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Abstract. There is growing interest in data-driven weather
prediction (DDWP), e.g., using convolutional neural net-
works such as U-NET that are trained on data from models
or reanalysis. Here, we propose three components, inspired
by physics, to integrate with commonly used DDWP mod-
els in order to improve their forecast accuracy. These com-
ponents are (1) a deep spatial transformer added to the la-
tent space of U-NET to capture rotation and scaling trans-
formation in the latent space for spatiotemporal data, (2) a
data-assimilation (DA) algorithm to ingest noisy observa-
tions and improve the initial conditions for next forecasts,
and (3) a multi-time-step algorithm, which combines fore-
casts from DDWP models with different time steps through
DA, improving the accuracy of forecasts at short intervals.
To show the benefit and feasibility of each component, we
use geopotential height at 500 hPa (Z500) from ERA5 re-
analysis and examine the short-term forecast accuracy of
specific setups of the DDWP framework. Results show that
the spatial-transformer-based U-NET (U-STN) clearly out-
performs the U-NET, e.g., improving the forecast skill by
45 %. Using a sigma-point ensemble Kalman (SPEnKF) al-
gorithm for DA and U-STN as the forward model, we show
that stable, accurate DA cycles are achieved even with high
observation noise. This DDWP+DA framework substantially
benefits from large (O(1000)) ensembles that are inexpen-

sively generated with the data-driven forward model in each
DA cycle. The multi-time-step DDWP+DA framework also
shows promise; for example, it reduces the average error by
factors of 2–3. These results show the benefits and feasibil-
ity of these three components, which are flexible and can be
used in a variety of DDWP setups. Furthermore, while here
we focus on weather forecasting, the three components can
be readily adopted for other parts of the Earth system, such
as ocean and land, for which there is a rapid growth of data
and need for forecast and assimilation.

1 Introduction

Motivated by improving weather and climate prediction,
using machine learning (ML) for data-driven spatiotempo-
ral forecasting of chaotic dynamical systems and turbu-
lent flows has received substantial attention in recent years
(e.g., Pathak et al., 2018; Vlachas et al., 2018; Dueben and
Bauer, 2018; Scher and Messori, 2018, 2019; Chattopad-
hyay et al., 2020b, c; Nadiga, 2020; Maulik et al., 2021).
These data-driven weather prediction (DDWP) models lever-
age ML methods such as convolutional neural networks
(CNNs) and/or recurrent neural networks (RNNs) that are
trained on state variables representing the history of the spa-
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tiotemporal variability and learn to predict the future states
(we have briefly described some of the technical ML terms in
Table 1). In fact, a few studies have already shown promising
results with DDWP models that are trained on variables rep-
resenting the large-scale circulation obtained from numerical
models or reanalysis products (Scher, 2018; Chattopadhyay
et al., 2020a; Weyn et al., 2019, 2020; Rasp et al., 2020; Ar-
comano et al., 2020; Rasp and Thuerey, 2021). Chattopad-
hyay et al. (2020d) showed that DDWP models trained on
general circulation model (GCM) outputs can be used to pre-
dict extreme temperature events. Excellent reviews and opin-
ion pieces on the state of the art of DDWP can be found
in Chantry et al. (2021), Watson-Parris (2021), and Irrgang
et al. (2021). Other applications of DDWP may include post-
processing of ensembles (Grönquist et al., 2021) and sub-
seasonal to seasonal prediction (Scher and Messori, 2021;
Weyn et al., 2021).

The increasing interest (Schultz et al., 2021; Balaji, 2021)
in these DDWP models stems from the hope that they im-
prove weather forecasting because of one or both of the fol-
lowing reasons: (1) trained on reanalysis data and/or data
from high-resolution NWP models, these DDWP models
may not suffer from some of the biases (or generally, model
error) of physics-based, operational numerical weather pre-
diction (NWP) models, and (2) the low computational cost of
these DDWP models allows for generating large ensembles
for probabilistic forecasting (Weyn et al., 2020, 2021). Re-
garding reason (1), while DDWP models trained on reanaly-
sis data have skills for short-term predictions, so far they have
not been able to outperform operational NWP models (Weyn
et al., 2020; Arcomano et al., 2020; Schultz et al., 2021).
This might be, at least partly, due to the short training sets
provided by around 40 years of high-quality reanalysis data
(Rasp and Thuerey, 2021). There are a number of ways to
tackle this problem; for example, transfer learning could be
used to blend data from low- and high-fidelity data or mod-
els (e.g., Ham et al., 2019; Chattopadhyay et al., 2020e; Rasp
and Thuerey, 2021), and/or physical constraints could be in-
corporated into the often physics-agnostic ML models, which
has been shown in applications of high-dimensional fluid dy-
namics (Raissi et al., 2020) as well as toy examples of atmo-
spheric or oceanic flows (Bihlo and Popovych, 2021). The
first contribution of this paper is to provide a framework for
the latter, by integrating the convolutional architectures with
deep spatial transformers that capture rotation, scaling, and
translation within the latent space that encodes the data ob-
tained from the system. The second contribution of this paper
is to equip these DDWP models with data assimilation (DA),
which provides improved initial conditions for weather fore-
casting and is one of the key reasons behind the success of
NWP models. Below, we further discuss the need for inte-
grating DA with DDWP models which can capture rotation
and scaling transformations in the flow and briefly describe
what has been already done in these areas in previous studies.

Many of the DDWP models built so far are physics ag-
nostic and learn the spatiotemporal evolution only from the
training data, resulting sometimes in physically inconsistent
predictions and an inability to capture key invariants and
symmetries of the underlying dynamical system, particularly
when the training set is small (Reichstein et al., 2019; Chat-
topadhyay et al., 2020d). There are various approaches to
incorporating some physical properties into the neural net-
works; for example, Kashinath et al. (2021) have recently re-
viewed 10 approaches (with examples) for physics-informed
ML in the context of weather and climate modeling. One
popular approach, in general, is to enforce key conserva-
tion laws, symmetries, or some (or even all) of the govern-
ing equations through custom-designed loss functions (e.g.,
Raissi et al., 2019; Beucler et al., 2019; Daw et al., 2020;
Mohan et al., 2020; Thiagarajan et al., 2020; Beucler et al.,
2021).

Another approach – which has received less attention par-
ticularly in weather and climate modeling – is to enforce the
appropriate symmetries, which are connected to conserved
quantities through Noether’s theorem (Hanc et al., 2004), in-
side the neural architecture. For instance, conventional CNN
architectures enforce translational and rotational symmetries,
which may not necessarily exist in the large-scale circula-
tion; see Chattopadhyay et al. (2020d) for an example based
on atmospheric blocking events and rotational symmetry. In-
deed, recent research in the ML community has shown that
preserving a more general property called “equivariance” can
improve the performance of CNNs (Maron et al., 2018, 2019;
Cohen et al., 2019). Equivariance-preserving neural network
architectures learn the existence of (or lack thereof) symme-
tries in the data rather than enforcing them a priori and bet-
ter track the relative spatial relationship of features (Cohen
et al., 2019). In fact, in their work on forecasting midlati-
tude extreme-causing weather patterns, Chattopadhyay et al.
(2020d) have shown that capsule neural networks, which
are equivariance-preserving (Sabour et al., 2017), outperform
conventional CNNs in terms of out-of-sample accuracy while
requiring a smaller training set. Similarly, Wang et al. (2020)
have shown the advantages of equivariance-preserving CNN
architectures in data-driven modeling of Rayleigh–Bénard
and ocean turbulence. More recently, using two-layer quasi-
geostrophic turbulence as the test case, Chattopadhyay et al.
(2020c) have shown that capturing rotation, scaling, and
translational features in the flow in the latent space of a CNN
architecture through a deep-spatial-transformer architecture
(Jaderberg et al., 2015) improves the accuracy and stabil-
ity of the DDWP models without increasing the network’s
complexity or computational cost (which are drawbacks of
capsule neural networks). Building on these studies, here
our first goal is to develop a physics-inspired, autoregres-
sive DDWP model that uses a deep spatial transformer in
an encoder–decoder U-NET architecture (Ronneberger et al.,
2015). Note that our approach to use a deep spatial trans-
former is different from enforcing invariants in the loss func-
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Table 1. List of acronyms and technical ML and DA terms along with their brief descriptions.

Term Description

Autoregressive models A model that iteratively predicts states of a system at new time steps by using the predicted state at the
previous time step as input (Lütkepohl, 2013).

CNN Convolutional neural network: a type of neural network in which features are learned through successive
convolutions and down-sampling of the input as it maps to the output (Goodfellow et al., 2016).

DDWP Data-driven weather prediction: a framework in which a data-driven model is trained on histori-
cal weather data and predicts future weather without solving physical equations of the atmosphere
(Sect. 3.1).

DDWP+DA Data-driven weather forecasting model as the background forecasting model integrated with SPEnKF
DA algorithm (proposed in this paper in Sect. 3.2).

Encoder–decoder A neural network in which the input is encoded into a low-dimensional representation (encoding) and
then decoded back into high-dimensional (often the same dimension as the input) space from the en-
coding (Goodfellow et al., 2016).

EnKF Ensemble Kalman filter: a type of DA algorithm in which noisy observations from a system are ingested
sequentially to incrementally provide better initial conditions for a dynamical model to predict the future
states of the system (Evensen, 1994).

Equivariance A property of a function that allows the output (of the function) to change appropriately in response to a
transformation in the input (Wang et al., 2020; Bronstein et al., 2021). See Sect. 3.1.2 for more details.

NWP Numerical weather prediction

RNN Recurrent neural network: a type of neural network in which information moves both forward and
backward through the network (Goodfellow et al., 2016).

SPEnKF Sigma-point ensemble Kalman filter: a type of EnKF, in which ensembles are generated deterministi-
cally instead of randomly (Tang et al., 2014).

STN Spatial transformer network: a neural network in which an affine transformation and subsequent inter-
polation allow the network to be equivariant (Jaderberg et al., 2015).

U-STN U-NET with a spatial transformer connected to the latent space of the network (Sect. 3.1.2).

Unscented transformation A transformation that allows one to generate an optimal number of deterministic ensembles (Wan et al.,
2001). In this paper, this transformation is used in SPEnKF; see Sect. 3.2.

tion in the form of partial differential equations of the sys-
tem (Raissi et al., 2019).

DA is an essential component of modern weather fore-
casting (e.g., Kalnay, 2003; Carrassi et al., 2018; Lguensat
et al., 2019). DA corrects the atmospheric state forecasted
using a forward model (often a NWP model) by incorpo-
rating noisy and partial observations from the atmosphere
(and other components of the Earth system), thus estimat-
ing a new corrected state of the atmosphere called “analy-
sis”, which serves as an improved initial condition for the
forward model to forecast the future states. Most operational
forecasting systems have their NWP model coupled to a
DA algorithm that corrects the trajectory of the atmospheric
states, e.g., every 6 h with observations from remote sens-
ing and in situ measurements. State-of-the-art DA algorithms
use variational and/or ensemble-based approaches. The chal-
lenge with the former is computing the adjoint of the forward
model, which involves high-dimensional, nonlinear partial

differential equations (Penny et al., 2019). Ensemble-based
approaches, which are usually variants of ensemble Kalman
filter (EnKF; Evensen, 1994), bypass the need for computing
the adjoint but require generating a large ensemble of states
that are each evolved in time using the forward model, which
makes this approach computationally expensive (Hunt et al.,
2007; Houtekamer and Zhang, 2016; Kalnay, 2003).

In recent years, there has been a growing number of stud-
ies at the intersection of ML and DA (Geer, 2021). A few
studies have aimed, using ML, to accelerate and improve DA
frameworks, e.g., by taking advantage of their natural con-
nection (Abarbanel et al., 2018; Kovachki and Stuart, 2019;
Grooms, 2021; Hatfield et al., 2021). A few other studies
have focused on using DA to provide suitable training data
for ML from noisy or sparse observations (Brajard et al.,
2020, 2021; Tang et al., 2020; Wikner et al., 2021). Oth-
ers have integrated DA with a data-driven or hybrid fore-
cast model for relatively simple dynamical systems (Hamil-
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ton et al., 2016; Lguensat et al., 2017; Lynch, 2019; Pawar
and San, 2020). However, to the best of our knowledge, no
study has yet integrated DA with a DDWP model. Here, our
second goal is to present a DDWP+DA framework in which
the DDWP is the forward model that efficiently provides a
large, O(1000), ensemble of forecasts for a sigma-point en-
semble Kalman filter (SPEnKF) algorithm.

To provide proofs of concept for the DDWP model and the
combined DDWP+DA framework, we use sub-daily 500 hPa
geopotential height (Z500) from the ECMWF Reanalysis 5
(ERA5) dataset (Hersbach et al., 2020). The DDWP model
is trained on hourly, 6, or 12 h Z500 samples. The spatiotem-
poral evolution of Z500 is then forecasted from precise ini-
tial conditions using the DDWP model or from noisy initial
conditions using the DDWP+SPEnKF framework. Our main
contributions in this paper are three-fold, namely,

– Introducing the spatial-transformer-based U-NET that
can capture rotational and scaling features in the la-
tent space for DDWP modeling and showing the advan-
tages of this architecture over a conventional encoder–
decoder U-NET.

– Introducing the DDWP+DA framework, which leads to
stable DA cycles without the need for any localization
or inflation by taking advantage of the large forecast
ensembles produced in a data-driven fashion using the
DDWP model.

– Introducing a novel multi-time-step method for improv-
ing the DDWP+DA framework. This framework uti-
lizes virtual observations produced using more accurate
DDWP models that have longer time steps. This frame-
work exploits the non-trivial dependence of the accu-
racy of autoregressive data-driven models on the time
step size.

The remainder of the paper is structured as follows. The data
are described in Sect. 2. The encoder–decoder U-NET archi-
tecture with the deep spatial transformer and the SPEnKF
algorithm are introduced in Sect. 3. Results are presented in
Sect. 4, and the discussion and summary are in Sect. 5.

2 Data

We use the ERA5 dataset from the WeatherBench repository
(Rasp et al., 2020), where each global sample of Z500 at ev-
ery hour is downsampled to a rectangular longitude–latitude
(x,y) grid of 32× 64. We have chosen the variable Z500
following previous work (Weyn et al., 2019, 2020; Rasp
et al., 2020) as an example, because it is representative of
the large-scale circulation in the troposphere and influences
near-surface weather and extremes. This coarse-resolution
Z500 dataset from the WeatherBench repository has been
used in a number of recent studies to perform data-driven
weather forecasting (Rasp et al., 2020; Rasp and Thuerey,

2021). Here, we use Z500 data from 1979 to 2015 (≈ 315360
samples) for training, 2016–2017 (≈ 17520 samples) for val-
idation, and 2018 (≈ 8760 samples) for testing.

3 Methods

3.1 The spatial-transformer-based DDWP model:
U-NET with a deep spatial transformer (U-STN)

The DDWP models used in this paper are trained on
Z500 data without access to any other atmospheric fields
that might affect the atmosphere’s spatiotemporal evolution.
Once trained on past Z500 snapshots sampled at every 1t ,
the DDWP model takes Z500 at a particular time t (Z(t)
hereafter) as the input and predicts Z(t +1t), which is then
used as the input to predict Z(t + 21t), and this autoregres-
sive process continues as needed. We use 1t , i.e., 1, 6, or
12 h. The baseline DDWP model used here is a U-NET sim-
ilar to the one used in Weyn et al. (2020). For the DDWP
introduced here, the encoded latent space of the U-NET is
coupled with a deep spatial transformer (U-STN hereafter)
to capture rotational and scaling features between the latent
space and the decoded output. The spatial-transformer-based
latent space tracks translation, rotation, and stretching of the
synoptic- and larger-scale patterns, and it is expected to im-
prove the forecast of the spatiotemporal evolution of the mid-
latitude Rossby waves and their nonlinear breaking. In this
section, we briefly discuss the U-STN architecture, which is
schematically shown in Fig. 1. Note that from now on “x”
in U-STNx (and U-NETx) indicates the 1t (in hours) that is
used; for example, U-STN6 uses 1t = 6 h.

3.1.1 Localization network or encoding block of U-STN

The network takes in an input snapshot of Z500, Z(t)32×64,
as initial condition and projects it onto a low-dimensional
encoding space via a U-NET convolutional encoding block.
This encoding block performs two successive sets of two
convolution operations (without changing the spatial dimen-
sions) followed by a max-pooling operation. It is then fol-
lowed by two convolutions without max pooling and four
dense layers. More details on the exact set of operations in-
side the architecture are reported in Table 2. The convolu-
tions inside the encoder block account for Earth’s longitudi-
nal periodicity by performing circular convolutions (Schu-
bert et al., 2019) on each feature map inside the encoder
block. The encoded feature map, which is the output of the
encoding block and consists of the reduced Z and coordinate
system, Z̃8×16 and (xo

i ,y
o
i ) where i = 1,2. . .8×16, is sent to

the spatial transformer module described below.

3.1.2 Spatial transformer module

The spatial transformer (Jaderberg et al., 2015) applies an
affine transformation T (θ) to the reduced coordinate sys-
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Figure 1. A schematic of the architecture of U-STNx. The architecture captures rotation and scaling transformations between the input to
the latent space and the decoded output owing to the spatial transformer module implemented through the affine transformation, T (θ), along
with the differentiable bilinear interpolation kernel. The network integrates Z(t) to Z(t+1t). The size of the bottleneck layer is 8×16. Note
that the schematic does not show the exact number of layers or number of filters used in U-STNx and U-NETx for the sake of clarity. The
information on the number of layers and number of filters along with the activation function used is shown in Table 2.

tem (xo
i ,y

o
i ) to obtain a new transformed coordinate system

(xs
i ,y

s
i ):[

xs
i

ys
i

]
= T (θ)

xo
i

yo
i

1

 , (1)

where

T (θ)=

[
θ11 θ12 θ13
θ21 θ22 θ23

]
. (2)

The parameters θ are predicted for each sample. A differ-
entiable sampling kernel (a bilinear interpolation kernel in
this case) is then used to transform Z̃8×16, which is on the
old coordinate system (xo

i ,y
o
i ), into Z̄8×16, which is on the

new coordinate system (xs
i ,y

s
i ). Note that in this architec-

ture, the spatial transformer is applied to the latent space and
its objective is to ensure that no a priori symmetry struc-
ture is assumed in the latent space. The parameters in T (θ)
learn the transformation (translation, rotation, and scaling)
between the input to the latent space and the decoded output.
It must be noted here that this does not ensure that the entire
network is equivariant by construction.

We highlight that in this paper we are focusing on captur-
ing effects of translation, rotation, and scaling of the input
field, because those are the ones that we expect to matter the

most for the synoptic patterns on a 2D plane. Furthermore,
here we focus on an architecture with a transformer that acts
only on the latent space. More complex architectures, with
transformations like Eq. (1) after every convolution layer, can
be used too albeit with a significant increase in computational
cost (de Haan et al., 2020; Wang et al., 2020). Our prelimi-
nary exploration shows that, for this work, the one spatial
transformer module applied on the latent space of the U-
NET yields sufficiently superior performance (over the base-
line, U-NET), but further exhaustive explorations should be
conducted in future studies to find the best-performing archi-
tecture for each application. Moreover, recent work in neu-
ral architecture search for geophysical turbulence shows that,
with enough computing power, one can perform exhaustive
searches over optimal architectures, a direction that should
be pursued in future work (Maulik et al., 2020).

Finally we point out that without the transformer module,
Z̄ = Z̃, and the network becomes a standard U-NET.

3.1.3 Decoding block

The decoding block is a series of deconvolution layers (con-
volution with zero-padded up-sampling) concatenated with
the corresponding convolution outputs from the encoder part
of the U-NET. The decoding blocks bring the latent space
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Z̄8×16 back into the original dimension and coordinate sys-
tem at time t+1t , thus outputting Z(t+1t)32×64. The con-
catenation of the encoder and decoder convolution outputs
allows the architecture to learn the features in the small-scale
dynamics of Z500 better (Weyn et al., 2020).

The loss function L to be minimized is

L(λ)=
1

(N + 1)

×

t=N1t∑
t=0
||(Z(t +1t)−U-STNx(Z(t),λ)) ||22, (3)

where N is the number of training samples, t = 0 is the start
time of the training set, and λ represents the parameters of
the network that are to be trained (in this case, the weights,
biases, and θ of U-STNx). In both encoding and decoding
blocks, the rectified linear unit (ReLU) activation functions
are used. The number of convolutional kernels (32 in each
layer), size of each kernel (5×5), Gaussian initialization, and
the learning rate (α = 3× 10−4) have been chosen after ex-
tensive trial and error. All codes for these networks (as well
as DA) have been made publicly available on GitHub and
Zenodo (see the “Code and data availability” statement). A
comprehensive list of information about each of the layers in
both the U-STNx and U-NETx architectures is presented in
Table 2 along with the optimal set of hyperparameters that
have been obtained through extensive trial and error.

Note that the use of U-NET is inspired from the work by
Weyn et al. (2020); however, the architecture used in this
study is different from that by Weyn et al. (2020). The main
differences are in the number of convolution layers and filters
used in the U-NET along with the spatial transformer mod-
ule. Apart from that, in Weyn et al. (2020) the mechanism by
which autoregressive prediction is done is different from this
paper. Two time steps (6 and 12 h) are predicted directly as
the output by Weyn et al. (2020) using the U-NET. Moreover,
the data for training and testing in Weyn et al. (2020) are on
the gnomonic cubed sphere.

3.2 Data assimilation algorithm and coupling with
DDWP

For DA, we employ the SPEnKF algorithm, which unlike the
EnKF algorithm, does not use random perturbations to gen-
erate an ensemble but rather uses an unscented transforma-
tion (Wan et al., 2001) to deterministically find an optimal
set of points called sigma points (Ambadan and Tang, 2009).
The SPEnKF algorithm has been shown to outperform EnKF
on particular test cases for both chaotic dynamical systems
and ocean dynamics (Tang et al., 2014), although whether
it is always superior to EnKF is a matter of active research
(Hamill et al., 2009) and beyond the scope of this paper. Our
DDWP+DA framework can use any ensemble-based algo-
rithm.

In the DDWP+DA framework, shown schematically in
Fig. 2, the forward model is a DDWP, which is chosen to be

U-STN1 and denoted as 9 below. We use σobs for the stan-
dard deviation of the observation noise, which in this paper
is either σobs = 0.5σZ or σobs = σZ , where σZ is the stan-
dard deviation of Z500 over all grid points and over all years
between 1979–2015. Here, we assume that the noisy obser-
vations are assimilated every 24 h (again, the framework can
be used with any DA frequency, such as 6 h, which is used
commonly in operational forecasting).

We start with a noisy initial condition Z(t), and we use
U-STN1 to autoregressively (with 1t = 1 h) predict the next
time steps, i.e., Z(t +1t), Z(t + 21t), Z(t + 31t), up to
Z(t+231t). For aD-dimensional system (i.e., Z ∈ RD), the
optimal number of ensemble members for SPEnKF is 2D
(Ambadan and Tang, 2009). Because hereD = 32×64, then
4096 ensemble members are needed. While this is a very
large ensemble size if the forward model is a NWP (oper-
ationally, ∼ 50–100 members are used; Leutbecher, 2019),
the DDWP can inexpensively generate O(1000) ensemble
members, a major advantage of DDWP as a forward model
that we will discuss later in Sect. 5.

To do SPEnKF, an ensemble of states at the 23rd hour of
each DA cycle (24 h is one DA cycle) is generated using a
symmetric set of sigma points (Julier and Uhlmann, 2004) as

Ziens(t + 231t)= Z(t + 231t)−Ai,

Z
j
ens(t + 231t)= Z(t + 231t)+Aj , (4)

where i,j ∈ [1,2, · · ·,D = 32×64] are indices of the 2D en-
semble members. Vectors Ai and Aj are columns of matrix
A= U

√
SUT, where U and S are obtained from the singular

value decomposition of the analysis covariance matrix Pa,
i.e., Pa = USVT. The D×D matrix Pa is either available
from the previous DA cycle (see Eq. 10 below) or is initial-
ized as an identity matrix at the beginning of DA. Note that
here we generate the ensemble at one1t before the next DA;
however, the ensembles can be generated at any time within
the DA cycle and carried forward, although that would in-
crease the computational cost of the framework. We have
explored generating the ensembles at t + 01t (i.e., the be-
ginning) but did not find any improvement over Eq. (4). It
must however be noted that by not propagating the ensem-
bles for 24 h, the spread of the ensembles underestimates the
background error.

Once the ensembles are generated via Eq. (4), every en-
semble member is fed into 9 to predict an ensemble of fore-
casted states at t + 241t :

Zkens(t + 241t)=9
(
Zkens(t + 231t)

)
, (5)

where k ∈ {−D,−D+1, . . .,D−1,D}. In general, the mod-
eled observation is H(〈Zkens(t+241t)〉,ε(t)), where H is the
observation operator, and ε(t) is the Gaussian random pro-
cess with standard deviation σobs that represents the uncer-
tainty in the observation. 〈.〉 denotes ensemble averaging. In
this paper, we assume that H is the identity matrix while we
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Table 2. Table presenting information on the U-STNx and U-NETx architecture with the optimal set of hyperparameters that have been
obtained after extensive trial and error. Note that apart from the affine transformation and bilinear interpolation layer, the U-STNx and
U-NETx architectures are similar. The networks have been implemented in Tensorflow and Keras.

Layer Layer type Kernel size Number of filters/ Output size Activation
number number of neurons

1 Convolution 5× 5 32 32× 64 ReLU
2 Convolution 5× 5 32 32× 64 ReLU
3 Max pooling (2× 2) – – 16× 32 –
4 Convolution 5× 5 32 16× 32 ReLU
5 Convolution 5× 5 32 16× 32 ReLU
6 Max pooling (2× 2) – – 8× 16 –
7 Convolution 5× 5 32 8× 16 ReLU
8 Convolution 5× 5 32 8× 16 ReLU
9 Fully connected – 500 500 ReLU
10 Fully connected (only for STN) – 200 200 ReLU
11 Fully connected (only for STN) – 100 100 ReLU
12 Fully connected (only for STN) – 50 50 ReLU
13 Affine transformation (only for STN) – – – –
14 Bilinear interpolation (only for STN) – – 8× 16 –
15 Up-sampling + concatenate layer 5 – – 16× 32 –
16 Convolution 5× 5 32 16× 32 ReLU
17 Convolution 5× 5 32 16× 32 ReLU
18 Up-sampling + concatenate layer 2 – – 32× 64 –
19 Convolution 5× 5 32 32× 64 ReLU
20 Convolution 5× 5 32 32× 64 ReLU
21 Convolution 5× 5 32 32× 64 Linear

Figure 2. The framework for a synergistic integration of a DA algorithm (SPEnKF) with a DDWP (U-STN1). Once the DDWP+DA frame-
work is provided with a noisy Z(t), it uses U-STN1 to autoregressively predict Z(t+231t). A large ensemble is then generated using Eq. (4),
and for each member k, Zkens(t + 241t) is predicted using U-STN1. Following that, an SPEnKF algorithm assimilates a noisy observation
at the 24th h to provide the estimate (analysis) state of Z500, Ẑ(t + 241t). U-STN1 then uses this analysis state as the new initial condition
and evolves the state in time, with DA occurring every 24 h.

acknowledge that, in general, it could be a nonlinear func-
tion. The SPEnKF algorithm can account for such complex-
ity, but here, to provide a proof of concept, we have assumed
that we can observe the state, although with a certain level
of uncertainty. With H= I, the background error covariance

matrix Pb becomes

Pb = E
[(
Zkens(t + 241t)−

〈
Zkens(t + 241t)

〉)
×
(
Zkens(t + 241t)−

〈
Zkens(t + 241t)

〉)T]
, (6)

where [.]T denotes the transpose operator, and E[.] denotes
the expectation operator. The innovation covariance matrix is

https://doi.org/10.5194/gmd-15-2221-2022 Geosci. Model Dev., 15, 2221–2237, 2022



2228 A. Chattopadhyay et al.: Physics-inspired deep learning and data assimilation

defined as

C= Pb+R, (7)

where the observation noise matrix R is a constant diagonal
matrix of the variance of observation noise, i.e., σ 2

obs. The
Kalman gain matrix is then given by

K= PbC−1, (8)

and the estimated (analysis) state Ẑ(t + 241t) is calculated
as

Ẑ(t + 241t)= 〈Z(t + 241t)〉

−K
(〈
Zkens(t + 241t)

〉
−Zobs(t + 241t)

)
,

(9)

whereZobs(t+241t) is the noisy observed Z500 at t+241t ,
i.e., ERA5 value at each grid point plus random noise drawn
from N (0,σ 2

obs). While adding Gaussian random noise to the
truth is an approximation, it is a quite common in the DA
literature (Brajard et al., 2020, 2021; Pawar et al., 2020). The
analysis error covariance matrix is updated as

Pa = Pb−KCKT. (10)

The estimated state Ẑ(t+241t) becomes the new initial con-
dition to be used by U-STN1, and the updated Pa is used to
generate the ensembles in Eq. (4) after another 23 h for the
next DA cycle.

Finally, we remark that often with low ensemble sizes,
the background covariance matrix, Pb (Eq. 6), suffers from
spurious correlations which are corrected using localization
and inflation strategies (Hunt et al., 2007; Asch et al., 2016).
However, due to the large ensemble size used here (with 4096
ensemble members that are affordable because of the com-
putationally inexpensive DDWP forward model), we do not
need to perform any localization or inflation on Pb to get sta-
ble DA cycles as shown in the next section.

4 Results

4.1 Performance of the spatial-transformer-based
DDWP: noise-free initial conditions (no DA)

First, we compare the performance a U-STN and a conven-
tional U-NET, where the only difference is in the use of the
spatial transformer module in the former. Using U-STN12
and U-NET12 as representatives of these architectures, Fig. 3
shows the anomaly correlation coefficients (ACCs) between
the predictions from U-STN12 or U-NET12 and the truth
(ERA5) for 30 noise-free, random initial conditions. ACC
is computed every 12 h as the correlation coefficient between
the predicted Z500 anomaly and the Z500 anomaly of ERA5,
where anomalies are derived by removing the 1979–2015

time mean of Z500 of the ERA5 dataset. U-STN12 clearly
outperforms U-NET12, most notably after 36 h, reaching
ACC= 0.6 after around 132 h, a 45 % (1.75 d) improvement
over U-NET12, which reaches ACC= 0.6 after around 90 h.

To further see the source of this improvement, Fig. 4 shows
the spatiotemporal evolution of Z500 patterns from an ex-
ample of prediction using U-STN12 and U-NET12. Com-
paring with the truth (ERA5), U-STN12 can better capture
the evolution of the large-amplitude Rossby waves and the
wave-breaking events compared to U-NET12; for example,
see the patterns over Central Asia, Southern Pacific Ocean,
and Northern Atlantic Ocean on days 2–5. We cannot rigor-
ously attribute the better capturing of wave-breaking events
to an improved representation of physical features by the spa-
tial transformer. However, the overall improvement in perfor-
mance of U-STN12 due to the spatial transformer (which is
the only difference between U-STN12 and U-NET12) may
lead to capturing some wave-breaking events in the atmo-
sphere as can be seen from exemplary evidence in Fig. 4.
Furthermore, on days 4 and 5, the predictions from U-NET12
have substantially low Z500 values in the high latitudes of the
Southern Hemisphere, showing signs of unphysical drifts.

Overall, the results of Figs. 3 and 4 show the advantages
of using the spatial-transformer-enabled U-STN in DDWP
models. It is important to note that it is difficult to assert
whether the transformation with T (θ) in the latent space ac-
tually leads to physically meaningful transformations in the
decoded output. However, we see that the performance of the
network improves with the addition of the spatial transformer
module. Future studies need to focus on more interpreta-
tion of what the T (θ) matrix inside neural networks captures
(Bronstein et al., 2021). Note that while here we show results
with 1t = 12 h, similar improvements are seen with 1t = 1
and1t = 6 h (see Sect. 4.3). Furthermore, to provide a proof
of concept for the U-STN, in this paper we focus on Z500
(representing the large-scale circulation) as the only state
variable to be learned and predicted. Even without access to
any other information (e.g., about small scales), the DDWP
model can provide skillful forecasts for some time, consis-
tent with earlier findings with the multi-scale Lorenz 96 sys-
tem (Dueben and Bauer, 2018; Chattopadhyay et al., 2020b).
More state variables can be easily added to the framework,
which is expected to extend the forecast skill, based on pre-
vious work with U-NET (Weyn et al., 2020). In this work, we
have considered Z500 as an example for a proof of concept.
We have also performed experiments (not shown for brevity)
by adding T850 as one of the variables to the input along with
Z500 in U-NETx and U-STNx and found similarly good pre-
diction performance for the T850 variable.

A benchmark for different DDWP models has been shown
in Rasp et al. (2020), with different ML algorithms such as
CNN, linear regression, etc. In terms of RMSE for Z500
(Fig. 6, left panel, shows RMSE of U-STNx and U-NETx
in this paper with different 1t), U-STN12 outperforms the
CNN model in WeatherBench (Rasp et al., 2020) by 33.2 m
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Figure 3. Anomaly correlation coefficient (ACC) calculated between Z500 anomalies of ERA5 and Z500 anomalies predicted using U-
STN12 or U-NET12 from 30 noise-free, random initial conditions. The solid lines and the shading show the mean and the standard deviation
over the 30 initial conditions.

Figure 4. Examples of the spatiotemporal evolution of Z500 predicted from a noise-free initial condition (t0) using U-STN12 and U-NET12
and compared with the truth from ERA5. For the predicted patterns, the anomaly correlation coefficient (ACC) is shown above each panel
(see the text for details).

at lead time of 3 d and 26.7 m at lead time of 5 d. Similarly, U-
STN12 outperforms the linear regression in WeatherBench
by 39.9 m at lead time of 3 d and by 29.3 m at lead time
of 5 d. Note that in more recent work (Weyn et al., 2020;
Rasp and Thuerey, 2021), prediction horizons outperform-
ing the WeatherBench models (Rasp et al., 2020) have also
been shown.

4.2 Performance of the DDWP+DA framework: noisy
initial conditions and assimilated observations

To analyze the performance of the DDWP+DA framework,
we use U-STN1 as the DDWP model and SPEnKF as
the DA algorithm, as described in Sect. 3.2. In this U-

STN1+SPEnKF setup, the initial conditions for predictions
are noisy observations and every 24 h, noisy observations are
assimilated to correct the forecast trajectory (as mentioned
before, noisy observations are generated by adding random
noise from N (0,σobs) to the Z500 of ERA5).

In Fig. 5, for 30 random initial conditions and two noise
levels (σobs = 0.5σZ or 1σZ), we report the spatially aver-
aged root-mean-square error (RMSE) and the correlation co-
efficient (R) of the forecasted full Z500 fields as compared
to the truth, i.e., the (noise-free) Z500 fields of ERA5. For
both noise levels, we see that within each DA cycle, the fore-
cast accuracy decreases between 0 and 23 h until DA with
SPEnKF occurs at the 24th hour, wherein information from
the noisy observation is assimilated to improve the estimate
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Figure 5. Panel (a) shows R and panel (b) shows RMSE (in me-
ters) between noise-free data from ERA5 and the forecasts from
U-STN1+SPEnKF for two levels of observation noise. Predictions
are started from 30 random noisy observations. The lines (shading)
show the mean (standard deviation) of the 30 forecasts. Noisy ob-
servations are assimilated every 24 h (indicated by black, dashed
vertical lines).

of the forecast at the 24th hour. This estimate acts as the new
improved initial condition to be used by U-STN1 to forecast
future time steps. In either case, the RMSE and R remain
below 30 m (80 m) and above 0.7 (0.3) with σobs = 0.5σZ
(σobs = 1σZ) for the first 10 d. The main point here is not
the accuracy of the forecast (which as mentioned before and
could be further extended, e.g., by adding more state vari-
ables), but the stability of the U-STN1+SPEnKF framework
(without localization or inflation), which even with the high
noise level, can correct the trajectory and increase R from
∼ 0.3 to 0.8 in each cycle. Although not shown in this pa-
per, the U-STN1+SPEnKF framework remains stable beyond
10 d and shows equally good performance for longer periods
of time.

One last point to make here is that within each DA cy-
cle, the maximum forecast accuracy is not when DA occurs
but 3–4 h later (this is most clearly seen for the case with
σobs = 1σZ in Fig. 5). A likely reason behind the further im-
provement of the performance after DA is the de-noising ca-
pability of neural networks when trained on non-noisy train-
ing data (Xie et al., 2012).

4.3 DDWP+DA with virtual observations:
a multi-time-step framework

One might wonder how the performance of the DDWP model
(with or without DA) depends on 1t . Figure 6 compares the
performance of U-STNx as well as U-NETx for 1t = 1, 6,
and 12 h for 30 random noise-free initial conditions (no DA).
It is clear that the DDWP models with larger 1t outperform
the ones with smaller 1t ; that is, in terms of forecast accu-
racy, U-STN12> U-STN6> U-STN1. This trends hold true
for both U-STNx and U-NETx, while as discussed before,
for the same 1t , the U-STN outperforms U-NET.

This dependence on1t might seem counterintuitive as it is
opposite of what one sees in numerical models, whose fore-
cast errors decrease with smaller time steps. The increase in
the forecast errors of these DDWP models when 1t is de-
creased is likely due to the non-additive nature of the er-
ror accumulation of these autoregressive models. The data-
driven models have some degree of generalization error (for
out-of-sample prediction), and every time the model is in-
voked to predict the next time step, this error is accumulated.
For neural networks, this accumulation is not additive and
propagates nonlinearly during the autoregressive prediction.
Currently, these error propagations are not understood well
enough to build a rigorous framework for estimating the opti-
mal 1t for data-driven, autoregressive forecasting; however,
this behavior has been reported in other studies on nonlinear
dynamical systems and can be exploited to formulate multi-
time-step data-driven models; see Liu et al. (2020) for an ex-
ample (though without DA).

Based on the trends seen in Fig. 6, we propose a novel idea
for a multi-time-step DDWP+DA framework, in which the
forecasts from the more accurate DDWP with larger 1t are
incorporated as virtual observations, using DA, into the fore-
casts of the less accurate DDWP with smaller 1t , thus pro-
viding overall more accurate short-term forecasts. Figure 7
shows a schematic of this framework for the case where the
U-STN12 model provides the virtual observations that are
assimilated using the SPEnKF algorithm in the middle of
the 24 h DA cycles into the hourly forecasts from U-STN1.
At 24th hour, noisy observations are assimilated using the
SPEnKF algorithm as before.

Figure 8 compares the performance of the multi-time-
step U-STNx+SPEnKF framework, which uses virtual ob-
servations from U-STN12, with that of U-STN1+SPEnKF,
which was introduced in Sect. 4.2, for the case with
σobs = 0.5σZ . In terms of both RMSE and R, the multi-
time-step U-STNx+SPEnKF framework outperforms the U-
STN1+SPEnKF framework, as for example, the maximum
RMSE of the former is often comparable to the minimum
RMSE of the latter. Figure 9 shows the same analysis but for
the case with larger observation noise σobs = σZ , which fur-
ther demonstrates the benefits of the multi-time-step frame-
work and use of virtual observations.
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Figure 6. Panels (a) and (b) show RMSE (R) between noise-free data from ERA5 and the forecasts from U-STNx or U-NETx from 30
random, noise-free initial conditions. No DA is used here. RMSE is in meters. The lines (shading) show the mean (standard deviation) of the
30 forecasts.

Figure 7. Schematic of the multi-time-step DDWP+DA framework. The U-STN12 model provides forecasts every 12 h, which are assimilated
as virtual observations using SPEnKF into the U-STN1+SPEnKF framework that has a 24 h DA cycle for assimilating noisy observations. At
12th hours, the U-STN12 forecasts are more accurate than those from the U-STN1 model, enabling the framework to improve the prediction
accuracy every 12th hour, thereby improving the initial condition used for the next forecasts before DA with noisy observations (every 24 h).

The multi-time-step framework with assimilated virtual
observations introduced here improves the forecasts of short-
term intervals by exploiting the non-trivial dependence of the
accuracy of autoregressive, data-driven models on time step
size. While hourly forecasts of Z500 may not be necessarily
of practical interest, the framework can be applied in general
to any state variable and can be particularly useful for multi-
scale systems with a broad range of spatiotemporal scales.
A similar idea was used in Bach et al. (2021), wherein data-
driven forecasts of oscillatory modes with singular spectrum
analysis and an analog method were used as virtual observa-
tions to improve the prediction of a chaotic dynamical sys-
tem.

5 Discussion and summary

In this paper, we propose three novel components for DDWP
frameworks to improve their performance: (1) a deep spa-

tial transformer in the latent space to encode the relative spa-
tial relationships of features of the spatiotemporal data in the
network architecture, (2) a stable and inexpensive ensemble-
based DA algorithm to ingest noisy observations and correct
the forecast trajectory, and (3) a multi-time-step algorithm,
in which the accurate forecasts of a DDWP model that uses
a larger time step are assimilated as virtual observations into
the less accurate forecasts of a DDWP that uses a smaller
time step, thus improving the accuracy of forecasts at short
intervals.

To show the benefits of each component, we use down-
sampled Z500 data from ERA5 reanalysis and examine the
short-term forecast accuracy of the DDWP framework. To
summarize the findings, we present the following points.

1. As show in Sect. 4.1 for noise-free initial conditions (no
DA), U-STN12, which uses a deep spatial transformer
and 1t = 12 h, outperforms U-NET12, e.g., extending
the average prediction horizon (when ACC reaches 0.6)
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Figure 8. Performance of the multi-time-step U-STNx+SPEnKF framework (with virtual observations at the 12th hour of every 24 h DA
cycle) compared to that of the U-STN+SPEnKF framework for the case with σobs = 0.5σZ . Panels (a) and (b) showR (RMSE in meters). The
black, dashed vertical lines indicate DA of noisy observations at every 24 h. Forecasts are started from 30 random, noisy initial conditions.
The lines (shading) show the mean (standard deviation) of the 30 forecasts.

Figure 9. Same as Fig. 8 but with large observation noise, σobs = σZ .

from 3.75 d (U-NET12) to 5.5 d (U-STN12). Examin-
ing a few examples of the spatiotemporal evolution of
the forecasted Z500 patterns, we can see that U-STN
better captures phenomena such as wave breaking. We
further show in Sect. 4.3 based on other metrics that
with the same 1t U-STN outperforms U-NET. These
results demonstrate the benefits of adding deep spatial
transforms to convolutional networks such as U-NET.

2. As shown in Sect. 4.2, an SPEnKF DA algorithm is cou-
pled with the U-STN1 model. In this framework, the U-
STN1 serves as the forward model to generate a large
ensemble of forecasts in a data-driven fashion in each
DA cycle (24 h), when noisy observations are assimi-
lated. Because U-STN1 is computationally inexpensive,
for a state vector of size D, ensembles with 2D = 4096
members are easily generated in each DA cycle, leading
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to stable, accurate forecasts without the need for local-
ization or inflation of covariance matrices involved in
the SPEnKF algorithm. The results show that DA can
be readily coupled with DDWP models when dealing
with noisy initial conditions. The results further show
that such coupling is substantially facilitated by the fact
that large ensembles can be easily generated with data-
driven forward models. Note however that NWP models
have a larger number of state variables (O(108)) which
would make SPEnKF very computationally expensive;
in such cases, further parallelization of the SPEnKF al-
gorithm would be required.

3. As shown in Sect. 4.3, the autoregressive DDWP mod-
els (U-STN or U-NET) are more accurate with larger
1t , which is attributed to the nonlinear error accumu-
lation over time. Exploiting this trend and the ease of
coupling DA with DDWP, we show that assimilating
the forecasts of U-STN12 into U-STN1+SPEnKF as
virtual observations in the middle of the 24 h DA cy-
cles can substantially improve the performance of U-
STN1+SPEnKF. These results demonstrate the benefits
of the multi-time-step algorithm with virtual observa-
tions.

Note that to provide proofs of concept here we have cho-
sen specific parameters, approaches, and setups. However,
the framework for adding these three components is ex-
tremely flexible, and other configurations can be easily ac-
commodated. For example, other DA frequencies, 1t , U-
NET architectures, or ensemble-based DA algorithms could
be used. Furthermore, here we assume that the available ob-
servations are noisy but not sparse. The gain from adding
DA to DDWP would be most significant when the observa-
tions are noisy and sparse. Moreover, the ability to gener-
ate O(1000) ensembles inexpensively with a DDWP would
be particularly beneficial for sparse observations for which
the stability of DA is more difficult to achieve without local-
ization and inflation (Asch et al., 2016). The advantages of
the multi-time-step DDWP+DA framework would be most
significant when multiple state variables, of different tem-
poral scales, are used, or more importantly, when the DDWP
model consists of several coupled data-driven models for dif-
ferent sets of state variables and processes (Reichstein et al.,
2019; Schultz et al., 2021). Moreover, while here we show
that ensemble-based DA algorithms can be inexpensively and
stably coupled with DDWP models, variational DA algo-
rithms (Bannister, 2017) could be also used, given that com-
puting the adjoint for the DDWP models can be easily done
using automatic differentiation.

The DDWP models are currently not as accurate as oper-
ational NWP models (Weyn et al., 2020; Arcomano et al.,
2020; Rasp and Thuerey, 2021; Schultz et al., 2021). How-
ever, they can still be useful through generating large fore-
cast ensembles (Weyn et al., 2021), and there is still much
room for improving DDWP frameworks, e.g., using the three

components introduced here as well as using transfer learn-
ing, which has been shown recently to work robustly and ef-
fectively across a range of problems (e.g., Ham et al., 2019;
Chattopadhyay et al., 2020e; Subel et al., 2021; Guan et al.,
2022).

Finally, we point out that while here we focus on weather
forecasting, the three components can be readily adopted for
other parts of the Earth system, such as ocean and land, for
which there is a rapid growth of data and need for forecast
and assimilation (e.g., Kumar et al., 2008b, a; Yin et al.,
2011; Edwards et al., 2015; Liang et al., 2019).

Appendix A

A1 Forecast results with T850 variable

In this section, we have show an example of prediction per-
formance with T850 instead of Z500. In Fig. A1, we can see
that U-STN12 shows improved performance as compared to
U-NET12 in T850 as well.

A2 Comparison with two WeatherBench models

In this section, we present Table A1 to compare U-STN12
model with two WeatherBench models at day 3 and day 5
in terms of RMSE (m2 s−2) for Z500. Please note that the
comparisons made here are with the U-STN12 without DA
and is hence a fair comparison.

Figure A1. Performance of U-STN12 and U-NET12 on T850.
Shading represents standard deviation over 30 initial conditions.

https://doi.org/10.5194/gmd-15-2221-2022 Geosci. Model Dev., 15, 2221–2237, 2022



2234 A. Chattopadhyay et al.: Physics-inspired deep learning and data assimilation

Table A1. Comparison of U-STN12 with two WeatherBench models.

Models RMSE (m2 s−2) at 3 d RMSE (m2 s−2) at 5 d

Linear regression (direct) from WeatherBench 693 783
CNN (direct) from WeatherBench 626 757
U-STN12 (our model) 294 490

Code and data availability. All codes used in this study are pub-
licly available at https://doi.org/10.5281/zenodo.6112374 (Chat-
topadhyay, 2021). The data are available from the WeatherBench
repository at https://github.com/pangeo-data/WeatherBench (last
access: 16 February 2022).
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