into a two-dimensional image. The second was a ResNet, which is a residual convolutional 

neural network that predicts the contact map from the entire protein by combining evolution 

coupling information with sequence features. The third was 2D-BRLSTM, formed of the 



Chapter 2 

62 
 

bottleneck layer and LSTM layers that contain 200 cell blocks, peaking at 800 inputs on the 

following layer. The last component, which was fully connected (FC), comprises 400 nodes 

but excludes the final layer, which consists of a single neuron with sigmoid activation. In this 

final layer, the output was converted into probabilities of contact prediction for each residue 

pair (Hanson et al., 2018). In SPOT-contact, the five models include a base model, a base 

without bottleneck, a base without FC, 2D-BRLSTM before ResNet in the base model, and the 

2D-BRLSTM model only. The input features were derived from several programs. These 

features included one-dimensional sequence features, which were evolutionary profiles, 

probabilities of predicted structure, and seven physicochemical properties for each residue. 

Additional features included three outputs of pairwise features, which were a contact map from 

CCMpred and mutual information and direct coupling from DCA methods (Hanson et al., 

2018). 

 

2.1.1.1.3 NeBcon (Zhang_Contact) 

NeBcon was designed by the Zhang_Contact group. It was one of three modules integrated into 

Zhang-Server and QUARK pipelines to predict protein contact maps before using these maps 

for constructing models of FM targets, leading to increased accuracy in CASP12. In CASP13, 

NeBcon was improved by combining nine contact prediction methods including ResPRE (Li, 

Hu, et al., 2019), DNCON2 (Adhikari, Hou and Cheng, 2018), GREMLIN (Kamisetty, 

Ovchinnikov and Baker, 2013), CCMpred (Seemayer, Gruber and Söding, 2014), DeepContact 

(Liu et al., 2018), FreeContact (Kaján et al., 2014), DeepPLM, DeepCov (Jones and Kandathil, 

2018), and MetaPSICOV2 (Buchan and Jones, 2018). ResPRE employs deep residual neural 

networks that incorporate evolutionary precision matrices for predicting contact maps. 

DeepPLM used the same deep learning model of ResPRE with various features derived from 

CCMpred (Zheng et al., 2019). 
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After predicting contacts from these methods, their confidence scores were added into an NBC, 

producing the final probabilities. These scores were merged with various sequence features in 

350 units of a hidden layer linked with a NN for purifying the contact prediction model, which 

raised its accuracy by 50% on top L/5 long-range contacts (Zheng et al., 2019). This 

improvement increased the ability of NeBcon to predict accurate contact information, leading 

to its ranking as one of the top-performing contact prediction methods in the CASP13 round. 

 

2.1.1.1.4 Contact Prediction Methods Performance in the CASP13 round 

Remarkable success has been achieved from these methods in CASP13 for the category of 

contact prediction. The advancement of contact prediction accuracy could be attributed to deep 

learning models coupled with coevolutionary features derived from MSA methods (Wu, Peng, 

et al., 2020). Deep convolutional neural networks (CNN) have been employed in all these 

methods in different ways. The CNN model of DMP was complex, with more than 70 layers 

and additional data augmentation techniques; the Zhou-Contact deep learning model was 

deeper than the DMP model, which was a combination of CNN with two RNNs. Zhang-Contact 

has its own model, but it also integrated predicted contacts produced by various deep neural 

network models with six contact methods. Deep learning networks can learn from 

coevolutionary features with other protein features for predicting accurate contact maps. 

On the other hand, contact prediction methods rely on deep sequence alignment strategies that 

have been used to infer residue contacts. DeepCov and DCA methods have been used to extract 

information on a mutation from MSA in DeepMetaPSICOV and Zhou-Contact, respectively. 

Nevertheless, the quality of alignments could affect the accuracy of contact prediction. During 

the process of generating MSAs, DeepCov and DCA methods produce coevolutionary 

information that could not be optimised due to the noise usually created by the indirect 

correlation between residue sequences, which led to difficulty in distinguishing the correct 
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correlation information (Fukuda and Tomii, 2020). However, MSA could be generated with 

optimised evolutionary information; that optimisation can be done with other methods that 

have improved the feature design of MSA methods (Fukuda and Tomii, 2020; Wu, Peng, et al., 

2020). For example, NeBcon uses a ResNet, which obtained an MSA from DeepMSA. This 

method outperformed DeepCov regarding the quality of alignments and in generating sufficient 

mutual information (Wu, Peng, et al., 2020). Therefore, combining Zhang-Contact with other 

contact prediction methods could improve the extraction of mutual information, achieving 

more accurate contact prediction. 

 

2.1.1.2 Deep learning-based Contact Prediction Methods in the CASP14 round 

2.1.1.2.1 TripletRes 

TripletRes was a deep learning-based method developed by integrating three matrices of MSAs 

to calculate coevolutionary information through the PLM, a precision matrix, and a COV 

matrix into a residual neural network model (Li et al., 2021a). In TripletRes, MSAs were 

constructed using HHblits with three iterations. The DeepMSA pipeline was used to generate 

MSAs for testing proteins, where HHblits also created the first MSA, followed by numerous 

iterations. Jackhmmer and hmmsearch were used to generate an MSA in cases where the 

number of effective sequences was less than 128. To extract information from the MSAs, three 

matrices were applied to derive three sets of features. The first was a COV to analyse the 

marginal reliance between distinct sequential coevolutionary positions of residues. COV 

recognises correlated marginal distributions between variables, such as ‘transitional 

correlations’ (Li et al., 2021a). The second was a PRE matrix that based on the mean-field 

approximation of the Potts model (Li et al., 2021a). The last matrix was a PLM, which was 

employed to estimate the likelihood of a sequence for the Potts model. These features were fed 

into a fully convolutional neural network with residual blocks (Li et al., 2021a).  
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The deep model employed in TripletRes was ResNet with feedforward neural networks. The 

residual blocks were four sets wherein three sets were connected to input layers fed with 

evolutionary feature extraction. The latter three sets have 24 basic blocks that can transform 

each input feature into a feature map of 64 channels. These feature maps were then 

concatenated along their channels, and another ResNet model was implemented with 24 blocks 

to extract the combined information from all of these maps (Li et al., 2021a). To compute the 

probability of each residue pair, a softmax function was activated at the final layer. The 

probability values were then used to estimate the contact between a residue pair into ten bins 

of distance ranging from 5 to 15 Å, with one bin reflecting distances of less than 5Å and another 

indicating more than 15Å (Li et al., 2021a). To train the entire set of deep ResNets, the 

maximum likelihood of the prediction was set by defining the loss function as ‘the sum of the 

negative log-likelihood over all the residue pairs in the training protein’ (Li et al., 2021a, p. 

15). 
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2.1.1.2.2 trRosetta (Yang_FM) 

The trRosetta method was a deep learning-based method designed to predict residue 

orientations and distances (Yang et al., 2020). In contrast to TripletRes, five MSA protocols 

were used in trRosetta to generate MSAs for each target. The first four were constructed 

separately using HHblits at four distinct e-value cutoffs: 1e-40, 1e-10, 1e-3, 1, while the fifth 

protocol was conducted using multiple rounds of iterative HHblits searches with progressively 

relaxed e-value cut-offs (1e-80, 1e-70, .., 1e-8, 1e-6 and 1e-4). If the depth of protein sequences 

that were obtained from these protocols was not adequate, then another alignment was 

generated by searching in hmmsearch (version 3.1b2) against the metagenome sequence 

database. To prevent the generation of excessively deep MSAs, the search was halted after 

collecting 2,000 sequences with 75 % coverage or 5,000 sequences with 50 % coverage at a 90 

% sequence identity threshold (Yang et al., 2020). 

The NN in trRosetta was a residual neural network. The first layer was designed as L×L×526 

input features and used two-dimensional (2D) convolution to predict ‘a distance histogram (d 

coordinate) and three angle histograms (ω, θ and φ coordinates)’ at the same time (Yang et al., 

2020, p. 1502). In the first layer, 2D convolution with a size one filter reduced the number of 

inputs to 64. After that, a stack of 61 residual blocks was then added. On this stack, the number 

of dilations was performed 1, 2, 4, 8, and 16 times. At the last block, the network is split into 

four separate channels for each histogram, where each channel consists of 2D convolution. 

Following this, the output layer was activated by applying softmax activation. Because of the 

symmetric mapping for d and ω coordinates, symmetry in the NN was implemented before d 

and ω channels by inserting ‘transposed and untransposed feature maps’ from the preceding 

layer (Yang et al., 2020, p. 1502). Except for the first and last convolution operations, all 

convolution operations employed sixty-four 3x3 filters, as well as exponential linear unit 

(ELU) activation functions, which were used through a deep neural model (Yang et al., 2020).  
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2.1.1.2.3 DeepDist2 (MULTICOM group) 

DeepDist2 is a deep learning-based method that has been designed to predict the distance 

between protein residues. For MSA generation, three tools were used to search homologous 

sequences against protein sequence databases: DeepAln, DeepMSA and HHblits. Three sets of 

coevolution-based metrics were employed, which included a COV matrix, a PRE matrix, and 

PLM, with other sequence features. To generate MSAs for each target, the DeepMSA and 

DeepAln methods were used to search in various sequence databases, and then different 

techniques were used to integrate the search results. When DeepAln and DeepMSA created 

MSAs with less than ten sequences, MSAs were generated by HHblits searching against the 

Big Fantastic Database (BFD) (referred to as HHlitbe_BSD). The sequence features included 

the coevolution contact values measured by CCMpred and the Shannon entropy sum, mean 

contact potential, normalised mutual information, and mutual information computed by 

DNCON2 (Guo et al., 2021).  

The coevolutionary features that were analysed by COV, PLM and PRE metrics and other 

features were fed into the first layer of deep models, which was an instance normalisation (IN) 

layer. The next two layers were convolutional and Maxout. After these, the residual block 

begins with the RCIN block, which consisted of three normalisation layers and an activation 

function (ReLU). The row normalisation (RN) layer, column normalisation (CN) layer and IN 

layer were the three normalisation layers of RCIN. The outputs of these layers were combined 

and fed into a ReLU activation function. In order, a convolutional layer, another RCIN block, 

and three convolutional layers followed. After that, there were other RCIN blocks, which were 

followed by a convolutional layer. Finally, there was the squeeze-and-excitation block (SE), 

which is a popular channel-wise attention method in computer vision; here, it represented the 

attention mechanism. This block involved two sections: a squeeze operation and an excitation 
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operation. The first part could collect information from all the channels, whereas the second 

combined two fully connected layers with the ReLU activation function to boost the impact of 

relevant features. Using SE, the network recalibrated the feature channels so that it could 

allocate more attention to those features that were more important. The output was the 

probability distribution of distances between residues, computed using a softmax activation to 

divide inter-residue distances into several intervals (Guo et al., 2021). 

 

2.1.1.2.4 Contact Prediction Methods Performance in CASP14 

Three cutting-edge methods in contact prediction have been advanced in terms of their input 

features, MSA construction, and the training process of deep learning models. Because of its 

unique MSA analysis approach for predicting the distance between residues and employing 

distance to train deep models, TripletRes has been shown to have the best performance (Li et 

al., 2021b). Consequently, the precision of TripletRes reached 64 % on FM targets when 

considering L/5 long-range contacts in CASP14 (as described in the Methods section) (Ruiz‐

Serra et al., 2021). The performance of trRosetta in CASP14 was improved because of distance 

and orientation prediction, as well as the MSA selection procedure (Yang et al., 2020). A 

distance prediction from MSA features with other features has been shown to enhance 

DeepDist2 predictive performance (Guo et al., 2021).  

In this round of CASP experiments, AF2 was designed based on contact prediction principles, 

which rely on constructing MSA and distance representations to predict accurate 3D models of 

protein structures from single sequences. However, this remarkable achievement for AF2 relied 

on the employment of an end-to-end neural network model to learn from co-evolutionary data 

and distance maps (Jumper et al., 2021a; Saldaño et al., 2022; Yang et al., 2023). Here, the 

quality of MSA analysis and the training phase of deep neural networks were both critical 

aspects in improving contact prediction accuracy. These aspects have received attention in 
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TripletRes and were effectively enhanced (Li et al., 2021a). trRosetta and DeepDist2, on the 

other hand, were restricted by the low quality of MSA. In other words, analysing MSAs by 

using a PRE matrix has produced the local features of two residue positions from coevolution-

based data, ignoring other residue positions that provide global features (Yang et al., 2020; Li 

et al., 2021a). However, training deep models of trRosetta by subsampling and selective MSAs 

enhanced its learning ability, improving contact prediction accuracy (Yang et al., 2020). In 

DeepDist2, a lot of false sequences were shown to be generated due to its MSA protocol, 

decreasing its quality (Guo et al., 2021). The combination of distance maps as predicted from 

four protein feature sets in DeepDist2 helped deep models to extract precise distance 

information, hence improving the precision of distance prediction (Guo et al., 2021). Since 

these methods considered different aspects of contact prediction, integrating their relative 

strengths could further enhance contact prediction accuracy. 

 

2.1.2 Consensus Prediction 

Consensus predictions are made using a combination of several different methods, and the 

various output scores are combined in some way (e.g., the average score or a weighted average) 

in order to produce a final prediction. The advantages of consensus methods lie in using the 

combined strengths of many methods to achieve better performance (Wei, Thompson and 

Floudas, 2012). In other words, for different targets, their best models may be produced by 

different methods, so if we are able to combine these top-performing methods optimally, then 

it is more likely the final consensus predictions will be of a higher accuracy overall than could 

be achieved for any individual method (Lundström et al., 2008). 

Consensus methods have been used in a wide range of applications in different stages of protein 

structure prediction pipelines. Pcons was a neural-network-based consensus predictor that 

combined six-fold recognition servers using their prediction scores to select the best models. 
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Lundström et al. (2008) confirmed that the consensus prediction using Pcons improved the 

performance of the overall fold recognition protocol. Aside from consensus fold recognition, 

CONCORD was a new mixed integer linear optimisation (MILP)-based consensus method 

designed to optimise secondary structure prediction. This method is based on a combination of 

the predicted information from seven individual methods by using the MILP model to predict 

a high accuracy of the secondary structure model (Wei, Thompson and Floudas, 2012). In 

addition, consensus approaches have been part of MQAPs for many years for estimating the 

model quality, leading to significant progress in this category. For example, the Cheng group 

has benchmarked two consensus-based methods, MULTICOM_CLUSTER and MULTICOM-

CONSTRUCT, which incorporated nine single model methods with three consensus methods 

for producing accuracy scores for each model. Further to this, the Cheng group has also applied 

contact prediction and machine learning approaches to predict the global accuracy of individual 

models (Cheng et al., 2019). Each consensus method has been evaluated by the CASP assessors 

and has often been ranked among the top-performing methods in their categories. 

In the category of residue-residue contact prediction, there have been a few consensus-based 

servers that have been developed over the years. Yang and Chen (2011) developed LRcon based 

on logistic regression for obtaining a consensus contact map prediction. LRcon is a sequence-

based protein contact map prediction method and has been constructed on the prediction results 

derived from contact map predictors evaluated in CASP9. LRcon made a consensus prediction 

by using the probability of predictors to form feature vectors, which fed into logistic regression 

and generated models. These models were evaluated in a machine learning framework through 

independent datasets. The LRcon performance showed significant improvement in prediction 

accuracy, principally due to the application of the consensus method using the logistic 

regression algorithm (Yang and Chen, 2011). Another earlier consensus-based contact 

prediction is MetaPSICOV (the forerunner of DeepMetaPSICOV, which integrated three 
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coevolution-based methods with a classical neural network learning-based method (PSICOV)). 

This method generated coevolutionary scores of residue-residue contacts and then used these 

scores as inputs to a NN to integrate them and produce the final contact prediction scores (Jones 

et al., 2015; Wu, Hou, et al., 2020). Although predicting residue pair contacts in each of the 

individual methods was of low accuracy, the consensus approaches combine the strengths of 

many individual scores to improve the accuracy of contact prediction. This means that 

employing consensus strategies can further increase the performance of state-of-the-art 

methods through method integration. Some predictors have developed their servers by 

employing a consensus approach for obtaining so-called “meta-server” predictions. For 

instance, the DeepMetaPSICOV server was a consensus-based method that has combined two 

methods: MetaPSICOV and DeepCov (Fukuda and Tomii, 2020). DeepCov was a covariance-

based method that was able to predict sequence covariance features from sequence alignments 

and used them as input for CNNs (Jones and Kandathil, 2018; Li, Hu, et al., 2019; Li, Zhang, 

et al., 2019; Fukuda and Tomii, 2020). In the DeepMetaPSICOV program, DeepCov 

covariance features combined with MetaPSICOV inputs and were then fed into deep neural 

networks, leading to a further increase in the accuracy of contact predictions between residue 

pairs (Kandathil, Greener and Jones, 2019). 

A recent consensus method for predicting inter-residue contacts using MILP was developed 

called COMTOP. This method used seven selected residue–residue contact prediction methods, 

including CCMpred, EVfold, DeepCov, NNcon, PconsC4, plmDCA, and PSICOV (Tegge et 

al., 2009; Marks et al., 2011; Jones et al., 2012; Ekeberg et al., 2013; Seemayer, Gruber and 

Söding, 2014; Jones and Kandathil, 2018; Michel, Menéndez Hurtado and Elofsson, 2019; 

Reza et al., 2021). These methods differ in their input data and algorithm approaches (Reza et 

al., 2021). Reza et al. (2021) demonstrated that COMTOP can considerably enhance the 

performance of individual techniques. In a recent study, the ensemble of three deep learning-
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based contact prediction methods was designed by Billings et al. (2021), who aimed to 

investigate the benefit of the ensemble learning approach in the contact prediction field. The 

deep learning-based methods that were used to build the ensemble model were ProSPr, 

trRosetta and Alphafold1 (Senior et al., 2020; Yang et al., 2020; Billings, Morris and Della 

Corte, 2021). The predictors showed that contact prediction methods based on deep learning 

are often complementary and that a variety of outputs can be useful in forming ensembles that 

outperform single methods (Billings, Morris and Della Corte, 2021; Stern et al., 2021). 

 

2.2 Aims and Objectives 

The state-of-the-art contact prediction methods have seen considerable improvements in 

accuracy, which can be attributed to various approaches that integrate coevolutionary features, 

distance and orientation distributions with deep neural networks. However, the contact 

prediction accuracy in CASP14 did not notably improve over the 70 % precision which was 

achieved in the previous CASP round (Ruiz‐Serra et al., 2021). Working in this context, the 

current research aims to enhance the accuracy of residue-residue contact prediction. To produce 

meaningful improvement, we have sought to develop a consensus method through the 

integration of top-performing contact prediction methods based on the CASP13 and CASP14 

assessments. We first computed the contact scores for each set of residues in each target 

(domain and full chain) to obtain sets of predicted scores for each method. We then initially 

combined these scores using simple approaches (e.g., the mean scores) and used them to 

calculate the final scores. Hence, the objectives of this approach are to combine the outputs 

from the best contact prediction methods, determine if the predicted contacts of these methods 

are in agreement or could be complementary to each other and if any further improvements in 

accuracy could be gained from a simple consensus approach. 
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2.3 Methods 

2.3.1 Data Collection  

CASP 13 and CASP 14 datasets were used to conduct the experiment on long-range contacts. 

Protein targets in these datasets were split into domains. In the CASP13 dataset, 43 domains 

were classified into 12 template-based modelling/free modelling (TBM/FM) and 31 free 

modelling (FM) domains. Targets ranged in size from 44 to 431 residues (Shrestha et al., 2019). 

The targets in the CASP14 dataset include 45 domains. They were classified into 8 TBM hard, 

15 TBM/FM, and 22 FM domains. The lengths of the targets varied between 57 and 464 amino 

acid residues (Li et al., 2021b). In addition, full chains of the targets were chosen for this 

experiment, which included 35 CASP13 and 36 CASP14 targets. The datasets were collected 

from the CASP website (https://predictioncenter.org/download_area/). 

 

2.3.2 Contact Definition 

We adopted the CASP definition of residue contact based on the Euclidian distance between 

their carbon atoms, where if the distance of two Cβ atoms for two residues (Cα in the case of 

glycine) is less than or equal to 8 Å, they are considered in contact; otherwise, they are non-

contacting (Monastyrskyy et al., 2011; Monastyrskyy et al., 2014; Schaarschmidt et al., 2018; 

Shrestha et al., 2019; Ruiz‐Serra et al., 2021). Predicted contacts in this defined area can be 

assigned by computing their probability scores. As such, their probability values (p-values) 

should range between 1 and 0 (Monastyrskyy et al., 2011; Monastyrskyy et al., 2014; 

Schaarschmidt et al., 2018; Shrestha et al., 2019; Ruiz‐Serra et al., 2021). In our study, we 

classified prediction data as binary based on probability values into contacting and non-

contacting residue pairs, where if the p-value is above 0, the residue pair has been predicted to 

be in contact with a certain probability. 

Predicted contacts were divided into three categories based on sequence separation (i.e. the 

https://predictioncenter.org/download_area/
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number of residues separates between pairs of residues along protein sequence) into short-

range (6 ≤ │i-j│≤ 11),  medium–range (12 ≤ │i–j│≤ 23) and long-range (│i–j│≥ 24), where i 

and j are positions of residue pairs with predicted contacts (Monastyrskyy et al., 2014; 

Monastyrskyy et al., 2016; Schaarschmidt et al., 2018; Shrestha et al., 2019; Ruiz‐Serra et al., 

2021). We have concentrated here on long-range contacts for a consensus approach. Long-

range contacts have helped us with information on how to constrain the 3D modelling processes 

for protein structures (Ezkurdia et al., 2009; Monastyrskyy et al., 2014; Monastyrskyy et al., 

2016). 

This category was divided into subsets based on the length of the target sequence (L) with the 

highest probability values. These sets include reduced lists (Top10, L/5, L/2, L) and the full list 

(FL) (Monastyrskyy et al., 2014; Schaarschmidt et al., 2018; Shrestha et al., 2019; Ruiz‐Serra 

et al., 2021). The top 10 set represents the first ten predicted contacts of the residue pairs 

assigned with the highest probability.  L/5 and L/2 subsets reflect predicted contacts for 20 % 

and 50 % of domain length, respectively. L set contains the predicted contacts of all residues 

pair within a domain length, whereas the FL set includes all contact prediction datasets. For 

any residue pairs that were not predicted to be either in contact or non-contacting, we assigned 

their probability values as zero (Monastyrskyy et al., 2014; Monastyrskyy et al., 2016; Ruiz‐

Serra et al., 2021). 

 

2.3.3 Consensus Method Design 

The concept of the consensus method is to combine the strengths of individual methods to 

enhance the accuracy of residue–residue contact prediction. To achieve this, the average 

algorithm was applied to compute the mean of the prediction scores for individual methods in 

two ways. One of these is to combine two of three methods; the other is to calculate the mean 

of probability for three methods (Figure 2.1). The output of these consensus methods was then 
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compared with the output of the individual methods to determine the best consensus method. 

The consensus approach implemented by averaging the probabilities of residue pairs in each 

target for all three methods was called consensus 3 (Cons3). Other consensus approaches are 

designed by computing the mean of prediction scores for two of three methods, producing three 

approaches: consensus A (ConsA), consensus B (ConsB), and consensus C (ConsC). Each 

consensus approach generated two distinct sets of consensus predictions, one from CASP13 

and one from CASP14 datasets. Specifically, the first ConsA combined the prediction scores 

of two CASP13 methods, ZHOU-Contact and DMP, from the CASP13 data, while the second 

ConsA combined the prediction scores of two CASP14 methods, TripletRes and trRosetta, from 

the CASP14 data. Similarly, the first ConsB combined the prediction scores of ZHOU-Contact 

and Zhang_Contact from CASP13, and the second ConsB combined the prediction scores of 

TripletRes and DeepDist2 from CASP14. For ConsC, the first ConsC combined the prediction 

scores of DMP and Zhang_Contact from CASP13 and the second ConsC combined the 

prediction scores of trRosetta and DeepDist2 from CASP14. The same application was 

extended to Cons3, where the first integration used all three individual methods from CASP13, 

and the second combined the three methods from CASP14. In summary, the consensus 

approaches resulted in eight combinations from two datasets by integrating predictions from 

six different individual methods (Figure 2.1) (see Consensus Code written in Python3 in 

Appendix 1). 
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Figure 2.1.  The different consensus approaches. The paradigm consists of distinct 

combinations of two or three individual methods, where each arrow that originates from the 

consensus approach boxes represents a unique combination. The combination of two methods 

includes three approaches: consensus A (ConsA), consensus B (ConsB), and consensus C 

(ConsC). ConsA combines ZHOU-Contact with DMP from CASP13 and TripletRes with 

trRosetta from CASP14. ConsB integrates ZHOU-Contact with Zhang_Contact from CASP13 

and TripletRes with DeepDist2 from CASP14. ConsC combines DMP with Zhang_Contact 

from CASP13 and trRosetta with DeepDist2 from CASP14. The consensus of three methods 

(Cons3) integrates all three individual methods from either CASP13 or CASP14. 
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2.3.4 Evaluation Measures 

Three approaches were chosen for evaluating consensus methods coming from the CASP13 

assessment of protein contact prediction. These measures include precision, recall, and f1 

scores (Shrestha et al., 2019). 

Precision is the fraction of correctly predicted contact related to all contacts in the prediction 

data, which reflects the quality of the prediction data, while recall is the percentage of true 

predicted contact with respect to all contacts in the target structure. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
  

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑁𝑐
 

 

Where TP and FP are true positive and false positive, indicating the number of correct and 

incorrect contacts in the prediction data, respectively, and Nc is the number of all contacts of 

the target domain. The f1 measure is the harmonic mean of precision and recall, which acquires 

the features of both and is more suitable for the full list of the prediction dataset. 

𝑓1 𝑠𝑐𝑜𝑟𝑒 = 2.
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 . 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

To further evaluate consensus methods, we performed precision-recall (PR) curve analysis, 

which is used for ranking contact prediction methods based on probability values and for 

assessing their ability to predict residue contacts correctly by computing area under the curve 

(AUC_PR) scores, which have been used to indicate the accuracy of methods in recent CASP 

experiments (Monastyrskyy et al., 2014; Monastyrskyy et al., 2016; Schaarschmidt et al., 

2018; Shrestha et al., 2019). In using binary classification on an imbalanced dataset (i.e. the 

fraction of predicted contacts is lower than that of non-contacts), the best measure to evaluate 
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the accuracy of our method is the precision-recall curve (PR_curve) (Goadrich, Oliphant and 

Shavlik, 2004; Bunescu et al., 2005; Kok and Domingos, 2005; Monastyrskyy et al., 2014). 

This analysis resembles the Receiver Operating Characteristic (ROC) curve, but it is plotted in 

(recall precision) axes (Fawcett and Flach, 2005; Monastyrskyy et al., 2014). Given skewed 

data, PR curves may be a more insightful tool than ROC curves, which are often too positive 

in such situations (Davis and Goadrich, 2006; He and Garcia, 2009; Monastyrskyy et al., 2014). 

Precision is useful for explaining how a consensus method is good at correctly predicting 

residue contacts, whereas recall detects how successful a consensus prediction is in predicting 

true contacts (Tharwat, 2021) 

The random performance of the PR curves is influenced by the class distribution in the dataset. 

Since the AUC for a random classifier in the ROC curve is constant at 0.5, regardless of the 

class distribution, the AUC_PR of random changes with the class distribution. In a balanced 

class distribution, where the number of positive instances equals the number of negative 

instances, the AUC of a random classifier in the PR curve would be 0.5. This means the random 

classifier performs no better than chance in correctly predicting positive instances. However, 

in an imbalanced class distribution, where the ratio of positive to negative instances is different, 

the AUC of a random classifier in the PR curve is equal to the baseline, which is calculated as 

P / (P + N), where P represents the number of positive instances and N represents the number 

of negative instances. For example, in a dataset with a 1:10 ratio of positives to negatives, the 

AUC of the random classifier would be 0.09 (see Figure 2.2) (Saito and Rehmsmeier, 2015). 

In our study, the PR curves of contact prediction methods have different AUC_PR values for 

random classifiers due to the imbalanced distribution of contact predictions. The AUC_PR for 

the methods was calculated in two different ways. The first approach involved calculating the 

average AUC for all AUC targets for each method. The second approach involved calculating 

the AUC for each method after pooling all the contact scores for all targets.  
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Figure 2.2.  The random classifier performance in Precision-recall curve analysis. AUC 

of random classifier changes based on the ratio of positive prediction in the dataset. A) AUC 

of random classifier at 0.5 when the ratios of positive (P) and the negative (N) are equal (P:N 

= 1:1). B) AUC of random classifier at 0.09 when the ratio of positive and the negative are 

different (P:N = 1:10). Adapted from https://classeval.wordpress.com/.  

  

https://classeval.wordpress.com/
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2.3.5 ConEVA Tool 

To calculate the evaluation measures following the CASP evaluation system, the developer of 

ConEVA adopted the contact definition of CASP experiments and all contact ranges (short-, 

medium, and long-range). The prediction data were divided into subsets: top-5, L/10, L/5, L/2, 

L, and top-2 L. The length (L) is defined as the length of the native chain if provided because 

the native chain could be shorter than the query protein. Otherwise, it is the length of the 

sequence for which contacts are predicted. The evaluation measures considered in this tool 

were Precision, coverage, Xd, and mean false-positive error. As the ConEVA web server was 

not working during the analysis, we downloaded and used the standalone version tool in our 

research. The tool's input was the prediction data stored in the RR format of the CASP 

experiment and the PDB file of the experimental protein structure, which can be used to 

compute native contacts (Adhikari et al., 2016). 

The ConEVA output was summarised in two sections. The first section represented the input 

filename, sequence length, number of native contacts, matching protein sequence with 

prediction, and sequence separation of long-range contacts. The second section showed the 

contact numbers and evaluation scores for prediction and native data on all data subsets. For 

our evaluation, we considered precision scores on three sets (L/5, L/2 and L) for comparison 

with the CASP experiment's latest evaluation method. 

The precision scores were statistically tested to assess significant differences between the 

consensus-based methods and the individual methods using a paired Wilcoxon test. The paired 

Wilcoxon test is a statistical test that helps to determine if there is a significant difference 

between two related groups. This test does not require the data to have a normal distribution. 

It is an alternative to the paired t-test, which requires a normal distribution of data differences 

(Miller and Miller, 2010). The null hypothesis (H0) assumes that there is no difference between 

the paired values, while the alternative hypothesis (H1) suggests that there is a significant 
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difference. If the calculated p-value is less than 0.05, the null hypothesis is rejected, which 

indicates a significant difference between the paired groups. In the context of contact structure 

prediction, the paired Wilcoxon test was used to compare the accuracy of consensus prediction 

scores against individual prediction scores for the same target. 

 

2.4. Results 

The performance of the consensus-based methods was assessed based on the target 

classification. Protein targets were divided into their domains, which were defined according 

to CASP’s assessment process. Domains were classified into TBM and FM, depending on the 

availability of structure templates. Our study focused on FM targets as they are the most 

challenging in protein prediction fields due to the absence of adequate templates and the lack 

of protein sequence similarities in MSAs. Furthermore, the consensus methods were assessed 

for the full chain and all domains, regardless of their classification, to investigate whether 

contact prediction accuracy would be improved for the full chain and domains by consensus 

approaches. The assessment process was conducted in order to answer the question, “To what 

extent do consensus methods improve contact prediction accuracy?” 

The study findings have been analysed based on three assessment metrics: precision, f1-score 

and AUC_PR score. The results from each consensus approach were compared with those 

obtained from each of the individual component deep learning-based contact prediction 

methods. Here, the findings will be discussed based on the L/5 long-range contacts, following 

the procedure reported by the CASP assessors (Monastyrskyy et al., 2016; Shrestha et al., 2019; 

Ruiz‐Serra et al., 2021). In addition, evaluation results on L long-range contacts will be 

presented, which was also suggested by the CASP assessors. The L/5 long-range contacts 

represent contacts between residue pairs that can be used to reconstruct a 3D model of protein 

structures. The L long-range set includes the entire list of contacts along the protein sequence, 
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which assists in evaluating the predicted contacts of the target structure rather than considering 

all contact predictions that could be longer than the length of the target, resulting in 

unreasonable evaluation scores (Chen and Li, 2010; Shrestha et al., 2019; Ruiz‐Serra et al., 

2021). 

 

2.4.1 Consensus-based Method Performance on FM Domains 

2.4.1.1 CASP14 FM Domains 

The performance of methods was calculated firstly using our own code (The consensus code 

for CASP14 is in Appendix 1 and is freely available at https://github.com/Shuaa82/Consensus-

code) and secondly using the ConEVA tool. Table 2.1 shows the mean precision scores for the 

contact prediction methods of 22 FM domains from CASP14. Overall, the consensus methods 

outperformed individual methods based on their mean precision scores. On L/5 long-range 

contacts, two consensus methods attained the highest mean precision score among all contact 

prediction methods. The mean precision scores of ConsA and ConsB were higher than 65 %, 

whereas the mean precision scores of individual methods were lower than 64 %. The mean 

precision of ConsA was higher than the mean precision score of TripletRes (63.76 %) as well 

as higher than the average precision score of trRosetta (53.88 %) by ~ 11 %. ConsB achieved 

a higher mean precision score than TripletRes (63.76 %) and DeepDist2 (54.38 %). It should 

be mentioned that TripletRes performed similarly to top-performing human-server methods in 

CASP14 on L/5 long-range contacts (Ruiz‐Serra et al., 2021), whereas ConsA and ConsB 

outperformed them. The mean precision scores of the other two consensus methods (ConsC 

and Cons3) were comparable to those of DeepDist2 and TripletRes. In addition, the mean 

precision score of trRosetta was lower than the mean precision scores of ConsC and Cons3; 

the mean precision score of DeepDist2 was lower than that of Cons3. On L long-range contacts, 

mean precision scores of individual methods were lower than 40 %, whereas ConsA and Cons3 
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achieved scores higher than 40 %. In addition, ConsB and ConsC achieved scores comparable 

with those of TripletRes and trRosetta. However, their mean precision values were higher than 

those of trRosetta and DeepDist2 by ~2 %-5 %. 
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Table 2.1. Mean Precision Scores of individual methods compared with those of consensus 

methods on 22 FM domains of CASP14. The scores were measured for long-range on contact 

subset lists: Top10, L/5, L/2, L, FL, where L represents the sequence length. Top10 set includes 

ten amino acid residue pairs with the highest probability value of contacts. The L/5 set contains 

contact scores of residue pairs within 20 % of the sequence, whereas the L/2 set has predicted 

scores of contacts for residue pairs within 50 % of sequences. L set contains all predicted scores 

of residue pairs within sequence length. FL is a full contact prediction dataset. 

Method Top10 L/5 L/2 L FL 

TripletRes (G010) 71.82 63.76 53.32 39.64 1.98 

trRosetta (G377) 61.36 53.88 44.42 33.41 2.21 

DeepDist2 (G420) 63.18 54.38 41.62 31.42 2.02 

ConsA (G010 & G377) 76.19 65.47 58.56 43.59 1.94 

ConsB (G010 & G420) 66.82 65.75 52.68 39.07 1.95 

ConsC (G377 & G420) 62.73 54.21 45.16 33.92 1.95 

Cons3 (G010 & G377 & G420) 

68.18 

 

 

63.03 

 

52.78 

 

40.35  

 

 

1.93 

 

 

 

The contact prediction methods’ performance was also evaluated using the ConEVA tool to 

compute precision scores as an alternative evaluation. In Table 2.2, the mean precision scores 

for the individual and consensus methods on 22 FM domains are shown for three sets of long-

range contacts. The mean precision score of ConsA was the highest score among all contact 

prediction methods (individual and consensus) on all three long-range contact sets. For the L/5 

long-range set, ConsA and ConsB achieved mean precision scores of more than 65 %, which 

was higher than the scores of TripletRes (63.80 %), trRosetta (53.8 %), and DeepDist2 (54.40 

%). The mean precision score of ConsC (54.01 %) was comparable to that of DeepDist2 and 

higher than that of trRosetta. Additionally, combining three methods in Cons3 achieved a 

comparable mean precision score (63.06 %) to that of TripletRes and a higher score than the 
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other individual methods. On the L long-range contacts, ConsA and Cons3 achieved higher 

mean precision scores (42.02 % and 40.33 %, respectively) than TripletRes (39.66 %), 

trRosetta (33.43 %), and DeepDist2 (31.44 %). Moreover, the average precision scores of 

ConsB (39.14 %) and ConsC (33.96 %) were comparable to those of TripletRes (39.66 %) and 

trRosetta (33.43 %). However, the mean precision scores of these consensus methods were 

higher than that of DeepDist2 (31.44 %) by ~2 %-8 %. Thus, the findings indicate that 

consensus methods improved the mean precision of contact prediction, which demonstrates 

that combining methods could increase the accuracy of contact prediction and predictive 

performance.  
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Table 2.2. Mean Precision Scores of individual methods compared with those of consensus 

methods on 22 FM domains of CASP14 using the ConEVA tool. The scores were measured 

for long-range on contact subset lists: L/5, L/2, L, where L represents the sequence length. Top10 set 

includes ten amino acid residue pairs with the highest probability value of contacts. L/5 set contains 

contact scores of residue pairs within 20 % of the sequence, whereas the L/2 set has predicted scores 

of contacts for residue pairs within 50 % of sequences. L set contains all predicted scores of residue 

pairs within sequence length. FL is a full contact prediction dataset. 

Methods L/5 L/2 L 

TripletRes (G010) 63.80 53.35 39.66 

trRosetta (G377) 53.83 44.38 33.43 

DeepDist2 (G420) 54.40 41.63 31.44 

ConsA (G010 & G377) 65.82 56.34 42.02 

ConsB (G010 & G420) 65.73 52.72 39.14 

ConsC (G377 & G420) 54.01 45.17 33.96 

Cons3 (G010 & G377 & G420) 63.06 52.76 40.33 

. 
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The results for ConEVA show statistically significant differences between the precision scores 

of the consensus-based methods and those of the individual methods according to p-values in 

a paired Wilcoxon test (see Table 2.3). On L/5 long-range contacts, the differences between the 

mean precision scores of consensus methods (ConsA and Cons3, p < 0.05) and the mean 

precision score of trRosetta are statistically significant; in addition, the mean precision score 

of ConsB is significantly different from the mean precision score of DeepDist2. On the other 

hand, the mean precision scores of the consensus methods (ConsA, ConsB and Cons3) are not 

significantly different from the mean precision score of TripletRes (p > 0.05). Furthermore, the 

mean precision score of ConsC is not significantly different from the mean precision scores of 

trRosetta and DeepDist2. These results suggest that integrating TripletRes with other individual 

methods in consensus methods has a significant impact on their performance, leading to 

improved predictive accuracy. Similar observations were made for L long-range contacts, apart 

from ConsC, which has a mean precision score with a significant difference from that of 

trRosetta. This shows that the predicted number of contacts might affect the performance of 

prediction accuracy in consensus approaches. 
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Table 2.3. P-values of mean precision for L/5, L/2, and L long-range contact prediction of 

CASP14 target domains (FM). L/5 set contains contact scores of residue pairs within 20 % 

of the sequence, whereas the L/2 set has predicted scores of contacts for residue pairs within 

50 % of sequences. L set contains all predicted scores of residue pairs within sequence length. 

Method ConsA 

 

ConsB 

 

ConsC 

 

Cons3 

  L/5 long-range contacts   

TripletRes 0.866 0.128 0.998 0.699 

trRosetta 0.001 0.003 0.276 0.010 

DeepDist2 0.109 0.002 0.773 0.019 

  L/2 long-range contacts   

TripletRes 0.684 0.720 0.977 0.862 

trRosetta 0.000 0.001 0.050 0.002 

DeepDist2 0.001 0.002 0.149 0.001 

  L long-range contacts   

TripletRes 0.448 0.700 0.970 0.552 

trRosetta 0.001 0.007 0.044 0.002 

DeepDist2 0.006 0.008 0.205 0.002 

 

 

Precision scoring neglects native contacts in its calculations, which can reflect the difficulty of 

targets. Therefore, the f1_score was considered in our analysis to reflect how accurate 

consensus-based methods are when predicting difficult targets. In other words, predicting a 

small number of residue contacts in some targets demonstrates how difficult predicting these 

targets can be, as shown by the f1_score because it considers all true contacts of the targets 

when calculating the recall (Shrestha et al., 2019). 
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As the f1_score inherits the properties of precision and recall in giving a reliable evaluation, 

we analysed our results by computing the mean f1_scores of the consensus methods to be 

compared with those of the individual methods on the FM domains (see Table 2.4). Overall, 

ConsA and ConsB outperformed the individual methods, whereas ConsC reached a similar 

level to those individual methods’ performance on L/5 long-range contacts. The higher mean 

f1 scores of ConsA and ConsB could be attributed to the obvious effect of TripletRes on their 

performance, as combined with the other two individual methods in these consensus methods 

led to enhance accuracy in contact prediction. This can be seen with the L set, where the mean 

f1_score of ConsA (42.93 %) was the highest score among both the individual and consensus 

methods, indicating that ConsA effectively exploited the advantages of TripletRes and 

trRosetta, leading to it acquire a capability to explore native contacts. On the other hand, the 

mean f1_score of ConsB was slightly lower than that of TripletRes. This reduction could be 

related to DeepDist2 performance, the mean f1_score of which was the lowest among all 

contact prediction methods. However, the combination of DeepDist2 and trRosetta in ConsC 

resulted in a slightly higher value of f1_score than their individual scores. In Cons3, the mean 

f1_scores on L/5 and L were higher than those of DeepDist2 and trRosetta and comparable to 

the mean f1_score of TripletRes. Despite this, Ruiz‐Serra et al. (2021) demonstrated that FM 

targets in CASP14 were more difficult than those in CASP13, which might affect the predictive 

performance of contact prediction methods. Our findings suggest the effectiveness of 

consensus methods compared to individual methods’ performances. Subsequently, consensus 

prediction could play a valuable role in advancing contact prediction accuracy. 
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Table 2.4. Mean f1_score scores of individual methods compared with consensus methods 

on 22 FM domains of CASP14. The scores were measured for long-range on contact subset 

lists; Top10, L/5, L/2, L, FL, where L represents the sequence length. Top10 set includes 10 

amino acid residue pairs with the highest probability value of contacts. L/5 set contains contact 

scores of residue pairs within 20 % of the sequence, whereas the L/2 set has predicted scores 

of contacts for residue pairs within 50 % of sequences. L set contains all predicted scores of 

residue pairs within sequence length. FL is a full contact prediction dataset. 

Method Top10 L/5 L/2 L FL 

TripletRes (G010) 8.74 21.88 35.76 39.28 3.86 

trRosetta (G377) 6.48 17.46 28.24 31.83 4.29 

DeepDist2 (G420) 7.19 17.90 26.71 29.97 3.94 

ConsA (G010 & G377) 9.27 22.25 38.93 42.93 3.77 

ConsB (G010 & G420) 7.84 22.66 35.23 38.67 3.81 

ConsC (G377 & G420) 7.00 17.81 28.98 32.47 3.79 

Cons3 (G010 & G377 & G420) 8.06 21.56 35.11 39.79 3.76 

 

Increasing predicted contact numbers could render evaluation unreliable, as the number of 

contacts is lower than the non-contact number, therefore producing imbalanced data for binary 

classification. To overcome this problem, the best assessment measure for imbalanced data is 

PR curve analysis. PR analysis was performed to see whether contact prediction methods could 

accurately assign high confidence levels to predicted contacts. The area under the PR curve 

(AUC_PR) was calculated and used as ranking scores for contact prediction methods. It is 

worth noting that the AUC_PR scores for the best-performing methods in the CASP contact 

prediction assessments were below 0.5 (Monastyrskyy et al., 2016; Shrestha et al., 2019). 

Keeping this in mind, we have found that the AUC scores of our contact prediction methods 

are consistent with the AUC_PR scores observed in CASP experiments. 

In Figure 2.3, the average of AUC_PR scores of individual and consensus methods have been 
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represented for FL long-range contacts for CASP14 FM domains. As shown in the Figure 2.3, 

ConsA outperformed the individual methods as well as the other consensus methods based on 

its average AUC_PR score (0.42). Moreover, Cons3 and ConsB achieved the average AUC_PR 

scores similar to the average AUC_PR score of TripletRes (0.41), which was the best individual 

method. Additionally, the average AUC_PR scores of Cons3 and ConsB were higher than the 

average AUC_PR scores of the other individual methods. These three consensus methods can 

more accurately predict contacts than the individual methods, which might explain these 

ratings. AUC_PR score of ConsC (0.32), which was consistent with prior assessment scores, 

indicates that the combination of trRosetta and DeepDist2 failed to accomplish the purpose of 

the consensus method, with trRosetta achieving a higher average AUC_PR score (0.34) (see 

Table 2.5). 
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Figure 2.3. A comparison of consensus methods and individual methods on FL long-range 

contact set based on AUC_PR score of Precision-Recall curve analysis for 22 CASP14 FM 

domains. 
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The performance evaluation of individual methods and consensus methods for predicting FL 

long-range contacts for CASP14 FM domains based on AUC_PR scores are represented in 

Table 2.5. ConsA's performance is at a similar level as TripletRes, the top individual method, 

as both achieved an AUC_PR score of 0.47. This indicates that ConsA, as a consensus method, 

is more accurate in predicting contacts than other individual methods. Cons3 and ConsB 

demonstrated equivalent performance to TripletRes, as their AUC_PR scores were 0.46. 

Additionally, the AUC_PR scores of Cons3 and ConsB were higher than those of the other 

individual methods. Furthermore, ConsC had an AUC_PR score of 0.39, indicating that the 

combination of trRosetta and DeepDist2 achieved a slight improvement in the accuracy of 

contact prediction. Notably, trRosetta achieved a comparable AUC_PR score (0.38) to the 

consensus method, ConsC. This suggests that the consensus methods are more accurate in 

contact prediction compared to the individual methods, apart from TripletRes. 

 

Table 2.5. AUC_PR scores of individual methods compared with consensus methods on 

22 FM domains of CASP14. The scores were measured for long-range on contact subset FL, 

which is a full contact prediction dataset. The AUC_PR scores were calculated in two different 

ways. AUC_PR represent the scores of the prediction methods based on the contact prediction 

for all 22 FM targets. Average AUC_PR represent the scores of prediction methods based on 

the AUC of all targets for each method.  AUC_PR of the random classifier is for each PR curve 

analysis of each method.   

CAPS14 methods AUC_PR AUC_PR of a random 

classifier 

Average 

AUC_PR 

TripletRes (G010) 0.47 0.01 0.41 

trRosetta (G377) 0.38 0.02 0.34 

DeepDist2 (G420) 0.33 0.01 0.31 

ConsA (G010 & G377) 0.47 0.01 0.42 

ConsB (G010 & G420) 0.46 0.01 0.41 

ConsC (G377 & G420) 0.39 0.01 0.32 

Cons3 (G010 & G377 & G420) 0.46 0.01 0.41 
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2.4.1.2 CASP13 FM Domains 

A similar evaluation was conducted on the consensus-based methods’ performance on CASP13 

data (the consensus code for CASP13 data is in Appendix 1 and is freely available at 

https://github.com/Shuaa82/Consensus-code). Overall, the consensus-based methods showed 

the best performance based on mean precision scores on 31 FM domains (see Table S.1, Table 

S.2 in Appendices 2 and 3). On L/5 long-range contacts, the mean precision scores of ConsA 

and ConsC reached 64.83 %, which is higher than the mean precision scores of the individual 

methods (Zhang_Contact=57.38 %, ZHOU-Contact = 58.90 %, DMP = 60.80 %). Moreover, 

the highest mean precision score belonged to Cons3 (65.98 %), which combined all individual 

methods. For L long-range contacts, three consensus-based methods (ConsB, ConsC and 

Cons3) achieved more than 40 % mean precision compared to the mean precision of the 

individual methods, which was less than 40 %. In agreement with these results, the mean 

precision scores computed by the ConEVA tool demonstrated that consensus-based methods 

outperformed the individual methods. Precision score means of consensus-based methods were 

higher than ~65 % on L/5 long-range contacts and higher than 40 % on L long-range contacts, 

which are statistically different from the mean precision scores of the individual methods 

according to the p-values shown in Table S.3 in Appendix 4.   

Based on f1_score and the average of AUC_PR values of Precision-Recall analysis, the 

consensus approaches performed better than the individual methods. According to their mean 

f1_scores, the combination of three individual methods in Cons3 achieved a higher score on 

L/5 and L long-range contacts than any of the individual methods, followed by ConsC and 

ConsB (see Table S.4 and Table S.5 in Appendices 5 and 7). These consensus methods attained 

the best scores for average AUC_PR (0.41 for Cons3, 0.40 for ConsB and ConsC), as shown 

in Figure S.1 (see Appendix 6). In addition, the consensus methods outperformed the individual 

methods and performed comparably well to DMP based on AUC_PR scores (see Table S.5 in 
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Appendix 7). These findings, together with precision scores, suggest that consensus-based 

techniques may improve predictive accuracy depending on the contact prediction methods 

combined. 

 

2.4.2 Consensus-based Method Performance on Full Chain versus Domains 

Following the CASP-like assessment process, the evaluation measures were computed on the 

target domains to produce a precise analysis of the performance of the contact prediction 

methods. One of the lessons learned from the CASP14 experiment is that accuracy is improved 

when the prediction is conducted on full chains of proteins rather than domains, as all predicted 

contacts among and within domains of each target are considered. To investigate this 

assumption, we test our consensus approaches on full chains and domains of CASP13 and 

CASP14 targets, regardless of their classification, and evaluated their performance in 

comparison with individual methods. 

The predictive accuracy differed on full chain and domains of CASP14 and CASP13 according 

to mean precision scores obtained with the ConEVA tool. For the CASP14 data, the consensus-

based methods demonstrated successful performance for full chain and domains on L/5 long-

range contacts, as shown in Figure 2.4. ConsA (77.67 %) achieved the highest mean precision 

scores on domains and Cons3 (77.12 %) on full chains. On L long-range, mean precision scores 

were relatively better on domains for most contact prediction methods. However, ConsA was 

the most accurate method for domains (52.5 %) as well as for full chains (51.33 %) (Figure 

2.5). Overall, the predicted contacts for the domain dataset were more accurate than those for 

the full chain dataset of CASP14. Conversely, predicted contacts for full chains were 

significantly higher than those for domains using the CASP13 data. The mean precision scores 

of consensus methods on the full chain dataset were higher than 75 %, whereas those on the 

domain dataset were less than 74 % on L/5 long-range contacts. Interestingly, ConsB achieved 



Chapter 2 

96 
 

the highest score (79.02 % of mean precision) for full chains, which was higher by ~9 % than 

its mean precision score for domains. Regarding L long-range contacts, predicted domain 

contacts were lower by ~2 %-3 % of mean precision compared to those of full chains for 

consensus methods except for ConsC, which performed similarly on both (~ 47 %) (see Figures 

S.2, S.3 in Appendices 8 and 9). The difference between mean precision scores for full chains 

and domains from CASP13 versus those from CASP14 might be related to the differentiation 

between deep learning-based methods with respect to approaches and algorithms employed in 

them. Nevertheless, in summary, the consensus-based methods outscored the individual 

methods on both full chains and domains for both the CASP13 and CASP14 targets.  
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Figure 2.4. Mean precision scores of predicted contacts for domains and full chains of 

CASP14 targets on L/5 long-range contacts for 36 full chains and 43 domains-ConEVA 

tool. 

 

 

 

Figure 2.5. Mean precision scores of predicted contacts for domains and full chains of 

CASP14 targets on L long-range contacts for 36 full chains and 43 domains-ConEVA tool. 
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2.5 Discussion 

Based on the findings from the evaluation, consensus-based methods have improved the 

predictive performance over individual methods, leading to an increase in contact prediction 

accuracy. The performance of the consensus methods can be attributed to the varying design 

of the component individual servers in three aspects: MSA construction, distance and 

orientation prediction, and a deep model of neural networks. In this section, we address the 

reasons for the enhanced performance of consensus methods on CASP14 and CASP13. 

The highest accuracy of contact prediction went to ConsA, into which two CASP14 top-ranked 

methods were integrated among all consensus methods. This indicates that TripletRes and 

trRosetta were complementary. In TripletRes, a combination of three evolutionary matrices 

extracted precise evolutionary features from a deep MSA, and these matrices were the main 

factor that led to a considerable improvement in its performance in CASP14 (Li et al., 2021a). 

Another improvement was added in TripletRes when ‘discretised distance’ information was 

used as a loss function to train the deep neural model (Li et al., 2021a).  In trRosetta, MSA 

selection was used in the deep model neural network to select precise MSA features among 

different MSA protocols, which are generally conducted because deep MSA might not have a 

good quality for some targets (Kandathil, Greener and Jones, 2019; Yang et al., 2020). This 

step advanced trRosetta’s prediction accuracy (Yang et al., 2020; Du, Peng and Yang, 2022). 

Furthermore, orientation prediction contributed to the improvement of trRosetta. Both methods 

were designed to predict the distance map of protein sequences, which involves precise 

information that could support predicting accurate contact networks among protein residues 

(Yang et al., 2020; Li et al., 2021a). Combining prediction contact data of these methods in the 

ConsA approach leverages the strengths of their performance, leading to further improvement 

in the accuracy of contact prediction. 

ConsB and Cons3 achieved a relatively high level of contact prediction accuracy compared 
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with ConsA. In ConsB, the quality of the MSA generation of DeepDist2 was less than that of 

TripletRes. In DeepDist2, the developers combined DeepMSA and DeepAln with 

HHlitbe_BSD to generate MSAs; they demonstrated that MSAs have noisy information due to 

most of the sequences being non-homologous, which creates a great deal of false-positive data 

that reduces the accuracy of contact prediction (Guo et al., 2021). In TripletRes, the power of 

its performance came from the ensemble co-evolutionary matrix, which led to the high quality 

of MSA analysis. Combining these two methods in ConsB might have led to overcoming the 

weakness of DeepDist2 with the strength of TripletRes by reducing the false positive in 

prediction data, improving contact prediction accuracy. The effect of TripletRes's performance 

can be seen in Cons3. TripletRes's design distinguishes it from the other methods (trRosetta 

and DeepDist2) regarding the ensemble of statistical models of coevolution data and discrete 

distance function of deep learning training. These advanced stages improved TripletRes’s 

performance over individual methods. Hence, the consensus of TripletRes with DeepDist2 and 

trRosetta in Con3 increased the accuracy of contact prediction. 

ConsC was the least accurate consensus method. This may be related to MSA procedures found 

in the individual methods. The main way to improve the predictive performance of contact 

prediction is by using data derived from coevolution (Ruiz‐Serra et al., 2021). The MSA 

procedures of trRosetta produced evolutionary local features that did not consider the effect of 

universal features, and the DeepDist2 MSA construction yielded non-homologous sequences 

that delivered inaccurate information. This might be why ConsC was unable to outperform 

individual methods; the prediction data of the individual methods was less accurate because of 

the low quality of their MSA. However, ConsC achieved a comparable level of prediction 

accuracy as these individual methods. 
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It should be noted that the developers of DMP have demonstrated that the deep length of MSA 

could reduce the precision of contact prediction because of mismatching sequences in the 

alignment process. This mismatched sequence problem can produce incorrect coevolution 

information that leads to a reduction in the quality of MSA and the accuracy of contact 

prediction (Kandathil, Greener and Jones, 2019). However, it is believed that the success of 

contact prediction methods in CASP13 is due to models composed of deep neural networks. 

DMP substantially improved contact prediction accuracy, which can be attributed to its 

advanced deep neural network models. Training five models of NNs with adding strategies for 

data augmentation was the reason for the improvement in the contact prediction performance 

in DMP (Kandathil, Greener and Jones, 2019). In SPOT-Contact, the ensemble of NN models 

added a substantial improvement to the capability of deep model learning to extract interaction 

patterns between protein residues in a 3D model of protein structures (Hanson et al., 2018). 

The improved performance of NeBcon was because of an ensemble of nine deep learning-

based approaches, which utilise variance deep neural network models (Zheng et al., 2019). 

However, each NN model in each method could predict a slightly different pattern because of 

the differences in their designs, ‘parameter initialisations’, data input and other variables. To 

boost predictive accuracy, ensemble averaging tends to take advantage of these patterns’ 

complementarity (Ding et al., 2018). This could be suggesting the increasing accuracy of 

contact prediction of the four consensus methods over individual methods in CASP13. 
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2.6 Conclusion 

Consensus-based contact prediction methods have been developed to improve contact 

prediction accuracy by integrating the top-ranked methods in the contact prediction field in two 

recent CASP rounds. The purpose of the consensus methods was to reach an accuracy of 

contact prediction beyond ~70 % by exploiting the advances in deep learning-based contact 

prediction methods. In recent methods, enhancements were applied to the most important 

stages of contact prediction, including MSA construction, deep models of neural networks, and 

employment of distance and orientation maps. Although the contact prediction accuracy did 

not reach more than 70 % for the harder FM targets, consensus-based methods succeeded in 

leveraging these advancements for further improvements to contact prediction accuracy.  

The performance of consensus-based methods for contact prediction was determined by the 

success of combining the strengths of deep learning-based methods for prediction. By 

combining the outputs from TripletRes and trRosetta, we observed improvement in the 

accuracy of the predicted contacts (ConsA) by 3.2 % (from 63.80 to 65.82 %) according to 

mean precision on L/5 long-range contacts for FM domains in CASP14. This improvement 

indicates that TripletRes and trRosetta predicted contact maps for FM targets with varying 

degrees of accuracy; ConsA was likely able to combine these to obtain optimal contact maps 

with high accuracy. It is crucial to note that this increase may not be statistically significant (p 

> 0.05). In CASP13, integrating three deep learning-based methods in Cons3 brought the mean 

precision of predicted contacts by 10.5 % (from 61.17 % to 67.96 %) on L/5 long-range 

contacts for FM domains. This improvement is statistically significant with a p-value less than 

0.05. This means that the individual methods were complementary to each other, and the 

consensus method thus exploited this to increase the contact prediction accuracy.   

The inability of other consensus methods to increase contact prediction accuracy could be 

related to the target difficulty of FM domains and the choice of using deep learning-based 
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methods to design consensus methods. In a recent CASP14 report, Ruiz-Serra et al. (2021)  

demonstrated that FM targets in CASP14 posed more challenges than those in CASP13. This 

could potentially affect the predictive performance of individual prediction methods and, 

hence, consensus methods. In addition, choosing two deep learning-based methods to build 

consensus methods (seen with ConsC in CASP14) could lead to a reduction in contact 

prediction accuracy. Such a reduction would result from the merging of inaccurate data. 

Therefore, if deep learning-based methods are chosen improperly, the consensus of their 

prediction may result in the opposite of what was initially intended. 

Consensus-based methods successfully improved predicted contact accuracy for both full 

chains targets and their domains. Based on mean precision scores, the accuracy of predicting 

contacts for domains was slightly higher than that of full chains in CASP14, whereas it was 

lower than that of their full chains in CASP13. This may indicate that various approaches and 

algorithms employed in deep learning-based methods produce different contact maps for full 

chains and domains with varying degrees of accuracy. The purpose of analysing contact 

prediction on both full chains and domains was to examine whether the accuracy of contact 

prediction would be better improved with full chains than with domains. However, the 

prediction accuracy of consensus methods reached ~77 % on both the full chains and their 

domains in CASP14 on L/5 long-range contacts. 

Our new consensus-based contact prediction approaches can be used to complement the 

cutting-edge modelling methods, for example, utilising them to estimate the accuracy of 3D 

models at the local level. With that in mind, in the next chapter, we aimed to merge deep 

learning-based contact prediction into our ModFOLD9 pipelines to enhance its ability to 

estimate the 3D model quality. We describe how we used the CDA score to assess the local and 

global quality of 3D models based on a combination of contact scores. 
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3.1 Background 

The interaction of protein residues is an important aspect of predicting protein structure models. 

Many protein prediction tools employ residue-residue contact maps to further improve their 

predictive performance and enhance their predicted 3D models of protein structures (Wu, 

Szilagyi and Zhang, 2011; Buchan and Jones, 2017; Zheng et al., 2019; Yang et al., 2020; 

Mortuza et al., 2021; Quignot et al., 2021). Recently, QA methods have integrated contact 

prediction tools into their in-house programmes, enhancing their predictive accuracy (Cao et 

al., 2017; Maghrabi and McGuffin, 2017; Cheng et al., 2019; Jing and Xu, 2020; McGuffin et 

al., 2021; Ye et al., 2021). 

 

3.1.1 Model Quality Assessment 

Protein structure prediction methods will often generate multiple alternative models with 

varying accuracy depending on the target. Highly accurate 3D models are necessary for 

application in biomedical studies. Therefore, researchers must be able to accurately select the 

best quality models from among the alternatives (Uziela and Wallner, 2016). Therefore, 

estimating the quality of predicted 3D models, prior to availability of experimental data, is one 

of the critical stages of protein structure prediction pipelines.  

Estimation of Model Accuracy (EMA) or Quality Assessment (QA) methods are designed to 

detect errors in 3D models, which can then be avoided or fixed in order to increase the quality 

of the models (Won et al., 2019). There are two kinds of errors: local and global errors. 

Estimating local errors, which denotes investigating how each residue in the 3D model deviates 

from the corresponding residue in a native structure, could help improve the accuracy of the 

local regions of the 3D models. On the other hand, global error estimation allows us to rank 

the many alternative models and then select the best models of the target protein. 
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QA methods are classified into single-model, quasi-single model, and clustering methods. 

Single-model methods predict the quality based on a single model input, whereas clustering-

based methods rank the best models for a target by assessing multiple models (Won et al., 

2019). In quasi-single model methods, a set of reference structures are modelled from target 

sequence, then compared to a single model to evaluate its quality accuracy (Maghrabi and 

McGuffin, 2017; Cheng et al., 2019; Maghrabi, 2019; Chen and Siu, 2020; McGuffin et al., 

2021). 

A recent achievement in modelling methods has been the prediction of 3D models with 90 per 

cent accuracy by AF2 (Jumper et al., 2021a; Pereira et al., 2021). However, AF2 can have 

limitations in predicting local regions for some dynamic structures, which means that there 

remains a pressing need to be able to independently estimate the quality of local areas of 3D 

models, especially in dynamic regions (Fowler and Williamson, 2022; Yang et al., 2023). 

Additionally, many other state-of-the-art publicly available modelling servers, still produce 

models that are inaccurate at the local level. Hence, the remaining local errors in high-quality 

models has increased the need for high-performance QA methods (Kwon et al., 2021; 

McGuffin et al., 2021). Furthermore, as it is a challenge for QA methods to distinguish between 

very high-quality 3D models, their estimation ability must be improved (Kwon et al., 2021).  

 

3.1.2 Application of Contact Prediction Methods for Model Quality Estimates 

The quality of local regions and the overall model can be assessed by identifying per-residue 

errors in 3D models. For that purpose, QA methods were developed to include deep learning-

based contact prediction methods, which improved their prediction performance in terms of 

assessing the local and global quality accuracy of 3D models (Cheng et al., 2019; Chen and 

Siu, 2020; Jing and Xu, 2020; Chen et al., 2021; McGuffin et al., 2021; Liu et al., 2022).  
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Single-model methods estimate the accuracy of protein models quality based on local features, 

such as secondary structure prediction, solvent accessibility and residue-residue contact 

patterns, which are extracted from a single model. For example, ProQ2 used SVM to integrate 

the protein features that were derived from the model (Ray, Lindahl and Wallner, 2012; Uziela 

and Wallner, 2016). The structural features were contact patterns between residues and surface 

accessibility, whereas sequential features were extracted from predicted secondary structures 

and sequence profiles (Uziela and Wallner, 2016).   

In addition, contact prediction methods have been integrated with clustering-based model 

quality assessment methods. Cheng et al. (2019) developed three consensus-based quality 

assessment methods for CASP13. The development used a deep neural network model and 

ensemble approach to combine the predicted contact scores with a large set of other scores to 

estimate the global accuracy. 

In earlier versions of ModFOLD, contact prediction was integrated using a pure-single model 

method called the CDA score. This method aims to determine the agreement between the 

predicted contacts computed by deep learning-based contact prediction methods and the 

contact scores of 3D models calculated via the Euclidean distance algorithm (Maghrabi, 2019). 

In the sixth and seventh versions of ModFOLD, the contact prediction method MetaPSICOV 

(Jones et al., 2015) was used to produce the predicted contact scores to measure CDA score, 

which was combined with other pure- and quasi-single scores into a NN, which led to a 

substantial improvement in its performance in both local and global accuracy according to 

CASP12, CASP13 and CAMEO assessment (Maghrabi and McGuffin, 2017; Maghrabi and 

McGuffin, 2020; Elofsson et al., 2018; Cheng et al., 2019; Chen and Siu, 2020). In the eighth 

version, the ModFOLD server was developed with the combination of two new CDA scores 

derived from the top-ranked deep learning-based contact prediction methods along with the 

previous CDA score (McGuffin et al., 2021). In total, the development of the eighth version of 
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ModFOLD combined 13 scores, nine pure-single model methods and four quasi-single model 

methods, aiming to increase performance accuracy. The pure-single methods included ProQ2, 

ProQ2D, ProQ3D, ProQ4, VoroMQA, the Secondary Structure Agreement (SSA) score, and 

three CDA scores, which were produced from three deep learning-based contact prediction 

methods. The two new pure-single methods were the CDA_SC and CDA_DMP scores derived 

from the SPOT-Contact and DeepMetaPSICOV contact prediction methods (McGuffin et al., 

2021). These CDA scores, along with the combination of other pure- and quasi-single model 

scores, were fed into the NN model to predict the final QA score of each model (McGuffin et 

al., 2021). The CASP14 and CAMEO assessments ranked ModFOLD8 at the top in terms of 

the estimation of quality assessment (Kwon et al., 2021; McGuffin et al., 2021). 

 

3.1.3 Development of Consensus CDA scores from Contact Prediction Methods 

The CDA method added value to the predictive performance of the ModFOLD servers. This 

pure single-model method was designed to detect missing contacts in a 3D model of a protein 

structure. This detection can be observed when comparing the contact scores of targets 

produced from deep learning-based contact prediction with the contacts in 3D models that are 

calculated by applying the Euclidean distance algorithm. By employing contact scores in 

estimating procedures, the accuracy of the predicted local errors of models can be enhanced 

(Maghrabi and McGuffin, 2017; Maghrabi, 2019; McGuffin et al., 2021).  

Different deep learning-based methods for contact prediction will produce different contact 

scores for a given protein target. This might be related to the different approaches used by the 

multiple deep neural network models, depending on the developer's aims. Leveraging the 

benefits of these different methods could strengthen the accuracy of contact prediction for use 

in model quality estimates. This can be accomplished by combining the contact scores from 

various deep learning-based methods using a consensus approach. For local model quality 
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assessment, CDA scores can be measured using multiple alternative contact prediction 

methods, and then merged using a NN to produce a consensus CDA score for a single 3D 

protein model. Using the CDA scores as inputs, the NN can be trained to learn the output quality 

scores of the models by estimating the accuracy of the local regions. In the ModFOLD servers, 

two local observed model quality scoring measures were used for training and benchmarking 

the local model quality predictions: the superposition-based score (S-score) and local Distance 

Difference Test (lDDT) (Elofsson et al., 2018; Cheng et al., 2019; McGuffin et al., 2021). 

These observed local model quality scoring methods have been used in the quality assessment 

category of the CASP experiments to evaluate the performance of the predicted local model 

quality scoring methods. 

 

3.1.4 Description of the Observed Local Model Quality scores used for Training and 

Benchmarking the ModFOLD Method 

3.1.4.1 The Superposition-based score (S-score) 

The local quality of each 3D model was assessed by analysing the similarities between the 

model and the reference structure at the residue level. The comparison was conducted using a 

pairwise superposition to compute the Template Modelling score (TM-score), which represents 

the global similarity between the two structures (Zhang and Skolnick, 2004; Maghrabi, 2019). 

The superposition evaluation at a local (per-residue) level was performed using the S-score. 

Following superposition, the S-score reflects how close equivalent residues are in the predicted 

and observed structures. The S-score was used in model quality evaluation in various methods 

(Fischer, 2003; Wallner, 2006; Wallner and Elofsson, 2007; Larsson et al., 2009; McGuffin, 

2009; McGuffin, Buenavista and Roche, 2013; Maghrabi and McGuffin, 2017; Maghrabi, 

2019; Jing and Xu, 2020; McGuffin et al., 2021). In the recent ModFOLD versions, the S-score 

was used as a target function for training the NNs. The S-Score is computed for each residue 

in each model for a target by using the formula: 
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𝑆𝑖 =  
1

1 + (
𝑑𝑖

𝑑0
)2

 

Where 𝑆𝑖 is S-score for residue (i) in a model, di is the distance between residue (i) in the model 

aligned with the equivalent residue in the reference (observed) structure according to the TM 

score superposition, and d0 is the distance cut-off set at 3.8 Å. If the di > d0, S-score will be 0, 

indicating no similarity between the two structures for residue (i) (McGuffin, 2009; McGuffin, 

Buenavista and Roche, 2013; Maghrabi, 2019). 

The average S-score was calculated for each residue in the model by the summation of S-score 

of a residue (i) in all models of a target. The average S-score was defined as Sr and its formula 

is: 

𝑆𝑟 =  
1

𝑁 − 1
∑ 𝑆𝑖𝑎

𝑎 ∈𝐴

 

Where N represents the number of models of a target, A is the alignment set whose size is N-1, 

and Sia is the S-score for a residue (i) in the model (a) (McGuffin, 2009; McGuffin, Buenavista 

and Roche, 2013; Maghrabi, 2019). The S-scores are local structural similarity scores which 

are dependent on the superposition of the predicted 3D model with the observed structure. This 

dependency can impact the robustness of the score as it could be highly sensitive to relative 

domain positions e.g., where there may be dynamic movement between domains with flexible 

linkers (Kryshtafovych, Monastyrskyy and Fidelis, 2014; Olechnovič and Venclovas, 2014a; 

Mulnaes and Gohlke, 2018; Maghrabi, 2019). To avoid this drawback, other superposition free 

target functions,  such as Contact Area Difference (CAD) (Olechnovič, Kulberkytė and 

Venclovas, 2013) and Lddt (Mariani et al., 2013), were built to be independent from 

superposition influence. The McGuffin group noticed this issue and addressed it by also 

considering the lDDT score as the target function for local assessment along with S-score 

(Maghrabi, 2019; McGuffin et al., 2021).  
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3.1.4.2 The Local Distance Difference Test (lDDT) score 

lDDT is a local superposition-free score that assesses the local geometry of 3D models. The 

lDDT score compares the distances between atoms in predicted 3D models to the equivalents 

in reference structures instead of aligning them. Thus, it is arguably more robust and less 

affected by the different relative structural orientations of the independent folds within a chain, 

such as domain movements (Kryshtafovych, Monastyrskyy and Fidelis, 2014; Olechnovič and 

Venclovas, 2014a; Mulnaes and Gohlke, 2018). Moreover, all residue interactions on the 

backbone and side-chain are considered in lDDT, which reflects the accurate assessment of all 

local regions of 3D models (Mariani et al., 2013; Huang et al., 2014).  

lDDT has become an official evaluation measure for assessment of the quality 3D models in 

both CASP and in the Continuous Automated Model EvaluatiOn (CAMEO) project (Huang et 

al., 2014; Kinch et al., 2016; Li et al., 2016; Haas et al., 2018; Adiyaman and McGuffin, 2019). 

The purpose of the lDDT score is to gauge the accuracy of local areas in 3D models compared 

to those in reference protein structures (Mariani et al., 2013). Additionally, it also assesses the 

accuracy of the protein’s packing core in 3D models (Mariani et al., 2013; Huang et al., 2014). 

The lDDT score is computed by quantifying the variations between the distance maps of 

residue interactions in the model and the distance maps of equivalent interactions in reference 

structures at specific thresholds (Huang et al., 2014; Kryshtafovych, Monastyrskyy and Fidelis, 

2014; Olechnovič and Venclovas, 2014a; Studer, Biasini and Schwede, 2014; Cao et al., 2016; 

Kim and Kihara, 2016; Li et al., 2016; Modi and Dunbrack, 2016; Haas et al., 2018; 

Waterhouse et al., 2018). Like the S-score, a higher lDDT score implies a higher local 

prediction accuracy in 3D models, which shows how closely the local geometry matches native 

geometry. 
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3.1.5 An Overview of The Neural Network (NN) trained using The Input CDA scores 

Machine learning approaches are advanced algorithms applied in protein structure prediction 

tools and they have made a notable contribution over the years in enhancing their predictive 

power (Chen and Siu, 2020; Greener et al., 2022). Artificial neural networks (ANNs) are 

machine learning methods that can be used to process and identify patterns in large amounts of 

data, and they have been applied to address problems in many fields of research. Leveraging 

the benefits of the advances in NNs over the years has led to successive improvements in the 

performance of protein prediction methods.  

The design of ANNs was inspired by the biological neural network of the human nervous 

system (Abiodun et al., 2018; Maghrabi, 2019). A human neural network consists of a vast 

number of interconnected neuronal cells (neurons). Each neuron collects input signals from 

other neurons through a dendritic tree branch. Neurons are a composite of the cell body and 

axon. To address input signals, biological functions are processed in the cell body and then 

output signals are passed through the axon to other neurons. The interconnection networks 

between neurons enable higher functions such as intelligence, recognition, and classification. 

After studying how biological neural networks function, researchers tried to mimic the 

structures of human brain network to create an artificial network with high functionality 

(Dongare, Kharde and Kachare, 2012; Maghrabi, 2019). 

In an imitation of human neural networks, artificial neural network architectures consist of 

nodes (neurons) connected through weighted networks. For example, a simple three-layer ANN 

architecture consists of these nodes arranged in layers. The first layer, known as the input layer, 

is where nodes receive data from input sources. The computational procedure is carried out in 

the second layer, which is known as the hidden layer. The output layer, which is the final layer, 

produces the output results (Dongare, Kharde and Kachare, 2012).  

ANNs do not precisely solve problems in a pure mathematical sense. However, they have data 
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processing features that can estimate the solution to a specific situation (Dongare, Kharde and 

Kachare, 2012). ANNs can predict the connection between input data features to give an 

estimated result. Therefore, ANN algorithms have been applied in various fields, such as 

weather forecasting and health clinical studies (Abiodun et al., 2018). In structural 

bioinformatics, different ANN methods have been designed to achieve high performance and 

predict accurate models of protein structure (Pakhrin et al., 2021). NN methods have been 

integrated into 3D protein model QE methods in order to improve their accuracy.  

A simple neural network is the multi-layer perceptron (MLP). The MLP architecture is 

composed of multiple layers connected in a feedforward direction. The layers are classified 

into input, output, and several hidden layers, where each layer consists of an array of nodes 

(Manaswi, 2018; Maghrabi, 2019; Chatterjee, Saha and Mukherjee, 2022; Singh and Ranjan, 

2022; Yang and Ma, 2022). Standard MLPs are typically trained by applying the 

backpropagation algorithm to improve learning and reduce the output errors. During training 

phase, the MPL learns by comparing its predicted output with the desired value of the target 

function, e.g., the observed score. Using this comparison, when errors are detected, the weights 

are adjusted to obtain an accurate output that is closer to the actual value (Manaswi, 2018; Rana 

et al., 2018; Maghrabi, 2019; Singh and Ranjan, 2022). In addition, the hyperparameters of the 

MLP can be tuned to optimise the learning process. The hyperparameters that could be changed 

include the number of neurons in hidden layers, the learning rate, and the number of iterations 

required for learning the MLP (Maghrabi, 2019).  

 

3.2 Aims and Objectives 

The primary goal of this chapter is to examine the potential of using a consensus of CDA scores 

for enhancing ModFOLD9 local model quality estimation performance. A consensus CDA 

score was generated to improve the accuracy of 3D models by detecting local errors. The five 
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new alternative CDA scores were developed, which measured the agreement between the 

predicted contact scores from five different contact prediction methods and the contacts in each 

3D model, were used in addition to the original CDA score. The deep learning-based contact 

prediction methods were chosen based on the assessment of CASP13 and CAPS14. We selected 

the top available methods, which included DeepMetaPSICOV (Kandathil, Greener and Jones, 

2019), SPOT-Contact (Hanson et al., 2018), trRosetta2 (Anishchenko et al., 2021), TripletRes 

(Li et al., 2021a) and DeepDist (Wu et al., 2021). To integrate the CDA scores, two versions 

of the MLP (multilayer perceptron) were applied to output two local quality scores. The aim of 

the first version was to learn from the input CDA scores to produce the S-score as the target 

function, while the aim of the second version was to predict the lDDT score as the target 

function. The other objective was to optimise ModFOLD9 performance by tuning the MLP's 

parameterisation. A set of MLP hyperparameters including the number of hidden neurons, the 

learning rate, the error rate and iteration number, were all tuned during training. 
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3.3 Methods 

3.3.1 Data Set 

The raw data were protein target models generated from modelling methods used in the 

CASP14 experiment. The data involved 70 targets, 27775 models and 3087364 residues. The 

CASP14 models were divided into three sets for the training and testing stages using a three-

fold cross-validation method. Thus, each test set contained models for targets that were not in 

the other two sets, which were used for training. Hence, all data were considered in the training 

process leading to three different sets of NN weights, which could be used for testing all models 

(Maghrabi, 2019). 

 

3.3.2 Consensus CDA Score 

The CDA score is a pure-single model method designed to leverage residue-residue contact 

prediction to improve the local quality estimation of 3D models. This score has been used in 

previous ModFOLD versions. In the current version, five CDA scores were developed using 

the five top-performing deep learning-based contact prediction methods in CASP13 and 

CASP14. These scores were combined with the original CDA pure as inputs to a NN that was 

trained to learn two local quality scores (S-scores and lDDT scores) (Figure 3.1). The deep 

learning-based contact methods used for each new CDA score included DeepDist (Wu et al., 

2021), TripletRes (Li et al., 2021a), trRosetta2 (Anishchenko et al., 2021), SPOT-Contact 

(Hanson et al., 2018) and DeepMetaPSICOV (Kandathil, Greener and Jones, 2019). The 

original CDA score used the MetaPSICOV method (Maghrabi and McGuffin, 2017). The CDA 

was a measure of the agreement between the contact scores predicted from the target sequence 

and the contacts in each model calculated using the Euclidean distance. If the distance between 

the C-alpha atoms of residue pairs in the model was less than 8 Angstroms (8Å), then the two 

residues were defined to be in contact; otherwise, they were non-contacting. To compute the 
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CDA score for each residue, the model’s contact scores for a residue were compared with the 

predicted contact scores according to each contact prediction method. In other words, if residue 

(i) was in contact with residues (j) and (k) from a model, and the p-value from the contact 

prediction method indicated that residue pair (ij) and (ik) were in contact, the CDA score for 

residue (i) was computed using the following formula: 

𝑪 =  ∑𝒑/𝒏𝒖𝒎𝑪 

Where p represents the probability (p-value) that the two residues were predicted to be in 

contact based on the contact prediction algorithms, and numC is the total number of contacts 

for the model’s residue (i), from which a p-value is obtained. The global CDA score could be 

obtained by adding the CDA values for all residues and dividing the total by the target 

sequence's length (L) as 𝐶𝐷𝐴 =  ∑𝐶/𝐿 (Maghrabi, 2019). The CDA scores computed using 

each contact prediction method were assigned according to the name of the method (see Table 

3.1). Integrating the five CDA scores with the original CDA score into a NN produced a 

consensus CDA score for ModFOLD9.  
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Figure 3.1. A simplified flowchart illustrating the consensus Contact Distance Agreement 

(CDA) approach to improve the local model quality estimates by ModFOLD9.  Six CDA 

scores were measured according to six deep learning-based contact prediction methods.  Each 

CDA score was assigned based on the method's name (Table 3.1). The scores were fed into an 

MLP to predict per-residue score; S-score or IDDT score.  
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Table 3.1. The CDA score names assigned according to their contact prediction methods 

for use with ModFOLD9. 

CDA score  Contact prediction methods  

CDA_DD_MF9 DeepDist 

CDA_DMP_MF9 DeepMetaPSICOV 

CDA_TR_MF9 TripletRes 

CDA_SC_MF9 SPOT-Contact 

CDA_trR2_MF9 trRosetta2 

 

 

 

3.3.3 Neural Network Architecture 

The architecture of MLP was similar in construction to that applied in the eighth version of 

ModFOLD. It was composed of three basic layers; the input, output and hidden layers 

(Maghrabi, 2019). The MLP was implemented using the RSNNS package in R. The input data 

were the six CDA scores measured according to the six deep learning-based contact prediction 

methods. As in ModFOLD versions 6 to 8, an input sliding window size of 5 was used centred 

on each residue score with zeros used for padding the end residues. Then the residue scores 

from the six CDA methods were taken, leading to 30 inputs (6x5) for each residue. In the 

training stage, two MLP versions were implemented where the first MLP was trained to learn 

the S-score and the second MLP was trained to learn lDDT score. Therefore, the output was a 

single scoring value for each version; either the S score or the lDDT score. To achieve the 

optimal performance, the hyperparameters, including the learning rate, the number of neurons 

in the hidden layer, the number of iterations, and the error rate, were changed during the tuning 

process. The values of the hyper-parameters that were selected to train the MLP are shown in 
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Table 3.2. To control for the effect of tuning each hyperparameter, one hyperparameter was 

changed during each implementation while the other hyperparameters were kept fixed. Initially, 

15 hidden neurons were implemented and then altered to produce S-score. Other 

hyperparameters were also set to specific values, with the learning rate at 0.01, the error rate at 

0.01, and the iteration number at 3 as defaults. MLP hyperparameters were set at 15 hidden 

neurons, 0.1 learning rate, 0.1 error rate, and 4 iterations for the lDDT score. The selection of 

initial hyperparameter values for the MLP was based on recommendations from previous 

studies and empirical evidence. We set the number of hidden neurons and learning rate using 

values commonly suggested in the literature (Sheela and Deepa, 2013; Wang et al., 2018; Niu 

et al., 2021). For the initial number of hidden neurons, we chose half of the maximum number 

of neurons. Similarly, we selected an initial learning rate of 0.1, based on empirical evidence 

suggesting that the learning rate for deep learning models typically falls within the range of 

0.01 to 0.1 (Wang et al., 2018; Niu et al., 2021). We set the initial error rate to 0.1, as it falls 

within the effective range of 0.01 to 0.1 identified by previous research (Hansen and Salamon, 

1990). Regarding the initial value of iteration, no research study advised a specific starting 

point. Therefore, the initial value of iteration was chosen randomly.  The training runs were 

repeated up to 3 times for each combination of parameters, and the NN weights were saved for 

the highest-performing runs. This work was completed in collaboration with Megan Hird, an 

undergraduate student, and some of the data shown here was also presented in her final year 

project. Megan conducted the analysis of fine-tuning MLP hyperparameters for predicting the 

lDDT score, and the results of her analysis have been presented in the Results and Discussion 

section. 
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Table 3.2. Value ranges of hyperparameters that were applied during MLP training 

process for the consensus CDA approach for ModFOLD9.  

Hyperparameter Value range 

Neuron number 8, 9, 10, 11, 12, 15, 20 

Learning rate 0.02, 0.03, 0.05, 0.06, 0.1, 0.15, 0.2 

Error rate 0.01, 0.02, 0.05, 0.1 

Iteration 2, 3, 4 

 

 

3.3.4 Evaluation Measurements  

The performance of the consensus CDA approach was evaluated by comparing the predicted 

output from the MLPs with the observed S-scores and lDDT scores. The performance was also 

benchmarked against another high performing single-model method, VoroMQA (Olechnovič 

and Venclovas, 2017).  

The linear and non-linear correlations of predicted and observed residue scores were measured 

using the Pearson’s R and Spearman’s Rho values. This assessment measured method 

performance in terms of how strongly predicted scores correlate with the observed scores 

(Maghrabi, 2019). The Pearson’s R correlation coefficient represents the strength of the linear 

relationship between predicted quality scores and observed scores, assuming that both scores 

are normally distributed and that the relationship between them is linear. In contrast, 

Spearman’s (Rho) correlation coefficient is a non-parametric test that examines the non-linear 

relationship between predicted and observed scores without relying on any presumptions about 

the nature of the bivariate distribution. The correlation results provide insights into how 

accurately the protein models are assessed by the prediction method. The correlation coefficient 

ranges from -1 to 1, with a value close to 1 indicating a strong positive correlation between the 

predicted quality scores and the observed quality scores. On the other hand, a coefficient close 
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to -1 shows a strong negative correlation, which means that there is an inverse relationship 

between the predicted and observed scores. If the coefficient is around 0, it suggests no 

correlation between the prediction quality scores and the observed quality scores, indicating 

that they are not related to each other (Bolboaca and Jantschi, 2006; Maghrabi, 2019; Chen et 

al., 2021). 

Additionally, ROC analysis was conducted in this study. This evaluation method is a common 

practice in previous CASP experiments to evaluate different methods' ability to identify the 

most accurate models (Kryshtafovych, Fidelis and Tramontano, 2011; Kryshtafovych et al., 

2014, 2016; Kryshtafovych, Monastyrskyy and Fidelis, 2016; Elofsson et al., 2018; Cheng et 

al., 2019; Kwon et al., 2021). To identify accurate or inaccurate residue predictions, the AUC 

measures the area under the ROC curve, which graphs the true positive rate (TPR) versus the 

false positive rate (FPR) at various thresholds (Won et al., 2019). In this investigation, the ratio 

of true positives (correctly identified the low-quality residues) to false positives (incorrectly 

identified the high-quality residues as low-quality) was plotted. The AUC scores were 

calculated at the lDDT threshold of 0.6 to determine the method's performance in 

distinguishing between low and high-quality residues. A residue was considered low-quality if 

the lDDT was below 0.6. The AUC ranges from 0 to 1, which signifies the prediction 

performance. A value close to 1 indicates excellent discrimination between low and high-

quality residues, with a high TPR and a low FPR. 

 

The study also considered ROC analysis with a low FPR of less than 0.1. Restricting the FPR 

to 0.1 and calculating the AUC within this range helps evaluate the effectiveness of the 

prediction method in distinguishing low- from high-quality residues while reducing the number 

of false positives. The standard ROC plots in this study have consistent scales, where the x- 

and y-axes range from 0 to 1, whereas the zoomed-in versions (ROC plots at FPR <= 0.1) 
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employed a smaller scale. This smaller scale has been applied in a previous version of 

ModFOLD (Maghrabi and McGuffin, 2017). The smaller scale provides a narrower view to 

emphasize the methods' performance in a low FPR region, allowing for a detailed comparison 

of the methods’ performance. 

 

3.4 Results and Discussion 

3.4.1 The Hyperparameter Tuning Process 

Since the aim of our study is to eventually improve the local model quality estimates in 

ModFOLD9 by integrating various contact prediction methods, the hyperparameter tuning 

process was conducted to determine the optimal performance for the MLP neural network. The 

performance of different hyperparameters during were compared according to the evaluation 

scores. To achieve this, other hyperparameters were fixed to change the number of hidden 

neurons during the implementation. Once the optimal number was achieved, the next 

hyperparameter was altered. Two correlation measures were computed, Pearson’s R 

Correlation Coefficient and Spearman’s Rho Rank Correlation, to assess the hyperparameter’s 

performance, in addition, ROC analysis was considered to evaluate the effect on performance 

from tuning the MLP hyperparameters. 

3.4.1.1 The Number of Neurons in Hidden Layers 

We focused firstly on the optimal number of hidden neurons while keeping all other 

hyperparameters fixed. This is because the number of hidden neurons could determine the 

MLP's capacity for learning from input data (CDA scores) and result in the highest assessment 

scores. The initial number of hidden neurons was 15 while other hyperparameters were fixed 

at 0.01 for the learning rate, 0.01 for the error rate, and 3 for the iteration number.  According 

to the S-score, in Figure 3.2A, the correlation scores varied with different numbers of neurons 

in the hidden layer. Correlations decreased when the number of neurons was <11, and the 
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predicted and observed scores were more strongly correlated when neurons increased beyond 

11. However, increasing the number of neurons too far adversely effected the MLP 

performance as we can see in the same figure. The correlations were weaker with 20 hidden 

neurons, which may have reduced the ability to generalise on the contact prediction data in the 

fixed number of cycles. Hence, the 11 neurons in the hidden layer were considered to be the 

optimal number to achieve the high performance according to Pearson’s R and Spearman’s Rho 

correlation scores (0.485, 0.481). The ROC AUC scores show similar trend with varying hidden 

neurons (see Figure 3.2B). The highest AUC scores were achieved when the MLP set at 11 

neurons, which supports the results obtained with correlation scores. However, in contrast, at 

FPR<=0.1, the ROC AUC scores reached a higher value when the number of hidden neurons 

was increased to 20 (see Figure 3.2C). Although the ROC AUC FPR<=0.1 score at 11 neurons 

was slightly less than at 20, the other evaluation scores were improved at the same number. On 

balance, this may suggest that the optimal number of neurons in the hidden layer for these data 

should be 11. 

The optimal number of hidden neurons was also determined in order to achieve the best 

performance according to the lDDT observed scores. Initially, 15 hidden neurons were 

implemented, followed by increases and decreases, while 0.1 learning rate, 0.1 error rate, and 

4 iterations were the rest of the hyperparameters. Figure 3.3A shows how the MLPs 

performance on lDDT scores changed with different numbers of hidden neurons. The best 

performance was achieved when the number of hidden neurons was 15, according to the highest 

correlation scores. In Figure 3.3B, the best-performing configuration for the MLP was achieved 

when it had 15 hidden neurons, achieving the highest ROC AUC score. At FPR <=0.1, the ROC 

AUC scores reached a slightly higher value with 10 hidden neurons (Figure 3.3C). However 

overall, the optimal number of hidden neurons for producing the best lDDT scores is 15.  
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Figure 3.2. The effect of tuning the number of hidden neurons on the consensus CDA 

MLP performance according to the S-score. (A) Pearson’s R and Spearman’s Rho 

correlation scores versus the number of hidden neurons. (B) ROC AUC scores versus the 

number of hidden neurons. (C) ROC AUC FPR<=0.1 scores versus the number of hidden 

neurons. 
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Figure 3.3. The effect of tuning the number of hidden neurons on the consensus CDA 

MLP performance according to lDDT score. (A) Pearson’s R and Spearman’s Rho 

correlation scores versus the number of hidden neurons. (B) ROC AUC scores versus the 

number of hidden neurons. (C) ROC AUC FPR<=0.1 scores versus the number of hidden 

neurons. 
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3.4.1.2 The Learning Rate 

The learning rate is one of the vital parameters that has a great effect on MLP performance. 

Setting learning rate is one of the most challenging to obtain the optimal scores. In this study, 

a varied range of learning rate was tested to determine the best value for learning rate. For S-

scores, we started with 0.1 and then increased and decreased to assess the differences MLP 

performance according to the evaluation scores. The results show that the best value for 

learning rate was 0.05 whereas the worst value was 0.15 for correlation scores (see Figure 

3.4A). The similar results were shown for the ROC AUC scores, whereas for ROC AUC 

FPR<=0.1 it was highest at 0.03 (see Figures 3.4B and 3.4C). In terms of the lDDT scores, 

tuning the learning rate resulted in a different optimal value. In Figures 3.5A and 3.5B, the 

correlation scores and ROC AUC scores reached the highest values when learning rate was set 

at 0.07. For the ROC AUC FPR<=0.1, the best learning rate was 0.06 (Figure 3.4C). Based on 

these finding, overall, the optimal learning rate was chosen as 0.07. 

  



  Chapter 3 

 

126 
 

 

Figure 3.4. The effect of tuning the learning rate on the consensus CDA MLP performance 

according to S-score. (A) Pearson’s R and Spearman’s Rho correlation scores versus the 

learning rate. (B) ROC AUC scores versus the learning rate. (C) ROC AUC FPR<=0.1 scores 

versus the learning rate. 
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Figure 3.5. The effect of tuning the learning rate on the consensus CDA MLP performance 

according to lDDT score. (A) Pearson’s R and Spearman’s Rho correlation scores versus the 

learning rate. (B) ROC AUC scores versus the learning rate. (C) ROC AUC FPR<=0.1 scores 

versus the learning rate. 
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3.4.1.3 Fine Tuning of The Error Rate and Number of Iterations 

After setting the optimal values of neuron number and learning rate at 11 and 0.05 for the S-

score, the error and iteration values were fine-tuned. Table 3.3 shows the evaluation scores for 

the consensus CDA MLP according to the S-score with varying error rates and iterations. 

Overall, the data show that the MLP learned better with 0.01 error with three iterations based 

on the evaluation scores. However, according to the ROC FPR<=0.1 data a slightly higher 

score (0.023) was achieved with error rate of 0.05, but with the same number of iterations. This 

means that showing the MLP the dataset 3 times was sufficient to achieve the optimal accuracy 

and that any further iterations may result in overfitting. Overall, the optimal hyper-parameters 

for predicting S-score with the consensus CDA MLP were found to be: 11 hidden neurons, a 

0.05 learning rate, a 0.01 error rate and three iterations. 
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Table 3.3. The effect of tuning the error rate and iterations on the consensus CDA MLP 

performance according to the S-score. The evaluation measures were Pearson’s R and 

Spearman’s Rho correlation analyses, ROC AUC and ROC AUC FPR<=0.1 scores. The hidden 

neuron numbers and learning rate were set at 11 and 0.05, respectively. Error values and 

iteration numbers were adjusted, and their evaluation scores were measured individually.  

Hidden 

Neuron 

number 

Learning 

Rate 

Error Iterations Pearson’s 

R 

Spearman’s 

Rho 

ROC 

AUC 

ROC 

AUC 

FPR<=0.1 

11 0.05 0.01 3 0.4928 0.4892 0.7597 0.0222 

11 0.05 0.01 2 0.4859 0.4803 0.7559 0.0227 

11 0.05 0.01 4 0.4754 0.4693 0.7502 0.0229 

11 0.05 0.05 3 0.4907 0.4855 0.7577 0.0231 

11 0.05 0.05 2 0.4818 0.4759 0.7538 0.0222 

11 0.05 0.05 4 0.4854 0.4814 0.7547 0.0230 

11 0.05 0.1 3 0.4916 0.4883 0.7580 0.0228 

11 0.05 0.1 2 0.4846 0.4788 0.7551 0.0229 

11 0.05 0.1 4 0.4790 0.4733 0.7526 0.0221 

 

 

 

For the lDDT score, in Table 3.4, the performance was highest with a 0.05 error rate according 

to all measures, except for the AUC score of ROC FPR<=0.1, which was highest with a 0.15 

error rate. However, 0.05 was chosen as the optimal error value, as the difference was ~0.0005 

between the two error rates. In Table 3.5, it can be seen that the best scores of evaluation 

matrices were achieved at 4 iterations, except for the AUC score of ROC FPR<=0.1 (3 

iterations). Therefore, the optimal hyper-parameters for the consensus CDA MLP to predict the 

lDDT score were chosen to be 15 hidden neurons at a 0.07 learning rate with a 0.05 error rate 

and 4 iterations. 
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Table 3.4. The effect of tuning error rate on the consensus CDA MLP performance 

according to the lDDT score. The evaluation measures were Pearson’s R and Spearman’s Rho 

correlation analyses, ROC AUC and ROC AUC FPR<=0.1 scores. The hidden neuron numbers 

and learning rate were set at 15 and 0.07, respectively. Error values were adjusted, and their 

evaluation scores were measured individually. 

Hidden 

Neuron 

number 

Learning 

Rate 

error iteration Pearson’s 

R 

Spearman’s 

Rho 

ROC 

AUC 

ROC 

AUC 

FPR<=0.1 

15 0.07 0.1 4 0.5961 0.5950 0.7890 0.0292 

15 0.07 0.15 4 0.6095 0.6076 0.7945 0.0294 

15 0.07 0.05 4 0.6125 0.6116 0.7956 0.0289 

 

 

Table 3.5. The effect of tuning the iteration on the consensus CDA MLP performance 

according to the lDDT score.  The evaluation measures were Pearson’s R and Spearman’s 

Rho correlation analyses, ROC AUC and ROC AUC FPR<=0.1 scores. The hyper-parameters 

were set to 15 neuron numbers, a 0.07 learning rate, and a 0.05 error rate. Iteration numbers 

were adjusted, and their evaluation scores were measured individually. 

Hidden 

Neuron 

number 

Learning 

Rate 

error iteration Pearson’s 

R 

Spearman’s 

Rho 

ROC 

AUC 

ROC 

AUC 

FPR<=0.1 

15 0.07 0.05 4 0.6125 0.6116 0.7956 0.0289 

15 0.07 0.05 5 0.5993 0.5983 0.7878 0.0266 

15 0.07 0.05 5 0.5977 0.5980 0.7898 0.0284 

15 0.07 0.05 3 0.6097 0.6077 0.7939 0.0289 

15 0.07 0.05 3 0.6128 0.6108 0.7940 0.0275 
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3.4.1.4 The effect of tuning CDA MLP hyperparameters on the performance of 

ModFOLD9 

ModFOLD9's predictive performance relies on carefully tuning the MLP's hyperparameters 

during training. By optimising four specific hyperparameters through experimentation and 

validation, the MLP's performance was significantly improved. This, in turn, led to an 

enhancement in ModFOLD9's predictive assessment. The number of hidden neurons in a MLP 

directly affects its predictive capabilities and accuracy. The MLP with 11 hidden neurons better 

predicted the S-score, whereas, with 15 hidden neurons, the MLP could predict the lDDT score 

better. These observations suggest that the chosen values (11 and 15 neurons) improved the 

MLP's capacity to recognise complex patterns in data, resulting in improved S-score and lDDT 

score predictions. However, increasing the number of hidden neurons does not always prove 

beneficial. Overfitting, a common problem in machine learning, occurs when a model captures 

the noise and the underlying patterns in the training data. An overfitted model performs well 

on training data but poorly on unseen or validation data because it memorises the training data 

instead of generalising it (Awad and Khanna, 2015; Ying, 2019; Chasiotis, Nadi and Filios, 

2021; Zhao et al., 2023). This is exemplified by an MLP with 20 hidden neurons performing 

poorly when predicting S-scores, indicating potential overfitting. Hence, while increasing the 

hidden neurons of the model can enhance its predictive power to an extent, caution should be 

exercised to avoid overfitting. 

The learning rate controls how much the network weights are adjusted during the learning 

process. Appropriate adjustment of the weights enables the MLP to converge towards an 

optimal solution, providing a better fit to the data (Zubair et al., 2014; Awad and Khanna, 2015; 

Mukhtorov et al., 2023). However, it is important to note that the optimal learning rate could 

vary based on the specific task and data, and finding the right learning rate often requires 

careful tuning and experimentation. In the case of predicting the S-score, a learning rate of 0.05 

yielded optimal performance. However, for predicting the lDDT score with the same input 
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combination, a learning rate of 0.07 was preferable. These results highlight the importance of 

selectively adjusting learning rates depending on the specific task. Different MLP training 

scenarios may require vary learning rates to maximise the MLP's potential to learn effectively 

from the data and converge to a point where it efficiently predicts the S-score or lDDT score. 

Hence, choosing an appropriate learning rate is essential for improved MLP performance. 

The error rate is the difference between predicted and observed output (Zubair et al., 2014; 

Awad and Khanna, 2015; Elansari, Ouanan and Bourray, 2023). During training, the goal is to 

minimise this difference for better predictive accuracy. Gradually reducing the error rate can 

lead to higher accuracy, but choosing the right rate requires careful tuning. For instance, the 

MLP's performance improved when the error rate decreased from 0.1 to 0.05 while predicting 

the IDDT. Similarly, gradually reducing the error rate from 0.1 to 0.01 produced the best MLP 

performance for the S-score prediction, according to the evaluation results. This indicates that 

adjusting the error rate carefully can result in greater predictive accuracy. However, like 

learning rates, selecting the appropriate error rate requires precise tuning and experimentation 

because the optimal error rate may vary depending on the specific task and data. 

MLP's performance heavily depends on the number of iterations during training.  Each iteration 

involves a complete pass through the training set, during which the MLP adjusts its weights to 

enhance its learning capability. An MLP cycles through an entire dataset based on the number 

of iterations. Using too few iterations leads to underfitting, while too many iterations cause 

overfitting (Bengio, 2012). For the ModFOLD9 MLP, 3-4 iterations were optimal. Fewer or 

more iterations than this range resulted in the MLP learning noise instead of underlying 

patterns, resulting in less accurate predictions of the quality scores. Hence, adjusting the 

iteration values contributed to further improvement in the predictive learning of MLP during 

the experiments. 
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By adjusting these hyperparameters, the MLP could learn complex patterns in the data without 

overfitting. By using cross-validation, we could assess the MLP's performance on new data and 

demonstrate the reliability and effectiveness of the hyperparameter-adjusted MLP in the 

ModFOLD9. Hence, cross-validation and optimised hyperparameters improved MLP's 

learning and predictive ability, enhancing ModFOLD9's predictive assessment. 

 

3.4.2 Evaluating MLP Performance lDDT and S-score Performance 

In our study we are aiming to enhance the local quality estimation of ModFOLD9 by 

integrating CDA scores, as the correct contacts are an important aspect of 3D model quality. 

Local errors in 3D models were detected through estimating the distance between each residue 

in a model and its corresponding residue in native structure. These predicted scores were then 

compared with the observed S-score and lDDT scores for each residue in the model. The cross-

validated consensus CDA MLPs were then compared with the component individual scoring 

methods in terms of their correlations and ROC performance based on the observed quality 

scores. 

Tables 3.6 and 3.7 show the comparison between individual CDA methods, the consensus CDA 

MLP method (Consensus_CDA_ONLY_MF9) and the single-model method, VoroMQA, 

which is a leading single-model quality estimation method (Olechnovič and Venclovas, 2017). 

By comparing the Consensus_CDA_ONLY_MF9 method with individual methods, it is clear 

that the consensus CDA score achieved higher performance than the individual CDA scores 

according to both the S-score and lDDT score. Importantly, the Consensus_CDA_ONLY_MF9 

method outperforms the benchmark VoroMQA method, which indicates the clear added value 

gained from combining all CDA scores, which can be used to enhance the local assessment of 

3D models for ModFOLD9 (see subsequent chapters).  
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Table 3.6. Cross-validation performance benchmark of the consensus CDA MLP method 

(Consensus_CDA_ONLY_MF9) versus its component CDA methods and the single-

model method (VoroMQA) using CASP14 data according to S-score. The evaluation 

measures are Pearson’s R, Spearman’s Rho, Receiver-Operating Characteristic Area Under 

Curve (ROC AUC), and ROC AUC with a False Positive Rate less than 0.1 (AUC FPR <=0.1). 

The table sorted by Pearson’s R values.  

Methods 
Pearson’s 

R  
Spearman’s Rho ROC AUC 

ROC 

AUC FPR<=0.1 

CDA_DD_MF9 0.1497 0.1396 0.5825 0.0063 

CDA_DMP_MF9 0.2159 0.2086 0.6143 0.0045 

CDA_TR_MF9 0.2435 0.2408 0.6358 0.0165 

CDA 0.3163 0.2905 0.6501 0.0185 

CDA_SC_MF9 0.3622 0.3622 0.6921 0.0125 

CDA_trR2_MF9 0.3987 0.4743 0.6959 0.0197 

VoroMQA 0.4243 0.4215 0.7267 0.0178 

Consensus_CDA_ONLY_MF9 0.4928 0.4892 0.7597 0.0222 
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Table 3.7. Cross-validation performance benchmark of the consensus CDA MLP method 

(Consensus_CDA_ONLY_MF9) versus its component CDA methods and single-model 

method (VoroMQA) using CASP14 data according to lDDT score. The evaluation measures 

are Pearson’s R, Spearman’s Rho, Receiver-Operating Characteristic Area Under Curve (ROC 

AUC), and ROC AUC with False Positive Rate less than 0.1 (AUC FPR <0=.1). The table 

sorted by Pearson’s R values.  

Methods Pearson’s 

R  

Spearman’s 

Rho 

ROC 

AUC 

ROC AUC 

FPR<=0.1 

CDA_DD_MF9 0.1886 0.2069 0.6270 0.0071 

CDA_DMP_MF9 0.3021 0.2970 0.6439 0.0085 

CDA 0.3432 0.3140 0.6719 0.0177 

CDA_TR_MF9 0.3616 0.3786 0.6968 0.0200 

CDA_trR2_MF9 0.4590 0.4109 0.6978 0.0203 

CDA_SC_MF9 0.4796 0.4814 0.7331 0.0248 

VoroMQA 0.4950 0.4963 0.7315 0.0191 

Consensus_CDA_ONLY_MF9 0.6134 0.6108 0.7944 0.0285 

 

The density scatter plots were utilized to visually illustrate the correlation between 

Consensus_CDA_ONLY_MF9 and its respective component methods (Appendix 10-11). 

From the plots, the predicted S-scores produced by the Consensus_CDA_ONLY_MF9 and 

individual CDA scores have no strong association with the observed S-scores. Although density 

plots display S-scores' distribution, they do not illustrate the correlation between observed and 

predicted scores. This is because S-scores tend to have low or high predicted scores, leading to 

skewness in the data. As a result, density plots of S-score are not very useful in reflecting the 

relationship between predicted and observed scores. In contrast, there was a slightly correlation 

showed between lDDT scores of ModFOLD9 and the observed scores.  
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The Consensus_CDA_ONLY_MF9 method also outperformed the individual scoring methods 

and VoroMQA based on ROC analysis as shown in Figures 3.6 and 3.7. Based on Figure 3.6, 

Consensus_CDA_ONLY_MF9 achieved the highest ROC AUC scores (AUC = 0.760, AUC 

FPR <= 0.1 = 0.022) compared to individual methods and VoroMQA. This indicates that 

combining CDA scores remarkably improved ModFOLD9's local assessment accuracy, leading 

to enhanced S-score predictions. Similarly, in predicting the lDDT score, 

Consensus_CDA_ONLY_MF9 demonstrated the highest ROC AUC scores (AUC = 0.794, 

AUC FPR <= 0.1 = 0.029), outperforming individual methods and VoroMQA. This suggests 

that consensus CDA scores enhanced the accuracy of local assessment for predicting the lDDT 

score. 
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Figure 3.6. ROC curves for the Consensus_CDA_ONLY_MF9 ModFOLD9 against its 

component methods and VoroMQA method according to S-scores.  A) Line graphs of ROC 

analysis for all methods. B) Line graphs with a condition of false positive rate less than 0.1.  
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Figure 3.7. ROC curves for the Consensus_CDA_ONLY_MF9 ModFOLD9 against its 

component methods and VoroMQA method according to lDDT score. A) Line graphs of 

ROC analysis for all methods. B) Line graphs with condition of false positive rate less than 

0.1.  
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3.5 Conclusion 

Estimating the accuracy of 3D models of protein structures is a vital aspect of computational 

methods for protein structure prediction, as it crucial to know whether or not you can be 

confident in the prediction. As the estimation of quality accuracy is now a key stage in all 

protein structure prediction pipelines, many developers have focused on the enhancement of 

estimation performance by exploiting the advances in contact prediction methods. In our study, 

we examined the usefulness of consensus-based contact prediction methods for improving the 

local model quality estimates for integration with ModFOLD9.  

The consensus CDA MLP scores (Consensus_CDA_ONLY_MF9) were a substantial 

improvement compared with the individual scores and importantly the approach also 

outperformed a leading pure-single model method, VoroMQA, which we used here as a useful 

benchmark. These results suggest that a consensus of deep learning-based contact methods has 

potential to boost the estimation accuracy of ModFOLD9. However, further enhancements to 

the estimation accuracy of ModFOLD9 could be achieved by exploiting the benefits of quality 

scores produced by both pure-single model methods and quasi-single model methods. In the 

next chapter, we investigate integrating these new CDA scores with additional new and existing 

scores and we benchmark the ModFOLD9 development further.  

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 4 Development of Consensus QA Methods for the 
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4.1 Introduction 

Recent achievements in modelling methods have led to considerable interest in using QA 

methods to provide independent evaluations. Model quality assessment, which involves 

estimating the reliability of a protein model, is required so that protein models may be used 

confidently for biomedical applications (Kwon et al., 2021; Liu, Zhao and Zhang, 2023). 

Recently, the accuracy of the predicted models has improved significantly owing to due to the 

advent of modelling methods such as AF2 (Jumper et al., 2021b) and RoseTTAFold (Baek et 

al., 2021). As such, QA methods may have more difficulty estimating local errors in high-

accuracy models as they become more challenging to discriminate. Thus, further enhancement 

is required to improve the predictive performance of QA methods (Kwon et al., 2021; 

McGuffin et al., 2021; Liu, Zhao and Zhang, 2023; Zhang, Xia and Shen, 2023).  

Consensus approaches have played a significant role in improving protein prediction servers 

in various aspects. Consensus-based methods are meta-servers of individual methods designed 

to leverage their strength to boost predictive performance accuracy (Wei, Thompson and 

Floudas, 2012; Yan and Kurgan, 2015; Reza et al., 2021; Alharbi and McGuffin, 2023). The 

employment of consensus approaches for QA servers helps to improve their estimates of local 

errors in 3D models. ModFOLD is a quality assessment server that has been updated 

continuously using the consensus approach. Previous versions of ModFOLD were enhanced 

by the addition of various scoring methods as inputs to the MLP neural network, including 

pure- and quasi-single model methods (Maghrabi and McGuffin, 2017; Cheng et al., 2019; 

Maghrabi, 2019; McGuffin et al., 2021). With the ninth version of ModFOLD, we aimed to 

improve the local assessment by producing a consensus CDA score based on the combination 

of individual CDA scores according to six deep learning-based methods. The consensus CDA 

score achieved a reliable improvement in the local assessment predictive. Therefore, we were 

encouraged to add other scoring methods to the consensus CDA score to further investigate the 
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effectiveness of consensus approaches in improving quality assessment performance. 

 

4.1.1 Integration of The Consensus CDA Methods with Other Leading Established 

Methods 

The primary purpose of local model quality assessment is to detect how much and where the 

predicted protein model deviates from the native structure with the aim of estimating the 

accuracy on a per-residue basis. The performance of QE methods have been enhanced by 

exploiting various protein features and combining scores for these features as inputs to different 

machine learning approaches (Maghrabi, 2019; Chen and Siu, 2020; McGuffin et al., 2021; 

Liu, Zhao and Zhang, 2023; Zhang, Xia and Shen, 2023). In this chapter, both pure-single and 

quasi-single model methods were considered as input scores to leverage their benefit along 

with the consensus of CDA scores, with the aim of further improving ModFOLD9’s local 

assessment performance. Pure-single model methods can detect local region deviations as they 

aim to evaluate the single model based on its features. These features include protein sequence 

and structural properties, indicating the spatial arrangement of protein residues and their 

distance distribution in a model (Uziela et al., 2016; Uziela et al., 2017; Olechnovič and 

Venclovas, 2017; Zhang, Xia and Shen, 2023).  

Quasi-single model methods were considered as the best alternative to clustering methods in 

terms of overcoming the latter’s limitations. Although clustering-based methods perform well 

when multiple models for a protein target are available, their performance may be poor when 

fewer models are available. Nevertheless, quasi-single model methods, such as the ModFOLD 

approaches pioneered by the McGuffin group, have produced reliable assessments, even when 

few models are available for each protein target (Kryshtafovych et al., 2014; Cheng et al., 

2019). These methods evaluate a single model based on its inherent characteristics in 

comparison to reference 3D models generated using structure prediction pipelines (Maghrabi 

and McGuffin, 2017; Maghrabi, 2019; McGuffin et al., 2021; McGuffin et al., 2023). 
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4.1.2 The Combination of Consensus CDA Scores with Other Pure-Single Model 

Methods 

4.1.2.1 Secondary Structure Agreement (SSA) Score 

SSA was a straightforward local quality score that relied on a comparison of each residue’s 

predicted secondary structure based on PSIPRED (Buchan et al., 2013) with that residue’s 

secondary structure state in the model based on the Dictionary of Secondary Structures of 

Proteins (DSSP) (Kabsch and Sander, 1983). To compute the agreement, the following formula 

was applied: 

SSA = pCHE 

where PCHE is the probability value (p-value) of each residue’s predicted secondary structure 

from PSIPRED for eight DSSP states. The eight states were reduced to three using the standard 

scheme: coil (C), helix (H), and strand (E), while other states (H, I, G, E, B, S, T, -) were 

classified as coil (C) (Maghrabi and McGuffin, 2017; Cheng et al., 2019; Maghrabi, 2019; 

McGuffin et al., 201; McGuffin et al., 2021).  

 

4.1.2.2 The ProQ methods 

ProQ family of methods were designed by the Elofsson group to estimate model assessment 

using a single model. Several different versions of the ProQ method have been developed over 

the years using the same basic rationale. The general strategy consisted of combining and 

comparing various protein features based on sequence and structure with machine learning 

algorithms to predict local errors in 3D models (detailed below). ProQ versions have achieved 

an excellent assessment performance and have ranked among the leading pure-single model 

methods for the estimation of quality model accuracy according to CASP experiments 

(Kryshtafovych, Fidelis and Tramontano, 2011; Kryshtafovych et al., 2014; Elofsson et al., 

2018; Cheng et al., 2019; Won et al., 2019). The four major versions of the ProQ method, 
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ProQ2 (Ray, Lindahl and Wallner, 2012), ProQ2D, ProQ3D (Uziela et al., 2017) and ProQ4, 

will be integrated with ModFOLD9.  

 

4.1.2.2.1 ProQ2 

ProQ2 was a machine learning-based method that applied a SVM to combine scores for 

assessing 3D models. ProQ2 incorporated both sequence and structural features of the protein 

target as input for the SVM. The sequence-based properties included predicted secondary 

structures, predicted surface exposure and conservation, calculated from MSAs. Structural 

features based on the observed structure include atom–atom interactions, residue–residue 

contacts and secondary structures. The SVM was trained by performing a linear kernel 

function, which can capture the linear relationship between residues in a protein model. The 

output is a local quality score for each residue in a target. To predict the global score, the local 

scores for target residues were summed and normalised by dividing by the target sequence 

length (Ray, Lindahl and Wallner, 2012).  

 ProQ2 was ranked as the top-performing in CASP9 in the quality estimation category 

(Kryshtafovych, Fidelis and Tramontano, 2011). Ray et. al. (2012) demonstrated that ProQ2’s 

improved accuracy in predicting the quality of 3D models relied on the global features, 

meaning that protein features were predicted for the entire model. In other words, predicting 

local quality for a model from the global features perspective may improve the accuracy of the 

3D model whereas prediction from the local perspective does not necessarily reflect the whole 

agreement between the predicted and actual features (Ray, Lindahl and Wallner, 2012). Other 

features that contributed to ProQ2’s improvement were the contact properties between residues 

and surface area features. These features were re-weighted according to MSAs to improve the 

predictive accuracy of ProQ2 (Ray, Lindahl and Wallner, 2012). The prediction of each 

residue's position and the capture of conservation information also contributed to a slight 
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improvement (Ray, Lindahl and Wallner, 2012). 

4.1.2.2.2 ProQ2D and ProQ3D 

ProQ2D and ProQ3D were deep learning-based approaches for the estimation of 3D model 

quality. They represented the updated versions of ProQ2 and ProQ3 (Uziela et al., 2017). ProQ3 

was the developed version of ProQ2 using Rosetta full-atom and coarse-grained energy 

function, as inputs into the SVM along with ProQ2’s single model input structural properties 

(Uziela et al., 2016; Chen and Siu, 2020). In ProQ3D, the input features were similar to that 

for the ProQ3 input, but it was different in that it employed a deep neural network (MLP) rather 

than the SVM (Uziela et al., 2017; Hiranuma et al., 2021; Liu et al., 2022; Liu, Zhao and 

Zhang, 2023). The MLP consisted of one input layer, two hidden layers, and one output layer. 

The hidden layers had different numbers of neurons: 600 in the first layer and 200 the second. 

The activation function was a rectified linear unit (ReLU), which can capture the nonlinearity 

relationship between protein residues in a model (Glorot, Bordes and Bengio, 2011; Uziela et 

al., 2017; Chen and Siu, 2020). ProQ3D improved significantly with respect to estimating the 

accuracy of 3D models and was ranked as a top-performing method in CASP13 (Cheng et al., 

2019).  

4.1.2.2.3 ProQ4 

ProQ4’s design was different to that of its predecessors with respect to its input features and 

NN architecture. The input was the predicted structural features of the 3D model using an MSA. 

From the MSA, two statistics were extracted: self-information and partial entropy. These 

statistics were used to improve the prediction of the proteins’ structural features because they 

provide additional information about the conservation and variability of amino acids at 

different positions in the sequence. The structural features were dihedral angles, relative 

surface area, secondary structure, and hydrogen bonds. All inputs were used to train a deep 

neural network to predict the quality of protein models (Hurtado, Uziela and Elofsson, 2018).  
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The NN architecture was a Siamese network with two sub-neural networks wherein the two 

were identical. In each network, one target model was fed into a size-1 convolution. The 

convolution’s output was visualised in a 64-dimensional space and processed by four ResNet 

modules. The model’s output was combined with alignment features and transmitted via four 

more ResNet modules. The alignment features were predicted from the protein sequence, 

including 3- and 6-state secondary structure, surface accessibility and the dihedral angles. The 

prediction in ProQ4 was performed using the comparative method. To achieve this, the 

symmetrised perceptron, SortNet, was applied. SortNet was composed of two parallel hidden 

layers, each of which had 512 neurons per amino acid and included batch normalisation and 

dropout. This method was used to rank the best target models in addition to predicting their 

quality. The application of this approach enhanced ProQ4’s ranking ability, achieving state-of-

the-art performance in protein model quality assessment in CASP13 (Hurtado, Uziela and 

Elofsson, 2018; Cheng et al., 2019; Chen et al., 2023; Zhang, Xia and Shen, 2023).  

4.1.2.3 VoroMQA 

VoroMQA was a quality estimation method that relied on a statistical potential of atom 

interaction frequencies in a protein structure. This method conceptualised protein structures as 

intersecting spheres of heavy atoms. VoroMQA’s essential feature was its ability to extract the 

interaction between these atoms using an algorithmic method called Voronoi tessellation. Use 

of this algorithm allowed the determination of contact areas and calculation of the interaction 

between them. In other words, Voronoi tessellation splits a space into different areas or cells 

according to established principles. Each cell generated through this procedure for VoroMQA 

depicts the area of a single atom in a 3D space. VoroMQA can precisely quantify the spatial 

distribution and interactions of these atoms by tessellating the area that the protein filled and 

using the heavy atoms as reference points. Obtaining interatomic contact areas with this 

tessellation yielded valuable information about atom interactions within a specific protein 
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structure, thus facilitating a more sophisticated and detailed evaluation of protein model quality 

(Olechnovič and Venclovas, 2017; Hurtado, Uziela and Elofsson, 2018; Liu, Zhao and Zhang, 

2023). 

4.1.2.4 DeepAccNet 

DeepAccNet is a deep learning-based method developed by Baker's research group (Hiranuma 

et al., 2021). This method was developed primarily to improve the accuracy of protein models 

by guiding refinement in the Rosetta method. The method used 3D and 2D convolution to 

assess the local atomic environment of a protein model and determine its global context using 

the per-residue accuracy and residue–residue distance signed errors (Hiranuma et al., 2021; 

Guo et al., 2022; Zhang, Xia and Shen, 2023).  

The input features include 1D features for each amino acid, 2D features of amino acid residue 

pairs and 3D features of amino acid distribution within 3D the protein model’s space. The one-

dimensional features involved the physical and chemical properties of each residue in a protein, 

backbone angles, Rosetta intra-residue energy terms, and secondary structures. The two-

dimensional features were distances between residues, orientations, and Rosetta-based energy 

terms as well as predictions from trRosetta and embeddings for ProtBert-BFD100; a machine 

learning model for protein sequences (Elnaggar et al., 2022). The 3D features represented the 

local atomic coordinates of the amino acids in the 3D model (Hiranuma et al., 2021; Guo et 

al., 2022; Zhang, Xia and Shen, 2023).  

The NNs’ architecture comprised distinct dimensional CNNs fitted for each input feature. The 

first section was a series of 3D convolution layers fed by ‘voxelized atomic coordinates’ for 

each residue (Hiranuma et al., 2021). These convolution layers have the same parameters for 

all residues, allowing them to identify common patterns on a universal scale. The tensor output 

from each of these layers is then ‘flattened’ into a 1D vector, converting the complex 3D data 
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into a more straightforward 1D format so that it might be combined with other 1D features. 

The network’s second section performed a series of 2D convolution operations on the 

concatenated feature vectors. Input to this section consisted of two matrices: one for 1D 

features and one for 2D features. In this section, a 1D-feature matrix was tiled along the first 

and second axes of a 2D-feature matrix, and the resulting matrices were then concatenated to 

create a new feature matrix. The matrix’s third axis represented a combination of 1D and 2D 

features for each pair of residues. This network formation allowed the method to analyse and 

extract important features from amino acid sequences (1D) and their interactions (2D) at the 

same time. Following the formation of the feature matrix, a residual network was split into two 

arms, each comprising four residual blocks. The purpose of this network was to predict Cβ 

distance errors and filter critical residue pairs in protein structure refinement (Hiranuma et al., 

2021). 

The prediction was generated by three variants of DeepAccNet, each of which differs with 

respect to its 2D input features. The DeepAccNet-MSA variant used information from MSAs, 

particularly inter-residue distance predictions provided by the trRosetta network. The 

DeepAccNet-Bert used sequence-embedded data from the ProtBert-BFD100 model (Bert). The 

third variant, referred to as ‘DeepAccNet-Standard’, excluded both MSA and Bert embeddings 

as features (Hiranuma et al., 2021).  

4.1.3 The Combination with Quasi-Single Model Methods 

The quasi-single model methods evaluated single model quality by comparing each model with 

a set of reference models generated using tertiary structure modelling approaches. These 

methods differ with respect to the algorithms and features that they used for model evaluation. 

Four quasi-single model methods have been integrated into the previous versions of the 

ModFOLD server: ResQ (Yang, Wang and Zhang, 2016), Disorder B-factor Agreement (DBA), 

ModFOLD5_single and ModFOLDclustQ (Maghrabi, 2019). 
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4.1.3.1 ModFOLD5_single, ModFOLDclustQ_single and DBA 

Three alternative quasi-single model methods have been developed by the McGuffin group and 

integrated into the previous versions of ModFOLD (versions 6-8) enhancing the predictive 

accuracy of model quality estimates (Kryshtafovych et al., 2016; Maghrabi and McGuffin, 

2017; Cheng et al., 2019; Maghrabi, 2019; McGuffin et al., 2019; McGuffin et al., 2021). The 

local quality scores of ModFOLD5_single were computed using the quasi-single model 

algorithm to evaluate single models with ModFOLDclust2 (McGuffin and Roche, 2010) using 

reference models generated using the IntFOLD, a structure prediction pipeline developed by 

the McGuffin group (Maghrabi, 2019; McGuffin et al., 2019; McGuffin et al., 2021; McGuffin 

et al., 2023). For the ModFOLDclustQ_single scores, the local scores of single models were 

calculated in comparison with the reference IntFOLD set by employing the local Q-score 

algorithm (Ben-David et al., 2009; McGuffin and Roche, 2010; Maghrabi and McGuffin, 2017; 

Maghrabi, 2019; McGuffin et al., 2021). The Q-score is a metric implemented in 

ModFOLDclustQ method to assess the structural similarity between two protein models based 

on the spatial distances between the residues in the two structures. This score was produced 

from the Q measure formulated by the Wolynes group (Eastwood et al., 2001; Ben-David et 

al., 2009; Maghrabi, 2019). The DBA scores measure the degree of agreement between the 

predicted per-residue errors in a 3D protein model according to ModFOLDclust_single and the 

disordered residues in a protein sequence as predicted by DISOPRED3 (Jones and Cozzetto, 

2015; Maghrabi and McGuffin, 2017; Maghrabi, 2019; McGuffin et al., 2021). 

 

 

4.1.3.2 ResQ 

The ResQ method was developed to assess the residue-specific quality and its associated B-

factor profile in a unified manner. ResQ used information generated during the simulation 

processes of modelling predictors. The modelling servers predicted 3D models of a particular 
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protein target using various TBM algorithms and parameters, that led to alternative predicted 

conformations. The variations of model conformations have valuable information that can be 

used to predict the quality of a 3D model. In addition, the target coverage of each template-

based model was considered in ResQ. Using this feature allowed the identification and use of 

a known secondary structure from a database of existing structures, that matched the sequence 

of the protein being modelled. These intermediate features, the coverage of template based 

modelling and conformational variations, were combined with sequence and structural 

information derived from homologous proteins in ResQ to predict local residue accuracy and 

the B-factor profile, enhancing the accuracy and reliability of 3D protein structure prediction 

(Yang, Wang and Zhang, 2016). ResQ was integrated into the seventh and eight versions of 

ModFOLD method (Maghrabi, 2019; McGuffin et al., 2019; McGuffin et al., 2021). To 

calculate the ResQ score, each model was compared to alternative models of the same protein 

predicted by LOMETS (Wu and Zhang, 2007).  

 

4.2 Aim and Objectives 

In this chapter, our aim is to further improve on the local model quality assessment accuracy 

of ModFOLD9 in two stages. The first stage involved integrating the consensus CDA score 

with quality scores derived from pure-single model methods. The pure-single model methods 

considered in this study are SSA, ProQ2, ProQ2D, ProQ3D, ProQ4_MF9, VoroMQA, SSA, 

DeepAccNet, DeepAccNet_Bert and DeepAccNet_MSA. The quality scores were derived 

from these methods and then fed into two different MLP neural networks each trained to predict 

one of the two observed local model quality scores; the S-score and lDDT score. The second 

stage was to combine the consensus CDA score and pure-single scores with quality scores 

computed from quasi-model methods into NNs using a similar procedure. These quasi-single 

model methods included ModFOLD5_single, ModFOLD5clustQ_single, DBA and ResQ. 
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Again, the observed local scores (S-score and lDDT score) were the target functions for the 

two MLPs. The local score predictions were assessed by analysing their correlation with the 

observed scores and evaluating their performance via ROC analysis. To determine the 

improvement in local assessment accuracy for ModFOLD9, the predicted quality scores were 

compared with those of each of the component methods. A similar optimisation procedure was 

conducted (described in Chapter 3) in which the hyper-parameters of the MLP model were 

tuned during the training phase. The hyper-parameters included the following: the number of 

hidden neurons, learning rate, error rate and iterations. 

 

4.3 Methods 

4.3.1 The Consensus Algorithm for Predicting Local Model Quality 

The consensus approach was applied to combine the quality scores predicted from pure-single 

and quasi-single model methods with the consensus CDA score. This consensus approach was 

conducted into two stages. The first stage involved testing the consensus of six CDA scores 

with nine pure-single model quality scoring methods. These methods included the SSA score 

(Maghrabi and McGuffin, 2017; Maghrabi and McGuffin, 2020; Maghrabi, 2019; McGuffin et 

al., 2021), ProQ2 (Ray, Lindahl and Wallner, 2012), ProQ2D (Uziela et al., 2017), ProQ3D 

(Uziela et al., 2017), VoroMQA (Olechnovič and Venclovas, 2017), ProQ4 (Cheng et al., 

2019), DeepAccNet_Bert, DeepAccNet and DeepAccNet_MSA (Hiranuma et al., 2021). Each 

method was used to predict the per-residue quality score for the interested model; these scores 

were then integrated along with the six CDA scores into two versions of the MLP neural 

network (Figure 4.1). The MLP architecture was similar to that of the MLP described in Chapter 

3, in which a sliding window size of 5 was used for input, with zeros padding out the end 

residues. Using the residue scores from the first combination approach, 75 inputs (15×5) were 

generated for each residue. Two MLP versions were trained to learn each of the observed local 

scores: S-score or lDDT score. 
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The second stage combined the quality scores of the four quasi-single methods with the six 

CDA scores and the eight pure-single model scores for a single model. The quasi-single model 

methods considered in this experiment were ResQ, DBA, ModFOLD5_single and 

ModFOLDclustQ_single. For the consensus implementation, we applied two versions of the 

same MLP neural network architecture to predict S-score and lDDT score (Figure 4.2). This 

time the input data consisted of 19 quality scores per residue with a sliding window size of 5. 

The MLP’s hyperparameters were fine-tuned using a procedure similar to that presented in 

Chapter 3. In the first stage approach, the initial hyperparameters to predict the S-score were 

set as follows: 28 hidden neurons, learning rate of 0.1, error rate of 0.01 and three iterations. 

For the lDDT score, the default values were set to 35 hidden neurons, learning rate of 0.1, error 

rate of 0.01 and four iterations. After that, the number of hidden neurons was adjusted while 

the other hyperparameters were fixed during the training process. In the second stage approach, 

the default settings for MLP hyperparameters were as follows: 58 hidden neurons, learning rate 

of 0.1, error rate of 0.01 and three iterations to learn the S-score, whereas for learning the lDDT 

score, the number of hidden neurons was 48, learning rate and error rate set to 0.1 and four 

iterations were set (see Table 4.1). The determination of initial values for hyperparameters were 

based on precedents established in prior studies as well as empirical evidence, as mentioned in 

Chapter 3. 

As part of the training process, the number of hidden neurons was modified, and all other 

hyperparameters remained unchanged. The best runs were achieved by training all parameter 

combinations up to three times and saving the NN weights. This work was completed in 

collaboration with Megan Hird, an undergraduate student, and some of the data shown here 

was also presented in her final year project. Megan conducted the analysis of fine-tuning MLP 

hyperparameters for predicting the lDDT score, and the results of her analysis have been 

presented in the Results and Discussion section. 
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Table 4.1. Default settings of hyperparameters for each MLP version during training to 

predict the S-score and lDDT from each consensus approach. The tuned hyper-parameters 

were the number of hidden neurons, learning rate, error rate and iterations.  

Hyper-parameter First combination Second combination 

 S-score lDDT S-score lDDT 

The number of hidden neurons 28 35 58 48 

Learning rate 0.1 0.1 0.1 0.1 

Error rate 0.01 0.01 0.01 0.1 

Iterations 3 4 3 4 
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Figure 4.1. A simplified flowchart shows how the consensus algorithm was applied in the 

first combination stage of pure-single quality scores with CDA scores to improve the 

accuracy of local model quality estimates by ModFOLD9. The quality scores were 

computed according to pure-single model methods: SSA, ProQ2, ProQ2D, ProQ3D, 

ProQ4_MF9, VoroMQA, SSA, DeepAccNet, DeepAccNet_Bert, and DeepAccNet_MSA.  The 

pure-single scores and six CDA scores were fed into an MLP to predict per-residue score; S-

score or IDDT score.  
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.  

 

 

Figure 4.2. A simplified flowchart shows how the consensus algorithm was applied in the 

second combination stage of quasi-single quality scores with pure-single scores and CDA 

scores to improve the accuracy of local model quality estimates by ModFOLD9. The 

quality scores were computed according to quasi-single model methods: ResQ, DBA, 

ModFOLD5_single and ModFOLDclustQ_single. The MLP neural network was fed with 

quasi-single scores, pure-single scores, and six CDA scores to predict per-residue score; S-

score or IDDT score.  
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4.3.2 Training and Testing Data and Evaluation Measurements 

The CASP14 data set for protein structure prediction was used as training and testing data for 

MLP neural network following the cross-validation procedure similar to that outlined in 

Chapter 3. ModFOLD9’s performance was evaluated with similar measurements: Pearson’s R 

correlation coefficient, Spearman (Rho) correlation coefficient and ROC analysis. These 

assessment methods assessed the correlation between the predicted and the observed quality 

scores. The local quality scores, S-score and lDDT score, were target functions. Lastly, the 

performance of ModFOLD9 was compared against the individual pure-single model methods 

and quasi-single model methods according to the local quality scores.  

 

4.4. Results and Discussion 

Analysis of the evaluation scores allows us to determine the performance of ModFOLD9 in 

local model quality assessments. The hyperparameters of the MLP were tuned to achieve the 

optimal performance. We trained the MLP multiple times, each time adjusting its 

hyperparameters and the evaluation metrics were analysed until optimal performance was 

reached. Subsequently, we compared the predicted quality scores of ModFOLD9 with those of 

the established methods according to the relationship to the observed S-scores and lDDT 

scores. 

 In the first section we analyse the behaviour of the predicted quality scores during the process 

of optimising the MLP hyperparameters. The results are provided in two subsections. The first 

subsection is on training MLP neural networks to learn the S-score and lDDT from the 

integration of CDA scores and pure-single model scores, while the second subsection is on 

training MLP models to learn the S-score and lDDT from the integration of CDA scores and 

pure-single model scores with the quasi-single model scores. The last section demonstrates 
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how the two consensus methods improved the ModFOLD9 local assessment performance 

based on the S-score and lDDT score. 

 

4.4.1. Parameterisation of The NN model 

4.4.1.1. The Consensus of CDA Scores with Pure-Single Model Methods 

In a similar manner to the MLP optimisation in Chapter 3, our initial focus was on determining 

the optimal number of hidden neurons, while maintaining fixed values for all other 

hyperparameters. For predicting the S-score, we started with 28 hidden neurons and kept the 

learning rate at 0.1, the error rate at 0.01, and the iteration number at 3 as fixed 

hyperparameters. Figure 4.3A shows the varying correlation scores for predicting the S-score 

based on the number of neurons in the hidden layer. The analysis reveals that increasing the 

number of neurons to 38 resulted in the highest correlation scores (Pearson’s R =0.625 and 

Spearman’s Rho= 0.628), which improved the MLP’s ability to accurately predict the S-scores. 

We observed that exceeding 46 neurons negatively affected the performance of the MLP, which 

indicates that the best performance was achieved at 38 neurons in the hidden layer. This finding 

was supported by the ROC AUC score, which also peaked (0.825) at 38 neurons (Figure 4.3B). 

Additionally, we observed that increasing the number of hidden neurons to 38 (as shown in 

Figure 4.3C) resulted in higher ROC AUC scores of up to 0.032 at FPR<=0.1. Based on all the 

evaluation metrics, we identified 38 as the optimal number of hidden neurons to achieve high 

MLP performance. 
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Figure 4.3.  The effect of tuning the number of hidden neurons on the MLP’s performance 

according to the S-score with the consensus of CDA scores and pure-single model scores. 

(A) Pearson’s R and Spearman’s Rho correlation scores versus the number of hidden neurons. 

(B) ROC AUC scores versus the number of hidden neurons. (C) ROC AUC FPR<=0.1 scores 

versus the number of hidden neurons. 
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The second hyperparameter was the learning rate. We tested different learning rates to identify 

the best one. We started with a rate of 0.1 before trying higher and lower values to assess the 

effect on the MLP’s performance. Based on the findings presented in Figure 4.4A, it appears 

that a learning rate of 0.001 yielded the highest correlation scores. The same trend was observed 

for ROC AUC scores and ROC AUC FPR<=0.1 scores, as illustrated in Figures 4.4B and 4.4C. 

However, we observed a decrease in MLP performance when we attempted to modify the third 

parameter, the error rate, as indicated in Table 4.2. To address this issue, we opted to retrain 

using the second-best value of the learning rate (0.1) and the same range of error rate values. 

The findings suggest that the best results were achieved when implementing a 0.01 learning 

rate and a 0.1 error rate. Once the optimal neuron number, learning rate, and error rate were 

respectively set to 38, 0.01, and 0.1 for the S-score, the iteration values were adjusted. Table 

4.3 presents the evaluation scores for the consensus of the CDA with pure-single scores based 

on the S-score for the three values of iterations. The evaluation scores reflect that the MLP 

learned better with three iterations. In total, 38 hidden neurons, a learning rate of 0.01, an error 

rate of 0.1, and three iterations were selected as the optimal hyperparameters for predicting the 

S-score. 
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Figure 4.4. The effect of tuning the learning rate on the MLP’s performance according to 

S-score with the consensus of CDA scores and pure-single model scores. (A) Pearson’s R 

and Spearman’s Rho correlation scores versus the learning rate. (B) ROC AUC scores versus 

the learning rate. (C) ROC AUC FPR<=0.1 scores versus the learning rate. 
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Table 4.2.  The effect of tuning the error rate with the two highest learning rate values on 

the MLP’s performance according to the S-score with the consensus of CDA scores and 

pure-single model scores. The evaluation measures were Pearson’s R and Spearman’s Rho 

correlation analyses, ROC AUC scores and ROC AUC FPR<=0.1 scores. The hidden neuron 

numbers and iteration were 38 and 3, respectively. The error values were adjusted with two 

learning rates (0.01 and 0.001), and their evaluation scores were measured individually. The 

bolded scores denote the highest evaluation scores.  

The 

number 

of 

hidden 

neurons 

Learning 

Rate 

Error 

rate 
Iterations 

Pearson’s 

R 

Spearman’s 

Rho 

ROC 

AUC 

ROC AUC 

FPR<=0.1 

38 0.001 0.01 3 0.6361 0.6399 0.8308 0.0333 

38 0.001 0.02 3 0.6364 0.6400 0.8310 0.0335 

38 0.001 0.05 3 0.6365 0.6399 0.8312 0.0337 

38 0.001 0.1 3 0.6368 0.6402 0.8313 0.0338 

38 0.001 0.07 3 0.6357 0.6392 0.8308 0.0337 

38 0.001 0.09 3 0.6362 0.6400 0.8309 0.0337 

38 0.001 0.08 3 0.6362 0.6399 0.8310 0.0337 

38 0.01 0.01 3 0.6329 0.6359 0.8291 0.0326 

38 0.01 0.02 3 0.6288 0.6308 0.8274 0.0319 

38 0.01 0.05 3 0.6345 0.6369 0.8303 0.0333 

38 0.01 0.1 3 0.6390 0.6420 0.8320 0.0346 

38 0.01 0.07 3 0.6366 0.6390 0.8311 0.0339 

38 0.01 0.09 3 0.6286 0.6308 0.8275 0.0323 

38 0.01 0.08 3 0.6370 0.6397 0.8312 0.0341 

 

 

Table 4.3. The effect of tuning iterations on the MLP’s performance according to the S-

score with the consensus of CDA scores and pure-single model scores. The evaluation 

measures were Pearson’s R and Spearman’s Rho correlation analyses, ROC AUC scores and 

ROC AUC FPR<=0.1 scores. The hidden neuron numbers, learning rate and error rate were 38, 

0.01, and 0.1, respectively. The iteration values were adjusted, and their evaluation scores were 

measured individually. The bolded scores denote the highest evaluation scores.  

 

number 

of 

hidden 

neurons 

Learning 

Rate 

Error 

rate 
Iterations 

Pearson’s 

R 

Spearman’s 

Rho 

ROC 

AUC 

ROC AUC 

FPR<=0.1 

38 0.01 0.1 3 0.6390 0.6420 0.8320 0.0346 

38 0.01 0.1 2 0.6376 0.6413 0.8312 0.0335 

38 0.01 0.1 4 0.6244 0.6278 0.8257 0.0310 
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The MLP optimisation for predicting the lDDT score also involved varying hyperparameters 

but with different values. We first conducted the adjustment for the number of hidden neurons 

for optimal performance. The implementation started with 35 hidden neurons. This number 

was later increased and decreased while maintaining a 0.1 learning rate, a 0.01 error rate, and 

4 iterations as the remaining hyperparameters. Figure 4.5A depicts the changes in the MLP's 

lDDT score performance changed with varying numbers of hidden neurons. The highest 

correlation scores were obtained when the number of hidden neurons ranged from 44 to 47, 

which signified the best performance. According to the ROC AUC scores in Figure 4.5B, the 

optimal range of hidden neurons was between 44 and 47, as the MLP achieved the best AUC 

score with these values. At FPR <=0.1, the ROC AUC score was highest with 38 hidden 

neurons, as shown in Figure 4.5C. To determine the ideal number of hidden neurons, we 

retrained the MLP by changing the learning rate to 0.05 for the top four hidden neuron numbers, 

as seen in Table 4.4. After comparing the evaluation scores with those of the previous training 

process, which had a learning rate of 0.1, we found that the highest scores were achieved when 

the number of hidden neurons was 45 with a learning rate of 0.05. Thus, we concluded that 45 

was an optimal number of neurons. After making this determination, we modified the learning 

rate to test different values and achieve the best evaluation scores. However, as Table 4.5 

illustrates, a learning rate of 0.05 remained the optimal value based on the evaluation scores of 

the lDDT score.  
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Figure 4.5. The effect of tuning the number of hidden neurons on the MLP’s performance 

according to the lDDT score with the consensus of CDA scores and pure-single model 

scores. (A) Pearson’s R and Spearman’s Rho correlation scores versus the number of hidden 

neurons. (B) ROC AUC scores versus the number of hidden neurons. (C) ROC AUC FPR<=0.1 

scores versus the number of hidden neurons. 
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Table 4.4. The effect of tuning the two learning rate values with optimal numbers of 

neurons on the MLP’s performance according to the lDDT score with the consensus of 

CDA scores and pure-single model scores. The evaluation measures were Pearson’s R and 

Spearman’s Rho correlation analyses, ROC AUC scores and ROC AUC FPR<=0.1 scores. The 

error rate and iteration were 0.1 and 4, respectively. The number of hidden neurons was 

adjusted with a learning rate of 0.05, and the evaluation scores were measured individually. 

The findings from this process were compared to the previous results of the numbers of hidden 

neurons with a learning rate of 0.1 to determine the best neuron number. The bolded scores 

denote the highest evaluation scores.  

The 

number 

of hidden 

Neurons 

Learning 

Rate 

Error 

Rate 

Iterations  Pearson’s 

R 

Spearman’s 

Rho 

ROC 

AUC 

ROC 

AUC 

FPR<=0.1 

44 0.05 0.1 4 0.7689 0.7640 0.8747 0.0452 

45 0.05 0.1 4 0.7694 0.7694 0.8748 0.0449 

46 0.05 0.1 4 0.7663 0.7609 0.8740 0.0458 

47 0.05 0.1 4 0.7683 0.7628 0.8747 0.0456 

44 0.1 0.1 4 0.7662 0.7609 0.8735 0.0449 

45 0.1 0.1 4 0.7641 0.7587 0.8727 0.0449 

46 0.1 0.1 4 0.7667 0.7616 0.8734 0.0445 

47 0.1 0.1 4 0.7696 0.7640 0.8749 0.0454 

 

 

Table 4.5. The effect of tuning the learning rate on the MLP’s performance according to 

the lDDT score with the consensus of CDA scores and pure-single model scores. The 

evaluation measures were Pearson’s R and Spearman’s Rho correlation analyses, ROC AUC 

scores and ROC AUC FPR<=0.1 scores. The hidden neuron numbers, error rate and iterations 

were 45, 0.1, and 4, respectively. The learning rate values were adjusted, and their evaluation 

scores were measured individually. The bolded scores denote the highest evaluation scores.  

The 

number 

of hidden 

Neurons 

Learning 

Rate 

Error 

Rate 

Iterations  Pearson’s 

R 

Spearman’s 

Rho 

ROC 

AUC 

ROC 

AUC 

FPR<=0.1 

45 0.04 0.1 4 0.7618 0.7561 0.8723 0.0460 

45 0.06 0.1 4 0.7662 0.7606 0.8736 0.0457 

45 0.15 0.1 4 0.7667 0.7623 0.8742 0.0443 

45 0.1 0.1 4 0.7641 0.7587 0.8727 0.0449 

45 0.05 0.1 4 0.7694 0.7694 0.8748 0.0449 

  



Chapter 4 

165 
 

 

 

The optimal values for neuron number and learning rate were set to 45 and 0.05, respectively 

for the lDDT score. The adjustment of error and iteration values was carried out individually. 

Tables 4.6 and 4.7 present the evaluation scores for the lDDT score based on error rate values 

and iterations. Based on the evaluation scores, the data indicate that the MLP performed better 

with a 0.07 error rate and three iterations. However, according to the ROC AUC FPR<=0.1 

result, a slightly higher score was achieved with four iterations. This finding suggests that with 

these settings, the MLP only needed to be shown the dataset three to four times to achieve 

optimal accuracy and any further iterations may result in overfitting. Based on this analysis, 

we determined that the optimal hyperparameters for the best MLP prediction performance 

according to the lDDT score were as follows: 45 hidden neurons, a learning rate of 0.05, an 

error rate of 0.07, and 4 iterations. 

 

Table 4.6. The effect of tuning the error rate on the MLP’s performance according to the 

lDDT score with the consensus of CDA scores and pure-single model scores. The evaluation 

measures were Pearson’s R and Spearman’s Rho correlation analyses, ROC AUC scores and 

ROC AUC FPR<=0.1 scores. The hidden neuron numbers, learning rate and iteration were 45, 

0.05 and 4, respectively. The error rate values were adjusted, and their evaluation scores were 

measured individually. The bolded scores denote the highest evaluation scores.  

The 

number 

of 

hidden 

neurons 

Learning 

Rate 

Error 

Rate 

Iterations Pearson’s 

R 

Spearman’s 

Rho 

ROC 

AUC 

ROC 

AUC 

FPR<=0.1 

45 0.05 0.04 4 0.7648 0.7595 0.8736 0.0454 

45 0.05 0.05 4 0.7656 0.7595 0.8726 0.0454 

45 0.05 0.06 4 0.7709 0.7651 0.8751 0.0455 

45 0.05 0.07 4 0.7712 0.7658 0.8758 0.0461 

45 0.05 0.08 4 0.7674 0.7615 0.8734 0.0454 

45 0.05 0.15 4 0.7609 0.7563 0.8719 0.0446 

45 0.05 0.2 4 0.7549 0.7509 0.8701 0.0450 
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Table 4.7. The effect of tuning the iteration value on the MLP’s performance according 

to the lDDT score with the consensus of CDA scores and pure-single model scores. The 

evaluation measures were Pearson’s R and Spearman’s Rho correlation analyses, ROC AUC 

scores and ROC AUC FPR<=0.1 scores. The hidden neuron number, learning rate and error 

rate were 45, 0.05, and 0.07, respectively. The iteration values were adjusted, and their 

evaluation scores were measured individually. The bolded scores denote the highest evaluation 

scores.  

The 

number 

of 

hidden 

neurons 

Learning 

Rate 

Error 

Rate 

Iterations Pearson’s 

R 

Spearman’s 

Rho 

ROC 

AUC 

ROC 

AUC 

FPR<=0.1 

45 0.05 0.07 7 0.7639 0.7577 0.8721 0.0455 

45 0.05 0.07 2 0.7644 0.7591 0.8735 0.0460 

45 0.05 0.07 5 0.7677 0.7622 0.8744 0.0455 

45 0.05 0.07 6 0.7712 0.7654 0.8752 0.0454 

45 0.05 0.07 4 0.7712 0.7658 0.8758 0.0461 

45 0.05 0.07 3 0.7716 0.7669 0.8760 0.0453 
 

 

 

4.7.1.2. The Consensus of CDA Scores, Pure- and Quasi-Single Model Methods 

Initially, we began with 58 hidden neurons, with fixed hyperparameters: a learning rate of 0.1, 

an error rate 0.01, and 3 iterations. Figure 4.6A displays the fluctuation in correlation scores 

with the changes in the number of hidden neurons.  The correlation scores were the highest 

when 44 neurons were applied in the hidden layer (Pearson’s R = 0.699, Spearman’s Rho = 

0.706). The ROC AUC score also peaked (0.862) when the number of neurons was set to 44 

(Figure 4.6B). In contrast, when we reduced the number of hidden neurons to 38, the ROC 

AUC FPR<=0.1 reached 0.043 (Figure 4.6C). While this score decreased marginally to 0.042 

at 44 hidden neurons, there were observed improvements in other scores. Overall, the results 

suggest that 44 is an optimal number of neurons to maximise the performance of the MLP. 
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Figure 4.6.  The effect of tuning the number of hidden neurons on the MLP’s performance 

according to the S-score with the consensus of CDA scores, pure and quasi-single model 

scores. (A) Pearson’s R and Spearman’s Rho correlation scores versus the number of hidden 

neurons. (B) ROC AUC scores versus the number of hidden neurons. (C) ROC AUC FPR<=0.1 

scores versus the number of hidden neurons. 
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For the learning rate adjustment, we started with a value of 0.1, which we subsequently 

increased and decreased. From an analysis of Table 4.8, we established that a learning rate of 

0.003 yielded the highest scores for both correlation matrices and the ROC AUC analysis. In 

contrast, a learning rate of 0.001 produced a slightly higher ROC AUC FPR<=0.1 score than 

that produced by 0.003. The difference between the two scores at these two learning rate values 

was 0.0001, which suggests that when lowering the learning rate from 0.003 to 0.001 did not 

considerably boost MLP performance. Therefore, a learning rate of 0.003 appeared to be 

optimal as the evaluation scores improved with this rate.  

After selecting 44 and 0.003 as the optimal hyperparameters of neuron number and learning 

rate, respectively, we adjusted the error rate, while setting the number of iterations to 3. The 

evaluation scores for S-score based on error rate values were illustrated in Figure 4.7. The 

results shows that the error rate of 0.04 resulted in the best performance for accurately 

predicting the S-score according to all evaluation metrics. However, as seen in Table 4.9, 

changes to iteration values produced higher evaluation scores at 2 and 3 iterations when 

adjusting iteration values. During the previous server upgrade process, we observed that using 

three iterations in the MLP’s training process resulted in the best overall performance.  Based 

on these findings, we determined that 44 hidden neurons, a learning rate of 0.003, an error rate 

of 0.04, and 3 iterations were optimal hyperparameters for the MLP’s to predict the S-score. 
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Table 4.8. The effect of tuning the learning rate value on MLP’s performance according 

to the S-score with the consensus of CDA scores, pure and quasi-single model scores. The 

evaluation measures were Pearson’s R and Spearman’s Rho correlation analyses, ROC AUC 

scores, and ROC AUC FPR<=0.1 scores. The hidden neuron numbers, error rate and iteration 

were 44, 0.01, and 3, respectively. The learning rate values were adjusted, and their evaluation 

scores were measured individually. The bolded scores denote the highest evaluation scores. 

The 

number 

of 

hidden 

neurons 

Learning 

Rate 

Error 

Rate 
Iterations 

Pearson’s 

R 

Spearman’s 

Rho 

ROC 

AUC 

ROC AUC 

FPR<=0.1 

44 0.001 0.01 3 0.7062 0.7134 0.8656 0.0448 

44 0.003 0.01 3 0.7068 0.7136 0.8658 0.0447 

44 0.005 0.01 3 0.7048 0.7119 0.8649 0.0437 

44 0.008 0.01 3 0.7019 0.7072 0.8639 0.0432 

44 0.01 0.01 3 0.6993 0.7039 0.8629 0.0437 

44 0.02 0.01 3 0.6976 0.7018 0.8621 0.0436 

44 0.06 0.01 3 0.6835 0.6892 0.8542 0.0404 

44 0.1 0.01 3 0.6995 0.7062 0.8616 0.0423 

44 0.15 0.01 3 0.6892 0.6962 0.8568 0.0424 

44 0.2 0.01 3 0.6873 0.6932 0.8551 0.0412 
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Figure 4.7. The effect of tuning the error rate on the MLP’s performance according to the 

S-score with the consensus of CDA scores, pure and quasi-single model scores. (A) 

Pearson’s R and Spearman’s Rho correlation scores versus the error rate. (B) ROC AUC scores 

versus the error rate. (C) ROC AUC FPR<=0.1 scores versus the error rate.  
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Table 4.9. The effect of tuning the iteration value on the MLP’s performance according 

to the S-score with the consensus of CDA scores, pure and quasi-single model scores. The 

evaluation measures were Pearson’s R and Spearman’s Rho correlation analyses, ROC AUC 

scores and ROC AUC FPR<=0.1 scores. The hidden neuron numbers, learning rate and error 

rate were 44, 0.003, and 0.04, respectively. Iteration values were adjusted, and their evaluation 

scores were measured individually. The bolded scores denote the highest evaluation scores. 

The 

number 

of 

hidden 

neurons 

Learning 

Rate 

Error 

Rate 

Iterations Pearson’s 

R 

Spearman’s 

Rho 

ROC 

AUC 

ROC 

AUC 

FPR<=0.1 

44 0.003 0.04 2 0.7079 0.7150 0.8664 0.0447 

44 0.003 0.04 3 0.7076 0.7154 0.8661 0.0448 

44 0.003 0.04 4 0.7054 0.7116 0.8652 0.0441 

44 0.003 0.04 6 0.7032 0.7089 0.8643 0.0435 
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Through various evaluation metrics, we also optimised the MLP for predicting the lDDT score. 

We first adjusted the number of hidden neurons for optimal performance. We started with 48 

hidden neurons while maintaining a 0.1 learning rate and error rate and 4 iterations as the 

remaining hyperparameters. Figure 4.8A and Figure 4.8B depict the changes in the MLP's 

lDDT score performance with varying numbers of hidden neurons according to the correlation 

scores and ROC AUC score. The optimal number of hidden neurons was 40, which produced 

the highest score and achieved the best performance of MLP. At FPR <=0.1, the ROC AUC 

score was highest with 35 hidden neurons, as shown in Figure 4.8C. To determine the optimal 

number of hidden neurons, we retrained the MLP by changing the learning rate values for the 

best two hidden neuron numbers, as seen in Table 4.10. We found that the two highest 

evaluation scores were produced with the learning rate values of 0.1 and 0.11 with 35 and 40 

neurons. We determined that the best values for these two parameters were 35 hidden neurons 

and a learning rate of 0.1 while modifying the error rate to 0.05 (see Table 4.11). Table 4.12 

provides the results from adjusting the iteration values, which reveal that four iterations were 

optimal for achieving the best MLP performance. Based on this analysis, the optimal hyper-

parameters for the MLP to predict lDDT score were 35 hidden neurons, a learning rate of 0.1, 

an error rate of 0.05, and 4 iterations. 
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Figure 4.8. The effect of tuning the number of hidden neurons on the MLP’s performance 

according to the lDDT score with the consensus of CDA scores, pure and quasi-single 

model scores. (A) Pearson’s R and Spearman’s Rho correlation scores versus the number of 

hidden neurons. (B) ROC AUC scores versus the number of hidden neurons. (C) ROC AUC 

FPR<=0.1 scores versus the number of hidden neurons. 
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Table 4.10. The effect of tuning the learning rate with the two best numbers of hidden 

neurons on the MLP’s performance according to the lDDT score with the consensus of 

CDA scores, pure and quasi-single model scores. The evaluation measures were Pearson’s R 

and Spearman’s Rho correlation analyses, ROC AUC scores, and ROC AUC FPR<=0.1 scores. 

The hidden neuron numbers were 35 and 40, and error rate and iterations were 0.1 and 4, 

respectively. The learning rate values were adjusted, and their evaluation scores were measured 

individually. The bolded scores denote the highest evaluation scores. 

The 

number 

of 

hidden 

neurons 

Learning 

Rate 

Error 

Rate 

Iterations Pearson’s 

R 

Spearman’s 

Rho 

ROC 

AUC 

ROC 

AUC 

FPR<=0.1 

35 0.1 0.1 4 0.7939 0.7883 0.8892 0.0500 

35 0.05 0.1 4 0.7870 0.7818 0.8855 0.0487 

35 0.09 0.1 4 0.7840 0.7776 0.8840 0.0493 

35 0.11 0.1 4 0.7955 0.7899 0.8887 0.0490 

35 0.12 0.1 4 0.7850 0.7781 0.8838 0.0490 

35 0.13 0.1 4 0.7882 0.7832 0.8866 0.0490 

35 0.14 0.1 4 0.7776 0.7707 0.8805 0.0481 

35 0.15 0.1 4 0.7917 0.7854 0.8870 0.0490 

40 0.1 0.1 4 0.7962 0.7914 0.8897 0.0484 

40 0.05 0.1 4 0.7862 0.7809 0.8843 0.0469 

40 0.09 0.1 4 0.7862 0.7800 0.8845 0.0490 

40 0.11 0.1 4 0.7851 0.7804 0.8839 0.0469 

40 0.13 0.1 4 0.7894 0.7845 0.8866 0.0483 

40 0.14 0.1 4 0.7905 0.7864 0.8875 0.0480 

40 0.15 0.1 4 0.7912 0.7848 0.8873 0.0495 

40 0.16 0.1 4 0.7710 0.7644 0.8775 0.0476 
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Table 4.11.  The effect of tuning the error rate value with the two hidden neuron numbers 

and two learning rate values on the MLP’s performance according to the lDDT score with 

the consensus of CDA scores, pure and quasi-single model scores. The evaluation measures 

were Pearson’s R and Spearman’s Rho correlation analyses, ROC AUC scores and ROC AUC 

FPR<=0.1 scores. The hidden neuron numbers were 35 and 40, learning rate values were 0.1 

and 0.11, and the number of iterations was 4. The error rate values were adjusted, and their 

evaluation scores were measured individually. The bolded scores denote the highest evaluation 

scores. 

The 

number 

of 

hidden 

Neurons 

Learning 

Rate 

Error 

Rate 
Iterations 

Pearson’s 

R 

Spearman’s 

Rho 

ROC 

AUC 

ROC 

AUC 

FPR<=0.1 

35 0.1 0.2 4 0.7746 0.7718 0.8796 0.0448 

35 0.1 0.15 4 0.7883 0.7834 0.8849 0.0478 

35 0.1 0.01 4 0.7897 0.7842 0.8857 0.0483 

35 0.1 0.05 4 0.7968 0.7924 0.8908 0.0494 

35 0.11 0.05 4 0.7877 0.7824 0.8855 0.0482 

35 0.11 0.01 4 0.7922 0.7863 0.8867 0.0484 

35 0.11 0.15 4 0.7890 0.7843 0.8871 0.0481 

40 0.1 0.2 4 0.7895 0.7839 0.8864 0.0488 

40 0.1 0.15 4 0.7894 0.7853 0.8866 0.0478 

40 0.1 0.05 4 0.7898 0.7845 0.8872 0.0490 

 

 

Table 4.12. The effect of tuning the iteration value scores on the MLP’s performance 

according to the lDDT score with the consensus of CDA scores, pure and quasi-single 

model scores. The evaluation measures were Pearson’s R and Spearman’s Rho correlation 

analyses, ROC AUC scores and ROC AUC FPR<=0.1 scores. The hidden neuron numbers, 

learning rate and error rate were 35, 0.1 and 0.05, respectively. The iteration values were 

adjusted, and their evaluation scores were measured individually. The bolded scores denote the 

highest evaluation scores. 

Th 

number 

of 

hidden 

neurons 

Learning 

Rate 

Error 

Rate 
Iterations 

Pearson’s 

R 

Spearman’s 

Rho 

ROC 

AUC 

ROC AUC 

FPR<=0.1 

35 0.1 0.05 2 0.7827 0.7771 0.8828 0.0480 

35 0.1 0.05 3 0.7902 0.7848 0.8867 0.0485 

35 0.1 0.05 5 0.7949 0.7894 0.8875 0.0484 

35 0.1 0.05 4 0.7968 0.7924 0.8908 0.0494 
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4.4.1.3 The Impact of Tuning MLP Hyperparameters on The Performance of 

ModFOLD9 

Fine-tuning the hyperparameters of the MLP has improved the performance of ModFOLD9. 

Optimising the performance of the NN requires adjusting the hyperparameters and conducting 

a thorough validation process (Probst, Bischl and Boulesteix, 2018; Vabalas et al., 2019). 

Therefore, finding the optimal set of hyperparameters is crucial to achieving the best possible 

performance of the MLP. This study has focused on tuning four hyperparameters during the 

MLP training phase, which has resulted in an improvement of the ModFOLD9 predictive 

assessment in both combination stages. 

The number of hidden neurons in the MLP can impact its ability to predict quality scores 

accurately. Our study found that the optimal number of hidden neurons varied in both 

consensus stages. For instance, the MLP with 38 neurons was better at predicting the S-score 

when the input was the consensus of CDA and pure-single model scores, while the MLP with 

44 neurons performed well in predicting the S-score when the input was the consensus of CDA 

scores and pure-single model scores with quasi-single model scores. This indicates that these 

hidden neuron values can enhance the MLP's ability to capture more aspects of the underlying 

data patterns, leading to better S-score predictions. However, more hidden neurons do not 

always result in better performance. Having too many neurons can result in overfitting, where 

the MLP memorises the training data and performs poorly on unseen data (Awad and Khanna, 

2015; Chasiotis, Nadi and Filios, 2021; Zhao et al., 2023). Our study found that an MLP with 

46 neurons performed poorly predicting S-score on the consensus of CDA and pure-single 

model scores. 

The learning rate plays a crucial role in adjusting the network weights during the learning 

process. By modifying the weights appropriately, the MLP neural network can converge to a 

more optimal solution that fits the data better (Zubair et al., 2014; Awad and Khanna, 2015; 



Chapter 4 

177 
 

Mukhtorov et al., 2023). Our study has established that different learning rates have a 

significant impact on MLP's performance. When predicting quality scores, the choice of 

learning rate varies depending on the combination of input quality scores. For instance, for the 

combination of CDA scores and pure-single scores, a learning rate of 0.01 was found to 

improve the performance of MLP in predicting the S-score, while a learning rate of 0.05 was 

optimal for predicting the lDDT score. However, for the combination of CDA scores, pure-

single scores, and quasi-single scores, a learning rate of 0.003 achieved the highest evaluation 

scores for predicting the S-score. In contrast, a learning rate of 0.1 was the best value for 

accurately predicting the IDDT score. These findings suggest that choosing the optimal 

learning rate enables MLPs to learn more effectively from the data. Therefore, different 

combinations of input quality scores may require different learning rates. By choosing the right 

learning rate, MLP can learn more effectively and converge to a better prediction. 

 

The error rate refers to the disparity between the predicted output of the MLP and the observed 

output (Zubair et al., 2014; Awad and Khanna, 2015; Elansari, Ouanan and Bourray, 2023). 

Therefore, it is crucial to minimise error rates during the training phase to optimise MLP 

performance. In our experiment, we reduced the error rate for MLP from 0.1 to 0.07 while 

predicting IDDT from the consensus of CDA scores and pure-single model scores, resulting in 

an improved MLP performance according to evaluation results. However, it is essential to note 

that in some cases, a low error rate can lead to poor performance. This was observed in the 

second combination to predict the S-score, where the MLP training started with an error rate 

of 0.01, resulting in poor performance. When we increased the error rate from 0.01 to 0.04, 

MLP performed well based on the evaluation results. This suggests adjusting error rates can 

lead to higher predictive accuracy and improved performance. 
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 The performance of MLP is heavily influenced by the number of iterations it undergoes during 

training. Each iteration involves a complete pass through the training set, during which the 

model adjusts its weights to enhance its learning capability. An MLP cycles through an entire 

dataset based on the number of iterations. Using too few iterations might result in the MLP 

underfitting the data because it cannot learn enough from it. Alternatively, if the number of 

iterations is too high, the MLP may begin memorising the training data, resulting in overfitting 

(Bengio, 2012). In the case of ModFOLD9 MLP, the optimal iteration range was between 3 

and 4. Fewer or more iterations than this range resulted in the MLP learning noise instead of 

underlying patterns, resulting in less accurate predictions of the quality scores. Therefore, 

adjusting the iteration range contributed to further improvement in the predictive learning of 

MLP during the experiments. 

This study highlighted the significant impact of fine-tuning the hyperparameters of MLP for 

practical training and avoiding overfitting. Adjusting hyperparameters, which were learning 

rate, hidden neurons, error rate, and iterations, could help the MLP learn complex patterns 

without overfitting. Furthermore, cross-validation validated the MLP's performance on unseen 

data, ensuring the reliability of ModFOLD9. 
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 4.4.2 Evaluating ModFOLD9 Performance 

The new combined approaches have achieved a substantial improvement in terms of local 

assessment accuracy, boosting ModFOLD9 performance. Our findings were presented based 

on evaluation according to S-score and lDDT score for the two variants of the method. The 

integration of CDA scores with pure-single scores was referred to ModFOLD9_pure. 

ModFOLD9_pure has been assessed by comparing its correlation scores with those of the pure-

single model and CDA methods. The second consensus, ModFOLD9_quasi, has been assessed 

by comparing its correlation scores with those of every component method. The five top-

performing established methods were also compared with ModFOLD9 variants using ROC 

analysis. The evaluation process was aimed at assessing whether the consensus methods 

performed better when quality scores from different scoring methods were similar. 

 

4.4.2.1 Evaluating The Performance of ModFOLD9_pure 

The performance of ModFOLD9_pure was enhanced as a result of utilising the consensus 

algorithm, which integrated diverse scores to achieve the best results, effectively improving 

the predictive power. As is evident from Figure 4.9, the S-score of ModFOLD9_pure obtained 

the highest Pearson’s R correlation score (0.639) with the observed S-score when compared to 

the Pearson’s R correlation scores of the S-scores predicted from CDA and pure-single model 

methods individually. A similar trend was observed in Spearman’s Rho correlation analysis 

(0.642 for ModFOLD9_pure), indicating that ModFOLD9_pure outperformed the established 

methods. From Figure 4.10A, the ROC AUC score of ModFOLD9_pure (0.832) was the 

highest score, indicating that improvement gains were achieved with the consensus of quality 

scores. Furthermore, ModFOLD9_pure outperformed the five top-performing pure-single 

model methods based on AUC scores of ROC FPR <= 0.1 (Figure 4.10B). Thus, the 

combination of CDA scores with pure-single model scores improved the local assessment 

accuracy of ModFOLD9_pure according to the S-score. 
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The enhancement of ModFOLD9_pure's performance was also observed based on the 

prediction of the lDDT score. As shown in Figure 4.11, ModFOLD9_pure output scores 

achieved the highest correlation (Pearson’s R = 0.771, Spearman’s Rho = 0.766) with the 

observed lDDT score in comparison to all component methods. A similar pattern was observed 

for the ROC AUC analysis, where the ROC AUC score of ModFOLD9_pure (0.876) was the 

highest. In addition, ModFOLD9_pure achieved a comparable ROC AUC FPR <0.1 score to 

DeepAccNet_MSA (Figure 4.12B). The analysis shows that ModFOLD9_pure had improved 

its local assessment accuracy for predicting the lDDT, indicating the consensus quality scores 

enhanced the accuracy. 

To visualise the distribution of the local quality scores, S-score and lDDT density plots were 

generated. These plots were not as useful for showing the relationship between predicted versus 

observed S-scores (Figure S.6 in Appendix 12), due to non-linear nature of the S-score, as was 

mentioned in the previous chapter. Conversely, a strong linear correlation was evident between 

the predicted lDDT score of ModFOLD9_Pure and the observed lDDT score as illustrated in 

Figure 4.13. 
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Figure 4.9. Correlations with the S-scores for ModFOLD9_pure and established 

component methods. The strong positive correlations are closer to 1 and low correlations are 

closer to 0. The correlation coefficients used were Pearson’s R and Spearman’s Rho. The 

established methods include CDA scores derived from contact prediction methods and pure-

single model methods. The CDA scores were CDA_DD, CDA_DMP, CDA_SC, CDA_TR, 

CDA_trR2, and CDA. The pure-single model scores were SSA, ProQ2, ProQ2D, ProQ3D, 

ProQ4, VoroMQA, DeepAccNet, DeepAccNet_Bert and DeepAccNet_MSA. The scores 

sorted by Pearson’s R values. 
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Figure 4.10. ROC curves for ModFOLD9_pure against the top five component methods 

according to S-score. The top five methods were DeepAccNet_MSA, DeepAccNet_Bert, 

ProQ3D, DeepAccNet and ProQ2. A) Line graphs of ROC analysis. B) Line graphs with a 

condition of false positive rate less than 0.1. 
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Figure 4.11. Correlations with the lDDT score for ModFOLD9_pure and established 

component methods. The strong positive correlations are closer to 1 and low correlations are 

closet to 0.  The correlation coefficients used were Pearson’s R and Spearman’s Rho.  The 

established methods include CDA scores derived from contact prediction methods and pure-

single model methods. The CDA scores were CDA_DD, CDA_DMP, CDA_SC, CDA_TR, 

CDA_trR2, and CDA. The pure-single model scores were SSA, ProQ2, ProQ2D, ProQ3D, 

ProQ4, VoroMQA, DeepAccNet, DeepAccNet_Bert and DeepAccNet_MSA. The scores 

sorted by Pearson’s R values. 
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Figure 4.12.  ROC curves for ModFOLD9_pure against the top five component methods 

according to lDDT score. The top five methods were DeepAccNet_MSA, DeepAccNet_Bert, 

DeepAccNet, ProQ4 and ProQ3D. A) Line graphs of ROC analysis. B) Line graphs with a 

condition of false positive rate less than 0.1.  
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Figure 4.13. Density scatter plots show the relationship between ModFOLD9_pure and 

its five top component methods according to lDDT scores. 
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4.4.2.2 Evaluating The Performance of ModFOLD9_quasi 

Utilising the consensus approach significantly improved the performance of 

ModFOLD9_quasi. As demonstrated in Figure 4.14, ModFOLD9_quasi’s S-score obtained the 

highest correlation scores (Pearson’s R = 0.708, Spearman’s Rho = 0.715) with the observed 

S-score when compared to other component methods, indicating that ModFOLD9_quasi 

outperformed established methods. Figure 4.15 shows that the ROC AUC score of 

ModFOLD9_quasi compared to those of the quasi-single model methods. The highest AUC 

score went to ModFOLD9_quasi (0.866). Additionally, ModFOLD9_quasi outperformed 

quasi-single model methods based on AUC scores of ROC FPR <= 0.1 (refer to Figure 4.15B). 

Based on the prediction of the lDDT score, ModFOLD9_quasi performed even more 

efficiently. As shown in Figure 4.16, the correlation scores of ModFOLD9_quasi’s lDDT score 

reached almost 0.8 (Pearson’s R = 0.797, Spearman’s Rho = 0.792). As compared to quasi-

single model methods, ModFOLD9_quasi had the highest ROC AUC score (0.891) (Figure 

4.17A). In addition, ModFOLD9_quasi had better local assessment accuracy based on ROC 

AUC FPR <0.1 scores in Figure 4.17B. According to the density plots, ModFOLD9_quasi's 

predicted lDDT score correlated strongly with the observed lDDT score compared to quasi-

single model methods (Figures S.7 in Appendix 13 and Figure 4.18). Based on the analysis, 

combining quality scores from various QA methods significantly improved 

ModFOLD9_quasi's local assessment accuracy in predicting both the S-score and lDDT score. 
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Figure 4.14. Correlations with the S-score for ModFOLD9_quasi and established 

component methods. The strong positive correlations are closer to 1 and low correlations are 

closer to 0. The correlation coefficients used were Pearson’s R and Spearman’s Rho.  The 

established methods include CDA scores derived from contact prediction methods, pure-single 

model methods and quasi-single model methods. The CDA scores were CDA_DD, 

CDA_DMP, CDA_SC, CDA_TR, CDA_trR2, and CDA. The pure-single model scores were 

SSA, ProQ2, ProQ2D, ProQ3D, ProQ4, VoroMQA, DeepAccNet, DeepAccNet_Bert and 

DeepAccNet_MSA. The quasi-single model methods were ResQ, DBA, 

ModFOLDclustQ_single and ModFOLD5_single. The scores sorted by Pearson’s R values. 
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Figure 4.15. ROC curves for ModFOLD9_quasi against the quasi-single model methods 

according to S-score. The quasi-single model methods were ResQ, DBA, ModFOLD5_single 

and ModFOLDclustQ_single. A) Line graphs of ROC analysis. B) Line graphs with a condition 

of false positive rate less than 0.1. 
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Figure 4.16. Correlations with the lDDT score for ModFOLD9_quasi against those for 

established component methods. The strong positive correlations are closer to 1 and low 

correlations are closer to 0.  The correlation coefficients used were Pearson’s R and Spearman’s 

Rho.  The established methods include CDA scores derived from contact prediction methods, 

pure-single model methods and quasi-single model methods. The CDA scores were CDA_DD, 

CDA_DMP, CDA_SC, CDA_TR, CDA_trR2, and CDA. The pure-single model scores were 

SSA, ProQ2, ProQ2D, ProQ3D, ProQ4, VoroMQA, DeepAccNet, DeepAccNet_Bert and 

DeepAccNet_MSA. The quasi-single model methods were ResQ, DBA, 

ModFOLDclustQ_single and ModFOLD5_single. The scores sorted by Pearson’s R values. 
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Figure 4.17. ROC curves for ModFOLD9_quasi against the quasi-single model methods 

according to lDDT score. The quasi-single model methods were ResQ, DBA, 

ModFOLD5_single and ModFOLDclustQ_single. A) Line graphs of ROC analysis. B) Line 

graphs with a condition of false positive rate less than 0.1. 
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Figure 4.18. Density scatter plots show the relationship between ModFOLD9_quasi and 

the quasi-single model methods according to lDDT scores. 
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4.5 Conclusions 

For the ModFOLD9 variants, we have implemented consensus approaches that integrate 

orthogonal data, such as pure-single and quasi-single model scores, using MLPs comprising 

numerous neurons to enhance the accuracy of local estimation of 3D model quality. These 

consensus approaches played a vital role in improving the local assessment accuracy of the 

ModFOLD9 variants as they produced the best local quality scores overall compared with the 

individual methods. The incorporation of pure-single and quasi-single scores has led to a 

notable improvement in the performance of ModFOLD9. By optimising the hyperparameters 

of the MLP, we achieved the highest evaluation scores resulting from the consensus of different 

quality scoring methods, improving the accuracy of MoFOLD9's assessment on a local scale 

according to the S-score and lDDT scores (Figure 4.19). All these strategies combined enable 

ModFOLD9 to provide the most reliable local prediction of 3D model quality out of all of the 

methods tested. 

Previous versions of ModFOLD sever have employed similar strategies, and here we build 

upon this approach through the integration of a wider range of high performing component 

scores resulting in much improved predictive performance. The integration of CDA scores, 

which were derived from deep learning-based contact prediction methods also helped to 

enhance overall performance. These methods allowed for the accurate prediction of the 

distance between amino acid pairs in a protein, thereby reflecting the evaluation of local 

accuracy in the quality of 3D models. In the following chapter, we will explore further objective 

evaluation of ModFOLD9 compared to previous versions of the method and other state-of-the 

art approaches, through real-world independent blind tests provided by the CAMEO project. 

Additionally, we will assess the efficacy of ModFOLD9 scores in accurately estimating our 

IntFOLD7 server models that were submitted during the CASP15 experiment. 
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Figure 4.19.  The performance of the MLP using different model quality input scores. The 

evaluation scores were computed for each protocol. A) Analysis of ModFOLD9 

performance with different quality scores based on the S-score. B) Analysis of ModFOLD9 

performance with different quality scores data based on lDDT. The evaluation measures are 

Pearson’s R and Spearman’s Rho correlation and ROC analysis. ModFOLD9_CDA_only 

refers to the consensus CDA score input. ModFOLD9_pure refers to the consensus CDA score 

with pure-single scores as input data. ModFOLD9_quasi refers to the combination of quasi-

single and pure-single scores with a consensus CDA score.

A 

B 



 
 

194 
 

 

 

 

 

 

 

 

 

 

 

Chapter 5 Benchmarking of ModFOLD9 and 

ModFOLDdock performance during the CASP15 

experiment and using the CAMEO resource 
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5.1 Background 

Independent benchmarking experiments allow us to objectively assess protein structure 

prediction methods to obtain data on their relative real-world performance. These tests help 

researchers in other fields, such as biomedical sciences and drug design discovery, to have 

critical insights into the application of appropriate computational tools. The CAMEO is a 

continuous experiment that offers resources to assess computational methods in different 

categories independently. The primary purpose of CAMEO is to test the validation of prediction 

algorithms of computational tools, ensuring their effectiveness and reliability. Furthermore, the 

CASP is a biennial experiment that provides the gold standard blind tests for protein prediction 

servers and standalone methods. The accuracy of prediction methodologies is assessed on 

unseen structure data, which will eventually be made public in the Protein Data Bank. The 

CASP community encourages developers to advance their prediction methods by evaluating 

the accuracy of their methods’ performance in various categories (Kryshtafovych, Schwede, et 

al., 2021; Robin et al., 2021).  

The application of contact prediction methods was apparent in various aspects of protein 

structure prediction pipelines. Contact maps were an essential step in the progress of many 

different approaches (Wu, Szilagyi and Zhang, 2011; Jumper et al., 2021a; McGuffin et al., 

2021; Ye et al., 2021; Roy et al., 2023). For instance, in our study, contact prediction was 

applied as one of the deriving scoring methods, the CDA pure-single method, which was used 

in ModFOLD9 to estimate the accuracy of local regions in 3D models. ModFOLD9 is then 

used as a self-estimate scoring method for assessing the quality of the IntFOLD7 server models 

and our manual CASP15 predictions from the McGuffin group (McGuffin et al., 2023). In 

addition, the CDA score was integrated into the ModFOLDdock scoring system. The 

ModFOLDdock server was designed by our group in order to estimate the quality of modelled 
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protein complexes (quaternary structures rather than tertiary structures) (Edmunds et al., 2023; 

McGuffin et al., 2023). The contribution of contact prediction for improving the protein 

prediction performance of our servers was evaluated in two real-test community-wide 

experiments: the CAMEO and the fifteenth experiment of Critical Assessment of protein 

Structure Prediction (CASP15).  

 

5.1.1 The CAMEO Quality Estimation (QE) Category 

Evaluating the accuracy of model quality is essential in protein structure prediction in order to 

produce the most reliable models. Quality estimates of 3D models are required to help us 

accurately distinguish between the high-quality and low-quality regions of models. The 

assessment of the relative performance of QE methods is an independent category in the 

CAMEO, which the prediction community uses to rank the methods. In this category, CAMEO 

aims to assess the predicted local quality performance of QE methods based on the predicted 

lDDT (plDDT) scores for these methods (Haas et al., 2019). The 3D models that were used to 

evaluate the QE methods are collected from the modelling servers in the CAMEO 3D structure 

prediction category every week. Each of the QE methods then evaluates these 3D models, and 

the plDDT scores from each QE method are generated. Subsequently, the observed lDDT 

scores are then taken once the native structures are available, and then they are compared with 

the plDDT scores to assess per-residue model quality prediction accuracy for each method. The 

lDDT scores range from 0 to 100, where lDDT > 60 are defined as well-modelled regions, 

while lDDT < 60 are defined as poorly modelled regions at the local level (Haas et al., 2019; 

Robin et al., 2021). 

ModFOLD9 has undergone continuous testing using the CAMEO resource over the past few 

years, since before the start of CASP15 and beyond. The results are published weekly on the 

CAMEO website based on the lDDT score using a cutoff of 60 to distinguish between high- 
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and low-quality residues in models. This evaluation resource assists us in examining 

ModFOLD9 assessment performance and identifying its strengths and weaknesses. In this 

regard, the CAMEO dataset was used to further analyse the performance of ModFOLD9 local 

model quality assessment. 

 

5.1.2 IntFOLD7 Method 

IntFOLD is a modelling server designed to predict protein tertiary structures and functions 

from given sequences, providing comprehensive 3D model predictive data to expert and non-

expert researchers. The IntFOLD server offers freely accessible high-quality 3D model data, 

including quality estimates, domain and disorder predictions, models of protein-ligand 

interactions, as well as the option of further refinement to models (McGuffin and Roche, 2011; 

Roche et al., 2011; Buenavista, Roche and McGuffin, 2012; McGuffin et al., 2015; McGuffin 

et al., 2019; McGuffin et al., 2023). The IntFOLD7 server is the most advanced version of 

IntFOLD to date, which features substantial advancements in its component methods compared 

to the previous versions. Notably, two advanced 3D modelling servers were integrated into the 

IntFOLD7 modelling program: trRosetta2 (Anishchenko et al., 2021) and LocalcolabFold 

(Mirdita et al., 2022) (a community fork of the AlphaFold2 program). Importantly, the update 

also included enhanced model quality estimations by integrating ModFOLD9 (McGuffin et al., 

2023). 

IntFOLD7 participated in two categories related to the CASP15 experiment: interdomain and 

regular modelling. IntFOLD7 demonstrated creditable performance in predicting 3D models 

of multidomain proteins, outperforming leading human predictor groups (McGuffin et al., 

2023). Furthermore, IntFOLD7 performed well when modelling regular proteins. As part of 

ModFOLD9's accuracy assessment, IntFOLD7's models were examined for further 

improvement. To explore how ModFOLD9 added to IntFOLD7’s accuracy self-estimates 
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(ASE) performance, here we present an analysis of the official CASP15 assessment data. 

 

5.1.3 ModFOLDdock Method 

In parallel to our ModFOLD9 server, which produces quality estimates for tertiary structure 

models, we have also developed the ModFOLDdock server, which produces quality estimates 

for quaternary structure models. Like ModFOLD9, ModFOLDdock uses a consensus approach 

to combine several quality scores from both single-model and clustering-based methods. The 

combination of various scores is integrated, which assesses the quality of modelled complexes 

in multiple aspects. Three variations of ModFOLDdock methods participated in CASP15: 

ModFOLDdock, ModFOLDdockR, and ModFOLDdockS. Each version estimated complex 

models with different goals focusing on different facets of the model quality estimation 

problem. Firstly, the ModFOLDdock variant was developed to generate predicted quality 

scores for models which would linearly correlate with the observed quality scores. In other 

words, the predicted and observed scores have a positive linear correlation, where the highest 

predictions reflect the more accurate the models. Secondly, the goal of the ModFOLDdockR 

variant is to produce predicted scores that allow us to rank the 3D models most accurately in 

the order of their observed quality. Finally, the ModFOLDdockS variant was developed as a 

quasi-single model method to evaluate models on an individual basis against a reference set of 

models predicted by the MultiFOLD method (Edmunds et al., 2023; McGuffin et al., 2023) 

The consensus scoring system of ModFOLDdock variants included seven individual scoring 

methods, both single-model and clustering-based. The methods were: ModFOLDIA, 

DockQJury, QSscoreJury, QSscoreOfficialJury, lDDTOfficialJury, voronota-js-voromqa, and 

the CDA score. The ModFOLDIA score was developed to assess the interface accuracy using 

a clustering approach. The DockQJury score was based on clustering DockQ scores that assess 

the docking models’ quality between proteins (Basu and Wallner, 2016). The QSscoreJury and 
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QSscoreOfficialJury scores were computed using the QS-scores clustering method (Biasini et 

al., 2013; Bertoni et al., 2017). The lDDTOfficialJury score was derived from clustering lDDT 

scores (Mariani et al., 2013). The voronota-js-voromqa score was a single-model method 

scoring the surface area of the interface, producing the Voronoi tessellation score (Olechnovič 

and Venclovas, 2014b). Finally, the CDA score was produced based on deep learning-based 

contact predictions (Maghrabi and McGuffin, 2017; McGuffin et al., 2018). The range of all 

scores was scaled between 0 and 1, where the higher scores indicate the high accuracy of 

models (Edmunds et al., 2023; McGuffin et al., 2023) 

 

The seven scoring methods were used as input scores in various combinations for all three 

versions of ModFOLDdock. The target scores for the CASP15 QA category for the evaluation 

of modelled complexes included the overall analogous “fold” score (the global quality of the 

entire complex), the overall interface quality score (the quality of the interacting residues as a 

whole) and the per-residue interface confidence scores. The global fold accuracy score of 

ModFOLDdock was the consensus of the DockQJury and IDDTOfficialJury scores, and the 

interface accuracy score was the combination of the DockQJury and QSscoreOfficialJury 

scores. The per-residue interface confidence scores were produced using ModFOLDIA alone. 

In ModFOLDdockR, the global scores were the mean of three scores: QSscoreJury, 

lDDTOfficialJury, and voronota-js-voromqa for the fold accuracy, and the mean of the 

DockQJury, QSscoreOfficialJury and voronota-js-voromqa scores for the interface accuracy. 

For per-residue interface confidence scores, in this case, the ModFOLDIA and local scores of 

voronota-js-voromqa were averaged for each residue in the model. Finally, the fold accuracy 

score of ModFOLDdockS was the mean of the DockQJury and lDDTOfficialJury scores, 

whereas the interface score was computed by averaging the DockQJury and 

QSscoreOfficialJury scores. The per-residue interface confidence score of ModFOLDdockS 
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was the mean of the ModFOLDIA, voronota-js-voromqa and CDA scores (Edmunds et al., 

2023). The CASP15 official assessment for the ModFOLDdockS server can be used to gauge 

how the CDA scores contributed towards the performance of quality estimation for modelled 

protein complexes. 

 

5.2 Aims and Objectives 

The main aim of this chapter is to examine the contribution of contact prediction in improving 

the predictive capabilities of IntFOLD7 via ModFOLD9 and in boosting the quality estimates 

of the ModFOLDdockS server based on real-world tests using the CASP15 and CAMEO data. 

The first objective is to evaluate IntFOLD7’s self-estimation accuracy based on the CASP15 

data for regular targets. To accomplish this, ModFOLD9’s plDDT scores, which measured the 

local quality of IntFOLD7’s models, were collected from this dataset for further analysis. 

IntFOLD7’s self-estimation accuracy was then compared with other modelling methods’ 

accuracy using the same CASP15 data. An additional comparison was performed based on the 

CASP15 official assessment of IntFOLD7 according to the global lDDT and ASE scores. The 

second objective is to assess ModFOLD9's performance in estimating the local accuracy of 

models from other modelling methods. ModFOLD9 was used to estimate the models predicted 

by three different groups during the CASP15 experiment. After that, a similar analysis was 

conducted on ModFOLD9’s plDDT scores for these group’s models. The third objective is to 

examine ModFOLD9’s local performance based on lDDT scores using the CAMEO common 

subset across varying time frames. This exercise was done in three ways. The first was to rank 

ModFOLD9's performance against independent server variants of its component methods. The 

second was to assess ModFOLD9's performance against the previous versions of ModFOLD. 

The third was to compare the ModFOLD9 local assessment with other top-ranked model 

quality methods. Lastly, for ModFOLDdockS, we aimed to analyse the accuracy of the per-
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residue interface confidence scores according to the observed local lDDT and CAD scores 

presented in the CASP15 official evaluation of QE methods.  

 

5.3 Methods 

5.3.1 Data Collection 

CAMEO data is generated every week to benchmark the QA methods, so ModFOLD9 was 

tested on CAMEO’s independent real-world data every week for >1 year. In our study, 

ModFOLD9’s predicted models were downloaded from the CAMEO website 

(https://www.cameo3d.org/quality-estimation/)  over different time frames: one month, three 

months, six months and one year. We focused on evaluating the lDDT scores of models 

assessed by ModFOLD9 to gauge its local assessment performance compared with other QA 

methods. To perform a fair comparison, the CAMEO data was pre-processed to generate a 

common subset, in which all compared methods had run on the same number of targets (see 

Table 5.1). Common subset analysis is unavailable for the QE category on the CAMEO 

website, so the data were downloaded and analysed in-house using bespoke Python3 and R 

scripts (the common subset code written in Python3 in Appendix 14, where the ROC analysis 

was conducted using R in Appendix15). Following this, the IDDT scores for all models 

predicted by each method were compiled into one file. Then, the ROC analysis was carried out 

to derive the ROC AUC and ROC AUC FPR <= 0.1 scores of lDDT scores for each method. 

The comparison between QA methods on ROC AUC and ROC AUC FPR <= 0.1 scores was 

conducted, ranking their local assessment accuracy using the lDDT local score cutoff at 60.  

 

ModFOLD9 performance was compared in three different ways on CAMEO common subset 

data. The first comparison was conducted to rank the ModFOLD9 local assessment accuracy 

against the established servers of its component methods. The second comparison was to 

https://www.cameo3d.org/quality-estimation/
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investigate how much ModFOLD9 improved by comparing it with its preceding versions. The 

last comparison was assessing the ModFOLD9 performances with three top-quality assessment 

methods. All comparisons were conducted based on the ROC AUC and ROC AUC FPR <= 0.1 

scores using the lDDT score cutoff at 60. 

  

Table 5.1. Common subsets from the CAMEO dataset over different time frames. Three 

comparisons were performed on the common subsets. The first comparison was to compare 

the local quality assessment of ModFOLD9 to that of the independent server variants of its 

component methods. The second comparison was to compare ModFOLD9's local assessment 

performance against ModFOLD's previous versions. The third comparison was ModFOLD9's 

performance in local assessment with the top-ranked quality assessment methods. 

 Common subset data 

Time frame First comparison Second comparison Third comparison 

One month 3376 models 830 models 1980 models 

Three months 10152 models 4370 models 4110 models 

Six months 21376 models 10360 models 10740 models 

One year 12856 models 7380 models 6850 models 

 

 

 

In the tertiary structure prediction category, CASP15 data was collected for 68 regular targets 

to assess ModFOLD9 performance through IntFOLD7. The predicted models and native 

structures of regular targets were obtained from the website 

(https://predictioncenter.org/casp15/index.cgi)—the analysis was conducted for two purposes. 

The first was to assess the self-estimation predictive performance of IntFOLD7 and compare 

it with other top-performing modelling methods. Here, the analysis was done on 68 targets and 

3352 models for ten modelling methods, including IntFOLD7. It should be noted that, despite 

https://predictioncenter.org/casp15/index.cgi
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the fact that the methods were supposed to predict five models for each target, the number of 

models was lower than 3400 (68*5*10 = 3400). This is because some methods analysed in this 

study predicted fewer than five models for some targets. The second purpose of the CASP15 

analysis was to assess the ModFOLD9 performance in estimating the quality of models from 

other groups. For this purpose, the analysis was conducted on 26 targets and 494 models for 

three groups: Elofsson group (af2-standard), Baker group (BAKER-SERVER) and Colabfold 

group (LocalcolabFold) (Detailed descriptions of the three groups' servers can be found in the 

abstracts of CASP15 https://predictioncenter.org/casp15/doc/CASP15_Abstracts.pdf ).  

The official assessment results of CASP15 targets have been collected from 

https://predictioncenter.org/casp15/index.cgi to show the performance of IntFOLD7 and 

ModFOLDdock methods on their two categories: regular targets modelling and the estimates 

of model accuracy (EMA), respectively. For IntFOLD7, the results were for 130 domains of 

43 regular targets. For ModFOLDdockS, the CASP15 official assessment results were for the 

individual residue confidence scores based on the 40 multimeric targets.  

 

 

5.3.2 CASP15 Assessment Metrics 

The tertiary structure prediction methods were evaluated according to different measures that 

assess their performance according to many aspects. These measures included the Global 

Distance Test - Total Score (GDT_TS), the Global Distance Test - High Accuracy (GDT_HA), 

the local Difference Distance Test (lDDT) and the Accuracy of Self-Estimate (ASE) (Pereira 

et al., 2021). The two latest measures were considered in our study. The local Difference 

Distance Test score was designed to compute the difference between the relative per-residue 

positions in predicted models and the corresponding relative per-residue positions in the 

reference structures (See Chapter 3).  

The accuracy of the self-estimate (ASE) score measured how accurate the modelling servers 

https://predictioncenter.org/casp15/doc/CASP15_Abstracts.pdf
https://predictioncenter.org/casp15/index.cgi
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are at estimating the error of each residue in their own models. The main aim of this measure 

was to assess the predictive quality estimation performance of each modelling server 

(Kryshtafovych, Monastyrskyy and Fidelis, 2016; Pereira et al., 2021). The ASE evaluation 

metric was first used in the assessors’ formula by the CASP12 assessors to emphasise the 

importance of accuracy self-estimates by modelling servers. In previous CASP experiments, 

predictors were asked to estimate the distances between their models' predicted residues and 

the corresponding residues in native structures according to a structural superposition. The S-

function formula was used to compute ASE as follows: 

𝑆(𝑑) =
1

1 + (
𝑑

𝑑0
)2  

 

Where d was normalised in the range 0 and 1. The S score averaged for the model and 

renormalised in range 0 and 100 by the formula: 

𝐴𝑆𝐸 = 100 𝑥(1 −
1

𝑁
∑|𝑆(𝑒𝑖)  −  𝑆(𝑑𝑖  )|

𝑁

𝑖=1

) 

Where di is the actual distance, ei is the predicted error, and d0 is a scaling factor set to 5. Thus, 

higher ASE scores reflect better accuracy in self-estimates (Pereira et al., 2021). In the recent 

CASP15 experiment, the assessors adapted the ASE formula to include the plDDT and lDDT 

scores as follows: 

𝐴𝑆𝐸 =  100 −  𝑀𝑒𝑎𝑛(|𝑝𝑙𝐷𝐷𝑇𝑖  −  𝑙𝐷𝐷𝑇𝑖|) 

Where plDDT is local per-residues error estimation from modelling servers. Both plDDT and 

lDDT scores range between 0 and 100.  

The CASP15 evaluation matrices for measuring the accuracy of interface residue confidence 

scores for modelled protein complexes were the PatchDockQ, PatchQS, lDDT and CAD 
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scores. Here, we presented the official assessment on lDDT and CAD as these scores are 

contact-based measurements. These scores scored the atom positions within specific model 

regions to determine their differences with the experimental structures (Kamisetty, 

Ovchinnikov and Baker, 2013; Mariani et al., 2013; Kryshtafovych et al., 2023). CAD score 

measured the differences between contact surface areas of the predicted residues in a model 

with their corresponding residue in the native experimental structure (Pereira et al., 2021) 

 

5.4 Results and Discussion 

5.4.1 Independent Benchmarking of Local Quality Estimations for ModFOLD9 with 

CAMEO Data 

ModFOLD9 and ModFOLD9_pure were evaluated for their local quality estimation 

performance based on per-residue lDDT scores with CAMEO common subset data. The ROC 

AUC and ROC AUC FPR <= 0.1 scores were calculated, based on the lDDT score < 60 cutoff, 

for ModFOLD9 and ModFOLD9_pure and their performance was compared with that of other 

QA methods. Three comparisons were conducted. We first compared ModFOLD9 (MF9) and 

ModFOLD9_pure (MF9_pure) against the QA servers that are components built into the MF9 

and MF9_pure pipelines. A second comparison was made between MF9 and MF9_pure against 

the three previous versions of ModFOLD9. Finally, the third comparison was with the top QA 

methods. Each comparison of the ModFOLD9 performance was made over four different time 

frames (one month, three months, six months, and one year) to examine improvements made 

over time with an increasing data set. 

 

ModFOLD9 and ModFOLD9_pure performed best against the component methods over all 

four periods, reaching ROC AUC score above 0.9 and ROC AUC FPR<= 0.1 score around 

0.07, as shown in Figures 5.1, 5.2 and Table S.6 in appendix 16. ModFOLD9 showed 
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significant improvement in local assessment accuracy when compared to the previous versions. 

When comparing ModFOLD9 with ModFOLD8, the ROC AUC score of ModFOLD9 is ~5 % 

higher, which indicates that local predictive assessment accuracy has been improved (Figure 

5.3, Table S.7 in appendix 17). At FPR <= 0.1, ROC AUC for ModFOLD9 was the highest 

among all ModFOLD versions (Figure 5.4 and Table S.7 in appendix 17). This indicates that 

the integration of consensus of CDA and other scores in ModFOLD9 had improved its ability 

to estimate local 3D model regions. As part of the MF9 upgrade, three deep-learning-based 

contact prediction methods have been added to exploit the benefits of distance and contact 

prediction methods in model quality assessment. Additionally, according to our CAMEO 

common data set analysis, ModFOLD9 was ranked as one of the leading individual methods 

in the world for assessing the local quality of 3D models (Figures 5.5, 5.6 and Table S.8 in 

appendix 18). ModFOLD9 achieved second place among QA methods for one month. In 

contrast, it achieved third and fourth positions during the other periods.  
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Figure 5.1. ROC curves compare the local assessment accuracy for ModFOLD9 

performance against independent servers based on its component methods based on ROC 

AUC scores (lDDT cutoff < 60) on common subset CAMEO data. Based on A) One month, 

B) Three months, C) Six months, and D) One year data. 
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Figure 5.2. ROC curves at False Positive Rate <= 0.1 compare the local assessment 

accuracy for ModFOLD9 performance against independent servers based on its 

component methods based on ROC AUC scores (lDDT cutoff < 60) on common subset 

CAMEO data. Based on A) One month, B) Three months, C) Six months, and D) One year 

data. 
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Figure 5.3. ROC curves compare the local assessment accuracy for ModFOLD9 

performance against its previous versions based on ROC AUC scores (lDDT cutoff < 60) 

on common subset CAMEO data. Based on A) One month, B) Three months, C) Six months, 

and D) One year data. 
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Figure 5.4. ROC curves at False Positive rate <= 0.1 compare the local assessment 

accuracy for ModFOLD9 performance against its previous versions based on ROC AUC 

FPR <= 0.1 scores (lDDT cutoff < 60) on common subset CAMEO data. Based on A) One 

month, B) Three months, C) Six months, and D) One year data. 



  Chapter 5 

211 
 

 

Figure 5.5.  ROC curves represent a comparison of the local assessment accuracy for five 

leading quality assessment methods based on ROC AUC score (lDDT cutoff < 60) on 

common subset CAMEO data. Based on A) One month, B) Three months, C) Six months, 

and D) One year data. 
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Figure 5.6.  ROC curves at False Positive rate <= 0.1 represent a comparison of the local 

assessment accuracy for five leading quality assessment methods based on ROC AUC 

FPR <= 0.1 score (lDDT cutoff < 60) on common subset CAMEO data. Based on A) One 

month, B) Three months, C) Six months, and D) One year data. 
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5.4.2 Independent Benchmarking of IntFOLD7 and ModFOLDdockS with CASP15 

Data 

5.4.2.1 IntFOLD7 Self-Estimation Prediction Performance 

The accuracy self-estimation scores for IntFOLD7 models are calculated using ModFOLD9. 

Thus, the ModFOLD9 local quality estimation performance can be measured in part from the 

official assessment results of CASP15 for IntFOLD7. The global lDDT and ASE scoring 

methods focused on evaluating the 3D modelling accuracy of a server and its own model 

quality estimates, respectively. Table 5.2 shows the CASP15 official assessment in the regular 

modelling category for ten modelling methods. IntFOLD7 performed relatively well based on 

average global lDDT scores. In the context of the average score of ASE for the first model and 

all models, IntFOLD7 demonstrated competitive performance compared to the other methods. 

These findings indicate that QA methods ModFOLD9 positively contribute to enhancing the 

predictive performance of IntFOLD7.  

A detailed analysis has been conducted on the per-residue scores for IntFOLD7 models to 

assess how ModFOLD9 performed on CASP15 at the local quality estimation level. The 

prediction data for regular targets (tertiary structures) were assessed according to the plDDT 

scores, as these scores represent the per-residue quality estimates for each 3D model. 

The evaluation analysis encompassed both ROC analysis and correlation analysis. The plDDT 

scores from each server were then compared with the observed lDDT scores of models 

compared to the native structures. We also evaluated the nine alternative modelling methods, 

of which four were the top-performing server groups based on the CASP15 z-score. Then, we 

compared IntFOLD7's self-estimation performance with each modelling server's. Initially, we 

compared it with all nine modelling methods and subsequently, for clarity, narrowed the 

comparison down to just the top four server groups.  
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Table 5.2. The official assessment results for 68 CASP15 regular targets and 3352 models 

from ten modelling servers. The scores are the averages of lDDT scores and ASE scores for 

ten modelling servers. The suffix “All” stands for all models, and “Model1” stands for just the 

first model for each target predicted by the modelling servers. The table is sorted by the average 

of ASE for the first model. The table adapted from 

https://predictioncenter.org/casp15/results.cgi?view=tables&target=T1104-

D1&model=1&groups_id= .  

Group Name 

Average 

Global 

lDDT_All 

Average 

ASE_All 

Average Global 

lDDT_Model1 

Average 

ASE_Model1 

UM-TBM 0.81 87.19 0.80 87.46 

DFolding-server 0.79 87.95 0.79 87.41 

NBIS-AF2-standard 0.79 88.78 0.78 87.21 

NBIS-AF2_multimer 0.79 87.20 0.77 87.11 

IntFOLD7 0.76 86.71 0.74 86.78 

RaptorX 0.80 88.11 0.79 86.58 

MULTICOM_refine 0.81 86.38 0.81 85.99 

ManiFold-E 0.78 82.74 0.79 84.68 

BAKER-SERVER 0.77 86.70 0.74 84.45 

Yang-Server 0.79 85.39 0.79 84.37 

 

 

ROC analysis reveals how accurate the modelling servers are in estimating the quality of their 

models, particularly at a local level. In other words, it answered the question about to what 

extent these methods are able to distinguish between correct and incorrect local regions of their 

own models. The results showed that all modelling servers perform well in predicting their 

local models’ accuracy, as suggested by their ROC AUC and ROC AUC FPR <= 0.1 scores 

(see Figures 5.7A and 5.7B). NBIS-AF2-standard was ranked as the best server in self-

estimation (ROC AUC= 0.94, ROC AUC (FPR<= 0.1) = 0.06), indicating its strength in local 

estimation. Despite this, Figures 5.7C and 5.7D show that IntFOLD7 scored higher (ROC AUC 

= 0.88, ROC AUC (FPR<= 0.1) = 0.039) than three other top-performing servers: 

MULTICOM_refine, Yang-Server, and ManiFold-E, suggesting that it may be better at 

estimating its own errors than these other servers (Table 5.3). Pearson’s R and Spearman’s Rho 

correlation analysis shows agreement with ROC analysis, where IntFOLD7 plDDT scores have 

https://predictioncenter.org/casp15/results.cgi?view=tables&target=T1104-D1&model=1&groups_id=
https://predictioncenter.org/casp15/results.cgi?view=tables&target=T1104-D1&model=1&groups_id=
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a high correlation with observed lDDT scores (Table 5.3). Furthermore, the scatter plots of 

IntFOLD7 self-estimate scores versus the observed accuracy scores show a strong linear 

relationship (Figure 5.8).  

The variation in performance raises the question of how confident the very best modelling 

servers are in assessing the local accuracy of their models. Some servers could generate high-

accuracy models globally but may struggle to evaluate their relative accuracy at the local level. 

To improve in areas where other servers may have limitations, IntFOLD7 utilises its own 

leading estimation server, ModFOLD9, to enhance the self-estimation performance. 

ModFOLD9 integrates six deep learning-based methods, which focus on predicting contact 

and distance distribution, which may assist us in selecting 3D models with more accurate 

contacts. 

  



  Chapter 5 

216 
 

 

Figure 5.7.  ROC curves compare the self-estimation accuracy for ten modelling methods 

on CASP15 regular targets based on the ROC AUC score (lDDT cutoff < 60). A) ROC 

AUC for ten modelling methods. B) ROC AUC FPR <= 0.1 for ten modelling methods. C) 

ROC AUC for IntFOLD7 against the top four performing modelling servers. D) ROC AUC 

FPR <= 0.1 for IntFOLD7 against the top four performing modelling servers. 
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Table 5.3. Correlation analysis for modelling methods on CASP15 data. Pearson’s R and 

Spearman’s Rho correlation coefficients measure the relationship between the predicted 

models and native structures based on plDDT scores. The table is sorted by Pearson’s R 

values. The top four modelling servers in terms of model quality are in bold. 

Group name 
Pearson’s R 

Spearman’s 

Rho 

ROC 

AUC 

ROC AUC 

FPR <=0.1 

NBIS-AF2-standard 0.87 0.78 0.94 0.060 

RaptorX 0.81 0.75 0.92 0.054 

NBIS-AF2-multimer 0.77 0.70 0.91 0.050 

DFolding-server 0.76 0.72 0.91 0.053 

BAKER-SERVER 0.75 0.76 0.90 0.056 

UM-TBM 0.75 0.66 0.89 0.038 

IntFOLD7 0.71 0.58 0.88 0.039 

MULTICOM_refine 0.61 0.54 0.84 0.033 

Yang-Server 0.55 0.66 0.84 0.039 

ManiFold-E 0.54 0.57 0.83 0.037 

 

 

 

  



  Chapter 5 

218 
 

 

Figure 5.8. Density scatter plots show the relationship between the plDDT and lDDT 

scores for IntFOLD7 and the top four modelling servers regarding model quality at 

CASP15.  
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5.4.2.2 ModFOLD9 Performance on Models from Other Groups 

ModFOLD9 is an independent quality assessment method which is designed to assess the 

quality of tertiary structure models produced by any 3D modelling method or server. During 

the CASP15 experiment, three alternative groups made their models publicly available to the 

community so we could evaluate their quality using ModFOLD9 before each target expired. 

These groups were the Elofsson group (af2-standard), the Baker group (BAKER-SERVER) 

and the Colabfold group (LocalcolabFold). Table 5.4 presents the evaluation results for three 

groups models on 26 CASP15 tertiary structure targets. The data show that the ModFOLD9 

plDDT scores strongly correlate with the observed lDDT scores when models are evaluated 

from each different group.  This demonstrates the ability of ModFOLD9 to accurately estimate 

the quality of models regardless of their source. In other words, ModFOLD9 should be able to 

provide a fair comparison of models from different sources without being biased by the 

modelling approach used. Additionally, ModFOLD9 uses different scoring methods, which 

could cover different aspects of models, which leads to a more orthogonally comprehensive 

assessment. Of course, one of the modelling aspects considered in ModFOLD9 is the 

assessment of the contact prediction between the model’s residues using consensus CDA scores 

derived from a set of deep-learning contact prediction methods, which enhanced its local 

assessment performance.  

Table 5.4. The evaluation analysis for ModFOLD9 local quality assessment of CASP15 

models for three modelling groups. Pearson’s R and Spearman’s Rho correlation coefficients 

measure the relationship between the predicted models and native structures based on plDDT 

scores. The table is sorted by Pearson’s R values.  

 

Group Pearson’s 

R 

Spearman’s 

Rho 

ROC 

AUR 

ROC AUC 

FPR =<0.1 

LocalcolabFold  0.86 0.63 0.95 0.055 

BAKER-SERVER 0.85 0.66 0.95 0.055 

af2-standard 0.84 0.64 0.94 0.054 
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5.4.2.3 ModFOLDdockS Prediction Performance 

The ModFOLDdockS server used a consensus of various scoring methods to assess the quality 

of multimeric protein models, one of which is the CDA score derived from contact prediction. 

By incorporating the predicted inter-residue contact accuracy assessment into the model using 

the CDA score, the system can better evaluate the quality of the interacting residues within 

protein complexes. Therefore, the inclusion of contact prediction can aid in estimating the 

reliability and accuracy of multimeric models. 

To demonstrate how contact prediction helps to improve the predictive assessment of 

ModFOLDdockS, the official assessment results of CASP15 data on individual residue 

confidence scores of QA methods are presented in Tables 5.5 and 5.6. The tables show the 

correlation and ROC analysis for two local scores, CAD and lDDT. The results demonstrated 

the accuracy of the per-residue assessment of the ModFOLDdockS server, where it ranked as 

the second top method based on the correlation and ROC AUC of CAD. In agreement with 

these results, evaluating the lDDT score revealed that ModFOLDdockS ranked as the third top-

performing method among other QA methods. 
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Table 5.5. The official CASP15 assessment results of quality estimation methods for 

modelled protein complexes. The evaluation metrics are Pearson’s R (Pears_LDDT) and 

Spearman’s Rho (Spear_LDDT) correlations and ROC (AUC_LDDT) analysis for LDDT 

scores. The table is derived from https://predictioncenter.org/casp15/qa_local.cgi.  

  

Group GR# Pears_LDDT Spear_LDDT AUC_LDDT 

 GuijunLab-RocketX 89 0.564 0.535 0.755 

 ModFOLDdockR 266 0.476 0.433 0.681 

 ModFOLDdockS 83 0.455 0.416 0.674 

 VoroIF 121 0.333 0.339 0.664 

 Venclovas 494 0.332 0.338 0.664 

 FoldEver 245 0.277 0.279 0.625 

 ModFOLDdock 41 0.243 0.227 0.584 

 APOLLO 168 0.192 0.213 0.565 

 Manifold 248 0.180 0.176 0.542 

 MULTICOM_deep 158 0.091 0.094 0.538 

 DLA-Ranker 101 0.100 0.112 0.529 

 MASS 468 0.151 0.172 0.527 

 LAW 426 0.169 0.168 0.525 

 

 

 

Table 5.6. The official CASP15 assessment results of quality estimation methods for 

modelled protein complexes. The evaluation metrics are Pearson’s R (Pears_CAD) and 

Spearman’s Rho (Spear_CAD) correlations and ROC (AUC_CAD) analysis for CAD scores. 

The table is derived from https://predictioncenter.org/casp15/qa_local.cgi. 

  

Group GR# Pears_CAD Spear_CAD AUC_CAD 

GuijunLab-RocketX 89 0.505 0.456 0.714 

ModFOLDdockS 83 0.420 0.379 0.660 

ModFOLDdockR 266 0.411 0.369 0.651 

VoroIF 121 0.272 0.271 0.619 

Venclovas 494 0.271 0.271 0.619 

FoldEver 245 0.217 0.194 0.583 

ModFOLDdock 41 0.209 0.200 0.572 

APOLLO 168 0.156 0.159 0.549 

MULTICOM_deep 158 0.082 0.091 0.534 

Manifold 248 0.153 0.149 0.529 

DLA-Ranker 101 0.093 0.095 0.526 

MASS 468 0.141 0.152 0.521 

LAW 426 0.143 0.133 0.513 

https://predictioncenter.org/casp15/qa_local.cgi
https://predictioncenter.org/casp15/qa_local.cgi
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5.5 Conclusion 

Contact prediction has had an impact on the prediction performance of our servers in different 

aspects. It helped to enhance the accuracy of the ModFOLD9 local quality estimations for 

tertiary structure models from any source, the self-estimation performance of IntFOLD7 and 

the performance of the ModFOLDdockS interface residue quality estimates for quaternary 

structure models. We tested our servers using the two “gold standard” independent blind testing 

experiments, CAMEO and CASP15. The CAMEO results demonstrated the improved accuracy 

of the ModFOLD9 local quality assessment. Using the CASP15 data, we evaluated how 

accurately ModFOLD9 estimated the prediction performance of IntFOLD7 and other groups. 

We also presented the CASP15 official assessment in two categories: regular modelling and 

EMA (Estimation of Model Accuracy) to demonstrate the performance of IntFOLD7 and 

ModFOLDdockS, respectively. Thus, it is essential to note that the contact prediction-based 

methods developed in the previous chapters are integral components of our prediction tools, 

contributing to three key areas: local model quality estimates for tertiary structure predictions, 

accuracy self-estimates for modelling tertiary structures and model quality estimation for 

predicted protein complexes.    
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6.1 Synopsis of thesis 

6.1.1 Consensus-based Approaches to Improving Deep Learning-based Contact 

Prediction Methods 

The consensus approach showed promising potential for boosting the accuracy of protein 

structure prediction tools. Our study tested the benefits of the consensus approach for 

improving contact prediction accuracy. We chose the consensus approach because it provides 

confident results, reduces errors in prediction data, and obtains accurate outcomes by 

combining the strengths of various methods. Such approaches work well because there are 

often many ways of being wrong but fewer ways of being correct, so by combining methods, 

we are more likely to find the correct solution. As a simple example, suppose one tool predicted 

an incorrect contact between two residues while the other tools did not predict that they were 

in contact. In that case, the consensus prediction gives the majority agreement of results 

between the tools, decreasing the overall FPR. As such, consensus-based approaches can help 

enhance prediction accuracy beyond individual deep learning-based contact predictions. 

Deep learning-based contact prediction methods use different approaches, often leading to 

variation in the contact map predictions for each protein target. To increase our confidence in 

contact prediction, in Chapter 2, we designed two consensus approaches simply using the mean 

scores to combine the top-performing contact prediction methods in CASP13 and CASP14. 

The first approach was to average the contact scores predicted by two of the three contact 

prediction methods. This approach produced three consensus methods: Consensus A, B, and 

C. The second approach was to compute the mean score of three contact prediction methods, 

producing the Cons3 method. The predictions from the consensus-based methods were 

compared with the individual methods using CASP13 evaluation metrics: precision, recall, f1-

score, and PR curve analysis. Additionally, the ConEVA tool was used to further analyse the 

consensus-based methods. 



  Chapter 6 

225 
 

The contact prediction accuracy of consensus-based methods varied depending on the 

individual methods combined. For instance, when TripletRes (Li et al., 2021a) and trRosetta 

(Yang et al., 2020) were combined in the ConsA approach, the accuracy of L/5 long-range 

contacts for FM domains increased by 3.2 % of the mean precision. Furthermore, a significant 

improvement was achieved by combining the three CASP13 top-performing methods in Cons3, 

increasing the accuracy of L/5 long-range contacts for FM domains by 10.5 % of the mean 

precision. The consensus prediction accuracy also achieved 77 % on both full chains and their 

domains in CASP14. However, other consensus-based contact prediction methods, such as 

Consensus C, have highlighted a drawback of using the simple mean score in consensus-based 

contact prediction. The Consensus C approach resulted in a reduction in accuracy when the 

predictions of two individual methods, which were trRosetta and DeepDist2 (Guo et al., 2021), 

were combined. This issue may concern selecting similar deep learning-based contact 

prediction methods for consensus. In other words, if the individual methods predicted similarly 

inaccurate contact data, combining their predictions may conflate the false positives rather than 

reduce them. Thus, choosing accurate and orthogonal methods is essential when considering 

consensus approaches. Overall, our simple consensus approach has been shown to enhance 

contact prediction accuracy, which we tested using two different datasets (CASP13 and 

CASP14) with eight combinations of 6 alternative individual methods. 
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6.1.2 Developing a consensus of Contact Distance Agreement (CDA) Scores for 

Estimating Local Model Quality 

Following the recent advances in protein tertiary structure prediction, Chapter 3 focused on the 

application of consensus deep learning-based contact prediction methods for the improvement 

of local model quality assessment. With the emergence of methods, such as AphaFold2, which 

can predict 3D models that are much closer to the native structures, the identification of the 

local errors in such high-accuracy models represented a new challenge for QE methods. The 

earlier versions of ModFOLD have previously integrated contact prediction methods, boosting 

the performance of local assessment. The ModFOLD6 (Maghrabi and McGuffin, 2017; 

Elofsson et al., 2018), ModFOLD7 (Cheng et al., 2019; Maghrabi and McGuffin, 2020) and 

ModFOLD8 (McGuffin et al., 2021) methods were among the top-performing quality 

estimation methods in CASP12, CASP13 and CASP14 respectively. 

In this study, we investigated the use of the six deep learning-based contact prediction methods: 

TripletRes (Li et al., 2021a), trRosetta2 (Anishchenko et al., 2021) and DeepDist (Wu et al., 

2021), DeepMetaPSICOV (Kandathil, Greener and Jones, 2019), SPOT-Contact (Hanson et 

al., 2018), and MetaPSICOV (Jones et al., 2015), to develop a consensus CDA score for each 

residue in a model. These methods formed the basis for six individual CDA scores to predict 

local quality scores. Unlike the previous study, we employed an MLP neural network to 

combine the individual CDA scores in this chapter. Using the MLP neural network allows us 

to establish the optimal weightings for combining the multiple scores in order to improve 

predictive performance. Two versions of the MLP were designed to combine the six CDA 

scores, each trained to predict one of two target functions, the S-score and the lDDT scores. 

The tuning of MLP hyper-parameters was conducted in this study in order to optimise 

ModFOLD9 performance. The MLP versions were trained and initially cross-validated using 

the CASP14 dataset. To gauge the effectiveness of the Consensus CDA approach, we conducted 

both correlation and ROC analysis to evaluate the performance of local model quality 
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assessment against each of the component CDA methods and VoroMQA, a leading pure-single 

model quality assessment method.  

The consensus approach increased the local assessment accuracy compared to individual 

scoring methods. The correlation scores showed that the relationship between the predicted 

lDDT and the observed lDDT scores reached above 0.60. Additionally, ROC analysis indicated 

the consensus approach as having the best performance in terms of local model quality 

estimates according to the lDDT ROC AUC score (~0.80), outperforming the individual 

methods and VoroMQA. These findings demonstrate the improvement in local assessment 

performance gained by integrating deep learning-based contact prediction methods. It is worth 

mentioning that the fine-tuning MLP enhanced the performance in predicting the local quality 

scores. Hence, the MLP is an essential step in implementing the consensus algorithm to 

incorporate contact prediction information and raise the accuracy of the local quality 

assessment for integration with ModFOLD9. 

 

6.1.3 Developing Consensus Quality Assessment Methods for ModFOLD9 

Developing the consensus CDA score improved the local assessment accuracy for integration 

with ModFOLD9. This success highlighted the usefulness of consensus algorithms in 

enhancing the model quality estimation accuracy. Here, the study focused on further 

development in the local quality estimation of ModFOLD9 by integrating quality scores from 

additional alternative methods. These methods employed different approaches to score specific 

aspects of the model. Hence, using the quality methods individually could favour different 

aspects of 3D model quality and lead to skewed performance or biased predicted scores. 

Combining scores in ModFOLD9 allows for a more orthogonal assessment of features of the 

3D model, making for a more balanced, consistent, and comprehensive score.  
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In Chapter 4, we introduced two types of quality scoring methods to develop our consensus 

scores: the pure-single and quasi-single model quality scoring methods. Our experiment was 

performed in two stages. The first stage was to combine the six CDA scores with quality scores 

derived from nine pure-single model methods, generating a total of 15 pure-single model 

quality scores. The second stage was to merge the 15 pure single model quality scores with 

four quasi-single model scores. In each step, again, we used two versions of MLP to combine 

the scores and trained them to predict either the S-score or the lDDT score. To optimise the 

MLP predictive performance, we implemented fine-tuning in the two stages. We assessed the 

consensus quality scores' performance in improving the accuracy of ModFOLD9 local quality 

assessment against the established methods, using a similar evaluation to the one used in 

Chapter 3. 

The consensus of different quality scoring methods boosted the accuracy of ModFOLD9’s local 

model quality assessment. In comparison with the consensus CDA approach result for lDDT 

score (correlation scores = 0.61), the finding shows that the improvement in the first stage of 

the combination increased the correlation scores by approximately 16 %, bringing it above 

0.76. In contrast, the second combination stage increased them by at least 19 % to 0.80. In 

addition, the ROC analysis revealed that the accuracy of local assessment based on lDDT score 

in two stages was improved by more than 8 % and 9 % (ROC AUC for ModFOLD9_pure = 

0.876, ROC AUC score for ModFOLD9_quasi = 0.891) compared with the previous Consensus 

CDA approach (lDDT ROC AUC score = 0.794). Again, optimising the MLP hyper-parameters 

enhanced the training, increasing the predictive performance when using the mode of extensive 

input data. ModFOLD9 outperformed all individual methods based on evaluation scores, 

underlining the effectiveness of the consensus approaches in increasing predictive assessment 

accuracy.   
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 6.1.4 ModFOLD9 and ModFOLDdock Performance Benchmarking during the 

CASP15 Experiment and using the CAMEO Resource 

The consensus algorithm and contact prediction data were exploited to improve our servers' 

predictive capabilities, which were benchmarked using the CAMEO resource and during the 

CASP15 experiment. In Chapter 5, we analysed the improved servers' performance using the 

data obtained from these two independent blind tests. We conducted the evaluation analyses 

using these datasets to identify the extent of the improvement gained due to these 

enhancements. Specifically, we observed enhanced performance in our servers, including 

IntFOLD7 server accuracy self-estimates, the ModFOLD9 local model quality assessment, and 

our new ModFOLDdockS method for interface residue accuracy scoring in multimeric models. 

The CAMEO data findings revealed that the local assessment accuracy for ModFOLD9 

outperformed those for established individual methods as well as the previous versions of 

ModFOLD. Furthermore, ModFOLD9 ranked as one of the leading QA methods overall 

according to lDDT score.  

ModFOLD9 was used to generate the accuracy self-estimates for the IntFOLD7 models in 

CASP15. Analysing the official scores for IntFOLD7's models showed that ModFOLD9 

successfully predicted the local errors in regular targets. Furthermore, the CASP15 official 

evaluation demonstrated that InFOLD7 achieved high performance in predicting the errors in 

its models for interdomain targets. Such findings affirmed the positive contribution of 

ModFOLD9 in enhancing the predictive accuracy of IntFOLD7. In addition, ModFOLD9 

accurately assessed other groups' models for the CASP15 target, assuring it can be trusted as 

an independent quality estimation method for use with models produced by any state-of-the-

art pipeline. Finally, the ModFOLDdockS method, which integrates the CDA score, achieved 

the highest global lDDT and CAD scores overall based on the official CASP15 assessment. 

  



  Chapter 6 

230 
 

6.2 Conclusions  

The objective of this study was to investigate the use of consensus contact prediction for 

enhancing protein structure prediction tools and improving the accuracy of 3D models. 

Initially, the study aimed to enhance the accuracy of deep learning-based contact prediction 

methods through consensus approaches in Chapter 2. We achieved improved predictive 

accuracy of contact prediction using the simple mean score consensus approach. However, we 

demonstrated that this simple approach was sub-optimal and could lead to decreased accuracy 

in some instances. Therefore, we applied a more advanced algorithm using neural networks to 

implement an optimal weighting of consensus contact prediction scores in the form of CDA 

scores, which could be used in our ModFOLD9 model quality estimation method. This more 

advanced consensus approach improved the local model quality assessment accuracy, as 

described in Chapter 3. To improve the accuracy further, we explored the usefulness of 

consensus approaches using neural networks by adding various model scoring quality methods 

along with the consensus of CDA scores. This approach increased the local assessment 

accuracy, leading to higher performance for ModFOLD9, as outlined in Chapter 4. The success 

of ModFOLD9 encouraged us to use it for our IntFOLD7 model accuracy self-estimates in 

CASP15. Furthermore, we applied a CDA score based on contact prediction in our 

ModFOLDdockS scoring pipeline to estimate the accuracy of interface residues in modelled 

protein complexes. These advancements were independently blind tested using CASP15 and 

CAMEO data, which are the gold-standard benchmarks of the field (see Chapter 5). 
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6.3 Future Directions 

While discussing the effectiveness of contact prediction and consensus algorithms in enhancing 

the predictive performance of our servers, our study has highlighted the significant role of the 

consensus approach using neural networks (multiple-layer perceptron) in ModFOLD9, which 

integrates independent scoring methods for assessing the quality of 3D models of proteins. Our 

results show that neural networks can capture the complex relationship of different independent 

model quality assessment measures, leading to a more reliable overall model quality score. 

Following the success of the NN approach used in ModFOLD9, we plan to apply a similar 

multiple-layer perceptron in the related context of assessing the quality of interface residues in 

quaternary structure models rather than the simple mean score approach currently used in the 

ModFOLDdock variants. We expect this approach will lead to improved prediction 

performance. 

The development of accurate contact prediction methods has impacted the predictive 

performance of protein structure prediction techniques, as shown in our study. Future research 

should be conducted to gauge the impact of protein contact prediction in enhancing protein 

function prediction methods, such as protein ligand-binding site modelling methods. One of 

our projects, FunFOLD, was designed based on the hypothesis that if two proteins have a 

similar structure, they will have similar functions and binding sites. Based on this premise, 

FunFOLD is a structural-based method intended to predict the ligand-binding site in a 3D 

model. The prediction process in FunFOLD starts by measuring the similarity between the 3D 

model and template structures with known binding sites using the TMalign method. If the 

model and templates have a similar structure according to TMalign, then FunFOLD will predict 

the same binding sites in the model based on those of the templates (Roche, Tetchner and 

McGuffin, 2011; Roche, Buenavista and McGuffin, 2013). Integrating binding site contact 
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prediction data could help FunFOLD to gain a more detailed view of the spatial arrangement 

of ligand binding residues in a 3D model, assisting in both model selection and the comparison 

with equivalent sites in known structures. Therefore, binding site contact information may help 

to boost the predictive accuracy of future versions of FunFOLD. 
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Appendix 1 

 

Consensus Code  

#!/usr/bin/env python3 

 

import sys 

import numpy as np 

import pandas as pd 

from itertools import chain, repeat 

import json 

import math 

import recordlinkage 

import os.path 

 

 

 

#Read native protein data (long type) 

def NativeD(filename1):  

    with open(filename1) as f: 

        df = json.load(f)  

    chainer = chain.from_iterable 

    NATIVE = pd.DataFrame({'R1': list(chainer(repeat(k, len(v)) for k, v in 

df.items())), 'R2' : list (chainer(df.values()))}) 

    NATIVE['R1'] = NATIVE['R1'].astype(int) 

    NATIVE['R2']= NATIVE['R2'].astype(int) 

    NATIVE['true_class']= (NATIVE['R2'] != 0).astype(int) 

    #save residue pairs of native data in new dataframe for evaluation 

process: 

    NL=NATIVE[['R1', 'R2']] 

     

    #comput the number of native contacts for evaluation process: 

    Nc= [] 

    for index, row in NATIVE.iterrows(): 

        if row['R1'] > row['R2']: 

            if (row['R1']-row['R2']) >= 24: 

                Nc.append(row ['R2']) 

            else: 

                pass 

        else: 

            pass 

     

    return (NATIVE, NL, Nc) 

 

 

#recall native data  

 

Native_data = NativeD(sys.argv[1]) 

 

native = Native_data[0] #native data 

RR_native = Native_data[1] # residue pairs 

Nc_N = len(Native_data[2]) # the number of native contacts 

print(Nc_N) 
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# A function to read and extract prediction data of individual methods: 

 

def subset(filename): 

    with open(filename, 'r') as f: 

        df1 = json.load(f) 

        for k in df1.values():# Extracting data and save as dataframe: 

            key = [k] 

            for j in key: 

                values=[j]  

                S =list(values[0].values()) 

        L_10 = S[0] # top10 set 

        L_5= S[1]   # L/5 set 

        L_2= S[2]   # L/2 set 

        FL_0 = S[3] # FL set  

        L_0 = S[4]  # L set 

 

        # save the subsets as dataframes: 

 

        L10 =pd.DataFrame(L_10, columns=['R1', 'R2', 'P'], dtype = int) # 

top 10 of predicted contact 

        L5 = pd.DataFrame(L_5, columns=['R1', 'R2', 'P'], dtype= int)   # 

L/5 set 

        L2 = pd.DataFrame(L_2, columns=['R1', 'R2', 'P'], dtype = int)  # 

L/2 set 

        L = pd.DataFrame(L_0, columns=['R1', 'R2', 'P'], dtype= int)    # L 

set 

        FL = pd.DataFrame(FL_0, columns=['R1', 'R2', 'P'], dtype = int) # 

Full list 

 

        # convert all numbers of residues pairs from string to integer:  

 

        L10['R2']= L10['R2'].astype(int) 

        L10['R1'] = L10['R1'].astype(int) 

        L10['P'] = L10['P'].astype(float) 

        L5['R2']= L5['R2'].astype(int) 

        L5['R1'] = L5['R1'].astype(int) 

        L5['P']= L5['P'].astype(float) 

        L2['R2']= L2['R2'].astype(int) 

        L2['R1'] = L2['R1'].astype(int) 

        L2['P']= L2['P'].astype(float) 

        L['R2']= L['R2'].astype(int) 

        L['R1'] = L['R1'].astype(int) 

        L['P']= L['P'].astype(float) 

        FL['R2']= FL['R2'].astype(int) 

        FL['R1'] = FL['R1'].astype(int) 

        FL['P'] = FL['P'].astype(float) 

         

        return (L10, L5, L2, L, FL) 

 

 

 

 

# building a function for classifying consensus data into subsets (top10, 

L/5, L/2, L, FL): 

def sets(length, data, p_value): 
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    for x in range(length): 

        if x == 10: 

            Top10=(data.nlargest(x, p_value)) 

            Top10= Top10.astype(str).values.tolist() 

            L10 =pd.DataFrame(Top10, columns=['R1', 'R2', 'ConsP'], dtype = 

int) # top 10 of predicted contact 

            L10['R1']= L10['R1'].astype(int) 

            L10['R2'] = L10['R2'].astype(int) 

            L10['ConsP']= L10['ConsP'].astype(float) 

             

        elif x == math.ceil(length/5): 

            L_5= (data.nlargest(x, p_value)) 

            L_5 = L_5.astype(str).values.tolist() 

            L5 = pd.DataFrame(L_5, columns=['R1', 'R2', 'ConsP'], dtype= 

int)   # L/5 set 

            L5['R1']= L5['R1'].astype(int) 

            L5['R2'] = L5['R2'].astype(int) 

            L5['ConsP']= L5['ConsP'].astype(float) 

 

 

        elif x == math.ceil(length/2): 

            L_2 = (data.nlargest(x, p_value)) 

            L_2 =L_2.astype(str).values.tolist()  

            L2 = pd.DataFrame(L_2, columns=['R1', 'R2', 'ConsP'], dtype = 

int)  # L/2 set 

            L2['R1']= L2['R1'].astype(int) 

            L2['R2'] = L2['R2'].astype(int) 

            L2['ConsP']= L2['ConsP'].astype(float) 

 

        else: 

            L_1 = (data.nlargest(length, p_value)) 

            L_1 = L_1.astype(str).values.tolist() 

            L = pd.DataFrame(L_1, columns=['R1', 'R2', 'ConsP'], dtype= 

int)    # L set 

            L['R1']= L['R1'].astype(int) 

            L['R2'] = L['R2'].astype(int) 

            L['ConsP']= L['ConsP'].astype(float) 

 

 

              

            FL_0=data.astype(str).values.tolist() 

            FL = pd.DataFrame(FL_0, columns=['R1', 'R2', 'ConsP'], dtype = 

int) # Full list 

            FL['R1']= FL['R1'].astype(int) 

            FL['R2'] = FL['R2'].astype(int) 

            FL['ConsP'] = FL['ConsP'].astype(float) 

            FL = FL.drop_duplicates(subset=['R1', 'R2'], keep ='first') 

    return (L10, L5, L2, L, FL)  

 

#Building function that computing scores of evaluation measurements: 

def Scores(experD, predD, class1, class2, v): 

    # experD is the native contact data 

    # predD is the prediction contact data 

    # class1 is the positive cases in prediction data (contacts) 

    # class 2 is the true cases in native data 

    # v is the number of all contacts in  native data 

    #save the native and prediction dataframe with multiindex (R1, R2): 
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    native =pd.MultiIndex.from_frame(experD, names=('R1', 'R2')) 

    pred =pd.MultiIndex.from_frame(predD, names=('R1', 'R2')) 

 

    # compute confusion matrix using recordlinkage package: 

 

    Conf= recordlinkage.confusion_matrix(native, pred) 

     

    # count TP and FP from confusion matrix 

    TP= Conf[0][0] 

    FP= Conf[1][0] 

     

    #count TN and FN according to the true cases of native and against to 

positive and negative cases of prediction data, where class1 = 0 represent 

negative cases (non-contact) and class1 = 1 represent positive cases 

(contact): 

    TN = np.sum(np.logical_and(class1 == 0, class2 == 0)) 

    FN = np.sum(np.logical_and(class1 == 1, class2 == 0)) 

        

 

    # calculate precision, recall and f1_score:    

    if TP != 0: 

        Precision =recordlinkage.precision(native, pred) 

        Recall = (TP/v) 

        f1_score= 2* Precision * Recall/(Precision + Recall) 

                    

    else:  

        Precision =0 

        Recall = 0 

        f1_score = 0 

     

    # save the scores as list:        

    scores=[TP, FP, FN, TN, Precision*100, Recall*100, f1_score*100]           

    return scores 

 

     

  

 

# build a function to apply consensus method:  

 

#Consensus two methods:  

 

def Cons2(d, d1):  

    #first: merge the input data into one dataframe:  

    # d, d1 represent the input data:  

  

    data= pd.merge(d, d1, on=['R1', 'R2'], how='outer')  

    

   #padding p_value into zero and covert its type to float:  

    data['P_x'].fillna(0, inplace = True)  

    data['P_y'].fillna(0, inplace = True)  

    data['P_x'] = data['P_x'].astype(float)  

    data['P_y']= data['P_y'].astype(float)  

    

   #Second: Consensus prediction:  

    #calculating mean of probabilities for each residue pairs from two data  

    data['ConsP'] = data[['P_x', 'P_y']].mean(axis=1)  
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    data['ConsP'].fillna(0, inplace = True)  

    pd.options.display.float_format = '{:.3f}'.format # display consensus 

p_value as 3 digits  

     

    #convert type of residue pairs into intger  

    data['R1'] = data['R1'].astype(int)  

    data['R2']= data['R2'].astype(int)  

     

    #save consensus data into a new dataframe  

    ConsD= data[['R1', 'R2', 'ConsP']]  

    return ConsD  

     

 

 

#Consensus three methods:  

 

def Cons3(d, d1, d2):  

 

    #first merge the input data into one datafram:  

    # d, d1, d2 represent the input data:  

 

    dfs=[d, d1, d2]  

    df =pd.merge(dfs[0], dfs[1], on=['R1','R2'], how='outer')  

 

    for d in dfs[2:]:  

        data=pd.merge(df, d, on=['R1','R2'], how='outer')  

 

 

    # padding p_value into zero and covert its type to float:  

    data['P_x'].fillna(0, inplace = True)  

    data['P_y'].fillna(0, inplace = True)  

    data['P'].fillna(0, inplace = True)  

    data['P_x'] = data['P_x'].astype(float)  

    data['P_y']= data['P_y'].astype(float)  

    data['P']= data['P'].astype(float)  

 

 

    #Consensus prediction:  

    # calculating mean of probabilities for each residue pairs from three 

data   

    data['ConsP'] = data[['P_x', 'P_y', 'P']].mean(axis=1)  

 

    #padding consensus p_value into zero and convert its type to float  

    data['ConsP'].fillna(0, inplace = True)  

    pd.options.display.float_format = '{:.3f}'.format # display consensus 

p_value as 3 digits  

 

 

    # convert type of residue pairs into intger  

    data['R1'] = data['R1'].astype(int)  

    data['R2']= data['R2'].astype(int)  

 

    #save consensus data into a new dataframe  

    ConsD= data[['R1', 'R2', 'ConsP']]  

    return ConsD  
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def main(argv): 

    # reading input data and save them as dataframes: 

    input1= subset(sys.argv[2]) 

    input2 = subset(sys.argv[3])  

    input3= subset(sys.argv[4])  

     

     

    # Appling consensus method :  

    Cons2A = Cons2(input1[4], input2[4])  

    Cons2B = Cons2(input1[4], input3[4])  

    Cons2C = Cons2(input2[4],input3[4])  

    Cons3M = Cons3(input1[4], input2[4], input3[4])  

     

     

    # Categrizing consensus data into subsets(Top10, L/5, L/2, L, FL): 

    # This step was repeated for each consensus method: 

    # the fifth argument in command line will be the sequence length: 

 

    sets1 = sets(int(sys.argv[5]), Cons3M, 'ConsP') 

 

    # Top10 

 

    Pred_top10 = sets1[0] 

    top10= Pred_top10[['R1', 'R2']] 

 

    # L/5 set 

    Pred_L5= sets1[1] 

    L5= Pred_L5[['R1', 'R2']] 

 

    # L/2 set: 

    Pred_L2 =sets1[2] 

    L2 = Pred_L2[['R1', 'R2']] 

 

 

    # L set: 

    Pred_L = sets1[3] 

    L = Pred_L[['R1', 'R2']] 

 

    #FL set: 

    Pred_FL = sets1[4] 

    FL= Pred_FL[['R1', 'R2']] 

 

     

    #save prediction data as rr format file for ConEva tool:  

 

    #Cons2A  

    Cons2A['D_min'] ='0'  

    Cons2A['D_max']= '8'  

    Cons2A=Cons2A[['R1', 'R2', 'D_min', 'D_max', 'ConsP']]  

 

 

    dirA= 'file path'  

    fileA='{}.rr'.format(str(sys.argv[6]))  

    file_path_A=os.path.join(dirA, fileA)  

 

    with open(file_path_A, 'w') as fa:  

        fa.write(Cons2A.to_string(header = False, index= False))  
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    #Cons2B  

    Cons2B['D_min'] ='0'  

    Cons2B['D_max']= '8'  

    Cons2B=Cons2B[['R1', 'R2', 'D_min', 'D_max', 'ConsP']]  

 

    dirB= 'file path'  

    fileB='{}.rr'.format(str(sys.argv[6]))  

    file_path_B=os.path.join(dirB, fileB)  

 

    with open(file_path_B, 'w') as fb:  

        fb.write(Cons2B.to_string(header = False, index= False))  

 

    #Cons2C:  

 

    Cons2C['D_min'] ='0'  

    Cons2C['D_max']= '8'  

    Cons2C=Cons2C[['R1', 'R2', 'D_min', 'D_max', 'ConsP']]  

 

    dirC= 'file path'  

    fileC='{}.rr'.format(str(sys.argv[6]))  

    file_path_C=os.path.join(dirC, fileC)  

 

    with open(file_path_C, 'w') as fc:  

        fc.write(Cons2C.to_string(header = False, index= False))  

 

 

    #Cons3:  

    Cons3M['D_min'] ='0'  

    Cons3M['D_max']= '8'  

    Cons3M=Cons3M[['R1', 'R2', 'D_min', 'D_max', 'ConsP']]  

 

    dir3M= 'file path'  

    file3M='{}.rr'.format(str(sys.argv[6]))  

    file_path_3M=os.path.join(dir3M, file3M)  

 

    with open(file_path_3M, 'w') as f3m:  

        f3m.write(Cons3M.to_string(header = False, index= False))  

 

 

 

     

 # Third step: 

    # Evaluation measures (Precision, Recall, F1_measure): 

    # A- merge native contact data with predicted data based on the residue 

pairs of both data for compraison: 

     

 

    # native contact with top 10 set of predicted contact data: 

    F0= pd.merge(native, Pred_top10, on= ['R1', 'R2'], how='right' ) 

     

             

    F0['R2'].fillna(0, inplace = True) 

    F0['R2'] = F0['R2'].astype(int) 

    F0['ConsP'].fillna(0, inplace = True) 
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    F0['ConsP'] = F0['ConsP'].astype(float) 

    F0['true_class'].fillna(0, inplace = True) 

    F0['true_class'] = F0['true_class'].astype(int) 

 

 

    #native contact with L/5 set of predicted contact data: 

    F1 = pd.merge(native, Pred_L5, on=['R1', 'R2'], how='right') 

     

    F1['R2'].fillna(0, inplace = True) 

    F1['R2'] = F1['R2'].astype(int) 

    F1['ConsP'].fillna(0, inplace = True) 

    F1['ConsP'] = F1['ConsP'].astype(float) 

    F1['true_class'].fillna(0, inplace = True) 

    F1['true_class'] = F1['true_class'].astype(int) 

     

 

    # save consensus prediction data in another file for Precision-Recall 

curve analysis 

    F_1 =F1[['ConsP', 'true_class']] 

    dirB= 'file path' 

    fileB='{}.csv'.format(str(sys.argv[3])) 

    file_path_B= os.path.join(dirB, fileB) 

    F_1.to_csv(file_path_B, index=False) 

     

 

    # native contact with L/2 set of predicted contact data: 

 

    F2 = pd.merge(native, Pred_L2, on=['R1', 'R2'],  how='right') 

 

 

    F2['R2'].fillna(0, inplace = True) 

    F2['R2'] = F2['R2'].astype(int) 

    F2['ConsP'].fillna(0, inplace = True) 

    F2['ConsP'] = F2['ConsP'].astype(float) 

    F2['true_class'].fillna(0, inplace = True) 

    F2['true_class'] = F2['true_class'].astype(int) 

                         

             

      #native contact with L set: 

    F3 = pd.merge(native, Pred_L, on= ['R1', 'R2'], how = 'right') 

 

 

    F3['R2'].fillna(0, inplace = True) 

    F3['R2'] = F3['R2'].astype(int) 

    F3['ConsP'].fillna(0, inplace = True) 

    F3['ConsP'] = F3['ConsP'].astype(float) 

    F3['true_class'].fillna(0, inplace = True) 

    F3['true_class'] = F3['true_class'].astype(int)  

    

     

    # native contact with FL set:  

    F4 = pd.merge(native, Pred_FL, on= ['R1', 'R2'], how = 'right') 

 

 

    F4['R2'].fillna(0, inplace = True) 

    F4['R2'] = F4['R2'].astype(int) 

    F4['ConsP'].fillna(0, inplace = True) 
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    F4['ConsP'] = F4['ConsP'].astype(float) 

    F4['true_class'].fillna(0, inplace = True) 

    F4['true_class'] = F4['true_class'].astype(int) 

     

     

     # save consensus prediction data in another file for Precsion-Recall 

curve analysis 

    F_4 = F4[['ConsP', 'true_class']] 

         

    dirB= 'file path' 

    fileB='{}.csv'.format(str(sys.argv[3])) 

    file_path_B=os.path.join(dirB, fileB) 

    F_4.to_csv(file_path_B, index=False) 

     

 

     # Classification consensus prediction data into contact and noncontact 

at p-value >0: 

 

    F0['Cor'] = (F0['ConsP'] > 0).astype(int) 

    F1['Cor'] = (F1['ConsP'] > 0).astype(int) 

    F2['Cor'] = (F2['ConsP'] > 0).astype(int) 

    F3['Cor'] = (F3['ConsP'] > 0).astype(int) 

    F4['Cor'] = (F4['ConsP'] > 0).astype(int) 

      

      

     # C- Evaluation process: 

       #Make confusion matrix for each subsets of predicted contact data to 

calculate tp, tn, fp, fn values: 

       # Computing Precision, Recall and F1_measure: 

       # depending on CASP assessores evaluation of contact prediction 

method:  

       # Precision = TP of subset / len of predicted contact set: 

       # Recall = TP of subset / len of native contact data: 

       # f1_score = 2 * Precision* Recall/ (Precision + Recall): 

     

    # top 10 set: 

    scores_top10= Scores(RR_native, top10, F0.Cor, F0.true_class, Nc_N) 

    df_top10 =pd.DataFrame([scores_top10], columns=['TP','FP', 'FN', 'TN', 

'Precision', 'Recall', 'f1_score'], index =['Top10'], dtype=int) 

    df_top10.index.name = 'set' 

 

    dir_top10='file path' 

    file_top10='{}.csv'.format(str(sys.argv[6])) 

    file_top10_path=os.path.join(dir_top10, file_top10) 

    df_top10.to_csv(file_top10_path) 

 

     

    #L/5 set: 

    scores_L5= Scores(RR_native, L5, F1.Cor, F1.true_class, Nc_N) 

    df_L5 =pd.DataFrame([scores_L5], columns=['TP','FP', 'FN', 'TN', 

'Precision', 'Recall', 'f1_score'], index=['L/5'], dtype=int) 

    df_L5.index.name ='set' 

 

 

    dir_L5='file path' 

    file_L5='{}.csv'.format(str(sys.argv[6])) 

    file_L5_path=os.path.join(dir_L5, file_L5) 
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    df_L5.to_csv(file_L5_path) 

             

    # L/2 set: 

    scores_L2= Scores(RR_native, L2, F2.Cor, F2.true_class, Nc_N) 

    df_L2 =pd.DataFrame([scores_L2], columns=['TP','FP', 'FN', 'TN', 

'Precision', 'Recall', 'f1_score'], index = ['L/2'], dtype=int) 

    df_L2.index.name = 'set' 

 

    dir_L2='file path' 

    file_L2='{}.csv'.format(str(sys.argv[6])) 

    file_L2_path=os.path.join(dir_L2, file_L2) 

    df_L2.to_csv(file_L2_path, index=False) 

 

 

    # L set: 

    scores_L= Scores(RR_native, L, F3.Cor, F3.true_class, Nc_N)  

    df_L =pd.DataFrame([scores_L], columns=['TP','FP', 'FN', 'TN', 

'Precision', 'Recall', 'f1_score'], index= ['L'], dtype=int) 

    df_L.index.name = 'set' 

 

    dir_L='file path' 

    file_L='{}.csv'.format(str(sys.argv[6])) 

    file_L_path=os.path.join(dir_L, file_L) 

    df_L.to_csv(file_L_path, index=False) 

 

    #FL set: 

    scores_FL = Scores(RR_native, FL, F4.Cor, F4.true_class, Nc_N) 

    df_FL =pd.DataFrame([scores_FL], columns=['TP','FP', 'FN', 'TN', 

'Precision', 'Recall', 'f1_score'], index=['FL'], dtype=int) 

    df_FL.index.name = 'set' 

 

    dir_FL='file path' 

    file_FL='{}.csv'.format(str(sys.argv[6])) 

    file_FL_path=os.path.join(dir_FL, file_FL) 

    df_FL.to_csv(file_FL_path, index=False) 

 

    #save the scores evaluation into dataframe: 

    df =pd.DataFrame([scores_top10, scores_L5, scores_L2, scores_L, 

scores_FL], columns=['TP','FP', 'FN', 'TN', 'Precision', 'Recall', 

'f1_score'], index=['Top10', 'L/5', 'L/2', 'L', 'FL'],  dtype=int) 

    df.index.name = 'sets' 

 

     

    dir_B='file path' 

    file_B='{}.csv'.format(str(sys.argv[6])) 

    file_B_path=os.path.join(dir_B, file_B) 

    df.to_csv(file_B_path, index=False) 

    print(df) 

     

     

if __name__ =='__main__': 

    main(sys.argv) 
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Appendix 2 

Table S.1. Mean Precision Scores of individual methods compared with consensus 

methods on 31 FM domains of CASP13. The scores were measured for long-range on contact 

subset lists; Top10, L/5, L/2, L, FL, where L represents the sequence length. Top10 set includes 

10 amino acid residue pairs that have the highest probability values of contacts. L/5 set contains 

contact scores of residue pairs within 20 % of the sequence, whereas the L/2 set has predicted 

scores of contacts for residue pairs within 50 % of sequences. L set contains all predicted scores 

of residue pairs within sequence length. FL is a full contact prediction dataset. 

Method  Top10 L/5 L/2 L FL 

Zhang_Contact (G036) 
63.23 57.38 48.87 38.81 2.31 

ZHOU-Contact (G189) 
65.48 58.90 48.29 37.52 2.41 

DMP (G491) 
68.71 60.80 47.67 37.18 7.35 

ConsA (G189 & G491) 
72.26 64.83 51.69 39.72 2.36 

ConsB (G189 & G036) 
70.65 63.18 52.60 41.34 2.27 

ConsC (G491 & G036) 
69.35 64.83 52.89 41.52 2.27 

Cons3 (All) 
70.97 65.98 55.12 42.59 2.27 

 

Appendix 3 

Table S.2. Mean precision scores of individual methods compared with consensus 

methods on 31 FM domains of CASP13 using ConEVA. The scores were measured for long-

range on contact subset lists:  L/5, L/2, L, where L represents the sequence length. Top10 set 

includes 10 amino acid residue pairs that have the highest probability values of contacts. L/5 

set contains contact scores of residue pairs within 20 % of the sequence, whereas the L/2 set 

has predicted scores of contacts for residue pairs within 50 % of sequences. L set contains all 

predicted scores of residue pairs within sequence length. FL is a full contact prediction dataset. 

Method L/5 L/2 L 

Zhang_Contact (G036) 57.17 48.82 38.66 

ZHOU-Contact (G189) 58.53 48.13 37.37 

DMP (G491) 61.17 47.61 37.05 

ConsA (G189 & G491) 66.54 53.05 40.64 

ConsB (G189 & G036) 64.97 53.94 42.34 

ConsC (G491 & G036) 67.61 54.96 42.75 

Cons3 (All) 67.96 56.66 43.61 
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Appendix 4 

Table S.3. P-values of mean precision for L/5, L/2, and L long-range contact prediction of 

CASP13 target domains (FM). L/5 set contains contact scores of residue pairs within 20 % 

of the sequence, whereas the L/2 set has predicted scores of contacts for residue pairs within 

50 % of sequences. L set contains all predicted scores of residue pairs within sequence length.  

Method ConsA ConsB ConsC Cons3 
  

L/5 long-range contacts  
 

Zhang_Contact 0.011 0.004 0.001 0.001 

Zhou-Contact 0.008 0.013 0.007 0.001 

DMP 0.038 0.369 0.040 0.052 

  L/2 long-range contacts   

Zhang_Contact 0.026 0.001 0.000 0.000 

Zhou-Contact 0.013 0.011 0.009 0.000 

DMP 0.005 0.051 0.005 0.000 

  L long-range contacts   

Zhang_Contact 

 
0.064 0.000 0.000 0.000 

Zhou-Contact 

 
0.001 0.005 0.003 0.000 

DMP 

 
0.003 0.006 0.000 0.000 
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Appendix 5 

Table S.4. Mean f1_score Scores of individual methods compared with consensus methods 

on 31 FM domains of CASP13.The scores were measured for long-range on contact subset 

lists; Top10, L/5, L/2, L, FL, where L represents the sequence length. Top10 set includes 10 

amino acid residue pairs that have the highest probability values of contacts. L/5 set contains 

contact scores of residue pairs within 20 % of the sequence, whereas the L/2 set has predicted 

scores of contacts for residue pairs within 50 % of sequences. L set contains all predicted scores 

of residue pairs within sequence length. FL is a full contact prediction dataset. 

Method  Top10 L/5 L/2 L FL 

Zhang_Contact (G036) 8.52 18.46 29.94 35.39 4.47 

ZHOU-Contact (G189) 8.38 18.78 29.38 33.92 4.67 

DMP (G491) 8.79 18.88 28.70 33.54 12.44 

ConsA (G189 & G491) 9.71 20.80 31.83 36.24 4.58 

ConsB (G189 & G036) 9.52 20.08 32.76 38.02 4.39 

ConsC (G491 & G036) 9.39 21.12 33.05 38.30 4.39 

Cons3 (All) 9.55 21.23 34.47 39.38 4.39 
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Appendix 6 

 

Figure S.1. A comparison of consensus and individual methods on FL long-range contact 

sets based on AUC_PR score of Precision-Recall curve analysis for CASP13 on 31FM 

domains. 
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Appendix 7 

 

Table S.5. AUC_PR scores of individual methods compared with consensus methods on 

31 FM domains of CASP13. The scores were measured for long-range on contact subset FL, 

which is a full contact prediction dataset. The AUC_PR scores were calculated in two different 

ways. AUC_PR represent the scores of the prediction methods based on the contact prediction 

for all 31 FM targets. Average AUC_PR represent the scores of prediction methods based on 

the AUC of all targets for each method.  AUC_PR of the random classifier is for each PR curve 

analysis of each method.   

CASP13 methods AUC_PR AUC_PR of a random 

classifier 

Average 

AUC_PR 

Zhang_Contact (G036) 0.37 0.02 0.35 

ZHOU-Contact (G189) 0.43 0.02 0.34 

DMP (G491) 0.50 0.05 0.34 

ConsA (G189 & G491) 0.48 0.02 0.38 

ConsB (G189 & G036) 0.47 0.02 0.40 

ConsC (G491 & G036) 0.46 0.02 0.40 

Cons3 (All) 0.49 0.02 0.41 
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Appendix 8 

 

 

Figure S.2. Mean precision scores of predicted contacts for domains and full chains of 

CASP13 targets on L/5 long-range contacts for 35 full chains & 43 domains-ConEVA tool. 
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Appendix 9 

 

 

Figure S.3. Mean precision scores of predicted contacts for domains and full chains of 

CASP13 targets on L long-range contacts for 35 full chains & 43 domains- ConEVA tool.
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Appendix 10 

 

Figure S.4. Density scatter plots show the relationship between ModFOLD9 and its 

component methods according to S-scores.  
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Appendix 11 

 

 

Figure S.5. Density scatter plots show the relationship between ModFOLD9 and its 

component methods according to lDDT scores. 
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Appendix 12 

 

 

Figure S.6. Density scatter plots show the relationship between ModFOLD9_pure and its 

five top component methods according to S-scores. 

  



 

282 
 

 

Appendix 13 

 

 

Figure S.7. Density scatter plots show the relationship between ModFOLD9_quasi and 

the quasi-single model methods according to S-scores. 
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Appendix 14 

 

The common subset code for the CAMEO dataset 

#!/usr/bin/env python3 

import os 

import shutil 

import sys 

from glob import glob 

import pandas as pd 

import numpy as np 

import json  

 

 

#First, import all predicted models of targets from CAMEO 

dataset. Append number to file names as all files have the 

same name (qalddt): 

 

for number, filename in 

enumerate(glob('/home/ky820206/Desktop/CAMEO_QA/6_months/raw_d

ata/{}'.format(sys.argv[1]))):# sys.argv[1] is the folder name 

written in the commond line 

   try: 

       os.rename(filename, "qalddt_{0}".format(number)) 

   except OSError as e: 

       print('Something happend:', e) 

 

 

#Ref:https://stackoverflow.com/questions/12336594/trying-to-

rename-files-with-glob-and-os-modules  

 

##### 

 

# Second: Rename files with target ID after extracting it from 

file content  

 

files = glob.glob('qalddt_*') 

for file in files: 

    with open(file) as f: 

        d = json.load(f) 

        for k, v in d.items(): 

            if k == "unique_id": 

                df = d[k] 

                if df[7:10] == '100' or df[7:10] == '106': 
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                    new_name = df[0:12] 

                    print(new_name) 

                    os.rename(file, new_name) 

                else: 

                    new_name = df[0:11] 

                    os.rename(file, new_name) 

 

##### 

 

# Third: The code will read raw data containing all targets ID 

and save it as a dataframe in a CSV file. 

 

listdirs= 

os.listdir('/home/ky820206/Desktop/CAMEO_QA/6_months/quality_e

stimation/{}'.format(sys.argv[1])) 

targets =[] 

for item in listdirs: 

    if "_1" in item: 

       targets.append(item) 

 

df = pd.DataFrame(np.array([targets]).T) 

df.columns = ['Target'] 

print(df) 

df.to_csv('{}.csv'.format(str(sys.argv[1])), index=False) 

 

##### 

 

#Fourth: Repeat step three with each quality estimation method 

file to obtain their predicted models of the targets. 

 

 

dirListing = 

os.listdir('/home/ky820206/Desktop/CAMEO_QA/6_months/Component

_methods/data/{}'.format(sys.argv[2])) 

 

editFiles = [] 

for item in dirListing: 

    if "_1" in item: 

        editFiles.append(item) 

# 

print(editFiles) 

f = pd.DataFrame(np.array([editFiles]).T) 

f.columns = [str(sys.argv[2])] 

print(f) 

f.to_csv('{}.csv'.format(str(sys.argv[2]))) 

 

##### 

 

#Fifth: read all the file have the whole list of targets ID 

and the predicted models  

df1 = pd.read_csv(sys.argv[1]) 
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df2 = pd.read_csv(sys.argv[2]) 

df3 = pd.read_csv(sys.argv[3]) 

df4 = pd.read_csv(sys.argv[4]) 

df5 = pd.read_csv(sys.argv[5]) 

df6 = pd.read_csv(sys.argv[6]) 

df7 = pd.read_csv(sys.argv[7]) 

df8 = pd.read_csv(sys.argv[8]) 

df9 = pd.read_csv(sys.argv[9]) 

 

##### 

 

#Sixth: merge the targets with the predicted models of quality 

estimation methods in one dataframe based on the target IDs: 

 

merged_1 = pd.merge(df1, df2, how='left', left_on='Target', 

right_on='ProQ2') 

merged_2 = pd.merge(merged_1, df3, how='left', 

left_on='Target', right_on='ProQ3') 

merged_3 = pd.merge(merged_2, df4, how='left', 

left_on='Target', right_on='ProQ3D') 

merged_4 = pd.merge(merged_3, df5, how='left', 

left_on='Target', right_on='ProQ3D_LDDT') 

merged_5 = pd.merge(merged_4, df6, how='left', 

left_on='Target', right_on='VoroMQA_sw5') 

merged_6 = pd.merge(merged_5, df7, how='left', 

left_on='Target', right_on='VoroMQA_v2') 

merged_7 = pd.merge(merged_6, df8, how='left', 

left_on='Target', right_on='ModFOLD9') 

merged_8 = pd.merge(merged_7, df9, how='left', 

left_on='Target', right_on='ModFOLD9_pure') 

 

dataset = merged_4.drop(['Unnamed: 0_y', 'Unnamed: 0_x', 

'Unnamed: 0'], axis=1) 

data = dataset.dropna() 

data.columns = ['Target', 'ProQ2', 'ProQ3', 'ProQ3D', 

'ProQ3D_LDDT', 'VoroMQA_sw5', 'VoroMQA_v2', 'ModFOLD9', 

'ModFOLD9_pure'] 

## 

data.set_index('Target', inplace=True) 

print(data) 

data.to_csv('commonsubset.csv', index=True) 

 

#save the common target IDs in one file for the next step: 

 

target = list(data['ModFOLD9']) 

 

#save targets in txt file 

with open('targetlist.txt', 'w') as h: 

    for x in target: 

        h.write(str(x)+'\n') 
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##### 

 

#In the last step, we remove the uncommon targets which could 

not be predicted by other methods based on the common subset 

data frame.  

 

#We implemented this step after commenting on the previous 

stpes. 

 

with open('targetlist.txt', 'r') as m: 

     lines = set((line.rstrip('\n') for line in 

m.readlines())) 

#     print(lines) 

# 

 

 

for root, dirs, files in 

os.walk('/home/ky820206/Desktop/CAMEO_QA/Component_methods/{}'

.format(sys.argv[1])): 

    for name in files: 

        path = os.path.join(root, name) 

        if os.path.isfile(path): 

            if name not in (lines): 

                print(name) 

                os.remove(path) 

            else: 

                pass 
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Appendix 15 

 

The R code of ROC analysis on CAMEO common subset data  

 
library('RColorBrewer') 

library('ROCR') 

 

 

MF9 <- read.csv('ModFOLD9.csv') 

MF9_pure <- read.csv('ModFOLD9_pure.csv') 

ProQ2<- read.csv('ProQ2.csv') 

ProQ3 <- read.csv('ProQ3.csv') 

ProQ3D <- read.csv('ProQ3D.csv') 

ProQ3D_lDDT <- read.csv('ProQ3D_LDDT.csv') 

VoroMQA_sw5 <- read.csv('VoroMQA_sw5.csv') 

VoroMQA_v2 <- read.csv('VoroMQA_v2.csv') 

 

 

#ROC AUC and ROC AUC FPR <= 0.1 calculations: 

 

MF9_auc <- performance(prediction(MF9$pred, MF9$X0), 

'auc')@y.values[[1]] 

MF9_auc_0_1 <- performance(prediction(MF9$pred, MF9$X0), 

'auc', fpr.stop=0.1)@y.values[[1]] 

 

MF9_pure_auc <- performance(prediction(MF9_pure$pred, 

MF9_pure$X0), 'auc')@y.values[[1]] 

MF9_pure_auc_0_1 <- performance(prediction(MF9_pure$pred, 

MF9_pure$X0), 'auc', fpr.stop=0.1)@y.values[[1]] 

 

ProQ2_auc <- performance(prediction(ProQ2$pred, ProQ2$X0), 

'auc')@y.values[[1]] 

ProQ2_auc_0_1 <- performance(prediction(ProQ2$pred, ProQ2$X0), 

'auc', fpr.stop=0.1)@y.values[[1]] 

 

ProQ3_auc <- performance(prediction(ProQ3$pred, ProQ3$X0), 

'auc')@y.values[[1]] 

ProQ3_auc_0_1 <- performance(prediction(ProQ3$pred, ProQ3$X0), 

'auc', fpr.stop=0.1)@y.values[[1]] 

 

ProQ3D_auc <- performance(prediction(ProQ3D$pred, ProQ3D$X0), 

'auc')@y.values[[1]] 

ProQ3D_auc_0_1 <- performance(prediction(ProQ3D$pred, 

ProQ3D$X0), 'auc', fpr.stop=0.1)@y.values[[1]] 

 

ProQ3D_lDDT_auc <- performance(prediction(ProQ3D_lDDT$pred, 

ProQ3D_lDDT$X0), 'auc')@y.values[[1]] 

ProQ3D_lDDT_auc_0_1 <- 

performance(prediction(ProQ3D_lDDT$pred, ProQ3D_lDDT$X0), 

'auc', fpr.stop=0.1)@y.values[[1]] 
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VoroMQA_sw5_auc <- performance(prediction(VoroMQA_sw5$pred, 

VoroMQA_sw5$X0), 'auc')@y.values[[1]] 

VoroMQA_sw5_auc_0_1 <- 

performance(prediction(VoroMQA_sw5$pred, VoroMQA_sw5$X0), 

'auc', fpr.stop=0.1)@y.values[[1]] 

 

 

VoroMQA_v2_auc <- performance(prediction(VoroMQA_v2$pred, 

VoroMQA_v2$X0), 'auc')@y.values[[1]] 

VoroMQA_v2_auc_0_1 <- performance(prediction(VoroMQA_v2$pred, 

VoroMQA_v2$X0), 'auc', fpr.stop=0.1)@y.values[[1]] 

print(ProQ2_auc_0_1) 

 

 

#ROC curves plot 

png ('ROC_curves_Componenet_Methods_CAMEO_6_months.png', width 

= 400, height=450) 

plot(performance(prediction(MF9$pred, MF9$X0), 'tpr', 'fpr'), 

col='#00703c', lwd=2) 

plot(performance(prediction(MF9_pure$pred, MF9_pure$X0), 

'tpr', 'fpr'), col='#377eb8', lwd=2, add=TRUE) 

plot(performance(prediction(ProQ2$pred, ProQ2$X0), 'tpr', 

'fpr'), col='#cda4de', lwd=2, add=TRUE) 

plot(performance(prediction(ProQ3$pred, ProQ3$X0), 'tpr', 

'fpr'), col='#ffec9e', lwd=2, add=TRUE) 

plot(performance(prediction(ProQ3D$pred, ProQ3D$X0), 'tpr', 

'fpr'), col='#d53e4f', lwd=2, add=TRUE) 

plot(performance(prediction(ProQ3D_lDDT$pred, ProQ3D_lDDT$X0), 

'tpr', 'fpr'), col='#f03900', lwd=2, add=TRUE) 

plot(performance(prediction(VoroMQA_sw5$pred, VoroMQA_sw5$X0), 

'tpr', 'fpr'), col='#6600a6', lwd=2, add=TRUE) 

plot(performance(prediction(VoroMQA_v2$pred, VoroMQA_v2$X0), 

'tpr', 'fpr'), col='#ad8b00', lwd=2, add=TRUE) 

legend('bottomright', legend = c('ModFOLD9', 'ModFOLD9_pure', 

'ProQ2', 'ProQ3', 'ProQ3D', 'ProQ3D_lDDT', 'VoroMQA_sw5', 

'VoroMQA_v2'), col=c('#00703c', '#377eb8', '#cda4de', 

'#ffec9e', '#d53e4f', '#f03900', '#6600a6', '#ad8b00' ), 

lwd=4) 

 

dev.off() 

 

#ROC curves (FPR <= 0.1) plot  

png 

('ROC_curves_FPR_zoomed_Componenet_Methods_CAMEO_6_months.png'

, width = 400, height=450) 

plot(performance(prediction(MF9$pred, MF9$X0), 'tpr', 'fpr'), 

col='#00703c', lwd=2, xlim = c(0, 0.2), ylim = c(0, 0.8)) 

plot(performance(prediction(MF9_pure$pred, MF9_pure$X0), 

'tpr', 'fpr'), col='#377eb8', lwd=2, add=TRUE) 
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plot(performance(prediction(ProQ2$pred, ProQ2$X0), 'tpr', 

'fpr'), col='#cda4de', lwd=2, add=TRUE) 

plot(performance(prediction(ProQ3$pred, ProQ3$X0), 'tpr', 

'fpr'), col='#ffec9e', lwd=2, add=TRUE) 

plot(performance(prediction(ProQ3D$pred, ProQ3D$X0), 'tpr', 

'fpr'), col='#d53e4f', lwd=2, add=TRUE) 

plot(performance(prediction(ProQ3D_lDDT$pred, ProQ3D_lDDT$X0), 

'tpr', 'fpr'), col='#f03900', lwd=2, add=TRUE) 

plot(performance(prediction(VoroMQA_sw5$pred, VoroMQA_sw5$X0), 

'tpr', 'fpr'), col='#6600a6', lwd=2, add=TRUE) 

plot(performance(prediction(VoroMQA_v2$pred, VoroMQA_v2$X0), 

'tpr', 'fpr'), col='#ad8b00', lwd=2, add=TRUE) 

legend('bottomright', legend = c('ModFOLD9', 'ModFOLD9_pure', 

'ProQ2', 'ProQ3', 'ProQ3D', 'ProQ3D_lDDT', 'VoroMQA_sw5', 

'VoroMQA_v2'), col=c('#00703c', '#377eb8', '#cda4de', 

'#ffec9e', '#d53e4f', '#f03900', '#6600a6', '#ad8b00' ), 

lwd=4) 

 

dev.off() 
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Appendix 16 

 

  

Table S.6. ROC AUC scores of the local assessment accuracy of ModFOLD9 performance 

and independent server based on its component quality methods. These scores are based 

on ROC AUC and ROC AUC FPR <= 0.1 analysis (with lDDT cutoff < 60) on common subset 

CAMEO data over four periods: one month, three months, six months, and one year. The bold 

scores refer to the highest AUC scores.  

Time Server 
ROC 

AUC 

ROC AUC 

FPR<=0.1 
Time Server 

ROC 

AUC 

ROC AUC 

FPR<=0.1 

O
n

e 
m

o
n

th
 

ProQ2 0.860 0.051 

T
h

re
e 

m
o

n
th

s 

ProQ2 0.842 0.047 

VoroMQA_sw5 0.838 0.039 VoroMQA_sw5 0.802 0.036 

VoroMQA_v2 0.885 0.051 VoroMQA_v2 0.865 0.048 

ProQ3lDDT 0.871 0.049 ProQ3lDDT 0.874 0.050 

ProQ3 0.874 0.054 ProQ3 0.863 0.051 

ProQ3D 0.852 0.047 ProQ3D 0.836 0.044 

ModFOLD9 0.931 0.071 ModFOLD9 0.921 0.067 

ModFOLD9_pure 0.921 0.069 ModFOLD9_pure 0.911 0.064 

 Server 
ROC 

AUC 

ROC AUC 

FPR<=0.1 
 Server 

ROC 

AUC 

ROC AUC 

FPR<=0.1 

S
ix

 m
o
n

th
s 

ProQ2 0.855 0.049 

O
n

e 
y

ea
r 

ProQ2 0.858 0.050 

VoroMQA_sw5 0.814 0.038 VoroMQA_sw5 0.811 0.038 

VoroMQA_v2 0.879 0.051 VoroMQA_v2 0.886 0.053 

ProQ3lDDT 0.891 0.054 ProQ3D_lDDT 0.899 0.056 

ProQ3 0.881 0.055 ProQ3 0.888 0.056 

ProQ3D 0.852 0.047 ProQ3D 0.858 0.048 

ModFOLD9 0.929 0.070 ModFOLD9 0.933 0.070 

ModFOLD9_pure 0.921 0.067 ModFOLD9_pure 0.924 0.068 
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Appendix 17 

Table S.7. ROC AUC scores of the local assessment accuracy of ModFOLD9 performance 

along with its previous versions. These scores are based on ROC AUC and ROC AUC FPR 

<= 0.1 analysis (with lDDT cutoff < 60) on common subset CAMEO data over four periods: 

one month, three months, six months, and one year. The bold scores refer to the highest AUC 

scores.  

Time Server 
ROC 

AUC 

ROC AUC 

FPR<=0.1 
Time Server 

ROC 

AUC 

ROC AUC 

FPR<=0.1 

O
n

e 
m

o
n

th
 

ModFOLD6 0.914 0.062 

T
h

re
e 

m
o

n
th

s 

ModFOLD6 0.873 0.048 

ModFOLD7_lDDT 0.914 0.064 ModFOLD7_lDDT 0.887 0.054 

ModFOLD8 0.916 0.064 ModFOLD8 0.888 0.054 

ModFOLD9 0.951 0.076 ModFOLD9 0.921 0.067 

ModFOLD9_pure 0.940 0.076 ModFOLD9_pure 0.912 0.064 

 Server 
ROC 

AUC 

ROC AUC 

FPR<=0.1 
 Server 

ROC 

AUC 

ROC AUC 

FPR<=0.1 

S
ix

 m
o
n

th
s 

ModFOLD6 0.860 0.039 

O
n

e 
y

ea
r 

ModFOLD6 0.861 0.037 

ModFOLD7_lDDT 0.880 0.048 ModFOLD7_lDDT 0.882 0.049 

ModFOLD8 0.878 0.048 ModFOLD8 0.882 0.048 

ModFOLD9 0.931 0.071 ModFOLD9 0.936 0.072 

ModFOLD9_pure 0.921 0.068 ModFOLD9_pure 0.927 0.070 

 

Appendix 18 

Table S.8. ROC AUC scores of the local assessment accuracy of five leading quality 

assessment methods. These scores are based on ROC AUC and ROC AUC FPR <= 0.1 

analysis (with lDDT cutoff < 60) on common subset CAMEO data over four periods: one 

month, three months, six months, and one year. The bold scores refer to the highest AUC scores.  

Time Server 
ROC 

AUC 

ROC AUC 

FPR<=0.1 
Time Server 

ROC 

AUC 

ROC AUC 

FPR<=0.1 

O
n

e 
m

o
n

th
 

ModFOLD9 0.927 0.071 

T
h

re
e 

m
o

n
th

s 

ZJUT-

GraphCPLMQA 
0.934 0.076 

QMEANDisCo3 0.924 0.067 DeepUMQA2 0.926 0.072 

DeepUMQA 0.913 0.064 ModFOLD9 0.918 0.066 

DeepUMQA2 0.933 0.073 ModFOLD9_pure 0.903 0.063 

ModFOLD9_pure 0.919 0.068 
MEGA-

Assessment 
0.938 0.076 

Time Server 
ROC 

AUC 

ROC AUC 

FPR<=0.1 
Time Server 

ROC 

AUC 

ROC AUC 

FPR<=0.1 

S
ix

 m
o
n

th
s 

ZJUT-

GraphCPLMQA 
0.947 0.079 

O
n

e 
y

ea
r 

ZJUT-

GraphCPLMQA 
0.947 0.079 

DeepUMQA2 0.945 0.075 DeepUMQA2 0.949 0.075 

ModFOLD9 0.935 0.071 ModFOLD9 0.935 0.071 

ModFOLD9_pure 0.926 0.068 ModFOLD9_pure 0.927 0.069 

DeepUMQA 0.925 0.065 DeepUMQA 0.929 0.066 

 
 




