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Abstract

Flood inundation forecast maps provide an essential tool to disaster management teams

for planning and preparation ahead of a flood event in order to mitigate the impacts of

flooding. The maps can be used to inform forecast-based financing schemes to release

funds ahead of a predicted flood event. Evaluating the accuracy of forecast flood maps

is essential for model development and improving future flood predictions. The goal of

this thesis is to develop spatial verification methods for deterministic and ensemble flood

map forecasts and to improve forecasts using satellite data. Binary verification measures

typically provide a domain-averaged score of forecast skill. The skill score is dependent

on the magnitude of the flood and the spatial scale of the flood map. In this thesis, a new

scale-selective approach is presented to evaluate both deterministic and ensemble forecast

flood maps against remotely observed flood extents. The flood-edge location accuracy

proves to be more sensitive to variations in forecast skill and spatial scale compared to

the accuracy of the entire flood extent. Both the ensemble spatial-skill and spread-skill

relationship vary with location and can be linked to the physical characteristics of the

flooding event. We find that a scale-selective verification approach can quantify the skill

of three systems operating at different spatial scales, so that the benefits and limitations of

each system can be evaluated. A new data assimilation framework is presented to update

the flood map selection from a static library of flood maps using satellite data, taking

account of observation uncertainties. Results show that the flood map selection could be
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triggered in four out of five sub-catchments tested. The resultant analysis flood map has

the potential to be used to trigger a secondary finance scheme during a flood event and

avoid missed financing opportunities for humanitarian action. Overall, sensitive spatial

verification methods that are location specific and can evaluate ensemble performance will

aid future model development for flood inundation prediction.
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Chapter 11

Introduction2

1.1 Motivation3

Globally, an estimated 1.8 billion people (23% of the world’s population) live in areas that4

are directly exposed to a 100-year return period flood (Rentschler et al., 2022). The vast5

majority (89%) of these people live in low- and middle-income countries where infrastruc-6

ture systems, including flood protection and drainage, and early warning systems, tend7

to be less developed. Satellite data shows that the number of people exposed to flooding8

has increased by 20 to 24% globally from 2000 to 2018. Increasing exposure to flooding is9

predicted to continue with climate change (Tellman et al., 2021). Early warning systems10

can significantly improve the outcomes following disasters, reducing deaths and damage11

and enabling faster recovery (UNDRR, 2022a). The 2023 UN Global Assessment Re-12

port (GAR) on Disaster Risk Reduction (UNDRR, 2023) states that the benefits of early13

warning systems triple in vulnerable contexts. Despite these benefits, the GAR2022 report14

shows that just 5.8% ($5.5 billion USD) of official development assistance contributes to15

disaster prevention and preparedness compared to 90.1% ($119.8 billion USD) for emer-16

gency response. Yet it has been demonstrated (for Europe) that financing for mitigation17

purposes such as flood forecasting systems can lead to overall cost savings (Pappenberger18
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Chapter 1. Introduction

et al., 2015).1

2

Global-scale flood forecasting systems can support the early warnings for all initiative3

(UNDRR, 2022a) by providing flood forecasts for large rivers around the world. Advances4

in flood forecasting systems link together meteorological and hydrological forecasts to hy-5

drodynamic models, simulating flood-wave propagation (Emerton et al., 2016; Wu et al.,6

2020; Apel et al., 2022). A simulation library forecasting system saves computation time7

by storing static flood extent and depth maps at various return periods. Depending on8

the forecast river discharge, the maps are looked-up per sub-catchment and mosaicked9

together. The resulting flood maps can be used to inform disaster risk reduction schemes10

such as forecast-based financing (FbF). FbF works by quantifying risks in advance of crises11

or disasters, prepositioning funds, and agreeing in advance how funds will be released based12

on forecasts, ahead of an event (OCHA, 2020). This results in global-scale models being13

used to inform local-scale action. Hoch and Trigg (2019) outline a Global Flood Model14

Validation Framework, which includes a recommendation to routinely validate flood ex-15

tent. Quantitative performance evaluation forms an important part of fitness-for-purpose16

assessment and continual system improvement. Currently, there is limited quantitative17

validation of operational flood forecasting systems producing flood maps.18

19

The accuracy of forecasts of flood extent can be verified by comparing with obser-20

vations of flooding from drones or satellite-based sensors. Typically, binary performance21

measures are calculated and provide an average measure of skill across a region (Stephens22

et al., 2014). In this thesis we address several limitations of binary performance mea-23

sures by applying a new scale-selective approach to flood map verification. The approach24

is developed further to evaluate how well an ensemble flood map forecast represents the25

uncertainties involved. We apply scale-selective verification methods to a multi-system26

comparison where each of the systems’ forecasts are presented at different spatial scales.27

2
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Some limitations to the flood forecasting system are addressed by developing a data as-1

similation framework using satellite data to improve the flood map analysis.2

3

1.2 Thesis aims4

The aims of this thesis are to address the following research questions:5

1. What are the skilful spatial scales in flood inundation forecasts made6

using a simulation library approach?7

How can we determine the skilful spatial scales of forecast flood maps by comparing8

against satellite-derived observations of flooding? Does the skilful spatial scale vary9

with location and how can this be visualised? How does validation of the flood edge10

location alone compare to validation of the entire flood extent? How can the skilful11

spatial scale results be used in operational practice?12

2. How skilfully does an ensemble of forecast flood maps represent the spa-13

tial uncertainty within the flood forecast?14

How can we summarise the spatial predictability information in ensemble flood map15

forecasts? How can we evaluate the spatial spread-skill of an ensemble flood map16

forecast? How does the spatial spread-skill vary with location and how can this be17

presented?18

3. How useful are scale-selective evaluation approaches when applied to mul-19

tiple flood forecasting systems?20

How can we evaluate the performance of flood forecasting systems predicting flood21

inundation extent at different spatial scales? What can we learn about the flood22

forecasting system performance and how does each compare?23

3
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4. Does a data assimilation framework improve the analysis of flood inun-1

dation from a simulation library system?2

Can we incorporate probabilistic information from remotely observed flood inunda-3

tion into a data assimilation framework to improve the flood map selection within4

a simulation library flood forecasting system? How does the analysis flood map5

compare to independent validation data?6

1.3 Principal new results7

The outcomes of this thesis provide the following answers to the research questions:8

1. A skilful spatial scale for forecast flood maps can be found by calculating the Frac-9

tion Skill Score, a validation metric, found by comparing a deterministic forecast10

flood map against a satellite SAR-derived observation of flooding across a range of11

neighbourhood sizes. A target skill score can be calculated and this depends on the12

magnitude of the observed flood. The skilful scale determined for the flood edge13

is more sensitive to changes in spatial accuracy and spatial scale compared to the14

skilful scale found by evaluating the entire flood extent. Categorical scale maps15

developed show that the skilful scale varies with location across a domain.16

2. We present a new scale-selective approach to assess the spatial predictability and17

spread-skill of an ensemble flood map forecast that accounts for the individual spatial18

prediction of flood extent held within each ensemble member flood map. The method19

determines, at specific locations within the domain, whether the ensemble forecast20

is over-, under- or well-spread. The spatial spread-skill relationship can be mapped21

onto a Spatial spread-skill map.22

3. We investigate a new application of scale-selective verification by evaluating the per-23

formance of three flood forecasting systems. Two simulation library systems, Flood24

4
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Foresight (30 m) and GloFAS Rapid Flood Mapping (1000 m) and one hydrody-1

namically modelled system, the Bangladesh FFWC Super Model (300 m), all made2

predictions of flood extent at different spatial scales (grid lengths, shown in brack-3

ets) for the Jamuna River flood, Bangladesh, July 2020. Our results show that the4

simulation library system accuracy critically depends on the discharge return period5

threshold set to trigger a flood map selection and the number of hydrological model6

ensemble members that must exceed it.7

4. A data assimilation (DA) framework is developed to integrate probabilistic flood8

extent maps from satellite-based SAR sensors into the simulation library flood map9

selection process. The method is tested on the severe flood event in Pakistan, 2022,10

where several sub-catchments resulted in a non-trigger of the forecast-based financing11

system deployed here, despite significant flooding evident from earth observation12

data. The DA successfully triggered flood maps in 4 out of 5 sub-catchments tested13

and we found that evaluating sub-catchments at the flood edge gave the best results.14

1.4 Thesis outline15

This thesis is structured as follows:16

• Chapter 2 introduces relevant background information for the thesis including sim-17

ulation library flood inundation forecasting systems, observing flooding from satel-18

lites, flood extent verification and data assimilation approaches in flood inundation19

forecasting.20

• Chapter 3 addresses the first research question in Section 1.2. A new approach to21

forecast flood map spatial verification against satellite-derived observations of flood-22

ing is presented. A scale-selective verification method is applied to evaluate the23

performance of a simulation library flood forecasting system at predicting flood ex-24

5
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tent on the Rivers Wye and Lugg following storm Dennis in February 2020. The1

scale-selective approach addresses multiple limitations of conventional binary per-2

formance measures and we find several applications of the evaluation approach that3

benefit operational flood forecasting practice. Chapter 3 is reproduced from Hooker4

et al. (2022).5

• Chapter 4 addresses the second research question. We present a new approach to6

evaluate and visualise the spatial spread-skill of an ensemble flood map forecast. The7

method can be used to assess how well the probabilistic flood maps represent the8

uncertainty present within the forecast-chain and how this may change with updates9

to the forecasting system such as including additional observations. Chapter 4 is10

reproduced from Hooker et al. (2023a).11

• Chapter 5 addresses the third research question. Through application of scale-12

selective evaluation methods we can directly compare forecast flood maps from three13

flood forecasting systems, each predicting flood extent at different spatial scales (grid14

lengths). This quantitative spatial validation means that the benefits and limitations15

of the forecast systems can be evaluated. Chapter 5 is reproduced from Hooker et16

al. (2023b).17

• Chapter 6 addresses the final research question. We present a new data assimilation18

framework to incorporate satellite-derived probabilistic flood extent information into19

the simulation library flood map selection process. This overcomes limitations of the20

simulation library system and has the potential to improve forecast-based financing21

schemes.22

• Chapter 7 summarises the main findings from the thesis and makes recommendations23

for future work.24
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Chapter 21

Background2

In this chapter we introduce some of the key topics used in this thesis. In Section 2.1 we3

introduce simulation library flood inundation forecasting systems and their application in4

disaster risk reduction. Observing flooding from satellite data is explained in Section 2.25

and using these observations to verify flood forecasts is discussed in Section 2.3. Data6

assimilation approaches used in flood inundation forecasting are introduced in Section 2.4.7

2.1 Fluvial simulation library flood inundation forecasting8

systems9

The current state-of-the-art in operational flood inundation forecasting at national or10

transnational scales uses a simulation library system (Revilla-Romero et al., 2017). Flood11

extent and depth maps are precomputed using a hydrodynamic model at a range of return12

period thresholds. Together, these flood maps form a simulation library for a particular13

country or river basin.14

15

The system links together a chain of models that begins with a numerical weather16

prediction (NWP) model providing meteorological inputs such as forecast precipitation to17

7
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a hydrological model and subsequent hydrodynamic model. The NWP model, combined1

with recent observations also provides initial conditions for the hydrological model. The2

forecast river discharge from the hydrological model, along with the return period thresh-3

olds set (from historical observations or reanalysis data-sets of river discharge (Grimaldi,4

2022)) determines which flood map from the simulation library is selected and presented5

(for an example diagram see Figure 4.3).6

7

Pre-computing the flood maps reduces the model run-time and means that the flood8

forecasting system can operate in near real-time. Additionally, the system can handle9

multiple inputs from ensemble NWP forecasts (Cloke & Pappenberger, 2009; Emerton10

et al., 2016). An ensemble of meteorological inputs means that some of the uncertainty11

in the NWP forecast can be accounted for in the hydrological model and ultimately in12

the forecast flood maps. The forecast flood maps can be presented probabilistically as an13

ensemble flood map forecast indicating the probability of flooding at a specific location14

within a catchment. An ensemble NWP forecast lengthens the forecast lead-time where15

the forecast is deemed skilful compared to a deterministic forecast (Emerton et al., 2016).16

Information on flood inundation uncertainty is particularly useful for disaster management17

teams operating before a flood event occurs and can be directly linked to flood impacts18

such as maps of vulnerable infrastructure. Probabilistic flood maps can also be used to in-19

form disaster risk reduction schemes such as Forecast-based Financing (FbF). FbF schemes20

work by quantifying risks in advance of disasters, prepositioning funds, and agreeing in21

advance how funds will be released based on forecasts, ahead of an event (OCHA, 2020).22

FbF allows time for local action utilising the insurance funds for flood mitigation purposes.23

24

In Chapters 3 to 6 we use forecast flood maps from JBA’s Flood Foresight system.25

Flood Foresight is a simulation library flood inundation forecasting system deployed in26

several international countries for FbF applications.27

8



Chapter 2. Background

2.2 Observing flooding from Space1

Flooding events are usually observed using in situ ground-based gauging stations recording2

river discharge or water level. The recorded flood discharge does not linearly correlate with3

the observed inundation extent and is highly uncertain due to instrument error and rating4

curve extrapolation uncertainties (Beven, 2016). Globally, there is limited coverage of5

catchments with maintained gauging stations and the data is not always openly available.6

Satellite-derived observations of flood extent have the potential to bring additional spatial7

information into flood inundation forecasts compared to in situ point gauging stations.8

Satellite-based Synthetic Aperture Radar (SAR) sensors are well known for their flood9

detection capability (Grimaldi et al., 2016). Unobstructed flood waters appear dark on10

SAR images due to the low backscatter return from the relatively smooth water surface.11

SAR sensors also have an advantage over optical instruments as they can scan at night12

and are not impacted by cloud and weather, usually associated with a flooding situation.13

Optical instruments rely on solar energy and cannot penetrate cloud, making them less14

useful during a flooding situation. Recent studies have investigated the flood detection15

benefits from combining both optical and SAR imagery (Konapala et al., 2021; Tavus et16

al., 2020).17

18

Due to improvements in spatial resolution and more frequent revisit times, SAR data19

have been used successfully to calibrate and validate hydrodynamic and hydraulic fore-20

cast models (Schumann et al., 2009; Grimaldi et al., 2016). Dasgupta et al. (2018) detail21

some of the challenges along with approaches to solutions of flood detection using SAR.22

Examples of these challenges include: roughening of the water surface by heavy rain and23

strong wind, emergent or partially submerged vegetation and flood detection in urban24

areas. Accurate flood detection in urban areas particularly due to surface water flooding25

has become increasingly important (Speight et al., 2021) and recent techniques have led26

9
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to improved flood detection (Mason et al., 2018, 2021a, 2021b).1

2

The Copernicus Emergency Management Service (CEMS) (Copernicus Programme,3

2021) offers freely available, open access Sentinel-1 SAR data. Currently (due to the4

malfunction of Sentinel-1B in December, 2021) one satellite is in orbit, at 10 m ground5

resolution and a six day revisit time (for the mid-latitudes). Sentinel-1C is due to launch6

in April 2024 to replace Sentinel-1B. Nevertheless, Sentinel-1 data offers good coverage of7

a potential flood event. For a major flood event CEMS can be triggered to offer additional8

rapid flood mapping. Since late 2021, SAR-derived flood maps are produced for every9

Sentinel-1 image detecting flooding around the world by the Global Flood Monitoring10

(GFM) service (EU Science Hub, 2021; GFM, 2021; Hostache et al., 2021). Within eight11

hours of the Sentinel-1 image acquisition, three flood detection algorithms are combined to12

give the flood class (flooded or unflooded), the likelihood of a flood class representing the13

uncertainty estimation per grid cell along with an exclusion mask where flooding cannot14

be reliably detected from SAR. In Chapters 3, 4 and 5 we make use of SAR-derived flood15

maps from Sentinel-1 satellite data for deterministic and ensemble forecast flood map16

verification. In Chapter 6 we assimilate the GFM flood likelihood data to improve the17

flood extent analysis from a simulation library flood forecasting system.18

2.3 Flood extent verification19

Verification is an essential part of model understanding and improvement, but has only20

received limited attention over the past decade (Schumann, 2019). Forecast flood maps21

can be verified against satellite-derived observations of flood extent. Validation of fore-22

cast flood maps against remotely observed flood extent is typically carried out by labelling23

each grid cell using a contingency table with categories: correctly predicted flooded, under-24

prediction (miss), over-prediction (false alarm) and correctly predicted unflooded. Follow-25

10
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ing this categorisation, a variety of conventional binary performance measures such as the1

Critical Success Index (CSI) can be calculated (see Chapter 3). Within a domain of inter-2

est, a flood covering a significant area of the domain will be easier to accurately predict3

(by chance) compared to a flood of a smaller extent. Thus, flood magnitude can create4

a bias in the skill scores. It has been suggested by Stephens et al. (2014); Pappenberger5

et al. (2007) that it is less important to validate all flooded cells, when only cells that are6

close to the flood margin are difficult to predict. The flood edge location is an important7

consideration for flood risk mitigation and response activities.8

9

Flood maps at different spatial scales (grid lengths) will also impact conventional skill10

scores. A high resolution, fine scale forecast flood map will show greater detail of the flood11

extent and the flood-edge location compared to a low resolution, coarse scale flood map.12

At a high resolution the discrepancy between the forecast and observed flood maps may be13

closer in terms of distance, however a small mismatch will lead to a double penalty impact14

on forecast verification. The model is penalised twice for the over-prediction (false alarm)15

and the under-prediction (miss) (Stein & Stoop, 2019). When high resolution forecasts16

are verified against observations at grid level, the predictability can appear to worsen and17

the high resolution forecast would need to perform better than the low resolution forecast18

to achieve the same verification score. Hence, it is not meaningful to compare verifi-19

cation scores across different spatial scales. Conventional binary performance measures20

(reviewed in Chapter 3) give a single, domain averaged, skill score. The averaged score21

is less sensitive to changes in accuracy and does not indicate where location specific im-22

provements could be made. The Fraction Skill Score (FSS; see Chapter 3 for details) uses23

a neighbourhood approach to overcome the double penalty impact problem in convective24

precipitation verification (Roberts & Lean, 2008). In Chapter 3 we apply the FSS scale-25

selective verification approach to evaluate the whole flood, and the flood edge of forecast26

flood maps and in Chapter 5 we use the same approach to compare three flood forecast-27

11
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ing systems, each producing forecast flood maps at different spatial scales. In Chapter 61

we use scale-selective verification methods to compare the analysis flood map, following2

DA, against independent observations of flood extent from Sentinel-2 optical satellite data.3

4

Ensemble flood maps require an extra dimension of verification, a measure of spread5

as well as skill. A perfect ensemble should encompass forecast uncertainties such that6

the ensemble spread is correlated to the RMSE of the forecast (Hopson, 2014). The7

verification of ensemble forecasts usually involves comparing the RMSE of the ensemble8

mean against an observed quantity to assess the skill of the forecast with the ensemble9

standard deviation used as a measure of spread. To evaluate the accuracy of an ensemble10

forecast, a number of verification measures have been proposed. Anderson et al. (2019)11

developed a joint verification framework for end-to-end assessment of the England and12

Wales Flood Forecasting Centre (FFC) ensemble flood forecasting system. Anderson et al.13

(2019) describe verification metrics such as the continuous rank probability score (CRPS),14

rank histograms, Brier Skill Score (BSS) and the relative operative characteristics (ROC)15

diagrams that are commonly applied to assess the main ensemble attributes desirable in16

both precipitation and streamflow ensemble forecasts (e.g., Renner et al., 2009). These17

metrics refer to flooding events as part of a time series evaluated against a reference18

benchmark, such as climatology, to produce an average skill score. In contrast, in Chapter19

4 we consider ensemble spatial verification at a single time point. The spatial spread-skill20

of the ensemble forecast is determined by evaluating the full ensemble against remote21

observations of flooding. For a flood map ensemble to be considered spatially well-spread,22

the spread or variation between ensemble members should equal the spatial predictability,23

or skill of the ensemble members (Dey et al., 2014).24

12
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2.4 Introduction to data assimilation1

Data assimilation (DA) typically finds an optimal state (such as river water level) and/or2

model parameter values (such as floodplain roughness coefficients) of a dynamical system,3

taking account of the previous forecast, the observations available, and both of their4

associated uncertainties. The updated state, the analysis, and/or parameter values are5

used to initiate the next forecast in a feedback loop or cycle (Figure 2.1).6

Figure 2.1: Data assimilation cycle

7

Bayesian estimation forms the basis of most data assimilation techniques and this8

assumes that errors in the forecast and observations can be represented by a Gaussian dis-9

tribution. The uncertainties associated with the prior or background, usually the previous10

forecast, are represented by the covariance of the prior error distribution. Similarly, the11

uncertainties in the observations depend on the covariance of the observation likelihood.12

The aim of DA is to find the optimal state that maximises the posterior probability and13

thus minimises the variance of the posterior error distribution (Bouttier & Courtier, 2002).14

The optimal state is found by minimising a cost function (derived from the probability15

distributions), or in other words finding the state or parameter variables where the gradi-16

ent of the cost function is equal to zero.17

18
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Variational DA methods use numerical minimisation methods such as iterative gra-1

dient descent to minimise the cost function. Three-dimensional variational DA (3D-Var)2

methods assimilate observations at a fixed point in time (Lorenc et al., 2000), whereas3

4D-Var methods assimilate observations over a window of time (Bannister, 2017). Filter-4

ing methods such as particle filtering (PF) and ensemble Kalman filter (EnKF) methods5

sample (using Monte Carlo methods) and weight the prior distribution according to the6

observation likelihood (van Leeuwen, 2009; Evensen, 1994).7

8

Previously, SAR data have been used in several different ways to improve hydraulic9

models and flood prediction through data assimilation (DA). A review of approaches used10

to assimilate satellite-derived data into hydraulic models (from 2007 until 2015) can be11

found in Table 7 of Grimaldi et al. (2016) and Table 1 of Revilla-Romero et al. (2016).12

In Chapter 6 we review more recent DA approaches used to improve flood inundation13

forecasts. A new DA framework is presented to improve the flood inundation analysis14

from a simulation library forecasting system. The analysis is evaluated using scale selective15

verification methods described in Chapter 3.16

2.5 Chapter summary17

In this chapter we have introduced and discussed a number of topics relevant to the thesis.18

In Section 2.1 we described a simulation library flood forecasting system and its application19

to disaster risk reduction. Forecast data from a simulation library system is used in all20

of the case studies in this thesis. Satellite-derived observations of flooding outlined in21

Section 2.2 are used to compare against flood forecasts. The spatial verification methods22

introduced in Section 2.3 are calculated alongside new scale-selective methods in Chapters23

3, 4, and 5. Data assimilation methods are introduced as background for Chapter 6 in24

Section 2.4. In the next chapter we develop a scale-selective verification approach to25

14
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evaluate forecast flood extent maps.1

15



Chapter 31

Spatial scale evaluation of forecast2

flood inundation maps3

In this chapter we address the first research question outlined in Chapter 1; What are4

the skilful spatial scales in flood inundation forecasts made using a simulation library5

approach? In particular we wish to find out:6

• How can we determine the skilful spatial scales of forecast flood maps by comparing7

against satellite-derived observations of flooding?8

• Does the skilful spatial scale vary with location and how can this be visualised?9

• How does validation of the flood edge location alone compare to validation of the10

entire flood extent?11

• How can the skilful spatial scale results be used in operational practice?12

The remainder of this chapter (except for the chapter summary, Section 3.8), has been13

published and is reproduced from (Hooker et al., 2022).14

16
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3.1 Abstract1

Flood inundation forecast maps provide an essential tool to disaster management teams2

for planning and preparation ahead of a flood event in order to mitigate the impacts of3

flooding on the community. Evaluating the accuracy of forecast flood maps is essential4

for model development and improving future flood predictions. Conventional, quantita-5

tive binary verification measures typically provide a domain-averaged score, at grid level,6

of forecast skill. This score is dependent on the magnitude of the flood and the spatial7

scale of the flood map. Binary scores have limited physical meaning and do not indicate8

location-specific variations in forecast skill that enable targeted model improvements to9

be made. A new, scale-selective approach is presented here to evaluate forecast flood inun-10

dation maps against remotely observed flood extents. A neighbourhood approach based11

on the Fraction Skill Score is applied to assess the spatial scale at which the forecast be-12

comes skilful at capturing the observed flood. This skilful scale varies with location and13

when combined with a contingency map creates a novel categorical scale map, a valuable14

visual tool for model evaluation and development. The impact of model improvements15

on forecast flood map accuracy skill scores are often masked by large areas of correctly16

17
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predicted flooded/unflooded cells. To address this, the accuracy of the flood-edge location1

is evaluated. The flood-edge location accuracy proves to be more sensitive to variations2

in forecast skill and spatial scale compared to the accuracy of the entire flood extent.3

Additionally, the resulting skilful scale of the flood-edge provides a physically meaningful4

verification measure of the forecast flood-edge discrepancy. The methods are illustrated5

by application to a case study flood event (with an estimated return period of 120 to 5506

years) of the River Wye and River Lugg (UK) in February 2020.7

8

Representation errors are introduced where remote sensing observations capture flood9

extent at different spatial resolutions in comparison with the model. The sensitivity of10

the verified skilful scale to the resolution of the observations is investigated. Re-scaling11

and interpolating observations leads to a small reduction in skill score compared with the12

observation flood map derived at the model resolution. The domain-averaged skilful scale13

remains the same with slight location-specific variations in skilful scale evident on the14

categorical scale map. Overall, our novel emphasis on scale, rather than domain-average15

score, means that comparisons can be made across different flooding scenarios and forecast16

systems and between forecasts at different spatial scales.17

18

Highlights19

• A novel spatial scale-selective approach to evaluate forecast flood maps against Syn-20

thetic Aperture Radar data.21

• Validation of the flood edge gives a physically meaningful measure of prediction22

accuracy.23

• Conventional contingency flood maps are improved by including a location-specific24

skilful spatial scale.25
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3.2 Introduction1

Timely predictions of flood extent and depth from flood forecasting systems provide es-2

sential information to flood risk managers that enable anticipatory action prior to the3

occurrence of a potential flooding event. Evaluating the accuracy of flood extent forecasts4

against observations forms an essential part of model development (Schumann, 2019).5

Forecast flood inundation footprints are typically validated against remote sensing images6

using binary performance measures (Stephens et al., 2014) calculated at grid level.7

8

In order to produce a forecast flood map, hydrodynamic or hydraulic flood models9

in two-dimensions simulate the flow of water using a local digital terrain model (DTM).10

The spatial resolution of DTMs has increased over recent years and is important for11

accurate flood mapping. For example, in the UK, the Environment Agency National12

LIDAR Programme offers open source 1 m surface elevation data for the whole of Eng-13

land (Environment Agency, 2021). Additional surface detail to 0.3 m spatial resolution14

from unmanned aerial vehicle UAV-LIDAR data acquired in urban areas is now possible15

(Trepekli et al., 2021). This means forecast flood maps could be presented at this very16

high resolution. It is questionable how meaningful it is to present highly detailed flood17

maps as a deterministic forecast (Savage et al., 2016), particularly at longer lead times18

where the skill of the flood forecasting system becomes increasingly dependent on the19

accuracy of the meteorological forecast (ECMWF, 2022). Speight et al. (2021) note for20

surface water flooding that more detail is included in local scale flood maps than can be21

justified by the predictability of the forecast. A high resolution, fine scale forecast flood22

map will show greater detail of the flood extent and the flood-edge location compared to23

a low resolution, coarse scale flood map. At a high resolution the discrepancy between24

the forecast and observed flood maps may be closer in terms of distance, however a small25

mismatch will lead to a double penalty impact on forecast verification. The model is pe-26
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nalised twice for the over-prediction (false alarm) and the under-prediction (miss) (Stein1

& Stoop, 2019). When high resolution forecasts are verified against observations at grid2

level, the predictability can appear to worsen and the high resolution forecast would need3

to perform better than the low resolution forecast to achieve the same verification score.4

It is not meaningful to compare verification scores across different spatial scales. Spatial5

verification methods for flood inundation mapping have only received limited attention6

over the past decade (Schumann, 2019).7

8

Verification approaches that account for uncertainties in observations and small dis-9

crepancies in gridded data using a fuzzy set approach (Hagen, 2003) have previously been10

applied to flood mapping (Pappenberger et al., 2007; Dasgupta et al., 2018). However, the11

fuzzy set method does not incorporate variations in spatial scale (Cloke & Pappenberger,12

2008). In atmospheric sciences, verification approaches that account for changes in spatial13

scale are well established. These approaches include the Fraction Skill Score (FSS), which14

applies a neighbourhood approach to assess a useful/skilful scale (Roberts & Lean, 2008)15

of a precipitation forecast. Dey et al. (2014); Dey, Roberts, et al. (2016) developed the FSS16

approach to produce location-specific agreement scales between the forecast and observed17

fields to understand the spatial predictability of an ensemble forecast. Other spatial scale18

approaches include the wavelet method of scale decomposition, where the forecast and19

observed fields are decomposed into maps at different scales by wavelet transformation20

and subsequently verified (Briggs & Levine, 1997; Casati & Wilson, 2007). Cloke and21

Pappenberger (2008) note that this method is extremely sensitive to offsetting of maps.22

23

In general, the performance of forecast flood maps are evaluated for the entire flood ex-24

tent, regardless of flood magnitude, adding bias to binary performance measures (Stephens25

et al., 2014). Stephens et al. (2014) question whether it is important to validate all26

flooded cells, when only cells that are close to the flood margin are difficult to predict.27
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Pappenberger et al. (2007) evaluated model performance only on cells that were subject1

to change between differing model runs to address the issue of large areas of correctly2

predicted flooded/unflooded cells masking variations in forecast skill scores.3

4

Satellite based Synthetic Aperture Radar (SAR) sensors are well known for their flood5

detection capability. Unobstructed flood waters appear dark on SAR images due to the6

low backscatter return from the relatively smooth water surface. SAR sensors also have7

an advantage over optical instruments as they can scan at night and are not impacted by8

cloud and weather, usually associated with a flooding situation. Due to improvements in9

spatial resolution and more frequent revisit times, SAR data has been used successfully10

to calibrate and validate hydrodynamic and hydraulic forecast models (Schumann et al.,11

2009; Grimaldi et al., 2016). Further model improvements have been shown through the12

assimilation of SAR data (e.g., Garćıa-Pintado et al., 2015; Hostache et al., 2018; Cooper13

et al., 2019; Di Mauro et al., 2020; Dasgupta et al., 2018, 2021a, 2021b). Recent tech-14

niques have improved the flood detection in urban areas using medium and high resolution15

SAR (Mason et al., 2018, 2021a, 2021b). The Copernicus Emergency Management Service16

(CEMS) (Copernicus Programme, 2021) offers freely available, open access Sentinel-1 SAR17

data. Currently (due to the malfunction of Sentinel-1B in December, 2021) one satellite18

is in orbit, at 10 m ground resolution and a six day revisit time (for the mid-latitudes).19

Nevertheless, Sentinel-1 data offers good coverage of a potential flood event. For a major20

flood event CEMS can be triggered to offer additional rapid flood mapping. From 2022,21

the new Global Flood Monitoring (GFM) product (GFM, 2021; Hostache et al., 2021) of22

the Copernicus Emergency Management Service (CEMS) (Copernicus Programme, 2021)23

produces Sentinel-1 SAR-derived flood inundation maps using three flood detection al-24

gorithms providing uncertainty and population affected estimates within 8 hours of the25

image acquisition.26

27
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Representation errors arise where observation spatial scales are different from the model1

spatial scale (Janjić et al., 2018). The spatial resolution of SAR imagery suitable for flood2

detection varies across satellite constellations both historically and presently and contin-3

ues to improve. Very high resolution (less than 3 m) imaging capabilities are increas-4

ingly available including TerraSAR-X, ALOS-2/PALSAR-2, and the COSMO-SkyMed,5

RADARSAT-2, and ICEYE constellations (Mason et al., 2021a). It is common practice6

to re-scale SAR-derived flood maps to match the model grid size for validation or assimi-7

lation with model data.8

9

The objective of this paper is to present a scale-selective approach to evaluate flood10

inundation forecast maps and to develop a physically meaningful measure of flood-edge11

location accuracy that can be automated and easily applied in practice. The method has12

been developed with operational forecast verification in mind, but it is applicable to all13

flood inundation maps. A new approach is described and applied here to evaluate the14

spatial scale at which the forecast becomes useful/skilful at capturing the remotely ob-15

served flood extent and specifically the flood-edge location. The spatial skill of a forecast16

flood map varies with location. We aim to improve the conventional contingency map by17

incorporating the skilful scale to create a new categorical scale map. Also, we address how18

representation errors arising from observation spatial scale variations and interpolation19

have an impact on model evaluation.20

21

In the rest of this paper we explore the features of a novel scale-selective evaluation22

approach illustrated through application to a case study. In Section 3.3 we describe the23

case study, a recent flooding event in the UK following Storm Dennis, February 2020, along24

with catchment descriptions for three chosen domains. The flood inundation forecasting25

system developed by JBA Consulting, Flood Foresight, (Revilla-Romero et al., 2017) is26

used to produce forecast flood maps for the event and is detailed in Section 3.4.1. Section27
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3.4.2 explains two methods that are used to derive remotely observed flood maps from SAR1

imagery. Our new approach to the spatial evaluation of flood maps is detailed in Section2

3.5 along with descriptions of other binary performance measures. The novel categorical3

scale map is applied to the case studies in Section 3.6, and the evaluation results are4

discussed. We conclude in Section 3.7 and discuss the wider applications of a spatial scale5

approach to flood map skill evaluation.6

3.3 Flood event7

This extreme flooding event is chosen here as a case study to demonstrate the features8

of a spatial scale approach to forecast flood map evaluation. During February 2020,9

three named Storms, Ciara, Dennis and Jorge, arrived in quick succession delivered by10

a powerful and ideally positioned jet-stream that enabled rapid cyclogenesis (Davies et11

al., 2021). Each storm rapidly intensified and deepened bringing damaging winds and12

exceptionally heavy rainfall across the UK (Met Office, 2020). This led to the River Wye13

reaching its highest ever recorded water level at the Old Bridge in Hereford (riverlevels.uk,14

2020). The annual exceedance probability (AEP) for the recorded peak flow of the Lugg15

and Wye rivers was 0.2 - 0.8 % (return period 120-550 years) and 0.6 - 2.0 % (160-55016

years) respectively (Sefton et al., 2021).17

3.3.1 February 202018

February 2020 was the UK’s wettest February on record and the fifth wettest month19

ever recorded. The UK average rainfall total exceeded the 1981 – 2010 average by 237%20

(Kendon, 2020). Locally, in northwest England and north Wales the rainfall exceedance21

was three to four times the typical monthly average rainfall. During this period around22

4000 to 5000 properties were flooded in the UK, with significant river water levels recorded23

in Wales, west and northwest England (Sefton et al., 2021). With six days between Ciara24
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and Dennis, groundwater and river levels were high and soils saturated. The Environment1

Agency issued a record number of over 600 flood alerts and warnings for England (JBA,2

2021).3

3.3.2 Catchment location and description4

Three domains, each differing in hydrological characteristics, have been selected for fore-5

cast flood map evaluation during the storm Dennis flooding event. Two domains (A and6

B) have been chosen from the Wye catchment (Fig. 3.1), a 28.4 km length centred upon7

Ross-on-Wye (A) and the Wye at Hereford (B), a 5.8 km section. A third domain (C)8

includes 4 km of the River Lugg.9

Figure 3.1: Location of Sentinel-1 image acquisition over southeast UK (a) and flood map evalua-
tion domains (b). Domain A: 28.4 km length of the River Wye centred at Ross-on-Wye, domain
size 9.8 x 12.8 km. Domain B: 5.8 km of the River Wye at Hereford, domain size 3.0 x 4.0 km.
Domain C: 4 km of the River Lugg at Lugwardine, domain size 2.3 x 2.3 km. Base map from
Google Maps.
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3.3.2.1 The River Wye (domains A and B)1

The River Wye flows for approximately 215 km from Plynlimon at 750 meters above2

ordnance datum (mAOD) in the Cambrian Mountains, mid Wales. It initially travels3

southeastwards into England where it meanders southwards to ultimately join the Severn4

Estuary. The upper catchment land cover is predominantly grassland with some forest5

cover with highly impermeable bedrock and superficial deposits of sand and gravel in6

the Hereford area (National River Flow Archive, 2021). The upstream catchment area7

of Hereford is 1896 km2. At Hereford, the only city situated on the Wye, the river8

is embanked on the north side by a deep flood wall with further embankments on the9

opposite side. Hereford is characterised by the Old Bridge, a 15th century stone bridge that10

creates a damming effect during high river flows. As the Wye flows south of Hereford, the11

topography flattens and the floodplain widens, with large river meanders and a distinctive12

U-shaped valley.13

3.3.2.2 River Lugg at Lugwardine (domain C)14

The River Lugg has an upstream catchment area of 886 km2 and a maximum altitude15

of 660 mAOD and flows across the grasslands and agricultural fields of the Herefordshire16

plain. It has similar bedrock to the Wye catchment and a higher proportion of more17

permeable superficial fluvial deposits of sand and gravel. This is particularly evident in18

the Lugwardine region where the topography is relatively flat with little to impede the19

flow of floodwaters across the plain. The Lugg flows into the River Wye, 2 km south of20

domain C.21

3.3.2.3 Event hydrology22

The observed catchment rainfall (which also includes a downstream section of the River23

Wye) shows that 50 mm fell on the 15th, 10 mm on the 16th and 1 mm on the 17th February24
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2020 (UK Water Resources Portal, 2022). There were further heavy showers forecast for1

the 16/17th and whilst these have not been captured by the rain gauges on the 17th, they2

cannot be ruled out as contributing to surface water flooding in Hereford. The nearest3

hourly rainfall-rate observation is a citizen science observation from the Met Office WOW4

database (Met Office, 2022) for a site at Sutton St Nicholas near the River Lugg and this5

shows the highest rainfall rate of 5.8 mm/hr at 0300 on the 16th and a total accumulation6

of 12.5 mm on the 16th and 0.3 mm on the 17th.7

8

Daily maximum river levels recorded at Ross-on-Wye, the Old Bridge, Hereford and9

Lugwardine for January to March 2020 are plotted in Figure 3.2 (riverlevels.uk, 2020). The10

impact of the three storms on the River Wye is indicated by a very sharp rise in water11

levels from the 8th to the 10th February following storm Ciara. Further heavy showers12

maintained high water levels before storm Dennis brought an exceptional rise in water13

levels, peaking on the morning of the 17th February with record levels recorded at Hereford14

(6.11 m at 9.30 am UCT) and Ross-on-Wye (4.77 m at 5.45 am UTC). Unfortunately there15

are two days of missing data at Ross-on-Wye following the flood event. By analysing the16

trend between the Hereford and Ross-on-Wye river levels, the peak level at Ross-on-Wye17

was likely higher and later than recorded. The response of the Wye at Hereford is faster18

than at Ross-on-Wye, most likely due to the upstream location of Hereford and a more19

constrained embankment with the city center located either side of the river. In comparison20

to the fast, rapid response of the Wye, the River Lugg displays a distinctively dampened21

response. Whilst the Lugg initially responded quickly to the heavy rainfall, once bankfull22

was reached and overtopping occurred the water levels remained consistently high, with23

floodwaters extending across the relatively flat flood plain.24
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Figure 3.2: Daily maximum river levels (m) at Ross-on-Wye, Hereford and Lugwardine. The
dashed yellow line indicates Sentinel-1 SAR acquisition date.

3.4 Data1

In this section we describe the model and observation data that we will use to illustrate2

our novel scale selective verification approach.3

3.4.1 Flood Foresight4

Flood Foresight (Fig. 3.3), developed and run routinely by JBA Consulting, is a flu-5

vial flood inundation mapping system that can be implemented in any catchment around6

the globe. Flood Foresight utilises a simulation library approach to generate maps of real7

time and forecast flood inundation and water depth. The simulation library approach saves8

valuable computing time and allows the application of Flood Foresight in near continuous9

real-time at national and international scales. A library of flood maps is pre-computed10
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using JFlow®, a 2D hydrodynamic model (Bradbrook, 2006). Note that in this study the1

flood maps are undefended i.e. temporary flood defences are not included. JFlow uses a2

raster-based approach with a detailed underlying DTM and a simplified form of the full 2D3

hydrodynamic equations that capture the main controls of the flood routing for shallow,4

topographically driven flow. Five flood maps at 5 m resolution are created for 20, 75, 100,5

200 and 1000 year return period flood events (corresponding to annual exceedance prob-6

abilities (AEPs) of 5%, 1.3%, 1%, 0.5% and 0.1% respectively). These are interpolated7

to derive five intermediate maps between each adjacent pair of the JFlow maps, equally8

spaced in return period creating a total library of thirty flood maps. Flood Foresight9

takes inputs of rainfall from numerical weather prediction (NWP) models, river gauge10

data (both historical and real-time) and forecast streamflow and uses these to select the11

most appropriate flood map for the location and forecast time period. The UK and Ireland12

configurations of the Flood Forecasting Module use deterministic streamflow forecast data13

from the Swedish Meteorological and Hydrological Institute (SMHI) European HYdrolog-14

ical Predictions for the Environment (E-HYPE). The meteorological input data for the15

E-HYPE model is the European Centre for Medium-range Weather Forecasts (ECMWF)16

Atmospheric Model high resolution (HRES) numerical weather prediction (NWP) model17

on a 0.1° x 0.1° grid with forecasts issued daily out to 10 days lead time. Forecast flood18

maps for the UK are produced on a 25 m grid length out to 10 days ahead (see Mason et19

al. (2021b) Section 2.1 for additional details).20

3.4.2 SAR-derived flood maps21

Two methods are applied to derive a flood map from SAR backscatter values captured22

close to the flood peak. The second method was included as it provides derivation of flood23

maps at different spatial resolutions. A Sentinel-1 (S1B) image was acquired in interfer-24

ometric wide swath mode (swath width 250 km) just prior to the flood peak at 0622 on25

the 17th February. A pre-flood image (September 2019) from the same satellite sensor and26

28



Chapter 3. Spatial scale evaluation of forecast flood inundation maps

Figure 3.3: Flood Foresight flood map simulation library selection process. Source JBA Consulting.

track was used to derive the flood map in both methods.1

2

In the first method, the ESA Grid Processing on Demand (GPOD) HASARD service3

(http://gpod.eo.esa.int/) has been utilised. The automated flood mapping algorithm4

(Chini et al., 2017) uses a statistical, hierarchical split-based approach to distinguish the5

two classes (flood and background) using a pre-flood and flood image. Level-1 GRD6

product SAR images (VV) are preprocessed, which involves; precise orbit correction, ra-7

diometric calibration, thermal noise removal, speckle reduction, terrain correction, and re-8

projection to the WGS84 coordinate system. The HASARD mapping algorithm removes9

permanent water bodies, including the river water. Flooded areas beneath vegetation,10

bridges and near to buildings are not detected using this method. The HASARD flood11

map at 20 m spatial scale is used to evaluate the performance of Flood Foresight for each12

29
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of the three domains out to 10 days lead time.1

2

In the second method, the same Sentinel-1 SAR image (in this case using both VV and3

VH) was processed using Google Earth Engine (GEE) to derive flood maps at a range of4

spatial resolutions (5 m to 25 m). GEE holds a catalogue of level-1 preprocessed Sentinel-15

SAR images (Google Earth Engine Catalog, 2021). A smoothing filter is applied to reduce6

speckle and a pre and post flood image are used to train a Classification And Regres-7

sion Tree (CART) classifier (Breiman et al., 1984; Google Earth Engine CART, 2021).8

The classifier is applied to the whole image to produce a flood map at a specified scale.9

GEE uses an image pyramid approach to scale, or pixel resolution, analysis. This means10

variations in the scale selected are determined from the scale of the input image (Google11

Earth Engine Scale, 2021). The variation of the flood extent detected at a range of spatial12

resolutions and the impact of re-scaling and interpolation errors on performance measures13

are investigated.14

15

Flood Foresight forecast flood maps include the river channel and exclude surface16

features such as vegetation and buildings. To smooth the HASARD and GEE flood17

maps and allow a fairer comparison we apply a morphological closing operation (without18

impacting the location of the flood extent) to flood fill vegetation and buildings.19

3.5 Flood map evaluation methods20

The following subsections detail a new spatial scale-selective approach to forecast flood21

map evaluation. The Fraction Skill Score (FSS) developed by Roberts and Lean (2008) for22

validation of convective precipitation forecasts in atmospheric science uses a neighbour-23

hood approach to determine the scale at which the forecast becomes skilful. Dey, Roberts,24

et al. (2016) developed this approach to determine an agreement scale between an ensem-25
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ble forecast and observations at each grid cell to add location-specific information. Here1

we extend the technique to apply it to the new application of flood inundation mapping,2

and further develop a novel categorical scale map that combines an agreement scale map3

with a conventional contingency map.4

3.5.1 Spatial scale-selective approach5

Initially, the observed flood extent derived from SAR data is re-scaled to match the fore-6

cast flood map grid size using spline interpolation and both are converted into binary7

fields. A threshold approach is determined for the situation. For a flood map verification8

of spatial skill, the simplest example applied here is to assign each grid cell as flooded (1) or9

unflooded (0) for the whole domain. Alternative future threshold approaches for flood in-10

undation maps could include applying thresholds to water depth percentiles. The location11

of the flood-edge cells can be extracted from the observed and modelled binary flood maps.12

13

Given a domain of interest, we number all of the grid cells according to their spatial

coordinates (i, j), i = 1 . . . Nx and j = 1 . . . Ny where Nx is the number of columns in the

domain and Ny is the number of rows. For each grid cell a square of length n forms an n×n

neighbourhood surrounding the grid cell. The fraction of 1s in the square neighbourhood

is calculated for each grid cell. This creates two fields of fractions over the domain for

both the forecast Mnij and observed Onij data. The fraction fields are compared against

one another to calculate the mean squared error (MSE) for the neighbourhood

MSEn =
1

NxNy

Nx∑
i=1

Ny∑
j=1

[Onij −Mnij ]
2. (3.1)

Based on the fractions calculated for the model and observed fields a worst possible MSE
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is calculated

MSEn(ref) =
1

NxNy

Nx∑
i=1

Ny∑
j=1

[O2
nij +M2

nij ]. (3.2)

The FSS is given by

FSSn = 1− MSEn

MSEn(ref)
. (3.3)

Figure 3.4 illustrates an example of the FSS application at grid level (n = 1) and at the1

next neighbourhood size n = 3. In this simple example, there is no agreement between2

the model and observation at grid level but at n = 3, the skill score improves to 0.92.3

Figure 3.4: FSS (see subsection 3.5.1 for calculation details) example applied to a binary flooded
(1) / unflooded (0) field at grid scale (yellow box, n = 1) and a 3 x 3 neighbourhood (black box, n
= 3). The observed SAR-derived forecast is in turquoise and the forecast is shown in blue.

In general, the FSS is calculated for each length of neighbourhood n. For a given

neighbourhood size an FSS of 1 is said to have perfect skill and 0 means no skill. The FSS

will increase as n increases up to an asymptote (see Fig. 3 from Roberts and Lean (2008)).

If there is no model bias across the whole domain of interest (observed and forecast flooded

areas are the same) then the asymptotic fraction skill score (AFSS) at n = 2N − 1, where
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N is the number of grid cells along the longest side of the domain, will equal 1. Plotting

FSS against spatial scale can indicate a range of scales where the model is deemed to be

the most useful. This usefulness is a trade-off between being too smooth (larger n) or too

fine, where the forecast skill is lost and the computation time lengthy. The gradient of the

FSS curve versus neighbourhood size is another indicator of forecast skill with respect to

spatial scale. A steeper gradient indicates more rapidly improving skill over smaller grid

sizes compared with a flatter curve, indicating a much wider neighbourhood is required to

reach the same skill score. A target FSS score (FSST ) is defined as

FSST ≥ 0.5 +
fo
2
, (3.4)

where f0 is the fraction of flood observed across the whole domain of interest and can be1

thought of as being equidistant between the skill of a random forecast and perfect skill.2

FSST will vary depending on the magnitude of the observed flood, relative to the domain3

area. This allows the comparison of the FSST scale across different domain sizes and4

floods of different magnitudes.5

6

When the FSS is plotted against spatial scale (neighbourhood size), we can identify a7

spatial scale when the FSS first equals or exceeds FSST (Fig. 3.6 shows an example of8

this plot). The spatial scale (neighbourhood size) reached at FSST can tell us the dis-9

placement distance (DT ) between the observed and forecast flood, or more meaningfully10

the flood-edge locations. As the flood-edge represents a very small fraction of the domain,11

the scale at FSST will tend to 2DT , meaning the displacement distance is half of this12

scale (see Figure 4 in Roberts and Lean (2008)).13

14

It has been shown by Skok and Roberts (2016) that care must be taken when calculating15

the FSS near to the domain boundary since increasingly larger neighbourhood sizes would16
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extend further beyond the boundary edge. Skok and Roberts (2016) concluded that as1

long as the domain was sufficiently large, relative to the spatial errors, then the boundary2

effect could be considered to be insignificant. For flood mapping verification purposes the3

domain area should be selected to include the area of interest (e.g. the floodplain) with the4

neighbourhoods considered extending beyond the domain at the boundary. This assumes5

that the observations available allow this. If this is not that case then another boundary6

method could be applied, such as cropping at the domain edge.7

3.5.2 Location dependent agreement scales8

The FSS gives an overall domain-averaged measure of forecast performance and an average9

minimum scale at which the forecast is deemed skilful. Dey, Roberts, et al. (2016) describe10

a method for calculating an agreement scale at each grid cell located at coordinate position11

(i, j). A brief summary of the method is presented here. Two fields are considered f1ij12

and f2ij . In this application these are the forecast and observed fields. In alternative13

applications the method could be applied to measure similarity between members of an14

ensemble. The fields in this instance are not required to be thresholded and can be applied15

to flood depths. The aim is to find a minimum neighbourhood size (or scale) for every16

grid point such that there is an agreement between f1ij and f2ij . This is known as the17

agreement scale Sij . The relationship between the agreement scale and the neighbourhood18

size described in Section 3.5.1 is given by Sij = (n− 1)/2.19

Firstly, all grid points are compared by calculating the relative MSE DS
ij at the grid

scale, S = 0 (n = 1),

DS
ij =

(fS
1ij − fS

2ij)
2

(fS
1ij)

2 + (fS
2ij)

2
. (3.5)

If f1ij = 0 and f2ij = 0 (both dry) then DS
ij = 0 (correct at grid level). Note that DS

ij

varies from zero to 1. The fields are considered to be in agreement at the scale being
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tested if:

DS
ij ≤ D

Sij

crit,ij where DS
crit,ij = α+ (1− α)

S

Slim
(3.6)

and Slim is a predetermined, fixed maximum scale. The parameter value α is chosen to1

indicate the acceptable bias at grid level such that 0 ≤ α ≤ 1. Here we set α = 0 (no2

background bias). If DS
ij ≥ DS

crit,ij then the next neighbourhood size up is considered3

(S = 1, a 3 by 3 square). The process continues with increasingly larger neighbourhoods4

until the agreement scale, or Slim is reached for every cell in the domain of interest. The5

agreement scale at each grid cell is then mapped onto the domain of interest.6

3.5.3 Categorical scale map7

Currently, the agreement scale map proposed by Dey, Roberts, et al. (2016) provides a8

location-specific scale of agreement between the forecast and observed flood map. However,9

it does not show whether the model is over- or under-predicting the flood extent. In our10

work, we develop the agreement scale map further by combining with a contingency map11

for the forecast to create a new categorical scale map. This highlights the agreement scale12

for areas of over- or under-prediction. In a contingency map, each cell in the forecast and13

observed flood map are compared and classified using a contingency table (Table 3.1).14

The categories are re-classified numerically in the array for automated updating of the15

agreement scale map. Over-predicted cells (B) are set to -1, under-predicted cells (C) are16

set to +1, correctly predicted flooded cells (A) are assigned NaN and correctly predicted17

unflooded cells are set to 0. The array element-wise product of the agreement scale map18

and the numerical contingency map produces the new categorical scale map.19

Table 3.1: Contingency table

Forecast flooded Forecast unflooded

Observed flooded A (correct wet) C (under-prediction/miss)
Observed unflooded B (over-prediction/false alarm) D (correct dry)
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3.5.4 Binary performance measures1

It has been suggested by Cloke and Pappenberger (2008) that a range of performance2

measures should be applied so that a forecast can be assessed as rigorously as possible. A3

selection of commonly applied binary performance measures, each focusing on a different4

aspect of performance have been included here for comparison with the Fraction Skill5

Score results. Following the application of a contingency table (Table 3.1) to the forecast6

flood map, a number of binary performance measures can be calculated (Table 3.2). Table7

3.2 describes the range of performance value, the ideal score and a description of which8

aspects of the forecast flood map performance each binary measure assesses.9

Table 3.2: Binary performance measures and formula based on contingency Table 3.1.

Performance measure Formula Description [range min, range
max, perfect score]

Bias A+B
A+C [0, ∞, 1] 1 implies forecast and

observed flooded areas are equal
> 1 indicates over-prediction,
< 1 indicates under-prediction

Critical Success Index/Threat
score F<2> (CSI)

A
A+B+C [0, 1, 1] Fraction correct of

observed and forecast flooded
cells

F<1> Proportion correct A+D
A+B+C+D [0, 1, 1] Proportion correct (wet

and dry) of total domain area

F<3> A−C
A+B+C [-1, 1, 1] Score reduced by

over-prediction

F<4> A−B
A+B+C [-1, 1, 1] Score reduced by

under-prediction

False Alarm Rate (FAR) B
B+D [0, 1, 0] Proportion of

over-prediction of dry areas

Hit Rate (HR) A
A+C [0, 1, 1] Fraction correct of

observed flooded area
Pierce Skill Score (PSS) HR− FAR [-1, 1, 1] Incorporates both

under and over-prediction
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3.6 Results1

We illustrate and discuss our new method applied to the flood event in subsection 3.6.12

and 3.6.2. The scale-selective approach is applied to an extreme flooding event in the3

UK to determine a useful/skilful spatial scale for both the entire flood extent and the4

flood-edge location for three domains out to 10-days lead time. An example forecast flood5

map for 0-day lead time compared with the SAR-derived flood map is presented as a6

contingency map in Figure 3.5. The zoomed in perspective shows the double penalty7

impact described in Section 3.2. The discrepancy at the flood-edge depends on the spatial8

scale of the forecast flood maps along with the model performance. Next, in subsection9

3.6.3 location-specific agreement scales are presented on categorical scale maps. The final10

subsection 3.6.4 addresses the question of the impact of representation error caused by11

variations in SAR-derived flood map spatial resolution on the evaluation results.12

3.6.1 Spatial scale variability of forecast flood extent and flood-edge13

location14

An evaluation of the spatial skill of the Flood Foresight forecast flood maps against the15

SAR-derived flood map for the flood peak on the 17th February 2020 has been calculated16

for each domain (Fig. 3.1) for both the entire flood extent and the flood-edge location. The17

Fraction Skill Score (FSS) is applied to increasing neighbourhood sizes (n) to determine18

the spatial scale at which the forecast becomes skilful at capturing the observed flood.19

Figure 3.6 shows FSS against n for one example, the River Lugg (domain C) for the entire20

flood (a) and the flood-edge (b). Each line represents a different model run date from the21

10/02/2020 (7-day lead time) to the 17/02/2020 (0-day lead time). With the exception22

of the 7-day lead time, all forecasts for the whole flood (Fig. 3.6a) exceed the FSST at23

grid level (n = 1) with gradually improving skill as n increases. In contrast to this, the24

FSS applied to the flood-edge (Fig. 3.6b) shows all forecasts below FSST at grid level25
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Figure 3.5: Left panel: contingency map of a 0-day lead time forecast verses the HASARD SAR-
derived flood map for the Wye valley indicates the model is predicting the flood extent accurately,
including the position of the flood-edge. Right panel: Zoom of yellow box on the left panel. On
closer inspection, at grid level, the flood-edge in many places is over- or under-predicted by around
one grid length. Base map from Google Maps.

and n = 3 with the skill increasing more rapidly compared with the whole flood to reach1

FSST at n = 5 for all run dates within a 5-day lead time (except for 16/02/2020, which2

is just below FSST ). This indicates that the flood-edge is forecast to be around 62.5 m3

from the observed flood-edge, on average, for a 5-day lead time. The difference between4

the gradients of the plots indicate the flood-edge is more sensitive to changes in spatial5

scale compared with evaluation of the whole flooded area. The whole flood verification6

here indicates a strong model performance. However, verifying the whole flood alone could7

mask the flood-edge location performance, which in this case has a coarser scale at FSST .8

Similar trends in FSS with neighbourhood size and comparisons between the entire flood9
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and the flood-edge verification scales are found for all domains. The rate of FSS increase,1

or FSS gradient with n, tells us how quickly the forecast skill improves with increasing2

scale. A more spatially accurate forecast of the flood-edge will demonstrate a steeper3

gradient, reaching FSST at a smaller neighbourhood size.4

Figure 3.6: FSS calculated for the River Lugg at Lugwardine for (a) entire flood extent and (b) the
flood-edge for increasing neighbourhood sizes for daily forecast lead times up to 7 days.

3.6.2 Comparison of spatial scales at differing lead times and domain5

location6

The performance measures for each domain for daily lead times out to 10 days are pre-7

sented in Figure 3.7. The FSS at n = 1, 3, and 5 are shown along with Critical Success8

Index (CSI), Hit Rate (HR), Pierce Skill Score (PSS) and the Bias (see Table 3.2 for def-9

initions). The Bias score is an indicator of over- or under-prediction of the flood extent10

and is plotted on a separate axis to account for the larger range. For lead times within11

5-days of the flood peak, FSS > 0.8 for the entire flooded area at grid level for the River12

Wye (domain A) indicates a strong model performance (Fig. 3.7a). There is a dip in13

the FSS on the 16/02/2020 where the forecast over-predicts the flood extent. This is14

also reflected in the CSI score. In contrast to this the HR and PSS increase, despite the15

over-prediction, as more observed flood cells are correctly predicted wet. We note that16
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the PSS (HR - FAR) does account for over-prediction, however the FAR is the fraction of1

the dry area incorrectly predicted wet, which is very small relative to the HR (0.03 versus2

0.90). Validation of the River Wye flood-edge (Fig. 3.7b) is more sensitive to changes in3

neighbourhood size compared with the whole flood validation. Here the flood-edge is very4

well forecast in terms of spatial location and exceeds FSST at n = 3 (on average, 37.5 m5

displacement) for a 5-day lead time (except for 1-day lead time where FSST is exceeded6

at n = 5). As shown previously in Subsection 3.6.1, the forecast of the River Lugg flood-7

edge is skilful at n = 5 (Fig. 3.7f) (on average, 62.5 m displacement) for a 5-day lead8

time. Differences in the hydrological characteristics might explain differences in model9

performance. The Wye valley flood plain is well defined with distinctive valley sides and10

this event proved to be valley filling in contrast to the Lugg flood plain which is relatively11

flat and extensive. This could explain the increased skill shown for the prediction of the12

Wye flood-edge. The average observed flood top width for the Lugg (domain C) is 740 m13

and for the Wye (domain A) 430 m. This gives a flood-edge displacement as a fraction of14

the flood top width of 7.4% for the Lugg and 7.8% for the Wye.15

16
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Figure 3.7: Conventional binary performance measures (dashed lines) and FSS (solid lines) at n =
1, 3, and 5 for each domain for both the whole flooded area and the flood-edge for daily lead times
out to 10 days for the River Wye (domain A, (a) and (b), Hereford (domain B, (c) and (d)) and
the River Lugg (domain C, (e) and (f). Plots on the left show the verification scores applied to the
entire flood extent and plots on the right show the flood-edge scores.
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The results for all three domains show that for this case study the forecasting system1

has limited skill beyond a five-day lead time. The forecast accuracy of the meteorological2

driving data diminishes with increasing lead time (ECMWF, 2022). Extratropical cyclones3

(ETCs) are the dominant meteorological driver of major winter flooding in the UK. This is4

particularly true when an Atmospheric River is associated with an ETC and when ETCs5

arrive in clusters (as was the case here) bringing multiple spells of heavy precipitation6

(Lavers et al., 2011; Griffith et al., 2020). The typical formation time of ETCs is 3-5 days,7

occasionally up to 10 days (Ulbrich et al., 2009) which limits the predictability of the me-8

teorological system, particularly when the jet stream is very strong (as was the case here).9

The atmospheric (and precipitation) predictability will vary depending on the situation,10

for example a slow moving ETC close to the UK would potentially have a longer lead time11

of useful prediction. Conversely, flooding in the summer associated with convection would12

likely have a shorter skilful lead time. The scale selective approach presented here can be13

used to determine a meaningful scale to present flood inundation maps. This scale will14

vary with forecast lead time and will depend on the predictability of the meteorological15

situation.16

17

There is more variation in skilful scale with lead time evident for the Wye at Hereford18

(domain B) in Figure 3.7c and d compared with domain A and C. To achieve the same19

FSS for the whole flood as domain A and C up to a 5-day lead time, the neighbourhood20

size would need to exceed n = 5. The model is over-predicting the flood extent, in par-21

ticular on the 16/02/2020 (1-day) lead time. This overprediction at 1-day lead time is22

evident for all domains as can be seen in the Bias scores but the impact of this is most23

noticeable at Hereford. Hereford has more complex topography compared to the other24

domains, particularly along the river bank with bridges, buildings, permanent and tempo-25

rary flood defences deployed during the event affecting the flow of the flood wave through26

the city. The maps used in the simulation library of Flood Foresight are produced using a27
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bare-earth DTM. Despite this, the model performs well, exceeding FSST at n = 5 at the1

5-day and 2-day lead times for the flood-edge forecast.2

3

Overall, the FSS indicates a similar trend in performance across all results as the4

commonly applied CSI. The value of FSST is determined by the magnitude of the observed5

flood, which means the skilful scale determined at FSST can be meaningfully compared6

across the domains. The skilful scale of the forecast flood-edge location gives an average7

discrepancy distance. A physically meaningful evaluation measure provides additional8

information compared to a conventional verification score.9

3.6.3 Categorical scale maps10

Location dependent categorical scale maps (Subsection 3.5.3) have been calculated for all11

run dates for both the entire flooded area and the flood-edge. Figure 3.8 shows categor-12

ical scale maps for the whole flood for three different lead times for each domain, longer13

lead times are on the left. The run dates vary with domain to present the most informa-14

tive maps such that variation in forecast skill can be seen across the different lead times.15

The colours on the map indicate grid cell specific agreement scales (Subsection 3.5.2)16

between the forecast flood map and the SAR-derived flood map. Grey/white regions17

indicate correctly predicted flooded/unflooded cells, red shows the forecast flood extent18

is under-predicted (miss) and blue indicates over-prediction (false alarm). Increasingly19

darker shades of red/blue show that larger scales were needed for the agreement criteria20

to be met. The darkest blue at S = 10 indicates a total mismatch between forecast and21

observed flooding. The addition of the agreement scale information in comparison to a22

conventional contingency map (for an example, see Fig. 3.5) quickly highlights regions23

of total mismatch through the darkest shading, with areas that are slightly misaligned24

in lighter shades. The agreement scale indicated gives a physical measure of distance at25

specific locations between the forecast and the observed flood map (where S < Slim).26

43



Chapter 3. Spatial scale evaluation of forecast flood inundation maps

1

Figure 3.8: Categorical scale maps for each domain at various lead times (lt). Red indicates where
the forecast flood extent is under-predicted, blue indicates over-prediction. The shading indicates
the agreement scale, a measure of distance between the forecast and observed flood maps. Grey
areas are correctly predicted flooded, white areas are correctly predicted unflooded. Each grid cell
represents 25 m x 25 m for all domains. (Note: rd (forecast run date) varies between location, all
dates have been evaluated and the most illustrative maps selected.)

The location-specific skilful scale varies with location and lead time as indicated on2

the categorical scale maps. For a 7-day lead time forecast for the River Wye (Fig. 3.8a),3

the model is indicating some flooding could occur, although under-estimating the total4

extent as show by the darkest red areas, which show the limits of the agreement scale5

have been reached. By 5-days lead time the forecast is in very close agreement with the6

observed flood at grid level (in grey) with larger agreement scales indicated by red/blue7

shading along some of the flood-edge locations (Fig. 3.8b) and a balance between under-8

and over-prediction. Over-prediction is more evident by 1-day lead time for the River9
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Wye (Fig. 3.8c) and flooding is also over-predicted along smaller tributaries. There are1

several detached areas of flooding observed remotely that are most likely due to ponding2

of surface water flooding, which were not predicted by the fluvial flood forecasting system.3

4

The Hereford forecast is most skilful on the 12th February (Fig. 3.8d) with over-5

prediction, particularly towards the southwest at 3-day and 1-day lead times (Fig.3.8e6

and f). A small stream running southwards to the Wye, the Eign Brook, could be con-7

tributing to the over-prediction seen here. It is also worth mentioning that SAR will8

struggle to detect flood waters where buildings are closer together when the distance be-9

tween them is less than the ground resolution of the SAR. Shadow and layover effects due10

to the side-looking nature of the SAR also mean flood detection is more difficult in urban11

areas (Mason et al., 2021a). This will likely only impact a small area of the Hereford12

domain but this observation uncertainty should be considered when interpreting these re-13

sults. There is an area of under-prediction of the flood extent in the centre of the Hereford14

domain visible at all lead times. This could be due to surface water flooding, which most15

likely occurred due to the very high intensity rainfall observed. This combined with the16

urban area and steeply sloping gradient to the north of this area most likely contributed17

to rapid surface water runoff towards the river. Since Flood Foresight is a fluvial flood-18

ing forecast system we would not expect surface water flooding such as this to be predicted.19

20

Flood Foresight selects multiple flood maps and stitches them together when the return21

period threshold is exceeded for a given area. The Hereford section of the Wye does not22

trigger a flood map selection until a 5-day lead time, this area also influences part of the23

River Lugg flood map and can be seen as a mismatch on the lower left hand side of Figure24

3.8g and h. Once this is included the forecast flood map is in very good agreement from a25

5-day lead time. There are areas that could be further improved, indicated by the lighter26

shading (Fig. 3.8i). An acceptable level of agreement scale could be determined for a given27
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situation, for example n < 5, and efforts made to understand/improve larger agreement1

scales at specific locations. These improvements might include changes to infrastructure2

included in the DTM used in the hydraulic modelling, for example.3

3.6.4 SAR-derived flood map scale variation4

In practice, particularly where a flood event is prolonged or the flood extent covers a wide5

area, there may be multiple sources of SAR data available for model evaluation, usually6

at higher spatial resolutions compared to the model grid size (e.g. ICEYE in spot mode7

at 1 m and strip mode at 3 m ground resolution). It is important to consider the impact8

of using observations at different spatial scales on the scale-selective approach results. By9

conducting a simulation experiment we address the question of how re-scaling and inter-10

polating three higher spatial resolution SAR-derived flood maps (relative to the forecast11

flood maps) affects the scale selective skill scores and location-specific forecast skill. In12

order to simulate a range of observation spatial scales, SAR-derived flood maps are pro-13

duced using method two described in Section 3.4.2 at spatial resolutions from 5 m to 2514

m. These are re-scaled by 0-order spline interpolation (ndimage.zoom, 2021; Briand &15

Monasse, 2018) to match the model resolution (25 m) and compared to the forecast flood16

map for the River Lugg (5-day lead time). A comparison of the GEE flood map against17

the HASARD flood map, both at 20 m spatial scale produce almost identical verification18

scores for all performance measures for the River Lugg (∆FSS < 0.01).19

20

The categorical scale maps for the comparison between the forecast flood map and21

the re-scaled simulated SAR-derived flood maps are shown in Figure 3.9. The resulting22

domain-averaged skill scores for the same forecast flood map against the four SAR-derived23

flood maps are displayed in Figure 3.10. The scores are calculated for the whole flood and24

the flood edge alone. In general, the categorical scale maps show similar regions of over25

and under-prediction but there are small location-specific variations in skilful scale. The26
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Figure 3.9: SAR-derived flood maps produced at different spatial resolutions (5 m to 25 m) are
re-scaled to the model grid size (25 m) before categorical scale maps are calculated for the River
Lugg (C), run date 12th Feb.

SAR-derived flood map at 25 m, the same spatial scale as the forecast flood maps, shows1

the best agreement away from the flood edge. This is also evident in the overall FSS score2

for the 25 m comparison, which marginally outperforms the evaluation after re-scaling finer3

observation flood maps (Fig. 3.10). The skilful scale determined for each observation com-4

parison of the whole flood extent is n = 1 or at grid level, and for the flood edge is at n = 5.5

6

Overall, based on the results from this simulation experiment, the scale-selective ap-7

proach is not overly sensitive to the observation spatial scale and the skilful scale deter-8

mined remains the same for each of the observed SAR-derived flood maps for both the9
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Figure 3.10: SAR-derived flood maps at different spatial resolutions (5 m to 25 m) are re-scaled to
the model grid size (25 m) before verification scores are calculated for the whole flood (a) and the
flood-edge (b). Note that axes in (a) and (b) are on different scales.

entire flood extent and the flood edge. Small errors are introduced by re-scaling and in-1

terpolating finer resolution observations to the model spatial scale which slightly reduce2

the skill score and change location-specific details on the categorical scale maps. Obser-3

vation scale selection and re-scaling along with interpolation errors must be considered4

when evaluating model performance, particularly where model or observation scales vary5

in space and time, or where comparisons are made across different models.6

3.7 Discussion and Conclusions7

Overall, the aim of this paper was to introduce and apply a new scale-selective approach8

to forecast flood map evaluation with an emphasis on providing a physically meaningful9

verification of the flood-edge location. The skilful spatial scale for comparison of forecast10

flood inundation maps against SAR-derived observed flood extent has been evaluated by11

the application of the Fraction Skill Score: this provides a domain-averaged skilful scale.12

The verification measure has been applied to a forecast of an extreme flood event in the13

UK on the River Wye and the River Lugg following Storm Dennis in February 2020. Flood14

Foresight inundation predictions with lead times out to 10 days are evaluated against a15
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Sentinel-1 SAR-derived flood map captured close to the flood peak for three domains, each1

differing in hydrological characteristics. Conventional binary performance measures were2

calculated alongside the FSS for comparison. Flood-edge verification shows greater sen-3

sitivity to changes in forecast skill and spatial scale, relative to verification of the entire4

flood extent. The skilful scale determined is physically meaningful and can be used to5

estimate the average flood-edge discrepancy from the observed flood-edge. The observed6

flood map spatial resolution relative to the model scale is important and re-scaling and7

interpolation errors will impact the model verification scores. Ideally, the observed flood8

map should be derived at the same spatial scale as the forecast model to minimise these9

errors.10

11

In operational practice the scale at which the forecast flood maps are presented to12

forecasters and decision makers should reflect the uncertainty within the forecast. Very13

high resolution flood maps can be presented where a detailed DTM is available. If this is14

presented as a deterministic forecast to flood risk management teams, it could lead to an15

over confidence in the forecast, or where the actual observed flood magnitude is different,16

the forecast may be devalued in the future (Savage et al., 2016; Speight et al., 2021).17

Application of a spatial-scale approach to forecast evaluation can determine the scale at18

which it is best to present the forecast flood map. Conversely, if the model is found to19

be skilful at grid level, there is scope to increase the flood map resolution adding more20

detail to the flood-edge location. Improvements made to hydrodynamic models, such as21

through data assimilation to improve inputs, initial conditions or model parameters may22

not improve the forecast flood-edge location at grid level. However, improvements may23

be evident through evaluation using FSS across a range of scales. Categorical scale maps24

are a useful evaluation and forecasting tool, adding location-specific detail. Model im-25

provements can be spatially targeted and as improvements are made, the categorical scale26

map will highlight location-specific changes. For example, the categorical scale maps for27
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Hereford indicate the local infrastructure (in particular bridges) impact the movement of1

the flood wave, which suggests a digital surface model (DSM) would be beneficial in urban2

areas.3

4

The verification approach is presented here in the context of an operational flood fore-5

casting system. The skilful scale determined for each flooding scenario, lead time and at6

specific locations within a domain depends on the skill of the entire hydrometeorological7

chain of forecasting models from the meteorological inputs to the hydrodynamic model8

(run offline in the case study presented here) used to determine the inundation extent for9

a given river discharge. The scale-selective approach is equally applicable for the valida-10

tion of flood maps from hydrodynamic models that are not part of an operational system.11

Here, we focus on the use of SAR-derived flood maps for validation, however the approach12

would apply to any remotely observed flooding such as from optical satellite data or UAV13

aerial imagery that can be converted into a gridded dataset. The FSS must be applied14

to binary data and for this reason it is very easily applicable to flood extent with grid15

cells categorised as flooded/unflooded. In operational forecasting, flood depth is also an16

important metric to verify and by applying a threshold (depths below/above a certain17

level or percentile), the depth data can be converted for application of FSS. The method18

for calculating categorical scale maps does not require binary data and so the depth values19

can be used directly in the calculations.20

21

Ideally, in operational forecast systems, quantitative validation should run in tandem22

with the forecast system where observations are available. Over time, a catalogue of skil-23

ful scales, flood edge discrepancy distances and categorical scale maps could be built up.24

This catalogue would enable analysis of scale across different flood event type, season,25

meteorological scenario, forecast lead time and at specific locations within a catchment or26

sub-catchment. Such a verification library would enable forecasters to increase intuition27
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and expert judgement on the relevant scales for a given forecast. Based on this analysis and1

an increased understanding of the predictability of flood inundation, forecast flood maps2

could be presented at a variable scale. For example, a coarser scale at longer lead times3

becoming more detailed, closer to the flooding event. Coarse scales can appear jagged4

or with large steps along the edge and so ideally these would be converted to smooth5

contours, but with some indication (for example, lighter shading) that the flood edge lies6

somewhere within the width of the grid cell, rather than exactly at the contour edge. At7

shorter lead times, as forecast confidence is assumed to increase, the flood edge location8

would show more detail and a narrower band of uncertainty (grid cell width). This flood9

edge uncertainty information will prove invaluable for impact-based forecasting practice.10

11

The spatial-scale approach will also prove a useful tool in multi-model performance12

comparisons where forecast flood maps are presented at different spatial resolutions or to13

evaluate the performance of an increase in model resolution. Evaluating a skilful scale for14

each model can be compared directly whereas the skill score values should not be compared15

across models with different spatial scales (Emerton et al., 2016). These methods will also16

benefit surface water flooding verification where the flood map is likely to be localised and17

discrete and accounting for variations in spatial skill more critical. An improved approach18

to evaluating forecast flood maps will result in improved accuracy in the predictions of19

flooding. Ultimately, this will benefit disaster management teams and those living in flood20

prone areas to enable future mitigation of flooding impacts.21

3.8 Chapter summary22

In this chapter, we described and applied a scale-selective approach as a new verification23

tool in flood inundation forecasting. The scale-selective approach overcomes issues with24

conventional binary performance measures such as spatial scale dependency and flood25
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magnitude biases. We found that verification of the flood edge gave more sensitive skill1

scores compared to verifying the whole flood extent. The resultant skilful scale can be2

converted into a discrepancy distance between the forecast and the observed flood edge3

location. Finally, a quantitative location specific agreement scale can be plotted on a4

categorical scale map, which also indicates whether the forecast is accurate, over- or under-5

predicting the flood extent at each grid cell location. This enables targeted improvements6

to be made in operational practice. In the next chapter, we develop the method further7

by considering the evaluation of the spatial spread-skill of an ensemble flood map forecast.8
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Chapter 41

Assessing the spatial spread-skill2

of ensemble flood maps with3

remote sensing observations4

In this chapter we address the second research question outlined in Chapter 1; How skilfully5

does an ensemble of forecast flood maps represent the spatial uncertainty within the flood6

forecast?:7

• How can we summarise the spatial predictability information in ensemble flood map8

forecasts?9

• How can we evaluate the spatial spread-skill of an ensemble flood map forecast?10

• How does the spatial spread-skill vary with location and how can this be presented?11

The remainder of this chapter (except for the chapter summary, Section 4.7), has been12

published and is reproduced from (Hooker et al., 2023a).13
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4.1 Abstract1

An ensemble of forecast flood inundation maps has the potential to represent the uncer-2

tainty in the flood forecast and provide a location specific likelihood of flooding. Ensemble3

flood map forecasts provide probabilistic information to flood forecasters, flood risk man-4

agers and insurers and will ultimately benefit people living in flood prone areas. Spatial5

verification of the ensemble flood map forecast against remotely observed flooding is impor-6

tant to understand both the skill of the ensemble forecast and the uncertainty represented7

in the variation or spread of the individual ensemble member flood maps. In atmospheric8

sciences, a scale-selective approach has been used to evaluate a convective precipitation9

ensemble forecast. This determines a skilful scale (agreement scale) of ensemble perfor-10
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mance by locally computing a skill metric across a range of length scales. By extending1

this approach through a new application, we evaluate the spatial predictability and the2

spatial spread-skill of an ensemble flood forecast across a domain of interest. The spatial3

spread-skill method computes an agreement scale at every grid cell between each unique4

pair of ensemble flood maps (ensemble spatial spread) and between each ensemble flood5

map with a SAR-derived flood map (ensemble spatial skill). These two are compared6

to produce the final spatial spread-skill performance. These methods are applied to the7

August 2017 flood event on the Brahmaputra River in the Assam region of India. Both8

the spatial-skill and spread-skill relationship vary with location and can be linked to the9

physical characteristics of the flooding event such as the location of heavy precipitation.10

During monitoring of flood inundation accuracy in operational forecasting systems, valida-11

tion and mapping of the spatial spread-skill relationship would allow better quantification12

of forecast systematic biases and uncertainties. This would be particularly useful for un-13

gauged catchments where forecast streamflows are uncalibrated and would enable targeted14

model improvements to be made across different parts of the forecast chain.15

4.2 Introduction16

Forecast flood maps indicating the extent and depth of fluvial flooding within an action-17

able lead time, are a useful tool for flood risk managers and emergency response teams18

prior to and during a flood event. Typically, forecast flood maps are presented as deter-19

ministic forecasts showing precisely where flooding will occur. This can lead to incidents20

of false alarms or missed warnings and subsequent recriminations causing mistrust in the21

system (Arnal et al., 2020; Savage et al., 2016). A timely prediction of exactly where22

and when fluvial flooding caused by intense or prolonged rainfall will occur is virtually23

impossible due to the chaotic nature of the atmosphere (Lorenz, 1969). The ensemble24

forecasting approach aims to address the sensitivity of the atmospheric dynamics to initial25
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conditions and through multiple model runs these initial condition uncertainties can be1

quantified (Leutbecher & Palmer, 2008). The ensemble forecast results in a probabilistic2

weather forecast that indicates the predictability of the atmosphere at a given space and3

time. State-of-the-art operational ensemble flood forecasting systems link together a chain4

of forecast models to produce probabilistic streamflow and flood inundation forecasts at5

national and global scales (Cloke & Pappenberger, 2009; Emerton et al., 2016; Wu et al.,6

2020). Ensemble Numerical Weather Prediction models provide meteorological inputs into7

land-surface, hydrological and hydraulic models, cascading the atmospheric uncertainty8

through to the flood forecast. Throughout this chain of models, multiple sources of un-9

certainty exist that have been investigated in numerous studies (Beven, 2016; Matthews10

et al., 2022; Pappenberger et al., 2005; Zappa et al., 2011). As discussed by Boelee et al.11

(2019), these uncertainties include those arising from meteorological inputs, measurements12

and observations, initial conditions, unresolved physics within the models and parameter13

estimates. A probabilistic flood inundation forecast should present a meaningful predic-14

tion of the likelihood of flooding so that there is confidence in the forecast, given the15

uncertainties represented in the system (Alfonso et al., 2016).16

17

The accuracy of the location of flooding, predicted in advance, is defined as spatial18

predictability. The spatial predictability of ensemble forecasts of flood inundation could be19

verified by comparing with a remote observation of the flood from satellite or unmanned20

aerial vehicle (UAV) based sensors. Satellite-based optical and Synthetic Aperture Radar21

(SAR) sensors are well known for their flood detection capability (e.g., Horritt et al., 2001;22

Mason, Davenport, et al., 2012; Mason, Schumann, et al., 2012). SAR sensors are active,23

which enables them to scan the Earth through weather and clouds, and at night. The SAR24

backscatter intensity detected depends on the roughness of the surface, with unobstructed25

flooded areas and other surface water bodies appearing relatively smooth and returning26

low backscatter values. Dasgupta et al. (2018) detail some of the challenges along with ap-27
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proaches to solutions of flood detection using SAR, examples of these challenges include:1

roughening of the water surface by heavy rain and strong wind, emergent or partially2

submerged vegetation and flood detection in urban areas. Accurate flood detection in3

urban areas particularly due to surface water flooding has become increasingly important4

(Speight et al., 2021) and recent techniques have led to improved flood detection (Mason5

et al., 2018, 2021a, 2021b). Optical instruments rely on solar energy and cannot pen-6

etrate cloud, making them less useful during a flooding situation. Recent studies have7

investigated the flood detection benefits from combining both optical and SAR imagery8

(Konapala et al., 2021; Tavus et al., 2020). Improvements in the spatial-temporal resolu-9

tion of SAR images and their open source availability mean that they are an increasingly10

valuable tool for hydraulic and hydrodynamic model improvements through calibration,11

validation and data assimilation (e.g., Garćıa-Pintado et al., 2015; Grimaldi et al., 2016;12

Cooper et al., 2018, 2019; Di Mauro et al., 2021; Dasgupta et al., 2018, 2021a, 2021b). The13

Global Flood Monitoring (GFM) product (EU Science Hub, 2021; GFM, 2021; Hostache14

et al., 2021) of the Copernicus Emergency Management Service (CEMS) (Copernicus Pro-15

gramme, 2021) produces SAR-derived flood inundation maps for every Sentinel-1 image16

detecting flooding. Three flood detection algorithms provide uncertainty estimation and17

population affected estimates within 8 hours of the image acquisition. The European18

Space Agency (ESA) Copernicus Programme have recently included the ICEYE constel-19

lation of small satellites into the fleet of missions contributing to Europe’s Copernicus20

environmental monitoring programme (ESA, 2021). ICEYE captures very high resolution21

(spot mode ground range resolution = 1 m) SAR images which brings the potential for22

increased accuracy of flood detection, particularly in urban areas.23

24

To evaluate the accuracy of an ensemble forecast, a number of verification measures25

have been proposed. Anderson et al. (2019) developed a joint verification framework for26

end-to-end assessment of the England and Wales Flood Forecasting Centre (FFC) ensem-27
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ble flood forecasting system. Anderson et al. (2019) describe verification metrics such as1

the continuous rank probability score (CRPS), rank histograms, Brier Skill Score (BSS)2

and the relative operative characteristics (ROC) diagrams that are commonly applied to3

assess the main ensemble attributes desirable in both precipitation and streamflow ensem-4

ble forecasts (e.g., Renner et al., 2009). These metrics refer to flooding events as part of5

a time series evaluated against a reference benchmark, such as climatology, to produce an6

average skill score. In contrast, here we consider ensemble spatial verification at a single7

time point. The verification of ensemble forecasts usually involves comparing the RMSE of8

the ensemble mean against an observed quantity to assess the skill of the forecast with the9

ensemble standard deviation used as a measure of spread. A perfect ensemble should en-10

compass forecast uncertainties such that the ensemble spread is correlated to the RMSE of11

the forecast (Hopson, 2014). This spread-skill relationship was assessed by Buizza (1997)12

to investigate the predictability limits of the European Centre for Medium-Range Weather13

Forecasts (ECMWF) Ensemble Prediction System (EPS). This approach to ensemble ver-14

ification is based on point values and makes the assumption that the ensemble mean is the15

forecast state with the highest probability and that the forecast distribution is Gaussian.16

Significant flooding events are, in their nature, a rare occurrence and in certain circum-17

stances a few ensemble members can indicate a low probability of an extreme flood. Also,18

in particular atmospheric scenarios the ensemble forecast may result in a multi-modal19

forecast where two clusters of ensemble members are each equally likely (Galmiche et al.,20

2021). For example, both clusters may indicate flooding events but at different magni-21

tudes. In both of these instances the individual ensemble member details are important22

and evaluation of the ensemble mean alone would not be meaningful. When mapping the23

flood extent prediction, the ensemble mean field alone does not retain the spatial detail of24

the individual member forecasts.25

26

The spatial spread-skill of the ensemble forecast is determined by evaluating the full27
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ensemble against observations of flooding. For a flood map ensemble to be considered1

spatially well-spread, the spread or variation between ensemble members should equal the2

spatial predictability, or skill of the ensemble members (Dey et al. (2014), see Section3

4.3). Presently, to the best of our knowledge, quantitative evaluation methods assessing4

the spatial spread-skill of ensemble forecast flood maps do not exist. However, previous5

work in numerical weather prediction by Ben Bouallègue and Theis (2014) investigated6

the application of spatial techniques to ensemble precipitation forecasts using a neighbour-7

hood, or fuzzy approach that allowed comparisons at larger scales than grid level (native8

resolution). A location dependent approach to the spatial spread-skill evaluation of a9

convective precipitation ensemble forecast was developed by Dey, Roberts, et al. (2016).10

This method compares every ensemble member across a range of scales on a spatial field11

against an observation field to assess whether the ensemble forecast is spatially over-,12

under- or well-spread on average across a domain of interest (Chen et al., 2018). In a13

recent study, a scale-selective approach was developed and applied to evaluate a deter-14

ministic flood map forecast where comparisons were made against conventional binary15

performance measures (Hooker et al., 2022). A scale-selective approach to flood map eval-16

uation was found to have several benefits over conventional binary performance measures.17

These include over-coming the double penalty impact problem when validating at higher18

spatial resolutions and accounting for the impact of the flood magnitude on the skill score.19

The work described here extends and applies this scale-selective approach to assess the20

spatial predictability and the spatial spread-skill of an ensemble flood map forecast.21

22

In this paper we aim to address the following questions:23

• How can we summarise the spatial predictability information in ensemble flood map24

forecasts?25

• How can we evaluate and visualise the spatial spread-skill of an ensemble flood map26
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forecast?1

• How does the spatial spread-skill vary with location and how can this be presented?2

In Section 4.3 we present a new approach to the evaluation of spatial predictability and3

the spatial spread-skill of an ensemble flood map forecast by comparing against a remotely4

observed flood extent. We illustrate the features of the methods through an example case5

study of an extreme flooding event of the Brahmaputra River which impacted India and6

Bangladesh in August 2017, with focus on the Assam region of India. The flood event7

details are described in Section 4.4.1. The international ensemble version of the JBA8

Consulting Flood Foresight system provides forecast flood maps for the study and is9

described in Section 4.4.2. Observations of the flood are derived from satellite based SAR10

sensors and the method is explained in Section 4.4.3. The results including the Spatial11

spread-skill (SSS) map are discussed in Section 4.5. Our results show that individual12

ensemble member spatial predictions of flooding are meaningful and that the full ensemble13

spatial detail should be evaluated. We conclude in Section 4.6 that the spatial spread-14

skill of the ensemble forecast varies with location across the domain and can be linked to15

physical characteristics of the flooding event.16

4.3 Ensemble flood map spatial predictability evaluation17

methods18

In this Section we present new methods for evaluating and visualising the spatial-spread19

skill of an ensemble flood map forecast. Hooker et al. (2022) described and applied a new20

scale-selective approach to evaluate the spatial skill of a deterministic flood map forecast21

relative to an observed SAR-derived flood map. Here, we apply this same measure to22

evaluate different aspects of an ensemble forecast. The scale-selective Fraction Skill Score23

(FSS) method is outlined in Section 4.3.1. Agreement scale maps indicating forecast ac-24
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curacy are defined for location-specific comparisons between forecast and observed flood1

maps in Section 4.3.2. These are used to assess the spatial relationship between each2

unique pair of ensemble member flood maps (member-member) and between every ensem-3

ble member flood map and the observed SAR-derived flood map (member-SAR, Section4

4.3.3). Visualisation methods of the spatial spread-skill relationship including the Spatial5

Spread-Skill (SSS) map are presented in Section 4.3.4.6

4.3.1 Fraction Skill Score7

The FSS is a scale-selective verification measure that can determine the skilful scale of

a modelled flood map, when compared against a remotely sensed observation of flooding

(Roberts & Lean, 2008; Hooker et al., 2022). We will call these flood maps the model

array and the observed array respectively. For an ensemble forecast, the model array

could be an individual ensemble member, or a summarised flood estimate derived from a

combination of ensemble members such as a combined ensemble or the ensemble median

(see Section 4.4.4). Both the model and observed arrays are converted into binary fields

using a situation dependent threshold (e.g. depths greater than 0.2 m are labelled flooded).

For this ensemble application of the FSS we evaluate the entire flood extent across the

domain. Each grid cell is labelled as inundated (1) or dry (0). All grid cells are numbered

according to their spatial locations (i, j), i = 1 . . . Nx and j = 1 . . . Ny where Nx is the

number of columns and Ny is the number of rows. Surrounding each grid cell, a square of

length n creates an n×n neighbourhood. The fraction of 1s (inundated cells) in the square

neighbourhood area is calculated for every grid cell. This creates two arrays of fractions

across the domain for both the observed Onij and modelled Mnij data. The mean squared

error (MSE) for the fraction arrays is calculated for the domain and a given neighborhood

size, n:

MSEn =
1

NxNy

Nx∑
i=1

Ny∑
j=1

[Onij −Mnij ]
2. (4.1)
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A potential maximum MSEn(ref) depends on the fraction of flooding in the domain for

the modelled and observed fields and is calculated as:

MSEn(ref) =
1

NxNy

Nx∑
i=1

Ny∑
j=1

[O2
nij +M2

nij ]. (4.2)

Finally, the FSS is

FSSn = 1− MSEn

MSEn(ref)
. (4.3)

The FSS is initially calculated at grid level (n = 1) followed by the smallest neigh-

bourhood size (n = 3) before increasingly larger neighbourhood sizes (n = 5, n = 7...)

are considered. The FSS ranges between 0 (no skill) and 1 (perfect skill). Increasing the

neighbourhood size typically leads to an improved FSS as the fractions are calculated over

a larger area. Plotting FSS against the neighbourhood size can indicate a range of scales

where the model is deemed to be the most skilful. A target FSS score (FSST ) can be

determined from the fraction of observed flooding across the whole domain (f0):

FSST ≥ 0.5 +
fo
2
. (4.4)

The point where the FSSn exceeds FSST can be viewed as being equidistant between the1

skill of a random forecast and perfect skill (Roberts & Lean, 2008). A recent study by2

Skok and Roberts (2018) investigated the sensitivity of the calculated skilful scale to the3

constant value (0.5) in Eq. (4), and found that 0.5 gave meaningful results compared with4

the measured displacement. The magnitude of the observed flood, relative to the domain5

area, determines the value of FSST . This allows the comparison of the skilful scale6

(neighbourhood size) where FSST is reached across different domain sizes and floods of7

different magnitudes.8
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4.3.2 Location dependent agreement scales1

The FSS (Section 4.3.1) gives a domain average measure of forecast performance and2

a minimum spatial scale at which the forecast is deemed skilful. To enable the spatial3

spread-skill of the full ensemble to be evaluated at specific locations, we first define an4

agreement scale (see Dey et al. (2014); Dey, Roberts, et al. (2016); Hooker et al. (2022)5

for full methodology). The agreement scale is calculated and mapped for every grid cell6

in the domain and shows a measure of similarity between two arrays of data. In contrast7

to the FSS method the arrays are not required to be thresholded. The agreement scale8

method can be applied to both binary flood extent maps as well as flood depth fields.9

These could both be ensemble member flood maps or an ensemble member flood map10

and an observed flood map. Two data arrays are compared F1ij and F2ij and the aim11

is to find a minimum neighbourhood size (or spatial scale) for every grid cell such that12

there is a predetermined acceptable minimum level of agreement between F1ij and F2ij .13

This is known as the agreement scale S
A(F1F2)
ij . (Note that the relationship between the14

agreement scale and the neighbourhood size described previously in section 4.3.1 is given15

by S
A(F1F2)
ij = (n − 1)/2.) The agreement scale (now defined S for simplicity in the16

following equations) is determined individually for every grid cell by testing and meeting17

a chosen criteria.18

A relative MSE, DS
ij is calculated for all grid cells, initially at grid level, S = 0 (n = 1),

DS
ij =

(FS
1ij − FS

2ij)
2

(FS
1ij)

2 + (FS
2ij)

2
. (4.5)

If F1ij = 0 and F2ij = 0 (both dry) then DS
ij = 0 (correct at grid level). The value of DS

ij

ranges between zero and 1. The arrays are deemed to be in agreement at the scale being

tested if:

DS
ij ≤ DS

crit,ij where DS
crit,ij = α+ (1− α)

S

Slim
(4.6)
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The parameter value α indicates an acceptable bias at grid level such that 0 ≤ α ≤ 1.

Additional historical forecast data of flood events is not available for the region in this

study, so we assume there is no background bias between the forecast and the observations

and set α = 0. A fixed maximum scale Slim is predetermined using human judgement

considering the physical characteristics of the flood event. The value chosen for Slim

depends on the magnitude of the flood extent relative to the size of the sub-catchment. For

the case study presented here, we set Slim = 80 (2400 m), which is approximately 1
4 to 1

2 of

the sub-catchment widths in the domain. IfDS
ij ≥ DS

crit,ij then the next neighbourhood size

up is considered (S = 1, n = 3, a 3 by 3 square) where F 1
1ij and F 1

2ij are arrays containing

the average value of each neighbourhood surrounding the grid cell at position (i, j) for

each array. The process continues by comparing increasingly larger neighbourhoods (e.g.

S = 2, n = 5, a 5 by 5 square) until the agreement criterion:

S
A(F1F2)
ij or Slim at DS

ij ≤ DS
crit,ij (4.7)

is met for every cell in the domain. The agreement scale at which the agreement criterion1

is met will usually vary from grid cell to grid cell and these values (S = 0, S = 1, S = 2 and2

so on up to Slim), each specific to each grid cell location can be mapped onto the domain3

of interest to provide a location specific measure of agreement between the two data arrays4

that are compared. A small value for the agreement scale means that the two arrays being5

compared are very similar (spatially) at a specific location, whereas a large value for the6

agreement scale means that the two arrays being compared are dissimilar. Note that the7

skilful scale determined by the FSS (Section 4.3.1) differs from the agreement scale defined8

here. The former links directly with the spatial differences between objects e.g. Skok and9

Roberts (2018), whereas the latter reflects a pre-defined acceptable bias at different scales.10

11

Validation of forecast flood maps against remotely observed flood extent is typically12
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carried out by labelling each grid cell using a contingency table with categories: cor-1

rectly predicted flooded, under-prediction (miss), over-prediction (false alarm) and cor-2

rectly predicted unflooded. In the contingency table under-predicted cells are set to +1,3

over-predicted cells are set to -1, correctly predicted flooded cells are assigned NaN and4

correctly predicted unflooded cells are set to 0. Mapping these categories creates a con-5

ventional contingency map, which combined (by element-wise array product) with an6

agreement scale map (Eq. (7)) creates a categorical scale map made by plotting the ab-7

solute agreement scale values coloured according to the contingency class. A categorical8

scale map shows a measure of spatial accuracy between two data arrays (Hooker et al.,9

2022). Categorical scale maps may be used as a basis for comparison between ensemble10

members and observations, as we illustrate with our case study in Section 4.5.3.11

12

4.3.3 Ensemble spatial spread-skill evaluation13

We assume that each ensemble forecast flood map represents an equally likely future sce-14

nario and the evaluation of the full ensemble is needed to quantify the uncertainty and to15

evaluate the spatial spread-skill relationship. The ensemble flood map spatial character-16

istics vary with location and in order to preserve the location dependent information, we17

utilise a method developed to evaluate a convective ensemble precipitation forecast (Dey,18

Roberts, et al., 2016; Dey, Plant, et al., 2016). Here, we outline the method and describe19

a new application to evaluate an ensemble forecast flood map.20

21

A neighbourhood approach (Section 4.3.2) is used to assess the spatial agreement scale

S
A(F1F2)
ij or measure of similarity at each grid cell location (i, j) between each unique pair

of ensemble flood maps. For an ensemble of M members, there are

Mp =
M(M − 1)

2
, (4.8)
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unique pairs (e.g., 1275 pairs for a 51 member ensemble). For an ensemble, the skillful

scale can be renamed as a believable scale, which is the scale where ensemble members

become sufficiently similar to observations such that they are a useful prediction. Every

paired ensemble agreement scale field is averaged at each grid cell to produce a mean field,

from the agreement scale field defined in Eq. (7)

S
A(mm)
ij =

1

Mp

M−1∑
F1=1

M∑
F2=F1+1

S
A(F1F2)
ij (4.9)

indicating the location specific believable scales of the forecast flood map ensemble. Maps

of S
A(mm)
ij summarise the spatial spread of the full ensemble. Each of the agreement scale

fields between the ensemble members and the observations are also averaged at each grid

cell to give

S
A(mo)
ij =

1

M

M∑
f=1

S
A(F0)
ij . (4.10)

A measure of the spatial spread-skill of the ensemble can be found by comparing the1

average agreement scale between the ensemble members S
A(mm)
ij representing the ensemble2

spread with the average agreement scale between the ensemble members and the observed3

flood field S
A(mo)
ij representing the ensemble skill.4

4.3.4 Spatial spread-skill visualisation methods5

To evaluate the spatial spread-skill relationship, S
A(mm)
ij (representing the ensemble spread)6

must be compared in the same location as S
A(mo)
ij (representing the ensemble skill). Data7

arrays can be visually compared using a binned scatter plot that averages across a selected8

bin of cells at the same location within the domain. Dey, Roberts, et al. (2016) demon-9

strated for an idealised example that by plotting S
A(mm)
ij against S

A(mo)
ij as a binned scatter10

plot in order to preserve the spatial location of the comparison (Fig. 4.1), the ensemble11

can be classified as over-, under- or well-spread. The ensemble is deemed to be well-spread12
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at a specific location in the domain of interest when the spread of the individual members1

represented at each grid cell by S
A(mm)
ij equals the skill of the ensemble represented at2

each grid cell by S
A(mo)
ij , i.e. S

A(mm)
ij − S

A(mo)
ij = 0. The result would lie on a 1:1 line3

on the binned scatter plot. Where the spread between the ensemble members exceeds4

the skill of the ensemble forecast i.e. S
A(mm)
ij > S

A(mo)
ij the ensemble is considered to be5

over-spread and the binned scatter plot will lie beneath the 1:1 line. The converse is true6

for an under-spread ensemble forecast where the agreement between members, the spread,7

is less than the agreement between the ensemble and the observations, the skill. Here,8

S
A(mm)
ij < S

A(mo)
ij and the binned scatter plot would lie above the 1:1 line.9

10

To summarise the spread-skill relationship we develop this visualisation further by11

plotting a hexagonal binned 2D histogram plot (an example hexbin plot is presented12

in Section 4.5.3). The domain is divided into a (pre-determined) number of hexagons.13

Hexagons minimize the perimeter to area ratio and therefore minimize the edge effects.14

The hexbin histogram plot colour shade represents the number of data points within each15

bin.16

17

Whilst the hexbin plot is useful for gaining an understanding of the general spread-skill18

relationship of the ensemble flood map forecast, it does not tell us specifically where in19

the domain the ensemble spatial predictability is better or worse. The Spatial Spread-Skill20

(SSS) map plots S
A(mm)
ij − S

A(mo)
ij at every grid cell location so that the spread-skill is21

mapped across the domain and can be linked directly to different sub-catchments and sur-22

face features such as tributaries, embankments, bridges and importantly the underlying23

topography or DTM, which influence the derivation of the ensemble flood maps. Regions24

on the SSS map where the ensemble is over-spread are positive with negative areas in-25

dicating where the ensemble is under-spread, zero values show a well-spread ensemble.26

Note that this does not necessarily mean that the entire ensemble is in agreement with27
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Figure 4.1: Figure reproduced with permission from Dey et al., (2016) showing results on a binned
scatter plot from an idealised experiment indicating the spatial spread-skill relationship between an
ensemble forecast and the observation.

observations at grid level, but that the agreement scales between S
A(mm)
ij and S

A(mo)
ij are1

equal. (An example SSS map is presented in Section 4.5.3).2

4.4 Ensemble forecasting flood event case study3

In this section we describe an example flooding event used to demonstrate the application4

of the spatial spread-skill evaluation approach. We evaluate a 1-day lead time flood inun-5

dation 51 ensemble member forecast from the Flood Foresight system (Section 4.4.2) for6

the domain area against a satellite SAR-derived flood map (Section 4.4.3).7
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4.4.1 Brahmaputra flood, Assam India, August 20171

The origin of the Brahmaputra River (also known as the Yarlung Tsangpo in Tibetan,2

the Siang/Dihang River in Arunachali, Luit in Assamese, and the Jamuna River in3

Bangladesh) lies in the Himalayan Kailas Range of southwestern Tibet, China. Draining4

an area of 543,000 km2, the Brahmaputra flows for 2000 km across the Tibetan Plateau5

and a further 1000 km parallel to the Himalayan foothills through the Assam Valley, India6

before entering Bangladesh where the Brahmaputra joins the Ganges River (Palash et7

al., 2020). The Brahmaputra baseflow originates from the upstream glacial snow melt,8

however the streamflow rates are dominated by the summer monsoon precipitation. The9

basin receives up to 95% of its annual rainfall during the pre-monsoon and monsoon season,10

which usually runs from April to September and causes annual flooding of the Brahma-11

putra. The Assam region typically records on average 2300 mm of annual rainfall and up12

to 5000 mm in the Himalayan foothills (Dhar & Nandargi, 2000, 2003).13

14

For this example case we focus on the third wave of flooding that occurred during the15

monsoon season in August 2017, peaking around the 12th. Figure 4.2 shows the location16

of the Brahmaputra and of a chosen domain centred upon some of the worst flooding17

that occurred. This area includes a confluence zone where the Subansiri River meets the18

Brahmaputra. The monsoon flooding impacted an estimated 40 million people across India19

and Bangladesh. Locally in the Assam region, the flooding in August affected over 3.320

million people and approximately 3200 villages, river embankments were damaged in 1121

districts. Over 14,000 people were evacuated to one of around 700 relief camps that were22

also needed to house over 180,000 people relocated (Floodlist, 2017). The local Assam23

State Disaster Management Authority (ASDMA, 2017) flood early warning system issued24

a low warning alert (disasters that can be managed at the district level) on the 10th August25

for the district.26
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Figure 4.2: Left panel: domain location on the Brahmaputra River in the Assam region of India.
Domain size is 57.5 km by 39.3 km. Right panel: Sentinel-1 SAR-derived flood map and permanent
water bodies from the JRC Global Surface Water database for the domain of interest (DOI). Base
map from ©Google Maps.

In 2017, the southwest monsoon season rainfalls were predicted to be normal by the1

South Asian Climate Outlook Forum (WMO, 2017). However, the pre-monsoon season2

began early in the year with heavy thunderstorms affecting the region from March on-3

wards. In the Assam region, June and July were 60% wetter than the previous three years4

and during August more locally intense rainfall was recorded compared with historical5

observations (Palash et al., 2020). In higher latitude areas, 30 km to the north of the6

domain at North Lakhimpur, 215.8 mm rainfall was recorded in the three days prior to7

the flood peak (Floodlist, 2017; Hossain et al., 2021). An above normal flood situation8

is declared in India where the river water level exceeds the Warning Level, a severe flood9

occurs where the water level exceeds the Danger Level, and an extreme flood occurs where10

the previous Highest Flood Level is exceeded (Central Water Commission, 2023). The11

peak water level recorded downstream at Tezpur (Danger Level 65.23 m) on August 14th12

was 66.12 m. There are regional variations in maximum water levels reported, with upland13
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regions to the north of the Assam valley recording water levels that exceed the previous1

Highest Flood Level indicating an extreme flood level (Floodlist, 2017).2

3

4.4.2 Ensemble flood forecasting system4

The Flood Foresight system (Fig. 4.3), developed and operationally run by JBA Con-5

sulting, is a fluvial flood inundation mapping system that can be implemented at any6

river basin around the world. Flood Foresight utilises a simulation library approach to7

generate real-time and forecast flood inundation and water depth maps. The simulation8

library approach saves valuable computing time and allows the application of Flood Fore-9

sight in near continuous real-time at national and international scales. A pre-computed10

library of flood maps for a river basin or country are created using JFlow®(where a DTM11

is available), (Bradbrook, 2006) and RFlow (where a DTM is unavailable). JFlow uses12

a raster-based approach with a detailed underlying digital terrain model (DTM) and a13

diffusion wave approximation of the full 2D hydrodynamic shallow water flow equations.14

RFlow combines a 1D model based upon Normal Depth calculations, optimised for use on15

a Digital Surface Model (DSM, NEXTmap (2016)) with rapid 2D flood spreading (cre-16

ated by spreading Normal Depth from upstream to downstream) and is calibrated against17

JFlow. These equations capture the main controls of the flood routing for shallow, topo-18

graphically driven flow. Six flood maps at 30 m resolution are created for 20, 50, 100, 200,19

500 and 1500 year return period flood events (corresponding to annual exceedance prob-20

abilities (AEPs) of 5%, 2.5%, 1%, 0.5% and 0.2% and 0.07% respectively). Between each21

adjacent pair of modelled return period maps, five additional intermediate flood maps are22

created by linear interpolation of both flood depth and extent. An additional five flood23

maps are also created beneath the lowest return period flood map. This gives, in total, a24

library of 36 flood maps. Note that these flood maps are undefended and local temporary25

flood defences are not included. Flood foresight is set up for a region by dividing the river26
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basin into sub-catchments using the HydroBASINS data-set (level 12) (Lehner, 2014a).1

Flood Foresight takes gridded inputs of ensemble forecast streamflow and uses these to2

select the most appropriate flood map for each sub-catchment. These are mosaicked to-3

gether and forecasts of ensemble flood maps are produced daily, out to ten days ahead.4

5

Figure 4.3: Flood Foresight ensemble forecast flood inundation and impact mapping work flow.
Prepared by JBA Consulting.

The global (non UK and Ireland) configuration of Flood Foresight uses ensemble6

streamflow forecast data from the Global Flood Awareness System (GloFAS) (Alfieri et7

al., 2013; GloFAS, 2021). GloFAS was jointly developed by the European Commission8

and the European Centre for Medium-Range Weather Forecasts (ECMWF) and is com-9

posed of an integrated hydro-meteorological forecasting chain that couples state-of-the-art10

weather forecasts with a land surface and hydrological model. With its continental scale11

set-up, GloFAS provides downstream countries with forecasts of upstream river conditions12
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up to one month ahead as well as continental and global overviews for large world river1

basins. Meteorological forecast data are provided by the ECMWF Ensemble (IFS) model,2

the operational (51 member) ensemble weather forecasting product of the ECMWF. The3

meteorological forecast data provide inputs to the land surface module, HTESSEL (Hydro-4

logical Tiled ECMWF Scheme for Surface Exchange over Land). HTESSEL simulates the5

land surface response to the meteorological data, based on simulated interactions with soil6

conditions, idealised vegetation cover and land cover. From these simulations, HTESSEL7

outputs forecast global surface and sub-surface flows per grid cell. These simulated flows8

are then used by a simplified version of the hydrological model LISFLOOD, a 1D routing9

model which simulates the movement of the surface and sub-surface flows. The runoff data10

produced is routed through a representation of the river network using a double kinematic11

wave approach, which includes bankfull and over bankfull routing. The river network used12

is taken from the HydroSHEDS data-set (Lehner & Grill, 2013).13

14

GloFAS outputs a gridded (approximately 10 km spatial resolution) ensemble forecast15

of river streamflow (Fig. 4.4). Each of the GloFAS grid cells are linked to the sub-16

catchments in the Flood Foresight system. The simulation library flood maps are selected17

when the forecast streamflow exceeds a return period threshold level within each sub-18

catchment. The RP threshold levels are calculated using ERA5 reanalysis data (Harrigan19

et al., 2020). Each ensemble member flood map forecast is created by aggregating the20

individual sub-catchment maps. In summary, the meteorological IFS 51 member ensem-21

ble input to the flood forecasting chain allows atmospheric evolution uncertainties to be22

represented within the ensemble streamflow forecast and the ensemble of inundation flood23

maps, thus creating a probabilistic flood map forecast, indicating the likelihood of flood-24

ing. Flood foresight produces daily ensemble flood depth and extent forecasts at 30 m25

spatial resolution out to 10-days.26
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Figure 4.4: GloFAS grid, permanent water bodies and Flood Foresight sub-catchments for the
domain of interest (DOI).

4.4.3 SAR-derived flood map1

A Sentinel-1 (S1A) image was acquired in interferometric wide swath mode (swath width2

250 km) around the time of the flood peak at 17:18 (IST) on the 12th August 2017. The3

ESA Grid Processing on Demand (GPOD) HASARD service (service terminated June4

2021) was utilised to map the flooding. The flood mapping algorithm (Chini et al., 2017)5

uses an automated, statistical, hierarchical split-based approach to distinguish between6

two classes (background and flood) using a pre-flood and flood image. A pre-flood image7

(February 2017) from the same satellite sensor and track was used to derive the flood map8

(Fig. 4.2). Original SAR images (VV polarisation) were pre-proccesed, which involved:9

precise orbit correction, radiometric calibration, thermal noise removal, terrain correction,10

speckle reduction and re-projection to the WGS84 coordinate system. The HASARD11

mapping algorithm removes permanent water bodies that are detected on the pre-flood12

image, such as the unflooded river water, lakes and reservoirs by applying a thresholding13

approach. Flooded areas beneath vegetation, bridges and near to buildings will not be14

detected using this method. Flood Foresight forecast flood maps include the river channel15
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and exclude surface features such as vegetation and buildings. To smooth the HASARD1

flood maps and allow a fairer comparison we apply a morphological closing operation2

(without impacting the location of the flood extent) to flood fill vegetation and buildings.3

The wide and braided Brahmaputra River in the Assam region covers a significant area of4

the selected domain. In order to evaluate the flood prediction accuracy alone, the pre-flood5

occurrence of surface water using the JRC Global Surface Water database (Pekel et al.,6

2016) has been removed from the Flood Foresight forecast inundation maps. The observed7

flood extent derived from satellite based SAR data at 20 m grid size is re-scaled to match8

the forecast flood map grid size (30 m) using average aggregation. The closest available9

(cloud free) optical image available was a Sentinel-2 image on the 17th August 2017, 5 days10

after the SAR image acquisition. During this time the flood waters had receded from their11

peak, which makes this unsuitable for comparison with the SAR-derived flood map. Since12

no other validation sources are available, for the purposes of this study we assume that the13

SAR-derived observation of flooding represents the true flood extent. From October 2021,14

Sentinel-1 SAR images are processed by CEMS GFM (GFM, 2021) to derive flood extent15

and provide an uncertainty estimate of the grid cell classification. This means uncertainty16

information in the SAR-derived flood map could be accounted for in future evaluation17

studies by verifying across different levels of observation uncertainty. Additionally, a flood18

mask, indicating areas where flood detection using SAR data is not currently possible19

(at the Sentinel-1 spatial resolution) could be used to exclude areas from the evaluation20

process (note that this was not possible for this case study, since this information was not21

available in 2017).22

4.4.4 Forecast data23

Flood Foresight was set-up for the Brahmaputra basin in India and Bangladesh using the24

simulation library approach to flood mapping described in Section 4.4.2. Flood maps were25

pre-computed for the domain of interest (Fig. 4.2) using a DSM and RFlow. The forecast26

75



Chapter 4. Assessing the spatial spread-skill of ensemble flood maps with remote sensing
observations

data for the Brahmaputra flood event contains a 51 member ensemble of flood maps1

indicating flood extent, produced at a 1-day lead time. Vertically stacking each individual2

ensemble member flood map and adding vertically across every grid cell combines all3

ensemble members into a single flood map (all flooded grid cells are set to 1) showing4

where flooding is possible across all members (ensall). A spatial median flood map is5

created (ensmedian) where 26 members or more predict flooding at a particular grid cell6

location. Each of the ensemble member flood maps for the domain are plotted in Figure7

4.5 along with ensall, ensmedian and the SAR-derived flood map.8

Figure 4.5: Brahmaputra River, Assam region, August 2017. 51 ensemble member forecast flood
maps (labelled 0 to 50), ensmedian and ensall all at 1-day lead time and the Sentinel-1 SAR-derived
flood map.

Figure 4.6 shows the amalgamated probabilistic ensemble forecast indicating the prob-9

ability of flooding at each grid cell location. This was produced by vertically stacking each10

ensemble member flood map and adding vertically the number of flooded cells at each11

grid cell location across all ensemble members. The total is divided by 51 to calculate12
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the probability. Dark blue colours near to the central river channel indicate agreement1

between all ensemble members and 100% forecast probability of flooding, lighter colours2

to the north of the river indicate a low probability of flooding.3

Figure 4.6: Brahmaputra River, Assam region, August 2017. Colour shading from white (low) to
dark blue (high) indicate the forecast probability of flooding based on a 1-day lead time, 51 ensemble
member flood map forecast for the Brahmaputra River in the Assam region, August 2017. (Note
map background is grey)

4.5 Results and discussion4

To demonstrate an application of the spatial scale approach to both ensemble forecast5

flood map evaluation of forecast skill and the spatial spread-skill relationship, we apply6

the methods outlined in Section 4.3 to the flooding case described in Section 4.4.1. First,7

in Section 4.5.1 we verify the full ensemble using a spatial scale approach to calculate a8

skilful scale of agreement between each ensemble member and the SAR-derived flood map9

(Fig. 4.2) along with the combined ensemble (ensall) and the ensemble spatial median10

(ensmedian). We evaluate the location specific spatial skill of the ensemble by calculating11
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categorical scale maps (Section 4.5.2) for ensall, ensmedian and a best and worst case1

ensemble members determined by the skilful scale calculated in Section 4.5.1. In Section2

4.5.3 we evaluate the spatial predictability of the full ensemble and show this on the3

Spatial Spread-Skill (SSS) map, indicating regions where the ensemble is over-, under- or4

well-spread.5

4.5.1 Ensemble spatial scale evaluation6

Here we investigate how a scale-selective approach can be useful for extracting meaning-7

ful information from a flood map ensemble forecast where multiple forecast flood maps8

represent equally likely flooding scenarios (Fig. 4.5). A minimum skilful scale (where9

FSS > FSST ) has been calculated for each individual member flood map, ensall and10

ensmedian. The results in Figure 4.7 show that individual ensemble member spatial skill11

varies considerably with FSS at grid level ranging from 0.35 to 0.59. One member ens1,12

which would usually be disregarded as an outlier due to its low probability, outperformed13

all other members significantly with a skilful scale achieved at a neighbourhood size of14

n = 3. The combined ensall showed more skill at grid level (n = 1) and smaller neigh-15

bourhood sizes compared with ensmedian, both however exceeded FSST at n = 41, or 61516

m. At neighbourhood sizes greater than n = 41, ensmedian outperformed ensall. There is a17

cluster of members showing similar skill to ensmedian and ensall and a second cluster, with18

more ensemble variation but indicating lower skill than the first cluster. The ensmedian and19

ensall flood maps outperform the second cluster, however there are individual members20

with a higher spatial skill score compared to ensmedian and ensall. These results show that21

all ensemble member flood maps, including outliers, should be considered individually as22

possible future flooding scenarios. Spatial variations across individual ensemble members23

(see Fig. 4.5 ens1 compared to ensmedian) indicate that it is not meaningful to consider24

only the ensemble median flood map to represent the information within the full ensemble.25
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Figure 4.7: The spatial skill of each individual ensemble member forecast flood extent is evaluated
along with the ensmedian (a spatial median where 26 or more members predict flooding at a grid
cell location) and ensall (flooded grid cells from all ensemble members are combined). The FSS is
calculated at increasing neighbourhood sizes to determine the scale at which the forecast becomes
skilful at capturing the observed flood (FSST ).

4.5.2 Ensemble spatial predictability1

The scale-selective skill scores calculated for different aspects of the ensemble forecast2

give a domain-averaged score and skilful scale. To understand location specific spatial3

predictability of the ensemble forecast, categorical scale maps are calculated and presented4

in Figure 4.8. These show how the agreement scale (Section 4.3.2) varies with location for5

(a) ensall, (b) ensmedian, (c) ens1, the ‘best’ performing ensemble member and (d) ens21,6

the ‘worst’ performing ensemble member. The ensemble summary map, ensall (Fig. 4.87

(a)) captures most of the observed flooding (in grey) with small regions of under-prediction8

(red). However, as you might expect to see by including every potential flooding realisation9

there are significant regions of over-prediction (blue) or false alarm. The region of over-10
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prediction to the south of the river is less evident in the ensmedian categorical scale map1

(Fig. 4.8 (b)) which performs worse to the north by under-predicting flooding here. This2

flooding is captured well by ens1 (Fig. 4.8 (c)) and in particular close to a confluence zone3

where the Subansiri River joins the Brahmaputra (grid cell location (1100, 250)). This4

ties in with the high rainfall totals accumulated just to the north of this region associated5

with localised very heavy rainfall (Floodlist, 2017). A region of under-prediction at grid6

cell location (750, 750) is missed by all members. In future work, a closer inspection7

of the DTM or surface features included/excluded in the hydraulic modelling, such as8

embankment heights, may indicate how this modelling could be improved. The ‘worst’9

performing ensemble member ens21 (Fig. 4.8 (d)) accurately predicts flooding closer to10

the river channel, however under-prediction to the north along with over-prediction to the11

south show where the forecast was inaccurate. Categorical scale maps enable different12

ensemble flood map presentations to be evaluated so that the most useful presentation13

method can be determined for a particular flooding situation.14

4.5.3 Ensemble spatial spread-skill15

To evaluate the location specific skill of the full ensemble, one option would be to calculate16

51 categorical scale maps from each individual member flood map (Fig. 4.5). This ap-17

proach maintains the spatial detail held within each of the ensemble member flood maps,18

although does require multiple visual comparisons to be made by the flood forecaster or19

modeller, which takes time and effort. Making comparisons across the different ensemble20

member flood maps in Figure 4.5 provides a demonstration of these forecasting difficulties.21

Further, the categorical scale maps do not evaluate the ensemble spatial spread. To ad-22

dress this, we develop a Spatial Spread-Skill (SSS) map (derived from Fig. 4.9, presented23

in Fig. 4.10) showing the spread-skill of the full ensemble forecast and keeping the loca-24

tion specific detail. All ensemble members are included in this analysis which evaluates25

both the spatial skill and the ensemble spatial spread of the forecast against the remotely26
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Figure 4.8: Brahmaputra River, Assam region, August 2017. Categorical scale maps for (a) ensall
(flooded grid cells from all ensemble members are combined), (b) ensmedian (a spatial median where
26 or more members predict flooding at a grid cell location), (c) individual ensemble member 1 and
(d) individual ensemble member 21. Red areas indicate where the forecast is under-predicted and
blue regions represent over-prediction. The colour shade gives the scale of agreement (Eq. (7))
between the forecast and the observed flooding with lighter shading indicating a smaller agreement
scale is required to reach the agreement criterion (Eq. (6)), a fixed maximum scale Slim is drawn
to scale (c). For georeferencing see Figure 4.6, each grid cell is 30 m x 30 m.

observed flood extent.1

2

Figure 4.9 shows how the average-ensemble/ensemble-agreement scale in (a) S
A(mm)
ij3

calculated at each grid cell (representing ensemble spread) compares with the average en-4

semble/observed scale in (b) S
A(mo)
ij (representing ensemble skill) along with the hexbin5

scatter plot in (c) which compares (a) and (b) to indicate the spatial spread-skill of the6

forecast. The hexagonal tessellation is used so that the distances along the hexbin di-7

agonal are on the same scale as those along the x and y-axis. For a perfect ensemble8
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forecast the average agreement scale between ensemble members should match the agree-1

ment scale between the ensemble forecast and observed flood map, i.e. they should align2

along the 1:1 line. The SSS map plots the difference between the ensemble/ensemble and3

the ensemble/observed average agreement scales at each grid cell (Fig. 4.10) and indicates4

where the spatial spread-skill is over-, under-, or well-spread. Three numbered areas (Fig5

4.9(a)) identify three different ensemble spread-skill relationships. Area 1 shows that the6

agreement between ensemble members is close, but that they disagree with the observed7

flood extent. This is displayed in orange shades as an under-spread or miss region on the8

SSS map, Figure 4.10. This is the region close to the confluence area described in Section9

4.5.2. Recall that in this region, most ensemble members did not predict the flooding that10

occurred with the exception of one ensemble member (ens1). In area 2 on Figure 4.9, both11

(a) and (b) are in agreement at grid level, which indicates the ensemble is well-spread;12

these are shown in white on Figure 4.10. Away from the miss and well-spread regions in13

Figure 4.9, the overall visual impression is that the ensemble spread-skill lies below the 1:114

line and is over-spread, indicated by area 3. This corresponds to purple shading on the SSS15

map (Fig. 4.10). Overall Figure 4.9 tells us that the spread-skill relationship for this exam-16

ple case study is not uniform across the domain but is in fact location specific. The areas17

identified (1, 2 and 3) lie within different sub-catchments, which are linked to different18

GloFAS grid cells, driving the ensemble flood map selection for each sub-catchment. Infer-19

ences can be made about the spread-skill of the driving discharge data at sub-catchment20

level across the domain. Using the spatial spread-skill relationship shown on the ensemble21

SSS map we can infer how well the ensemble forecasting system encompasses the multiple22

sources of uncertainty and how meaningful the probabilistic ensemble forecast of flood in-23

undation actually is. An ensemble flood map forecast that is well-spread suggests that the24

probabilistic forecast is meaningful. The SSS map is a useful evaluation tool for validating25

flood forecasts in un-gauged or partially gauged rivers. A simulation library approach, like26

the Flood Foresight maps used here, relies on the accuracy of the return period thresholds27
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set, the (ensemble) forecast streamflow and the accuracy of the flood inundation map for a1

given streamflow. The forecast evaluation approaches presented here enable these system2

attributes to be evaluated even where observed streamflow is limited or erroneous. The3

SSS map summarises the whole ensemble, which makes it useful for forecasters attempting4

to convey uncertainty information to decision makers, highlighting regions where there is5

high/low confidence in the forecast.6

Figure 4.9: Brahmaputra River, Assam region, August 2017. (a) The average agreement scale map
of each unique pair of forecast ensemble flood maps and (b) between each ensemble member compared
against the observed SAR-derived flood map. (c) A binned histogram scatter plot compares (a) and
(b) to indicate the spatial spread-skill of the forecast ensemble. (d) indicates the corresponding sub-
catchment locations. Areas labelled (1, 2 and 3) are discussed in Section 4.5.3. A fixed maximum
scale Slim (Eq. (6)) is drawn to scale (a). Note PWB means permanent water bodies.
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Figure 4.10: Brahmaputra River, Assam region, August 2017. (a) The Spatial Spread-Skill (SSS)
map shows the difference between the ensemble/ensemble and the ensemble/observed average agree-
ment scales at each grid cell. Negative values (orange) indicate where the ensemble is under-spread
and positive values (purple) indicate where the ensemble is over-spread. White areas areas indicate
where the average agreement scales match and indicate good spatial spread-skill. (d) Indicates the
corresponding sub-catchment locations. Areas labelled (1, 2 and 3) are discussed in Section 4.5.3.
A fixed maximum scale Slim (Eq. (6)) is drawn to scale (a). Note PWB means permanent water
bodies.
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4.6 Conclusions1

Differences between ensemble members in ensemble forecast flood map systems are mostly2

driven by initial condition perturbations at the top of the hydro-meteorological forecast3

chain within the numerical weather prediction system. Presently, there is limited under-4

standing or evaluation of how these meteorological uncertainties link to mapped flooding5

predictability, which involves additional sources of uncertainty. An evaluation of the spa-6

tial predictability and the spread-skill relationship of the ensemble flood map forecast pro-7

vides an improved understanding of the performance of the forecast system. Uncertainties8

in other parts of the forecast chain are not truly represented by the ensemble flood maps9

and evaluating the spatial spread-skill of the flood maps is important for understanding10

the likelihood of flooding that the ensemble flood maps capture. In this paper, we present11

a new scale-selective approach to assess the spatial predictability and spread-skill of an12

ensemble flood map forecast by comparing against a satellite SAR-derived observation of13

flood extent. By calculating a skilful scale at each grid cell for every unique ensemble14

member pair we can determine the ensemble spatial spread, and between every ensemble15

member and the SAR-derived flood map we can determine the ensemble spatial skill. The16

hexbin scatter plot summarises the spread-skill relationship so that a trend across the17

whole domain can be assessed. The difference between these skilful scales can be mapped18

onto the Spatial Spread Skill (SSS) map which shows for each specific location in the19

domain whether the ensemble is over-, under- or well-spread. The methods are applied20

to an example flooding event of the Brahmaputra River in the Assam region of India in21

August 2017.22

23

In operational practice there are multiple options of ensemble flood map presentation24

type such as presenting the ensemble median or other exceedance probability for delivery25

to end-users and decision makers. An important aspect of developing an inundation flood26
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forecasting system is to determine the most useful way to present a spatial ensemble fore-1

cast. Using a scale-selective approach we have evaluated the performance of individual2

ensemble members, a combined total ensemble and the spatial ensemble median compared3

to a SAR-derived observation of flood extent. Other options could be to exclude ensem-4

ble member outliers, to spatially cluster similar ensemble members into groups of flood5

extent or to present a most likely, best and worst case ensemble flood map. Whichever6

presentation method is chosen, this should be fully explored using the spatial spread-7

skill methods described here to evaluate the ensemble performance of historical flooding8

events. We found for this example flooding event that one ensemble member significantly9

outperformed the combined and median flood maps and that potentially in some flood10

forecasting scenarios this member would have been excluded as an outlier. The categor-11

ical scale maps show the ensemble spatial median could miss vital flooding information12

and that all members should be considered as potential future flooding scenarios.13

14

Through mapping the spatial-spread skill relationship, which varies with location, links15

can be made between the spatial variations in spread-skill and the physical characteristics16

of the flooding event. We found that one ensemble member outperformed all others in a17

region close to a confluence zone and nearby observed heavy rainfall. The region correlates18

to an area of under-spread ensemble members indicating that not enough members were19

predicting flooding here. Future studies could investigate the physical processes further20

using the methods presented here. The ensemble flood map spatial spread-skill could be in-21

vestigated in the context of a particular physical process (such as rainfall intensity/location22

or an improved aspect of the hydrological model such as antecedent soil moisture) and how23

these uncertainties translate to the probabilistic flood map forecast. An understanding of24

the spatial predictability is particularly important for un-gauged catchments where the25

calibration of both forecast streamflow and return period thresholds (used to select the26

simulation library flood map) are rarely practiced routinely. Ideally, in operational prac-27
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tice, these spatial verification approaches including the categorical scale and SSS maps1

could be calculated and stored routinely as flooding events coincide with SAR-derived or2

other remotely observed flood maps to build up a verification catalogue/database. This3

database could then be used to investigate the spatial spread-skill model performance un-4

der different scenarios such as forecast lead time, month or season, or flood type. More5

locally, the impact of an improved DTM or the inclusion of a Digital Surface Model (DSM)6

or other surface features in the hydraulic model such as embankments could be considered.7

Over time, such a database would improve our understanding of the spatial predictability8

of an ensemble flood map system and how well the uncertainties present are represented9

by the ensemble forecast.10

4.7 Chapter summary11

In this chapter, we extend the scale-selective verification methods described in Chapter12

3 with a new application to an ensemble flood map forecast. By considering the spatial13

spread between ensemble member flood maps, and between each ensemble member and a14

SAR-derived flood map, we evaluate the spread-skill of an ensemble flood map forecast.15

The spatial uncertainty held within multiple ensemble flood maps can be summarised onto16

a single map indicating the forecast performance at specific locations. For the case study17

evaluated, we found that individual ensemble member’s forecasts can be more accurate18

than an aggregated forecast such as the ensemble median. This is an important con-19

sideration when choosing how to present ensemble flood map information in operational20

practice.21
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Chapter 51

A multi-system comparison of2

forecast flood extent using a3

scale-selective approach4

In this chapter we address the third research question outlined in Chapter 1; How can a5

scale-selective approach be applied to evaluate multiple flood forecasting systems?:6

• How can we evaluate the performance of flood forecasting systems predicting flood7

inundation extent at different spatial scales?8

• What can we learn about the flood forecasting system performance and how does9

each compare?10

The remainder of this chapter (except for the chapter summary, Section 5.9), has been11

published and is reproduced from (Hooker et al., 2023b).12
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5.1 Abstract1

Fluvial flood forecasting systems increasingly couple river discharge to a flood map library2

or a real-time hydrodynamic model to provide forecast flood maps to disaster management3

teams and humanitarian agencies. The forecast flood maps can be linked to potential im-4

pacts to inform disaster risk reduction schemes, such as forecast-based financing. The5

success of forecast-based financing is dependent upon the accuracy of the forecast flood6

maps. We investigate a new application of scale-selective verification by evaluating the7

performance of three flood forecasting systems. Two simulation library systems, Flood8

Foresight (30 m) and GloFAS Rapid Flood Mapping (1000 m) and one hydrodynamically9

modelled system, the Bangladesh FFWC Super Model (300 m), all made predictions of10

flood extent at different spatial scales (grid lengths, shown in brackets) for the Jamuna11

River flood, Bangladesh, July 2020. These forecast flood maps are validated against12

Synthetic Aperture Radar-derived observations of flooding across four districts using a13

scale-selective approach that can compare directly across different spatial scales. Our re-14

sults show that the simulation library system accuracy critically depends on the discharge15

return period threshold set to trigger a flood map selection and the number of hydrological16

model ensemble members that must exceed it. At short forecast lead times, the Super17

Model outperforms the other systems in three districts. Near to the Bangladesh border,18

the trans-boundary benefits of the two global systems are evident, with both outperform-19

ing the local model. We conclude that a scale-selective verification approach can quantify20

the skill of systems operating at different spatial scales so that the benefits and limitations21

can be evaluated. Multi-system comparison of flood maps is important for improving22

impact-based forecasts and ensuring funds and response activities are appropriately tar-23

geted.24

25
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HIGHLIGHTS:1

• Through a new application of our scale-selective validation method we compare2

flood maps of different spatial scales (grid lengths) with SAR-derived observations3

of flooding.4

• Three flood forecasting systems (two global ensemble and one local deterministic)5

operating during flooding in Bangladesh, July 2020 are evaluated.6

• The return period threshold set and the number of ensemble members used to trigger7

a flood map from a simulation library proves crucial to the system performance.8

• The results show the importance of accounting for spatial scale when interpreting9

skill scores in multi-system studies.10

5.2 Introduction11

Flood forecasting systems are increasingly used to improve preparedness ahead of a ma-12

jor flooding event (Stephens & Cloke, 2014a; Wu et al., 2020). One of the main action13

points from the recent Global Assessment Report (GAR2022) on Disaster Risk Reduction14

(DRR) is to ‘design systems to factor in how human minds make decisions about risk’15

(UNDRR, 2022b). Whilst flood forecasting systems have improved significantly and con-16

tinue to improve both globally and locally, the reliance on government departments and17

disaster managers to make the right decisions when faced with a potential crisis can result18

in inappropriate actions and unpreparedness (e.g., Fekete & Sandholz, 2021; Coughlan de19

Perez et al., 2022). The GAR2022 report shows that just 5.8% ($5.5 billion USD) of official20

development assistance contributes to disaster prevention and preparedness compared to21

90.1% ($119.8 billion USD) for emergency response. Yet it has been demonstrated (for22

Europe) that financing for mitigation purposes such as flood forecasting systems can lead23
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to overall cost savings (Pappenberger et al., 2015).1

2

Forecast-based financing (FbF) schemes can form a major element of DRR strategies3

and aim to directly link forecasts of extreme events to humanitarian actions (Coughlan4

de Perez et al., 2015, 2016). FbF schemes work by quantifying risks in advance of crises5

or disasters, prepositioning funds, and agreeing in advance how funds will be released6

based on forecasts, ahead of an event (OCHA, 2020). Anticipation and risk financing7

allows humanitarians to be better prepared by making important decisions before disaster8

strikes. These proactive decisions, directly linked to action (rapid fund release) remove9

the potential for reactive, incorrect decisions in the midst of a disaster. The success of the10

FbF system largely depends on the threshold triggers set and on the performance of the11

flood forecasting system at mapping the flood hazard.12

13

Advances in flood forecasting systems both at global and local levels link together14

meteorological and hydrological forecasts to hydrodynamic models, simulating flood-wave15

propagation (Emerton et al., 2016; Wu et al., 2020; Apel et al., 2022). The resulting16

flood maps when directly linked to impacts can be used to inform DRR schemes. Multiple17

trade-offs exist in the development of such systems that inherently depend on observation18

data availability and computing power. These determine whether the maps can be mod-19

elled in real-time or are pre-calculated and form part of a simulation library; the spatial20

scale (grid size) of the forecast flood maps and whether the maps are deterministic or21

probabilistic (Savage et al., 2016). A recent review of flood inundation prediction (Bates,22

2022) states that a key task to drive forward the development of better global hydraulic23

models will be more rigorous and comprehensive validation. Hoch and Trigg (2019) out-24

line a Global Flood Model Validation Framework which includes a recommendation to25

routinely validate flood extent. Quantitative performance evaluation forms an important26

part of fitness-for-purpose assessment and continual system improvement. Currently, there27
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is limited quantitative validation of operational flood forecasting systems producing flood1

maps and operating in the same area. A recent advancement in flood map validation2

(Hooker et al., 2022) means that quantitative comparisons can be made across flood maps3

at different spatial scales, which makes a multi-system evaluation possible.4

5

The accuracy of ensemble forecasts of flood extent can be verified by comparing with6

observations of flooding from unmanned aerial vehicles or satellite-based sensors. Satellite-7

based synthetic aperture radar (SAR) sensors are active, which means they can operate at8

night, through cloud and weather, and are well known for their flood detection capability9

(e.g., Horritt et al., 2001; Mason, Davenport, et al., 2012; Schumann et al., 2022). The10

SAR backscatter intensity depends on the smoothness of the surface, with unobstructed11

flooded areas returning low backscatter values. Recent techniques used to extract flood12

extent from SAR images have led to improved flood detection in urban areas (Mason13

et al., 2018, 2021a, 2021b). Since late 2021, SAR-derived flood maps are produced for14

every Sentinel-1 image detecting flooding around the world by the Global Flood Monitor-15

ing (GFM) service (EU Science Hub, 2021; GFM, 2021; Hostache et al., 2021), part of16

the Copernicus Emergency Management Service (CEMS) (Copernicus Programme, 2021).17

Within eight hours of the Sentinel-1 image acquisition, three flood detection algorithms18

are combined to give the flood class and uncertainty estimation per grid cell.19

20

In this paper, through application of a new approach, we evaluate the inundation ac-21

curacy of three fluvial flood forecasting systems operating during severe flooding of the22

Jamuna River in Bangladesh, July 2020. The flood maps are compared against satel-23

lite SAR-derived flood extent. The systems are: Flood Foresight, a FbF system run by24

JBA Consulting working in partnership with the Start Network (Revilla-Romero et al.,25

2017); the Global Flood Awareness System (GloFAS) Rapid Flood Mapping (RFM) service26

(Alfieri et al., 2013; GloFAS, 2021) and the Bangladesh Flood Forecasting and Warning27
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Centre (FFWC) Super Model (BWDB, 2020), each producing forecast flood maps at dif-1

ferent spatial scales (30 m, 1000 m and 300 m respectively). We investigate how a novel2

scale-selective spatial verification approach (Hooker et al., 2022) can be applied to multi-3

system studies where the forecast flood maps are presented at different spatial scales.4

Through applying this approach, we determine a skilful scale of each flood map that can5

be directly compared and discuss the benefits and limitations of each forecast system for6

flood mapping purposes that underpin the triggering of FbF schemes.7

8

We describe the characteristics of the Jamuna River flood, July 2020 in Section 5.3.9

The three flood forecasting systems are described in Section 5.4 along with details of the10

SAR-derived observation of flooding. The scale-selective methods used to evaluate the11

forecast flood maps are outlined in Section 5.5. The performance of Flood Foresight with12

forecast lead time is presented in Section 5.6.1 and the multi-system flood map comparisons13

are presented in Section 5.6.2. In Section 5.6.3 we discuss the benefits and limitations of14

each system and conclude with recommendations in Section 5.7.15

5.3 Flood event on the Jamuna River, Bangladesh July 202016

Bangladesh lies on the world’s largest delta that drains the Tibetan plateau and the Hi-17

malayas to the north via the Brahmaputra and Ganges River systems. The river system18

capacity in Bangladesh is overwhelmed each monsoon season by the volume of water trav-19

elling through. Flooding is exacerbated in coastal regions where tidal surges from tropical20

cyclones impede the river drainage (Bernard et al., 2022). Due to its geographical location21

and the low lying, low slope nature of the land, Bangladesh is susceptible and vulnerable22

to flooding year after year and faces a worsening situation as a result of climate change23

and sea level rise (Hossain et al., 2021).24

25
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This study focuses on the Brahmaputra River (locally named the Jamuna River), which1

is characterised by braided, meandering channels that migrate continually due to frequent2

silting and erosion, particularly during flood events. The total length of the Brahmaputra3

is 2,900 km with a catchment area of around 583,000 km2. Several flashy tributaries such4

as the Teesta join the main channel in the north from steep catchments in the southern5

Himalayas. The main distributary of the Jamuna River is the Old Brahmaputra, described6

by the Bangladesh Flood Forecasting and Warning Centre (FFWC) as a high flow spill7

river contributing largely to flooding, depending on the variations of siltation at the entry8

point (BWDB, 2020).9

10

Bangladesh is divided locally into administrative districts, locally named zilas. Four11

of these that align along the Jamuna River have been chosen for the comparison of flood12

mapping skill, these are Kurigram, Gaibandha, Jamalpur and Sirajganj (Fig. 5.1).13

14

Bangladesh experienced an active monsoon season during the summer of 2020 which15

brought severe and prolonged flooding in multiple spells. An unusually wet May following16

cyclone Amphan meant that water levels were already raised ahead of the monsoon season17

(Hossain, 2020). According to the Bangladesh Water Development Board (BWDB) the18

flooding had some remarkable characteristics. It began earlier than usual in late June19

and had a triple peak that had never been seen before. The flooding affected 40% of the20

country, inundating over 34,000 km2. In 2020 this resulted in the second highest level of21

flooding since 1989 and the second longest flood duration since 1998. An estimated 5.522

million people were affected with 1 million houses waterlogged. Around 1.1 million people23

were displaced with almost 100,000 evacuated to over 1,500 shelters. Almost 1 million24

tube-wells and more than 100,000 latrines were damaged, 83,000 hectares of paddy fields25

were affected, and 257 people lost their lives.26

27
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Figure 5.1: Four districts (zilas) of interest in the Jamuna catchment in northern Bangladesh.

The FFWC estimate that the Jamuna basin received 20% more rainfall in July than1

normal (BWDB, 2020). Gaibandha recorded the highest 1-day maximum rainfall across2
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the basin at 250 mm, with a 10-day consecutive maximum rainfall of 549.5 mm. The heavy1

monsoon rainfall in July caused two flood peaks in one month, the first peak around 152

July and the second around 25 July.3

5.4 Flood forecasting systems and data4

The focus of this multi-system comparison is to evaluate the performance of three sys-5

tems at forecasting the flood inundation extent for the second flood peak on 25 July. In6

this section we briefly outline these three flood forecasting systems and summarise their7

similarities and differences in simulating flood inundation extent (Sections 5.4.1, 5.4.2 and8

5.4.3). Table 5.1 details the main system attributes. The flood map data used for com-9

parison from each system is described in Section 5.4.4.10

11
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Table 5.1: Flood forecasting system comparison. Any ensemble member forecast discharge value
is defined as ensany. The mean forecast discharge value of all ensemble members is defined as
ensmean.

Attribute Flood Foresight GloFAS Rapid Flood
Mapping

FFWC

System application Forecast-based
financing for
humanitarian early
action

Global, broad scale
medium range
flooding prediction
for large river basins

National flood
forecasting and
warning

System type Ensemble simulation
library (globally
scalable)

Global ensemble
simulation library
(upstream drainage
area >5000 km2,
river width >100 m)

Deterministic

Forecast type Daily, 10-day lead
time

Daily, maximum
flood extent next 30
days

Daily, 5-day lead
time

Meteorological model ECMWF IFS ECMWF IFS BMD (WRF)
Hydrological model LISFLOOD LISFLOOD MIKE II FF

rainfall-runoff
Hydraulic model RFLOW/JFLOW CA2D MIKE II GIS
Observed
driving/input data

None None Rainfall and river
water level

Grid length (m) 30 1000 300
DSM/DEM NEXTMAP World30

DSM
SRTM (adjusted) Survey of Bangladesh

(>10 yrs old)
DSM/DEM grid
resolution (m)

30 90 (re-scaled to 1000) 300

Modelled flood map
return period
thresholds (yrs)

20, 50, 100, 200, 500
and 1500 plus 30
interpolated flood
maps

10, 25, 50, 100, 250,
500 and 1000

N/A

Flood map selection ensany > 5yr return
period threshold

ensmean > 10yr
return period
threshold

N/A

Defences included? No No Yes
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5.4.1 GloFAS Rapid Flood Mapping1

GloFAS couples state-of-the-art numerical weather prediction (NWP) forecasts with a2

distributed hydrological model. With its continental scale set-up, it provides downstream3

countries with forecasts of upstream river conditions up to one month ahead as well as4

continental and global overviews for large river basins. As of version 3.1 (released in5

May 2021), this modelling chain is based on the full configuration of the LISFLOOD hy-6

drological model, forced by an ensemble of meteorological inputs (GloFAS, 2021). The7

meteorological forecast data are provided to LISFLOOD by the ECMWF Integrated Fore-8

casting System (IFS), the operational 51 ensemble member NWP system from ECMWF9

(Alfieri et al., 2013; GloFAS, 2021). The NWP data (precipitation, temperature, potential10

evapotranspiration, and evaporation rates for open water and bare soil surfaces) are taken11

as inputs into the hydrological model, LISFLOOD. LISFLOOD is a distributed hydro-12

logical rainfall-runoff model, simulating surface, groundwater and subsurface water flow13

and then routing the water to river channels and simulating the routing of the channel14

flow (LISFLOOD, 2022). LISFLOOD includes consideration of snow melt, infiltration,15

vegetation interactions (interception, evapotranspiration, water uptake) and exchange of16

soil moisture between a 3-layer soil water balance sub-model. The runoff data produced17

is routed through a representation of the river network using a double kinematic wave ap-18

proach. The river network used is taken from the HydroSHEDS dataset (Lehner, 2014b).19

GloFAS is calibrated using historical streamflow records from selected stations worldwide20

(Hirpa et al., 2018). For Bangladesh, four river gauges have been used to calibrate GloFAS21

as reported on the GloFAS web viewer (GloFAS, 2022a). Two of these gauges are on river22

reaches that would impact the four Jamuna River districts: one at Bahadurabad on the23

main Jamuna River, and another upstream at Kaunia on the Teesta River, a tributary24

of the Jamuna River. The observation record at Kaunia is very short at around 7 years25

(1985-1992), while the record at Bahadurabad is over 35 years (1981-2015). Modified26
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Kling-Gupta Efficiency (KGE) is calculated for each station; a performance measure that1

indicates how well the model reanalysis (at day 0) replicates the flows observed, greater2

than 0.8 is very good and less than 0.2 is very poor. Both stations have KGE values above3

0.7, indicating relatively good hydrological model performance.4

5

GloFAS Rapid Flood Mapping (RFM) (GloFAS, 2022b) displays a maximum flood6

extent over the next 30 days by matching the return periods from the GloFAS streamflow7

forecast to a catalogue of modelled inundation extents. Flood maps are triggered for8

basins greater than 5000 km2 and where the 10-year RP threshold is exceeded by the9

ensemble mean. The RP flood maps available are listed in Table 5.1. The flood maps10

were developed using the semi-inertial formulation of the CA2D hydraulic model which is a11

reduced complexity model based on the cellular automata approach and the diffusive wave12

equations, specifically designed to simulate flood inundation events involving wide areas13

(Dottori & Todini, 2011). Dottori et al. (2016) describe the methods used to derive the14

flood maps at specified return periods on a global scale using a vegetation corrected version15

of the global DEM SRTM (Farr et al., 2007). The hydraulic modelling was performed at16

1 km grid resolution.17

5.4.2 Flood Foresight18

Start Network (Start Network, 2022) is a charity and network of over 80 humanitarian19

agencies and aims to develop locally led, early action by moving to a model of proac-20

tive funding to alleviate crises before they happen. JBA Consulting, in partnership with21

Start Network, have developed a Disaster Risk Financing (DRF) system for the Jamuna22

River that links a fluvial probabilistic flood inundation forecasting system, Flood Fore-23

sight (Revilla-Romero et al., 2017), to populations impacted by flooding (Fig. 5.2). The24

DRF system quantifies the flood risk to the population for the purposes of setting trig-25

ger threshold levels through a probabilistic global catastrophe risk model, FLY (Dunning,26
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2019).1

2

Figure 5.2: Flood Foresight/Start Network ensemble flood inundation forecast and population im-
pacts work flow.

A domain of interest is divided into ‘Impact Zones’ (IZ) or sub-catchments using the3

HydroBASINS data-set (Lehner, 2014b). The Flood Foresight system links each IZ to4

GloFAS grid cells providing 51 ensemble member forecasts of river discharge (Section5

5.4.1). Based on the forecast discharge for each IZ, a precomputed flood map is selected6

from a simulation library. The flood map library was hydrodynamically modelled using7

JFlow®, (Bradbrook, 2006) and RFlow using a detailed DSM at 30 m spatial scale at8

specified return period (RP) thresholds (detailed in Table 5.1). These were subsequently9

linearly interpolated at 5 intermediate intervals between each RP threshold and extrap-10

olated between zero and the 20 year RP flood map (totalling 36 flood maps). The flood11

map selected is determined by the RP threshold exceeded within each IZ. An example12

forecast domain in Figure 5.3 shows neighbouring IZ trigger flood maps at different RP13

thresholds and the RP threshold is not exceeded in every IZ.14

The simulation library approach enables rapid flood map selection so that the system15
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Figure 5.3: Example Flood Foresight forecast domain divided into Impact Zones (shown in colour
with black outline where the 2-year return period threshold is exceeded), each linked to a GloFAS grid
cell. The Impact Zone colour shows the corresponding return period threshold exceeded, determined
by the GloFAS forecast discharge.

can be run in near real-time. Where the forecast discharge exceeds a 5-year RP threshold1

the probabilistic flood maps are triggered and linked to populations impacted. IZ linked2

to a 2-year RP threshold (Fig. 5.3) will not trigger a flood map due to low confidence in3

the RP threshold levels and the uncertain flood map interpolation process at low discharge4
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values. The system runs daily and produces 51 ensemble member flood extent and depth1

maps for forecast lead-times up to 10 days ahead. Hooker et al. (2023a) recommended2

consideration of all ensemble members as indicators of potential flooding so we evaluate3

each grid cell where any ensemble member indicates flooding (ensany).4

5.4.3 Bangladesh Flood Forecasting and Warning Centre5

Historical catastrophic flooding in Bangladesh has led to well developed and forward-6

thinking flood forecasting and warning services. Under the Ministry of Water Resources,7

flood forecasting in Bangladesh is the responsibility of the Bangladesh Water Development8

Board (BWDB) following the BWDB Act-2000. The Flood Forecasting and Warning Cen-9

tre (FFWC), established in 1972, is the lead organisation for flood forecasting and warning10

services. The FFWC act as coordinators between other Bangladesh agencies and ministries11

involved in flood disaster management. During the event in July 2020, FFWC provided a12

5-day deterministic and a 10-day probabilistic flood forecast. FFWC have identified two13

main priority areas of improvement: to increase warning lead time and to make location14

specific flood forecasts (BWDB, 2020). Operationally, FFWC use real time hydrologi-15

cal data from water level and rainfall stations at 3-hourly intervals. Rainfall estimates16

are based on the preceding three days of rainfall along with analysis derived from NWP17

forecasts from the Bangladesh Meteorology Department (BMD, NCAR (2022)). Forecast18

flood bulletins are prepared daily and disseminated through various modes to multiple19

recipients.20

21

During the monsoon flood season, the FFWC generate a daily hydrodynamically mod-22

elled flood inundation map for the Jamuna, Ganges and Meghna river basins. The flood23

maps are generated using output files from MIKE 11 FF Rainfall-Runoff hydrological24

model and hydrodynamic modelling simulations using a customized MIKE 11 GIS model25

(Havnø et al., 1995; Gourbesville, 1998). The Digital Elevation Model (DEM) used for the26
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hydrodynamic modelling has a 300 m spatial resolution that was collected by the Survey1

of Bangladesh (SoB) more than 10 years previously.2

5.4.4 Observation data3

The data described here are used to evaluate the three flood forecasting systems. Obser-4

vations of river water level from eight river gauges across the four districts were provided5

by the FFWC for validation purposes. The gauge locations are shown on Figure 5.1 in6

yellow, five are located on the main Jamuna River channel and three are located on trib-7

utaries/distributaries of the Jamuna River. Three satellite SAR images from Sentinel-18

(S1A) acquired on 25 July 2020 and three pre-flood images from the same track from 79

June were used to derive a remotely observed flood map. The HASARD flood mapping10

algorithm (Chini et al., 2017) hosted on WASDI (WASDI, 2022) uses a statistical, hierar-11

chical split-based approach to separate the two classes (flooded and unflooded) using the12

pre-flood and flood images. The HASARD mapping algorithm removes permanent water13

bodies, such as the river channel, reservoirs and lakes. Flooded areas beneath vegetation,14

near to buildings and under bridges will not be detected using this method. To smooth15

the HASARD flood maps and allow a fairer comparison we apply a morphological closing16

operation, without impacting the location of the flood extent, to flood fill buildings and17

vegetation. So that the flood prediction accuracy alone can be evaluated, the pre-flood18

occurrence of surface water using the JRC Global Surface Water database (Pekel et al.,19

2016) has been removed from the forecast inundation maps. The observed flood extent20

mosaic derived from the three SAR images at 20 m grid size was re-scaled to match the21

relevant forecast flood map grid lengths using majority (mode) aggregation.22
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5.5 Scale-selective evaluation methods1

The flood forecasting systems detailed in Table 5.1 produce flood maps at 30 m, 300 m2

and 1000 m spatial scales (grid lengths). Validation of forecast flood maps against re-3

motely observed flood extent is typically carried out by labelling each grid cell using a4

contingency table with categories: correctly predicted flooded, under-prediction (miss),5

over-prediction (false alarm) and correctly predicted unflooded. After labelling, conven-6

tional binary performance measures such as Critical Success Index (CSI) and Pierce Skill7

Score (PSS) are calculated and give a domain average skill score (Stephens et al., 2014).8

Comparing the binary performance measures of these flood maps at different spatial scales9

would not be meaningful as the higher resolution maps would be overly penalised due to10

the double penalty impact (Roberts & Lean, 2008; Hooker et al., 2022). Several com-11

monly applied binary performance measures will be included here for demonstration and12

comparison purposes only and the details of these can be found in Appendix 5.8, Table 5.2.13

14

To tackle the issue of validating across differing spatial scales, we apply a scale-selective15

approach to flood map evaluation. The scale-selective evaluation approach includes cal-16

culation of the Fraction Skill Score (FSS, Roberts and Lean (2008)) and location specific17

agreement scales (Dey, Roberts, et al., 2016), which are plotted on a Categorical Scale Map18

(CSM, Hooker et al. (2022, 2023a)). A brief summary of the method is given here. For full19

methodology please see Roberts and Lean (2008); Dey, Roberts, et al. (2016); Hooker et20

al. (2022, 2023a). The FSS calculates the accuracy of a forecast flood map by comparing21

against an observed flood map across a range of neighbourhood lengths (n, see Figure22

5.4). First, every grid cell is compared (n = 1). Then, the next largest neighbourhood23

size, n = 3, surrounding each grid cell is compared and the process continues to n = 5,24

n = 7 and so on. The fraction flooded (number of flooded grid cells in the neighbourhood25

divided by the total number of grid cells in the neighbourhood) in each of the forecast and26
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Figure 5.4: An example FSS calculation applied to forecast flood extent, 1 = flooded (in blue), 0 =
unflooded (in white) compared to a remotely observed flood extent in pink. The FSS is calculated
for two neighbourhood sizes, n = 1 (small gold box) and n = 3 (large gold box).

observed flood maps are used to calculate the FSS at each n. The FSS calculation is based1

on the Brier Skill Score. The FSS for each n is derived by calculating the mean squared2

error (MSE) between the forecast and observed fractions and dividing this by a reference3

MSE. This value is subtracted from 1 to give the FSS score. Increasingly larger neigh-4

bourhoods are compared until a target FSS score has been reached and exceeded at which5

point the skilful scale has been met (e.g. see Fig. 5.9). The target FSS score, given by6

FSST ≥ 0.5+ fo
2 depends on the fraction of observed flooding in the domain of interest, fo.7

8

The FSS gives a domain averaged skill score. We also calculate a local agreement9

scale (S) for each grid cell that can be mapped onto a Categorical Scale Map (CSM).10

The relationship between S and n is given by S = (n − 1)/2. An acceptable level of11
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background bias between the forecast and observed flood maps can be pre-set. This is1

used to determine an agreement criterion. Like the FSS method, the comparison begins at2

each grid cell, if the agreement criterion is met, the grid cell is labelled with an agreement3

scale S = 0. Where the criterion is not met, a larger neighbourhood size is compared4

(e.g. n = 3). The fraction flooded in each of the forecast and observed flood maps are5

compared and if the criterion is met the agreement scale assigned would be S = 1. The6

process continues to larger neighbourhoods (e.g. n = 5, S = 2) until either the criterion is7

met or a predetermined limit is reached (Slim, set to 9 for this application). The agreement8

scale at this limit would indicate a miss or false alarm for the grid cell. Combining a map9

of agreement scales with a conventional contingency map creates a CSM which shows10

the level of agreement (S) and whether the forecast is over or under-predicting the flood11

extent (e.g. see Fig. 5.8). The CSM shows a location specific skill score that can be linked12

to different aspects of the forecast system such as IZ and their associated river discharge13

forecast or return period thresholds, river channel bathymetry, the DSM or flood defences.14

5.6 Results and discussion15

Forecast flood maps for the Jamuna River flooding, July 2020 from each of the three16

systems described in Sections 5.4.2 - 5.4.3 are compared against SAR-derived flood maps17

(described in Section 5.4.4) using scale selective evaluation methods (as discussed in Sec-18

tion 5.5). First, in Section 5.6.1 the Flood Foresight system performance is evaluated19

against forecast lead time, where flood maps out to 10-days lead time are available. Per-20

formance evaluation of the other two systems with forecast lead time was not possible due21

to the availability of flood maps. In Section 5.6.2 we compare the forecast flood maps from22

each of the systems described in Section 5.4 and discuss their benefits and limitations in23

Section 5.6.3.24
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5.6.1 Flood Foresight Jamuna River case study1

The performance of the Flood Foresight system with forecast lead time is evaluated here.2

Flood Foresight predicts the flood extent for second flood peak on 25 July at all lead times3

(out to 10-days). To evaluate the spatial accuracy within each district with forecast lead4

time, the absolute agreement scale score has been averaged across each district (solid lines,5

Fig. 5.5). An average agreement scale of zero would indicate the forecast and observed

Figure 5.5: Flood Foresight average agreement scale against forecast lead time for each district and
updated Jamalpur following reassociation of IZ with GloFAS grid cells, forecast valid for 25 July.

6

fields are in agreement at grid level, S = 2 means agreement is reached within a 5 by 57

neighbourhood. Across the 10-day forecast Flood Foresight performs best in Kurigram8

district in the north with consistently the worst performance in Sirajganj. Three of the9

districts (except Jamalpur) show a similar trend with forecast lead time with the best10

performance for all districts (smallest average agreement scale) occurring at a 10-day lead11

107



Chapter 5. A multi-system comparison of forecast flood extent using a scale-selective
approach

time (2.31) with a second peak of performance at a 4-day lead time (2.61). The perfor-1

mance worsens from a 4-day lead time to a 1-day lead time across all districts, with an2

average agreement scale at a 1-day lead time of 3.42. The unusual variation in skill with3

forecast lead time for Jamalpur prompted further investigation into the driving data.4

5

Section 5.4.2 describes how the domain is divided into IZ with each of these linked6

to the driving data, GloFAS river discharge (Fig. 5.3). The flood map selection within7

each IZ depends on the forecast discharge exceeding a particular RP threshold. A direct8

comparison of observed and modelled river conditions is not possible as observed data are9

river water levels, GloFAS provides forecast discharge, and the stage-discharge relation-10

ships are not available. The observed river water levels have been aligned using human11

judgment to the nearest GloFAS grid cell forecast discharge (1-day lead time control mem-12

ber) and compared for all river gauges. We aimed to match the trend in the two series13

whilst keeping the local station risk level close to the GloFAS 2 and 5-year RP threshold14

levels. Two of the eight river gauges are located in Jamalpur (Fig. 5.1). Bahadurabad15

is located on the main Jamuna channel and Jamalpur is on a distributary of the Jamuna16

River crossing the Jamalpur district (Fig. 5.6). (Hydrographs for gauges located outside17

of Jamalpur are plotted in Appendix 5.8, Fig. 5.10.) Bahadurabad (Fig. 5.6 (a)) is well18

calibrated in GloFAS (Section 5.4.1) and the overall forecast aligns well with the observed19

river water level; the second flood peak magnitude is slightly underestimated. The dis-20

charge forecast skill for Jamalpur station (Fig. 5.6 (b)) is very different to the observed21

river water level in terms of variation in water levels/discharge, timing and magnitude of22

flood peaks. A closer look at the river routing network in GloFAS shows that the Old23

Brahmaputra distributary in Jamalpur is not connected to the main river channel; this24

connection should occur at flood flows. To overcome the disconnection of the distributary25

in the river network, the IZ association to GloFAS grid cells in the Flood Foresight system26

design was manually updated. IZ aligning the Old Brahmaputra, crossing Jamalpur, were27
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reassociated to GloFAS grid cells located upstream on the main Jamuna channel. The new1

forecast hydrograph for Jamalpur (Fig. 5.6 (c)) shows an improved forecast compared to2

observed river water levels. However, the first flood peak arrives quicker than observed3

and the second flood peak magnitude is underestimated.4

5

Following the gauge reassociation update to the Flood Foresight system, updated CSMs6

were reanalysed and this led to an improvement in the overall skill for the Jamalpur district7

(Fig. 5.5) but with variation in skill with forecast lead time. The variation is investigated8

by examining the CSMs for Jamalpur. Fig. 5.7(a) maps the original CSM for Jamalpur9

for run date 20 July. CSMs show a location specific (at each grid cell) agreement scale10

between the forecast flood map and the observed SAR-derived flood map. There is a11

large area of under-prediction around Jamalpur caused by the disconnection of the Old12

Brahmaputra distributary (as discussed above).13
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Figure 5.6: (a) GloFAS forecast discharge (control member, 1-day lead time) compared to FFWC
observed river water level for the main Jamuna channel at Bahadurabad and (b) the old Brahmapu-
tra distributary in the Jamalpur district. (c) The old Brahmaputra distributary forecast discharge
following reassociation of IZ with GloFAS grid cells. The GloFAS RP threshold levels are taken
from the nearest GloFAS grid cell to the gauge station location. Station risk levels are provided by
FFWC.
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The CSM change map (Fig. 5.7(b)) is calculated by taking the difference between the1

absolute CSM values, |updated CSM | − |original CSM |. The CSM change map for Ja-2

malpur shows where the reassociation has impacted the flood map. A negative agreement3

scale change indicates an increase in skill (purple, smaller grid size), whereas a positive4

agreement scale change indicates a decrease in skill (orange, larger grid size). The CSM5

change values can highlight areas where the agreement scale has increased/decreased but6

have not reached S = 0 (agreement at grid level). Areas surrounding the Old Brahmapu-7

tra (in purple) show most of the increased skill following the reassociation. However, there8

are regions of Jamalpur not impacted by the reassociation that remain under-predicted9

where smaller distributaries run, that would not be captured/calibrated in GloFAS due10

to their small size (Fig. 5.7(b)). This results in some variation in skill with forecast11

lead time remaining after the reassociation (Fig. 5.5). The visualisation of incremental12

improvements at specific locations will benefit future flood map development work. The13

CSM change map shows more sensitivity to changes in skill that would not be visible on14

a conventional contingency map.15

Figure 5.7: (a) Original CSM for Jamalpur. (b) CSM change (updated CSM - original CSM) for
Jamalpur following reassociation of IZ with GloFAS grid cells. Run date 20 July, forecast valid for
25 July for (a) and (b).
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5.6.2 Multi-system flood map comparison1

GloFAS RFMs are displayed when the mean ensemble member exceeds the 10-year RP2

threshold within the next 30 days. By inspecting the reporting point hydrograph at Ba-3

hadurabad on each of the 10 days preceding the flood peak (25 July), we found that the4

10-year RP threshold was exceeded just once by the ensemble mean on the 18 July (run5

date), which means only one forecast flood map was available from GloFAS RFM for eval-6

uation. FFWC provided daily flood maps, based on most recent observations, valid for7

the same day. For the multi-system comparison, based on the availability of forecast flood8

maps, the following have been selected to compare in detail: Flood Foresight’s flood map9

for the same run date as the available RFM forecast (18 July forecast date, valid date 2510

July), the RFM (run date 18 July) and the FFWC flood map for 25 July (run date and11

forecast valid date) have each been compared to the SAR-derived flood map (25 July) and12

CSMs calculated (Fig. 5.8). CSMs have also been calculated for all available forecast lead13

times for the Flood Foresight system (not shown).14

15

The large area of flood under-prediction (in red) to the northwest of Sirajganj on each16

CSM (Fig. 5.8) can be linked to observed very heavy rainfall and possible surface water17

flooding (SWF) detected by the SAR data. The recorded rainfall described earlier (Section18

5.3) is confirmed by rainfall derived from satellite data, (Climate Hazards Group InfraRed19

Precipitation with Station (CHIRPS) data (Funk et al., 2015)), which shows that the July20

rainfall anomaly in this area was 125 - 175 mm. The accumulated rainfall in GloFAS21

for the ensemble mean for the 20 days preceding 25 July amounts to a maximum of 30022

mm, with up to 400 mm north of Bahadurabad. This is an under-prediction compared to23

observed rainfall (Gaibandha 1-day maximum rainfall 250 mm, 10-day consecutive max-24

imum rainfall 549.5 mm), which explains the under-prediction seen in Fig. 5.8 (a) and25

(b). Note that each system forecasts fluvial flooding and does not account for SWF, which26
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was likely given the extreme rainfall accumulations recorded. This is a limitation of both1

Flood Foresight and RFM systems and demonstrates the need for combining fluvial and2

SWF forecasting systems or combining the forecast flood maps with SAR data using data3

assimilation (e.g., Garćıa-Pintado et al., 2015; Cooper et al., 2019).4

5

Figure 5.8: CSM for flood inundation forecasts from three forecast systems for flood peak 25 July
compared to SAR-derived flooding. (a) Flood Foresight run date 18 July, (b) GloFAS RFM run
date 18 July and (c) FFWC flood map run date 25 July.

The CSM for Flood Foresight (Fig. 5.8 (a)) shows areas of over-prediction (in blue)6

next to the Jamuna River. It is likely that more of the river channel has been removed from7

the SAR image during the flood mapping process compared to the 12-month occurrence8

of water in the Global Surface Water database. Also, the Jamuna River channel migration9

will also contribute to errors in this area as the DSM was acquired in 2016. To the west of10

Sirajganj, the FFWC correctly maps flooding associated with the Atrai River, a tributary11

of the Jamuna River that is not forecast by the other two systems. Multiple tributaries12

flow across Gaibandha and Sirajganj that are not currently resolved by GloFAS. This also13

impacts the performance of Flood Foresight when flood maps were not triggered above14

113



Chapter 5. A multi-system comparison of forecast flood extent using a scale-selective
approach

the 5-year RP threshold.1

2

Flood waters are (Fig. 5.8 (b)) spread further from the main river channel in the3

RFM, compared to the Flood Foresight flood map. This is due to the GloFAS configu-4

ration where clusters of cells are linked to the main channel reporting points. The RFM5

extent is also due to a smoother DEM created by re-scaling from 90 m to 1000 m. This6

will effectively remove flood barriers such as embankments and roads. An element of7

smoothing (albeit to a lesser extent compared to the RFM) would also occur in the Flood8

Foresight flood maps at 30 m grid length. The FFWC CSM shows good accuracy in9

Sirajganj and Jamalpur (Fig. 5.8 (c)). In Sirajganj there is a region of over-prediction10

on both the Flood Foresight and the RFM CSM not present on the FFWC CSM. The11

FFWC model includes flood defences and water level observations from Kazipur, both12

could contribute to the better performance seen here. FFWC maps perform less well in13

Kurigram where the flood extent is under-estimated. Kurigram is next to the northern14

border of Bangladesh where upstream water level data are unavailable for hydrological15

model calibration and validation. The benefits of the trans-boundary systems of GloFAS16

and Flood Foresight are evident here.17

18

To quantify the district performance of each system the FSS has been calculated for19

neighbourhood sizes up to n = 19 or larger (not plotted) where the FSS target has not20

been reached (Fig. 5.9). The FSS gives a measure of spatial accuracy for each system21

flood map, however the score is not directly comparable across different spatial scales since22

the scores are calculated in terms of a neighbourhood size (Section 5.5). We can calculate23

a skilful scale, which is half of the neighbourhood size at which the FSS exceeds FSST ,24

this accounts for the size of the grid cell and can be directly compared across each of the25

forecast systems. For example, in Figure 5.9(a) for Kurigram, at grid level (n = 1) the26

FFWC FSS (0.52) exceeds the Flood Foresight FSS (0.48). We saw on the CSM map (Fig.27
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Figure 5.9: Average FSS plotted against neighbourhood size (n) for each forecast system (run dates
as described in Figure 5.8) in Kurigram (a), Gaibandha (b), Sirajganj (c) and Jamalpur (d) and
the target skill score for each district.

5.8) that the Flood Foresight map appeared to capture the observed flooding at Kurigram1

more accurately than the FFWC map. Despite this observation, the FFWC map has a2

higher CSI score (0.35, Fig. 5.11(c)) compared to the Flood Foresight CSI (0.31, Fig.3

5.11(a)) because the grid size is not accounted for by the CSI. However, neither of the two4

systems flood maps have reached the target FSST at grid level (Fig. 5.9(a)). The FFWC5

map exceeds FSST at n = 3 and the Flood Foresight map exceeds FSST at n = 7. By ac-6

counting for the impact of the grid size, the skilful scale for Flood Foresight for Kurigram7

is 105 m (12(7× 30)) compared to 450 m (12(3× 300)) for the FFWC flood map indicating8

the Flood Foresight system is more accurate in Kurigram. In Gaibandha, the skilful scale9
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is similar for Flood Foresight and the FFWC maps (255 m verses 300 m, Fig. 5.9(b)).1

In Sirajganj, Flood Foresight requires a neighbourhood size similar to the grid size of the2

GloFAS RFM to exceed FSST at 1005 m (Fig. 5.9(c)). Following the reassociation of3

the IZ in Jamalpur, Flood Foresight has a skilful scale of 105 m here compared to a high4

FSS score for the FFWC model at 300 m grid level (Fig. 5.9(d)). Across all districts,5

GloFAS RFM exceeds the FSST at grid level with the best performance in Jamalpur and6

the worst performance in Gaibandha which can be linked to the under-estimation of flood7

extent seen on the CSM (Fig. 5.8(b)).8

9

The scale selective approach is also useful for comparing performance above the FSST10

line where two systems exceed FSST at grid level (n = 1). For example, in Jamalpur (Fig.11

5.9(d)) at n = 1 the RFM FSS is 0.90 compared to the FFWC FSS of 0.85. However,12

FFWC reaches the same score as the RFM (at n = 1, 0.90), at n = 3. In terms of spatial13

scale, the same FSS is reached by FFWC at n = 3 (450 m) as RFM at n = 1 (1000 m),14

indicating that the FFWC flood map is more accurate than RFM in Jamalpur. The same15

result is true in Sirajganj (Fig. 5.9(c)) where the FFWC FSS at n = 3 (0.89) exceeds the16

RFM FSS at n = 1 (0.87). In Gaibandha (Fig. 5.9(b)) the FFWC FSS at n = 5 (0.73,17

750 m) exceeds the RFM FSS at n = 1 (0.72). Overall, by accounting for grid length,18

the FFWC provides the most accurate forecast flood map (albeit at a 0-day lead time)19

in Jamalpur, Sirajganj and Gaibandha. RFM is most skilful in Kurigram with Flood20

Foresight outperforming the FFWC model here.21

5.6.3 Discussion22

GloFAS RFMs are designed to give an early indication, up to a month in advance that se-23

vere flooding is possible for large rivers across the globe. The RFMs are triggered when the24

ensemble mean discharge exceeds the 10-year RP threshold over the next 30 days. The25

RP threshold levels are calculated using ERA5 reanalysis data (Harrigan et al., 2020).26
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GloFAS RFM is triggered for the Jamuna River only once at an 8-day lead time on 181

July (mapping maximum extent over the next 30 days) where the flood map shows a high2

level of skill across the districts of interest (Fig. 5.8), comparable to the local FFWC flood3

maps, which use local observations. Unfortunately, the RFM skill reduces closer to the4

event with no flood maps triggered after 18 July. We also see this impacting the Flood5

Foresight skill, which reduces closer to the flood peak (Fig. 5.5). The Flood Foresight6

system indicates flooding surrounding the Jamuna River at all forecast lead times. The7

flood extent is generally under-predicted. This is partly due to the discharge forecast not8

exceeding the 5-year RP threshold, which also links to unresolved/uncalibrated smaller9

tributaries/distributaries in the GloFAS river network.10

11

Boelee (2022) finds (for Africa, based on GloFAS ensemble reforecast flows) that the12

forecast discharge exceedance above return period thresholds depends on both the forecast13

lead time and the number of ensemble members considered (the probability trigger set).14

Boelee found more flood occurrences were predicted at medium-range lead times, compared15

to short-range lead times. We infer that these results could also apply to Bangladesh and16

that they partly explain the RFMs best performance at 8 days lead time. The ERA517

reanalysis data is used to initialise the GloFAS forecast and determine the RP thresholds.18

Currently, the RP thresholds do not account for either forecast lead time or ensemble vari-19

ability. The GloFAS hydrographs at Bahadurabad indicate a reanalysis discharge value of20

around the 2-year RP threshold for all lead times within 5 days of the flood peak. This is21

a significant underestimation compared to observed river levels (both in historical context22

and compared to FFWC danger levels and severe flood thresholds). High confidence is23

assigned to the initial conditions in the streamflow forecast and also in the short-term24

forecast before the ensembles show more variation at longer lead times. This leads to an25

overall under-estimation of the flood magnitude at shorter lead times. Zsoter et al. (2020)26

found that ensemble-reforecast-based thresholds would lead to an improved forecast at27
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lead times beyond a few days as they can account for variations in forecast skill with1

lead-time and ensemble variability. Ensemble-reforecast-based thresholds could improve2

the flood map selection in both the RFM and Flood Foresight systems, which presently3

are the main limitation of both systems.4

5

The RFM uses the ensemble mean or 50% of ensemble members must exceed the RP6

threshold to trigger a flood map. However, Boelee (2022) found that the percentage of7

flood events exceeding the threshold for any return period dropped to less than 50% as8

soon as the required ensemble size was increased to two ensemble members or more, for all9

the lead times. Extreme flood event prediction, can lie in the ensemble member outliers10

(Hooker et al., 2023a). The Flood Foresight system uses information from all ensemble11

members for impact forecasts, which is a major benefit of this system. The automated12

probabilistic flood maps can be produced quickly in near real-time indicating a spread of13

possible conditions that could support the decision-making process. The RFM could see14

an improved forecast at more lead times if any ensemble member exceeding the RP thresh-15

old (rather than the mean) triggered the flood map selection. This would require further16

investigation in flood prone areas so that the number of ensemble members chosen can be17

optimised to avoid increasing false alarms. The RFM could also provide probabilistic infor-18

mation by combining flood maps from all ensemble members that exceed the RP threshold.19

20

The FFWC model performs significantly better at shorter lead times compared to the21

other two systems, which is not surprising as locally observed river level and rainfall data22

are used as input data. The benefits of the FFWC model are that no RP thresholds need23

to be determined or exceeded to produce a flood map and there are no flood map inter-24

polation uncertainties. The deterministic FFWC models forecast skill drops significantly25

with forecast lead time (BWDB, 2020), which reduces the usefulness for flood mitigation26

and FbF purposes at longer lead times. The FFWC model performs less well compared27
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to RFM and Flood Foresight near to the country’s border where observations upstream1

are unavailable.2

5.7 Conclusions3

Forecast flood maps are increasingly sought to accurately link flooding hazard to popula-4

tions impacted to inform FbF schemes. Humanitarian agencies in Bangladesh would like5

the impacts mapped in detail at Union level (4,571 Unions in Bangladesh) at long forecast6

lead times (out to 10 days) so that insurance funds can be locally targeted in good time.7

This creates a conflict between the detail or spatial scale (grid size) of the flood maps and8

the forecast skill of the flood forecasting system. Spatial validation of forecast flood maps9

from multiple systems has received little attention, partly due to the problem of comparing10

skill scores from maps at different spatial scales. Here, we applied a validation approach11

using scale-selective methods (Hooker et al., 2022) that determines a skilful scale, which12

can be directly compared across forecast systems.13

14

We evaluated three flood forecasting systems, Flood Foresight (30 m), GloFAS RFM15

(1000 m) and the FFWC Super Model (300 m) each predicting flood extent at differ-16

ent spatial scales (shown in brackets) for the Jamuna River in July 2020. Each of the17

maps were compared against SAR-derived observations of flood extent. Evaluating Flood18

Foresight skill at all lead times out to ten days for four districts revealed issues with unre-19

solved/uncalibrated tributaries/distributaries in GloFAS (used to input forecast discharge20

to Flood Foresight). Reconfiguring the Flood Foresight system led to an improved flood21

map forecast in one district (Jamalpur), but similar issues remained in other areas. This22

highlights one problem with trying to combine a gridded global hydrometeorological model23

with a detailed sub-catchment network and linking this to detailed flood maps. The flood24

mapping skill in the Jamuna basin is linked to the detail of the river network and whether25
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flood maps are triggered, which depends on exceeding the RP threshold set. Where Flood1

Foresight maps were triggered, such as in Kurigram, the flood map accuracy outperformed2

the local FFWC model. This is due to its location next to the border of Bangladesh and3

the lack of upstream observations. In other areas the FFWC model captures more de-4

tail in the river network and shows less under-prediction compared to the other systems.5

For FbF applications and humanitarian response in Bangladesh, a combination of Flood6

Foresight and the local FFWC model could produce flood inundation maps at a useful7

scale that can be linked to flooding impacts. Flood Foresight has the benefit of forecast8

skill at a longer lead times (up to 10 days) with probabilistic maps accounting for some9

of the forecast uncertainty. Flood Foresight could be supplemented or linked to driving10

data from the FFWC model at shorter lead times to incorporate local observations and a11

higher resolution river network. This would avoid regions of non-trigger where no flood12

map is selected from the Flood Foresight library due to the forecast discharge not ex-13

ceeding the RP threshold. GloFAS RFM is designed as a deterministic ‘heads-up’ tool at14

a coarse resolution that would be difficult to link to impacts for FbF applications in its15

current configuration. All systems miss flooding across a wide area captured by the SAR16

data that is possibly due to surface water flooding (SWF). These fluvial flood forecasting17

systems are not designed to map SWF and we recommend combining the forecast flood18

maps with SAR-derived flood maps through data assimilation so that SWF can be ac-19

counted for in post event impact calculations for FbF schemes. Alternatively, a combined20

fluvial/pluvial flood forecasting system would be ideal, however pluvial flood forecasting21

practice is currently less developed in part due to the difficulties in observing SWF and22

accurately predicting convective rainfall (Speight et al., 2021).23

24

For future spatial validation of flood maps using SAR data, we recommend making25

use of the Copernicus GFM product (GFM, 2021) which maps flooding detected from all26

Sentinel-1 images since October 2021. Importantly, an exclusion mask layer is available27
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which can be used to exclude areas where SAR is unable to detect flooding such as in dense1

urban areas, under vegetation and near steep topography. The forecast flood maps would2

no longer be penalised for over-prediction in regions where the SAR cannot reliably detect3

flooding. Another opportunity for improvement lies with the flood map library. Both4

Flood Foresight and RFM maps are currently undefended. However, both would likely be5

improved if flood defence information from FFWC could be incorporated, allowing areas6

benefiting from those defences to be discounted when flood conditions are at return periods7

lower than the standard of protection of the defence. Alternatively, a new high resolu-8

tion DTM including local defence features, ideally through acquiring LiDAR data (where9

locally obtained), would improve the local accuracy of the flood maps. The maps held10

within the simulation library could be hydrodynamically precomputed at lower discharge11

return periods, which would avoid inaccuracies caused by flood map interpolation beneath12

the lowest RP level. This would increase the confidence in these flood maps so that a lower13

RP threshold could be used to trigger FbF allowing more people access to insurance funds.14

15

Fortunately, some of the issues discussed here such as the river network detail will be16

partly resolved by the major upgrade to GloFAS with version 4.0 due in 2023 (Grimaldi,17

2022). Significantly, the spatial resolution of GloFAS will increase 4 fold to approximately 518

km grid size. The river network will increase similarly, and more distributaries/tributaries19

will be included in Bangladesh. This upgrade along with the use of ensemble-reforecast-20

based RP thresholds should improve the flood map selection process used by both GloFAS21

RFM and Flood Foresight. Scale-selective validation methods will enable future system22

changes to be evaluated and compared meaningfully. Ideally, this would be automated23

and integrated into the flood forecasting system.24
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5.8 Appendix1

Table 5.2: Binary performance measures and formulas. Contingency categories: correctly predicted
flooded (A), over-prediction (B), under-prediction (C), correctly predicted unflooded (D)

Performance measure Formula Description [range min, range
max, perfect score]

Bias A+B
A+C [0, ∞, 1] 1 implies forecast

and observed flooded areas
are equal > 1 indicates
over-prediction, < 1 indicates
under-prediction

Critical Success
Index/Threat score F<2>

(CSI)

A
A+B+C [0, 1, 1] Fraction correct of

observed and forecast flooded
cells

F<1> Proportion correct A+D
A+B+C+D [0, 1, 1] Proportion correct

(wet and dry) of total
domain area

F<3> A−C
A+B+C [-1, 1, 1] Score reduced by

over-prediction

F<4> A−B
A+B+C [-1, 1, 1] Score reduced by

under-prediction

False Alarm Rate (FAR) B
B+D [0, 1, 0] Proportion of

over-prediction of dry areas

Hit Rate (HR) A
A+C [0, 1, 1] Fraction correct of

observed flooded area
Pierce Skill Score (PSS) HR− FAR [-1, 1, 1] Incorporates both

under and over-prediction
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Figure 5.10: Six FFWC station water levels during July and August 2020 across the four districts
compared with closest GloFAS grid cell discharge.

123



Chapter 5. A multi-system comparison of forecast flood extent using a scale-selective
approach

Figure 5.11: Binary performance measures for each district. Flood Foresight run date 18 July (a),
GloFAS RFM 18 July (b) and FFWC flood map 25 July (c).
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5.9 Chapter summary1

In this chapter we apply the scale-selective methods presented in Chapter 3 to evaluate2

three flood forecasting systems, each presenting flood inundation forecasts at different3

spatial scales. Conventional binary performance measures would result in biases linked4

to spatial scale. We show how the scale-selective methods can be used to meaningfully5

compare across different flood forecasting systems. The benefits and limitations of the6

systems could be discussed as a result of the evaluation process. The issues identified7

here, that can lead to a non-trigger of flood maps in some sub-catchments, are addressed8

in Chapter 6. In Chapter 6 we will use the SAR data directly to improve the flood map9

selection for previously non-triggered flood maps in the Flood Foresight system.10
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Updating simulation library flood2

map selection through assimilation3

of probabilistic SAR-derived flood4

extent5

In this chapter we address the fourth research question outlined in Chapter 1; Does a data6

assimilation framework improve the analysis of flood inundation from a simulation library7

system?:8

• Can we incorporate probabilistic information from remotely observed flood inunda-9

tion into a data assimilation framework to improve the flood map selection within a10

simulation library flood forecasting system?11

• How does the analysis flood map compare to independent validation data?12
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6.1 Abstract1

Mitigating against the impacts of catastrophic flooding requires funding for the commu-2

nities at risk, ahead of an event. Simulation library flood forecasting systems are being3

deployed for forecast-based financing (FbF) applications. FbF schemes use hydromete-4

orological predictions, linked to flood inundation maps that overlay local population (or5

other) impact maps to trigger a financial payment in advance of flooding. The FbF trigger6

is usually automated and relies on the accuracy of the flood inundation forecast. This re-7

liance can lead to missed events that were forecast below the trigger threshold required or8

were not predicted at all. However, earth observation data from satellite-based synthetic9

aperture radar (SAR) sensors can reliably detect most large flooding events, although10

their use is limited in urban areas. Data assimilation (DA) combines forecast information11

with observation information to improve the current system state (the analysis). A new12

DA framework is presented to update the flood map selection from a simulation library13

system using SAR data, taking account of observation uncertainties. By utilising flood14

extent likelihood data derived from Sentinel-1 SAR images, we derive a new cost function15

that must be minimised. By iteration through the flood map library we optimise the flood16

map selection per sub-catchment. We have applied our DA method to the Pakistan 202217

flood. During this flood, the Indus River in the Sindh province downstream of the Sukkur18

barrage was not forecast to reach flood levels, which resulted in a non-trigger of the FbF19

scheme for this region. Our experiments have focused on three different scenarios: a large20

city area with limited SAR flood detection (due to a dense urban area); sub-catchments21

with mixed rural and urban areas; and flood edge sub-catchments. We found that the22

flood map selection could be triggered in four out of five sub-catchments tested, with23

the exception occurring in the dense urban area due to the simulation library flood map24

accuracy here. Thus, the analysis flood map, created by assimilating observations from25

SAR flood likelihood data, has potential to be used to trigger a secondary finance scheme26
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during a flood event and avoid missed financing opportunities for humanitarian action.1

6.2 Introduction2

Our warmer climate is increasing the frequency and intensity of extreme weather events3

and the exposure and vulnerability of communities and individuals (Pörtner et al., 2022).4

Large-scale flood forecasting systems predicting flood inundation extent are increasingly5

used for disaster risk reduction to improve preparedness ahead of a major flooding event6

(Stephens & Cloke, 2014a; Hooker et al., 2023b; Wu et al., 2020). An ensemble flood7

forecasting system creates probabilistic flood maps indicating the likelihood of flooding8

across a region or country. Flood impact risk factors such as population density, land-use9

types or vulnerable infrastructure can also be mapped for the same area. The forecast-10

flood-likelihood maps can be overlaid with impact maps and depending on the severity of11

the hazard and the level of impact, a risk profile can be determined. The flood risk profile12

can be used to inform forecast-based financing (FbF) schemes that enable the pre-release13

of funds based on the flood forecast, ahead of the flood event (Coughlan de Perez et al.,14

2015, 2016). Automation of FbF schemes is important for rapid action to take place to15

mitigate against flooding impacts. The skill of the flood forecasting system is key to trig-16

gering the FbF scheme. A non-trigger of FbF ahead of or during a flood event might17

prove catastrophic for those impacted.18

19

Advances in flood forecasting both at global and local levels link together meteorolog-20

ical and hydrological forecasts of river discharge that drive the selection of pre-computed21

flood maps from a simulation library (Speight et al., 2021; Hooker et al., 2023a). The22

use of a simulation library obviates the need to run a hydrodynamic model as part of the23

forecast process, reducing computation time and allowing near real-time updating for large24

areas, which otherwise presents a significant challenge. The flood maps within the library25
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are at a relatively higher spatial resolution (e.g. 30 m) compared to the resolution of the1

driving global hydrological model (e.g. approximately 5 km). This mismatch in scales can2

lead to problems with flood map selection and can cause gaps where the minimum return3

period threshold has not been exceeded (a non-trigger) by the forecast discharge (Hooker4

et al., 2023b). The three main issues that cause this in the global scale model are the rep-5

resentation of river networks, the return period thresholds determined and the exclusion6

of dam operations. Rivers that are narrower than a particular width, or catchment areas7

smaller than a pre-determined size are not resolved by global scale models. In addition,8

the return period thresholds set may be poorly calibrated due to a lack of ground truth9

observational data such as river discharge or river water level (Boelee, 2022). These two10

limitations can lead to a non-trigger, i.e. no flood map is selected from the simulation11

library for a particular sub-catchment. Also, local dam operations such as diversions of12

river water for irrigation purposes or rapid releases of flood waters downstream, are not13

generally included in global scale models. This can lead to over- or under-prediction of14

forecast discharge, resulting in inaccurate or non-trigger of flood map selection in the fore-15

cast.16

17

Satellite-derived observations of flooding have the potential to bring additional spatial18

information into flood inundation forecasts compared to in situ point gauging stations.19

These observations could be used to update and improve the FbF scheme either as part of20

a secondary finance payment following the acquisition of the satellite data or to improve21

the flood inundation forecasts going forwards as the flood event evolves. Synthetic aper-22

ture radar (SAR) sensors are particularly useful for remote flood detection, since they can23

see through cloud, most weather and are active both day and night (e.g. Mason, Daven-24

port, et al., 2012; Schumann et al., 2022). Previously, SAR data have been used in several25

different ways to improve hydraulic models and flood prediction through data assimila-26

tion (DA). Data assimilation finds an optimal state (such as water level) and/or model27
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parameter values by accounting for the previous forecast, the observations available, and1

both of their associated uncertainties. The updated state (analysis) and/or parameter set2

are used to initiate the next forecast in a feedback loop or cycle. A review of approaches3

used to assimilate satellite-derived data into hydraulic models (from 2007 until 2015) can4

be found in Table 7 of Grimaldi et al. (2016) and Table 1 of Revilla-Romero et al. (2016).5

6

Here, we summarise the different ways that observations of flood extent and water7

levels are used in various DA approaches and discuss some limitations. In order to extract8

flood extent from SAR data an image classification technique must be applied (see Section9

3, Grimaldi et al. (2016)). Binary maps of flood extent were assimilated by Lai et al. (2014)10

using a 4D variational approach to successfully estimate the roughness parameter over the11

flood plain. More recent variational approaches combine in situ observations with high-12

resolution hydrometeorology and satellite altimetry data into a hydraulic–hydrological13

numerical model (Pujol et al., 2022). Other DA methods applied to flooding include fil-14

tering methods such as particle filtering (PF) and ensemble Kalman filter (EnKF) methods15

(van Leeuwen, 2009; Evensen, 1994). These methods have been used to assimilate SAR-16

derived water levels (WL), found by intersecting the edge of the binary flood map with17

a digital elevation model (DEM) (Mason et al., 2007; Mason, Davenport, et al., 2012).18

SAR-derived WL only provide information at the flood edge and rely on the spatial res-19

olution and the vertical accuracy of the underlying DEM (Dasgupta et al., 2021a), which20

makes them difficult to obtain.21

22

A probabilistic flood mapping procedure for SAR data was first introduced by Giustarini23

et al. (2016). This created the potential for flooding probabilities to be assimilated directly.24

More recently, observation uncertainty associated with classifying flood extent from SAR25

data is openly available through the Copernicus Emergency Management Service (CEMS)26

(Copernicus Programme, 2021). Probabilistic flood maps from SAR were used to quan-27
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tify observation uncertainty for assimilating flood extents by Hostache et al. (2018) using1

a PF approach. Hostache et al. found an improvement in forecast performance of WL2

compared to those found by Garćıa-Pintado et al. (2013); Garćıa-Pintado et al. (2015)3

who assimilated WL using a local ensemble transform Kalman filter (ETKF). Cooper et4

al. (2019) considered the direct assimilation of SAR backscatter values, avoiding the step5

of deriving an intermediate flood extent first. Cooper et al. assimilated pseudo-observed6

SAR backscatter values directly into a 2D hydrodynamic model using an ETKF approach7

and compared three different observation operators. The authors found a new backscatter8

observation operator performed well compared to more conventional options.9

10

In general, filtering methods suffer from degeneracy and limited persistence of improve-11

ment following DA. Several attempts have been made to address this. By using a mutual12

information-based likelihood function, Dasgupta et al. (2021b) increased the persistence of13

the DA impact on improvement of both water depth and discharge. Di Mauro et al. (2021,14

2022) aimed to overcome degeneracy issues by applying a tempered particle filter (TPF)15

and particle mutation so that variation across the ensemble is maintained. Comparisons16

against sequential importance sampling methods concluded that the TPF approach im-17

proved the persistence of the DA. More recent studies using EnKF methods include the18

assimilation of distributed WL derived from optical satellite data combined with WL from19

river gauges (Annis et al., 2022). Annis et al. found that improvements from the DA by20

including the satellite-derived WL data spread further across the domain compared to21

those without. However, these improvements also suffered from limited persistence.22

23

One major assumption made when assimilating SAR data is that the observation er-24

rors are from a Gaussian distribution. Nguyen, Ricci, Piacentini, Fatras, et al. (2023)25

used a novel approach by assimilating flood extent data expressed as a wet surface ratio26

(Nguyen, Ricci, Piacentini, Simon, & Rodriguez-suquet, 2023) and Gaussian anamorpho-27
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sis (GA) to transform the non-Gaussian observation errors into Gaussian. They found1

this gave slightly better results compared to DA without GA but concluded that the sub-2

optimal assumption of Gaussian errors in EnKF may still give reliable and valid results.3

4

All of these studies involved the assimilation of satellite-derived data to update hy-5

drodynamic model states and/or parameter values by taking a data assimilation cycling6

approach. The assimilation provides updated initial conditions ahead of the next forecast7

cycle. Our new approach differs significantly as we aim to develop a DA framework to8

assimilate probabilistic flood maps into a simulation library flood inundation forecasting9

system. We aim to improve the flood map selection creating a new analysis flood map10

without a feedback loop by utilising spatially distributed flood likelihood information de-11

rived from SAR data. We test the DA framework using forecast and optical satellite12

observation data from a major flood event in Pakistan, August 2022 (Floodlist, 2022).13

14

In this chapter, the flood forecasting system and derivation of the static simulation15

library along with satellite-derived observations of flood likelihood are outlined in Section16

6.3. The development of the DA framework and verification methods are described in17

Section 6.4. Section 6.5 presents an overview of the 2022 Pakistan flood and details of18

the data used. The DA framework successfully triggered flood maps in 4 out of 5 sub-19

catchments tested as shown in our results, discussed in Section 6.6. We conclude in Section20

6.7 with recommendations for future work to improve the use of SAR flood likelihood data21

to update a simulation library flood forecasting system through data assimilation.22
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6.3 Simulation library forecasting system and observation1

data2

Flood Foresight, a simulation library flood inundation forecasting system and its appli-3

cation for disaster risk reduction through FbF is outlined in Section 6.3.1. Section 6.3.24

details the derivation of the flood likelihood data from SAR that will be used as obser-5

vation data in the assimilation process. The extraction of flood extent information from6

optical images that will be used for validation is explained in Section 6.3.3.7

6.3.1 Flood Foresight and Forecast-based-Financing8

The Global Flood Awareness System (GloFAS) couples global ensemble weather forecasts9

with a hydrological model and provides daily ensemble forecast river discharge at approx-10

imately 10 km grid size (v3.2, GloFAS (2021)). The Flood Foresight system (Revilla-11

Romero et al., 2017; Hooker et al., 2023a) is a fluvial, probabilistic flood inundation12

forecasting system. Flood Foresight is set up by dividing the catchment into ‘Impact13

Zones’ (IZ) or sub-catchments using the HydroBASINS data set (Lehner, 2014b). Each14

IZ in Flood Foresight is linked to a GloFAS grid cell that provides a 51 ensemble member15

forecast of river discharge. Flood Foresight contains a simulation library of precomputed16

flood depth and extent maps. The flood map library was hydrodynamically modelled us-17

ing JFlow®, (Bradbrook, 2006) and RFlow using a detailed 30 m digital surface model.18

The maps were modelled at specific return period (RP) thresholds (20, 50, 100, 200, 50019

and 1500 years). Subsequently, these were linearly interpolated at 5 intermediate intervals20

between each RP threshold and extrapolated between zero and the 20 year RP flood map21

(totalling 36 flood maps). Depending on the forecast discharge from GloFAS for each IZ,22

a flood map is selected from the simulation library. The flood map selected is determined23

by the RP threshold exceeded within each IZ. The resultant forecast flood map is created24

by stitching together individual IZ flood maps (at various RP’s) and is produced daily out25
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to 10 days ahead.1

Figure 6.1: Flood Foresight/Start Network ensemble flood inundation forecast and population im-
pacts work flow.

The charity Start Network (Start Network, 2022) brings together a group of over 802

humanitarian agencies and aims to develop local community-led, early action through a3

model of proactive funding to mitigate against the impacts of crises. JBA Consulting, in4

partnership with Start Network, have developed a Disaster Risk Financing (DRF) system5

for the Indus River basin in Pakistan that links Flood Foresight forecast flood maps to6

populations impacted by flooding (Fig. 6.1). For the purposes of setting FbF trigger7

threshold levels, the DRF system quantifies the flood risk to the population through a8

probabilistic global catastrophe risk model, FLY (Dunning, 2019). The analysis flood map9

produced here as a result of the DA relates to the dynamic operational index triggering.10

6.3.2 Satellite-derived flood likelihood11

The GFM service (GFM, 2021) combines the outputs of three different algorithms to ex-12

tract flood extent and uncertainty information from Sentinel-1 SAR data. The process is13

automatic and runs continuously in near real-time (within 8 hours after image acquisition)14
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for every SAR image detecting flooding on a global-scale. The resulting flood informa-1

tion layers are openly available through open access. The mini-ensemble approach used2

for flood detection increases the confidence in the flood detecting capabilities of SAR.3

The first flood mapping algorithm developed by the Luxembourg Institute of Science and4

Technology (LIST) use a pair of SAR images (pre-flood and flood) and a hierarchical5

split-based change detection approach to classify permanent and flood waters (Chini et6

al., 2017). The classification uncertainty depends on the Bayesian inference classification7

probabilities. The second flood mapping algorithm by the German Aerospace Research8

Centre (DLR) uses a hierarchical tile-based thresholding approach and the optimization9

of the classification by combining various information sources using fuzzy-logic theory and10

region growing (Martinis et al., 2015; Twele et al., 2016). The uncertainty information11

depends on fuzzy memberships. The final algorithm from TU Wien uses the historical12

time series of the SAR backscatter values per pixel and classifies flood extent from the13

backscatter probability distribution (Wagner et al., 2020; Bauer-Marschallinger et al.,14

2022). The classification uncertainty is based on the Bayesian posterior probability. The15

output flood layer is derived using the mini-ensemble with a pixel classified as flooded16

where two out of three of the algorithms determines a flood class. The flood likelihood17

values are aggregated, first by converting each to lie in the same range [0, 100] before18

averaging the likelihood values. Regions where SAR is unable to detect flooding due to19

shadow or layover effects are removed from the classification process. This usually in-20

cludes dense urban areas, densely vegetated areas, regions with steep slopes and regions21

that might appear flooded such as dry, sandy desert-like surfaces. The exclusion mask is22

available to download as an additional layer. Permanent and seasonal water bodies are23

classified separately as a reference water mask layer.24

25

Krullikowski et al. (2023) applied and assessed the usefulness of GFM ensemble like-26

lihood on two test sites in Myanmar and Somalia, both situated in challenging areas27

136



Chapter 6. Updating simulation library flood map selection through assimilation of
probabilistic SAR-derived flood extent

for flood detection using SAR data. Krullikowski et al. found that the GFM ensemble1

likelihood layer resulted in a simplified appraisal of trust in the ensemble flood extent2

detection approach and provides more reliable and robust uncertainty information for3

detecting flooding compared to using a single algorithm only.4

6.3.3 Optical Normalized Difference Water Index (NDWI)5

Occasionally, optical satellite data can be useful for observations of flood extent. Flood

detection from optical satellites depends on a near cloud free sky where the satellite ac-

quisition coincides with the flood event. The Normalized Difference Water Index (NDWI)

for flood and surface water detection is calculated with Sentinel-2 optical data using the

green band (B03) and NIR band (B08) (Albertini et al., 2022). The NDWI is given by:

NDWI =
B03−B08

B03 +B08
, (6.1)

where positive values indicate water. Albertini et al. (2022) reviewed the performance of6

surface water and flood detection metrics using multispectral satellite data. They found7

that the average overall accuracy from previous flood studies applying NDWI to be 87.85%8

and for permanent surface water studies scored 94.41%. This included studies using data9

from different satellite sensors with spatial resolutions ranging from 10 m for Sentinel-210

to 500 m for Terra-Aqua MODIS.11

6.4 Methods12

6.4.1 Data assimilation framework13

The aim of the DA framework is to update a previous forecast of flood inundation extent14

and depth from Flood Foresight (the background) where a non-trigger has occurred in the15

forecast system but where flooding was derived from concurrent satellite-based SAR data.16
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Using observation uncertainty information from the GFM flood likelihood layer (Section1

6.3.2), we aim to improve the flood map selection for non-triggered IZ by minimising a2

cost function per IZ.3

4

The data assimilation framework aims to update the state vector, x ∈ Rn representing

flood depths at each grid cell location. The total number of grid cells across an IZ is n, the

total of observed unmasked grid cells is m. To find the optimum state accounting for ob-

servation uncertainty we define the observation likelihood term P (y|x) where observations,

y ∈ Rm have two possible binary outcomes, y = 1 flooded and y = 0 unflooded, follow-

ing classification from SAR data. The likelihood term can be represented by a Bernoulli

distribution (Lauritzen, 2023), defined as

P (y|x) =
m∏
i=1

L
H(xi)
i (1− Li)

1−H(xi), (6.2)

where Li is the GFM flood likelihood value (see Section 6.3.2). The observation operator

H(x) defined as

H(x) =

{
1 flooded xi > 0.2m

0 unflooded otherwise
, (6.3)

acts to convert flood depths (state space) to a binary flood class (observation space) at

unmasked grid cells. Thus, we exclude observation likelihood information for masked grid

cells where SAR data cannot reliably detect flooding. To find the maximum posterior

likelihood of the state variable, we take the negative log likelihood of P (y|x) and divide

by the number of unmasked grid cells m to derive the cost function (averaged across

unmasked grid cells per IZ)

J(x) = − 1

m

m∑
i=1

{
H(xi) ln(Li) + (1−H(xi) ln(1− (Li)

}
. (6.4)
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The value of J(x) is calculated per IZ by iterating through the flood map library (36 flood1

maps) and finding the flood map return period by minimising J(x) and maximising the2

posterior likelihood, given the observation uncertainty data. To ensure that the minimum3

is reached across the flood map library, J(x) is calculated for all 36 flood maps. Note4

that this is different to the standard data assimilation approach, minimisation would be5

accomplished via a gradient descent algorithm (Bannister, 2017). Following the assimila-6

tion process, replacing the non-triggered IZ with updated flood maps results in an analysis7

flood depth and extent map (the flood depth information is contained within the simula-8

tion library). This means that the analysis flood map remains consistent with the Flood9

Foresight system where the flood maps have been hydrodynamically modelled, i.e. they10

are physically realistic. Retaining the flood depth information is important for FbF appli-11

cations for quantifying the risk of flood impacts. Since the observations have binary values12

(flooded/unflooded), we cannot distinguish between floods that have the same extent but13

different depths from the observation data. This property is inherited in the cost function.14

6.4.2 Validation methods15

The resulting analysis flood map, following assimilation of SAR-derived flood likelihood

data, is validated by comparing against independent flood extent observation data derived

from optical satellite data, the NDWI (Section 6.3.3). The results will be validated by

calculating the Fraction Skill Score (FSS, Roberts and Lean (2008); Hooker et al. (2022))

and by mapping the performance on a Categorical Scale Map (CSM, Dey et al. (2014);

Hooker et al. (2022, 2023a)). Both the FSS and the CSM avoid issues with the double

penalty impact of conventional binary performance measures as well as the impact of flood

magnitude on the skill score (Hooker et al., 2022). The FSS is based on the Brier Skill

Score and uses a neighbourhood approach to determine the skillful spatial scale of the

analysis flood map. The fraction of flooding within a given square neighbourhood size of

length n is compared by calculating the mean-squared-error (MSE) between the analysis
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and the validation flood maps to give

FSSn = 1− MSEn

MSEn(ref)
, (6.5)

where MSEn(ref) is a potential maximum MSE that depends on the fraction of flooding

across the IZ on the analysis and the validation flood maps. A skilful scale is determined

when FSS ≥ FSST , the target FSS score, where FSST ≥ 0.5+ fo
2 depends on the fraction

of observed flooding across the IZ, fo. When the analysis and validation flood extents are

equal in area across an IZ there is said to be no background bias and the maximum FSS

is 1. Otherwise, the maximum asymptotic FSS (AFSS) is given by

AFSS =
2fofa
f2
o + f2

a

, (6.6)

where fa is the is the fraction of flooding on the analysis flood map per IZ.1

2

The CSM plots a local agreement scale (S) at every grid cell. An overview of the3

method is presented here. Please see Chapter 3 or Dey et al. (2014); Hooker et al. (2022,4

2023a) for full details of the methodology. A background bias between the analysis and5

verification flood maps that is deemed acceptable is predetermined. The pre-set bias is6

used to calculate an agreement criterion that must be reached by the flood map comparison7

calculation. The comparison begins at each grid cell n = 1, if the agreement criterion is8

met at grid level, the grid cell is labelled with an agreement scale S = 0. Where the9

criterion is not met, a larger neighbourhood size is compared (e.g. n = 3). The fraction10

flooded in each of the analysis and validation flood maps are compared and if the criterion11

is met, the agreement scale assigned would be S = 1. The process continues to larger12

neighbourhoods (e.g. n = 7, S = 3) until either the criterion is met or a predetermined13

limit is reached (Slim, set to 9 for this application). The agreement scale at this limit14

would indicate a false alarm or miss for the grid cell. Note that the relationship between15
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n, the neighbourhood size used for the FSS, and S is given by S = (n − 1)/2. The1

agreement scales are combined with data from a conventional contingency map (Stephens2

et al., 2014) and are mapped across an IZ. The CSM indicates a location-specific level of3

agreement and shows where the flood maps are over- or under-estimating flooding.4

6.5 Pakistan flood 20225

6.5.1 Event overview6

In Spring 2022, Pakistan saw a record-breaking heatwave with temperatures exceeding7

50°C. The heat exacerbated upstream glacial snow melt feeding the Indus River basin,8

which runs over 3000 km across the length of Pakistan, draining the Himalayas to the9

Arabian Sea. An intense monsoon season followed in July and August, driving multi-10

ple flood-producing mechanisms including multi-day extreme precipitation that was the11

primary driver of floods (World Weather Attribution, 2022; Nanditha et al., 2023). At-12

tribution studies indicate that the 5-day maximum rainfall over the provinces Sindh and13

Balochistan, which led to catastrophic flooding, was made 75% more intense by 1.2°C of14

global warming (World Weather Attribution, 2022). The northern Sindh province received15

an estimated 442.5 mm of rainfall in August, 784% more than usually recorded, causing16

inundation of 55,000 km2 across the region (Floodlist, 2022). Despite early warnings of17

the potential for significant flooding from GloFAS, the unimaginable scale and magnitude18

of the flood impacted over 33 million people with over 1700 lives lost and costing more19

than $40 billion in economic damages (Floodlist, 2022; World Resources Institute, 2023).20

6.5.2 Data21

The DA framework (Section 6.4.1) was tested in the northern Sindh province where22

widespread flooding occurred during August 2022. Figure 6.2 maps the NDWI derived23

from Sentinel-2 optical data (Section 6.3.3) that was used to verify the resultant analysis24
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flood map following DA. Local reports and photographs of flooding were made in the cities1

of Sukkur and Larkana (DAWN, 2022; The Guardian, 2022; Sky News, 2022). The DA

Figure 6.2: The domain of interest (DOI) is located on the Indus Basin, Sindh province, Pakistan
(left). The region is divided into sub-catchments or Impact Zones (IZ) in Flood Foresight (right).
Satellite-derived flooding (NDWI) from Sentinel-2 data (Section 6.3.3) from 31 August 2022 is
highlighted along with permanent water bodies (PWB).

2

was applied to 5 IZ covering 3 different scenarios (Fig. 6.3): (1) One IZ where a large pro-3

portion of the IZ is a dense urban area and is masked (where the GFM product is currently4

unable to detect flooding), Sukkur (S), see Figure 6.3(a); (2) Two IZ with mixed urban5

and rural areas, Larkana north and south (LN, LS); and (3) two flood edge locations (FE1,6

FE2). The GFM flood likelihood data used to represent observation uncertainty in the7

DA is mapped in Figure 6.3(a) where darker shades of orange indicate a higher likelihood8

of flooding (Section 6.3.2). The forecast data from Flood Foresight is mapped in Figure9

6.3(b) where the purple shades indicate the maximum return period flood map triggered10

by the system from 10 to 31 August, 2022. Each of the IZ selected were non-triggered11

IZ during this period. The driving forecast river discharge data from GloFAS did not12

reach the required threshold to trigger a flood map along the central Indus channel. This13
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is likely due to poor calibration of GloFAS due to a lack of observation of river stage or1

discharge. The Sukkur barrage operations for diversion and altering of river water flows2

are not currently included in the GloFAS system, which makes forecasts unreliable along3

this stretch of the Indus River.

Figure 6.3: (a) GFM flood likelihood derived from Sentinel-1 SAR data, masked areas (grey) in-
dicate where flooding cannot be reliably detected from SAR data. (b) The maximum return period
threshold triggered per IZ by the Flood Foresight system during peak flooding 10-31 August, 2022.
Five non-triggered IZ of interest labelled: S - Sukkur, LN - Larkana North, LS - Larkana South,
FE1 - flood edge 1, FE2 - flood edge 2.

4

143



Chapter 6. Updating simulation library flood map selection through assimilation of
probabilistic SAR-derived flood extent

6.6 Results and discussion1

Results are presented for the 3 scenarios tested in the following section. We discuss the2

benefits and limitations of the approach and how it could potentially be modified for3

improved performance.4

6.6.1 Scenario 15

The DA framework was applied to 3 different scenarios totalling 5 IZ. The first scenario6

tested was an IZ centred on the city of Sukkur. Sukkur is located just south of a large7

barrage, used to control flood waters. Significant flooding was observed locally in the8

Sukkur region (Sky News, 2022), however the dense city centre means that flooding is9

difficult to detect using Sentinel-1 imagery at 20 m spatial resolution. Around one third10

of the IZ is masked by the GFM process (Fig. 6.4(c)) but high flood likelihood values11

are visible across some areas of the IZ (Fig. 6.3(a)). The aim is to test whether the DA12

framework can select a flood map from the simulation library based on limited usable SAR13

data.14

15

The value of the cost function J(x) from eqn. (4), Section 6.4.1 is plotted against16

the RP value of each flood map from the simulation library in Figure 6.4(a). The cost17

function was minimised at the lowest RP flood map (3 years) and we found that a ‘no18

flood’ map gave a slightly lower value of J(x). In this instance, the lower RP flood maps19

over-estimated flooding in areas where low flood likelihood values were derived from SAR.20

The influence of the Sukkur barrage and river canals running across the IZ made the21

hydrodynamic modelling more difficult. Also, the flood maps do not include local defence22

information and the flood map interpolation process is highly uncertain at RP less than 2023

years. The results mean that no flood map was triggered following the DA (Fig. 6.4(b and24

c)) with the CSM map (Fig. 6.4(d)) indicating where the flooding was underestimated,25
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Figure 6.4: Scenario 1: Sukkur, a dense urban area. (a) The cost function (eqn. (4)) plotted
against the RP value, the yellow star highlights the minimum value of J(x). (b) The analysis RP
triggered following DA. (c) The analysis flood extent map (note that no map was triggered for
Sukkur) and (d) the CSM comparing the analysis flood extent map against Sentinel-2 NDWI.

particularly upstream of the Sukkur Barrage, with no flood map selected.1

6.6.2 Scenario 22

The second scenario focused on a mixed urban and rural area with 2 IZ chosen around3

Larkana city. The dense urban area is again masked and is split across the 2 IZ (Fig.4

6.3(a)), but there are large unmasked areas with high and low flood likelihood values.5

The assimilation results for scenario 2 are plotted in Figure 6.5(a) where the cost function6

minimum value is similar for both LN and LS with a 7 year RP flood map triggered for LN7

and a 13 year RP flood map triggered for LS (Fig. 6.5(b)). The resultant analysis flood8

maps selected (Fig. 6.5(c)) also indicate flooding within Larkana city, overlapping the9
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Figure 6.5: Scenario 2: Larkana, a mixed urban and rural area. (a) The cost function (eqn.
(4)) plotted against the RP value, the yellow star highlights the minimum value of J(x). (b) The
analysis RP triggered following DA. (c) The analysis flood extent map and (d) the CSM comparing
the analysis flood extent map against Sentinel-2 NDWI.

masked area. This is consistent with local observations and is important for population1

impact calculations for FbF schemes. The CSM indicates that whilst a large area is now2

correctly indicating flooding there are also large areas that are under-estimated by the3

analysis flood map (Fig. 6.5(d)). The neighbouring IZ that were triggered by the forecast4

system (Fig. 6.5(b)) are at much higher RP thresholds than the ones selected following5

the DA. By inspecting higher RP flood maps than those selected by the DA (for LN and6

LS) it became clear that these were over-estimating flooding in locations where low flood7

likelihood values were located causing J(x) (Fig. 6.5(a)) to increase.8

9

One potential solution to the inconsistency seen across the domain could be overcome10
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by including information from the forecast system. The assimilation process could be1

carried out across a region including multiple IZ at the same time, rather than consider-2

ing individual IZ. Conditions could be imposed, such as a consistent flood depth across3

IZ boundaries away from the flood edge. One way to impose some smoothness would4

be through the use of a background error term. Note that the background error is the5

prior or forecast error. Information from neighbouring IZ could be spread across a do-6

main by the background error covariance (B) matrix used in variational DA (Bannister,7

2008). The B matrix could be calculated offline using the content of the simulation library.8

9

Once the entire IZ becomes inundated at a 20-year RP, J(x) remains constant with10

increasing RP (Fig. 6.5(a)). Although the depth values are increasing, there are no11

significant changes in flood extent possible across the IZ, meaning the cost function cannot12

distinguish between flood maps over a 20-year RP. For the IZ tested here, the minimum13

has already occurred at lower RP, but it is possible that the minimum could occur where14

J(x) is constant, meaning a range of potential RP are possible solutions. In order to15

distinguish between equally plausible flood maps, additional observation data would be16

required to measure flood depth. Flood depth data for sufficiently large floods could be17

derived from satellite altimetry data such as the Surface Water and Ocean Topography18

(SWOT) mission (Frasson et al., 2019; de Moraes Frasson et al., 2023).19

6.6.3 Scenario 320

The final scenario investigates the impact of assimilating SAR-derived flood likelihood21

data on flood map selection where the flood edge lies within the IZ. The cost function22

value of J(x) drops relatively sharply for FE1 in the north (Fig. 6.6(a)) from 0.56 at 323

years RP to a minimum of 0.34 at 17 years RP. Further south, J(x) for FE2 is initially24

lower at 0.21 at 3 years RP, gradually decreasing to a minimum of 0.17 at 20 years RP. The25

shape of the cost function shows a smoother descent to a minimum compared to scenarios26
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Figure 6.6: Scenario 3: Flood edge location. (a) The cost function (eqn. (4)) plotted against the
RP value, the yellow star highlights the minimum value of J(x). (b) The analysis RP triggered
following DA. (c) The analysis flood extent map and (d) the CSM comparing the analysis flood
extent map against Sentinel-2 NDWI.

1 and 2 as there is more variation in flood extent between flood maps at different RP at1

the flood edge location. In similarity to scenario 2 (Larkana), neighbouring IZ are again at2

very high RP levels (Fig. 6.6(b)). The analysis flood map for FE1 does not reach the edge3

of the IZ, whereas FE2 virtually flood fills the IZ (Fig. 6.6(c)). The CSM (Fig. 6.6(d))4

shows that some flooding close to the main Indus River has been under-estimated in FE15

but with overall good accuracy and limited over-estimation. FE2 shows over-estimation in6

the west but again a large area in agreement with the flood extent derived from Sentinel-27

NDWI. Using flood extent observation likelihood data would be more useful where the8

flood edge stays within the IZ tested for the maximum RP flood map. There would be9

more chance of variation in the cost function value across the full range of RP flood maps.10
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In contrast, for a (near) flood filled IZ there would be less variation seen in J(x) due to1

limited changes in flood extent. Future work could focus on assimilating flood edge IZ2

and sharing information with neighbouring IZ by including a background term to update3

regions closer to the river channel where the IZ are more likely to be flood filled (Section4

6.6.2).5

6.6.4 Analysis flood map validation6

Table 6.1: Validation skill scores for each IZ analysis flood map compared against independent
Sentinel-2 NDWI

IZ code Analysis RP FSS at
(n = 1)

FSST AFSS n at FSST

S 0 0 n/a n/a n/a
LN 7 0.32 0.64 0.40 AFSS <

FSST

LS 13 0.38 0.65 0.51 AFSS <
FSST

FE1 17 0.55 0.66 0.71 n = 35 (525
m)

FE2 20 0.49 0.63 0.77 n = 15 (225
m)

In Table 6.1 the FSS (Section 6.4.2) has been calculated by comparing the analysis7

flood map selected per IZ with the corresponding Sentinel-2 NDWI representing observed8

flooding, with permanent water bodies excluded from the validation. The target skill9

score FSST and the asymptotic FSS AFSS are also calculated. The FSS for scenario 110

(Sukkur) was 0 as no flood map was triggered. For scenario 2 (LN and LS) the FSS score11

at grid level n = 1 (0.32 and 0.38) is around half of FSST . Usually, by increasing the12

neighborhood size the value of FSS also increases, eventually exceeding FSST . In this13

case AFSS (which is calculated using the fraction flooded across the IZ from both the14

analysis and observed flood maps) is less than FSST meaning the total differences in flood15

extent are too large for the FSS to reach or exceed FSST . The result of this is that there16
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is not a meaningful or skilful scale of the analysis flood maps for scenario 2. This is due1

to the under-estimation of flood extent seen on the CSM (Fig. 6.5(d)). For scenario 3,2

FSST < AFSS which makes it possible to calculate a skilful scale where FSS ≥ FSST .3

For FE1 this occurs when n = 35 or 525 m and FE2 at n = 15 or 225 m confirming that4

FE2 was the most accurate analysis. These results confirm that future work should focus5

on flood edge IZ first during the assimilation process.6

6.7 Conclusions7

In this chapter we introduced a new DA framework to update and improve the flood map8

selection within a flood forecasting system designed for FbF applications. Open access9

flood likelihood data derived from satellite-based SAR is used to update the flood map10

selection for previously non-triggered sub-catchments or IZ during a flood event. The11

framework is tested on the catastrophic flooding in Pakistan, August 2022 for 3 scenarios.12

13

The first scenario tested an IZ where limited useful SAR data was available due to a14

dense urban area. This resulted in no flood map selection following the DA. The second15

scenario, where two IZ contained a mix of urban and rural areas did trigger flood maps16

but at low RP levels, relative to neighbouring IZ that were previously triggered. This re-17

sulted in under-estimation of the flood extent. However, the analysis flood map included18

flooding across parts of the city of Larkana. Information from the flood likelihood data19

from other areas of the IZ could select a flood map that included urban flooding. This is20

useful for FbF applications where population impacts are considered. The final scenario21

examined flood edge locations and these gave the best results as the variation in flood22

extent selected higher RP flood maps that were more closely matched to the validation23

data. The skilful scale of the analysis flood maps in the flood edge IZ was 225 to 525 m.24

Out of the 5 IZ tested, 4 resulted in a flood map selection with the dense urban area and25
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limited SAR coverage the exception. Each of these 4 IZ were non-triggered, and now they1

are, which is beneficial, even if the extents are not perfect.2

3

The non-triggered flood maps could be updated quickly following the production of4

the GFM flood likelihood layer (approximately 8-hours after SAR acquisition). Although5

observed flood extent is used in the assimilation, the flood maps selected contain depth6

values that are already linked to a catastrophe risk model and population impact maps.7

Therefore the analysis is suitable to inform secondary financing schemes for flood response8

and recovery, during an event. Improvements could be made by the inclusion of prior in-9

formation from the simulation library system. An additional background term in the data10

assimilation framework could improve the consistency of the flood maps selected across a11

region.12

13

An additional benefit of our approach is that the analysis flood map could be used in a14

feedback loop to update the river discharge (e.g. in the associated GloFAS grid cell). This15

could be useful for hydrological model calibration or in updating the initial conditions for16

the next forecast.17

18

Future options for optimising the simulation library flood maps (where remote flood19

depth observations are available) could use a conventional iterative approach (such as gra-20

dient descent methods) to step through depth values within each individual grid cell. The21

resultant analysis depth map would represent the best estimate of the true flood extent and22

could be used to inform secondary insurance payments. However, the analysis flood map23

would no longer be consistent with the simulation library system and it would be difficult24

to use this to update the hydrological model (i.e. in a feedback loop). The analysis will25

possibly include surface water flooding (SWF), which is likely for large relatively flat river26

basins where monsoon rainfall contributes to flooding, such as the Indus basin in Pakistan27
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and the Ganges-Brahmaputra-Meghna catchments of India and Bangladesh. The analysis1

is more likely to represent flooding as observed ‘from the ground’, which makes it more2

consistent with locally observed flooding. This combined SWF-fluvial analysis flood map3

would mean that secondary insurance payments are more fairly distributed as they do not4

depend on the type of flooding mapped within the fluvial simulation library. The inclusion5

of SWF in the analysis flood map causes additional inconsistencies with the fluvial flood6

forecasting system, which makes the analysis map less useful for updating the system in7

a feedback loop ahead of the next forecast.8

9

In this application of the DA framework to selected IZ we were able to analyse the10

entire flood map library. For operational applications across a wider area, optimal iteration11

methods could be used to save computation time and storage.12

6.8 Chapter summary13

In this chapter we address some of the limitations of simulation library flood forecasting14

systems described in Chapter 5 by creating an assimilation framework using satellite flood15

likelihood data to improve the flood map selection for non-triggered flood maps. We ap-16

plied the framework to three different scenarios where the flood maps were not previously17

triggered following flooding in Pakistan in 2022: a large city area with limited SAR flood18

detection (due to a dense urban area); sub-catchments with mixed rural and urban areas;19

and flood edge sub-catchments. The updated flood maps were evaluated against inde-20

pendent satellite data using the scale-selective verification methods introduced in Chapter21

3.22
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Chapter 71

Conclusions2

7.1 Main conclusions3

In this thesis we have applied scale-selective verification metrics in a new application to4

evaluate several aspects of flood map forecasts from a simulation library system such5

as the spatial accuracy and the ensemble spatial spread-skill. The forecast maps were6

validated against SAR-derived observations of flooding for case studies both in the UK7

and internationally. We applied a new scale-selective verification approach to a multi-8

system comparison and addressed some of the limitations found by developing a new data9

assimilation (DA) framework to improve the flood map analysis. The main conclusions,10

which answer the four questions posed in Chapter 1, are:11

1. What are the skilful spatial scales in flood inundation forecasts made12

using a simulation library approach?13

• In Chapter 3 we describe a scale-selective approach to evaluate forecast flood14

inundation maps. A skilful spatial scale for forecast flood maps was determined15

by calculating the Fraction Skill Score, a validation metric, found by comparing16

the forecast flood maps against a satellite SAR-derived observation of flooding17
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across a range of neighbourhood sizes. A target skill score was calculated and1

this depends on the magnitude of the observed flood. We found that the skilful2

spatial scale determined for the flood edge was more sensitive to changes in3

spatial accuracy and spatial scale compared to the skilful scale found by evalu-4

ating the entire flood extent. Categorical scale maps indicated that the skilful5

scale varies with location within a domain. Based on the results from evaluat-6

ing a forecast of severe flooding on the River Wye and the River Lugg (UK)7

in February 2020, we found that the skilful scales depend on forecast inputs8

and can be linked to catchment characteristics such as flood plain topography,9

land use type and urban infrastructure. There are multiple operational uses of10

scale-selective evaluation of forecast flood maps such as model development and11

improvement and determining a meaningful spatial scale at which to present12

the forecast flood maps to end users.13

2. How skilfully does an ensemble of forecast flood maps represent the spa-14

tial uncertainty within the flood forecast?15

• In Chapter 4 we presented a new scale-selective approach to assess the spatial16

predictability and spread-skill of an ensemble flood map forecast that accounts17

for the individual spatial prediction of flood extent held within each ensemble18

member flood map. The method determines, at specific locations within the19

domain, whether the ensemble forecast is over-, under- or well-spread. The20

spatial spread-skill relationship was mapped onto our new spatial spread-skill21

map. Results following the application of the method to an ensemble forecast22

of flooding on the Brahmaputra (Assam, India) in August 2017 show that23

the spatial spread-skill relationship is highly spatially variable and depends on24

multiple factors throughout the flood forecasting system chain. We found that25

one ensemble member flood map outperformed all others including summary26
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flood maps such as the ensemble median and a total combined ensemble.1

3. How useful are scale-selective evaluation approaches when applied to mul-2

tiple flood forecasting systems?3

• In Chapter 5 we investigated a new application of scale-selective verification by4

evaluating the performance of three flood forecasting systems. Two simulation5

library systems, Flood Foresight (30 m) and GloFAS Rapid Flood Mapping6

(1000 m) and one hydrodynamically modelled system, the Bangladesh FFWC7

Super Model (300 m), all made predictions of flood extent at different spatial8

scales (grid lengths, shown in brackets) for the Jamuna River flood, Bangladesh,9

July 2020. Our results show that the simulation library system accuracy crit-10

ically depends on the discharge return period threshold set to trigger a flood11

map selection and the number of hydrological model ensemble members that12

must exceed it. At short forecast lead times, the Super Model outperforms the13

other systems in three out of four districts. Near to the Bangladesh border,14

the trans-boundary benefits of the two global systems are evident, with both15

outperforming the local model. We conclude that a scale-selective verification16

approach can quantify the skill of systems operating at different spatial scales17

so that their benefits and limitations can be evaluated.18

4. Does a data assimilation framework improve the analysis of flood inun-19

dation from a simulation library system?20

• In Chapter 6 a DA framework was developed to integrate probabilistic flood21

extent maps from satellite-based SAR sensors into the simulation library flood22

map selection process. The method was tested on the severe flood event in23

Pakistan, 2022, where several sub-catchments resulted in a non-trigger of the24

forecast-based financing system deployed here, despite significant flooding evi-25
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dent from earth observation data. The DA successfully triggered flood maps in1

4 out of 5 sub-catchments tested and we found that evaluating sub-catchments2

over the flood edge gave the best results. The analysis flood map remains con-3

sistent with the forecast-based financing system so could be easily linked to4

impacts to inform secondary finance payments during an event.5

7.2 Thesis synthesis6

The overall aim of this thesis was to improve flood inundation forecasts using satellite7

derived observations of flooding. It is important to understand meaningful length scales8

when comparing spatial observations with forecasts. Assimilating observations at grid9

level could lead to over-fitting or indicating over-confidence in the forecast. The forecast10

improvement may suffer from limited persistence through time. Finding meaningful or11

skilful spatial scales was the focus of Chapter 1. Visualising the skilful scale on an agree-12

ment scale map, brought additional benefits to the model evaluation, since improvements13

could be targeted to specific locations. The scale-selective evaluation approach overcomes14

issues such as the double penalty impact of high resolution verification and the impact of15

flood magnitude on skill scores. The method developed was used as an evaluation tool in16

Chapters 3 to 6.17

18

In Chapter 4 the scale-selective verification approach developed in Chapter 3 was ex-19

tended to an ensemble forecast system. The ensemble verification approach adds an extra20

dimension, the ensemble spread. The spread-skill relationship was evaluated for a simula-21

tion library system predicting flood inundation. The results showed that the most skilful22

member may lie in an ensemble outlier and the ensemble mean flood map may miss local23

detail. These are important considerations for interpreting ensemble flood maps in fore-24

cast applications.25
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1

The scale-selective verification approach has been applied to a simulation library sys-2

tem in Chapters 3 and 4. In Chapter 5 we also verify a local flood forecasting system3

along with two simulation library systems to show how the verification approach can be4

useful in multi-system evaluations where the flood maps are presented at different spatial5

scales. The skilful scale can be interpreted as a displacement distance, which can be di-6

rectly compared across the systems. The simulation library system limitations found in7

Chapter 5 gave motivation to develop the data assimilation framework in Chapter 6.8

9

In some forecast situations the forecast discharge driving the flood map selection may10

not exceed the return period threshold set to trigger the flood map selection. This can11

result in missed opportunities for forecast-based financing where flooding did occur but12

was not well forecast. The data assimilation approach developed in Chapter 6 aimed to13

overcome this by using satellite-derived flood likelihood data to improve the flood map14

selection from the simulation library, creating a new analysis flood map. The resultant15

analysis flood map was evaluated using the approaches developed earlier in Chapter 1.16

7.3 Limitations17

The satellite-derived observations of flooding from SAR data used for verification in Chap-18

ters 3, 4, and 5 make the assumption that the observed flooding extent is accurate. The19

limitations of SAR-derived flooding are discussed in each Chapter. However, new meth-20

ods such as masking areas where SAR is unable to reliably detect flooding, described in21

Chapter 6 would have benefited the results in previous chapters. The inclusion of flood de-22

fences in the forecast flood maps would also give a better evaluation of model performance.23

24

The flood inundation evaluation in Chapter 1 was developed on a conventional grid25
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across a region of interest. The neighbourhood approach may not be meaningful where1

the neighbourhood extends beyond a sub-catchment boundary, where flood waters are2

contained within each sub-catchment. The evaluation and data assimilation could be car-3

ried out on a sub-catchment level, rather than across a domain. We evaluated the spatial4

extent of flooding. Flood depth evaluation would add an extra dimension to the analysis,5

however this is complicated by the need for a detailed digital terrain model. Extrapolating6

water levels across a region from observations at the flood edge creates large uncertainties7

in the flood depth estimation. More recent techniques may reduce these uncertainties8

(Amitrano et al., 2024; Betterle & Salamon, 2024) so that agreement scales could be cal-9

culated for flood depths.10

11

In Chapter 4 the spread-skill relationship was evaluated in detail for one forecast lead12

time. At the time, this was the only data available. It would be beneficial to evaluate13

the spread-skill at longer forecast lead times and for different flooding events. The multi-14

system comparison in Chapter 5 was limited by data availability, the study would benefit15

from additional data from the local model at more lead times to compare against the16

simulation library systems. The data assimilation framework in Chapter 6 uncovered17

occasions where the sub-catchments became flood filled and distinguishing between flood18

maps proved difficult. Recommendations were made in Chapter 7 and the next section to19

address this limitation.20

7.4 Recommendations for future work21

The application of scale-selective verification methods (Chapter 3) and the ensemble22

spatial-spread skill methods (Chapter 4) could be applied to other flood events. The23

case studies might include additional emphasis on the physical characteristics of the flood-24

ing or the driving meteorological situation, e.g., do the antecedent soil moisture conditions25
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impact the skilful scale of the forecast? This relies on the availability of a historical cata-1

logue of events with flood inundation predictions. It would be interesting to investigate the2

impact of forecast lead time or an increased spatial resolution of the driving model, on the3

ensemble spatial-spread skill and the probabilistic skilful spatial scale (Necker et al., 2023).4

5

An important aspect of developing an inundation flood forecasting system is to deter-6

mine the most useful way to present both deterministic and ensemble flood map forecasts.7

Future work might include investigating the use of presenting forecasts to end-users using8

variable spatial scales, so that the scale reflects the forecast uncertainty. There is also9

the potential to smooth and contour the flood edge, particularly in rural areas, so that it10

is more representative of a flooding situation. Presentation options of ensemble forecasts11

could be investigated such as spatially clustering similar ensemble members into groups12

of flood extent or to present a most likely, best and worst case scenario ensemble flood map.13

14

Several recommendations were made at the end of Chapter 6 for future data assimila-15

tion approaches applied to simulation library systems. An additional background term in16

the data assimilation framework could improve the consistency of the flood maps selected17

across a region. A recent paper assimilates precipitation features based on the FSS. Re-18

sults based on synthetic forecast experiments showed that the proposed method improved19

the forecast accuracy (Otsuka et al., 2023). Future flood inundation assimilation could20

incorporate the skilful scale found using the scale-selective methods presented in Chapter21

3. Assimilating at a coarser scale would save on computation time and reduce the risk of22

over-fitting. For example, if the flood maps were found to be skilful at n = 5, the fraction23

flooded at n = 3 could be used to improve the flood map selection from the simulation24

library.25
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