
1
covers page 
number

A systematic analysis of visual 
and algorithmic letter fitting

Nathan Willis
September 2023

Thesis submitted for the degree of Doctor of Philosophy
Department of Typography & Graphic Communication



2

Declaration: I confirm that this is my own work and the use of all material 
from other sources has been properly and fully acknowledged.

Nathan Willis

This research project was funded by the University of Reading.

covers page 
number



3

Abstract

This thesis examines the process of ‘fitting’, or determining the preferred 
spacing of the letters and other forms that comprise a typeface. Successful 
fitting is important to the readability and aesthetics of type, and is 
traditionally performed as a manual process. The objective is to determine 
to what extent this manual process can be modelled and expressed in an 
algorithm, to increase the theoretical understanding of fitting and suggest 
practical strategies.

The research incorporates methodologies from several disciplines, 
including historical studies, algorithmic analysis of procedures and 
strategies employed in fitting, development of computational software, 
and empirical testing.

The manual process of fitting was analysed from historical sources and 
contemporary practice. From the study, an axiomatic model was developed 
expressing the first principles of fitting Latin text for continuous reading 
and interdependencies between those principles. Prior work was evaluated 
in relation to the model and a new method was developed to fit typeforms 
with open counters, a class of forms historically reported to be difficult to 
fit. 

A composite algorithm was developed that traverses the typeforms in a 
typeface, fitting each form with the simplest technique applicable, until 
the fitted set is complete. The composite algorithm was used to fit a set of 
typefaces, which were tested in an online reader study. Readers were 
shown a series of text samples, utilising original and refitted fonts, and 
asked to mark letter sequences they felt exhibited poor spacing.

The composite algorithm achieved lower rates of reported poor spacing 
for multiple letterform pairings than the alternative conditions. This 
supports a view that the axiomatic model capably represents the 
fundamental fitting process, that the novel method for fitting open 
counters can improve on prior techniques, and that the composite 
approach to algorithmic fitting, combining multiple discrete principles, 
holds benefits for the fitting of typefaces.
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1. Introduction

The essential difference between type and other forms of making letters, 
such as handwriting, painting, or carving in wood or stone, has been 
explained by noting that type letters are pre-made or pre-fabricated 
(Smeijers 1996, p.21; Noordzij 2009, p. 9), and composed into a text some 
time later, generally by someone other than the designer of the letters. 
Hidden within this definition is the fact that the act of composing the text 
creates shapes as well: the negative forms that are defined by the 
boundaries of the letters’ positive forms as they are set together. This is, of 
course, neither an undesirable accident nor a surprise to the designer of 
the type. As such, a vital part of designing the letterforms is anticipating 
and planning for these negative forms: what type designers call fitting. 

More precisely, fitting is the process of determining the fixed 
separation of the letterforms so that they will appear, to the reader’s eye, 
balanced and harmonious when text is typeset. In earlier eras, when type 
was manufactured as physical objects, the fitting of each letterform was 
similarly physical. (See figure 1.1)  When letterforms were cast in metal, the 
dimensions of the casting inherited the dimensions of the mould (into 
which the metal was poured), which in turn had inherited its dimensions 
from the matrix (around which the mould was aligned), which had been 
established several stages earlier in the manufacturing process, through 
the judicious effort and manual labour of the punchcutter or justifier 
(Carter 2002, p. 6–8).

In the present era of scalable digital typefaces, the dimensions of each 
letterform are simply numerical values stored in a digital file, and the 
designer of the typeface can specify and update them directly. For the Latin 
script, composed in horizontal lines, the vertical bounds of the letterforms 
are, for the most part, uniform throughout the typeface, and the values 
that dictate the fixed separation for each letterform are the distances to 
the left and right of the positive form, called sidebearings. (See figure 1.2)  But 
the judicious effort required to establish those values is still crucial, 
because fitting digital typefaces must also address the eventual goal of 
composing the letters into words, lines, paragraphs, and pages that readers 
perceive as even and harmonious. As Walter Tracy wrote in 1986, 

Letters do not live in isolation, They are the elements of meaning, the 
components of visible language, and their spatial relationship with each other 
is crucial, not only for the rapid recognition of words by the reader but for the 
regularity of texture that is essential if the reader’s comprehension is to be 
maintained for a long period.  (Tracy 2003, p. 77–78)

If the fitting of the typeface is poor, the readability of the eventual text 
suffers, and so in turn does the experience of the reader (Unger 2007, p. 

Blumenthal’s illustration of 
fitting as seen in metal types. All 
of the forms are set on equal-
height bodies for vertical 
alignment, but the sidebearings 
(relative widths) are established 
for each form (Blumenthal 1935, 
p. 71).

Figure 1.1

Karow’s illustration of fitting as 
seen in scalable digital type. The 
sidebearings (A and B) are 
numerical values chosen for each 
form (Karow 1994, p. 179).

Figure 1.2

Sorry; this image could not be cleared 
for redistribution.
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149). This is doubtlessly why Tracy called the process of fitting 
‘fundamental to the success of a type design’ (Tracy 2003, p. 71). Nor is his 
choice of phrasing coincidental: fitting has long been recognized as an 
integral part of the design process by those in the type-design field and 
those in the broader community of typography. Charles Bigelow and 
Jonathan Seybold, like others in the type and typography business, 
occasionally ascribed more importance to fitting than letterform design: ‘It 
is often claimed, with some justification, that a mediocre type design well 
spaced will look superior to a good design, badly spaced’. (Bigelow and 
Seybold 1981, p. 14).

That sentiment is perhaps intentionally hyperbolic, meant to draw the 
readers’ attentions to the importance of fitting. It is also a statement 
grounded in a practical reality, however, and points to another benefit of 
good fitting. Much of Bigelow and Seybold’s discussion of fitting 
highlighted its practical necessity for commercial printing: typefaces that 
ship to customers in well-fitted form reduce the need for customers to 
make adjustments when typesetting documents (Bigelow and Seybold 
1981, p. 13). Publishers thus place additional value on high-quality fitting 
for the convenience it provides to them, apart from its benefits for the 
reader (Nicholson 1990).

This leads to a third important facet of fitting: as a marker of the type 
designer’s skill or the typeface’s quality (Karow et al. 1994, p. 225). Several 
writers have noted that poor fitting during the design process can lead to 
lower-quality letterforms or make design problems more difficult to 
identify and solve (Smeijers 1996, p. 26; Henestrosa et al. 2017, p. 81). The 
notion of intrinsic quality certainly overlaps with commercial viability, but 
quality is, at times and to particular people, an aspect of the typeface itself. 
Fernando Mello expressed that viewpoint succinctly, writing that ‘A 
typeface just can’t be good if its spacing is bad’ (Mello 2018, p. 33).

1.1 The task of fitting in typeface design

 Although there is broad consensus among type designers about the 
importance and integrality of fitting to the design of typefaces, fitting as it 
is practised is often a task separate from designing letterforms, relegated 
to a distinct stage in the process that may be regarded as secondary 
(Henestrosa et al. 2017, p. 80). The type designer designs some letterforms 
(perhaps many), then pauses for a time and addresses fitting. Then the 
process is repeated. Some would say that this subdivision of the tasks is an 
outcome imposed by the specifics of printing technology. Gerrit Noordzij 
wrote that ‘A letter is two shapes of different brightness (e.g. black and 
white). The writer knows of the complicated relationship between both 
shapes’, but that it was the ‘simplified view of an outsider’ that invented 
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typography and thus ‘reduced the background shapes to rectangles 
whatever the shape of the strokes might be’ (Noordzij 2000, p.3–4).

Conversely, perhaps the differentiation between designing positive 
forms and fitting them with respect to negative space is inescapable, 
purely because it is the positive forms of the letters that are drawn, that 
are inked by the printer and impressed onto the page, provided as keys on 
a keyboard, and ultimately perceived against the background — whereas 
the spaces between the forms are only permitted to emerge after the fact, 
taking form as the words, lines, and pages begin to appear. (See figure 1.3)  
This is evident in the literature of type; writers describe the letterforms 
designed by Granjon or Baskerville. Rarely, if ever, does discussion centre 
on the fitting of Benton or Koch.

Whatever the reason for this bifurcation between fitting and drawing, 
the task of fitting is frequently described as an undertaking that is time-
consuming, if not outright challenging to master (Blumenthal p. 73; Tracy 
2003, p. 77; Karow et al. 1993 B, p. 248; Campe and Rauche 2022, p. 93). But 

The importance of fitting 
illustrated at three scales.

Top: Fred Smeijers on fitting at 
the level of the word (Smeijers 
1996, p. 26). Used by permission.

Middle: Richard Rubinstein on 
fitting at the level of the sentence 
(Rubinstein 1988, p. 116).

Bottom: Elwyn and Michael 
Blacker on fitting at the level of 
the paragraph (Blacker and 
Blacker 1993, p. 71).

Figure 1.3

Sorry; this image could not be cleared 
for redistribution.

Sorry; this image could not be cleared 
for redistribution.
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type designers and typographers have also acknowledged that fitting is a 
skill which can be acquired and honed to a high degree of expertise. 
Moreover, since the earliest days of type-making, the general view has held 
that desirable fitting appears to behave according to predictable rules, 
(Fournier trans. Carter 1930, p. 160–161;  Jamra 2004).

1.1.1 Evolving perspectives on fitting and automation
In the early to mid 20th century, some type designers spoke of these 
predictable rules in terms of equations or fixed formulas (Blumenthal 1935, 
p. 72; Dreyfus 2000, p. 31) and pursued discovering and defining them. 
William Addison Dwiggins wrote to Rudolph Ruzicka in 1937 that ‘there 
must be some general formula’ — but advised Ruzicka that Chauncy H. 
Griffith at Mergenthaler Linotype disagreed (Dwiggins 1940 A, p. 6). By mid 
1940, as Dwiggins’s correspondence with Griffith on the Falcon typeface 
shows, Dwiggins was quite engaged with devising a formulaic system for 
fitting, even creating his own notation for inter-letter spaces (n̝n or n̜n), 
distances measured from vertical stem to vertical stem (n  ̞ n), and left and 
right sidebearings ( ̛n, n̚ ) to document and relay his findings to Griffith 
(Dwiggins 1940 B, p. 9).

As typesetting technology advanced, so did type designers’ relationship 
to the task of fitting. Gerard Unger noted that the rules governing fitting in 
metal type were crude when compared to those of photocomposition and 
digital type (Unger 2018, p. 123). By the time those technologies had 
supplanted metal as the norm, type designers and technologists had 
shifted away from looking for a purely mathematical formula and began to 
actively address the possibility of automatically applying fitting rules via 
computer software.

In 1986, Walter Tracy published his own standardized fitting method in 
the form of a heuristic, based on his long experience at Linotype, supplying 
readers with a list of values that could be systematically applied to the 
various letterforms (at least, in an upright roman typeface) by their shape. 
(See figure 1.4)  Notably, although his method provided pre-defined fitting 
values for most of the Latin letterforms, Tracy supported them with 
rationales: the round letter profiles receive the same amount of space 

Walter Tracy’s heuristic fitting 
system, for lowercase upright 
Latin forms. It expresses 
sidebearings for most letterforms 
as a set of six repeatable values 
(Tracy 2003, p. 75). On the 
preceding page of the book, Tracy 
provides a similar heuristic for 
the capitals (not shown).

Figure 1.4
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because they are the same shape; the diagonal letter profiles receive the 
minimum amount of space because they trap a triangular region of white 
space that cannot be removed, and so forth (Tracy 2003, p. 79). He 
acknowledged that the heuristics sounded like a job for a computer, but 
added that, in his estimation, a computer-based system could never be 
wholly reliable (ibid., p. 77). 

In contrast, the renowned stonecarver, calligrapher, and letter designer 
David Kindersley fully embraced the potential of computer-based fitting 
methods, writing ‘there are too many factors to be held in the head at the 
same time. A trained eye can space a few words, but it is too much for 
anyone to arrive at a proper space for each one of 100 characters or more 
so that there is anything like perfect interchangeability. [...] No, today our 
only chance is basic research with a computer to hand’. (Kindersley 1973, 
p. 13) To that end, Kindersley pursued a decades-long project to develop a 
software letter-fitting system in collaboration with Neil Wiseman and 
others at the Cambridge Computer Laboratory. (See figure 1.5)  The result of 
that project, LOGOS, was marketed as a production tool to printers and 
foundries in the late 1980s, but did not find commercial success.

Peter Karow, a scientist by training and pioneering type technologist by 
trade, also dedicated years to researching methods for fitting type via 
software at URW (Karow 1998). In 1993, URW promoted a new digital 
typesetting engine called hz-program which included a module named kf 
(’kerning on the fly’) for automatically altering the fitting of any font in a 
document for optimal evenness (Seybold 1991; Karow 1992; Seybold and 
Karsh 1993). (See figure 1.6)  Although hz-program was much vaunted 
preceding its launch, claiming to rival Gutenberg in typographic quality 
(Zapf 1993; URW Software & Type 1993), it also fell short of finding success 
in the marketplace. The company reorganized in 1995, with Karow 

Top: The LOGOS fitting system 
found a centrepoint for every 
letterform (Kindersley 1987, p. 
18).

Bottom: The LOGOS system fitted 
letterforms by adjusting the 
distances between centrepoints 
(Sassoon 1987, p. 109).

Figure 1.5

Detail from the promotional 
booklet for hz-program, showing 
the results of fitting letters with 
kf versus other typesetting 
products. Each arrow indicates 
fitting that the booklet claims is 
incorrect or problematic (URW 
1993, p. 19).

Figure 1.6
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departing (Seybold 1995); subsequently the composition quality advertised 
in hz-program took on a near-legendary mythos (Ecker et al. 1998; Eng 
2009).

In the decades that followed, the question of fitting letterforms 
automatically or with the assistance of computer software has continued 
to engage the attention of type designers, font engineers, and software 
developers alike. This research does not seek to identify a foolproof 
method by which all the forms in a typeface can be correctly fitted without 
human intervention (however ‘correctly’ may be defined), but to look at 
the prior investigations into letter-fitting automation collectively, and at 
how the various attempts to fit letters automatically or semi-automatically 
relate to fitting as the task has been performed manually. In doing so, this 
research provides observations and investigates approaches by which 
future work on fitting letters by means of automated techniques might be 
brought better into harmony with the task of fitting as it has traditionally 
been conducted.

A great deal about the manual process of fitting is well-known within 
the type-design field. The basic principles of evenness, balance, and 
harmony are common citations within the historical discussions and 
instructional materials concerning fitting, as are details of how those 
principles interact with letterforms and how type designers can make 
effective assessments. Nevertheless, the attempts to devise systems, 
formulas, and software-automation tools for fitting typefaces over the 
years found only limited success with type designers. Tracy’s heuristic 
method provided an incomplete system; he enumerated several 
letterforms that must be fitted visually: a, f, g, s, t, z, and S. The list notably 
overlaps with Dwiggins’s list of ‘wolf intervals’ for which he could find no 
formulaic solution: a, c, e, f, g, k, r, t, and s (Dwiggins 1940 B, p. 6). The 
LOGOS and hz-program products, as mentioned above, were unable to 
establish a foothold with type designers and manufacturers, despite their 
respective pedigrees and substantial investments of time and effort. 

This research does not attempt to find fault with the above examples or 
other prior work, but instead to contend that they are worth revisiting in 
the present context and that the subject is worth investigating as a shared 
endeavour within the type-design community, best viewed as part of the 
continuum of practise that includes manual fitting. The technology 
available to the designers and producers of type has advanced considerably 
since many of the prior letter-fitting investigations began. Thus, prior 
work often sought to apply a homogenous method for fitting all 
letterforms, but may have done so because the speed and cost of 
computers and typesetters at the time necessitated it (Rubinstein, p. 121). 
Similarly, there may be valuable connections to be uncovered between 
independently developed methods that remained hidden when those 
methods were kept private to preserve trade secrets. A holistic approach to 
the analysis can address such issues.
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1.1.2 Defining success in letter fitting
In order for this research project to talk in detail about improving fitting — 
or even to compare whether one fitting for a particular typeface is better 
or worse than another fitting — it is necessary to establish a useful 
definition for what language like ‘correct’ fitting or ‘good’ fitting means. 
This is not a trivial matter, because fitting, like other facets of typeface 
design, inevitably involves aesthetic judgments, popular trends, and the 
personal tastes of type designers and type consumers (Karow et al. 1993, p. 
249, 259; Spiekermann 1987, p. 29).

The aesthetic component of fitting is most clearly visible in display 
type. Where readability is not the paramount concern, type designers can 
be seen to be more experimental with the treatment of the shapes formed 
by inter-letter space and by open counters, illustrating that different 
fitting details can affect the reader and the reception of the typeface in 
ways wholly unrelated to readability. (See figures 1.7 and 1.8, over page)  Even 
within text typefaces, however, the personal style or idiosyncrasies of the 
type designer can be seen. In his correspondence with Griffith about 
developing a formula for the fitting of Falcon, Dwiggins called out the 
fitting styles of Edward Maunde Thompson, William Morris, and Emery 
Walker as exemplary of the book-style fitting effect he sought for Falcon, 
but Bruce Rogers, Frederic Goudy, and Daniel Berkeley Updike as 
consistently missing the mark (Dwiggins 1942).

The personal perspectives of type designers aside, what qualifies as 
acceptable or exceptionally good fitting is also subject to shifts over time 
(Unger 2018, p. 115). To an extent, the shifting understanding of fitting is 
imposed by type production and printing. Bodo Kämmle noted that every 
type manufacturing technology imposes a resolution or unit system, below 
which the relationship between forms and sidebearings is lost because the 
technology or data format cannot express finer distinctions (Kämmle in 
Karow et al. 1993, p. 185–186). But the long-term trends in fitting are also 
supported by the changing opinions and tastes of type designers and, 
ultimately, of readers (Unger 2007, p. 150–151).

The type industry is cognizant of the fluctuating nature of taste and 
preference over time, of course. (See figure 1.9, over page)  In this project, 
that factor can be accounted for when assessing fitting by acknowledging 
that the fitting preferred today may have been viewed differently in the 
past and may not be as well received in the future. As to the influence of 
personal style and aesthetic effects, type designers and typographers may 
never be in full agreement about the fitting of a particular typeface. There 
is general agreement, however, that fitting which is regarded as meeting 
the practical needs of legibility and readability with readers has succeeded 
at its fundamental goal (Carter 1984, p. 3). Gerrit Noordzij observed that 
illegible typography can still be beautiful, but that legibility is the more 
important quality in the hierarchy (Noordzij 2000, p. 126). Given a choice 
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Figure 1.7
Lucas Descroix’s monospace typeface Nostra Sett plays with the negative spaces between the letterforms, demonstrating creativity in 
fitting. Note, for examples, that the black foreground shapes of the letterforms are expanded to the point where they almost become the 
background, drawing attention to the inter-letter spaces left between pairs of letterforms like sa (line two), ti (line five), and gi (line four). 
(Descroix 2018, p. 4). Used by permission.

Figure 1.8
David Jonathan Ross’s typeface Fit allows the negative spaces between letterforms to fully dictate the positive shapes of the letters. All of 
the spaces are of an equal width; the letterforms are adapted to maintain this space requirement. Notably, Fit is designed to this rule in 
multiple weights and widths; the effect is preserved in thin and narrow versions (Ross 2017, p. 2). Used by permission.
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Figure 1.9
A full-page advertisement from the July 1976 issue of the journal U&lc. The advertising copy discusses the then-contemporary trend of 
phototypesetting with extremely close fitting, and calls attention both to the fact that close fitting is a recent phenomenon and that it 
likely will be out-of-favour in the future (Frederic Ryder Company 1976, p. 37). From the collections of the department of Typography & 
Graphic Communication, University of Reading. Photographed by the author.
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between the two, there is, at least, a history of testing in legibility and 
readability, providing examples to consult and from which test designs 
tailored to fitting can be explored. Henestrosa notes that ‘a badly drawn 
but properly spaced typeface is more useful than a properly drawn but 
badly spaced typeface’ (Henestrosa et al. 2017, p. 80), echoing to a degree 
the sentiment of Bigelow and Seybold, but underscoring that utility, all 
other factors aside, is a fundamental requirement for type. Consequently, 
this research bases its evaluations of fitting solely on the notion of 
successfulness with readers, as distinguished from correctness or aesthetic 
beauty.

1.2 Research questions

The aims of this research can be summarized by the following research 
questions:

1. Can an algorithm be constructed that will generate letter fitting for a well-
designed typeface which cannot be distinguished from letter fitting determined 
manually?

2. To what degree can the manual fitting process employed by type designers be 
modelled?

As seen here, this project intentionally reframes the discussion somewhat 
as an investigation into fitting by algorithm rather than into fitting 
automation. The reasons for eschewing the term automation are twofold. 
First, ‘automation’ connotes a lack of involvement by humans (be they type 
designers or typographers). Although there might be occasions when full 
automation in that sense is desired, there are many other occasions when 
it surely is not. Second, ‘automation’ is difficult to define. Font editors such 
as Glyphs already provide some user-interface affordances to avoid simple 
repetition (Glyphs GmbH, 2023). For example, users can enter =n into the 
right sidebearing field for m, and the program will automatically copy the 
right sidebearing of n to the right sidebearing of m and keep the two 
values synchronized if the right sidebearing of n is changed. That 
synchronization might reasonably be considered automation, but it does 
not speak to core principles.

This project refers instead to algorithms, a term which encapsulates the 
meaning of a known and well-defined procedure. Algorithms might be 
executed rapidly or repeatedly by a computer, but can be followed by a 
person as well. Donald Knuth, who pioneered the analysis of algorithms in 
computer science, defines an algorithm as a procedure that has five 
properties: finiteness, definiteness, inputs, outputs, and effectiveness 
(Knuth 1968, p. 4–6). Finiteness, as applied to this project, simply means 
that there is some definition of when the procedure is complete. 
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Definiteness refers to the steps and conditions being well-defined, not 
open to interpretation in the moment. Inputs and outputs are, 
straightforwardly, what known elements are put into the algorithm before 
it begins and what elements are produced by it. Effectiveness in Knuth’s 
terminology refers to an algorithm being simple enough in its structure 
that it can be written and understood and, perhaps, evaluated on the basis 
of speed or complexity.

In the context of letter fitting, the inputs are clearly the set of 
letterforms to be fitted and the outputs are the sidebearings for those 
letterforms. Without too much additional effort, some additional inputs 
could be defined, including the typographic context, and the set of outputs 
could be modified to include kerning tables or other techniques for 
representing the fitting to be stored in a font file or to be recorded in some 
other context. Finiteness is similarly direct: a fitting algorithm has reached 
the end when it has output all of the sidebearings asked for. The type 
designer may wish to re-execute the algorithm with different inputs, but 
there should be no ambiguity as to whether the sidebearings that were 
asked for have been provided.

Perhaps the most important aspect of defining a letter-fitting algorithm 
consistent with Knuth’s conditions is the notion of definiteness. Namely, 
the manual process of fitting letterforms by eye (as described in the type 
design literature) frequently makes reference to the designer’s intuition or 
optical judgment — for example, ‘adjust the space between the two letters 
until it looks balanced’. In a practical sense, attempts to formulate letter 
fitting into an algorithm chiefly involve transforming these judgments into 
more definite constructions. Or, to look at it another way, part of the 
challenge is to identify the fundamental principles of the judgments the 
designer makes, and convert each ‘judgment by eye’ from an intuitive 
input supplied by the type designer into either an input that can be 
computed from the letterforms or a specific action that is expressed in as 
definite a step as is possible.

1.3 Scope and essential terminology

For pragmatic reasons, this research is limited to the Latin script, and 
focuses on typefaces intended for typesetting text for continuous reading. 
However, effort has been made to be alert to both where and how these 
limitations impact the results. This work takes a strong position that fitting 
can only be understood in a script-specific context, and must be evaluated 
as such. Consequently, the construction of models for fitting and analysis 
of fitting algorithms must also be understood in a script-specific sense.

It should also be noted that discussions of fitting in this work frequently 
refer to the typeface being fitted — despite the fact that type designers, in 
practice, will often perform fitting for incomplete typefaces or even for 
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extremely small sets of letterforms, any of which may be altered in further 
design iterations. To facilitate a clear discussion of the fitting process, this 
work adopts the convention that, at a given point in time when forms are 
being fitted, those forms are regarded as complete (or, at least, fixed) and 
they work together as a reasonable Latin text typeface. The intent is to 
isolate the fitting principles at play when the design itself is not broken. 
That is, asking what the sidebearings should be for a set of letterforms that 
do not work well together — or are illegible or confusable due to design 
problems — is not a meaningful question. As has been noted, further 
design iterations may happen as the type designer chooses. Fitting can 
only fit the forms as they exist in the moment.

Historical sources and public discourses about fitting can, at times, be 
fluid about the terminology employed. This work attempts to standardize 
on the term fitting to refer to the process of determining or adjusting the 
spaces around the forms in a typeface. This is a choice common among 
type designers, at least in written English, but it is not universal. Some 
sources refer to this same task as ‘spacing’ or ‘letter spacing’. Where 
quoted historical sources are unclear in their use of terminology, effort has 
been made to explain the meaning from context.

Some historical sources also disagree as to whether the term fitting 
includes only the setting of sidebearings, or includes both the setting of 
sidebearings as well as determining kerns (i.e., kerning). In this work, the 
term fitting is understood to encompass both sidebearing determination 
and kerning, primarily because — as will be discussed in the next chapter 
— there is not a hard delineation between the processes involved in the 
two tasks. That is, the same fundamental principles are applied when 
deciding the correct space between two letterforms in a kerned pair that 
are applied when deciding on the correct space for sidebearings in an 
unkerned pair.

Where typeforms themselves are discussed in this work, the blue-
background notation a is used to distinguish those forms from the 
surrounding text for the ease of reading. Where literal tokens from 
programming or markup are discussed, monospace formatting is used, to 
better distinguish confusable items such as the kern table in OpenType 
from the general word ‘kern’.

This work also makes occasional use of several other terms common in 
type design, such as counter, serif, x-height, weight, and optical size, which are 
considerably less fluid in their definition. For the convenience of the 
reader, a brief glossary of those terms has been provided, found after the 
conclusion of chapter 7.
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1.4 Methods

This project’s inquiry into possible algorithms for letter fitting is 
multidisciplinary. It begins with an examination and analysis of the 
processes and techniques that type designers employ when performing 
letter fitting manually. That examination, described in chapter 2, consists 
of a historical study of the practice of letter fitting as it is recorded in the 
literature and research of type design, educational and instructional 
material for type design, the literature of fields closely related to type 
design, and the recorded history of prior work developing letter-fitting 
automation (or algorithmic fitting) tools and utilities.

The analysis of this studied material is used to define a conceptual 
model, also described in chapter 2, for how the fitting of Latin text 
typefaces is performed manually. This model consists of a finite set of rules 
or axioms, each of which expresses a simple principle that helps determine 
fitting for one or more letterforms. The set of axioms is explored as a 
whole, to evaluate their interconnections as they are applied to a set of 
Latin letterforms.

Chapter 3 describes a more detailed investigation into the axioms of the 
Latin text fitting model, with a particular emphasis on those axioms that 
have been historically under-studied in prior letter-fitting work. In brief, 
some of the under-studied Latin text fitting axioms were found to be 
favourable for a new implementation, but there are other axioms lacking 
the degree of formalism necessary to be implemented in a fitting 
algorithm. Chapter 4 explores the potential for designing a composite 
fitting algorithm that combines several components, each implementing 
different axioms from the model. The composite algorithm uses well-
established techniques to address letterforms with simple profile shapes in 
conjunction with novel techniques to address letterforms with concave 
profile shapes.

Chapter 5 begins by looking at various approaches to evaluating the 
fitting of a typeface, and which approaches can be used to measure the 
responses of readers in a quantifiable manner in line with the research 
questions. For this project, the goal of such evaluations is to use an 
algorithm to generate fitting for a typeface and then evaluate that fitting 
in comparison to the original fitting or to the fitting generated by some 
other algorithm. The method selected involves testing unaltered and 
refitted fonts on the web with volunteer readers. The readers were shown 
a series of randomized sample documents and asked to mark pairs of 
characters on the samples that they felt exhibited poor fitting and, for each 
mark, to indicate if there was ‘Not enough space’ or ‘Too much space’ 
between the pair. A series of such tests were staged featuring typefaces 
with their original (manually determined) fitting, new fitting generated by 
the composite algorithm from chapter 4, and new fitting generated by a re-
implementation of the kf algorithm from URW’s hz-program suite, for 
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comparison. The results of the test are presented in chapter 6 and are 
interpreted with respect to the fitting algorithms.

This multidisciplinary nature of this research design necessitates, to an 
extent, streamlining the breadth of the project. While the conceptual 
model of fitting Latin text is as comprehensive as possible, the practical 
investigations of fitting-axiom implementations, fitting-algorithm design, 
and reader testing are of a focused nature, while revealing clear 
opportunities for additional research.

This project has been motivated by the author’s belief as a researcher 
that algorithmic fitting is prime for continued systematic study. As is the 
case with many in the field, the author has had some measure of prior 
academic or professional experience in a handful of disciplines that 
address this research subject, including typeface design, mathematics, and 
computer science. The overlapping of these perspectives where the task of 
letter fitting is concerned allows this research to demonstrate that there is 
value in the pursuit, in both practical and theoretical terms.

1.5 Potential impact of algorithmic fitting

The most immediate practical aim of this research is to advance the 
current understanding of what is possible for letter fitting via algorithmic 
means, by presenting techniques that could lead to more effective or more 
efficient tools for type designers to employ when designing typefaces. 
A resulting reduction in time required to perform fitting, especially on its 
repetitive tasks, and a better-rounded understanding of letter fitting, 
would no doubt be welcomed by some type designers.

But there are other potential practical benefits to consider. If the task of 
fitting remains a flat list of hundreds of individual decisions about 
sidebearings, then it likely cannot help but be considered daunting by type 
designers. If, instead, an algorithm can give shape to the task, re-framing it 
as an active task that is defined in terms of its own principles and 
parameters, then new questions and affordances may become possible, and 
experimenting with fitting directly becomes an accessible option. For 
example, if the stroke rhythm of a typeface is too rigid and its readability 
suffers, then improving the fitting by means of hundreds of adjustments 
may seem to be a tedious chore. If, however, the fitting is adjustable via an 
algorithm that offers a parameter for stroke rhythm, then improving the 
fitting could be considerably less irksome, and invite more exploration.

It was also noted earlier that fitting interacts with the design of 
letterforms, and that fitting issues can obscure or hide design problems. 
Here, too, by providing richer tools for engaging with the task of fitting 
directly, rather than as a large set of discrete, individual decisions, type 
designers may reap benefits beyond simple time savings.
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In addition to the potential for advancing practical fitting work, this 
research seeks to promote the theoretical understanding of the task of 
fitting and of how fitting is perceived, to the lasting benefit of the field. For 
example, a solid understanding of the links between calligraphic tradition 
and contemporary digital type (as encouraged by Noordzij and others) not 
only empowers type designers to understand type history, but to push it in 
new directions. So, too, the theories modelled and explored in this 
research can serve as analytical tools for other researchers or students of 
type history. A fuller understanding of how the principles of fitting behave 
and interact permits new questions to be explored regarding how type is 
fitted today and of how fitting can and should change — not just in Latin, 
but in other scripts, and between scripts, as well.

Similarly, by encouraging the formalization of the ideas and processes 
that are employed in fitting, this project provides a foundation on which 
more rigorous discourse about fitting can be based. Fitting, like the design 
and construction of letterforms, will always be an important topic of 
discussion. But, where the terminology for discussing Latin type anatomy 
and style is well-established and explicit, thus facilitating critique and all 
manner of analysis, in fitting it has often remained abstract. More formal 
language for discussing the principles of fitting and the fitting of specific 
forms or typefaces can only lead to new insights into how space functions 
in type design, typesetting, and reading.
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2. Deriving a model for fitting Latin text

This research project explores the potential for algorithmically fitting 
typefaces — a task which, both historically and in prevailing contemporary 
practice, is performed manually. Before an algorithm appropriate to the 
task can be reliably constructed, then, it is vital to understand the 
constituent processes fundamental to the overall manual task, the context 
in which those processes are administered, and how those processes are 
understood by their practitioners. To that end, this chapter details the 
analytical development of a model for letter fitting in Latin text, using 
those accepted manual practices as a starting point.

As discussed in chapter 1, § 1.5, what constitutes successful letter fitting 
is inherently specific to a writing system, and is often constrained further 
by the specifics of the typographic setting. This project focuses initially on 
the Latin writing system when used to set text for continuous reading, and 
the model derived in this chapter is similarly focused on that writing 
system and those typographic constraints. Electing to focus on Latin text is 
a choice made for practicality, but effort has been made to maintain a 
separation between the approach used for the research and the details of 
the Latin-text fitting model itself. In this way, the model can serve as a 
proving ground for the approach. Models for other writing systems or for a 
divergent set of typographic constraints could be derived by employing 
the same approach, even though the specific details of two such models 
may vary considerably in the end.

2.1 Manual fitting practices in Latin typeface design

The task of letter fitting is regarded by professional typeface designers as 
an integral component of designing a typeface (Tracy 2003, p. 71). Indeed, 
rather than describing letter fitting as a secondary or even as a 
complementary discipline, Fred Smeijers accounts an awareness of the 
shapes between letters as inseparable from that of the letters themselves. 
‘The white shapes make the background, the black shapes make the 
foreground. The background makes the foreground, and the other way 
around. Change one, and you change the other too’ (Smeijers 1996, p. 24).

 The literature survey of letter-fitting theory that will be described in 
§ 2.2 examines as many of the historical sources as possible, but the 
discussion must begin with an overview of the fitting process as it is 
practised today. This permits deriving a model (and, ultimately, 
algorithms) formulated with relevance for contemporary technology and 
practitioners.

A full description of the typeface-design process from start to finish 
would lie outside the scope of this research. Books that specifically 
describe typeface design are scarce, at least compared to other disciplines 
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in printing and graphic design (Leonidas in Unger 2018, p. 7). In-depth 
guidance on the task of fitting within the larger process of typeface design 
can be found in Walter Tracy’s Letters of credit (Tracy 2003), Cristóbal 
Henestrosa et al’.s How to create typefaces (Henestrosa et al. 2017), and Chris 
Campe & Ulrike Rausch’s Making Fonts (Campe and Rausch 2022). 
Additionally, a number of other works discuss aspects of typeface design 
including manual letter fitting — sometimes to a considerable depth — 
even if the overall work is not structured as a complete guide to the 
typeface-design process. This includes Fred Smeijers’s Counterpunch 
(Smeijers 1996), Karen Cheng’s Designing type (Cheng 2005), Jost Hochuli’s 
Detail in typography (Hochuli 2015), Gerrit Noordzij’s The stroke of the pen 
(Noordzij 1982) and The stroke (Noordzij 2009), Frank E Blokland’s On the 
origin of patterning on movable Latin type (Blokland 2016), and Gerard Unger’s 
While you’re reading (Unger 2007) and Theory of type design (Unger 2018). 

The process of fitting typefaces manually is also discussed in users’ 
manuals and guides written for the users of specific font-design software, 
such as Stephen Moye’s Fontographer: Type by Design (Moye 1995), David 
Bergsland’s Practical Font Design With FontLab 5 (Bergsland 2016), and Eben 
Sorkin et al’.s Start Designing with FontForge (Sorkin et al. 2012). Online 
tutorials that frame the task of letter-fitting within typeface design can 
also be found, such as Brandon Buerkle’s Spacing a Font (Buerkle 2018) or 
Gunnlaugur SE Briem’s Notes on type design (Briem 1998), as can software-
specific guides, such as TypeMyType’s Introduction to spacing (TypeMyType 
2021) for the Robofont editor and Rainer Erich Scheichelbauer’s Spacing 
(Scheichelbauer 2013) for the Glyphs editor.

Still other sources document adjusting letter fitting in the context of 
typesetting a document. As discussed in chapter 1, there is a distinction 
between type-design fitting and typesetting fitting; the principles 
discussed in typesetting literature are considered in the historical survey 
of § 2.2, but are out of scope for the purpose of describing the manual 
fitting practice of type designers in this section. 

2.1.1 The typeface-design process
The procedure for Latin typeface design, as described in these sources, 
commonly begins with the design of certain key typeforms — frequently 
designing the lowercase letters first1 and, typically, starting with the 
lowercase letterforms that feature simpler profiles: those that are 
symmetrical on the left and right sides (n and o). This is followed by 

1. Bergsland differs by recommending that designers start with the capital letters. However, 
Bergsland's book is a self-published new-users' guide to FontLab 5, and is framed as a practical 
introduction to that application, rather than a treatise about typeface design. Where it cites prior 
authors, such as Tracy, it does so indirectly, via citations from Moye. David Kindersley also described a 
manual fitting procedure starting with the capitals (Kindersley 1976), although it must be recognized 
that the purpose of the booklet was to promote acceptance of the automated letter-fitting product he 
was developing at the time.
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progressively designing more and more typeforms, building off of the 
forms with simple profiles by recombining the structural elements that 
recur in multiple letterforms. (See figure 2.1) 

The lowercase letters are followed by designing capital letters, followed 
by numerals, symbols, punctuation, marks, and other ancillary typeforms 
(Smeijers 1996, p. 123; José Scaglione in Henestrosa et al. 2017, p. 57-61; 
Cheng 2005, p. 8–9; Bergsland 2016, p. 31, 62, 69–89; Unger 2007, p. 116–
122). (See figure 2.2)  This approach to the design of the forms leverages 
repeated shapes and components in the constructions of Latin letterforms, 
and is not unique to the digital era. William A. Dwiggins, writing in 1937, 
discussed a similar process that began with cellulose cut-outs, also starting 
with the straight-sided and round profiles for simple typeforms, and 
iteratively expanding the set of forms (Dwiggins 1940 A, p. 2, 4).

Designing each of the letters and other typeforms requires the typeface 
designer to address and resolve any number of design problems, including 
construction, consistency, proportion, balance, optical adjustments, and 
consideration of weight and contrast. The designing of the individual 
typeforms is an iterative loop that may involve repeatedly refining or 
redesigning each typeform to improve it with respect to these design 
problems. Determining the fitting for the typeface is similarly iterative, 
consisting of determining a left sidebearing and a right sidebearing for 
each typeform (Henestrosa et al. 2017, p. 81).

A persistent difference of opinion exists on the question of exactly 
when letter fitting should be performed during the design of a typeface. 

Iteratively designing letterforms 
leverages repeated elements in 
the construction of letters. In this 
illustration, Henestrosa et al. 
highlight recurring elements in 
different colors and patterning 
(Henestrosa et al. 2017, p. 45). 
Used by permission. 

Figure 2.1

An overview visualizing the multiple stages in a contemporary typeface-design process 
(Scaglione in Henestrosa et al. 2017, p. 57–58). Used by permission.

Figure 2.2
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The primary distinction is whether the fitting task should be undertaken 
repeatedly at multiple points in time, at each point addressing the new 
typeforms designed or revised since the previous iteration, or whether 
cursory sidebearings should be assigned to each new typeform during the 
design stage, and the fitting of the complete set undertaken only at or near 
the end, at the point when all of the core typeforms are in their final or 
near-final forms. Scaglione says that typeforms should be fitted as they are 
designed (Scaglione in Henestrosa et al. 2017, p. 60,), while Henestrosa 
recommends applying a simple set of provisional sidebearings initially and 
addressing fitting for the typeface collectively only as the typeface nears 
completion (Henestrosa et al. 2017, p. 80–81).

2.1.2 The letter-fitting stage
Regardless of when the task of fitting is undertaken, the task is represented 
as separate from the task of designing the forms (Unger 2018 p. 123; 
Henestrosa et al. 2017, p. 80). This separation of the tasks has historical 
precedent in metal type founding, when the design of forms, the cutting of 
punches, and the justification of matrices were often jobs handled by 
different individuals (Smeijers 1996). Tracy observed that Eric Gill and 
Reynolds Stone were both content to have their type designs fitted by 
others without consultation, while Dwiggins preferred to remain actively 
involved in the fitting stage (Tracy 2003, p. 71–72).

The process of determining the fit for a particular typeform is described 
as requiring the assembly of test sequences of typeforms, evaluating the 
sequences optically, then making iterative adjustments to the sidebearings 
until the test sequences pass muster. The optical evaluation is variously 
described as a judgment of rhythm (Unger 2018, p. 124), equality of inter-
letter areas (Henestrosa et al. 2017, p. 82; Smeijers 1996, p. 30), evenness 
(Hochuli 2015, p. 25), or balance (Kindersley 1976, p. 18; Smeijers 1996, 
p. 27). The test sequences recommended vary from author to author and 
depend in part on whether fitting is attempted with a complete set of 
letterforms or is attempted iteratively as new forms are designed. As the 
number of fitted forms increases, more complex test sequences can be 
employed, up to and including full test pages populated with real text.

As with the design of the letterforms themselves, most sources 
recommend starting the fitting process with ‘control’ letters, then 
gradually expanding the set by fitting new letters in conjunction with 
those previously fitted. The most common letters recommended for Latin 
text are those also recommended to be the first designed: n and o in the 
lowercase and H and O in the capitals. As was the case with the design of 
the letterforms, this choice is recommended because those letters feature 
more-or-less symmetrical left and right side profiles and can thus be given 
the same sidebearing on the left and the right. Here, too, the regularity of 
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Latin letterforms means that the fitting determined for these control 
letters can subsequently be propagated to multiple other forms.2

Kerning is portrayed by most sources as an additional task within the 
larger job of designing a typeface, distinct from the task of fitting. The 
reason cited is that kerns can be added to make an adjustment to the space 
between any two typeforms, and that the sheer number of possible 
permutations means that there will always be some pairs of forms that, 
when side by side, fail to pass the optical evaluations used for determining 
the primary fitting (Cheng 2005, p. 226; Henestrosa et al. 2017, p. 89). The 
inevitability of such pairs might suggest that the fitting task itself is not 
converging on a solution, but most sources frame it in a different light: 
openly acknowledging the number of permutations, but insisting that the 
fitting task succeeds for the overwhelming majority of the permutations. It 
is noteworthy that the pairs of forms most often highlighted as requiring 
kerning are those that involve the less common profile shapes. The 
straight and round profile shapes cover the majority of the letterforms, so 
the majority of the permutations succeed without any kerning required.

As discussed in chapter 1, it is also important for the scope of this 
research project to recognize that the optical evaluations of space 
employed when undertaking kerning are the same evaluations employed 
when performing the fitting task. Kerns, according to the contemporary 
practice, exist to bring a small number of unusual permutations into 
agreement with the same core principles that address the sizeable majority 
of the permutations; the kerns are, therefore, a reinforcement of the 
successful fitting, not a divergence from it.

Although the process of fitting is described as one that typeface 
designers can learn through repetition (Smeijers 1996, p. 30), it is often 
presented as challenging to master. Unger admonishes the reader that 
some individual letterforms are ‘tricky’ to fit and may feature optical 
illusions that mislead the designer into making poor fitting decisions. 
Furthermore, he warns of the complexity caused by the number of 
permutations, saying ‘many combinations of characters need special 
attention’, and advising that the designer should plan to conduct fitting 
tests ‘in many different combinations and for many languages’ (Unger 
2018, p. 124). 

Practical costs are associated with the manual fitting of typefaces as 
well. Peter Karow speculated in 1994 that then-new digital font formats 
were capable of storing pairwise spacing values for every permutation of 
letter pairs, but that the limiting factor would be the time and resultant 
financial burden of determining the spaces (Karow 1994, p. 248).

Whether due to the challenge or to the time requirement, some authors 
describing the fitting process go so far as to label it a hardship. Henestrosa 
sums up his viewpoint on the relationship between letter design and letter 

2. Perhaps worth noting is the fact that starting the fitting process with n and o is advice that can be 
followed when fitting a nearly complete set of forms, but which can also be followed when fitting each 
form as it is designed, if one also follows the recommendation of designing n and o first.
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fitting by saying ‘Drawing letters is fun, but spacing is tedious. Very 
tedious. That is why I prefer to think that drawing is more important: in 
this way I can spend more time enjoying myself than being bored’  
(Henestrosa et al. 2017, p. 80), parenthetically adding in jest that ‘anyone 
would rather be tortured by the Spanish Inquisition than be forced to 
space fonts forever’.

2.1.3 Classes of typeforms
Critical to understanding the task of fitting as it is practised is a 
recognition that many of the statements made about letter fitting carry 
some implicit assumptions about the class of typeforms they will be 
applied to. The most general domain to consider is the writing system, 
which is generally specified or can be determined by the context of the 
surrounding source or discussion. The sources referenced in the previous 
section (as well as the axioms listed in the subsequent section) all apply to 
fitting Latin text, because that was the selection criterion of the study. But 
even within the Latin-text context, several principles are formulated as 
statements about equality or similarity that, by necessity, can only be 
understood as applying to some subset of typeforms that all belong to the 
same classification: the letters, the letters of a particular case, the 
numerals, all alphanumerical forms, all typeforms, et cetera.

In Latin, lowercase letters are fitted with respect to other lowercase 
letters; capital letters are fitted against lowercase letters for use in running 
text, but should be separately fitted against other capital letters when 
typesetting all-capital text (Unger 2018, p. 125; Hochuli 2015, p. 23–25). It is 
only within each classification that the other statements about how to 
determine fitting operate. Most of the sources consulted in section 2.2’s 
historical study explicitly make the distinction between lowercase-with-
capitals and all-capitals.

Less is said about fitting numerals, however, except to note that in many 
contemporary typesetting environments, users of typefaces will expect 
numerals to feature tabular alignment when setting columns of data 
(Tracy 2003, p. 76; Henestrosa et al. 2017, p. 85). (See figure 2.3)  A modern 

Issues particular to the fitting of 
numerals arise because numerals 
are often typeset in contexts not 
meant for continuous reading, 
such as tabular data. The 
proportional examples in the 
illustration depict fitting similar 
to that of letterforms, but 
proportional fitting may not be 
the default. The differences are 
most clearly seen in the 1, but all 
numerals can be affected. 
(Henestrosa et al. 2017, p. 85). 
Used by permission.

Figure 2.3
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digital font can supply default fitting appropriate for numerals that are set 
within texts meant for continuous reading by fitting them like lowercase 
letterforms (Beier 2017, p. 150) and supply separate tabular fitting 
appropriate for numerals used in columnar data, but there are no 
guarantees that the software used to typeset documents with the font will 
support both options or make them available to the user. Complicating 
matters further, typefaces can include two distinct designs for the numeral 
forms (ranging and non-ranging) requiring distinct fitting. (See again figure 
2.3)

Considerably less still has been written about fitting for non-
alphanumeric symbols and punctuation, apart from general advice that 
punctuation is a frequent target for kerning pairs. The paucity of 
discussion suggests that, at the very least, if there are distinct rules 
applying to some classes of typeforms but not to others, then either it is 
the letterforms that are subject to the most stringent rules — with 
numerals, symbols, and punctuation posing less difficult fitting problems 
— or else the letterforms are so much more important to legibility, 
readability, and other metrics of good fitting that any special rules for the 
other classes of typeform are of less concern.

There are arguments to be made on either side. Good letter fitting is 
vital to readability, it is thought, because readers identify letters and 
combine them into words. As such, numerals and punctuation typically 
serve a purpose in the text that is distinct from word formation. Every digit 
of a date, monetary amount, or phone number must be taken in 
individually for it to be correctly parsed by readers. Gerrit Noordzij 
explained that the distinction is that each digit has a conceptual meaning 
which changes if it is moved, saying ‘Unlike letters, numbers stand on their 
own’ (Noordzij 2000, p. 184). Similarly, the purpose of a period or question 
mark is to demark a meaningful break between words. But there are also 
exceptions to be found wherein numerals and punctuation do participate 
in words; ordinal numbers like 1st and 20th can be written with numerals 
that function like letterforms and are read as such, and instances where 
punctuation forms part of a word are commonplace.

In the discussion that follows, the distinction between all-capital fitting 
and capital-and-lowercase fitting is preserved because it is the distinction 
maintained in the source material. Where it can be addressed, the question 
of engaging with other classes of typeforms will be treated explicitly but, 
in general, it may suffice to regard ‘typeforms that make up parts of a 
word’ as being equivalent to ‘letterforms’ when considering fitting.

2.1.4 Representations of letter fitting in font files and font editors
Regardless of the processes employed to determine the fitting for a 
typeface, it must somehow be implemented and stored in the final product. 
When type was manufactured in metal or wood, fitting decisions could be 
made either when cutting the punches or when justifying the matrices. 
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Those decisions were then fixed into the physical substance of the type: 
sidebearings as the dimensions of the individual types, and any kerns as 
overhangs or undercuts that were, again, physically integrated into the 
objects making up the product. When type transitioned to a representation 
of the design stored on photographic plates and, subsequently, digital 
storage, the fitting was initially preserved in the stored design, but could 
be adjusted on the fly during typesetting. 

The digital vector fonts in contemporary usage are typically distributed 
in files based on the SFNT structure, which stores the contents of the font 
within a number of separate data tables. TrueType and OpenType are 
widely-used file specifications for what data tables should be included. In 
these SFNT-structured file formats, each typeform is represented as a 
‘glyph’ entry consisting of contour shapes that are stored in one table, plus 
numeric dimensional information stored in other, ‘metrics’ tables. The 
fitting of the glyph is stored as a numerical advanceWidth and a numerical 
lsb offset. The glyph’s left sidebearing is equal to the lsb offset. The 
advanceWidth is the horizontal distance that the rendering system 
(whether for print or for on-screen display) should advance after it has 
drawn the current glyph, before it begins drawing the next glyph. (See 
figure 2.4)  The right sidebearing is, thus, is not stored explicitly but is 
computable as the advanceWidth minus the glyph’s rightmost extreme 
point. Either sidebearing value could be a negative number. The 
advanceWidth and lsb values are both specified in ‘font design units’, 
which are an internal numerical scale derived from the ‘units per 
em’ (UPEM) value stored in the font file.

Font editing programs, however, often attempt to simplify the 
presentation of fitting data in the user interface, such as by showing the 
left and right sidebearings directly, both as editable numerical fields and as 
guidelines on the drawing canvas, rather than exposing the potentially 
confusing underlying details of advance widths. (See figure 2.5)  In both the 
SFNT-structured font files and in the user interface, it is crucial to note 
that each sidebearing value is a linear distance measured from the 
outermost point in the form — including the lengths of any serifs, 
overhangs, in-strokes, and out-strokes. The spaces between adjacent forms 
are two-dimensional areas. To evaluate or modify the two-dimensional 
area between letterforms, the full shape of the forms’ profiles must be 
evaluated.

Kerns are stored in separate tables. Earlier TrueType fonts used a 
dedicated kern table, while newer TrueType and OpenType fonts use the 
GPOS table, tagged with a semantic feature name: kern is used for the 
generic kerning feature, although other tags are defined.3 The kerning 
information itself can either be pair-based, in which a list of specific two-

The advanceWidth and lsb 
entries as stored in many digital 
font formats. The right 
sidebearing is not stored directly 
and must be computed 
(illustration by the author).

Figure 2.4

Screenshot of the sidebearings 
for a typeform as presented in 
the user interface of the Glyphs 
font editor. The left and right 
sidebearings are both presented 
directly to the user in the grey 
information box (screenshot by 
the author).

Figure 2.5

advanceWidth

lsb

3. Semantically-tagged features for spacing were added by the OpenType Layout extension to the 
original OpenType specification. Several other fitting-related semantic tags are officially registered, 
including cpsp for capital-to-capital spacing, tnum for numerals with tabular spacing, pnum for 
numerals with non-tabular spacing, and dist for adjusting positioning for orthographic correctness 
(mainly in Indic and other Brhami-derived writing systems).
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glyph sequences is stored with a numerical plus-or-minus adjustment to be 
applied when the pair occurs, or class-based, in which the same adjustment 
data can be designated for multiple set of similar forms (such as all of the 
unaccented and accented versions of a given letter, or all forms that are 
round on the left side).

Multiple other digital file formats have been used over the years. 
Notably, several of those formats also stored fitting information as an 
advance-width plus the left-sidebearing offset, even if the data was 
formatted in a different structure. Adobe’s Type 1 font format and the TEX 
typesetting system, for example, also stored fitting as advance-widths and 
left sidebearing offsets, but with that data saved separately in ‘font 
metrics’ files (Haralambous 2007, p. 626, 674). However, other font formats 
have incorporated entirely different approaches to storing fitting 
information. Agfa Compugraphics’s Intellifont format (Karow 1994, p. 156) 
could store vectors of kerning-adjustment values at different heights for 
every glyph, with separate vectors for the left and right sides, and separate 
values designated for ‘text’ and ‘display’ sizes. Each vector represented 
glyph widths defined at various vertical ‘sector’ heights measured against 
the glyph.

The technique was correspondingly known as sector kerning and was 
also employed by typesetting systems offered by software vendors in the 
1970s and 1980s (Ward 1990). After Apple’s TrueType was adopted by 
Microsoft in 1989, followed by Adobe’s merger of PostScript Type 1 format 
with TrueType into the combined OpenType specification (Bigelow 2020 A; 
2020 B), the market for alternative digital font formats was effectively 
killed, and sector kerning disappeared with it — though, as will be seen in § 
2.3, the sector-kerning concept was not permanently lost.

2.2 Study of historical letter-fitting theory

As mentioned in the preceding section, the task of manually fitting letters 
is the subject of numerous discussions, guides, debates, and other written 
accounts. Although the primary research question explores to what extent 
that task can be automated or implemented in an algorithm, 
understanding the task itself requires understanding the fundamental 
principles involved when it is conducted manually by type designers. To 
identify these principles, a study was conducted of the recorded theories of 
letter fitting in typeface design. 

Attempting to comprehend and describe the theories that underpin 
manual practice of letter fitting is certainly not the only possible approach 
to the problem but, in the past, it has been shown to be more fruitful than 
attempting to build a letter fitting algorithm on a theory disconnected 
from the craft as practised. Records exist of such attempts. Peter Karow 
recounted a 1980 project at URW to implement a letter-fitting algorithm 
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modelled on magnetic forces (Karow 1998; Karow and Blokland 2013). 
Sebastian Kosch made a similar attempt in 2010 (Kosch 2010 B). In both 
instances, the researchers abandoned the line of investigation and 
subsequently pursued algorithmic models based on automating the 
processes of manual letter fitting.

Other researchers have posited theories about letter fitting based 
entirely on a mathematical or scientific principle, such as Raph Levien’s 
2006 exploration of assessing letter fitting with wavelets (Levien 2006). 
These indirect approaches have seldom survived beyond the initial 
proposal. Conversely, numerous projects initially focused on automating or 
encoding practice-based theories of letter fitting have arisen 
independently and persisted as active projects, even if their customer or 
user base remained modest.

Where exactly one draws the line between a model that is based on 
manual letter fitting and one that is not based on manual letter fitting 
requires some interpretation, as a matter of course. A purely mathematical 
model might be so far removed from the act of adjusting typeforms that 
one type designer would call it incurably abstract, while, to the researcher 
who derived it, that same model might appear to be a clear, direct 
distillation of reality.

For the sake of the present investigation, however, the degree of 
abstraction in the eventual algorithm is a distant concern. The starting 
point is the practical body of knowledge and techniques possessed by type 
designers. The aim of the study is to scrutinize the theories of letter fitting 
within that body of knowledge and techniques then examine them 
systematically, in order to acquire a picture that represents the commonly 
accepted approach, complete with its details, leeways, limitations, 
balances, and compromises.

Typeface design is a practical discipline; for most of its history, the 
written record of how it has been performed takes the form either of 
literature written by practitioners (either to explain the craft for the 
comprehension of outsiders or to train new typeface designers) or of 
deliberations between practitioners about the merits of various 
techniques. The study conducted of letter-fitting theory began with these 
sources, including literature from typeface design and type manufacturing 
history, augmented by educational sources and interviews with type-
design educators.

The historical survey continued with a look at the corresponding 
literature from related letter arts (such as lettering, writing, stonecarving, 
and calligraphy), in order to catalogue the theoretical principles that those 
practices use to explain the behaviour of space between letters. This was 
followed by a study of the theories described in prior work on the 
automation of letter fitting, including published writing, promotional 
materials, patented inventions, and published software.
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In each case, the procedure undertaken was to isolate the concepts in 
those sources that were used to describe how letters should be correctly 
fitted and to observe how those concepts were said to work in concert with 
each other. The common concepts accepted across sources, in theory, could 
be further distilled into a set of well-defined, core principles. This set of 
principles, in turn, can serve as a framework in which to appraise existing 
letter-fitting automation tools and as the basis for developing new 
automation algorithms.

2.2.1 Literature, practice, and education in type production
The first stage of the study examined material specifically from the fields 
of typeface design and type making. In its early history, many facets of the 
printing business, including the processes of designing and manufacturing 
type, were trade secrets characterized by fiercely protective attitudes of 
their creators towards the dissemination of knowledge. Later historians 
have gleaned much about the technology and norms of cutting punches 
and adjusting matrices (Burnhill 2003; Blokland 2016), but there are scant 
references addressing how letter-fitting decisions were made. 

Fred Smeijers provided a chronological overview of the sources in 
‘Putting letters next to each other’ (Smeijers 2014), noting that it was not 
until the late 17th century that manuals recorded the details of justifying 
matrices for public consumption. These earliest sources already appeal to 
principles that endure to the present day. Pierre Simon Fournier’s 1764 
Manuel Typographique (although not the first such manual) outlines the 
‘setting’ of types beginning by filing down the sides of a sequence of three 
m strikes, with the middle m inverted, until their vertical strokes appear to 
be in an even visual rhythm, then applying the resulting sidebearing 
measurements to the other forms, adjusting for round and diagonal profile 
shapes (Fournier trans. Carter 1930, p. 158–161).

A persistence of the core principles cited can be observed, with new 
assertions and new debates generally appearing only in response to 
substantial changes in printing technology and type production. Joseph 
Blumenthal’s 1935 advice for fitting foundry type (Blumenthal 1935) differs 
little from Fournier’s, for example. But the introduction of photo-
composition in the mid-20th century suddenly permitted fitting letters so 
close that they collided and even overlapped.4 The sources from that point 
forward began to include warnings about the ills of overlapping forms.

There are occasional discussions of letter-fitting practice found in the 
biographical and autobiographical works about type designers and other 
practitioners during the eras of metal type and photocomposition. Some, 
such as the compendium of Adrian Frutiger’s professional work edited by 
Heidrun Osterer and Philipp Stamm, relate specific problems encountered 
regarding fitting (Frutiger et al. 2021), but it is rare to find accounts of the 

4. Collisions between printed letterforms were certainly possible in even the earliest metal-type 
printing through overprinting or alignment trouble; it became a design-time concern during 
photocomposition (Hochuli 2015, p. 26; Tracy 2003, p. 78). 
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decision-making process in such retrospectives. Isolated sources exist that 
document the design of individual typefaces, but even these are often 
written long after the fact — and often either for specific typefaces seen to 
hold special significance or as part of biographical or autobiographical 
profiles of particular type designers.5 Less common is correspondence, but 
where it exists it can be revealing. William A. Dwiggins’s exchanges about 
fitting with Chauncey Griffith at Linotype are candid and detailed.

Digital typesetting followed shortly after photocomposition, but it was 
the advent of personal computers and desktop publishing that had the 
bigger impact on the written narrative (Middendorp 2018, p. 11). Whereas, 
before, typefaces had been designed almost exclusively in an industrial 
context, affordable desktop computing empowered small digital foundries 
and individuals to modify and create typefaces and subsequently use or sell 
them, all using commodity hardware (Southall 2005, p. 156).6 Guides to 
typeface design appeared as books offered to the public, both those framed 
as practical handbooks for using a specific font editor (Moye 1995; Sorkin 
et al. 2017; Bergsland 2016) and those illuminating the craft and logic of 
the task in general (Smeijers 1996; Cheng 2005; Henestrosa et al. 2017; 
Campe and Rausch 2022). As discussed in § 2.1, letter fitting constitutes 
part of the core subject matter for these guides.

Online sources account for a predictably high percentage of the written 
discussions about letter fitting produced since the start of the web-
publishing era. These, too, include guides aimed at users of particular font-
editing applications (Scheichelbauer 2013; TypeMyType 2021) and tutorials 
written without focusing on a specific application (Briem 1998; Buerkle 
2018). Simultaneously, online discussion channels, including email 
discussion lists, social-media networks, and web-forum sites, provide for a 
higher-volume and more rapid exchange of ideas between practitioners 
than can be seen from the era of printed newsletters and periodicals.

Interviews were also conducted with type educators to characterize 
how fitting is described in academic coursework, commercial workshops, 
and the onboarding processes for newly-hired typeface designers at type 
foundries. 

2.2.2 Related principles from lettering, writing, and calligraphy
The second stage of the study examined the principles of fitting space 
between letters as it is described in related arts beyond the craft of 
typeface design. This may sound surprising, given that type, as defined for 
this project in chapter 1, concerns pre-made letterforms that are combined 
during typesetting. This pre-made nature distinguishes type from 

5. Exceptions can be found, however, such as invited essays on the subject, e.g., John Dreyfus’s 
exploration of spacing in Font — ostensibly a book reflecting on the work of Sumner Stone, but 
covering broader matters (Dreyfus 2000).
6. The pricing of font-editing software was similarly democratizing. In 1989, Kingsley/ATF charged 
$55,000 per seat for Type Designer, plus per-font royalties if the user wished to sell fonts created with 
the program (Seybold 1989). That same year, Altsys’s Fontographer retailed for $495 (Ponting 1989).
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disciplines where each letterform is designed and executed in situ, tailored 
to the final composition — typically with a pre-determined text. In these 
arts, such as writing, calligraphy, stonecarving, and lettering, the 
practitioner is concerned simultaneously with determining the shapes of 
bespoke letterforms and with the distribution of the surrounding space in 
the piece.

As with type, there are design norms and ideals that constrain the 
shapes of letters. But, even if one ignores the decorative end of the 
spectrum and focuses on letters meant to be read comfortably, in lettering 
arts the individual letterforms themselves are as malleable as the spaces 
between them. Thus it can be more ambiguous to discriminate the 
reasoning about space from the reasoning about positive forms. 
Nevertheless, within a given writing system, type design and the crafting 
of custom-fitted letterforms both share the same audience of readers and 
the disciplines are preceded by a shared and overlapping (even 
intertwined) history. So, though there is a limit to how much the literature 
of lettering arts can speak to the designing and fitting of type, it may shed 
a slightly different light on many of the same underlying principles.

Furthermore, the various lettering arts have been accessible as 
individual pursuits for centuries, which has led to a greater number of 
descriptive and instructive texts. In contrast, as was noted earlier, the 
making of type was an industrial job requiring ‘whole teams of people’ 
until digital fonts and desktop computers transformed it into a pursuit 
available to individuals (Scaglione in Henestrosa et al. 2017, p. 17). 
Historical manuals and guides for the lettering arts pre-date the rise of 
movable type for Latin and have continued to be published to the present 
day.

As with the historical sources on typemaking, many of the core 
principles related to letter fitting found today can be traced back to the 
earliest writing on the subject. Perhaps the earliest example is Ludovico 
Vicentino degli Arrighi, whose 1522 La Operina instructs calligraphers that 
the distance between joined letters should be the width of the counter in n 
(Arrighi 1522, p. 19). Many practitioners, of course, engaged with both 
typeface design and the related arts, and emphasized their similarity. 
Gerrit Noordzij connected Latin typeface design to calligraphy explicitly 
(Noordzij 1973; 1982; 2009), including his discussions on the relationship 
between interior and exterior space. The connection is reinforced within 
the lettering arts as well, such as in calligrapher Michael Harvey’s usage of 
commercial typefaces as examples for letterers to study (Harvey 1996).

2.2.3 Prior explorations into automating letter-fitting
The final stage of the study considered prior projects to automate the task 
of letter fitting, either entirely or in part, by looking at patent filings, 
product announcements and reviews in trade journals, brochures and 
user’s manuals, and, where available, software source code. In the interest 
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of reproducible research, the search for patent filings was limited strictly 
to expired patents. The study also filtered out products that dealt solely 
with the logistics of storing fitting data, such as third-party libraries of 
kerning tables sold for popular fonts — though that distinction is not 
always made clear in promotional literature or trade-journal coverage.

Note that this study explored how the projects define and explain the 
principles of letter fitting, rather than examining how the projects 
implemented it. Inspection of the implementations’ internals, where 
possible, was conducted later, as described in chapter 3. Not all projects 
specify principles for fitting; some level of ‘spacing automation’ feature 
was found in almost every commercial digital type-design program, but the 
accompanying material rarely explored the theories involved. 

Efforts to automate portions of the task of typemaking and typesetting 
date back to the industrial era, but the early mechanical inventions 
involving fitting were production aides to speed up manufacturing or 
typesetting and did not capture the decision-making process of fitting 
letters. This includes Linn Boyd Benton’s 1883 patent for ‘self-spacing 
type’, which, despite its name, was merely a unitized casting machine that 
supported six fixed body widths (Cost 1986, p. 25–28). Similar inventions 
that regularized typesetting but required the designer to pre-determine 
the fitting were produced in the early-to-mid 20th century, such as 
Letraset’s alignment systems (Dowzall 1982; Dowzall and Houssian 1986). A 
notable outlier here is the work of stonecarver and typeface designer David 
Kindersley, who began researching letter-fitting in the 1950s using optical 
measurements of the light levels transmitted and blocked by letterforms, 
before moving into the realm of software.

Indeed, the adoption of digital typesetting precipitated a profusion of 
letter-fitting automation efforts. Predictably, the number of projects 
discoverable in the public record skews heavily towards the 21st century. 
(See figure 2.6 below and table 2.1, over page, for a chronological list)  As 
Dwiggins’s correspondence and Kindersley’s optical fitting project 
illustrate, type designers have contemplated fitting automation for much 
longer, but the rise of desktop-computer–based typeface design — and, no 
doubt, scriptable design software — provided new avenues for interested 
parties to explore the task on their own.

In addition, the availability of free-to-use software-hosting services like 
GitHub, SourceForge, and Google Code meant that many automation 
projects were published online and remain available years later, even if the 
project goes dormant. Comparable details about work done in earlier 

Per-year count of the number of 
letter-fitting automation projects 
identified for the historical study. 
The counts include all projects 
identified for study, including 
those projects for which detailed 
information was ultimately 
unavailable.

Figure 2.6
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covers page 
number

Project
LOGOS

Bell sector-spacing
URW force experiment

Arabic Calligraphic Engine
Tracy method

Gerber
Type Designer auto feature

Sector Kerning
hz-program kf

Fontlab auto feature
Kernus

InfoKern
Canon Shift

Omron
Neville

TypeArt
FontForge auto feature

AFDKO
Aldine FFT
KERNDICT

sqtroff
KernMaster 
Perturbation

Sousa method
Wavelet masks

Cambria OpenType Math cut-ins
iKern

LetterModeller
Caslon Fourier analysis

Rhea
Rhea force experiment

SortsMill spacing by anchors
Tsukurimashou

Autokern
Blur-masking

Impallari macro
OpticalLetterSpacing.js

Typebutter
CJK Auto Spacing

Kernagic
Monokern

font-prediction_mahout
Novi Sad statistical analysis

BubbleKern
LS Cadencer
Fittingroom

Black Spacer
HT Letterspacer

Spaceman
KernKraft

Electric kerning
Octabox

Machine Learning of Fonts
Atokern / kerncritic

psoptkern
KernBot

HT Kerner
electricbubble

YinYangFit
CounterSpace

fontmetrics
RhythmInfluencer

type.tools AI
Andersson experiment

Hands Face Space
Kern On
Kerning

Building a spacing calculator
Kern Determiner

Year
1970
1973
1980
1985
1986
1986
1989
1990
1991
1992
1993
1993
1995
1996
1998
1999
2000
2000
2003
2003
2004
2004
2004
2005
2006
2007
2008
2009
2010
2010
2010
2010
2011
2012
2012
2012
2012
2012
2013
2013
2013
2014
2014
2015
2015
2015
2016
2016
2016
2016
2017
2017
2017
2018
2018
2018
2019
2019
2019
2019
2019
2020
2020
2020
2021
2021
2021
2021
2022

Table 2.1
Chronology of prior letter-fitting automation projects identified during the historical survey. Where not otherwise specified, the projects 
were focused on fitting Latin text.

Publisher or lead authors
David Kindersley, Neil Wiseman
Max Mathews, Bell Telephone
Pater Karow, Margret Albrecht
DecoType
Walter Tracy
David Logan, Gerber Scientific
Kingsley/ATF
Compugraphic
URW
Fontlab Inc
URW
InfoComp
Kiyoshi Watanabe, Canon
Sawada et al., Omron
Paul Neville, William Fox
Calamus
FontForge project
Adobe
Sergei Egorov
Thomas Baruchel
SoftQuad
DTL
Cameron Browne et al., Canon
Miguel Sousa
Raph Levien
Microsoft
Igino Marini
Frank E. Blokland
William Berkson
Sebastian Kosch
Sebastian Kosch
Barry Schwartz
Matthew Skala
Charles M. Chen, Typefacet
Peter Weigel
Pablo Impallari
Gabi Schaffzin
David Hudson, Joel Richardson
Xin Yue
Øvind Kolås
Edward Cree
Ethan Petuchowski
Bojan Banjanin, Uroš Nedeljković
Toshi Omagari
Lukas Schneider
Sebastian Kosch
Jérémie Hornus, Black Foundry
Andrés Torresi, Huerta Tipográfica
Simon Cozens
Mark Fromberg
Matthew Skala
Martin Hosken, SIL
Antanas Kascenas
Simon Cozens
Raymond Luckhurst, Scriptit
Joey Grable
Simon Cozens
Sebastian Kosch
Sebastian Kosch
Simon Cozens
Simon Cozens
Maarten Renckens
type.tools
Rasmus Andersson
Simon Cozens
Tim Ahrens
Zeeshan Asghar
Dean Kalen
Simon Cozens

Scripts addressed (other than Latin)

Arabic

Japanese

Japanese

Chinese, Japanese, Korean Hangul

Arabic

Arabic

Arabic
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decades is progressively harder to find: if the project was not patented or 
the subject of a published account, it may be entirely lost to history. 

 There have also been efforts aimed at making letter-fitting decisions 
solely by statistically analysing the sidebearings and kerning data of large 
sets of typefaces, although there is not much to show for the effort. Karow 
undertook such analysis as part of a large statistical survey of the URW 
library (Karow 1993). The published conclusion was that the statistical 
model could not predict sidebearings based on the measured features of a 
typeface, but neither the model nor the raw data was published.

More recently, it has become popular to apply machine-learning models 
to construct the statistical model, with the same essential goal: analyse a 
large set of typefaces as input, and predict the letter fitting for new 
typefaces based on the analysis. Little has been gained from such projects, 
either, perhaps because the models tend not to take typographic variables 
(weight, optical size, style, etc.) into account, leading to questionable 
methodologies, such as measuring linear sidebearings without adjusting 
for the lengths of serifs (Kascenas 2017; Banjanin and Nedeljković 2014 A).7 
Regardless, purely statistical models are less relevant to this survey 
because they do not posit an underlying theory for fitting letterforms.

2.2.4 Continuity
Considering the written record as a whole, it is the continuity that stands 
out. At times it is overt. Walter Tracy’s Letters of Credit is perhaps the most 
common reference where letter-fitting is concerned; the book is a 
reflection on the practice of making type, but it is detailed enough about 
the practice (including the letter-fitting process) to serve double-duty as 
instruction for new typeface designers. As noted in chapter 1, Tracy 
detailed a heuristic method for assigning sidebearings to the basic Latin 
alphabet, crediting the system to Harry Smith at Linotype ‘over thirty 
years’ prior to the 1986 first-edition publication date (Tracy 2003, p. 72). 
That heuristic, down to the exact tables Tracy included for capitals and 
lowercase letters, has continued to be reproduced by other writers into the 
21st century. (See figure 2.7, over page)  Notably, Tracy presented the 
heuristic as pragmatism distilled from experience; after much repetition, it 
is often treated more like a formula.

Elsewhere, it is the terminology, illustrations, and framing of rules that 
is repeated between sources. (See figure 2.8)  Patterns can be discerned in 
the language, carried through even to the software-based automation 
projects examined in the final stage of the study. The fitting-automation 
projects that survive and thrive derive their inspiration from the same 
conventional wisdom seen in the literature — proposing novel approaches 
only rarely and often without success. This can be seen in the novel force-
based model explored by URW, which was dropped and replaced by the kf 

Top: Illustration from Blumenthal 
in 1935 relating letter fitting to 
calligraphic stroke rhythm (p. 73).

Bottom: Henestrosa et al. make 
the same relation using a similar 
illustration in 2017 (p. 33).

Figure 2.8

7. In 2020, Nic Schumann, Cem Eskinazi, and Marie Otsuka presented preliminary findings from a 
machine-learning–based project that did seem to take typographic variables into account but, as of    
this writing, the project has yet to publish results (type.tools 2020).
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module in hz-program (see chapter 1). The patent filing for kf cites a list of 
six fundamental letter-fitting principles, each derived from traditional 
preparation (Karow et al., 1992).

2.2.5 Complexity
A key factor that differentiates sources in the written record is the degree 
of complexity found in their letter-fitting methods. An increased 
complexity in how the letter-fitting task is described or implemented often 
correlates to a greater maturity and refinement of the tools and of the 
output medium.

Fournier, for example, cites the need to balance the interior and 
exterior space of typeforms, but provides only general guidance that 
strokes should appear to be in consistent visual rhythm and that certain 
forms require less exterior space than the standard, m. His method, 
therefore, incorporates one rule (balancing the interior and exterior areas 
of space) and one exception (the exterior spaces of some typeforms should 
be reduced). By Tracy’s time, the method in use at Linotype has gained 
further complexity, citing additional rules for typeforms with open 
counters and testing fitting in triplets of typeforms, and enumerating 
seven distinct classes of profile shape among the set of typeforms.

The same trajectory can be observed in the literature from lettering and 
calligraphy — Arrighi’s text provides a single piece of advice on spacing 
(relating the width of n to the standard inter-letter space); centuries later, 
Jacoby and Schenk had developed substantially more layered rule systems 
(Jacoby, p. 30–38; Schenk p. 16–18).

Walter Tracy’s heuristics for 
fitting lowercase Latin letters, 
reproduced by multiple authors 
over the years. 

Top: the 1986 table presented by 
Tracy (Tracy 2003, p. 75).

Below: tables presented in Moye 
1995 (p. 81), Cheng 2005 (p. 221), 
and Beier 2017 (p. 146).

Figure 2.7
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That these refinements of letter-fitting methods correspond to 
refinements in printing technology and media is unsurprising. But it also 
helps explain the apparent step backwards in complexity seen in letter-
fitting automation projects. The earliest software systems tend to 
implement fitting using a small set of rules.8 But the early digital 
typesetting systems provided lower-resolution bitmaps, and only evolved 
toward vector-based formats and toward outputs rivalling the quality of 
metal over the course of decades. As the capabilities of the technology 
caught up part, the narrative of software-based fitting came to more 
closely resemble that of the other craft traditions. Thus, early software 
systems to automate letter fitting that dropped back to simpler methods 
should be seen to do so out of necessity, not because knowledge of fitting 
was lost or because known techniques fell out of favour.

2.3 Identifying axioms from history and practice

The individual principles cited time and time again by these sources may 
be considered the basic tenets of letter fitting theory for a particular 
writing system. For this research, the effort to decompose or reformulate 
these letter-fitting first principles into axioms is a practical line of inquiry. 
Algorithms, as defined in chapter 1, § 1.2.4, require a clear and concrete 
expression. The functionality of a particular computer program can be 
isolated into discrete components by analysing its functions, data 
structures, and control interfaces. Thus, to make the most useful head-to-
head comparisons between fitting theories that are expressed as computer 
programs and those that are expressed as manual procedures (as well as 
comparisons within each group), representing the concepts as axioms 
provides a more formal, but common language.

2.3.1 Determining inclusion and exclusion of axioms
In mathematics and logic, an axiom fills a special role in investigations and 
proofs: axioms are accepted a priori to be true, and serve as the foundation 
upon which other theories are more rigorously constructed. In other 
words, the axioms of letter fitting should be the simplest possible 
statements about letter fitting; starting points from which the more 
complex ideas and practical advice proceed.

Naturally, not every axiom in the list is cited or considered by every 
source. Similarly, the authors of any given letter-fitting automation 
implementation might cite additional concepts as axiomatic, or might 
explicitly reject certain axioms that others accept. Details of how prior 
letter-fitting automation work has engaged with the axioms below is 
discussed in chapter 3, § 3.1. The list that follows only seeks to enumerate 
the most commonly accepted axioms found in Latin fitting algorithms, 
practice, and the associated literature.

8. See chapter 3 and table 3.1.



45

When compiling the list, every effort was made to limit the list to 
statements concerned purely with the task of fitting typeforms — 
excluding, for example, precepts about the design of good letterforms as 
well as more abstract statements about how space affects page-level 
typography. As stated previously, the practice of letter fitting is interwoven 
with the practice of designing letterforms but, in order to pinpoint the 
conceptual first principles of letter fitting, one must assume that the 
letterforms are, at the moment they are being fitted, correct. 

Similarly, it was determined that the axiom list should be limited to 
principles that are applied to a set of letterforms that is appropriate to be 
fitted as a set, and not include principles that are guidance about which 
letterforms require fitting. It is common advice in Latin text fitting to note 
that, in Latin text that is meant for continuous reading, capital letters are 
most often set against lowercase letters, and that therefore the default 
spaces applied to the capitals should be capital-to-lowercase fitting, with 
capital-to-capital fitting being determined separately. This precept is 
widely accepted to the point where it could arguably be considered an 
axiom. For this list, however, it was excluded on the grounds that it is a 
precept purely about selecting the forms and is not a statement about 
determining the actual space. In other words, even when this principle is 
used to choose the correct set of forms, the typeface designer is no closer 
to establishing the space for any of the forms.

Finally, the list of axioms is meant to isolate the rules applied during 
letter fitting and not include advice on how a typeface designer should go 
about finding the solutions. For example, several sources advise flipping a 
sequence of test letters upside down before assessing if the spaces between 
the letters appears equal. For the axioms enumerated in this project, it was 
decided that flipping the letters upside down is merely advice about how 
to search for an answer, but the underlying question in play is whether the 
spaces between the letters appear equal; consequently, the axiom is that 
the inter-letter spaces should appear equal, not that the letters should be 
flipped upside down.

The same is true for other advice provided by letter-fitting sources, 
such as advice about using printed samples versus on-screen samples, 
inverting colours, squinting or standing at a distance, and so forth. 
Admittedly, there is not always a clear line to draw, and no claim is made 
that alternate decisions about inclusion or exclusion would necessarily 
produce weaker results.

2.3.2 Essential axioms for Latin letter fitting
The survey of literature and automation implementations discussed earlier 
gives the following set of commonly cited axioms for letter fitting Latin 
text type. The list is broadly sorted in order from most-frequently–cited to 
least-frequently–cited, but the precise ordering is not crucial. The 
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frequency with which an axiom is cited, by itself, does not denote its 
relevance (as is explored further in § 2.4 and 2.5).

The designations assigned to each axiom are merely a convenient 
shorthand to aid subsequent references and illustrations. The prefix ‘L‑’ is 
meant here to serve as a reminder that these axioms stem from a study of 
Latin letter fitting practice and should not be assumed to apply in equal 
importance, if at all, to other writing systems. Some of the axioms are 
particular to Latin for identifiable reasons, while some have application 
both to Latin and other writing systems that share similar features, such as 
a horizontal baseline or bicameral casing.

It should be noted that the phrasing of the axioms generally uses the 
term space to refer to a two-dimensional region of area, but sources in the 
literature and type designers in online discussions may say ‘space’ when it 
is clear in context that a linear distance is referred to. Note, for example, 
Walter Tracy’s heuristic, which says that diagonal-profile forms should be 
assigned ‘minimum space’. In the supporting text, it is clear that Tracy is 
referring to a minimum sidebearing distance. Where the sources are 
unclear, attempts have been made to clarify the meaning. The list of 
axioms is as follows:

Axiom L‑1: Profile Similarity — Similar profile shapes should be fitted with 
similar space.

This axiom states that the amount of space fitted for a particular profile 
shape should be the same as the amount fitted to that profile shape when it 
appears in other forms. For example, the space fitted to the left side of o 
and space fitted to the left side of c should be of equal area. (See figure 2.9) 
This axiom is essentially universally accepted and is usually framed as 
being self-evident, no doubt because it speaks to one of the most basic 
tenets of a coherent visual design. It permits the propagation of fitting 
values from one typeform to other typeforms that have similar shape.

In addition to being virtually undisputed by simplicity, however, this 
axiom is also the basis for the notion that it is the shape alone that dictates 
how much space a typeform needs. Namely, it is the visual appearance of, 
for example, u that defines what space u should receive: not the fact that it 
is recognizable by readers as the grapheme ‘lowercase u’, nor its Unicode 
code point, nor its place or history with the alphabet.

This distinction comes to the forefront whenever fitting algorithms or 
literature state rules or conditional tests phrased as references to the 
letter. For example, Walter Tracy’s heuristic states that the right side of p 
receives the same space as o, but v and w receive minimum space. That 
heuristic only applies for upright Roman styles where the v and w have 
diagonal profiles (as are seen in his illustrations). In an italic design where 
the v and w take on round profile shapes, however, axiom L‑1 insists, 
sensibly, that the right side of the v and w receive spaces similar to other 
round profiles, because of their profile shape. (See figure 2.10)

ov ov
The similarity of any two profile 
shapes is not determined by the 
letters’ graphemes and may vary 
based on style. The italic v on the 
right has a round profile, which is 
appropriate for the italic style 
(illustration by the author). Fonts 
shown: IM Fell French Canon, 
upright & italic.

Figure 2.10

Similar profile shapes should 
receive similar space (illustration 
by the author). Font shown: 
Tinos.

Figure 2.9
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Illustrations of the principle of 
setting optically equal space 
between all pairs of letters in Latin 
text.

Left: Mengelt 1993, p. 36. 

Right: Campe and Rausch 2022, p. 94.

Figure 2.14

It must also be observed that in order to implement this axiom in 
practice it is mandatory to have access to the profile shapes. For example, a 
software fitting algorithm must know whether the g is one-storey or two-
storey in order to determine whether its profiles are similar to d and it 
should therefore be assigned the same space as d or not. (See figure 2.11)  
The practicality of determining profile shapes is discussed in chapter 3.

Nevertheless, ‘similar shapes’ does not necessitate ‘identical shapes’ 
and, in practice, the type designer or letter fitter is required to establish 
the level of reasonable precision at which to work. Revisiting v and w, the 
two letters’ outermost profiles share a basic construction and thus they are 
generally considered similar, but the sides of v are often drawn at a 
different angle than the sides of w. (See figure 2.12) 

Axiom L‑2: Profile Reflection — The space fitted to a profile is the same if the 
profile is reflected horizontally.

This axiom states that the similarity principle applies identically on both 
sides of a form. For example, the left sidebearing of o and the right 
sidebearing of b should be equal. This is a corollary to the previous axiom, 
explicitly noting that the ‘equivalent profiles should get equivalent space’ 
principle is not dependent on the direction that the profile is facing. (See 
figure 2.13) 

 Although this is perhaps intuitive, clarifying that the reflective 
principle applies in Latin text is important because it may not necessarily 
hold for other writing systems. As was the case with the previous axiom, 
this axiom is usually framed as being self-evident.

Axiom L‑3: Inter-letter Area Equality — The space between two letters in any 
letter-pair should appear optically equal to the space between the two letters in 
any other letter-pair.

This axiom is cited by the vast majority of sources and it is the basis for a 
number of letter-fitting heuristic systems and automation tools. Its 
straightforwardness makes it simple to state and to illustrate visually. (See 
figure 2.14)   But, unlike the preceding two axioms (which are also 
straightforward to state), this axiom is not generally framed as being self-
evident, so many sources cite it as a first principle and invest some effort in 
explaining it or demonstrating it. Certainly it is a principle pinned to a 
writing system, rather than being a principle of ‘visual balance’ in the 
abstract. Although it applies to Latin, it would not easily be applicable to 
connected writing systems.

dgdg
Axioms about profile shapes can 
dictate different fittings based on 
construction (illustration by the 
author). Font shown: Gentium 
Plus.

Figure 2.11

vw
Different angles are used for the 
side profiles of v and w, but the 
two shapes are often described as 
similar enough to be fitted with 
the same space (illustration by 
the author). Font shown: Gentium 
Plus.

Figure 2.12

The principle that similar profile 
shapes should receive similar 
space also applies when the 
profile shapes are reflected in the 
horizontal direction (illustration 
by the author). Font shown: 
Tinos.

Figure 2.13
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Illustrations of the principle of 
setting optically equal space 
between all pairs of letters in Latin 
text.

Left: Mengelt 1993, p. 36. 

Right: Campe and Rausch 2022, p. 94.

Figure 2.14

Some statements of this axiom allow for exceptions that apply to 
certain letterforms or profiles but, even then, the principle is generally 
accepted to apply for any arbitrarily-chosen letter pairs.

Axiom L‑4: Triplet Centring — When three letters are viewed in a sample 
triplet, the middle letter should appear to be centred between the two letters on 
either side.

This axiom is related to the previous axiom, in the sense that the goal is to 
identify a fitting for (e.g.) abc wherein the space between ab appears 
optically equal to the space between bc. However, this axiom differs 
because it specifies placing three letters in a triplet, then assessing the 
total position of the middle letter. (See figure 2.15)  Therefore, that process 
takes the width and the symmetry of the middle letter into account, which 
the previous axiom does not. For instance, a highly asymmetrical 
letterform like L should appear optically centred in the triplet HLH, even 
though a naive measurement of the space would find substantially more 
space between LH than between HL.

Note that this does not necessitate that only three letters be used in 
every test sequence. Longer sequences are testable and, in practice, often 
advised. Regardless of how long the test sequences are, though, the 
evaluation asked for by this axiom is about whether the letter appears 
centred between its immediate neighbours to each side.

This axiom strongly leverages the horizontal baseline layout in Latin 
text setting; it may not apply to scripts that incorporate positioning 
typeforms in two dimensions (such as subjoined forms or vowel, tone, and 
pronunciation marks). Those scripts may instead ask a more complicated 
question about a typeform appearing centred between its neighbours in 
more than one direction.

Axiom L‑5: Vertical Stroke Rhythm — Vertical stems should appear optically 
to be in a consistent rhythm for any sample letter sequence.

This axiom is a more specific distillation of the broad concept that pages of 
text (or other large blocks of text) should have an even ‘colour’ or ‘texture’ 
but, importantly, the axiom connects that texture to the vertical-stroke 
rhythm that underpins Latin text: the vertical stems of the letters in text 
should seem to be spaced in an optically even rhythm. This property of 

Letter fitting represented as the 
centring of letters in triplets 
(Highsmith 2020, p. 46).

Figure 2.15
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Latin can be traced back to calligraphic and writing traditions for the 
lowercase letters. (See figure 2.16)  Most formulations note that the rhythm 
should also appear observable in letterforms that do not feature stems. As 
will be discussed in chapter 3, that can prove to be a challenge to 
implement reliably.

The axiom is generally agreed upon for Latin text, though, as is the case 
with some other axioms, it should not be taken for granted in other 
writing systems. Gerry Leonidas has noted that the calligraphic tradition 
for Greek is based on looping forms, which results in different rhythmic 
structure (Leonidas 2018, p. 133). It is also important to note that the 
definition of stem is inherited from the Latin calligraphic tradition. A stem 
is a straight ‘main’ stroke in the letterform’s skeleton; it is not simply any 
line with vertical orientation: vertical serifs and out-strokes found on s and 
z are not generally counted as stems.

Axiom L‑6: Interior-Exterior Balance — The interior counter of n and the 
interior counter of H should be the same optical size as the inter-letter area of 
an nn pair and an HH pair, respectively.

This axiom is the first on the list to connect the size of inter-letter area to 
the size of any intra-letter area. Generalizing, the principle is that the 
internal space enclosed within the letterforms should appear equal to the 
external space outside of the letterforms. For Latin text fitting, the more 
common framing of the axiom is to state the equality of the interior and 
exterior space for two key letterforms: n for lowercase and H for capitals 
(See figure 2.17); choices which can act as a trivial test-case for the principle 
of equality.

There is some disagreement among the sources regarding the precision 
of the statement that the areas are optically equal. The earliest sources 
tend to state, simply, that the two areas should be equal, while more recent 
records tend to say that the inter-letter area should be slightly smaller 
than the internal area of the n or H. Perhaps that discrepancy should be 
attributed to changes in printing technology, or perhaps it represents a 
shift in reader expectations. But, either way, the relationship between the 
two areas is described as being a predetermined one for a particular 
typeface. Namely, whether the type designer determines that the inter-

Gerrit Noordzij contended that stroke rhythm is the essential factor for letter fitting, because 
consistent rhythm defines the word-image (Noordzij 2009, 42). 

Figure 2.16

Smeijers calculated that the 
counter within each n is equal to 
the space between the pair by 
counting grid squares (Smeijers 
1996, p. 31).

Figure 2.17
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letter area should be 100% of the interior area or it should be 95% of the 
interior area, once that determination has been made, it remains fixed. 
This fixed relationship becomes important when applying axiom L‑3: the 
area that is determined for the inter-letter area of an nn pair and an HH 
pair is the area that will be propagated to other inter-letter pairs.

The choice of n and H as the key letterforms is made because those 
letterforms have straight, vertical strokes on both side profiles and the 
letterforms conform to the ‘standard’ width for their case. Thus, assessing 
the ratio of inside-to-outside space is simpler. Choosing h and N would 
yield comparable results for most designs; some sources prefer o over n, 
others m. However, because letter-fitting is usually conducted in the 
context of designing a full complement of letters, there is little down side 
to using n and H as a convention.

Nevertheless, some prior work does state this same axiom in broader 
terms, contending, for example, that the inter-letter space of every 
double-letterform pair should be optically the same as the interior space of 
the pair. Although this broader framing of the axiom is testable for 
letterforms that enclose space (such as oo, ee, or even xx), it is less 
immediately clear how it should be examined for letterforms that do not 
enclose any interior space (such as ii or LL).

This axiom is particular to Latin text and, as with the previous axiom, is 
inherited from the general writing models used for Latin text throughout 
its history. Unlike the previous axiom, however, the claimed relationship 
between the interior counter size and the inter-letter space holds only for 
‘normal’ weight, width, and text sizes.

Axiom L‑7: Concave Profile Truncation — When a letter’s counter is open on 
one side, only part of the counter’s area should be measured as part of the total 
inter-letter space between that letter and the adjacent letters.

This axiom also connects the size of inter-letter space to the size of an 
intra-letter space. When fitting a letter with a concave profile or ‘open 
counter’ (e.g., c or s), some percentage of the space bounded by the top, 
bottom, and closed side of the counter is treated as optically belonging to 
the interior of the letter and as not belonging to the inter-letter space. 
Fitting algorithms differ as to what the appropriate percentage to assign is, 
and as to how to compute it (See figure 2.18), but the principle is almost 
universally agreed on.

Gerrit Noordzij illustrated the 
ambiguous boundary between 
interior and exterior space 
occurring in open-counter 
profiles by blending the colours 
(Noordzij 2000, p. 168).

Figure 2.18
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The same principle is generally held to be true for letters with 
unbounded open counters (i.e., those forms that have two out of the ‘top, 
bottom, and closed side’ but lack the third), such as the right side profiles 
of r or F. It is usually acknowledged that different percentages apply for 
the unbounded open counters and that, for such strongly-asymmetric 
letterforms, avoiding a collision with the adjacent letter matters more than 
the percentage of open-counter measurement does.

Axiom L‑8: Fixed-Height Measurement — The inter-letter area between two 
lowercase letters in a letter-pair should be measured between the baseline and 
the x-height. The inter-letter area between two capital letters should be 
measured between the baseline and the capital height.

This axiom captures both a facet of conventional wisdom and a practical 
observation. The conventional wisdom is that, in lowercase text, the forms 
of letters between the baseline and the x-height include the majority of the 
variety distinguishing one letter from another, whereas extenders exhibit 
less variety and are more functional, distinguishing between certain 
otherwise-similar forms (e.g., o versus b, d, p and q) by position. That 
convention can be seen in phenomena like variable-length extenders as a 
font feature or the increase of x-height (without a corresponding increase 
in extender height) as weight and optical size vary.

The practical observation is that geometric measurements made to 
support the equal–inter-letter–counters axiom indicate that 
measurements between the baseline and x-height result in expected 
fitting, but measurements that include extenders do not. (See figure 2.19) 

The framing used here, specifying the top and bottom measurement 
limits, applies to Latin lowercase letters fitted to other lowercase letters 
(the first statement) and capital letters fitted to other capital letters (the 
second statement). As discussed in § 2.1, the conventional wisdom is that 
capital letters should by default be fitted to lowercase letters (with capital-
to-capital fitting incorporated as an alternate feature to be enabled for all-
capital text). In the capital-to-lowercase context, the convention is that the 
extra height of capital letters be treated the same way as extenders, and 
the inter-letter areas of capital letters measured only between the baseline 
and the x-height.

The extent to which this axiom is specific to Latin is not clear. One 
factor contributing to the prominence of the baseline-to-x-height 
measurement zone may be that most of the ascenders in the basic Latin 
lowercase letterforms are near-identical, plain vertical stems: b, d, h, k, 
and l, with f often the sole outlier. In other bicameral scripts, the set of 
ascending forms can exhibit noticeably more variation above the x-height, 
such as β, δ, ζ, θ, λ, and ξ in Greek.9 Even within Latin, the axiom may lose 

Smeijers noted that the area 
between the letters is optically 
bounded by somewhere within 
the grey regions at the x-height 
and baseline (Smeijers 1996, p. 
31).

Figure 2.19

9. In other scripts, the baseline limit may also be challenged, not just the x-height. The descending 
forms in Greek are similarly more diverse than Latin’s. Gerard Unger used the gg combination, 
commonplace in Italian, to illustrate the importance of testing fitting across languages, pointing out 
that its adjacent descenders could affect page colour (Unger 2018, p. 125). He may have chosen that 
example because g, much like f, is an outlier among the Latin forms with descenders.
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applicability with alphabets that include letterforms in addition to the 
basic-lowercase set, of which there are many (such as ð, ß, ƀ, or ɗ).

Axiom L‑9: Single-Stroke Supplement — Single-stroke letters require more 
space than is fitted to a normal-width letter that has the same side-profile 
shape.

This axiom typically justifies adding additional space to single-stroke 
letterforms (such as i, j, or l) than to normal-width letters (such as n or h) 
of similar profile shape. It does so for practical reasons (e.g., to prevent the 
single-stroke letter from being missed while reading by merging with an 
adjacent letter, or to prevent sequences of several close vertical strokes 
from forming a darker-than-normal patch within the text). Consequently, 
this axiom might be regarded as practical advice, rather than as a principle 
that directly dictates intrinsically correct fitting. However, because this 
axiom is repeatedly cited as relating to the evenness of page colour, it does 
function as a first principle, rather than as an exception-handling measure. 
It is also notable that this axiom relates the space required to the total 
width of the letter, rather than to its side- profile alone. (See figure 2.20) 

As used in this framing, normal-width refers to letterforms that enclose 
some internal space in a single counter.10 Which forms are considered 
normal-width is Latin-specific, and not precisely defined. Only two 
letterforms out of the 26 lowercase base Latin letters enclose double-width 
counters in traditional upright designs: m and w. The proportion of single-
stroke, single-counter, and double-counter letterforms in other writing 
systems is different: lowercase Cyrillic, for example, can have significantly 
more double-counter letterforms (ж, м, ф, ш, щ, ы, and ю in several East 
Slavic alphabets) but only one single-stroke letterform (і, in some East 
Slavic alphabets) or none, and may require a different definition of normal-
width accordingly.

Axiom L‑10: Adjacent Extender Supplement — Adjacent extenders require 
additional space.

This axiom is a corollary to the previous axiom’s advice about the practical 
problems of adjacent vertical strokes. Notably, the axiom deals with 
exception handling, advising that sequences of side-by-side extenders (e.g., 
lh, db, or gp in certain designs) should receive more inter-letter space than 
similar pairings with one or more x-height–profile letters. In digital fonts, 
such exception-handling is most often implemented as kerns, with the 
default fitting being devoted to the common, x-height case. This axiom’s 
applicability to any given typeface design is also style-dependent.

The i on the upper line is fitted 
with more side-bearing space 
than the n on the line below 
(illustration by the author). Font 
shown: Tinos.

Figure 2.20

10. See the definition of counter in the glossary.
11. See the historical discussion in § 2.1.3.
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Axiom L‑11: Collision Avoidance — Letters should not touch or collide.

This axiom establishes that there is a minimum allowable space between 
any two letters. Various formulations of the axiom do allow for exceptions 
for auxiliary components of letterforms to touch (such as serifs or in-
strokes and out-strokes), but almost universally agree that stems, bowls, 
and other primary elements of the form’s skeleton should never collide.

This is not a prohibition against kerning, but rather against typeforms 
overlapping or colliding in the design. Notable also is the fact that 
overlapping designs were not possible in cold-metal type (although, of 
course, overlapping letters on the page were possible through over-
printing). This principle of barring collisions would be a requirement for 
legibility (e.g., the potential confusion of rn for m or VV for W) even if it 
was not found in fitting-related algorithms. (See figure 2.21) 

Axiom L‑12: Diagonal Profile Limit — The diagonal-profile letters have so 
much external space beneath the diagonals that they require zero or almost-
zero additional sidebearing spaces.

This axiom assumes the previous, collision-avoidance axiom, but further 
specifies that diagonal-profile letters (such as v or w) can be known to 
need zero or almost-zero sidebearings. Some sources explicitly connect 
this to the size of the unbounded space below the diagonal profiles.

How small the minimum sidebearings should be is less clearly stated. 
Notably, it is evident that the external space beneath the diagonals remains 
a measurement of two-dimensional area, even though the advised 
sidebearings are a linear distance.

Axiom L‑13: Shells of Space — Each letterform asserts some positive shell of 
space outward from its contours, which is required and should not be intruded 
upon by neighbouring letterforms.

This axiom is the basis for sector kerning11 and for several more recent 
implementations of letter-fitting automation tools. The term shell here is a 
choice by the author; sector-kerning systems often did not employ a term 
for the region of asserted space, and newer implementations of the idea do 
not have a standard term. In a certain sense, this axiom extends the earlier 
axiom prohibiting collisions but, in practice, the claims of this axiom are 
stronger and it is usually cited in reference to parts of a typeform that are 
not in danger of colliding with their neighbours. For example, the axiom 
might be cited as applying to vertical stems: e.g., the vertical stems require 
some amount of space of their own, even if the letterform has serifs and 
the serifs are the components that would collide with neighbouring letters 
long before the vertical stems would.

Toshi Omagari’s BubbleKern 
works by manipulating shells 
around letterforms (Image from 
unpublished presentation slides 
in Omagari 2016, 33; used by 
permission).

Figure 2.22

Collisions can result in 
misidentified letterforms (Beier 
2017, p. 148).

Figure 2.21
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In most formulations, the axiom also posits that the region of space 
asserted by a letterform is, collectively, a single and comparatively simple 
area that conforms to a rough expansion of the letterform’s contours. In 
practical implementations, however, this axiom is rarely cited with any 
specific rules as to how the shell ought to be derived or how large it should 
be. (See figure 2.22, over page) 

Axiom L‑14: Enclosure Avoidance — Vertical overlaps between adjacent 
letters are permissible so long as one of the letters remains strictly above the 
other in the overlapping zone. (e.g., VA or Ta can overlap, but Cy should not).

This axiom notes that it is acceptable in a letter pair for the facing extreme 
points of the letters to overlap each other horizontally, but that such 
overlaps are not acceptable if they allow one letter to ‘enclose’ or wrap 
around the other. In Latin, preventing such enclosures is important for 
punctuation. 

This axiom is not usually stated explicitly, but it is observed in warnings 
against overly-close kerning, in particular with typeforms that ‘float’ above 
the baseline, such as punctuation and mathematical operators.

Axiom L‑15: Upward Aperture Reduction — Vertical open apertures that are 
open at the top (u, AI) should be smaller than vertical open apertures that are 
open at the bottom (n, VI).

This axiom deals specifically with the relative amount of space required 
when the inter-letter gap between some pair of letterforms creates a 
region that points either up or down. This region is called an aperture here 
to preserve clarity, but is sometimes referred to as an inter-letter counter 
(analogous to the counter in a typeform) because sources often connect 
this principle explicitly to the vertically-open counters in forms like u and 
n. The counter size of the single-letter case (u versus n) can be considered 
a letter-design issue, but linking that relationship to the two-letter case (AI 
versus VI) re-frames it as a broader principle.

This axiom applies only to a small set of letterforms for Latin text, due 
to the small number of side-profile permutations that can result in 
upward-facing vertical inter-letter apertures. The proportion would likely 
be different for other writing systems. (See figure 2.23) 

Axiom L‑16: Diacritic Form Independence — Diacritics or other marks are 
part of the letter to which they attach and, therefore, contribute to the profile 
shape and space requirements of the letter.

In Latin text, diacritics are most often implemented as marks either above 
the x-height or below the baseline. Consequently, they are, by default, 
unaffected by several of the previous axioms. However, diacritics can be as 
wide or wider than the base letter they modify, in which case it becomes 
important for a fitting algorithm to include them when preventing 
collisions or performing other such steps.

The IA pair is fitted closer than 
the IV pair because IA is open in 
the upward-facing direction 
(Hochuli 2015, p. 29).

Figure 2.23
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Typeface design practice in Latin permits raising or lowering diacritics 
in most situations, including for collision avoidance. Moving diacritics 
horizontally to prevent collisions is somewhat less common, although this 
may be attributable to the risk that moving diacritics too far will result in 
misidentifying letters. Even when diacritics are ‘floating’ or otherwise 
discontiguous from the body of the letter, the placement of the diacritic is 
usually treated as an isolated problem, distinct from the problem of fitting 
the letters themselves to one another.

Note that this treatment of diacritics in Latin text differs from the 
treatment in other writing systems. For example, Arabic ijam, harakat, and 
other marks are often positioned separately, after the base rasm letters, in 
order to achieve the ideal word image. Polytonic Greek can involve 
diacritics that are placed to the side of capital letterforms, necessitating 
adjustments to the fitting.

2.4 Determining the domains and ranges of axioms

When considering the set of axioms as a whole, an obvious first question to 
pose is which axioms are the most important to successful letter fitting? 
But ‘importance’ can be a loaded term, and one that potentially leads to 
unreliable reasoning if it is simply left undefined. The order of the list is, 
roughly speaking, sorted with the most frequently cited axioms first — an 
order which perhaps reflects the axioms’ relative importance, at least, to 
the writers and practitioners who discussed them. But this relationship 
between citation frequency and importance is not guaranteed; the citation 
order may also encompass an amalgamation of other criteria, such as 
authors choosing to discuss the simplest-to-understand axioms first in 
order to ease their readers into an unfamiliar subject matter.

A more practical way to define importance in the set of axioms would 
be to examine how and when the axioms apply and what letter-fitting 
results they produce when they are employed. That is, rather than 
determining importance based on the literature and the consensus of type 
designers, one could evaluate importance by scrutinizing how the axioms 
relate to the typeforms and the space determinations.

In software-engineering parlance, the typeforms constitute inputs to an 
axiom and the fitting constitutes an output. But that metaphor could prove 
overly constricting to serve as a starting point. For preliminary reasoning, 
to again borrow terminology from mathematics, one could say that each 
axiom has a domain over which it applies, and a range that delineates what 
possible results it can generate.

As discussed in § 2.1, the Latin text fitting axioms are limited in scope 
by writing system and typographic context, and furthermore most axioms 
carry an implicit assumption that they apply when used to fit a defined 
class of typeforms, such as predominantly lowercase continuous text, or 
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all-capital text, or perhaps all-numeral data. Nonetheless, even when 
operating entirely within the writing system and typographic context and 
further focusing on the implicit typeform class, some of the fitting axioms 
are more or less restricted in domain than are others. Most often, a given 
axiom is restricted by which typeforms it is relevant to. Although several 
axioms claim near-universality, others demonstrably do not and, instead, 
are explicit about what forms they address. In other cases, axioms carry 
implicit restrictions on the typeface styles to which they apply.

As a matter of practical usage, these conditions and limitations do not 
invalidate the axioms; rather, the domains of each of the individual axioms 
are factors that type designers and algorithm authors must be aware of.

The simplest distinction seen in the ranges of the axioms is whether the 
axiom is defined to provide results for a desirable fitting outcome or to 
prohibit an undesirable outcome. It is also instructive to consider the 
nature of the result that an axiom provides. In the Latin axiom set, there 
are two primary groups to consider: axioms that provide answers about 
absolute, concrete values of space and axioms that provide answers about 
the size of one space relative to another space. Absolute and relative 
results both have value, but they are not interchangeable. These two 
techniques for partitioning the axioms according to range are certainly not 
the only options, but it will be seen in the following discussion that these 
partitions have practical value for constructing letter-fitting algorithms.

2.4.1 Domain: the set of typeforms or profiles addressed by an axiom
The first domain to be examined is the set of typeforms and profiles that a 
letter-fitting axiom addresses. This is a question that will eventually 
provide practical value when implementing a fitting algorithm, since 
establishing the correct domain helps ensure that the implementation 
does not omit any forms in the typeface and does not waste effort through 
duplication. More generally, as will be seen in chapter 4, knowing the 
domains of all of the axioms enables strategic reasoning about how best to 
cover all of the typeforms that comprise a typeface being fitted.

For the Latin text fitting axioms of § 2.3.2, eight out of the sixteen claim 
to apply universally.  These eight universal axioms are:

• L‑1: Profile Similarity
• L‑2: Profile Reflection
• L‑3: Inter-letter Area Equality
• L‑4: Triplet Centring
• L‑8: Fixed-Height Measurement
• L‑11: Collision Avoidance
• L‑13: Shells of Space
• L‑14: Enclosure Avoidance
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Note that the claim of universal applicability is explicit in axioms L‑1, L‑2, 
L‑4, L‑11, L‑13, and L‑14: each is framed as a universal principle. Axiom L‑8: 
Fixed Height Measurement, however, poses a principle that claims to apply 
to all typeforms in a set, but what the fixed height is is allowed to vary 
depending on the forms in the chosen set. That is, when performing 
lowercase fitting, the space between all typeforms should be measured 
between the baseline and the x-height, but when performing capital 
fitting, the space between all typeforms should be measured between the 
baseline and the capital height. In both instances, the principle itself is still 
held to be uniformly true; the difference in measuring points is a property 
of the set of forms being considered.

Of the remaining eight axioms in the Latin text fitting set, seven axioms 
apply to a limited set of typeforms. These axioms are:

• L‑5: Vertical Stroke Rhythm
• L‑7: Concave Profile Truncation
• L‑9: Single-Stroke Supplement
• L‑10: Adjacent Extender Supplement
• L‑12: Diagonal Profile Limit
• L‑15: Upward Aperture Reduction
• L‑16: Diacritic Form Independence

In each of these axioms, the limited applicability is a facet of the axiom 
itself: they are phrased as applying to particular profile shapes or 
constructions. One could perhaps argue that Axiom L‑14: Enclosure 
Avoidance, which prohibits typeforms from enclosing one another, also 
applies to only a limited set of typeforms on the grounds that there are 
numerous pairs of typeforms that cannot enclose each other when placed 
in sequence: consider ii, for a trivial example in most typeface designs. 
However, for this analysis it was decided that the sole determining factor 
should be the framing of the axiom. If there ever were a typeface design for 
which the pair ii could be spaced so that one form was in danger of 
enclosing the other, the axiom would, it seems, call such an enclosure a 
fitting error.

The final group of axioms are those whose domain is limited to a 
specific or even isolated set of typeforms. For the Latin text fitting axioms, 
there is just one:

• L‑6: Interior-Exterior Balance
which is typically stated as applying to n in the lowercase and H in the 
capitals. This group could certainly be regarded as a subset of the 
preceding, limited-applicability set; it would be tempting to lump the two 
groups together just to avoid the oddity of a group containing only one 
axiom. But, in the general approach, it must be remembered that other 
writing systems could have more axioms that specify particular forms.



58

Nevertheless, counting the exact number of typeforms addressed by the 
limited-applicability axioms is a pertinent question when developing a 
fitting algorithm. In the group listings above, the axioms were sorted by 
the approximate number of lowercase Latin letterforms that they apply to. 
In practice, the counting would need to take the constructions of each 
form into account for each specific typeface. Note, for example, that the 
different constructions for a and g affect which axioms are applicable. (See 
figure 2.24, over page)

2.4.2 Domain: the weight, width, slant, and optical sizes addressed by an axiom
The other question of domain considered is how the axioms are restricted 
in their applicability by the stylistic characteristics of the typeface. The 
historical study in § 2.2 revealed that most of the letter-fitting discussions 
for Latin text typefaces begins with a discussion of ‘regular’ weight and 
‘normal’ width. As Unger pointed out, however, what constitutes ‘normal’ 
or ‘regular’ is not a simple question to answer; there are conventions to be 
found by measuring large assortments of typefaces, but the terms are only 
clear within the context of a particular design family (Unger 2007, p. 97).

There are multiple references indicating that Axiom L‑6: Interior-
Exterior Balance, which relates the inter-letter area to the interior space of 
the key letters n or H, applies only to regular weights and normal widths. 
Outside of that regular-and-normal zone, lighter-weight and wider designs 
receive more inter-letter space, while heavier-weight and more condensed 
designs receive less inter-letter space. But the relationship between the 
weight and the width of the key letters and the standard inter-letter space 
is not a simple mathematical formula.

Several sources discuss fitting slanted or italic styles, but they do not 
claim that different or additional principles apply, nor that the rules 
governing the fitting of upright forms do not apply.12 13

Many sources assert that the optical size of text set in a document 
affects the necessary fitting. The smaller the optical size, the bigger the 

12. The shapes of the profiles of the letterforms may differ between an upright and an italic style; see 
the discussion following Axiom L‑1.
13. A detailed examination of the process for designing italic typeface styles and how it compares to 
the process for designing upright styles is found in Gaultney 2020, incorporating both analysis of 
typefaces and interviews with type designers. Concerns specific to letter fitting in italics are explored 
in p. 193–195, and the effects of narrowed italic typeforms on the resultant fitting in p. 155–159.
     Gaultney reports that type designers interviewed cite the narrower and more complex shapes of 
italic letterforms, the differing proportion of curved and diagonal constructions within the overall set 
of typeforms (versus the set of upright forms), and asymmetry of serifs as factors that can make fitting 
italic designs more difficult than fitting upright designs. He further notes that the main strokes of 
italic forms tend to vary in angle from one form to another within a well-designed italic typeface. That 
variation adds visual character, but complicates the testing of letter fitting.
     Nevertheless, Gaultney does reinforce the notion that a systematic approach to fitting is the norm 
in italic design as it is in upright, although it must also be observed that the majority of italic styles in 
contemporary typeface families are designed as secondary faces that are brought into harmony (fitting 
included) with a primary upright style.



Figure 2.24
Highlighting the various side profiles of letterforms that are covered by different letter-fitting axioms. In these examples, both the one-storey 
and two-storey constructions of a and g are shown. A given typeface in the real world is likely to only include one construction or the other for 
each letter. Including both constructions is possible by adding alternate-forms features, but two constructions for a letter are not mixed-and-
matched within a text: one or the other will be the default. Consequently, the set-of-profiles-addressed domain for an axiom can be dependent 
on the construction of the forms.

Some axioms (see page 52) claim to apply equally to all Latin letterforms, but in practice may only address a subset of the forms in a particular 
typeface. For example, Axiom L–1: Profile Similarity, is applicable only to profiles exhibiting similarity to some other profile. Highlighted are 
the sets of left profiles (above) and right profiles (below) that share similarity with at least one other profile. The left-profile and right-profile 
similarity groups are separated to avoid conflation with Axiom L–2's consideration of reflected similarity. Notably, the construction of forms 
matters: the left profile of two-storey a is not similar to any other letterform. Neither profile of two-storey g is similar to another profile. 

The related principle of Axiom L–2: Profile Reflection highlights a distinct, but still sizable, set of profiles.

Axiom L–5: Vertical Stroke Rhythm addresses only profiles with vertical strokes, a large set in most Latin designs.

Axiom L–6: Interior-Exterior Balance, states a principle addressing only key letterforms: n for fitting lowercase Latin letters, and H for 
fitting Latin capitals to capitals. 

Axiom L–7: Concave Profile Truncation affects open-counter profiles, which includes the two-storey a and g constructions, but not their 
one-storey equivalents. For forms such as k and R, opinion may vary as to whether each should be regarded as having an open counter.

The single-stroke forms addressed by Axiom L–9: Single Stroke Supplement. Note that, in this example, the top and base strokes on I 
exclude it from the set. This is design-dependent; a J with a bowl resting on the baseline might not be considered a single-stroke form. 

The forms addressed by Axiom L–10: Adjacent Extender Supplement, are also a small set. Notably, though, the axiom only affects these 
forms by adjusting their fitting when they are adjacent in a text, rather than providing a general fitting.

The 'minimal space' prescribed by Axiom L–12: Diagonal Profile Limit addresses a limited set of forms in upright designs.

It is difficult to unequivocally enumerate which forms Axiom L–14: Enclosure Avoidance may apply to; much depends on the specific 
design, but enclosure problems are likely only to occur where concave profiles, crossbars, and similar features are found. Straight stems 
and bowls are rarely at risk of enclosing or being enclosed by an adjacent profile.

Most Latin designs include only a small set of letterforms for which Axiom L–15: Upward Aperture Reduction will ever apply.
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spaces between the forms must be, relative to the body size of the forms. 
This is generally stated to be a result stemming from readability. The 
consensus viewpoint from the historical study is that the ‘smaller optical 
sizes require additional space’ effect applies equally to all forms. 
Consequently, Axiom L‑6, which posits a link between the interior space of 
the key letterforms n and H and the general inter-letter area, is again 
affected, because that axiom is framed as a relationship for letterforms of 
‘regular’ and ‘normal’ proportions. The proportions of letterforms also 
differ between different optical sizes of the same typeface, with smaller 
optical sizes taking on wider interior spaces and smaller extenders.14

2.4.3 Range: comparing axioms by whether they prohibit a result or provide a result
In this research, the range of an axiom is defined as a characterization of 
the outcome that the axiom produces when it is applied to perform fitting. 
The most basic range to examine is whether the axiom provides a fitting 
result that can be used to determine the space for a typeform or it 
prohibits the conclusion of some undesirable fitting result.

In the Latin text fitting axiom set, there are two axioms that prohibit an 
undesirable fitting result:

• L‑11: Collision Avoidance
• L‑14: Enclosure Avoidance

The remaining axioms, as phrased, each provide a fitting result. That is, the 
axiom may not necessarily provide the final answer to the question ‘how 
much space should be assigned to the sidebearings of this form?’ but it does 
provide information leading the type designer in the correct direction.

It is interesting to note that the prohibitions are both lower limits; i.e., 
do not fit forms too closely together, or a problem could arise. The 
rationales provided for the two prohibitions are essentially the same, that 
the overly tight fitting is undesirable because it could result in forms being 
misidentified by a reader. Because legibility and readability are basic 
requirements for text setting — more fundamental to successful fitting 
than aesthetics — this suggests that they should be considered of greater 
importance.

2.4.4 Range: comparing axioms by whether they concern relative space or absolute 
space
A more subtle distinction between the ranges of different axioms is found 
in whether the axioms are concerned with absolute measurements of 
space or relative measurements of space. ‘Absolute’ here does not 
necessarily mean a concrete numeric value is the result, although it could 
be. The distinction is that some of the Latin text fitting axioms, when 
applied to a letterform, make a statement about the specific amount of 
space belonging to that letterform (or, perhaps, to one of the profiles of 

14. A fuller exploration of optical sizing differences is found in Ahrens et al., 2014. Fitting is discussed 
on p. 44; letterform proportions are examined in p. 32–43.
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that letterform), while other axioms address only the relative relationship 
between sizes of space fitted to several letterforms or several profiles.

For example, Axiom L‑1: Profile Similarity declares that similar side 
profiles require similar space. But, even if one accepts this as uncontested 
truth, the axiom does not prescribe what the size of this similar space 
should be — for any of the similar profiles.

Conversely, Axiom L‑11: Collision Avoidance, declaring that letterforms 
must never touch or collide is addressing only a question of absolute space: 
it must be, at a minimum, zero, between any two letterforms.

In the Latin text fitting axioms, the seven ‘relative space’ axioms are:
• L‑1: Profile Similarity
• L‑2: Profile Reflection
• L‑3: Inter-letter Area Equality
• L‑7: Concave Profile Truncation
• L‑9: Single-Stroke Supplement
• L‑10: Adjacent Extender Supplement
• L‑15: Upward Aperture Reduction

There are five ‘absolute space’ axioms found in the Latin text fitting axiom 
set. These are:

• L‑6: Interior-Exterior Balance
• L‑11: Collision Avoidance
• L‑13: Shells of Space
• L‑14: Enclosure Avoidance
• L‑12: Diagonal Profile Limit

Ultimately, all letter-fitting areas must be resolved or transformed into an 
absolute space. As was seen in § 2.1.4, font formats in usage today store a 
typeface’s fitting as numerical distances (both sidebearings and kerns).15 
Therefore, if a relative-space axiom exists for a given letterform or profile, 
the letterform or profile must somehow be linkable to an absolute-space 
axiom in order to make a usable contribution to the final fitting.

The remaining four axioms are either concerned with different 
principles or have a more nebulous relationship to the absolute/relative 
distinction. These are:

• L‑4: Triplet Centring
• L‑5: Vertical Stroke Rhythm
• L‑8: Fixed-Height Measurement
• L‑16: Diacritic Form Independence

15. It should be recalled that the numbers used in contemporary font formats are positions on a grid in 
font units, rather than any physical distance. Nevertheless, the term absolute in this discussion still 
indicates that applying the axiom produces a specific value, rather than stating a relative relationship 
between values.
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Universal

Specific

Relative Absolute

Axiom L‑8 and Axiom L‑16 are not easily grouped into one category or the 
other. Axiom L‑8: Fixed-Height Measurement is a condition about how 
measurements are made, but it is framed as being a condition that applies 
to both relative and to absolute measurements. Axiom L‑16: Diacritic Form 
Independence is a statement about how letterforms are differentiated from 
other letterforms; when L‑16 is invoked, the other axioms apply to â and ą 
exactly as they apply to a, with respect to both relative and absolute 
measurements.

Axiom L‑4: Triplet Centring and Axiom L‑5: Vertical Stroke Rhythm 
have perhaps more nuanced relationships to the absolute-or-relative 
demarcation. L‑4 clearly makes a statement about two areas appearing 
equal, which is a relative measurement. But the full impact of L‑4 would be 
lost if it was reduced in the analysis to being the same as axiom L‑3’s 
statement about equal inter-letter areas. L‑4 explicitly addresses the 
optical centring of the typeform itself, in its positive-space, final rendered 
form. As was noted in the discussion of Axiom L‑4, this centring is an 
optical phenomenon that is not simple to resolve.

Likewise, Axiom L‑5 also concerns optical phenomena, although the 
phenomena it concerns are found at a larger scale: the rhythm observed in 
a text sequence of multiple forms. Here, as with Axiom L‑4, the question is 
framed as one of relative space but, because it is a question that extends 
beyond measuring the space between two forms, the difference is 
important to retain, even if it is subtle.

Each of these ways of appraising the Latin text fitting axioms provides 
some additional meaning, but none of them is the whole story on its own. 
Figure 2–25 visualizes several factors together: estimating the universality 
domain of the axioms (from universal to specific) on the vertical axis, and 
sorting them by the relative-or-absolute range horizontally.

A visualization of the Latin text 
fitting axioms that takes several 
facets into account together. The 
colour-coding highlights that 
Axioms 4, 5, 8, and 16 do not 
easily map into statements of 
relative space or absolute space, 
but exhibit some nuance.

Figure 2.25
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When developing an algorithm meant to fit a complete typeface, the end 
goal is to have absolute spaces determined for every typeform. Looking at 
how each of the axioms available addresses these needs makes it clearer 
why no one technique on its own has sufficed in prior projects.

2.5 Evaluating the interactions, dependencies, and redundancies 
between axioms

The discussion of domains and ranges focused on illuminating the 
relationships between each axiom and the various typeforms found in 
Latin text. A distinctly different perspective on the importance and 
behaviour of the axioms can be found by examining the interactions and 
interconnectivity between the axioms. In particular, exploring importance 
by how the constituent axioms work together can provide pragmatic 
suggestions for constructing a letter-fitting algorithm.

2.5.1 Axioms that are exceptions to other axioms
One of the clearest relationships that can be identified is when one axiom 
serves as an exception to another. Several of the relative-space axioms 
behave in this way. Axiom L‑9: Single Stroke Supplement, Axiom L‑10: 
Adjacent Extender Supplement, and Axiom L‑15:  Upward Aperture 
Reduction are direct statements of such a relationship. Each is expressed as 
defining a set of typeforms for which the necessary space is proportionally 
adjusted from the default inter-letter area, which is generically given as 
the default in Axiom L‑3: Inter-letter Area Equality.

The concave-profile Axiom L‑7: Concave Profile Reduction is also an 
exception to the equal-inter-letter area principle of Axiom L‑3. As with the 
preceding exception examples, this axiom calls for a proportional 
adjustment to the default inter-letter area, but the exact degree of the 
adjustment is less clearly stated.

Axiom L‑12: Diagonal Profile Limit might also be considered an 
exception to area-equality principle of axiom L‑3. Here again, Axiom L–12 
calls for a different area than would otherwise be found via the inter-
letter-area principle, but Axiom L‑12 calls for an absolute: minimal space.

The standard-and-exception relationship has practical usefulness 
because it suggests that the axioms are connected in such a way that they 
could be implemented together in an algorithm., or used as ‘simple mode’ 
and ‘complex mode’ alternate procedures.

2.5.2 Axioms that are prohibitions of a failure-condition
The prohibitive Axioms, L‑11: Collision Avoidance and L‑14: Enclosure 
Avoidance, were discussed in § 2.4.3. Both act, in a certain sense, as 
exceptions to other axioms. But the relationship is distinct from the 
standard-and-exception relationship discussed above. First, the prohibitive 
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axioms are not linked to other, specific axioms; they apply generally to the 
full axiom set. That is, collisions between typeforms are wrong because 
collisions are a serious problem for readers; to that end, for Axiom L‑11 it 
does not matter which of the other axioms might otherwise cause a 
collision: the collision of forms is prohibited regardless. 

Second, the intent of the prohibitive axioms is explicit. Specifically, they 
set limits on what the other more general axioms should generate, and 
they do so for the stated purpose of avoiding a particular adverse condition 
— rather than setting limits in order to support a favourable condition. 
This distinction can be seen by examining rewording of the axioms. For 
example, although ‘single-stroke forms should get additional space’ could 
be rephrased as ‘it is wrong to not have additional space around single-
stroke forms’, that inverted construction does not make the goal of the 
axiom clear.

Practically speaking, the prohibitive axioms are straightforward to 
implement as tests or as parameters to an algorithm.

2.5.3 Dependencies and redundancies between axioms
Possibly the most complex relationships between axioms are those found 
where two or more axioms address the same typeforms or, more generally, 
overlapping domains of typeforms. Some of the axioms provide fitting for 
the same letterforms and either act in agreement with each other or are 
expected to reinforce each other’s outcomes.

This can be seen in the relationship between Axiom L‑5: Vertical Stroke 
Rhythm when it is compared against Axioms L‑1: Profile Similarity, L‑2: 
Profile Reflection, L‑3: Inter-letter Area Equality, and L‑6: Interior-Exterior 
Balance, collectively. The relationships between Axioms L‑1, L‑2, L‑3, and 
L‑6 are quite close and mutually reinforcing. Axiom L‑5 is distinct, saying 
that the vertical stems of forms should appear in a consistent rhythm. But 
that same consistency of vertical stems can also be arrived at by applying 
the similarity, equal inter-letter area, and key-letterform Axioms L‑1, L‑2, 
L‑3, and L‑6, in concert, to all of the forms that have vertical stems.

Conceptually, Axiom L‑5: Vertical Stroke Rhythm is not a simple 
duplication of the collective application of L‑1, L‑2, L‑3, and L‑6, however, 
because the domains differ. Axiom L‑5 has a smaller domain, given that it 
only applies to typeforms with vertical stems; Axioms L‑1, L‑2, L‑3, and L‑6, 
together, apply to typeforms with vertical stems and also to those forms 
with round profiles, diagonal profiles, or divided profiles. As will be seen in 
chapter 4, the practical job of constructing an algorithm must consider 
whether the overlapping interaction between Axiom L‑5 and the collective 
effect of Axioms L‑1, L‑2, L‑3, and L‑6 is best handled by implementing both 
or by choosing one and dispensing with the other.

In other cases, the interaction between axioms can be more nebulous. 
Axiom L‑7: Concave Profile Truncation states that only a portion of the 
area enclosed by a concave side profile should be considered interior space, 
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So
If cropped at the baseline and the 
x-height (green lines), the right-
side profile shape of S is round. 
When considering the full profile 
from the baseline to the capital-
height, however, the same S has a 
more complex right-side profile 
shape with an open side counter 
(illustration by the author). Font 
shown: Bodoni Moda Extra Bold. 

Figure 2.26

Visualizing the interconnections 
between the Latin text fitting 
axioms. The colour scheme used 
is the same as that for figure 24; 
green indicates absolute-space 
axioms; pink indicates relative-
space axioms; blue and rust 
indicate the more nebulous 
relationships of those axioms.

Figure 2.27

and the rest should be considered exterior space. This means that Axiom 
L‑7 interacts with all of the other axioms that make a statement about 
inter-letter areas: L‑1, L‑2, L‑3, L‑6, and L‑8. Thus, an algorithm must 
establish how much of a concave-profile’s enclosed area to count towards 
the inter-letter area, or else it cannot arrive at the inter-letter area values 
that are required to apply the principles of the other axioms when the 
algorithm fits forms with concave profiles.

The baseline-to-fixed-height measurement scheme of Axiom L‑8: Fixed-
Height Measurement also interacts with the axioms that measure inter-
letter areas: L‑1, L‑2, L‑3, L‑6, and L‑7, by virtue of dictating where the 
inter-letter areas should be measured. But its interactions with the Axioms 
concerning profile shapes and how they are grouped (L‑1 and L‑2) hide a 
subtle caveat. Axioms L‑1 and L‑2 address how similar profile shapes should 
be fitted, but what constitutes a ‘similar’ profile is in part determined by 
the top and bottom measurement lines. This is a caveat that triggers 
practical consequences for a fitting algorithm, because convention in Latin 
fonts says that the default sidebearings of capital letters should be 
determined by fitting them against lowercase letters (see § 2.1). 
Consequently, there are some capital letterforms, such as the right side of 
S, whose profile is a ‘round’ shape when measured from the baseline to the 
x-height, but is semi-open when measured from the baseline to the cap 
height. (See figure 2.26) 

Ultimately, the fullness of the interactions between the algorithms is 
more complex than can be listed in a simple table or mapped in a 
visualization. Such an approach to characterizing the axiom set was tried 
in this research, but the value of that attempt lies primarily in the mental 
exercise of considering the interactions, rather than in the production of a 
mapping that can prescribe the construction of an ideal fitting algorithm. 
One such example is shown in figure 2.27 below, which visualizes all of the 
inter-axiom interactions as simple edge connections. There is information 
missing in this visualization, because the different varieties of interaction 
are not distinguished from each other.
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 Still, it is perhaps intriguing to note that Axiom L‑13: Shells of Space is 
disconnected from the rest of the set, and it is likewise intriguing to note 
which axioms are the most connected to others: Axioms L‑3: Inter-letter 
Area Equality, L‑6: Interior-Exterior Balance, and L‑7: Concave Profile 
Truncation. One could infer that addressing those axioms well is 
important, or that ignoring them is hazardous, but there are multiple ways 
one could traverse the graph even if some of the edge connections are 
removed. The set of axioms remains a model on which an algorithm can be 
developed, rather than a roadmap.

Any useful model for letter fitting in a particular writing system 
requires not only the fundamental axioms, but also an understanding of 
how the axioms operate as a set. Therefore it is important to understand 
how the axioms are interrelated, and how they function collectively, not 
just in isolation. In order to develop an algorithm to fit Latin text 
typefaces, the model and an understanding of its structure are required. 
The next step in that process is an exploration of how to move from the 
theoretical model into a practical implementation that represents the 
model faithfully while remaining pragmatic enough to be of use. 
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3. Practical implementation 
considerations for the model

Chapter 2 detailed the derivation of a theoretical model for the fitting of 
Latin text typefaces based on a set of interconnected, axiomatic principles 
that correspond to the processes that type designers employ when fitting 
typefaces manually. It concluded with a look at various properties and 
interconnections between the axioms in the model at a conceptual level. 

Assuming that the model sufficiently represents successful letter-fitting 
practice, then the next step towards constructing a letter-fitting algorithm 
is to move from the conceptual to the practical, examining the axioms’ 
potential implementability. Where the conceptual discussion dealt with 
domains, ranges, and relationships, a practical algorithm requires inputs, 
outputs, and various parameters.

In particular, the key questions to resolve are whether the axioms set 
out measurements and testable conditions that are clearly defined, 
whether they are efficient and can be replicated, and whether they offer 
coherent parameters for typeface designers to utilize when stylistic or 
aesthetic factors make such affordances desirable. For example, several 
axioms make statements about spaces or forms appearing optically equal; 
for implementation in an algorithm it must be determined if this optical 
equality maps directly to a concrete measurement of equality or relies on 
some judgment by the type designer that is more difficult to define.

In chapter 2 it was observed that most of the Latin text fitting axioms 
are functionally independent of one another. This permits consideration of 
each axiom in turn while constructing a fitting algorithm to follow the 
model. Each axiom can be assessed from the standpoint of how practical it 
is for implementation in software and how well the chosen axioms would 
operate together in a composite algorithm.

3.1 Cataloguing prior implementation work

As a starting point, the prior letter-fitting algorithm implementations 
covered in chapter two’s historical survey were examined closely, to note 
where and how effectively they addressed the axioms of the model. 
Revisiting this prior work can be worthwhile even in cases where the prior 
work was considered unsuccessful at the time. Implementation efforts may 
have fallen by the wayside purely for business reasons or happen-stance; in 
others cases, several decades of evolving computer technology separate 
the original project from the present, and those changes in computing 
platforms might make algorithms that were impractical at the time 
workable on a contemporary system (see also chapter two, § 2.2.5).

Chapter 2 included a list of prior projects that involved the 
development of some form of fitting-automation algorithm. The table of 
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implementations in chapter two, § 2.2.3 summarized the approximate 
publication date and creators of each implementation. That table can now 
be extended by cross-referencing which of the axioms from the Latin text 
fitting axiom set in chapter two, § 2.3 are implemented or rejected by each 
project.

When compiling this information, sometimes a simple ‘yes or no’ is not 
sufficient to capture the implementation’s adoption of a particular axiom. 
The claims made by automation researchers and product vendors are often 
considerably broader than the axioms implemented in practice, and the 
promotional writing that accompanies an implementation frequently 
makes reference to letter-fitting theories or principles that do not form 
part of the implementation.

For example, both the promotional booklet for URW’s hz-program and its 
original patent filing cite a number of fitting axioms (URW 1993, Karow 
1992). But the implementation as it is described in that filing focuses solely 
on the equalisation of inter-letter areas (Axiom L–3), and draws upon 
Axiom L–8: Fixed-Height Measurement by computing the inter-letter areas 
between the baseline and x-height. To account for such cases, a separate 
mark was used to record the citation of an axiom that is not implemented.

Although a critical eye must always be trained on product-marketing 
copy, it is worth remembering that a discrepancy between the letter-fitting 
theories referenced in promotional material and the practical functionality 
found in the final implementation as shipped with the product should not 
be treated as an attempt at equivocation. For instance, URW might have 
appealed to the notion of stem rhythm in the hz-program brochure because 
the team believed that the stem-rhythm property would be a natural 
outcome of applying kf’s equal-inter-letter-area calculations.

Table 3.1 (over page) summarizes this cross-referencing of prior 
implementations against the Latin text fitting axioms. The table includes 
several works for which complete internal details are not available; these 
are coded in grey to distinguish them from the projects that could be 
analysed more fully. Several of these projects were unavailable for close 
examination because they were announced or advertised but were never 
published, others are reported to be in regular use but only as internal 
tools by their creators. For others, particularly among the earliest projects, 
it was simply not possible to locate a functioning copy or study one using 
contemporary software. They are included in the table to compare the 
claims they made, but in some cases the claims are all that remain.

The table also preserves projects that focus on writing systems other 
than Latin. Although the model at the centre of this research focuses on 
Latin, it was seen in chapter two that some fitting axioms can be shared 
across writing systems.

As in chapter 2, the table has deliberately avoided scrutinizing any 
projects currently covered by active patents; searching online patent 
databases does suggest that there may be some, but what those projects 
add to the overall picture remains unknown.
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Project
LOGOS

Bell sector-spacing
URW force experiment

Arabic Calligraphic Engine
Tracy method

Gerber
Type Designer auto feature

Sector Kerning
hz-program kf

Fontlab auto feature
Kernus

InfoKern
Canon Shift

Omron
Neville

TypeArt
FontForge auto feature

AFDKO
Aldine FFT
KERNDICT

sqtroff
KernMaster 
Perturbation

Sousa method
Wavelet masks

Cambria OpenType Math cut-ins
iKern

LetterModeller
Caslon Fourier analysis

Rhea
Rhea force experiment

SortsMill spacing by anchors
Tsukurimashou

Autokern
Blur-masking

Impallari macro
OpticalLetterSpacing.js

Typebutter
CJK Auto Spacing

Kernagic
Monokern

font-prediction_mahout
Novi Sad statistical analysis

BubbleKern
LS Cadencer
Fittingroom

Black Spacer
HT Letterspacer

Spaceman
KernKraft

Electric kerning
Octabox

Machine Learning of Fonts
Atokern / kerncritic

psoptkern
KernBot

HT Kerner
electricbubble

YinYangFit
CounterSpace

fontmetrics
RhythmInfluencer

type.tools AI
Andersson experiment

Hands Face Space
Kern On
Kerning

Building a spacing calculator
Kern Determiner

covers page 
number

Year
1970
1973
1980
1985
1986
1986
1989
1990
1991
1992
1993
1993
1995
1996
1998
1999
2000
2000
2003
2003
2004
2004
2004
2005
2006
2007
2008
2009
2010
2010
2010
2010
2011
2012
2012
2012
2012
2012
2013
2013
2013
2014
2014
2015
2015
2015
2016
2016
2016
2016
2017
2017
2017
2018
2018
2018
2019
2019
2019
2019
2019
2020
2020
2020
2021
2021
2021
2021
2022

L-1
c

Y

c

c
c

Y

Y

Y
Y

Y

Y

c
Y
Y

Y

Y

Y

Y
c

c

L-2
c

Y

c

c

Y

Y

Y

Y
R

Y

Y

Y

c

c

c

L-3
c

Y

Y

c

Y
Y

Y

c

c
Y

c
Y
c

Y

Y

c
Y

c

Y
Y

Y
Y
c
Y
c

Y
c
c

L-4
Y

c

c
c

c

c

c

c

c

c

L-5
c

c

c

Y

c
c

c
Y
Y
c

Y

Y

Y
c

c

c
c

c
Y

L-6
c

Y

c

Y

c
Y
c

c

Y

c

c
c

c

c

c

L-7
c

c

Y

c

c

c

c

c
Y

Y

c
Y
c

L-8
Y

c

Y

c

Y

c

c
Y
c

Y

c
c

Y

c
Y

Y

L-9
c

L-10 L-11
R

c
c

c

Y
Y

Y

Y
c

Y
c

Y
Y

Y

Y

Y

c
Y

Y

L-12

Y

Y

Y

c

Y

c

c

L-13

Y

Y
Y
Y

Y
Y
Y

Y

Y

Y

Y

c

Y

c

Y

Y

Y

L-14

c

c
c

Y
c

c

Y

L-15

Y

L-16

c

Table 3.1
Prior letter-fitting automation projects indexed by axioms addressed. A green disc indicates implementation; a dashed box indicates 
citation of the principle; a red x indicates rejection of the principle. Grey backgrounds denote incomplete publicly-available detail. The 
totals shown on the outer edges for rows and columns count implementations only, not citations.

total
2
1
0
0
5
1
1
1
4
0
0
1
1
1
1
2
2
3
1
1
0
0
2
5
0
2
0
5
1
1
0
2
3
3
0
4
1
0
0
4
0
0
0
2
4
1
0
3
0
2
0
4
0
1
1
2
3
2
0
4
0
1
0
1
1
0
1
0
1

13        8        16        1         7         4         4         8         0         0        12       4        15        2         1         0
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Finally, several projects are included in the list even though the project 
itself is not a tangible mechanism or a piece of computer software. This 
choice goes back to the definition of ‘algorithm’ used in this research, as 
defined in chapter 1. Walter Tracy’s heuristic system is the key example 
here. Tracy recorded his method in Letters of credit as a didactic distillation 
of his professional experience. There can certainly be a grey area between 
plain written advice and a heuristic algorithm, but Tracy’s explanation of 
his letter-fitting process is precise enough in its formulation of fitting to 
warrant considering it an algorithm. The decision to include Tracy’s 
heuristic method is bolstered by the fact that other implementation 
projects cite it as the foundation on which their own, newer work builds — 
such as Sousa’s heuristic.

Some interesting patterns are easy to observe in the table. Most 
projects implement only one or two axioms; the projects focused on 
developing a statistical model for fitting often implement none — perhaps 
assuming that useful patterns emerge from the statistics alone. Tracy’s 
method cites and implements ten axioms in total (as does Sousa’s method, 
derived from Tracy’s), perhaps providing a clue as to its lasting popularity.

The axiom implemented most often is L–3: Inter-letter Area Equality, 
followed by Axiom L–13: Shells of Space and Axiom L–1: Profile Similarity. 
The Axiom L–13 implementations, however, were clustered mostly in the 
1980s and 1990s, noticeably tapering off after 2000. 

Implementation and citation counts are not the full story, of course.   
Some axioms may go uncited because they are assumed to be true and 
well-known rather than because they are ignored; this particularly applies 
to Axiom L–1 and Axiom L–2: Profile Reflection (which were noted in 
chapter 2 as being self-evident to some sources in the literature). 
Conversely, projects that attempt only to generate kerning lookups for a 
typeface might expect that the typeface being kerned already has ‘correct’ 
fitting in the default sidebearings for all its forms. Thus, the promotional 
literature and manuals for kerning-only projects may cite multiple axioms 
that they do not implement, on the assumption that the cited axioms will 
have already been employed to fit the sidebearings of the font, before the 
kerning process begins.

The table also does not capture when and how projects are historically 
connected. For example, Peter Karow and Margret Albrecht’s work at URW 
reportedly continued from the force experiments through the kf module in 
URW’s hz-program suite (Karow 1998); some of the same concepts found 
their way into URW’s Kernus, which was later integrated into DTL’s 
KernMaster (Espinoza et al. 2016). Later, hz-program was licensed to Adobe, 
and reportedly became the basis for ‘Optical Spacing’ features in several 
Adobe desktop products (Karow 2015). The AFDKO spacer from Adobe cites 
similar ideas, but it appears to be original code. Frank E. Blokland directly 
supported the development of Kernagic, DTL LetterModeller, and LS 
Cadencer (Blokland 2016; Schneider 2016), and indirectly inspired 
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Impallari’s spacing macro (Impallari 2012), which explains their similar 
feature sets. The exchange of ideas is ongoing and often cyclical.

Some gaps in the table are notable. Perhaps curiously, the axiom that is 
the most frequently cited, L–5: Vertical Stroke Rhythm, has been 
implemented far less often than it has been cited. There are also three 
axioms (L–9: Single-Stroke Supplement, L–10: Adjacent Extender 
Supplement, and L–16: Diacritic Form Independence) that occur in the 
literature but are not explicitly implemented, and two (L–4: Triplet 
Centring and L–15: Upward Aperture Reduction) that have only been 
implemented once. This is most surprising for Axiom L–4 , because that 
axiom is universal in its claimed domain and is quite frequently referenced 
in the literature.

This assessment of the prior work provided practical starting points 
when moving forward with this research. For those axioms where 
implementations were available for examination, the implementations 
were studied as well as compared with each other on correctness and 
efficiency. For some axioms with few known implementations, patterns 
observed in the prior work revealed several categories of potential 
difficulty that would need to be addressed for any new algorithm. In the 
discussion that follows, the axioms are considered in three groups: the 
axioms for which an implementation is clear, the axioms which are 
difficult to implement because their formal definitions are lacking, and the 
axioms which are well-defined but have unresolved questions warranting 
further investigation.

3.2 Axioms with clear implementation and parameterization

Several of the Latin text fitting axioms are straightforward to implement. 
Here, the term straightforward does not mean to imply that an axiom is 
simple or can trivially be turned into a function and left to run with no 
user interaction. Instead, calling an axiom straightforward means that it is 
clear what measurements and decisions are involved, what form the results 
will take, and, if there are parameters that should be left for the typeface 
designer to choose, it is clear how the chosen parameters work. This set of 
axioms includes the axioms that specify spaces of equal inter-letter area:

• L–1: Profile Similarity
• L–2: Profile Reflection
• L–3: Inter-letter Area Equality

The framing of these axioms and their implementation in prior work 
shows that the areas they refer to can be calculated in the normal 
geometric sense — as opposed to being optical judgments without a 
straightforward definition. Thus, the areas involved can be calculated 
directly from within a font editor or a font file. Many recent projects 
compute the inter-letter areas directly from the Bézier vector contours; 
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older implementations often rasterized the vectors or were used on bitmap 
fonts, in which case counting the filled and unfilled pixels is similar but 
provides less resolution.

As was noted in the discussion of Axiom L–1 in chapter 2, the only 
lingering question is whether the algorithm can determine which profiles 
to consider similar without user intervention. There is little prior work to 
draw on concerning automatically classifying forms by similarity. David 
Březina explored modelling the visual coherence of forms as perceived by 
readers (Březina 2018), but did not explore profile shapes or classification 
by group explicitly. Sebastian Kosch’s Fittingroom, a JavaScript fitting-
automation project, undertook the grouping of typeforms with techniques 
often used in machine-learning classifiers (Kosch 2015). But the more 
common approach is to pre-define groups of letterforms based on the 
traditional constructions in Latin letters, and enable the user to make 
changes to the groupings only if the user wishes to use an atypical design. 
This approach is used in LetterModeller and LS Cadencer (Blokland 2016; 
Schneider 2015).

If one assumes there is a means available to determine which typeforms 
each axiom covers, then several of the remaining axioms that apply to a 
limited set of typeforms and are framed as exceptions to Axiom L–3 are 
also clear:

• L–9: Single-Stroke Supplement
• L–10: Adjacent Extender Supplement
• L–15: Upward Aperture Reduction

with the addition of a parameter. That is to say, it is not ambiguous how an 
algorithm would implement increasing or decreasing the space in these 
cases. The size of the various exceptions requires a concrete decision, 
which becomes the parameter tunable by the user.

Adding a user-tunable parameter also suffices to handle two other 
axioms:

• L–6: Interior-Exterior Balance
• L–8: Fixed-Height Measurement

which are both straightforward to implement once the parameters have 
been determined. Both of these axioms, notably, are universal in the 
typeforms that they address, so the tuning of the parameters may require 
some careful consideration by the user of the fitting algorithm: any 
adjustments to the parameters would potentially impact many typeforms.

The relationship between the internal space of n and H and the inter-
letter area was discussed in chapter 2, where it was noted that the 
literature of manual fitting left some leeway regarding the precise ratio 
between the key form’s internal counter and the inter-letter area. The 
same is, broadly speaking, true for the baseline-to-x-height measurement 
limits. For some typeface designs, it might make sense to allow the user to 
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adjust one or the other by a few grid units to capture all of the details in 
the letterforms.

From the perspective of implementing a fitting algorithm, however, the 
more crucial factor is that the ‘baseline to x-height’ measurement zone 
applies to lowercase Latin letters and to the typeforms that are fitted to 
work with them. A real-world algorithm implementation must take that 
into account, permitting different measurement zones to be defined for 
capital-to-capital fitting as well as, perhaps, to numerals, punctuation, and 
symbols. Therefore the measurement-zone parameter should not be a 
single zone, but should instead be a set of potentially several such zones for 
differing sets of typeforms.

The parameter question is perhaps marginally more difficult for the 
diagonal-profile axiom:

• L–12: Diagonal Profile Limit
Here, too, the addition of a parameter is certainly required. What 
distinguishes Axiom L–12 from the previous, ‘exception’ axioms is that the 
axiom asks for an absolute-space measurement rather than a relative-space 
adjustment. Thus, the parameter the user chooses is something that the 
algorithm must test for, rather than just adding or subtracting to the 
sidebearings determined by the other axioms. This matters because the 
value of the ‘minimal’ space is absolute, but it is not defined by the axiom 
itself. In extremely heavy or bold weights, it is easy to find examples where 
manually-fitted typefaces use negative sidebearings for the diagonal-
profile letters. 

Adding a parameter would also make the two prohibitive axioms:
• L–11: Collision Avoidance
• L‑14: Enclosure Avoidance

clear, by establishing tolerances for what the algorithm should consider 
‘colliding’ and ‘overlapping’. Zero might be a plausible tolerance in either 
case but, regardless of the chosen tolerance, these axioms can be more 
complicated to implement, because testing Bézier vectors for overlaps and 
collisions is more difficult than comparing measurements of areas. Even 
when comparing adjacent forms as vector outlines, collisions and overlaps 
can happen in any direction. Furthermore, when comparing rasterized 
adjacent forms, one must also grapple with pixel-alignment and anti-
aliasing.

Finally, the axiom addressing diacritic forms:
• L–16: Diacritic Form Independence

is straightforward to implement because it deals with how typeforms are 
classified before any of the other axioms come into play. There are still 
some practical hurdles to consider, such as the various ways in which 
diacritic forms can be encoded in Unicode. But, by and large, it is not 
ambiguous to say whether or not a diacritic letterform should be 
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considered a separate letter: if in doubt, an algorithm can treat it as a 
separate form without ill effect.

3.3 Axioms lacking theoretical details needed for implementation: 
rhythm and shells

Of the four Latin text fitting axioms not discussed in the previous section, 
two were identified as possessing underlying issues of clarity or precision 
that would make their practical implementation in a fitting algorithm 
difficult. Namely, the vertical-stroke-rhythm axiom (L–5) has not been 
specified to precision that can be implemented in algorithmic terms, and 
the shells-of-space axiom (L–13) is missing a unified theory that describes 
how the shells themselves are devised — rendering the axiom an adequate 
way of describing spaces, but incomplete as an approach to determining 
spaces.

3.3.1 Analysis of the vertical-stroke-rhythm axiom
The vertical-stroke-rhythm axiom (L–5) ranks high among the most-cited 
general principles of Latin text fitting literature. As was noted in chapter 2, 
it is linked to the historical Latin calligraphic and handwriting tradition, a 
connection which perhaps makes it an alluring notion to appeal to. 

It can be seen by direct measurement that, in well-designed manually-
fitted typefaces, the exact stroke-to-stroke distances often vary in different 
letterforms, even when those letterforms share the same profile shapes. 
(See figure 3.1)  This is a distinct difference from the equal-inter-letter area 
axioms discussed in the previous section, for which the statements that 
areas should ‘appear equal’ can be shown to translate into direct 
measurements.

The variance observed in stroke-to-stroke distances is not entirely a 
surprise, because each letterform is subject to the needs of other design 
goals and optical compensations. But it calls into question whether 
evenness in vertical stroke rhythm is contingent on some identifiable 
tolerance. Frank E Blokland, a strong advocate for vertical stroke rhythm, 
presents the illustration in figure 3.2 as evidence that Adrian Frutiger 
designed typefaces with a deliberately even stroke rhythm, but the strokes 
in the image vary in their alignment to the rhythm markers by close to a 
full stem width. If the acceptable tolerance for vertical stroke rhythm is on 
the order of the width of a stem, then perhaps vertical stroke rhythm is 
not precise enough for use in an algorithm.

But this variation cannot be merely a matter of matching the tolerance 
to the measurement precision, because the literature also supports the 
idea that rhythm is not a precise stroke-to-stroke measurement. Several 
sources note that sans-serif designs are typically fitted closer than serif 
designs, which means that the stroke-to-stroke distance within straight 
letters is different from the stroke-to-stroke distance between straight 
letters (Karow 1994, p. 182; Mengelt p. 38; Beier 2017, p. 131). (See figure 3.3)  

The precise stem-to-stem 
distances, in font units, can be 
unequal, but the typeface may 
still be regarded as exhibiting 
vertical stroke rhythm 
(illustration by the author). Font 
shown: Brill Roman.

Figure 3.1

270 238 264 243 253 260 262 251 253 268

The red lines, present in the 
original, are evenly spaced, and 
can be seen to align at different 
horizontal positions on different 
stems. (Blokland 2016, p. 115)

Figure 3.2

In sans-serif designs, vertical 
stroke rhythm may not be seen in 
a simple stem-to-stem 
measurement (Beier 2017, p. 131).

Figure 3.3
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In italic typefaces, it is further noted that the strokes themselves are 
typically set at different angles for different letterforms (Unger 2018, p. 
134; Beier 2017, p. 165). Despite these acknowledged exceptions, vertical 
stem rhythm is still cited as an applicable design principle for those 
typeface styles. Some sources even advise that overly exact rhythm is 
aesthetically undesirable in a typeface.1 Walter Käch wrote ‘the rigid 
repetitive effect of absolutely equal characters cannot give to the whole 
appearance the liveliness of rhythmical undulations’ (Käch, p. 13). The 
problem faced by a fitting algorithm is whether the ‘liveliness of rhythmic 
undulation’ can be prescribed precisely enough to be implemented in 
practice, or if the large tolerance and the number of exceptions permitted 
render it too abstract.

Analysis of visual rhythm at the page level has been conducted 
independently by Sergei Egorov and William Berkson, both using Fourier 
transforms, which convert the spatial patterns of the typeset pages into 
the frequency domain.2 In both projects, the results revealed common 
rhythmic patterns across the pages examined: Egorov in leaves from Aldus 
Manutius’ 1519 Cassisus Dio and Berkson in pages from William Caslon’s 
1766 specimen book (Egorov 2005; Berkson 2010). But neither project 
attempted to define that rhythmic structure; both were content to 
demonstrate it visually. (See figure 3.4)  More to the point, neither project’s 
analysis provides a method to begin with a rhythmic structure and use that 
structure to determine the sidebearings for letterforms.

Several prior fitting-automation works have implemented the stroke-
rhythm concept as either the sole or primary method for determining 
fitting. The Impallari macro, DTL LetterModeller, and LS Cadencer 
implementations each start with a standard rhythm value that is said to 
provide sidebearings for the forms, but all three tools apply this standard 
rhythm value only to letters that are defined as having a straight profile on 

1. Wilkins et al. 2007 found that overly exact rhythm can negatively impact reading, with words 
perceived as ‘striped’ resulting in poorer word recognition and reading speed.
2. Roger Watt also investigated techniques for using frequency-based analysis on pages of typeset text. 
Watt’s investigation, however, focused on word space and line spacing (Sassoon et al. 1993, p. 178–201).

Egorov ran Fourier transforms on 
images of Aldine italic leaves, 
then visually identified 
frequencies that appeared to 
match stems of letterforms, 
connecting strokes, and other 
page features. The grey lines are 
Egorov’s visualization of the 
frequency for stems, not the 
output of the Fourier transform 
itself (Egorov 2005). Used by 
permission.

Figure 3.4
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both sides.3 For the remainder of the typeface, all three implementations 
provide tables of pre-determined numerical adjustments that are assigned 
to specific letters. Users have the ability to alter the tables of adjustments, 
but no guidance is supplied for how to choose appropriate values. (See 
figure 3.5) 

The values of the pre-determined adjustments provided originated from 
Blokland’s detailed analysis of Renaissance metal types. Blokland is open 
about stating that connection for DTL LetterModeller and has advised type 
designers that the numbers are bound to specific typeface styles and are 
not to be expected to work beyond the confines of the styles defined 
(Blokland 2019). For general implementation, though, an approach relying 
on manually pre-determined adjustments leaves algorithms without a 
starting point.

Moving away from pre-determined models, stem rhythm can be 
trivially measured for the letterforms and profiles that feature literal 
stems — that is, for straight profiles. For round profiles, an approximation 
to a stem can be made by adjusting for the overshoot (indeed, this 
adjustment is included in the pre-determined tables provided by the 
Impallari macro, DTL LetterModeller, and LS Cadencer). This simple 
approach to stem-approximation breaks down, however, in diagonal 
profiles, concave profiles, and profiles that are divided.

An alternate approach to applying the stem-rhythm axiom to letters 
without explicit stems is to calculate the ‘ink projection’ of each 
letterform, resulting in the shadow of the form, as it were, and to look for 
stems based on the peaks in the ink projection: the vertical slices of the 
form where the ink projection has the most ink ostensibly represent the 
closest approximation to an explicit stem. This technique has been 
implemented in Kernagic and in RhythmInfluencer. (See figure 3.6) 

Practical problems are quickly evident with this approach. First, some 
diagonal and concave profiles may not produce peaks at all. This makes the 
ink-projection approach effectively invalid for these forms. Second, stems, 
by definition, have width — but peaks in the ink projection may not. Thus, 
to assign a ‘virtual stem’ to a peak in the ink projection, decisions must be 
made as to where to align the left and right boundaries of the virtual stem 
in relation to the peak. Third, there are several forms, particularly in serif 

Above: LS Cadencer cites vertical 
stem rhythm as its fitting 
principle (RevolverType 2019).

Below: LS Cadencer provides per-
letter adjustments in order to 
make the generic stem rhythm 
align with Renaissance types 
(screenshot by the author).

Figure 3.5

RhythmInfluencer determines 
virtual stems by calculating an 
ink projection of each letterform. 
Notably, the illustration omits 
several forms that produce 
projections difficult to turn into 
virtual stems (Renckens  2020).

Figure 3.6

3. The adjustment values are indeed specified by letter, not by the shape of the form. This is possibly 
because, as will be seen, the three implementations are each limited to particular typeface styles that 
follow historical type conventions for form and proportion.
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designs, that can produce phantom peaks in the ink projection because the 
serifs, terminals, and other features cause interference. (See figure 3.7) 

Another significant difficulty encountered when implementing this 
axiom is that widths of the letterforms are different in all but the simplest 
cases. Thus, the rhythm of the stems measured in a sample will have 
inherent variances because of the letterform widths, which in turn means 
that the sequence of letterforms used in a test sample to measure the 
rhythm will alter the result. The word minimum will exhibit one rhythm, 
adhesion a different rhythm: neither result is inherently more correct 
than the other.

For this research, techniques for calculating a general stem rhythm for 
a typeface based on the strokes of key letterforms (n or m) were 
investigated practically, because it offered a straightforward line of inquiry. 
However, the resulting fitting was inconsistent and far from the original 
manual fitting for all non-straight profiles, with gaps between some forms 
and collisions between others. The number of forms needing correction 
outnumbers the number of forms solved.

The nebulous nature of these issues does not disprove the importance 
of rhythm in typeface design or of Axiom L–5 in fitting. It does, however, 
demonstrate that visual rhythm is a complex and layered subject posing 
deep questions that have yet to be explored. As the axiom is typically 
stated, stroke rhythm alone is not sufficiently precise to calculate 
sidebearings. This helps explain why the Impallari macro, DTL 
LetterModeller, and LS Cadencer may have resorted to supplying 
predetermined adjustments for specific letterforms in specific styles, but 
makes the axiom problematic for implementing a fitting algorithm.

3.3.2 Analysis of the shells-of-space axiom
The shells-of-space axiom (L–13) exhibits a similar degree of ambiguity: 
like the previous axiom, it is believed to be true by many in the field of 
typeface design, but the way it is formulated in the literature and prior 
implementations omits details necessary to make it automatable in an 
algorithm. Specifically, there is not a formalized theory defining the 
dimensions of the shells or how the shapes of the shells adapt to particular 
constructions of typeforms. Without such a definition, shells are not 
something that an algorithm can create.

This may sound surprising, considering how many prior shells-of-space 
implementations exist. But a closer examination of those projects reveals 
that they largely relied on pre-determined shell construction, or were 
limited purely to detecting collisions rather than providing sidebearings. 

The notion of shells-of-space that surround all typeforms was popular 
from the 1970s through the 1990s via the ‘sector kerning’ mechanisms in 
some typesetting software as discussed in chapter 2. But the sizes and 
geometries of the shells are rarely specified beyond the most basic 
prohibition that forms should not overlap and collide.

Ink projections for some forms 
and typeface styles may be 
significantly more difficult to 
convert into stems. The peaks in 
the top-left ink projection may be 
more easily identified with stem 
locations than the other three 
(screenshots by the author). 

Perhaps notably, Renckens 2020 
does not use these more difficult-
to-interpret letterforms in 
illustrations. (Fonts shown: STIX, 
upper right; Fira Sans Extra 
Condensed, upper left and 
bottom left and right.)

Figure 3.7

s s
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The earliest patents relating to sector-kerning implementations in 
typesetting software perhaps provide clues as to why. Sector kerning 
implementations of the era were developed as an alternate method of 
storing fitting data for digital fonts at a time when computer memory and 
storage was relatively expensive (compared with current systems). Namely, 
storing a pairwise table of kerns for N typeforms would require N 2 table 
cells, but storing a table of sector-kerning values instead always requires 
far fewer cells: 2 × N × number-of-sectors (that is, two profiles for each 
form, multiplied by the number of sectors).

To illustrate this difference, Bell Telephone’s 1973 patent specified 
three sectors per form; Gerber’s 1986 patent specified four. (See figures 3.8 
and 3.9)  In 1985, Naiman cited the popularity of sector kerning including 
the storage-and-memory-efficiency of the technique, using eight sectors 
per form as the example.3 Even with eight sectors per form, a sector-
kerning table is smaller than a pairwise kerning table for every font with 
more than 16 forms. A minimum of 52 forms are required for the Latin 
lowercase and capitals, of course; even at the time, a standard font could be 
anticipated to contain 100 forms or more (Naiman 1985, p. 77).

Storage and memory concerns aside, however, the early sector-kerning 
products provided no theory or guidance as to how a typeface designer or 
typographer should determine the values used to define the shell. In 
particular, what is missing from these implementations is some description 
for finding the optimal distance at each sector level; the widths of the 
sectors for each form are assumed to be either predetermined or to be 
established by the user. Ward Nicholson, in his detailed letter to The Seybold 
Report, offers a glimpse into what the process would have been like. A 
considerable time investment and manual effort was required of the 
typographer to evaluate and adjust the fonts, but once the sector-kerning 
tables were determined, they could be relied upon for any subsequent 
printing job (Nicholson 1990).

Tellingly, the patents indicate that the procedure for applying the 
sector kerns when typesetting the text was simply to shift the adjacent 
forms closer horizontally until the first contact between the shells 
occurred, which means that only a linear-distance separation was 
measured.

But it is clear from some of the illustrations that the shells were not a 
simple expansion of the profile shape by some fixed horizontal distance; 
open counters could be filled in and special treatment could be paid to 
diagonals. (See figure 3.10)  So additional complexity was involved when the 
shells were defined, even though no theory was expressed as to how to 
construct the shells; it was assumed to be a task performed manually and 
judged by eye.

Eventually, more efficient data formats for storing kerning information 
were invented; instead of an N-by-N table with a cell for every possible pair 
(with many of those cells remaining empty because the pair required no 

3. Regrettably, Naiman did not identify the vendor of the sector-kerning system referenced.

Bell Telephone’s 1973 sector-
kerning patent stored three 
sector-bounds per letterform, 
depicted in this image as dots 
(Mathews 1973, p. 2).

Figure 3.8

Gerber’s 1986 sector-kerning 
patent stored four sector-bounds 
per letterform (Logan 1986, p. 6).

Figure 3.9

A sector-kerning example shown 
by Naiman. The width of the 
sectors for T are not a simple 
expansion-by-fixed-distance. 
Similarly, the sector completely 
fills in the aperture on the left 
side of a (Naiman 1985, p. 81).

Figure 3.10
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kerning), ‘short kerning’ tables were invented that only required storing a 
list of the pairs requiring a kerning adjustment (Karow 1994, p .389). That 
‘short’ list could, hypothetically, be as long as the typeface designer wished 
to make it, but as a practical matter, it is always far smaller than the ‘long’ 
format. As that format took hold in the type industry, sector kerning fell 
out of favour in the commercial market. The contemporary kern and GPOS 
table formats described in chapter 2 are fundamentally the same as the 
short format: only those pairs needing a kern are stored.

In 2015, Toshi Omagari revisited sector kerning with his BubbleKern 
software utility. BubbleKern worked on the same core principle: given a 
shell of space defined for every typeform as input, the BubbleKern engine 
can calculate the kerning adjustments needed to shift any pair of adjacent 
forms closer together until the shells touched (Omagari 2015). Two key 
implementation details distinguish BubbleKern from the older sector-
kerning tools. First, BubbleKern is a plug-in integrated into a font editor, 
which allows it to work directly with the Bézier contours at their native 
font-unit resolution, rather than the lower-resolution bitmaps of the 
earlier sector-kerning systems. (See figure 3.11)  Thus BubbleKern can be 
used to generate shells with infinitely many ‘sectors’ (as they would have 
been termed in the sector-kerning era). The second is that BubbleKern 
outputs its results in a standard GPOS feature, rather than a specialized 
sector-kerning table. This means that fonts modified with BubbleKern 
should work equally well on any platform — unlike sector-kerning tables, 
which were typically only usable within the sector-kerning vendor’s own 
typesetting system.

From the theoretical perspective, however, BubbleKern still does not 
posit a complete theory for automatically generating the shells of space 
that surround a typeform. BubbleKern includes a basic generator to create 
an initial shell by expanding from the form by a fixed distance, and there 
are hints in the BubbleKern user manual for typeface designers to improve 
on these initial shells by editing them manually. But creating the shells 
remains a manual responsibility left to the typeface designer.

This lack of theory describing the shells inhibits implementation in an 
algorithm. Specifically, if one considers the width of the shell: expanding 
the contours of a typeform by 10 units and expanding the contours of the 
same typeform by 25 units would both create equally valid shells, in the 
absence of some further conditions dictating what the necessary shell 
must look like. Without an answer to that fundamental question, a shell of 
any size greater than zero can certainly prevent collisions, but the shell 
model cannot be automated further.

Occasional attempts have been made to propose novel means for 
generating the shells. Independent type designer Peter Wiegel posited in 
2012 that blurring images of letterforms would produce a shell-like field, 
although it is not clear that he implemented the concept (Wiegel 2012). 
(See figure 3.12)  In 2004, a Canon patent suggested perturbing the outlines 

BubbleKern, running as a plug-in 
to the Glyphs font editor 
(screenshot by the author).

Figure 3.11

Wiegel’s proposed method for 
automatically generating shells 
(Wiegel 2012).

Figure 3.12
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of the letterforms by replacing the smooth contours with sine waves and 
treating the resulting modified outline much like a shell. (See figure 3.13)  
Although different in their approaches, it is noteworthy that the final 
effect of both of these methods is simply to expand the typeform outward 
in every direction and call the resulting shape the shell.

Several more recent efforts to explore the notion of shells have focused 
on Arabic fonts, notably the Octabox method developed by Martin Hosken 
(SIL 2017) and Simon Cozens’s Kern Determiner (Cozens 2022).

Both of these recent efforts focus solely on preventing collisions. Kern 
Determiner creates a shell by expanding the typeform outward by a fixed 
distance, although it does so in two dimensions rather than only 
expanding the form horizontally. (See figure 3.14)  The Octabox method 
creates its shell by drawing a bounding box touching the form on all four 
sides, then intersecting that with a second bounding box drawn the same 
manner at 45-degree rotation. (See figure 3.15)  These techniques are both 
more sophisticated than the simple fixed-distance horizontal expansion of 
sector kerning, but it is not clear to what degree either would work for 
non-Arabic text (Latin in particular), and neither has yet been widely put 
to the test. It must also be noted that both projects are limited in their 
range: they define a way to prevent collisions and overlaps (as per the 
prohibitive axioms, L–11: Collision Avoidance and L–14: Enclosure 
Avoidanec), but they do not otherwise generate fitting values.

The lack of consensus about what constitutes a good shell impedes the 
implementability of the shells-of-space axiom. Various approaches have 
been tried, but the result has never amounted to more than a solution to 
prevent collisions. The early implementations of sector kerning were 
motivated by a desire to more efficiently use computer memory and 
storage capacity, at the cost of requiring typographers to manually the 
shells. It may be that the shells-of-space axiom as a whole constitutes a 
different way of representing fitting data, or of thinking and talking about 
space, but does not offer significant insights into determining fitting.

3.4 Axioms presenting unresolved questions: triplet centring and 
open counters

The final two axioms in the Latin text fitting model prove challenging 
because they are potentially implementable, but lack a widely accepted 
definition for one or more key facets. In other words, the theories appear 
complete and well-formulated in their inputs, outputs, and parameters — 
in contrast to the axioms discussed in section 3.3 — but there are specific 
missing pieces.

Canon’s proposed method for 
generating shells by perturbing 
letterform outlines with sine 
waves (Browne et al. 2004, p. 5).

Figure 3.13

Kern Determiner marks a shell at 
fixed distance, but following the 
curves of the letterform (Cozens 
2022).

Figure 3.14

Octabox shells are automatically 
created by intersecting upright 
and angled bounding boxes (SIL 
2017). Used by permission.

Figure 3.15
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3.4.1 Analysis of the triplet-centring axiom
Axiom L–4: Triplet Centring states that the middle letterform in a triplet of 
letterforms should appear to be in the centre. It is clear from context in 
discussions of this axiom that the centring involved is not merely a direct 
measurement of equal linear distances nor of equal areas of space to the 
left and right, but instead refers to the form itself appearing centred 
between its neighbours.

Centring the form between its neighbours in the triplet, therefore, 
depends on identifying the optical centre of the form in addition to 
measuring the inter-letter areas. (See figure 3.16)  This optical centrepoint, 
once it is identified, would be straightforward to place on the coordinate 
grid and use in measurements. But the definition of what that optical 
centrepoint is and how to determine it has not been established.

As mentioned in chapter 1, David Kindersley explored the problem of 
locating optical centrepoints in depth, beginning around 1961 and 
continuing in some fashion until close to his passing in 1995. The output of 
these investigations formed the core of LOGOS, a letter-fitting software 
product marketed to commercial type manufacturers and other corporate 
customers beginning in the early 1980s.

Kindersley first described the development of LOGOS in depth in An 
essay in optical letter spacing and its mechanical application (Kindersley 1966), a 
book that was updated in a 1976 edition (Kindersley 1976 C) with an 
additional chapter covering the intervening ten years, then updated once 
more in a 2001 edition that added a foreword by former LOGOS developer 
Francis Cave discussing the progression of the project during Cave’s tenure 
in the 1980s (Kindersley et al. 2001).

The core of the LOGOS fitting method is detailed in a patent granted in 
1982 to Kindersley and his business partner from Cambridge University 
Computing Laboratory, Neil Wiseman. The method starts by calculating the 
optical centrepoint of each form. The project investigated several possible 
formulae for that step; the patent describes what the project considered 
most successful: the point that divides the letterform so that either side 
produces the same value for a chosen mathematical moment.4  (See figure 
3.17)  The patent lists two options for the mathematical moment: the 
second polar moment of area and the fourth polar moment of area; it also 
suggests that the letterform could optionally be scaled or partially masked 
out before the moment computations are made (Kindersley and Wiseman, 
1982).

This concept of a point that splits the letterform into two halves that 
each produce the same result from the chosen function is an extension of 
one of Kindersley’s earliest investigations: measuring the light levels 
transmitted by the shape of the letterform and locating the point at which 

Above: an illustration of the 
centring of letterforms in triplets 
(Kindersley 1976 C, p. 16).

Below: Kindersley used the 
‘balance’ metaphor to contend 
that finding the optical 
centrepoint of a letter in isolation 
is a precursor to centring it in a 
triplet (Kindersley 1962, p. 180).

Figure 3.16

Illustration of the calculation of a 
mathematical moment for a given 
letterform.  (Kindersley and 
Wiseman 1982, p. 3)

Figure 3.17

4. A moment in this usage is a mathematical quantity found by multiplying a static measurement of 
some sort by a distance. For a comparison of the different moments investigated by Kindersley and 
Wiseman, see chapter 4.
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the left and right halves transmit the same amount of light. Kindersley 
observed that the light-transmission calculations were not providing a 
point that corresponded to his visual estimation of the forms’ optical 
centrepoints. The search for a alternate mathematical formula that 
matched Kindersley’s visual evaluations led to the options described in the 
patent, although Kindersley expressed in correspondence to Wiseman that 
the neither option enabled LOGOS to consistently produce acceptable 
results for certain forms, namely, the strongly asymmetric forms like L, P, 
F, and r (Kindersley 1976 A; 1976 B; 1977).

Crucially, however, the optical-centrepoint formula was just one 
component of LOGOS, and the other major component is less clearly 
supported by established letter-fitting theory. As discussed in chapter 2, 
the centring of letterforms in a triplet only addresses the relative space on 
either side of the letterform. To produce sidebearings for a form, the 
relative spaces must be linked somehow to an absolute space.

Making this link was the second step in the LOGOS fitting method. 
Kindersley’s original approach postulated that all optical centrepoints 
should be spaced equidistant from each other horizontally, but it quickly 
became apparent that that approach does not work when mixing wide and 
narrow forms. Later versions of LOGOS dispensed with the equal-point-to-
point-distance idea and instead posited  that there is a ‘characteristic 
rectangle’ for each letter which would have the same mathematical 
moment as the letter. The width of the characteristic rectangle would then 
be measured, and LOGOS would assign it as the width of the letter, thus 
linking the relative space of the centrepoint to an absolute space.

The question of how to build the characteristic rectangles was a 
separate problem that occupied the project for some time; the LOGOS team 
eventually settled on compressing the letterforms in the vertical direction 
and constructing rectangles with side thicknesses that matched the 
vertical and horizontal strokes thicknesses of the typeface being fitted 
(Van Blokland 1986). (See figure 3.18)  The formula for solving this 
characteristic-rectangle relation for its width, given the stroke thicknesses 
and the centrepoint of a letterform, is a complicated 5th-order polynomial 
equation in six variables that does not have any generalized solution. Thus, 
the LOGOS software could not implement a function to convert 
centrepoints directly into characteristic widths, and instead pre-computed 
the moments for a large set of possible characteristic widths and looked up 
the closest match for each letterform. (See figure 3.19) 

This was certainly an optimization necessary for practical reasons (once 
the table had been precomputed, stored values could be looked up in 
constant time), and indeed the mathematics behind the 5th-order equation 
still have not been solved today. Regardless of the computational costs, 
though, the characteristic-rectangle component seems to have been a 
workaround imposed by the need to connect the centrepoint to a pair of 

A lowercase o next to its 
characteristic rectangle in the 
LOGOS system (Kindersley 1976, 
p. 32).

Figure 3.18

Scatterplot comparing the 
computed widths of letterforms 
against pre-computed standard 
values. (Kindersley 1966, p. 10).

Figure 3.19
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absolute sidebearings, rather than a discovery connected by a theoretical 
model.

In the published account, Kindersley makes an atypical leap of logic by 
declaring that, once found, optical centrepoints alone are sufficient to fit 
letters. ‘Suddenly it dawned on me that the finding of centres and the 
spaces were one and the same thing. Find the right centres and you will 
then have in light value terms, through the wedge, the correct 
space’ (Kindersley 2001, p. 21).5 Regrettably, unlike with the majority of his 
research, Kindersley did not record investigations to document this 
connection between optical centrepoints and widths. It is impossible to say 
whether further work would have successfully resolved the remaining 
issues in the LOGOS approach.

For this research project, though, the centrepoint-finding component 
from LOGOS was deemed relevant for further investigation; first because 
LOGOS is the sole known implementation of the triplet-centring axiom, and 
second because it has not been explored in isolation from the canonical-
rectangle component. An unresolved question remains as to which, if any, 
of the formulae presented as options for finding optical centrepoints 
constitutes a formula suitable for determining centrepoints in the context 
of a different triplet-centring implementation.

3.4.2 Open counters and concave profiles
The final axiom in the Latin text fitting set is Axiom L–7: Concave 

Profile Truncation, which states that some of the area inside an open 
counter should be considered external space that contributes to the total 
inter-letter area between the profile and the adjacent typeform, while the 
rest of the area inside the open counter should be considered internal 
space. In the literature and the manual practices of letter fitting, this 
principle is widely accepted. But it presents two practical difficulties for 
implementing a fitting algorithm. First, there is no consensus on how 
much of the area in the open counter is external and how much is internal, 
nor where the boundary between the two is found. Second, there is not a 
consensus on how to distinguish which profile shapes are truly an open 
counter from those profile shapes that are merely marginally concave and 
should not be processed with the open counters.

Fred Smeijers referred to the space within open counters as a ‘double-
function area’ and illustrated the vaguely defined boundary between 
internal and external space with a hand-shaded hatched region that 
deliberately does not show a fixed border. (See figure 3.20)  But although 
Smeijers stated that the boundary region in open counters ‘is certainly not 
objectively exact or constant’, he added that he strongly suspects that 
serifs play an importantly role to readers by partially defining the 
boundary (Smeijers 1996, p. 32).

5. Kindersley used wedge to refer to the masking operation. The term originated from his earliest 
research with measuring light transmission for letterforms; in those experiments, the mask was a 
physical object presumably exhibiting some wedge-like characteristics..

Smeijers’ depiction of the  “dual-
function” nature of open 
counters (Smeijers 1996, p. 32)

Figure 3.20
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Black Spacer clips into open 
counters, cuts off open counters 
at a fixed distance, and measures 
some internal area reduced by a 
fractional multiplier (Hornus 
2016 A).

Figure 3.23

Three prior letter-fitting automation projects have implemented 
related techniques for handling the double-function regions in open 
counters: the kf module of hz-program, HT Letterspacer, and Black Spacer. 
The higher-level approach is the same for all three: reduce the value 
measured from the open counter shape, then use that reduced area in the 
standard inter-letter-area computations used for all forms. The projects 
differ in how they reduce the size of the open counter shape.

All three reduce the amount of space measured in open counters by 
clipping the counter shape inward at fixed angles from the top and bottom. 
HT Letterspacer clips in at 45 degrees by default (although this angle is 
tunable), while kf clips in at different angles for the above and below 
directions: by default, 42 degrees from above and 11.3 degrees from below 
(the shallower angle from below chosen to adhere closer to baseline 
serifs).  (See figures 3.21 and 3.22)   Black Spacer is only used internally at 
Black Foundry, so its clipping angle is not documented, but screenshots 
posted by creator Jérémie Hornus appear to clip in at roughly 30 degrees.

In addition to clipping the counter shape inward, HT Letterspacer and 
Black Spacer also cut off the counter shape at a pre-determined distance 
from the outer bound of the typeform.  (See figure 3.23, over page)  Black 
Spacer adds a third technique that calculates the space in ‘hidden areas’ 
and scales down the calculated hidden-area contribution by a fractional 
multiplier.6

Each of the three techniques: clipping into the open counter at an 
angle, cutting off the counter space at a chosen distance, and fractionally 
scaling the area measurement, serves to reduce the absolute amount of 
measured area in one way or another. But none of the three is specified on 
theoretical grounds: they work because they are capable of reducing the 
measured area, and the user is expected to tune the parameters (cut-in 
angle, cut-off distance, and scaling fraction) until the results match 
expectations.

A fourth project, CounterSpace, implements a distinctly different 
technique that reduces the area measured inside open counters by drawing 
a shallower counter boundary. CounterSpace’s higher-level approach to 
fitting also differs, however. The area within the shallower substitute 
counter is not measured and directly incorporated into a calculation of 
inter-letter area. Instead, the entire substitute profile is used in a 
computation based on estimating the intensity of simulated lights between 
the letterforms. (See figure 3.24) 

The second difficulty with implementing the open-counter axiom is, in 
a way, more fundamental: the determination of how concave a profile must 
be in order for it to be considered an open counter. In the literature, the 
list of forms exhibiting open counters is generally predictable. In the Latin 
lowercase, c, e, s, and z are almost always included; k and x may be 

6. From the illustrations posted online, the ‘hidden areas’ appear to be area within the open counter 
but blocked by any protruding portion of the profile. 

HT Letterspacer clips into open 
counters and cuts off the open-
counter area at a user-specified 
fixed distance from the extreme 
edge of a profile. HT Letterspacer 
treats the green area as external 
space  (HT Letterspacer 2016).

Figure 3.22

Examples of the effects that 
choosing different clip-in angles 
can have on the area measured as 
inter-letter space in an open-
counter form. kf treated the 
shaded regions as internal space 
(Karow et al. 1992, p. 7).

Figure 3.21

CounterSpace partially fills in an 
open counter with a shallower 
curve. CounterSpace treats the 
yellow area as internal space 
(Cozens 2019).

Figure 3.24
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n t
The left side of n is not usually 
considered an open-counter or 
concave profile, even if the serifs 
technically surround some space 
on three sides. The right side of t 
might be more readily considered 
concave, depending on the style 
(illustration by the author). Font 
shown: Gentium Plus.

Figure 3.25

included as well, although those are sometimes grouped with the diagonal 
profiles. But lists such as these inevitably are pinned to historical tradition 
and dependent on the constructions of the letterforms: a is often included 
because the two-storey construction is more traditional; but it is omitted 
when the typeface uses the single-storey construction a that demonstrably 
does not have an open counter. Although it suffices to tell a typeface 
designer how to approach open counters and rely on the designer to 
correctly identify which forms need to be included, requiring 
foreknowledge of the construction to know whether the fitting axiom is 
relevant inhibits defining an algorithm: the algorithm must know whether 
the typeface’s ‘a’ glyph uses the a or a form. The responsibility for 
determining the construction of the glyph could be offloaded to a human 
user, but determining it automatically is more difficult, raising the same 
issues as automatically classifying forms by profile shape (see § 3.2).

It is possible to measure the curvature of the contours on the profile to 
decide if the profile is concave, but ambiguities can occur. For example, few 
readers or type designers would classify the left profile of n as exhibiting 
an open counter, even though the serifs on the top and bottom make the 
left profile concave in the mathematical sense. Considerably more 
ambiguous are letterforms like t which, in a wide construction, can 
plausibly form an open counter on the right profile. (See figure 3.25)  The 
asymmetrical forms r, f, F, L, and P can also be difficult to classify, because 
there is not consensus on whether the unbounded areas above the 
horizontal beam of L or below the overhangs of the other forms should be 
considered open counters, or if those letterforms should instead be 
handled like the diagonal-profile forms. The inward-angled clipping 
technique employed by the kf module of hz-program, HT Letterspacer, and 
Black Spacer have the effect of treating these unbounded profiles like open 
counters, but it is not clear to what extent that is a deliberate choice or an 
accident. The kf patent filing, for example, specifically illustrates the use of 
a variety of clip-in angles for C and F, and the accompanying description 
states that different angles may be chosen depending on the form. (See 
several of the options depicted in figure 3.21)

In summary, the practical questions of a concave-profile-area 
implementation begin with how to decide whether or not a particular 
letterform should be subject to the concave-profile-area axiom. For a form 
classified as sufficiently concave, the remaining question is how to reduce 
the amount of area in the open counter that is counted toward inter-letter 
area. There are techniques to choose from, but the merits and trade-offs 
between the techniques could benefit by further investigation: how far 
into an open counter to measure, how to divide the open-counter area into 
interior and exterior portions, and what (if any) clip-in strategy to use.
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3.5 Summarizing the practical considerations

The preceding analysis of the Latin text fitting axioms and of the prior 
fitting-algorithm implementations revealed several possible lines of 
inquiry worth practical investigation. The axioms that are clear in their 
definitions of the measurements, decisions, and parameters involved were 
determined in this research to be readily available for any implementation. 
The two axioms lacking theoretical detail — Axiom L–5: Vertical Stroke 
Rhythm and Axiom L–13: Shells of Space — were determined to be less 
suitable for implementation in a practical algorithm at this stage. The 
missing theoretical detail in these algorithms does not suggest that they 
are fundamentally untrue, but suggests that there is some ambiguity about 
the meaning of the underlying axiom itself. 

In contrast, the triplet-centring axiom (L–4) and the open-counter-
truncation axiom (L–7) are less ambiguous at the theoretical level, instead 
exhibiting unresolved questions that are more akin to implementation 
details. Furthermore, the open-counter and triplet-centring axioms could 
potentially provide fitting solutions for letterforms that are not easily 
addressed by the straightforward axioms. For example, the open-counter 
axiom would apply to several of the forms which Tracy left off of his 
heuristic model and said ‘must be spaced visually’: a, f, g, s, t, and z in the 
lowercase and S in the capitals (Tracy 2003, p. 71) and to profiles cited as 
problematic by Dwiggins: a, c, e, f, g, k, r, t, and s (Dwiggins 1940 B, p. 6). 
For his part, Kindersley focused considerable experimental time on the 
letterforms with concave profiles (C and L in particular) because they were 
not easy to fit.

Consequently, it was decided to investigate the possibility of finding 
solutions for the unresolved questions of axioms L–4 and L–7, and attempt 
to derive an algorithm for fitting Latin text that utilizes a composite of 
those axioms and the straightforward axioms.
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4. Algorithm construction

Chapter 3 evaluated the axioms of the Latin text fitting model on practical 
grounds, with an eye towards constructing an algorithm useful for fitting 
Latin text typefaces. The evaluation revealed two axioms that warranted 
special investigation because they present unresolved implementation 
questions, but are rooted in well-known, unambiguous theories.

This chapter will first detail the investigation of those axioms and the 
development of practical implementations of the axioms. This will be 
followed by the construction of a testable letter-fitting algorithm that 
applies the new implementations for certain typeforms in composite 
fashion, relying on other axioms for other typeforms.

4.1 Preliminaries

Constructing a full implementation of a letter-fitting algorithm based on 
the axiomatic model involves implementation considerations that must be 
made up front, in addition to the practical decisions that must be made 
along the way.

First, it must be recalled that axioms L–4: Triplet Centring and L–7: 
Concave Profile Truncation were identified in chapter 3 as needing further 
investigation. But neither axiom alone nor the two axioms together are 
sufficient to fit a large enough set of typeforms to set real-world text. 
Specifically, neither of the axioms addresses absolute space: Axiom L–7 is 
explicitly concerned only with relative space, while Axiom L–4 addresses 
the relative spaces in a triplet, in conjunction with the positive form itself. 
All of those relative spaces must be transformed or otherwise linked to 
absolute spaces in order to output sidebearings. Furthermore, axiom L–4 
applies only to those typeforms with open counters or concave side 
profiles, which is a minority of the Latin alphabet.

One or more other axioms, then, will require implementation in order 
to fit a typeface. It was noted in chapter 2 that multiple subsets of axioms 
may address the same forms. Several high-level strategies for selecting the 
axioms to implement are worth contemplating. An algorithm might 
attempt to implement every axiom in the model, which would introduce 
new questions of how to resolve discrepancies whenever two axioms 
output different sidebearings for a form. Alternatively, an algorithm might 
attempt to implement the fewest axioms necessary to fit all of the forms, 
which would entail selective judgment about which axioms to omit. Other 
strategies might fall somewhere in between these extremes.

For the sake of practicality, it was decided in this research project to 
pursue choosing a minimal set of axioms that can fit the typeforms of 
interest, and to prioritize the more-frequently-cited axioms and the 
axioms with straightforward implementation details when making the 
selection. There are, perhaps, typeface designers who employ a manual 
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process closer to the ‘use every axiom’ strategy, but for this research a 
simpler algorithm is advantageous. First, it is more direct to implement, 
but second, a simpler configuration makes it easier to interpret test results 
of the algorithm as a whole and for individual typeforms.

The set of straightforward axioms listed in 3.2 includes axioms L–1: 
Profile Similarity, L–2: Profile Reflection, L–3: Inter-letter Area Equality, L–
6: Interior-Exterior Balance, L–8: Fixed-Height Measurement, L–9: Single-
Stroke Supplement, L–10: Adjacent Extender Supplement, L–11: Collision 
Avoidance, L–12: Diagonal Profile Limit, L–14: Enclosure Avoidance, L–15: 
Upward Aperture Reduction, and L–16: Diacritic Form Independence. 
Employed jointly, axioms L–1, L–2, L–3, and L–6 enable an algorithm to 
start with the internal space of a key letterform (n or H), use that internal 
space to establish a standard inter-letter area, and propagate that area to a 
significant subset of the other forms. Using this core set of axioms as a 
starting point, a composite algorithm was constructed by choosing 
additional axioms to implement until the full set of letterforms has been 
covered.

This strategy prioritized finding implementations for axioms L–4: 
Triplet Centring and L–7: Concave Profile Truncation, which were 
identified as potentially useful for forms with open counters or concave 
profiles, a class of forms that are not addressed by the core set of 
straightforward axioms. The following sections detail the investigations 
into axioms L–4 and L–7, and conclude with discussions of how they can be 
integrated into a single algorithm and the practical matter of setting 
suitable default values for tunable parameters. 

4.2 Investigations of the LOGOS centre-point method

In chapter 3, it was noted that only one complete implementation has been 
identified for the triplet-centring axiom (L–4): the LOGOS project by David 
Kindersley and Neil Wiseman. However, the LOGOS method involved two 
steps: determining the optical centre-point for each form using a 
mathematical moment calculation, followed by associating the form with a 
characteristic rectangle of known width that had the same mathematical 
moment. This second component was necessary to link the relative-space 
information provided by the centre-point to a pair of absolute 
sidebearings. The centre-point of the form would be placed at the centre-
point of the characteristic rectangle, and the left and right extents of the 
characteristic rectangle would be used to set the left and right sidebearings 
of the form.

One of the difficulties faced by the LOGOS project was establishing the 
choice of mathematical moments. The rationale provided for the choice of 
the 4th polar moment in the LOGOS product was practical, and based on an 
iterative development process. Kindersley evaluated the results of refitting 
typeforms via the two-part LOGOS method, then the team would iterate, 
updating the software based on whether the evaluation showed 
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improvement or regression. The changes in each iteration could include 
alterations to the characteristic rectangle definition, to the masking 
scheme applied to the form, or to the choice of moment calculation.

For this research, it was determined that revisiting the centre-point-
finding component on its own (without the characteristic-rectangle 
component) was worth investigating, in order to test whether the centre-
points could be utilized in some different fashion. Of potential interest was 
determining if coupling the centre-point method with one or more of the 
other axioms in the Latin text fitting model could provide the link between 
the relative-space information and the absolute sidebearings.

To that end, the LOGOS centre-point algorithm was reimplemented in 
Python, then applied to the Bézier glyphs in a set of OpenType fonts. (See 
Appendix A)  Thanks to the increase in processor speed in the years since 
the initial LOGOS project, it was possible to test several of the mathematical 
moment options described in the original LOGOS patent and surrounding 
documentation. The tested moments included the second polar moment of 
area and the fourth polar moment of area, as recommended in the patent, 
plus the first moment of area. The first moment of area serves as a useful 
comparison, both because it is referenced in Kindersley’s writing and 
because it arose in Kindersley’s earliest light-transmission tests.

To provide useful context in which to assess the results of the re-
implementation test, a brief aside to look at the various moments follows 
below.

4.2.1 Moments compared
Loosely speaking, a moment can be defined as any measurable quantity 
multiplied by a distance; the precise definition varies between 
mathematics, physics, and engineering — distinctions which complicate 
the discussion of LOGOS, because the published material was often written 
by Kindersley with an audience of non-scientists in mind. Thus, the 
descriptions of moments in the texts fluctuates between the disciplines, 
referring at times to ‘inertia’ (an engineering concept), at other times to 
‘mass’ or ‘gravity’ (a physics concept), and at still others simply to ‘area’. 
Fortunately, the LOGOS patent is specific in the formulas required, and 
internal project correspondence is consistently more rigorous in its use of 
terminology.

In two-dimensional geometry (as was implemented in LOGOS to 
evaluate letterforms), the moments used are infinitesimal measurements, 
which are summed up over the entire shape with a double integral.
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The x and y coordinates for the 
centroid of a form are found by 
calculating the first moment of 
area for x and y. The centroid is 
analogous to the centre of mass 
but notably, as in this example, 
may lie in an unfilled region 
(illustration by the author).

Figure 4.1

The first moment of area is the simplest, summing up merely the binary 
yes-or-no of whether the infinitesimal shape is empty or filled at each 
point. That results in the centre of area (or centroid) for the shape. (See 
figure 4.1)  The x and y coordinates are given by the formulas:

If a letterform were cut from solid material of uniform depth and 
density, then the centroid would be the point upon which the form would 
balance. This notion of balanced areas has an intuitive appeal relating it to 
optical balance as discussed in the literature. More directly, the centroid 
was also the point found by Kindersley’s mechanical measurements of light 
transmission: equal areas to the left and right transmit equal amounts of 
light to the left and right. (See figure 4.2) 

Kindersley concluded from the light-transmission tests that the first 
moment of area did not suffice to determine the optical centre-points of 
forms, so the computational method in LOGOS was then switched to 
measuring the second polar moment of area. This moment sums up the 
infinitesimals in the shape multiplied by their distance (r) from the 
centroid, squared:

When this also failed to produce satisfactory results, the project switched 
to the fourth polar moment of area, which sums up the infinitesimals in 
the shape multiplied by their distance (r) from the centroid, raised to the 
fourth power:

In both moments, the distance r to the centroid can be re-expressed in x 
and y coordinates by the Pythagorean theorem, which permits them to be 
calculated for any typeform directly from the contour information stored 
in a font file. (See figure 4.3)  

The resulting formulas are somewhat computationally expensive, but 
the method is complicated significantly by the fact that the polar moment 
(whichever is chosen) is calculated repeatedly. For each of x and y, 
separately, the method requires dividing the shape in two, calculating the 
moments of each half, comparing the results, then repeating that process 
with a new dividing line, recursively moving that line one way or the 
other, until the two halves return the same calculated value.

The polar moments of area are 
integrals over the entire form, 
based on the distance r measured 
from the centroid. In the second 
polar moment, the quantity 
integrated is r2 and in the fourth 
polar moment, the quantity 
integrated is r4. In both cases, the 
centroid of the form must be 
found first, adding computational 
complexity (illustration by the 
author).

See also figure 3.17 in chapter 3.

Figure 4.3
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A diagram of the light-
transmission measurement 
device used in Kindersley’s early 
research, preceding the software-
based approach of LOGOS 
(Kindersley 1973, p. 10).

Figure 4.2
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Thus, the point returned by the LOGOS method is not, itself, a 
measurement of the second polar moment of area; rather, it is the point 
(x,y) for which

• x divides the typeform vertically, where the left portion of the 
typeform computes a second polar moment of area around its 
centroid that is equal to the second polar moment of area in the 
right portion of the typeform computed around its centroid

• y divides the typeform horizontally, where the top portion of the 
typeform computes a second polar moment of area around its 
centroid that is equal to the second polar moment of area in the 
bottom portion of the typeform computed around its centroid

Figure 4.4 highlights this. The higher moments have the practical effect 
of shifting the dividing-line on the typeform in question, but higher 
moments are increasingly indirect in what they measure.

In the published material, Kindersley refers to this second polar 
moment of area as representing the moment of inertia, which it is 
analogous to in structural or mechanical engineering. In this engineering 
sense, the second polar moment of area measures a physical object’s 
resistance to a twisting force through its centre. So, by analogy, the M2 
point (as it will be called, for brevity, from here) could be said to represent 
the point around which each half of the typeform is equally resistant to 
twisting.

This resistance is, of course, purely an analogy, but typeface design 
regularly employs comparable analogies to other physical concepts: 
awkward letterforms may be called unbalanced, leaning forward or falling 
backward. So some analogous connection between the geometry of the 
shape and the physical world has value, up to a point. After all, type 
designers and readers alike know that gravity is not actually pulling 

In the first image, the vertical lines through the centroid, M2 point, and M4 point of the letterform are shown (left to right). The second 
image shows the letterform split into two pieces at the centroid line: the resulting blue pieces have equal areas. The third image shows 
the letterform split into two pieces at the M2 line: each of the resulting pieces computes to the same second-polar-moment-of-area value, 
when those second polar moments are each calculated with respect to the centroid of that piece (shown as black dots). The fourth images 
shows the same effect for the M4 point and the fourth polar moments of area. The same properties would hold true for splitting the 
letterform horizontally through the centroid, M2 point, and M4 point (illustration by the author). Font shown: Yrsa.

Figure 4.4

M2(left)
M2(right) M4(left) M4(right)
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letterforms toward the baseline; the asymmetric forms like P and r do not 
fall over, c does not roll onto its left side, and the dots above i and j remain 
suspended. The analogy appeals to everyday experiences readers know 
from the physical world, but it has its limits.

The fourth polar moment of area point (called M4 from here) does not 
have a meaning with any clear analogue to physical forces as did the M2 
point, however. It can be stated that the M4 point is more strongly 
influenced by how much of a shape’s area is distributed towards its 
extremes rather than concentrated at the centre, but any connection to 
the physical world akin to gravity or inertia is obscure at best. As noted in 
chapter 3 § 3.4.1, Kindersley was not entirely convinced that the M4 point 
was the ultimate solution and explored the possibility of adopting ‘higher 
power’ moments, at least for the more problematic letterforms.

This raises an important question for implementing the LOGOS centre-
point component in a new context. If the primary rationale for choosing 
the M4 point or a higher-moment point instead of the M2 point was that 
the M4 point produced more acceptable results when it was further applied 
to LOGOS’s characteristic-rectangle component, then the M4 point might 
not be the ideal choice when the characteristic-rectangle component is not 
used.

4.2.2 Analysis of the re-implementation tests
Examining the results of testing the LOGOS centre-point reimplementation, 
it is apparent that the choice of mathematical moments is, indeed, pivotal. 
The M4 point, preferred by LOGOS, is consistently closer to the outer 
boundary of the letterform in each open-counter typeform (e.g., closer to 
the right for c). This was expected based on Kindersley’s account; as noted 
earlier, the M4 point appeared to have been adopted in LOGOS precisely 
because Kindersley found the M2 point consistently too far inward for 
open-counter and unbounded letterforms like c and L.

In lighter weights and sans-serif styles, particularly, the fourth polar 
moment was observed to often be quite close to the outer edge of the open 
counter. Mathematically, this is unsurprising, because the M4 point is 
highly sensitive to forms where most of the shape is concentrated at the 
extremes and little or none of the shape is found at the centre.

This high sensitivity to what happens at the edge of open counters may 
have contributed to the LOGOS project’s decision to start masking and 
scaling the letterforms before performing the moment calculations. 
Without the masking and scaling, it is hard to say that many type designers 
would consider the M4 point in figure 4.5 the optical centre-point of the 
letter.

Another feature of the M2 and M4 points also stood out in the test 
results. If vertical lines are drawn through the M2 and M4 points, the lines 
were observed to be within the closed regions of the typeforms for almost 
all forms, but were observed to be consistently in the open regions for 

In heavier weights, the centroid 
(marked in blue) can be located in 
the interior region of the 
letterform even in open-counter 
forms, while the M2 point (in 
gold) and M4 point (in red) are 
consistently located in the open-
counter region (illustration by 
the author). Font shown: Yrsa 
Bold.

Figure 4.6

The M4 point of c in Alegreya 
Sans. When decoupled from the 
characteristic-rectangle method, 
it is debatable whether the M4 
point still matches expectations 
for an optical centrepoint 
(illustration by the author).

Figure 4.5
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open-counter and concave-profile forms. Notably, this correlation was 
observed across all weights and styles tested. In contrast, the centroid was 
often located within the closed regions of open-counter and concave-
profile forms in heavier weights and condensed styles. (See figure 4.6, over 
page)

Based on the consistency of this effect, it was conjectured that the M2 or 
M4 line might prove useful as a practical test to use for classifying 
typeforms as open-counter forms. As was noted in chapter 3, an objective 
means for determining which typeforms should be classified as open-
counter forms would be useful for algorithms implementing axiom L–7, 
because other forms (such as t) may be ambiguous.

The M2 and M4 points were compared to determine which would be 
more reliable for this purpose. In the tested typefaces, the M4 point can be 
observed to be pulled out towards the extremes in symmetrical typeforms, 
while the M2 point remained consistently closer to the centroid. This effect 
may be explained by the M4 point’s high sensitivity to wide apertures, 
coinciding with slight asymmetries in the construction of the letterforms. 
(See figure 4.7)  Regardless of the cause, the effect contradicts intuition, 
which would predict a generally symmetrical form to have an optical 
centre-point near to the centroid. It was decided that this effect makes the 
M4 point less reliable than the M2 point for use in a rule to test for open-
counter form classification.

Stated more formally, the conjectured rule is: 

If there is any horizontal beam drawn from the outside of the profile that 
intersects the vertical line through the M2 point without first crossing a closed 
region, then the profile is considered an open-counter profile.

When this rule was applied to the lowercase Latin letters of the tested 
fonts, the letterforms found in the standard lists of open-counter forms 
popular in the literature (a, c, e, k, s, x, and z ) were consistently classified 
as featuring open-counter profiles, joined by two-storey constructions of g 
and, in certain designs, t. (See figure 4.8) 

The centroid (marked in blue) 
and M2 point (in gold) often 
appear close together in 
symmetrical letterforms, but the 
M4 point (in red) can be pulled 
outward by even small optical 
compensations (illustration by 
the author). Font shown: Slabo  
27px.

Figure 4.7

Using the M2 line to classify 
profiles as open-counter profiles. 
Green arrows indicate where a 
horizontal beam from the outside 
intersects the M2 line, meeting 
the test to classify the profile as 
an open-counter profile. Note 
that t on the top row meets the 
condition (albeit barely), whereas 
the t on the bottom row does not.  
Also note that on the top row, the 
left profile of z on does not meet 
the test, but the right profile does 
(illustration by the author). Fonts 
shown: top row: Source Serif 4; 
bottom row: STIX Two Text.

Figure 4.8
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The results for the capital Latin letters were comparable: when the M2 
point was calculated for the full height of the letters, commonly-cited 
letterforms (C, E, G, S, and Z) were consistently classified as featuring 
open-counter profiles, joined by K in certain designs. There was more 
variety observed in the results for calculating the M2 points of the capital 
letters between the baseline and the x-height (as the literature suggests 
might be preferable for fitting capital letters to lowercase letters). For 
example, in heavier weights or designs with prominent serifs, E was 
sometimes not classified as an open-counter form by the rule.

Although this is not conclusive evidence that the classification rule 
works, it was considered plausible enough to warrant testing in 
conjunction with a fitting algorithm. In particular, it was hypothesized that 
the rule might be useful for an algorithm to automatically determine if 
forms with common alternate constructions (such as a and g) should be 
classified as open forms without requiring user intervention, as well as to 
provide similar classifications for symbols and other typeforms.

4.3 Investigations of open-counter measurements

Implementing the above rule to test for open-counter forms in a fitting 
algorithm establishes a link between Axiom L–4: Triplet Centring and 
Axiom L–7: Concave Profile Truncation. Further exploration of the link 
suggested that potentially other interesting results could follow. In chapter 
3, it was noted that the unresolved questions for implementing Axiom L–7 
were how to classify forms as open-counter forms and how to 
appropriately reduce the measured area of the open counter such that part 
of its area is counted as internal space and part of its area is counted as 
external space.

One of the techniques used by prior fitting-automation 
implementations to reduce the measured area of the internal counter is 
cutting off the measured area at some chosen distance from the outside 
edge. HT Letterspacer provides a fixed-distance parameter for this 
technique, measuring all letterforms from their extrema in to the same 
distance. (See figure 4.9)  Published images showing Black Spacer’s 
measurements of open counters appear to show a similar technique, with 
all open-counter forms measured inward to the same distance.1 

For HT Letterspacer, the use of a fixed-distance measurement into the 
open counter is an acknowledged limitation. A feature request to enable 
changing the measurement distance on a per-glyph basis was made on 
GitHub in 2017 and later confirmed by HT Letterspacer’s lead developer 
Andrés Torresi (Waxweiler and Torresi, 2018), although a per-glyph 
distance has not yet been implemented in the program. In the feature 
request, Nikolaus Waxweiler said that the fixed-distance parameter 
produced unacceptable results for l designs that feature a ‘tail’ or out-
stroke on the right, and Torresi replied that allowing per-glyph 

HT Letterspacer measures all 
inter-letter areas from the edge 
of the form in to a fixed distance; 
this includes measurement in 
open counters (HT Letterspacer 
2016).

Figure 4.9

1. See chapter 3, figure 3.23.
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measurement distance would also improve results for symbols. The brief 
discussion of the feature request does not concern how to determine the 
appropriate distance for a given form.

As implemented in HT Letterspacer, the fixed measurement distance is 
defined in proportion to the x-height of the font. This likely explains why 
Waxweiler highlighted l, a single-stroke form, as problematic: with the 
fixed measurement distance defined in proportion to the x-height, a value 
selected to be ideal for average-width typeforms could be too large for 
narrower forms or too small for double-width forms. But the measurement 
distance has the greatest impact on open-counter and concave-profile 
forms, so a sub-optimal choice for the measurement distance might not be 
noticed in the majority of letterforms.

In light of the link established between the L–4 and L–7 axioms for 
classifying typeforms as open-counter forms, it was convenient to also 
investigate whether the same link would provide insight into the question 
of choosing an optimal measurement distance. If there is a natural 
boundary within an open counter between the internal and external space, 
then it would be reasonable to expect that boundary to be related to the 
optical centre of the form. In other words, wherever the true optical centre 
of the open-counter form lies (and however that true optical centre might 
be defined), the area further behind the optical centre must be more 
internal to the form than the area outside the optical centre.

In the above rule, the vertical line through the M2 point functions as the 
determiner for classifying a typeform as an open-counter form, and does 
so on the theoretical basis that the M2 point represents the optical centre-
point of the form — or, at the very least, an optical centre-point. If the M2 
point is accepted to represent the optical centre-point, then it is worth 
investigating whether the M2 point is also relevant to measurement depth 
for open counters.

4.3.1 Analysis of the open-counter measurement tests
Consequently, experiments were conducted with a modified build of HT 
Letterspacer, using the x position of the M2 point as the measurement 
depth for open-counter forms. The preliminary experiment used the M2 
line as the open-counter measurement distance and counted the full area 
up to the measurement distance as exterior space, applying the equal-
inter-letter-areas axiom to determine the sidebearing for the open-
counter profile just as HT Letterspacer does for all other profile shapes. 
The results of those experiments consistently moved the sidebearing 
generated for the open-counter profile too far inward: significantly further 
inward than the sidebearings in manually-fitted typefaces, and often into 
negative numbers.

That pattern suggested that measuring the entire area to the M2 line 
and counting it all as exterior space was insufficient. To account for this, 
subsequent experiments coupled measuring in to the M2 line with the 
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other common techniques for addressing open counters: clipping in to the 
counter at an angle and scaling the resulting measurement by a fractional 
multiplier.

Promising initial results were seen with clipping in to the open counter 
at 90 degrees and scaling the measured area inside the open counter down 
by 50%. (See figure 4.10)  Both the clipping-in technique and the fractional 
scaling technique have been employed by prior open-counter work but, 
just as importantly, both techniques align in general with how open-
counter fitting is discussed in the literature. Fred Smeijers noted, for 
example, that the area inside a open counter was ‘double function’ and that 
the protrusion of serifs provided a cue for the eye to cut off the area inside 
and outside the counter (Smeijers 1996, p. 32).

The tested formulation of this experiment is perhaps blunt in its 
application of these principles. Measuring 50% of the area in the dual-
function zone as internal space and 50% of the area as external space is 
arguably a naive interpretation of ‘dual function’ but it does establish an 
unbiased starting point and a tunable parameter. Similarly, clipping in at 
90 degrees is pragmatic, because it is simple to trace and retains more of 
the area to be measured inside the open counter, but it is also in agreement 
with Smeijers’s incidental observation that the serifs at the border of the 
double-function zone form an implied boundary. Neither should be 
assumed to be the ideal ratio for all typeface designs.

4.4 Constructing a composite algorithm

Based on the results of the experiments with automatically classifying 
open-counter forms and employing centre-points to define open-counter 
measurement, it was decided to investigate incorporating those techniques 
into a testable algorithm. Because the two experimental techniques 
together do not generate sidebearings for a complete set of letterforms, 
they must be combined with implementations of other axioms from the 
Latin text fitting model.

As noted in the introduction to this chapter, the strategy employed by 
this research has focused on finding the minimal set of axioms that covers 
the sidebearings of the desired set of letterforms, in part because that 
strategy permits a clearer evaluation of the results for individual 
typeforms and of the successfulness for individual axioms.

Revisiting the minimal set of axioms described at the beginning of the 
chapter, an algorithm designed to fit the Latin letterforms could start with 
the internal area of a key form (n or H) and arrive at sidebearings for all of 
the straight profiles using just Axiom L–8: Fixed-Height Measurement (to 
set the appropriate measurement height) plus axioms L–6: Interior-
Exterior Balance, L–1: Profile Similarity, and L–2: Profile Reflection (to 
propagate the standard inter-letter area from the key form to all of the 
similar profiles). Adding Axiom L–3: Inter-letter Area Equality allows the 

Above: measuring the area inside 
the full open counter to the M2 
line and considering it all 
external space resulted in overly 
close sidebearings for open-
counter profiles.

Below: clipping inward at 90 
degrees, and scaling the 
measured area bounded by the 
open-counter (shown in green) 
down by 50% resulted in more 
reasonable sidebearings 
(illustrations by the author).

Figure 4.10
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algorithm to then apply the standard inter-letter area used for the straight 
profiles to the round profiles. Adding Axiom L–12: Diagonal Profile Limit 
allows the algorithm to provide sidebearings for the diagonal profiles.

At that stage, applying the experimental rules derived in this chapter 
for axioms L–4: Triplet Centring and L–7: Concave Profile Truncation can 
then be used to classify the remaining profiles as either convex profiles 
that can be handled by applying the standard inter-letter area component 
or concave profiles that should then be handled by the open-counter 
component derived in this chapter.

At that point, the algorithm has produced a set sidebearings for each of 
the letterforms, but it has not used every available axiom (such as the 
exception axioms L–9: Single-Stroke Supplement, L–10: Adjacent Extender 
Supplement, and L–15: Upward Aperture Reduction), which might be 
important for some typeface designs. An ideal, complete algorithm that 
incorporated as many axioms as possible might be anticipated to produce 
more successful fitting for a wider assortment of typeface styles. For this 
research, the subject of complexity was considered, and determination of 
how complex to make the algorithm raised vital questions about its 
practical testability.

4.4.1 Testability and complexity concerns
This project has defined successful letter fitting in terms of its acceptance 
with readers when a fitted typeface is used to set text for continuous 
reading. Consequently, the testing approaches envisioned from the early 
stages of the project (including the final testing methodology to be 
described in chapter 5) have anticipated that the typefaces refitted by 
algorithmic means would be tested in use, to typeset readable text, rather 
than by evaluating generated sidebearings in isolation.

With the setting of real-world text comes complexity, however. For any 
particular pair of letters in an algorithmically fitted typeface, the more 
axioms and tunable parameters that were involved in the generation of the 
space ultimately seen in the typeset real-world text, the more independent 
variables there are which potentially contribute to whether or not a reader 
considers it acceptable. One possible means to simplify this issue might be 
to construct an algorithm that applies only one axiom or tunable 
parameter for each sidebearing. Upon further consideration, that can be 
identified as impractical, because every letter pair will result in some 
permutation of axioms or parameters. Some compromise needs to be made 
between constructing a complex algorithm that incorporates a refined 
method for fitting and a simple algorithm that makes problems easy to 
identify.

In this project, the forms of greatest interest are those affected by the 
techniques developed in this chapter, for automatically classifying forms as 
open-counter forms and for determining sidebearings for open-counter 
forms by measuring into the counter an amount based on the centre-point 
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formula. To prioritize analysis of those techniques, it was decided to focus 
the test algorithm on those forms, and limit the test algorithm’s 
complexity.

First, the test algorithm was used to generate sidebearings for the 
capital letters by fitting the capitals to lowercase letters. The more 
complex, ideal version of the algorithm would generate default 
sidebearings for the capitals by fitting the capitals to lowercase, but also 
generate a second set of sidebearings for capital-to-capital text and apply it 
in an OpenType kern or cpsp GSUB feature.

Similarly, the test algorithm was used to generate sidebearings for the 
numerals by fitting the numerals to lowercase letters. As will be seen in 
chapter 5, the most common occurrences of numerals in the sample texts 
is within sentences. Here, too, the ideal version of the algorithm would 
generate a default set of sidebearings for the numerals by fitting the 
numerals against the lowercase letters and a second set of numeral-to-
numeral sidebearings applied in an OpenType feature.

Third, it was decided not to generate new sidebearings for non-
alphanumeric symbols and punctuation. The main reason for this decision, 
as mentioned in chapter 2, is that the literature and prior work of fitting 
does not record a detailed enough discussion of fitting these typeforms to 
construct a complete approach.

Fourth, it was decided not to implement kerning. Several distinct 
reasons factored into this decision. One, and perhaps the most general of 
the reasons, there is essentially no limit to the number of possible kerning 
lookups that could be implemented, so any kerning feature added to a 
typeface would constitute a large set of independent decisions about 
letterform pairs, potentially obscuring analysis of the techniques of 
greatest interest. Certainly it would interfere with the analysis to manually 
make any kerning decisions; the only permissible method would be to 
generate kerns as a step in the algorithm. Two, although several of the 
exception axioms (L–9: Single-Stroke Supplement, L–10: Adjacent Extender 
Supplement, and L–15: Upward Aperture Reduction) could be implemented 
as a kern feature by the algorithm and were considered, it was observed 
that those kerning features would still interact with the letterforms of 
greatest interest for the analysis, again making evaluation of the algorithm 
more difficult. Three, these exception axioms (L–9, L–10, and L–15) each 
introduce a separate user-tunable parameter (the space modifier for 
single-stroke forms, the space modifier for adjacent extenders, and the 
space modifier for upward-open counters), adding more independent 
variables.

This set of compromises for the testable version of the algorithm was 
not easy to establish, but it ensures that the letterforms of greatest interest 
— those which have been refitted by the new techniques discussed in this 
chapter — will appear in words surrounded by other letterforms also fitted 
by the algorithm, which are therefore expected to be most congruous.
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The standard inter-letter area is divided equally between the left and right profiles of n, also as per Axiom L–6 and Axiom L–3: Inter-
letter Area Equality.

The downside to employing this compromise for a test with readers is 
that it cannot ensure that the generated fitting used will not stand out to 
readers as noticeably different from instances of unmodified fitting 
retained from the original version of the typeface or as noticeably different 
from instances where a manual typeface-design fitting process would have 
applied a kern.

Listing 4.1 (over page) provides a step-by-step overview of the test 
algorithm, accompanied by figure 4.11 below, which depicts visually how 
the algorithm might proceed to address the typeforms in an input 
typeface.

The interior area of the key letterform n is measured, and used to calculate the standard inter-letter area. This utilizes Axiom L–6: 
Interior-Exterior Balance.

The left and right profiles of the remaining letterforms are examined to classify them as concave or not. The open-counter rule (detailed 
in § 4.3) makes this classification in accordance with Axiom L–4: Triplet Centring.

Non-concave profiles are handled in the same manner as n, applying the standard inter-letter area as per axioms L–1: Profile Similarity 
and L–2: Profile Reflection. Shown in orange, for illustrative purposes, are cases where this computation might result in a sidebearing less 
than the minimum sidebearing parameter, Pd, which was chosen earlier.

Concave profiles are handled using the open-counter procedure developed in § 4.3. This procdure applies Axiom L–7: Concave Profile 
Truncation. Again shown in orange are cases where this computation might result in a sidebearing less than the minimum sidebearing 
parameter, Pd.

Any sidebearings less than the minimum sidebearing parameter, Pd, can be capped at Pd. This implements Axiom L–12: Diagonal Profile 
Limit, as well as reducing the likelihood of collisions and enclosures. 

Figure 4.11
A hypothetical overview of how the composite algorithm proceeds through a set of letterforms. Each line depicts the state of the 
letterform set after the completion of a subsequent stage of processing. At the input stage, no sidebearings have been determined.

The algorithm's five tunable parameters should be established before processing any of the letterforms. The question of choosing 
appropriate default values is discussed in § 4.4.2.

Pi   (Pb,Pt)   Pa   Pc   Pd→

This example depicted the cascade of operations in groups of profiles; in practice it might be more effective to process letterforms one at 
a time, rather than attempting to address all concave-profile forms in a distinct stage or to cap all sidebearings at the minimum-
sidebearing parameter at the end. It should also be noted that the depicted grouping of the example letterforms as concave or non-
concave is illustrative only.
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Listing 4.1
Composite Latin Sidebearing Algorithm (simplified). Given a set of Latin letterforms comprising a well-designed typeface as input, 
determine the left and right sidebearing (lsb and rsb) for each letterform.

A1: [Initialization] Choose values for the tunable parameters

Pi: The multiplier to convert the interletter area measured on the key letter n into 
the standard interletter area. See the discussion in section 4.4.2 for default 
values.
Pb and Pt: The bottom and top bounds between which measurements are made. By default, 
set Pb to the baseline and set Pt to the x-height.
Pa: The angle at which to clip in when measuring the areas inside open counters. By 
default, set Pa to 90 degrees.
Pc: The fractional multiplier used to scale down the areas measured inside open 
counters. By default, set Pc to 0.5.
Pd: The minimum sidebearing distance. By default, set Pd to zero.

A2: [Determine the standard interletter area] Measured from the interior area of key 
letter n

Measure the An, area on the interior of n, between Pb and Pt.
Set the standard interletter area S = An · Pi

A3: [Calculate standard sidebearings for n] Assign sidebearings that give half of S 
to the left and half of S to the right side of n

Measure the exterior area El on the left side of n, between Pb and Pt, from the left 
extremum to the contour of the letterform. Subtract E from the one-half of S that has 
been allocated to the left side. Divide that value by the height of the measurement 
zone (between Pb and Pt), and result is the left sidebearing.

Set lsb(n) = ((0.5 · S) - El) / (Pt - Pb)

Repeat that procedure for the corresponding measurements on the right side of n to 
determine the right sidebearing.

Set rsb(n) = ((0.5 · S) - Er) / (Pt - Pb)

A4: [Classify the side profiles of remaining letterforms] For each letterform 
remaining in the set, determine whether the each of the left profile and right 
profile of the letterform is considered concave, using the following sub-procedure:

    B1: Find the M2 point of the letterform. See section 4.2.1 for details.

    B2: If any horizontal beam can be drawn from the left extreme of the letterform
    that intersects the vertical M2 line, then the left profile is considered
    concave. Otherwise, the profile is considered not concave.

    B3: If any horizontal beam can be drawn from the right extreme of the letterform
    that intersects the vertical M2 line, then the right profile is considered
    concave. Otherwise, the profile is considered not concave.

A5: [Calculate sidebearings for standard profiles] For each profile classified as not 
concave in step A4, calculate the left or right sidebearing as in step A3.

This step should set either the lsb or the rsb for the form in question. Unlike step 
A3, the left and right profiles are handled separately to account for letterforms 
where one profile might be concave but the other profile not.
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Thus, either:

Set either lsb(form) = ((0.5 · S) - El) / (Pt - Pb)

or:

Set rsb(form) = ((0.5 · S) - Er) / (Pt - Pb)

A6: [Calculate sidebearings for concave profiles] For each profile classified as 
concave in step A4, divide the profile's area into its exterior and interior 
components. Scale the interior component's area by the multiplier Pc. Use the 
resulting total area, in place of the exterior area, to calculate the sidebearing.

    C1: Temporarily divide the area of the profile by drawing a chord between the
    extremum above the M2 point of the letterform and the extremum below the M2 point.

    C2: Measure the exterior area E on the side of the profile, between Pb and Pt,
    from the extremum to boundary formed by the contour of the letterform and the
    temporary chord.

    C3: Measure the interior area I bounded on the sides by the M2 line and the
    temporary chord and bounded above and below by the contour of the letterform,
    cutting in at angle Pa from the vertical.

    C4: Scale I by by the multiplier Pc and add E, giving the adjusted concave-
    profile area C.

    Set C = (Pc · I) + E

    C5: Use C to calculate the sidebearing, replacing the value of El or Er as were
    used for non-concave profiles.

    Set either lsb(form) = ((0.5 · S) - C) / (Pt - Pb)

    or rsb(form) = ((0.5 · S) - C) / (Pt - Pb)

A7: [Apply minimum sidebearing distances where needed]

If lsb(form) <  Pd, set lsb(form) =  Pd

If rsb(form) <  Pd, set rsb(form) =  Pd

A8: [Iterate until all sidebearings have been calculated] Remove each completed 
profile from the input set and repeat from step A4 with the next profile. When no 
profiles remain in the input set, the procedure is complete. 

Listing 4.1, continued
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4.4.2 Neutral default values for tunable parameters
The testable form of the composite fitting algorithm includes a set of five 
tunable parameters:

• the ratio between the interior space of the key letter (n or H) 
and the standard inter-letter area

• the upper and lower heights between which the inter-letter 
areas are measured

• the clip-in angle used to measure the area within open counters
• the fractional scaling factor applied to the measured area within 

open counters
• the minimum space to be assigned for diagonal forms 

As discussed earlier in section 4.3, the initial implementation of the open-
counter measurement technique was set to a clip-in angle of 90 degrees 
and a scaling factor of 50%. For a first implementation, those numbers 
were selected to be neutral defaults and permit further exploration. The 
upper and lower heights for measuring inter-letter areas were set to  the 
baseline and the x-height of each typeface. This pairing is the default for 
inter-letter area measurements as Axiom L–8: Fixed-Height Measurement 
is typically framed in the literature but, as discussed in chapter 2, is also 
tunable.

Selecting neutral default values for the other parameters required more 
careful consideration. It was noted in chapter 2’s discussion of the key 
letterform measurement axiom (L–6: Interior-Exterior Balance) that many 
sources in the literature assert that there is a fixed relationship between 
the interior space of the key letterform (n or H) and the standard inter-
letter area for any given typeface, but that the ratio between the two is not 
necessarily 1:1. 

Walter Tracy advised a ratio of 19 or 19.5 units of inter-letter area for 20 
units of key-letterform area (a factor of 0.95 to 0.975), but it must be 
remembered that he was writing about normal weight, upright serif roman 
designs (Tracy 2003, p. 74). During the development of the Falcon typeface, 
William A. Dwiggins wrote in a letter to Chauncey Griffith that he had 
established the desired ratio as .033 to .0335 (a factor of 0.98507), although 
that measurement was made with m as the key letter (Dwiggins 1940, p. 3). 
Based on the accompanying illustrations, Dwiggins was also referring to 
the upright (serif) roman. Other sources attest that sans-serif designs and 
heavier or lighter weights will typically exhibit a different ratio between 
the key letterform and the standard inter-letter area, but no sources were 
identified that provided advice on choosing the ratio.

To determine a reasonable default value suitable for more weights and 
for sans-serif designs, analysis was performed on the top 100 most-used 
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Latin text fonts from Google Fonts (Google Fonts 2021).2 Each font’s weight 
was recorded as a ratio between the width of a lowercase vertical stroke 
and the x-height, rather than relying on the CSS weight value. Also 
recorded were the contrast ratio (calculated as the ratio between the 
thicknesses of vertical and horizontal strokes in the lowercase o), the 
length of lowercase serif, and the width of the internal counter of n. This 
data set was analysed using ordinary least squares multiple linear 
regression.

This regression technique results in a formula that takes the 
independent variables (here, the weight, contrast ratio, serif thickness, and 
internal counter width of each font) as input and returns the dependent 
variable (here, the ratio between the internal area of n and the standard 
inter-letter area), modelled on how the variables behave in the data set. 
The regression analysis on this set of Google Fonts data resulted in an R-
squared value of 0.709, meaning that the input variables can collectively 
account for about 71% of the variability in the ratio between the internal 
area of n and the standard inter-letter area. (See Appendix A)

This is not a particularly robust result, and indicates that the variables 
used leave considerable leeway. However, the resulting formula was used 
solely to provide default values for the ratio of the key-letterform’s internal 
counter to the standard inter-letter area, with the understanding that the 
ratio could be used as a tunable parameter in the fitting algorithm. As was 
discussed in chapter 2, prior attempts to create a predictive model for the 
sidebearings of letterforms through statistical analysis of measurements 
made on a corpus of typefaces have generally not proven useful; it should 
be noted that the linear regression here was performed with a goal 
distinctly different in both scope and meaning. It is to be expected that the 
inter-letter area ratio would be a tunable parameter of particular interest 
to typeface designers, precisely because it has an effect on all letterforms. 
A default value needs only to be reasonable — and controls made available 
to the typeface designer — for the mechanism to be useful.

Establishing a reasonable default value for the minimum space to be 
assigned to diagonal profiles proved to be less clear-cut. The technique of 
applying linear regression against a large set of existing typefaces, when 
repeated with the sidebearings of v as the dependent variable, did not 
yield a plausible model. Several attempts were made, but no set of 
independent variables produced a linear regression model with an R-
squared value above 0.30. This may be due to the fact that there are 
multiple, incompatible viewpoints among typeface designers. Some 
designs allow the minimum sidebearings of v and other diagonal 

2. The selection criteria also excluded monospace fonts, fonts from the ‘display’ and handwriting 
categories, and fonts featuring only small-cap letterforms.
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The different angles of the sides 
of the serifs on x and v will create 
a triangular region of space 
between the letterforms even if 
both sidebearings are set to zero 
(illustration by the author). Font 
shown: Literata at optical size 11, 
enlarged.

Figure 4.12

letterforms to be negative, some do not. Some designs permit negative 
sidebearings but compensate with extensive kerning.

From analysing typeface samples it can be observed that the minimum 
space value matters most in serif designs, where there is risk of collisions 
that could result in letterforms being misidentified. Thus, in a sans serif 
design, the diagonal letterforms may still receive the minimum 
sidebearing value, but that value will be larger on average than what would 
be found in serif designs, and the larger values exhibit a larger tolerance 
making them more difficult to characterize with a formula.

It can also be observed by examining samples that the ‘minimum space’ 
as it is framed in the axiom must ultimately refer to a two-dimensional 
area, because there are designs where the shapes of serifs, in-strokes, and 
out-strokes leave a visible gap between adjacent diagonal forms even when 
the sidebearings are set to zero. (See figure 4.12)  Although the axiom often 
frames the minimum as a linear distance, that may be a simplification out 
of pure convenience.

Other factors outside the design itself, such as the aesthetics and norms 
of the era in which the typeface was designed, may also play a role; further 
study is surely warranted. For the purpose of establishing a neutral default 
value for the minimum-space parameter in the test algorithm, a simple 
average of the sidebearings for diagonal letters, normalized to the width of 
the vertical strokes of lowercase letters, was taken separately for serif and 
sans-serif designs. 

4.4.3 Rival algorithms
A final consideration investigated at this stage was whether testing the 
results of the composite algorithm only against the unmodified, manually-
fitted version of the same typeface would provide sufficiently detailed data 
from which to draw useful conclusions about the components of the tested 
algorithm. The central research question of this project is to what extent 
an algorithm can generate letter fitting that is considered, by readers, to 
be as successful as fitting determined manually. Testing the composite 
algorithm’s fitting results against the unmodified, manual fitting is 
therefore imperative.

The investigations of individual fitting axioms discussed in this chapter, 
however, revealed open-counter and concave-profile forms to be of 
particular interest. Consequently, it was decided to also implement a 
second, simpler letter-fitting algorithm to potentially serve as a rival (in 
the sense of ‘alternate treatment’) test condition.
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3. It must be remembered, however, that the kf algorithm was originally not used in standalone 
fashion. Instead, the hz-program suite would selectively alter the fitting of letterforms in conjunction 
with other typesetting operations (such as expanding or compressing letterforms and adjusting word 
spaces) to justify lines of text.

The algorithm selected for this purpose was the kf algorithm from 
URW’s hz-program suite. Like the composite algorithm, the kf algorithm 
applies a standard inter-letter area to every letterform, measuring 
between the baseline and the x-height. The kf algorithm differs by using o 
as the key letterform to determine the standard inter-letter area. As noted 
in the discussion of Axiom L–7: Concave Profile Truncation in chapter 3, 
the kf algorithm also clips in to open counters, but it considers the area 
measured to be entirely exterior space counted toward the standard inter-
letter area.

It was hypothesized that the composite algorithm would fare better in 
testing for the open-counter forms than would the kf algorithm due to the 
composite algorithm’s more detailed handling of open-counter forms. In 
addition, the kf algorithm was considered an appropriate choice because 
no quantitative studies of its performance are publicly available, despite 
the frequency with which hz-program is referenced in the literature.3

The design of the quantitative testing framework, test materials, and 
procedures is detailed in chapter 5.  
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5. Quantitative method for testing letter-
fitting algorithms

5.1 Testing approaches

Qualitatively assessing the letter fitting of a typeface is, traditionally, a task 
tackled by experienced typeface designers drawing on their practical 
expertise and personal judgment. But relying on a qualitative assessment 
by the researcher does not suffice for this project, due to the subjectivity of 
individual judgment. Furthermore, the research comprises applying fitting 
algorithms to multiple typefaces of varying design styles; attempting to 
consolidate subjective judgments made across stylistically different 
typefaces into a single conclusion compounds the subjectivity problem.

In order to draw meaningful conclusions about the algorithms, it is 
preferable to establish a method for making quantitative assessments that 
can identify the strengths and weaknesses of algorithms as well as 
observing positive or negative effects that might be caused by alterations 
to a particular algorithm. The central challenge for quantitative testing is 
developing methods that remain consistent with the definition of 
successful fitting established in chapter 1. The method proposed reflects 
the aggregate of assessments made by individual readers, and allows 
certain empirical observations to be made about how different test 
algorithms perform in those assessments.

5.1.1 Testing and evaluation approaches seen in prior research
Structured testing of letter fitting algorithms is rare. Individual developers 
of past letter-fitting automation tools often relied principally on their own 
judgment to gauge success. As a first approximation, this is a sensible 
approach, because it enables the developer to catch flaws early and to 
identify software bugs. But if it is employed as the sole or primary means of 
evaluating algorithms, it is susceptible to an undesirable skew favouring 
personal taste and, more importantly, unconscious observer-expectancy or 
confirmation biases.

Vendors of commercial letter-fitting automation tools often publicize 
their work through the use of typeset reference samples. Although these 
samples are intriguing as artefacts, they should be considered at best as 
promotional work, the content of which was chosen selectively and cannot 
be assumed representative of an impartial assessment.

In both the individual-developer and the commercial-vendor classes, 
some prior work also utilizes direct numerical comparisons of the 
sidebearings or kerns generated by an algorithm. How these comparisons 
are made and the significance assigned to them varies.

Several legibility and readability studies have examined the effects of 
altering the spaces between letterforms, but only by adding or subtracting 
space uniformly to all forms (i.e., typographic letterspacing), rather than 
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the fitting of typeforms individually. A number of these studies have 
focused on specific groups of readers, such as children (Reynolds and 
Walker 2004), low-vision readers (Beier et al. 2021) or readers with dyslexia 
(Galliussi et al., 2020; Łuniewska et al. 2022). Even when addressing the 
general reading population, the factors studied are often directed at the 
reading process, such as fixation time (Perea and Gómez 2012 A, B), word 
recognition (Perea et al. 2011; 2012), or letter recognition (Coates 2015). 
There have been studies that examine the impact of typographic 
letterspacing on reading speed (Chung 2002; Yu et al. 2007), although there 
is a curious tendency for those studies to test only with monospace 
typefaces, which are not typically regarded as optimal for continuous 
reading. Regardless of the participants or test designs, however, studies of 
typographic letterspacing have only limited applicability to the task of 
fitting individual typeforms in the typeface-design process.

There are, however, some prior examples of structured testing in letter-
fitting research. In 2007, Fernando de Mello Vargas tested Tracy’s and 
Sousa’s letter fitting systems on Adobe’s Minion and Myriad typefaces 
(Mello 2007). In 2014, Bojan Banjanin and Uroš Nedeljković tested Tracy’s 
and Sousa’s methods against the built-in automated-spacing feature of 
FontLab Studio 5, using a typeface designed in-house. The same year, they 
analysed the side-bearings of ten well-known commercial typefaces and 
attempted to derive a formula for the letterforms not covered in Tracy’s 
and Sousa’s methods (Banjanin and Nedeljković 2014 A, B).

Examining these structured-research cases in conjunction with self-
assessments of individual developers and commercial vendors, one can 
group the approaches according to the metric by which they measure 
success. In the broadest terms, all approaches to testing a fitting algorithm 
rely on evaluating the fitting produced by the algorithm against some 
target. The target could be another, explicit set of fitting values meant to 
represent a known-success or known-failure condition, it could be a 
specific text-setting or treatment (such as a specimen or reference 
document), or it could be an assessment made by a reader. Each of these 
approaches was considered for use as a testing methodology in this project.

5.1.2 Explicit fitting value assessments
Evaluating an algorithm based on its ability to produce a set of target 
fitting values is generally done by taking an existing typeface (one that 
was, presumably, manually fitted) and measuring how precisely the 
algorithm reproduces the original fitting. This technique was employed by 
Vargas, whose analysis noted to what degree the two test algorithms 
diverged from the original fittings on specific letterforms. Although his 
analysis discusses key letterforms and profile shapes, he did not publish 
the exact numbers and stopped short of drawing the final conclusions 
based on the differences, settling instead for recording visual observations 
about particular letterform and profile combinations. In contrast, Banjanin 
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and Nedeljković’s first paper focuses primarily on tabulating the numerical 
differences between the tested methods, presenting tables and radial plots 
of sidebearing values, but not showing any samples of the refitted 
typefaces. (See figure 5.1)

There is clarity in this comparative evaluation approach: the numerical 
measurements are concrete, generally unambiguous to make, and enable 
standard statistical tests to be applied. The approach also makes it possible 
to implement small changes to an algorithm and look for granular 
observations on how the outcome is affected by the changes.

However, this method rests upon a subtle assumption: that the original 
letter fitting in each test typeface is, in all cases, beyond improvement. 
This is a risky premise to begin with — one which cannot be universally 
guaranteed and which falls back on the researcher making a subjective 
judgment about the quality of each typeface chosen to be a target.1 If a test 
algorithm were to arrive at a fitting solution for some letter combination 
that readers might prefer over the original, then rejecting that result 
simply because it differs from the original is a step in the wrong direction.

More fundamentally, this assessment approach masks another concern, 
which is that (according to standard type-design practice) the original 
fitting of the typeface was determined by the original type designer 
conducting their own assessments based on their personal judgments. 
Consequently, the ultimate basis for concluding that a re-fitted typeface is 
successful has been delegated elsewhere, with the responsibility shifted to 
the personal judgments previously made by the typeface designer. 

Radial plots of the differences between sidebearings generated by competing algorithms (Banjanin and Nedeljković 2014 A, p. 446). For 
each letterform on the perimeter, the distance from the centre of the circle to its dot marker denotes the size of the form’s sidebearing in 
font units. The three methods tested were plotted together, distinguished by line style to make patterns or divergences more readily 
visible at a glance. Measured values are not indicated on the plots, but numerical tables were included in the paper.

Figure 5.1

1. Invariably, the test typefaces selected by a researcher are open to criticism, particularly on the 
question of whether they adequately represent high-quality design and fitting. Primarily, though, the 
risk is that the researcher would choose a set of test typefaces based on convenience rather than on 
typographic quality.
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Delegating responsibility in this fashion might suffice for a particular 
practical typeface project, but it risks overlooking or obscuring important 
insights that could be found when exploring and evaluating algorithms.

In addition, if mimicking the fitting of a particular type designer is 
established as the goal, then the results will invariably capture that 
designer’s idiosyncrasies and tastes, commingled with the fundamental 
principles. An algorithm that succeeds in reproducing Robert Slimbach’s 
letter fitting, for example, might fail significantly at reproducing Adrian 
Frutiger’s. 

Alternatively, some prior work begins by constructing a statistical 
model of the fitting values for a set of input typefaces and evaluates the 
algorithm by how closely its output conforms to or diverges from the 
average. This is the technique employed in Banjanin and Nedeljković’s 
second paper, which computed a fitting formula by averaging the 
sidebearings of ten popular fonts (Banjanin and Nedeljković 2014 B). Their 
results were inconclusive, but it is noteworthy that their statistical model 
consisted only of the sidebearing measurements for each letterform, scaled 
as a percentage of the sidebearings for n. The ten test fonts in their sample 
varied considerably in weight, stroke contrast, and proportion, but the 
model did not address those factors or document the selection of the 
typefaces. 

Peter Karow conducted a larger and more detailed statistical study in 
1993 as one part of his Schriftstatistik project. He amassed a data set of 
(among other measurements) the sidebearings, stroke widths, and counter 
widths of 10,000 typefaces in the URW library and analysed it numerically. 
In addition to incorporating detailed measurements on weight, width, and 
other typographic variables, the assembled data model normalized all of 
the measurements to the em-square of each font. Although the project 
reported to have found several reliable relationships between other facets 
of typeface designs (such as letterform proportions), it concluded that side-
bearings could not be predicted mathematically from those measurements 
(Karow 1993, p. 315). (See figure 5.2, over page) 

In one sense, several of the machine-learning projects discussed in 
chapter 2 are themselves statistical models compiled from measurements 
made on a set of test fonts; the distinction is that their stated goal is often 
an attempt to build a model that provides letter-fitting solution as its 
output, rather than building the model to serve as a standard against 
which letter-fitting results are judged. That is, if the model is detailed 
enough, then it encapsulates enough information to output letter fitting 
solutions simply by plugging in the inputs for a test font.

In practice, the neural networks developed by Kascenas2 were intended 
to output letter-fitting solutions, but the networks themselves were 
evaluated by comparing fitting generated by the networks against the 
original fonts’ sidebearings and kerning values (Kascenas 2017). It is also 
standard practice to segment the input data that is prepared for training a 

2. See chapter 2, § 2.2.3.
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neural network; the larger part of the data set is then used as the training 
material, and the smaller part held in reserve to use as test data. Kascenas 
employed this technique as well. The approach is well accepted in 
machine-learning research; for the present topic, it is mentioned not in 
criticism but simply to note that the final evaluation technique is still a 
comparison between the fitting algorithm’s output and the original font’s 
default fitting.

The accuracy and robustness of the statistical model is paramount in 
this evaluation approach, and a model that captures the full spectrum of 
typeface design seems, thus far, to have proved elusive to establish. This 
may be because of the sheer number of the typographic variables at play in 
the design of typefaces, or perhaps because any such statistical model must 
account for not only the typographic variables, but also with the shifting 
expectations, changing display and printing technologies, trends that were 
current when each individual typeface in the statistical set was published, 
and the personal idiosyncrasies of each typeface’s designer.

Perhaps a model fully capturing that level of complexity is possible, but 
it is, at least, a complicated task in its own right. Even so, the applicability 

Examples of scatterplots published in Schriftstatistik, plotting character sidebearings against other metrics for typefaces from the URW 
library. The quantity Bn represents the width between the vertical strokes of lowercase n. The vertical axes represent the left sidebearing 
distance if it was measured to the vertical stroke of n (rather than to the serif). The left plot shows sans-serif typefaces, with the text 
commenting ‘the left side bearings show a clear connection with the widths of the white counter’ (Karow 1993, p. 339). The right plot 
shows serif typefaces, of which the text says ‘Apparently, the typeface designers are having a hard time agreeing on how to handle the 
serifs’ (ibid., p. 340), seemingly concluding that the plot does not reveal a relationship between the left sidebearing distance and Bn, a 
conclusion reiterated in the chapter summary that ‘no connection at all’ was seen between sidebearings and counters in roman typefaces 
(ibid., p. 315). 

The book reproduces many such plots, but regrettably it does not provide the raw measurement data or report linear regression models, 
although regression is referred to in the text and some of the plots include regression lines. For others, such as these, only the image and 
summary conclusions are provided. 

Figure 5.2
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of a statistical model is restricted to the scope of the typefaces measured to 
build the model. Optimizing an algorithm for average fitting does not 
supply insights into the fitting process that can be easily applied to styles 
that depart from the norm found in the data set, and cannot be 
extrapolated to novel designs.

More immediately, though, gauging the success of a fitting algorithm by 
comparing it against a statistical model can determine only the degree to 
which the fitting produced matches or diverges from the average fitting. 
But the ‘average’ fitting is only precisely correct for the typefaces exactly 
average on each of the variables in the statistical model, and is not 
necessarily the most successful fitting for any other typeface. 
Furthermore, targeting a statistical average must take into account all of 
the individual forms in the typeface. It is not clear how a refitted typeface 
that is statistically average on some forms and different on other forms 
should be judged. As is the case for attempting to reproduce the original 
fitting, attempting to target a statistical match risks concealing new 
insights from discovery.

5.1.3 Reference document assessments
Although less frequently seen in a research context, the use of reference 
documents to assess the output of a fitting algorithm is a common 
approach in promotional materials and public discussion forums. Often, 
the same text will be shown as typeset with two versions of the same 
typeface: one that uses the original fitting and the other showing the 
revised fitting.

Mello’s comparison of Tracy and Sousa’s fitting models, as noted above, 
included a direct comparison between the original and algorithmic  fittings 
for the typefaces in his evaluation. However, Mello also employed side-by-
side comparisons of sample paragraphs and made separate observations 
about the results of the fitting algorithms based on evaluations of those 
sample paragraphs. (See figure 5.3, over page)

Among the vendors of commercial letter-fitting products, the 
reference-document approach is more common. URW’s promotional 
booklet for the hz-program typesetting engine showcased that software’s 
capabilities3 by typesetting test pages against the same text as typeset by 
PostScript (See figure 5.4, over page), arguing that even the worst hz-program 
sample was visibly superior to the PostScript sample (URW 1993, p. 38). 
Hermann Zapf, who collaborated with URW on the development of hz-
program (even lending it his initials) made similar claims supported with 
typeset page samples in About micro-typography and the hz-program (Zapf 
1993). Lukas Schneider published a reference document featuring 

3. The hz-program product consisted of a number of individual modules handling discrete aspects of 
typesetting. In a somewhat unusual marketing choice, the individual components were regularly 
named and discussed independently of each other and the whole. The kf module was used to alter 
letter fitting.
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paragraph comparisons for nineteen fonts re-fitted by his LS Cadencer 
program versus their manually-fitted originals (Schneider 2016).

Those examples are perhaps best seen as demonstrations rather than 
self-contained assessments; the reference documents are presented to the 
reader to evaluate, with only the implication that the re-fitted typeface 
will be seen as performing well. But there are instances of reference 
documents being used as assessment materials as well. Kindersley and 
Wiseman, who published several promotional works featuring the output 
of their LOGOS fitting software without an accompanying original to 
compare it against, generated numerous sample documents during LOGOS’s 
development (Kindersley 1962, 1973, 1987).

The publication of reference-document comparisons was not limited to 
the vendors themselves, however. In 1993, Jonathan Seybold had the same 
page of The Seybold Report on Publishing Systems typeset separately by both 
hz-program and PageMaker, published the resulting article as an in-depth 
analysis, and invited readers to provide feedback (Seybold 1993). 

This assessment method has an intuitive appeal, because it puts the 
refitted typeface to the test in practical usage. Thus, it meshes well with 
the principle of defining success as how well the fitted typeface performs 
in a text setting. The major obstacle to employing it as a research 

Mello presents the same paragraph in two sample typefaces in their original form as well as 
two versions of each typeface refitted by algorithm (Mello 2007, p. 12). Shown at 50% scale.

Figure 5.3
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Page detail from the kf section of the hz-program brochure, which advertises the module’s letter-fitting functionality through 
the use of full-paragraph samples rather than per-letterform details (URW 1993, p. 18). The large kf logo at the bottom of the 
page is characteristic for URW’s approach of marketing the individual components of hz-program as distinct products. 
Photographed by the author.

Figure 5.4
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evaluation method is that no specific documents exist that serve as 
universal references. URW’s hz-program booklet used for its sample text a 
page from Karow’s Schrifttechnologie, published the prior year — 
undoubtedly a convenient option for the publisher, but not one that would 
be selected to demonstrate objectivity in the assessment.

Regardless of the choice of reference document, qualitatively assessing 
a full-column or full-page reference document as a whole does not easily 
provide a means to evaluate the impact of adjustments to the fitting 
algorithm. Other factors play a role in the decisions made in the 
typesetting engine, including line-breaking, hyphenation, and letterform 
expansion. For comparing the results of full typesetting engines like hz-
program and PageMaker, seeing the sum total of these factors in the output 
is explicitly the point. But the effects of these other factors obscure the 
impact of the kf component of hz-program that was responsible for 
adjusting the fitting.

Just as importantly, it should be observed that the refitted documents in 
these examples are not presented as being successes because they 
accurately recreate the original, but instead because they are as pleasing — 
or more pleasing — to the eye of the reader. So assessing a refitted typeface 
by using it to create a reference document ultimately relies on an 
assessment to be made by a reader.

5.1.4 Human reader assessments
As discussed in chapter 1, this project defines ‘successful’ fitting in terms of 
acceptability by readers. On that basis, testing letter-fitting algorithms by 
means of reader assessments adheres most closely to the goal. Type design 
literature sometimes describes fitting as a task “for the eye alone” (Griffith, 
quoted in Dwiggins 1940 A, p. 6), but simply because the ends of the 
process involve the human visual system does not mean it cannot be 
examined systematically — as experimental research into legibility has 
shown in recent years. The difficulties of staging human assessments come 
down to who the assessors are, the circumstances in which the tests are 
performed, and what the assessment task comprises.

As noted earlier, the judgment of a single individual (particularly when 
that individual is the experimenter) is unreliable due to the the risk of 
unconscious biases weighting the judgment toward one algorithm or away 
from another algorithm. Collecting multiple, independent assessments by 
human assessors would, at the very least, provide some mitigation of that 
problem.

Any human assessment of whether any given typeface is well-fitted is a 
qualitative conclusion based on value judgments. Nevertheless, when 
subject-matter experts (e.g., experienced type designers or typographers) 
make such judgments, they do so within a historical, cultural, and 
technological context that can be observed and scrutinized. Within such a 
known context, it is possible to quantitatively record responses to letter 
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fitting and to derive and document patterns from the observations. A 
survey of Venetian typographers during the Incunabula period might 
establish a discernibly different baseline definition for well-fitted 
typefaces than a survey of North American type designers in the mid-20th 
century, but one would expect each of those groups to exhibit internal 
consistencies and reflect a degree of consensus.

Conducting tests with large sets of letter-fitting experts would, in 
theory, provide for reliable assessments, but it immediately raises the 
thorny problem of defining who is considered an expert. The type-design 
field does not have a standards body that certifies levels of expertise; 
restricting participation to individuals with specific career or educational 
credentials would risk being exclusionary and introducing a range of 
biases. Relying on self-described experts, however, poses its own risks and 
is little better than inviting broad participation and counting on the 
individual’s interest level and follow-through to weed out those with less 
proficiency. Regardless of how a set of experts might be collected, though, 
asking experts to repeatedly examine and grade letter-fitting samples in 
laboratory conditions could easily exhaust their available time — all the 
more rapidly as more variables are incorporated into the test samples.

Assessment tests with the general reading public could provide 
statistical validity when conducted in large enough numbers, although the 
test design should perhaps record some measure of participants’ level of 
typographic expertise as a potentially intervening variable. Indeed, 
because typographic non-experts make up the majority of the reading 
public, one would not expect the non-experts’ assessments of letter fitting 
to contradict the assessments of experts (in fact, if they did so, then it 
could be argued that the experts’ assessments are misaligned, on the 
grounds that the non-experts are nonetheless experienced readers). But 
the methodology could anticipate that the assessment task would be 
perceived as more difficult by at least a portion of the non-expert group 
due to unfamiliarity, perhaps resulting in greater variability in the data.

There are also technical constraints to consider when devising human 
tests. For example, large numbers of responses are necessary for statistical 
validity, and every additional variable to be tested (such as fitting 
algorithm, typefaces’ weights and widths, optical sizes, and style 
variations) increases the desired number of test exposures. But large-scale 
testing becomes impractical to do in person or with printed samples, 
leaving digital displays as the only viable environment. As a result, though, 
the typefaces used in the test can only be assessed at screen resolutions.

Similarly, to record a large number of responses, the tests would have to 
be conducted on a publicly available web site that participants would 
access using their own computers and choice of web browsers. Without the 
ability to control the browser, operating system, and display, those factors 
must be counted as possible intervening variables during subsequent 
analysis. They increase the generality of the results, but must be 
considered.
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In any human-assessment test methodology, a crucial decision is what 
tasks the test respondents are asked to perform. When testing letter 
fitting, there are several possibilities. Respondents could be asked to rate 
typefaces’ letter fitting directly (either with a binary yes–no question, or 
along a Likert scale, or by indicating a preference among several samples), 
or asked to identify specific instances of letter-fitting problems, or asked to 
make their own spacing alterations to the fonts in the test — such as is 
seen in Mark MacKay’s web-based game Kern Type (MacKay 2011).

Regardless of the specific scale involved, rating systems are encodings 
of qualitative judgments, rather than quantities to be measured directly. 
Therefore, they are less straightforward when the goal is refining an 
algorithm to produce optimal results. In addition, rating an entire typeface 
lacks granularity. When testing letter-fitting algorithms, it is to be 
expected that a given algorithm might prove more successful at fitting 
certain patterns of forms (e.g., straight-sided to straight-sided profile 
pairs) but less successful at fitting others (e.g., round to round profile 
pairs). A testing method which does not offer any insight into the problem 
at that level is less useful to the overall research problem.

Asking respondents to make adjustments to spaces between characters 
would provide the most granular data, but it would do so at a high cost. As 
discussed in chapter 2, manually adjusting the letter fitting of a typeface 
requires a significant amount of time to do (especially when, as in this 
research project, testing the complete letter fitting of each typeface is the 
goal). Asking for a large time investment from each respondent is likely to 
limit or reduce the overall number of participants, as well as potentially 
limiting the usefulness of the results — if, for example, participants are 
only motivated to make adjustments to some letter combinations before 
they find themselves losing interest in the task.

It is also possible that some volunteers with little or no prior 
typography experience might feel intimidated by the complexity of 
performing a manual letter-fitting task, leading to fewer responses, which 
could weaken the generality of the results, skewing in favour of 
respondents with extensive typography experience.

Asking respondents to identify and mark perceived letter-fitting 
problems in samples lies somewhere in the middle. It is a granular enough 
technique that it can provide data about which profile combinations an 
algorithm succeeds or fails on, but the task itself is easier for potential 
respondents to perform than is making letter-fitting adjustments. The 
number and distribution of problems reported by respondents can be 
aggregated to estimate the collective response to different algorithms. The 
method does, nevertheless, have its downsides.

First, making marks on a web page to record perceived errors requires 
the introduction of a software tool with its own specialized user interface, 
separate from the built-in web-browsing controls that respondents are 
familiar with. This increases the complexity of the task and presents 
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additional opportunities for failure. Second, it relies on the respondent’s 
choice to take an action, which increases the artificiality of the test.4 Both 
factors underscore the need for a large sample size.

Finally, the design of the specimens that respondents are asked to assess 
is an important consideration. Letter fitting for continuous reading is of 
greatest concern in this project, so showing specimens that utilize a 
traditional document structure are preferable to showing individual words 
in isolation. Constructing such specimen documents is not trivial however; 
factors such as the contents of the texts and the lengths of the documents 
could affect the amount of time respondents are willing to spend on the 
task, and care must be taken to ensure that the content and layout include 
the character sequences of interest.

5.2 Drafting an approach to measure successful fitting

For this project, it was decided that the most desirable test methodology 
would collect responses from human readers in a text-setting environment 
that closely resembles the continuous reading experience. The participants 
would be asked for an assessment that provides data at the level of 
individual typeforms or profiles, so that the effects of alterations made to 
the fitting of the test typefaces could be empirically compared. The 
methodology should provide safeguards against biases in the 
measurements and permit analysis of variables not controlled — such as 
the typographic experience level of the participants — to assess their 
impact.

Based on the options enumerated above, the approach chosen for this 
project was a public-facing human assessment test, implemented as a web-
based application that asks respondents to mark what they consider to be 
letter-fitting errors in sample texts. This application was designed as an 
anonymous survey that showed document samples to each respondent, 
with the fonts used in the samples selected at random from a pool of test 
fonts (which included both the original, unmodified version of each font as 
well as fonts with their fitting modified by the tested algorithms). Efforts 
were made to resolve design trade-offs by prioritizing ease-of-use for the 
respondents where possible, while ensuring that only quantifiable, 
detailed data was collected.

This design assumes that when respondents report more letter-fitting 
errors, on average, in test font ‘A’ than they report in test font ‘B’, then the 
letter fitting of test font ‘B’ should be considered more successful. The 
problem of assessing an automated letter-fitting algorithm can then be 
framed as measuring the reported dissatisfaction rate of test fonts fitted by 
the algorithm, with rates measured on the full character set as well as on 
subsets of the typeforms, grouped by profile shape.

4. Artificiality in this context principally means the potential for the ‘laboratory’ nature of the task to 
affect the criteria that respondents use to decide whether to make a mark (e.g., by feeling pressured to 
make marks because ‘marking errors’ is the task or, conversely, to be cautious about making marks 
while being observed), or to introduce ease-of-use concerns with the tools (e.g., leading to marginal 
error cases going unmarked that the respondent might have identified in a different format of test, 
such as an in-person interview session).
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Because the survey design allowed the original, unmodified version of 
each font to be tested in addition to algorithmically re-fitted versions, it 
uses control data from the same participants for comparisons between the 
test conditions, rather than assuming that the original fitting in each test 
font is more successful for every form. The design also permitted testing 
over a range of typeface style variations, as well as across multiple 
languages.

5.2.1 Prototyping and pilot testing
No suitable off-the-shelf component was available, so the test framework 
was prototyped and developed with custom code, written primarily in 
Python using the Flask framework (Pallets 2010). The interactive tool that 
participants used to highlight and mark letter-fitting errors was based on 
the AnnotatorJS JavaScript utility (OpenAnnotation 2015). Several small 
JavaScript snippets captured technical details about the browser session 
during each survey response session.

A pilot test was conducted with in-person volunteers, wherein a 
sequence of document samples was shown using randomized test fonts. 
The document samples were presented in pseudo-page layouts (See figure 
5.6, over page), and respondents asked to mark any text that appeared to 
have incorrect fitting in their opinion. When text was marked, a pop-up 
box asked the respondent to tag the perceived fitting problem as “Too 
much space” or “Not enough space”. (See figure 5.5) Respondents were told 
that they could view up to six samples, but that they were allowed to drop 
out of the test at whatever point they chose. In the pilot-test sessions, all of 
the respondents used the same laptop and pointing device, but two 
different web browsers were tested (Mozilla Firefox and Google Chrome). 
The experimenter (that is, the author) was physically present for the pilot 
test sessions but did not direct the respondents beyond answering 
clarifying questions about the instructions and troubleshooting the laptop 
if problems arose.

For the pilot test, six fonts were chosen from the Google Fonts web 
service that, together, covered a variety of weight, width, and serif styles, 
as well as both upright and italic designs. (See figure 5.7, over page) The fonts 
chosen were:

• Cantarell, a humanist sans serif at regular weight and normal 
width.

• Fira Sans Extra Condensed, a sans serif design at extra-narrow 
width.

• Alfa Slab One, a slab serif designed at an extremely heavy weight.
• Libre Caslon Text Italic, an old-style serif italic design.
• Rajdhani Light, a square-sided sans serif at light weight.
• Tenor Sans, a sans serif design with moderately wide glyphs and 

high stroke contrast.

The AnnotatorJS pop-up utility 
used by respondents to tag 
perceived letter-fitting errors in 
the pilot test.

Figure 5.5
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Screenshot of the pilot-test application, depicting typeface specimen number 6. The marks made on  the specimen by the respondent 
are visible as yellow highlighting. The marking tool, AnnotatorJS, visibly preserved these highlights on the samples, allowing 
respondents to see which (if any) characters on each sample they had already marked.

Figure 5.6

Screenshots juxtaposing sample paragraphs of the six typefaces used in testing-application specimens during the pilot-test runs. 
Top row, left to right: Cantarell, Fira Sans Extra Condensed. Middle row, left to right: Libre Caslon Text Italic, Alfa Slab One. Bottom 
row, left to right:  Rajdhani Light, Tenor Sans. All samples are rasterized screen images shown at 100% of original rendered size.

Figure 5.7
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5.2.2 Assessment
In total, 31 volunteers attempted a trial run in the pilot-test phase, 
although not all volunteers worked through all of the available samples.  
The average number of samples completed was 4.7, perhaps suggesting 
that a six-sample session was too long. All of the respondents in the pilot 
test were able to perform the task, although some reported finding the 
pointing device, screen size, and scrolling settings difficult because they 
differed from the respondents’ home computer.

The font files used only the default, built-in letter fitting. To cross-
check the data-collection model and analysis process, a small number of 
artificial letter-fitting adjustments was inserted into the samples. Two such 
benchmarking checks were added to each sample page at random 
locations: one check that increased the spacing between a pair of 
letterforms and one check that reduced the spacing between a pair of 
letterforms. The benchmark checks were one- or two-pixel changes to the 
inter-letter spacing, made by wrapping an HTML <span> element around 
the letterforms in question.

On average, respondents marked 40% of the benchmark checks at rates 
higher than the average character pair. This distinction was particularly 
noticeable in the Libre Caslon Text Italic and Alfa Slab One samples. This 
method has limited granularity, in that the adjustments made must be 
specified in CSS units, and even ‘CSS pixels’ may differ from ‘display pixels’ 
on the screen of the respondent’s computer. Thus, although it proved 
instructive during the pilot-testing phase, it was not retained for the 
public tests.5

As anticipated, a number of minor issues were uncovered during the 
pilot test that suggested helpful revisions should be made to the 
framework, the wording of instructions, and the design or implementation 
of the specimen layouts. Notable changes are discussed in the description 
of the public tests that follows.

5. It was also observed in verbal comments made by the respondents that the benchmark adjustments 
proved to be a distracting element in the sample-marking task. Respondents who commented on the 
benchmark adjustments said that, once they had noticed a benchmarking pair, they interpreted the 
sample-marking task as being a search for fitting errors that were similarly prominent, and that 
affected the subsequent marks they made.
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5.3 Public testing framework

After the conclusion of the pilot test, a framework to test fitting algorithms 
with respondents from the general public was developed. The framework 
was used to deploy tests in a series of three test batteries, collecting 
responses for typefaces in their original fitting as well as in refitted forms 
produced by the two fitting algorithms discussed in chapter 4: the 
composite algorithm developed in chapter 4 based on the axiomatic Latin 
text fitting model, and the rival kf algorithm.

Unlike the pilot test, which presented the same samples and test fonts 
to each respondent (and used only the original fittings of the test fonts), 
the public test batteries required more involved preparation of the test 
fonts and text samples. Apart from these preparatory steps, however, the 
public testing methodology retained the same general format as the pilot: 
anonymous respondents were asked to view a series of specimen pages of 
text in a web browser, with instructions to highlight and flag any character 
pairs they perceived as being too close to each other or too far apart.

The public survey application reused the Flask and AnnotatorJS 
components that formed the core of the pilot-test design, with the 
addition that all of the sample texts and test fonts were stored on the 
application server and delivered directly from its own storage.

5.3.1 Survey test procedure
The survey consisted of three stages. Respondents visiting the survey web 
site were first presented with a welcome page that outlined the general 
task and informed them that they could only continue if they were at least 
18 years of age. Any participants who continued with the survey at that 
point were presented with a more detailed disclosure and consent form (as 
per University research ethics policy), followed by a set of demographic 
questions. The general demographic questions were:

• The respondent’s self-reported age group
• Whether the respondent self-identified as a fluent reader of the 

sample-text language
• Whether the respondent reported having uncorrected vision

There were also three demographic questions meant to characterize the 
typographic experience level of the respondent on different axes:

• Whether the respondent self-identified as type designer
• Whether the respondent’s work involved type or typography
• Whether the respondent had ever received formal training in 

type, lettering, calligraphy, or a related subject
If respondents answered yes to the question about receiving formal 
training, they were asked to provide a description of the training in their 
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own words. The application server also recorded the following information 
for each survey response:

• The class of device used (desktop/laptop or mobile)6

• The language used in the sample texts (English, German, or 
French)

In the pilot tests and first public test battery, only English samples were 
presented. Additional samples in German and French were added for the 
second test battery. Similarly, the pilot test and first test battery featured 
only one layout of the samples, a multicolumn layout intended for desktop 
and laptop displays. A mobile-device layout using a single column was 
added at the start of the second test battery.

Following the demographic questionnaire, respondents were given 
specific task instructions. They were told that the site recorded their 
personal assessment of font spacing and that the fonts used in the samples 
may have their original fitting or have fitting that was altered, but they 
were not told what algorithms were employed, what characters were 
affected, or whether the test font on any particular page used the original 
fitting or an altered fitting. They were also told that their assessments of 
the spacing in the samples was not a test of their skill and that there were 
no particular correct or incorrect responses.

The instructions also asked respondents to ensure that JavaScript was 
active and custom font overrides were deactivated, and to check that other 
potential customizations were disabled before starting the survey. They 
were also asked to keep their browser at its default, 100% zoom level.

Respondents were instructed to mark pairs of letters, using the mouse 
or pointer to highlight text, that looked to them as if it had incorrect 
spacing for any reason, and to mark the highlighted letters as ‘Too much 
space’ or ‘Not enough space’ in the pop-up window that appeared once text 
was highlighted. (See figure 5.8, over page) They were not given a time limit 
and were told that they could take as much or as little time as they wished, 
and that it was acceptable to not make any marks at all if they did not want 
to.

After each sample exposure, respondents were shown a ‘reset’ page 
intended to provide a visual break and clear out any lingering visual 
impressions between samples. The reset page also provided a text-input 
box in which respondents could add any additional comments about the 
previous sample, and gave them a brief reminder of the task instructions.

6. The application server attempted to guess the class of device based on window dimensions, but that 
guess was used only to pre-fill a device-class selection field on the landing page. Site visitors were able 
to change the selected device class before beginning the test.
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5.3.2 Procedure for recording marks on text samples
For each survey response, the application server chose five test fonts at 
random from among the currently active test-font pool (where each font 
chosen could be in any of the three test conditions) and constructed five 
text samples, each composed of three sample blocks chosen at random 
from the currently active sample-text pool in the respondent’s chosen 
language and device class. The sample-text pool consisted of 22 sample 
blocks in each language (English, German, and French), with the mobile 
device-class blocks being abbreviated versions of the desktop device-class 
blocks. In the early trials, the text-sample blocks were chosen randomly 
with replacement, but the application server was updated to choose them 
without replacement out of concern that seeing duplicated text in the 
samples might spark confusion.

Each combination of test font and text sample shown to a respondent is 
here termed an exposure. The application server would proceed to show up 
to five exposures to each respondent. After the fifth exposure, the 
respondent was thanked, told that the survey session was complete, and 
provided with a set of links to the original Wikipedia pages from which the 
source texts were drawn.7 The limit of five total exposures per response 
was put in place to prevent fatigue from setting in. This limit was 
established experimentally in the pilot-test phase, where respondents 
were able to view up to six exposures, and a marked increase in drop-outs 
was observed after the fifth exposure.

7. Providing links to the original pages for this source material was a requirement of Wikipedia's 
content license, not part of the test procedure.

Screenshots illustrating the task 
of marking on text samples.

Top: upon highlighting characters 
with the cursor, the pop-up 
button appears.

Middle: clicking the pop-up 
button presents the respondent 
with the two categorical choices 
for the mark.

Bottom: marks remain visible on 
the sample, using different 
colours for ‘Too much space’ and 
‘Not enough space’ marks to let 
the respondent keep track of the 
marks previously made.

Figure 5.8
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Screenshot of a desktop/laptop 
layout text sample as seen in the 
public-testing version of the 
survey web application, showing 
the three sizes of text used in the 
three blocks. 

Figure 5.9

For the desktop device class, the text samples used a two-column layout 
designed to average between 50 and 70 characters per line, with 16-point 
text occupying the first column, and the second column occupied by a 
block of 12-point text followed by a block of 10-point text. These font-size 
and layout selections were chosen to emulate a ‘main body’ column 
accompanied by a secondary ‘sidebar’ column, beneath which was a 
tertiary footnote section or page footer. (See figure 5.9)

The 16-, 12-, and 10-point sizes were chosen to fall within the typical 
size range used in online texts meant for continuous reading (Carter 1984). 
This restriction in size and layout involves trade-offs. The two-column 
design broadly resembles that of the typography that might be found in a 
real-world document, but only up to a point. It does not contain images or 
headings and subheadings, it uses the same font for each typographic 
element in the hierarchy, and is arguably unusual for including multi-
paragraph body text at multiple sizes.

For the mobile device class, the text samples used a single-column, full-
width layout, with a single paragraph set in each of three sizes: 16-point, 
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followed by 12-point, followed by 10-point. (See figure 5.10)  This simplified 
layout was meant to more closely reflect the layouts used in mobile web 
page designs.

In both layouts, sample blocks used and which sample block was used 
for each of the three sizes was determined at random by the app server in 
order to vary the text presented. Randomizing the text blocks used in each 
sample (and which text block was used for each of the 16-,  12-, and 10-
point sections of the layout) was done to provide more variety in the 
samples and a more even distribution of character pairs among the font 
sizes. If all “sample one” pages used the same text, there might be more 
mark data collected for the character pairs in the “sample one” text than 
for the pairs in “sample five.”

The application server also recorded some secondary information with 
each sample exposure:

• The userAgent string
• The local start time
• The local finish time
• The sequence number of the exposure within the possible five-

exposure set
• An encrypted version of the visitor’s IP address

The userAgent strings sent by the browser were parsed into a best guess 
for the operating system and web browser made using the DeviceDetector 
Python library (Burkholder 2021). The encrypted record of the IP address 
was a one-way cryptographic hash of the IP address of the respondent’s 
computer made with the Cryptolog Python library (Lee et al., 2016). This 
hash function is an irreversible transformation of the original IP address 
seen by the server, mixed with a random seed that was deleted at the end 
of the experiment. The hashed IP address would theoretically allow 
analysis of whether any respondents visited the site multiple times, but 
without their origin IP being discoverable. 

In addition, the application server recorded the following information 
for each annotation mark made by the respondent:

• The characters highlighted as an error
• The error category (‘Too much space’ or ‘Not enough space’)
• The timestamp at which the mark was made
• The position of the marked characters in the paragraph
• The position of the paragraph on the sample page (i.e., the text 

block, which indicated point size, and paragraph number within 
the block)

• The height and width of the window or tab
• The zoom-level of the window or tab

Figure 5.10

Screenshot of a mobile-device 
layout text sample as seen in the 
public-testing version of the 
survey web application, showing 
the three sizes of text used in the 
three blocks. 
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The window size was added to the data set after the pilot test, during 
which some respondents were observed to resize their browser window for 
reading comfort. Some pilot-test respondents were also observed to zoom 
in on the text samples, despite the instructions asking them not to do so, so 
the zoom-level was also added to the data set. However, later testing 
revealed that the zoom-level of the window could not be recorded reliably 
across browsers, so that information was not used during the analysis 
stage.

5.3.3 Preparation of sample texts
The source texts for the samples were articles chosen randomly from 
Wikipedia pages in each of the test languages (English for the first battery; 
English, French, and German for the subsequent test batteries), 
interspersed with isolated lines of unrelated sample words selected to 
introduce less-common letter combinations.

In the article-selection process, it was decided to excise any randomly-
chosen pages that were biographical stubs or geographic places, noting 
that these two page categories were frequently shorter, did not exhibit 
multi-paragraph stretches of text, and tended to include far more numbers 
(typically birth-and-death years) and family- and place-name words in 
their shorter paragraphs.

The source texts were further prepared for use in the samples by 
removing all words in other alphabets (most frequently, IPA 
pronunciations or etymologies from other languages), mathematical 
formulas and other specialist symbols, and subscripts or superscripts. Each 
text was also checked against a list of offensive words and, for the German 
and French texts, reviewed in an independent scan by a native reader to 
ensure that no potentially divisive subject matter was unintentionally 
included.

Interspersed between these Wikipedia paragraphs were single lines 
featuring individual words separated by commas. They included proper 
nouns chosen to introduce less common capital-to-lower-case letter 
sequences and some words set in all capital letters, to increase variety in 
the pairing shown across the entire exposure set. These single-line 
interspersions also served to separate the topically-independent Wikipedia 
paragraphs from each other.

5.3.4 Preparation of font files
The font files were prepared and uploaded to the application server. For 
the test fonts refitted by an algorithm, this process involved applying the 
newly calculated fittings to a copy of each font file.

The software implementation of the test algorithms, as detailed in 
chapter 4, output a set of sidebearings (and, optionally, a set of kerns) for 
each input font. To prepare the test fonts deployed on the survey site, it 
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was decided that modifying the font binaries by patching in the new 
sidebearing and kerning information was preferable to attempting to build 
a new version of each test font from its original source files.

First, although all of the fonts eventually selected for the tests were 
published under an open license (see section 5.4.1), they differed in regard 
to what materials were included in the published releases. Some of the 
fonts were published only as a TrueType or OpenType binary, while others 
included source files. Second, in cases where source files were available, 
the contents varied in format and in completeness. Some of the source files 
are published in the .glyphs or in .vfb file formats, each of which includes 
the vector shapes, font features, metrics, and metadata. Others are 
published with vector shapes and metrics in the .UFO file format, plus 
smart-font features stored separately in the .FEA file format, and metadata 
in other ancillary file formats.

This distinction reflects the differing development and engineering 
processes used by the designers and foundries, which indicates the 
practical challenge of rebuilding the fonts from source. Different foundries 
use different applications and build tools, perhaps even incorporating a 
multi-stage (even supervised) process, and the full details of the build are 
not necessarily documented. Rebuilding the fonts from source without full 
access to the build process would risk introducing undocumented changes.

Consequently, the test fonts were modified by a Python script that read 
the new fitting information generated by each algorithm and applied 
changes directly to the binary font file, using the ttLib module of the 
FontTools Python library (FontTools 2013).

In addition, all of the original kerning features (including TrueType 
kern tables as well as any ‘kern’, ‘dist’, or ‘cpsp’ features in the GSUB 
table) were removed from test fonts that had been refitted by algorithm. 
This step is necessary to produce a font file that encapsulates only the 
fitting generated by the algorithm. It was clear by visual examination that 
removing the kerning features from the refitted fonts would cause some 
character pairs to appear problematic, but mixing kerning adjustments 
made by the original designer in with sidebearings generated by an 
algorithm results in a fitting that does not purely represent the algorithm, 
potentially confusing the data analysis.

Several other smart-font features could arguably impact the perceived 
successfulness of a font’s fitting as well, and the question of what features 
to preserve required careful consideration. For example, ligature 
substitutions may replace two-letter sequences with a single typeform 
representing both letters in ligated form. In English, fi is perhaps the most 
common ligation. In fi ligatures, the two component letterforms are still 
meant to be regarded by readers as being the two original letters, just 
optically corrected to accommodate for the effect of collisions. The f and i 
components of the fi ligature may or may not touch in the ligated form; 
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the goal is only to correct their visual appearance. Most notably for this 
research project, the interior space within the fi ligature generally remains 
(at least, below the crossbar of the f) and should approximate the inter-
letter space given to the fi pair nominally.

It could be argued that the fi ligature and similar space-enclosing 
ligatures convey a full inter-letter space with them that might differ 
noticeably from the inter-letter spaces in the surrounding text and disrupt 
the overall regularity of the fitting used in the test font. Removing the 
ligature forms, however, could cause collisions or overlaps, and redrawing 
the ligatures would require the author to impose design decisions. 
Weighing these risks, it was ultimately decided to leave the ligatures in the 
test fonts, as originally designed, and to note that fact when analysing 
response data for the letter pairs impacted.

In the final step, all of the font files deployed in the tests, including the 
modified font files and those that retain the original letter fitting, were  
anonymized with a FontTools Python script to remove the font and font-
family names, manufacturer information, and other human-readable 
metadata from the internal font tables. This measure was taken as a 
precaution to preclude respondents from discovering the original font 
names by inspecting the HTML source of the test page or web-font files 
themselves, either manually or through the use of web-browser 
extensions, so that no preconceived opinions based on individual font or 
foundry names would influence the responses. The font file name was then 
replaced with a randomized hexadecimal identifier.

5.4 Typeface tests 

Tests utilising the framework were deployed in a series of batteries on a 
public-facing web site, which was promoted in discussion forums, via 
mentions in conference talks and on social media, and by encouraging 
participants to share links to the test site. Deploying the tests in a series of 
batteries enabled changes to be made to the typeface test pool to adjust to 
the real-world response rate, particularly at the start of the public tests, as 
will be described in the following section.

The typefaces used in the tests arguably constitute the most critical 
portion of the test materials, because they provide the input context for 
the two fitting algorithms tested and are also the focus of the task that 
survey participants are asked to perform. The selection process involved 
examining typefaces on a technical level (that is, the binary font files 
themselves) as well as on the stylistic and typographic qualities of the 
typeface designs.
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5.4.1 Technical criteria
The initial criteria used to select test fonts were technical in nature, largely 
to accommodate the realities of the refitting process and the web 
application server used for the survey site. For this test framework, it was 
decided to work with open-licensed fonts.8 The reasons were twofold.

First, electing to work with open-licensed fonts would enable fully 
reproducible experiments, thus making the findings of more use to 
subsequent research projects. Second, initial enquiries with commercial 
foundries indicated that it would be costly (in both time and complexity, if 
not in outright monetary expense) to negotiate licensing agreements 
necessary to modify and deploy a large array of proprietary fonts on the 
public testing web site.

Within the sphere of open-licensed fonts, however, the test design 
identified for use typefaces that had been designed and published by 
established type foundries. This decision, hopefully, permitted some level 
of confidence that the font files had been subject to a quality-assurance 
process reflecting general industry-standard criteria, and that the 
typefaces’ designs and their default fittings could be expected to fall within 
contemporary type design convention.

In addition to the licensing and foundry criteria, several of the selected 
fonts were available from their foundries in both static-font and variable-
font format. In those cases, the tests were conducted only with static 
versions of each font. This decision was made in order to avoid any 
potential inconsistencies that might arise for the design-space instances in 
the variable-font versions.

Variable fonts are typically compiled from a set of distinct master font 
files, each of which are designed and tested manually. The masters are 
designed at pre-defined locations in the design space, often at the extreme 
point of each variation-axis combination (e.g., Extra Bold Extended, Extra 
Bold Condensed, Extra Light Extended, and Extra Light Condensed) plus a 
‘regular’ master representing the centre. In between these masters, 
instances representing the intermediate characteristics somewhere along 
each variation axis are created by interpolating between the data in each of 
the masters.

Due to this interpolation, for any given instance in a variable font file, 
the sidebearings (as well as the contours of the forms) are interpolated 
values calculated when the text is rendered, and may even differ 
depending on the particulars of the computing environment. Thus, the 
sidebearings in an interpolated instance have potentially not been 
consciously set by the type designer. Ideally, a well-crafted variable font 
will have been put through a rigorous quality-control process that did 
involve manual evaluation of the fitting at numerous instances, but that 

8. The term open licensed here refers to any font with a license that permits royalty-free redistribution 
and modification. These license rights are sometimes referred to broadly as open source, but source-
code publication is not required by the Open Font License (OFL), the most popular license choice of the 
set.
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cannot be guaranteed. By using the static font versions instead, there is a 
higher likelihood that the exact sidebearings used in the font file had been 
manually determined and tested.

5.4.2 Stylistic and design-space font criteria
Since the goal of this research is to explore letter-fitting algorithms that 
work across a broad range of typeface styles, a matrix of common Latin 
type styles and variation axes was developed, ranking the possible 
permutations by relevance and availability. (See figure 5.11)

The stylistic and design-space variations considered apply only to 
proportional typeface designs. Although letter fitting is relevant to 
monospace designs as well, the additional constraints of monospace fitting 
and the tightly-linked design restrictions it imposes make monospace 
typefaces out of scope for this test design.

The rankings of importance were informed by the analysis of prior 
work on letter-fitting automation. For example, records indicated that 
earlier algorithms which were successful on upright styles at regular 
weights and normal widths often failed at generating letter fitting for 
typefaces at the extremes of the weight and width variation axes, so those 
variation axes were rated as of higher priority. Little prior work exists in 
exploring the effects of optical size, but the reported experiences of kf in 
URW’s hz-program suite indicate that it did not create a substantial problem 
for the algorithm (URW 1993, Zapf 1993).

Sans-serif typefaces frequently pair their upright designs with an 
oblique, rather than a ‘true italic’ slanted variant. Prior research indicated 
that oblique designs can be mathematically de-skewed into an 
intermediate, temporary upright that functions in a reasonably similar 
manner as the original upright design in many prior letter-fitting 

       Optical size           Weight             Width        Slant/italic
Uncommon Less important Less important
Uncommon Less important Less important
Uncommon Less important Less important

Less important Uncommon
Less important Less important
Less important Less important
Less important Uncommon
Less important Uncommon

Uncommon Uncommon Uncommon   Rarely available
Uncommon Uncommon Uncommon   Rarely available
Uncommon Uncommon Uncommon   Rarely available

  Rarely available   Rarely available   Rarely available   Rarely available

Figure 5.11
Matrix of typeface styles and typographic design variations, colour-coded by their assessed relevance for testing. Green indicates higher 
relevance, followed by yellow, then by orange. Because pre-existing typefaces from established foundries were used, the relative 
uncommonness of a style or variant was considered a relevant factor in the assessment.  The styles marked with * were explored for non-
joining implementations.

Grotesque sans
Humanist sans

Square sans
Old-style serif

Transitional serif
Didone serif

Slab serif
Rounded serif

* Informal calligraphic
* Casual handwriting

Blackletter
Brush lettering
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algorithm experiments. Serif typefaces, however, frequently pair the 
upright design with a distinctly different italic design that does not 
respond well when de-skewed. Therefore, italic variations were rated as a 
higher priority for serif styles but as less important for sans serifs.

Finally, certain typeface styles (such as blackletter and handwriting 
faces) are rarely designed in multiple weights, widths, and optical sizes at 
all. Thus, while it is still valuable to test any letter-fitting algorithm on 
these styles, they are of lesser importance. Notably, in contemporary 
typography, these styles tend to be used more for decorative and display 
purposes, and not in running text meant for continuous reading.

The typefaces that had been used in the pilot test were chosen from a 
broad range of styles, as was noted in § 5.2.1. However, the results of the 
pilot test suggested that respondents had a substantially more difficult 
time assessing fitting problems in italic designs and in extreme weights. 
This effect is seen in a lower percentage of ‘benchmark check’ adjustments 
marked by respondents in the pilot test.

For the public testing phase, test typefaces were chosen to address the 
higher-relevance style and design variations from the priority matrix. The 
choices avoided extremes of weight and width, based on the pilot-test 
experience, although upright and italic forms were still initially included. 
The test typefaces were also selected to provide a variety of serif and sans-
serif constructions, stroke contrast, and letterform constructions. This 
choice permitted the tests to focus on discovering patterns related to the 
stylistic differences with less risk of intervening effects from weight and 
width variance complicating the results.

5.4.3 Public test batteries
The first battery of tests featured typefaces with unaltered fitting, to 
collect control-group data, gauge the expected response rate, and 
potentially identify any issues not anticipated or observed in the 
controlled conditions of the pilot test. These typefaces were selected to 
cover a range of typographic variables, including upright and italic styles, 
weight and optical-size variation, and stylistic construction. In total, 29 
test fonts were used in this battery. The fonts in the first test battery were: 

• Abril Fatface Regular: a heavy-weight, high-contrast Didone-
style serif typeface.

• Alegreya Regular, Alegreya Italic, Alegreya Sans Regular, and 
Alegreya Sans Italic: a family of related serif and sans-serif 
designs in contemporary upright and italic styles.

• Amiri Regular and Amiri Italic, and Arabic-and Latin typeface, 
the Latin version of which is an old-style serif typeface of 
moderate contrast, modelled on Garamond.9

• Andika Regular, a sans serif typeface using simplified letterform 
constructions for beginning readers.

9. The original intent of this choice was to permit the eventual testing of Arabic in addition to Latin. 
The Latin component of Amiri is an adaptation of the Crimson Text typeface. 
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• Bellefair Regular, an old-style serif design with a distinctly low x-
height and short serifs.

• Gentium Plus Regular and Gentium Plus Italic, a serif typeface 
featuring large x-height and calligraphic terminals.

• IM Fell Double Pica Regular and IM Fell Double Pica Italic, a 
transitional serif design.

• Literata Regular, in three optical sizes: opsz10, opsz14, and 
opsz18, a modern serif design with upright stress and thin serifs.

• Neuton Regular, a Dutch-inspired serif with heavy stroke weight.
•                                and                           , a transitional serif family.
• Slabo 13px Regular, a low-contrast, slab-serif typeface developed 

with web usage in mind.
• Sorts Mill Goudy Regular and Sorts Mill Goudy Italic, an old-style 

serif family reviving Frederic Goudy’s Goudy Oldstyle.
• Source Sans Pro Light, Source Sans Pro Regular, and Source Sans 

Pro SemiBold, a gothic sans-serif typeface in multiple weights.
• Tinos Regular and Tinos Italic, a transitional serif design with 

somewhat straight profiles, short serifs and angular terminals.
• Yrsa Regular and Yrsa Medium, a contemporary serif design with 

notably heavy serifs, available in multiple weights.
The number of responses collected in the first battery was somewhat lower 
than initially hoped for, considering the number of test fonts; a total of 203 
sample exposures were recorded (for a mean of 7 per test font). 

In the second battery of tests, the test fonts deployed differed primarily 
by including modified versions of the typefaces, refitted using either the 
composite algorithm developed in chapter 4 or the rival algorithm, which 
reimplemented the kf component of URW’s hz-program suite. This battery 
reduced the number of typefaces compared to the first battery, out of 
concern for collecting enough responses for statistical validity for each 
typeface / algorithm permutation. It was also decided for the second 
battery to reduce the number of typographic variables, focusing primarily 
on the ‘regular’ weight and upright styles.10 The second battery retained 
five of the typefaces from the first battery (Alegreya Sans, Source Sans Pro 
Regular, Slabo 13px Regular, Literata Regular at optical size opsz14, and 
Yrsa Regular) and added:

• Source Serif 4 Regular, a serif typeface designed to complement 
Source Sans Pro from the earlier test batteries.

In this battery, all of the test fonts were deployed in the original fitting and 
in versions refitted by each of the two test algorithms. 

10. The second battery also coincided with the added options for respondents to view samples in 
German or French (in addition to English), and to select a mobile view that formatted the samples in a 
single column deemed more accessible for smartphones. Those changes were made on the application 
server and did not impact the typeface selection.
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The third battery added a small set of additional typefaces chosen to 
extend the pool of test fonts with additional typographic weights, widths, 
and optical sizing, complementing the typefaces deployed with battery 
two. Each additional test font in this battery, as in battery two, was 
deployed in the original fitting and in versions refitted by each of the two 
test algorithms. The third battery included:

• STIX Two Text Regular, a high-contrast transitional serif design 
with a vertical stress axis.

• Slabo 27px Regular, a slab-serif typeface designed as an optical-
size variant of Slabo 13px Regular from the earlier test 
batteries.11

• Fira Sans Condensed, a condensed sans serif chosen to test in a 
width variation distinct from ‘normal’ width.12

• Yrsa Bold, a bold-weight variant of Yrsa Regular from the earlier 
test batteries.13

The full set of typefaces used in the tests, along with sample typeforms for 
each, is provided in table 5.1 (over page), grouped by their deployment in 
the test batteries.

To some extent, the oversized selection in the first test battery could be 
considered a missed opportunity, because with a smaller set of test fonts, 
more exposures might have been collected for each. But accurately 
assessing the real-world response rate of the survey was a valuable stage, 
and allowed the later test batteries to be adapted accordingly. 
Furthermore, the exposures of the test fonts that were used only in the 
first battery still form an important part of the control group, and help 
further the analysis of readers’ responses that followed.

That analysis, which is the focus of the next chapter, evaluated the 
marks made by survey respondents for patterns, both within each tested 
typeface, and between the profile shapes of the typeforms.

11. Slabo 27px was chosen for its potential to capture optical-size differences from Slabo 13px. This 
pairing was selected over the alternative option of adding a Literata optical-size variant because the 
slab-serif design of the Slabo faces is more distinctive within the test pool than Literata’s serif design. 
Slabo also exhibits the rare design property of changing the construction of g between the 13px and 
27px sizes.
12. The sans serif designs from the earlier batteries did not exist in a condensed-width variant.
13. Yrsa Bold was chosen over Yrsa Medium in order to test a more extreme weight variant.
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Sample formsTypeface
Cantarell Regular

Fira Sans Extra Condensed
Alfa Slab One Regular

Libre Caslon Text Italic
Rajdhani Light

Tenor Sans Regular

Abril Fatface Regular
Alegreya Regular

Alegreya Italic
Alegreya Sans Italic

Amiri Regular
Amiri Italic

Andika Regular
Bellefair Regular

Gentium Plus Regular
Gentium Plus Italic

IM Fell Double Pica Regular
IM Fell Double Pica Italic

Literata Regular optical size 10
Literata Regular optical size 18

Neuton Regular
 

 

Sorts Mill Goudy Regular
Sorts Mill Goudy Italic
Source Sans Pro Light

Source Sans Pro SemiBold
Tinos Regular

Tinos Italic
Yrsa Medium

Alegreya Sans Regular
Source Sans Pro Regular

Slabo 13px Regular
Literata Regular optical size 14

Yrsa Regular
Source Serif 4 Regular

STIX Two Text Regular
Slabo 27px Regular

Fira Sans Condensed
Yrsa Bold

Table 5.1
Typefaces deployed in the test batteries, listed sequentially and with key letterforms shown.

Pilot test

Battery 1 (only)

Battery 1 onward

Battery 2 onward

Battery 3 onward
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6. Findings from quantitative tests

The testing methodology outlined in chapter 5 was designed to measure 
the responses of readers to the fitting of Latin text when viewed on the 
web, with the ultimate goal of measuring the success of fitting algorithms 
among readers. As was described in that chapter, the raw data collected in 
readers’ responses is where each reader chose to mark a sequence of 
letterforms on a sample text as looking like the fitting is incorrect, plus an 
indicator of whether they feel that the fitting of the marked forms is too 
tight or too loose. The data from these marks thus encapsulates the exact 
typeforms marked, the typeface used in the sample, the fitting algorithm 
employed to fit the typeface, and, by extension, any influences brought on 
by the sample itself (such as its language) or by the reader. Analysing this 
raw data to measure the responses of readers to the fitting algorithms in a 
useful and statistically valid manner necessitates some processing.

This chapter will detail how the raw data was analysed to define metrics 
appropriate to assessing fitting algorithms, present findings based on those 
metrics, and offer an interpretation of how the findings relate to the test 
algorithms used. The development of these metrics was a process that 
required careful consideration not just of the specifics of the testing 
framework, but also of the research problem and the Latin text fitting 
model, as all three intersect in the data. Before exploring the data itself, 
the discussion will begin with a summary of the testing and its overall 
participation, in order to establish a solid understanding of the conditions 
in which the data was collected. 

6.1 Test batteries and overall participation

As described in chapter 5, tests were deployed in a series of batteries on a 
public-facing web site, which was promoted in discussion forums, via 
mentions in conference talks and on social media, and through 
encouraging participants to share links to the test site. Deploying the tests 
in a series of batteries enabled changes to be made to the typeface test pool 
to accommodate the real-world response rate.

The first battery of tests featured typefaces with unaltered fitting, to 
collect control-group data, gauge the expected response rate, and 
potentially identify any issues not foreseen during the pilot-testing phase. 
In total, 29 test fonts were used in this battery; a total of 203 sample 
exposures were recorded, a mean of 7 exposures per test font. 

The second and third batteries of tests included modified versions of 
typefaces, refitted using either the composite algorithm developed in 
chapter 4 or the rival algorithm, which reimplemented the kf component 
of URW’s hz-program suite, in addition to the unaltered versions of each 
typeface. The total counts of sample exposures recorded during the tests is 
summarized in table 6.1 (over page).
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Table 6.1
The number of exposures recorded for each test typeface, in each fitting-algorithm test condition.’“Control’ refers to the original, 
unaltered fitting. Typefaces marked with an asterisk (*) were used in the pilot test only. Pilot-test responses were included in the general-
response and demographic analysis.

1. Early in the testing, a version of this typeface that had been refitted using a flawed version of the kf 
algorithm, which did not correctly set the minimum sidebearings for diagonal profiles, was 
accidentally exposed on the test site and received 16 exposures. Marks from those exposures were 
included in the general response statistics, such as the breakdowns by demographic group, but the 
marks were removed and not included in the head-to-head comparisons of algorithms.

Sample formsTypeface
* Cantarell Regular

* Fira Sans Extra Condensed
* Alfa Slab One Regular

* Libre Caslon Text Italic
* Rajdhani Light

* Tenor Sans Regular

Abril Fatface Regular
Alegreya Regular

Alegreya Italic
Alegreya Sans Italic

Amiri Regular
Amiri Italic

Andika Regular
Bellefair Regular

Gentium Plus Regular
Gentium Plus Italic

IM Fell Double Pica Regular
IM Fell Double Pica Italic

Literata Regular optical size 10
Literata Regular optical size 18

Neuton Regular
 

 

Sorts Mill Goudy Regular
Sorts Mill Goudy Italic
Source Sans Pro Light

Source Sans Pro SemiBold
Tinos Regular

Tinos Italic
Yrsa Medium

Alegreya Sans Regular
Source Sans Pro Regular

Slabo 13px Regular
Literata Regular optical size 14

Yrsa Regular
Source Serif 4 Regular

STIX Two Text Regular
Slabo 27px Regular

Fira Sans Condensed
Yrsa Bold

 31
 29
 26
 22
 20
 18

6
8

10
3
5
9
6
6
9
2
5

11
11

7
4
6

10
8
7
4
5
7
5

10
21
18

7
20
20
29
25
18
16

8

34
25
29
26
27
24
21
18
10
11

1 

Control   Composite       kf        

32

35
38
26
24
26
17
20
14
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In total, nine of the typefaces had exposures recorded in all three of the 
test conditions (control group and both fitting algorithms). One additional 
typeface, Source Sans Pro Regular, received exposures in the version 
refitted by the rival kf algorithm, but none in the version refitted by the 
composite algorithm. Although regrettable, it is believed that this is an 
effect of the randomized selection of test fonts shown to each respondent.

6.1.1 General response statistics and demographics
Across all of the tests, there were 390 respondents who viewed at least one 
text sample. 1035 exposures were viewed in total, out of which 611 
exposures received at least one mark on a sequence of characters. This 
resulted in 8320 marked sequences (a mean of 8 marks per exposure). 
Among the exposures receiving at least one mark, the mean was 13.6 marks 
per exposure.

Beginning with battery two, the testing site began by asking the 
respondents to select the language they wished to view samples in and 
whether they wished to view a desktop/laptop (multi-column) layout 
identical to the layout used in the first battery and pilot test, or a mobile 
device layout that used a single column and shorter overall sample 
paragraphs. Counting all responses before battery two as English-language 
and desktop-layout (which was the only configuration available), 345 
respondents (88.5%) who viewed a sample exposure viewed samples in 
English, 33 (8%) viewed samples in German, and 12 (3%) viewed samples in 
French. (See figure 6.1)  In total, 281 of the respondents (72%) used the 
desktop/laptop multi-column layout. (See figure 6.2)

The basic demographic questions asked each respondent about their 
language fluency with the language selected for sample text exposures, 
normal or corrected eyesight, and general age range. Of the 345 English-
sample respondents, 20 said they considered themselves not fluent 
readers; all respondents who viewed German and French samples said they 
considered themselves fluent in those languages. 364 of the respondents 
(93%) reported that they either had normal vision or their vision was 
corrected to normal. (See figure 6.3)

The age-range question was limited by the requirement that 
participants in the tests be 18 or older. Of the respondents, 91 (23%) said 
they were 18 and 29 years of age, 195 (49%) said they were from 30 and 44 
years of age, 85 (22%) said they were from 45 to 59 years of age, and 19 (5%) 
said they were age 60 or older. (See figure 6.4)

6.1.2 Experience with type and typography in the response set
An early concern that arose during the design of the testing framework 
was whether it would be possible to recruit volunteer participants of 
varied backgrounds while sufficiently representing relevant typographic 
experience levels, and how that factor might in turn impact the resulting 
data. In particular, a potential critique of the methodology was that an 

Yes
93.3%

   No
6.7%

Mobile
27.9%

Desktop
72.1%

Device classes of respondents.
Figure 6.2

Age ranges reported of 
respondents.

Figure 6.4

Vision status reported of 
respondents. ‘Yes’ indicates 
normal or corrected-to normal 
vision.

Figure 6.3

8.5%

English,
not fluent

5.1%

English,
fluent
83.3%

German

French
3.1%

Language and fluency reported 
by respondents.

Figure 6.1

  50.0%
 23.3%

 4.8%

 21.8%



140

anonymous, public-facing web site would attract a disproportionately large 
number of respondents with little or no typographic or typeface-design 
experience, although how the proportion of experienced respondents 
could affect the results is not known. To measure that factor, the 
questionnaire section asked about three conditions:

• Whether the respondent self-identified as type designer
• Whether the respondent’s work involved type or typography
• Whether the respondent had ever received formal training in 

type, lettering, calligraphy, or a related subject.
The questions were worded to examine various dimensions in which a 
respondent might be considered experienced. On these questions, 128 
respondents (33%) described themself as a type designer, 247 (63%) said 
their work involved type or typography, and 189 (49%) said that they had 
received formal training in type or one of the listed related subjects. (See 
figure 6.5)

Respondents who reported having received formal training were asked 
to describe it in their own words. 163 provided a description. Of those:

• 72 mentioned a specific college or post-graduate degree
• 38 mentioned college or school courses
• 6 mentioned non-academic study courses or workshops
• 6 mentioned internships or formal on-the-job training
• 29 mentioned either being self-taught or referenced their own 

work experience (other than on-the-job training)

Typographic experience reported by respondents, by respondent and by exposures viewed. Respondents were each asked three 
questions related to their experience level with type and typography.

Figure 6.5

Type designers Typography work or jobType-related training

Proportion of respondents

Proportion of exposures

Yes
63.3%

No
36.7%

Yes
64.5%

No
35.5%

Yes
52.4%

Yes
37.6%

No
62.4%

Yes
48.5%

No
51.5%

Yes
32.8%

No
67.2%

No
47.6%



141

Some respondents mentioned items in multiple categories; some were 
difficult to classify or interpret. The above classifications are meant to be 
descriptive only. Across the three questions, it is believed that the sample 
contained a satisfactory mix of respondents with different degrees and 
varieties of typographic experience.

6.2 Exposure and mark data

The preceding look at the responses can provide perspective into the 
sample of respondents, but the core data collected is the marks of ‘Too 
much space’ and ‘Not enough space’ made by the respondents on specific 
letterforms seen in the exposures. Here, too, some general observations 
can be made about the overall characteristics of the responses that assist 
the analysis.

6.2.1 General characteristics of the exposure set
Two high-level patterns of potential interest were observed in the set of 
exposures. The first is the dropout rate. Of 390 respondents that viewed 
one exposure, 216 (55%) proceeded to view additional exposures, with 147 
eventually viewing all five exposures available during a session. (See figure 
6.6)  What percentage of the respondents who viewed an exposure but 
stopped the survey without attempting to assess the sample cannot be 
reliably determined.

The second pattern observed in the exposure set relates to the question 
of typographic experience level raised in the previous section. All three 
experience-level groupings accounted for a larger proportion of exposures 
viewed than their corresponding proportion in the respondent set. 
Although respondents who identified themselves as type designers 
constituted 33% of the respondents, they viewed 389 (38%) of the total 
exposures. Respondents who said they had received training viewed 542 
(52%) of the exposures (from 49% of the respondents), and respondents 
who said their work involved type or typography viewed 668 (65%) of the 
exposures, (from 63% of the respondents). This may reflect a higher degree 
of motivation among the typographic-experience group to complete the 
task. (See again figure 6.5) 

6.2.2 General characteristics of the mark set
Regarding the marks recorded on the exposures, the text contents of each 
exposure was randomized to reduce the chances of marks being skewed 
towards certain letterforms based on their position in the sample page and 
to avoid confusion caused by showing respondents the same text multiple 
times.2 As a result, the exposures varied in length and in the set of letter-
pairs they contained. The desktop/laptop multi-column layout was 

Respondent drop-out rate as 
visible in the number of 
exposures viewed. The sixth 
exposures reported in the figure 
are from the pilot-testing phase, 
which permitted six total 
exposures.

Figure 6.6

2. Randomization of sample texts: as was discussed in chapter five, § 5.3.3.
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distinctly longer, with an average of 4757 characters (including all 
typeforms and word spaces) among the exposures viewed by respondents. 
The mobile, single-column layout was abbreviated, with an average of 1447 
characters (including all typeforms and word spaces). (See figure 6.7) 

The variation in lengths between exposures is perhaps most important 
when considering how the marks made are used to estimate respondents’ 
level of satisfaction with the fitting in the exposure: ‘marks per exposure’ 
alone is not a sufficient metric on which to compare algorithms, due to the 
varying lengths of the exposures. A ‘marks per thousand characters’ rate 
might be a better first approximation although, as will be seen in § 6.3, an 
elementary mark count (even when normalized by the number of 
characters) is not sufficiently detailed to be the basis for evaluating fitting 
algorithms.

Nevertheless, it is useful to observe the overall rates at which exposures 
were marked, simply to note the level at which any signals in the data may 
be found. Across all exposures, there were an average of 4.2 marks per 
thousand characters (SD = 27.7); 7.1 marks per thousand characters (SD = 
35) if exposures with zero marks are excluded. (See figure 6.8, over page) 

These unadjusted rates do not take into account whether the 
respondents marked pairs of forms on the samples, as the instructions 
asked them to do. Even in the pilot test, some respondents were observed 
to highlight and mark entire words or phrases, and the free-form nature of 
the test could not prevent this. Across all of the test batteries, the majority 
of the 8320 marks made were, as instructed, pairs of exactly two characters 
(‘characters’ here including word spaces in addition to typeforms). Of the 
remaining marks, 126 were less than two characters long,3 926 were three-
character marks, 363 were four-character marks, and so on, tapering off 
with mark-length, with a small number of marks persisting in the count up 
to 33 and a few outliers beyond that range. (See figure 6.9, over page)  Four 
marks (all made in the pilot test) were more than 300 characters in length; 
whether this is due to error, to the respondent intentionally registering 

3. 121 of these marks were one-character long. 5 of the marks were zero characters in length. The 
situation causing zero-length marks is unclear, but is most likely the result of users attempting to 
select text outside the sample area.

Lengths of exposures viewed by 
respondents in the collected data 
set, in characters. Because the 
method involved randomizing the 
sample pages, the exposures 
varied in length. The two clusters 
clearly distinguish the longer, 
mutli-column layout shown to 
desktop/laptop devices from the 
shorter single-column layout 
shown to mobile devices.

The six spikes correspond to the 
pilot-test response sessions, 
which used a non-randomized set 
of sample texts and thus did not 
vary in length.  

Figure 6.7



143

dissatisfaction with an entire paragraph, or to some other cause could not 
be determined.

It was decided to include the greater-than-length-two marks in the data 
analysis on the grounds that they represent a respondent’s intentional 
reaction to the fitting of the marked section of the sample and each such 
mark could be unambiguously be split into constituent pairs (e.g., an abc 
sequence was split into two pairs: ab and bc). Marks of less than length two 
were dropped from the analysis because they could not be unambiguously 
associated with a pair. When these subdivided marks were added to the 
length-two mark set, there were a total of 18583 marked pairs. 17721 of 
these marked pairs were on the desktop/laptop layout (95%).

Each mark made was tagged by the respondent according to whether it 
showed ‘Too much space’ or ‘Not enough space’. Across all three test 
conditions, the ‘Not enough space’ marks accounted for 14028 of the 
marked pairs (75%). A similar ratio was observed when looking only at the 
control group of typefaces using their original, unaltered fitting: 8541 out 
of 11298 marked pairs (75%) made on control-group exposures were ‘Not 
enough space’ marks. Each exposure also showed sample text in three sizes. 

Right: The number of marked 
sequences made per thousand 
characters in each exposure. A 
large number of exposures 
received zero marks, perhaps in 
some cases due to drop-outs.

Below right: The second chart 
removes the zero-mark column to 
more easily see the other 
columns. 

Figure 6.8

Length in characters of the 
sequences marked by all 
respondents. Note that this chart 
plots the original length of each 
sequence as it was marked by the 
respondent; marks of longer than 
two characters were split into 
pairs before the data set was 
analysed.

Figure 6.9
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The 16-point text blocks received the most marks (of both mark categories) 
at 13662 (74%), followed by the 12 point at 3247 (17%), and 10 point at 1674 
(9%). 

6.3 Defining metrics to evaluate fitting from the mark data

Fundamentally, the testing framework used in this research was developed 
to measure each respondent’s level of dissatisfaction of the fitting seen in 
each exposure. The expectation is that analysing many such results from 
many respondents for a particular algorithm provides a valid estimate for 
how successful the algorithm would be received by readers outside of the 
testing framework. 

The first step in this process was determining how the marks made on 
pairs of typeforms in the exposures are best integrated into a meaningful 
evaluator of an algorithm. It is simple enough to split the data collected 
into three sets of exposures, one for each of the test conditions (the control 
group with the original fitting in each font, the group of fonts refitted by 
the composite algorithm, and the group of fonts refitted by the rival kf 
algorithm). Within each of those test conditions, each of the raw marks 
comprise a pair of typeforms from one of the exposures plus the 
respondent’s tag indicating whether the pair exhibited ‘Too much space’ or 
‘Not enough space’ (from here, the terms ‘loose’ and ‘tight’, respectively, 
will be used for the sake of brevity). Developing a meaningful evaluator 
began with analysing those marks.

6.3.1 Per-pair metrics: exposure mark rates
As discussed in chapter 2, the Latin fitting process focuses on determining 
left and right sidebearings for each typeform. It has been assumed in this 
analysis that when a respondent marks a pair ab in an exposure as having 
unacceptable fitting, that response correlates to a potential problem with 
either the right sidebearing of a, the left sidebearing of b, or with both. In 
accordance with this principle, the marked ab pairs are interpreted as 
marks on the interior, facing profiles in between the forms (the right 
profile of a and the left profile of b), and not as marks on the external 
profiles. Counting these marks across all of the pair permutations in the 
mark set, if there are more marks on the right profile of a than marks on 
the left profile of b, then the right profile of a has scored worse under that 
test condition, allowing the right profile of a to be identified as the more 
likely location of the problem (although the marks on both profiles must 
still be counted; both profiles in a pair could exhibit a problem, or the 
problem could be unique to the pair).

This basic relationship is complicated by the fact that each mark is 
tagged with the ‘loose’ or ‘tight’ designator, which indicate opposing 
problems. In aggregate, an equal number of ‘loose’ and ‘tight’ marks for a 
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particular profile were treated as balancing each other out. This would 
certainly be the natural interpretation for a marked pair in a single 
exposure: if the same respondent marked ab as overly tight twice and 
overly loose twice, then perhaps some visual problem does exists with one 
or both profiles in the pair, but it cannot be decisively attributed to a tight-
or-loose fitting issue. Applying this same logic across multiple respondents 
and exposures generalizes to a degree, but it remains in line with the 
overall assessment methodology: if equal numbers of respondents 
independently mark the pair ab as being overly loose and as being overly 
tight in a particular test condition, then no conclusion should be drawn 
about whether the pair is fitted too loose or too close by that test 
condition’s fitting algorithm.

To aggregate the marks across a given subset of exposures (for example, 
across all exposures of a typeface within a given test condition), the 
number of exposures where a mark was made for each pair was counted, 
and each such count was divided by the number of exposures in which the 
pair occurred in the sample text. This was done to normalize the counts for 
more frequently-occurring pairs of forms receiving more marks. This 
results in a fractional value between 0 and 1 representing what proportion 
of exposures containing a given pair received a mark for that pair.4

This ratio was calculated separately for the ‘loose’ and ‘tight’ marks. A 
heatmap matrix can be constructed to visualize either ratio for a given 
subset of exposures and potentially identify patterns of interest. (See an 
example for one typeface at figure 6.10, over page)  Even at this early stage, some 
patterns are discernible from visual inspection, by structuring the 
heatmap matrices to group the typeforms by class (namely, lowercase 
letterforms, capital letterforms, numerals, and punctuation & other 
symbols). With both test algorithms, there are noticeably more 
occurrences of high ‘tight’ mark ratios in the capital-to-capital segments of 
the heatmaps. This pattern was expected based on the construction of the 
test algorithms, because both test algorithms fitted the capitals for capital-
to-lowercase text usage and did not implement a separate set of capital-to-
capital fittings via a kerning feature.

It was also observed that the numeral-to-numeral segments of the 
heatmaps exhibited more of high ‘tight’ mark ratios in both test 
algorithms. The construction and the practical implementations of the test 
algorithms did not specifically predict this pattern, but it is perhaps 
interesting to observe in reference to the theoretical discussions about 
how numerals are fitted.5 The test algorithms fitted the numerals for 
setting with the lowercase letterforms, using the same method; as Noordzij 
and others have noted, however, numerals serve a different function than 

4. Other methods of aggregating the marks across exposures were explored. Of note, the method 
chosen, counting all exposures in which the pair was marked, rather than the number of separate marks 
made in those exposures, guards against undue influence by respondents who marked longer-than-
two-character sequences. For example, if one respondent marked every occurrence of an exceptionally 
common pair (such as te), then that single response could outweigh multiple other respondents who 
chose to mark each pair only once.
5. See chapter 2.
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Heatmap matrices of mark ratios for Yrsa Regular in the three test conditions. Left column is ‘tight’ mark ratios; right column is ‘loose’ mark 
ratios. The rows of each matrix index the first character in each mark pair; the columns index the second character. Forms are sorted by case and 
profile shape (right-side profiles on row indices; left-side profiles on column indices).

Figure 6.10
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do individual letterforms. The rules of fitting numerals perhaps warrants 
investigation.

The next step consolidated the ‘tight’ mark ratio and ‘loose’ mark ratio 
for each of the pairs into a single signal representing the balance of the 
two. The result is a measurement of whether the overall perception of the 
pair skewed towards ‘tight’ or ‘loose’. As was the case when deciding how 
to reconcile instances of a single respondent marking the same pair of 
forms in conflicting fashion, a small amount of information is lost, but it 
preserves the overall response to the pair across all of the exposures in the 
set. This consolidation subtracted the ‘tight’ mark ratio from ‘loose’ mark 
ratio, which results in a value between -1 and 1, with negative numbers 
representing overly ‘tight’ and positive numbers representing overly 
‘loose’. (See figure 6.11)

This metric will be referred to as the exposure mark rate and forms the 
basis for the following analysis. Here, and in the following analysis, it 
should be noted that the exposure mark rate measures the aggregate 
response as to whether a pair is too ‘tight’ or too ‘loose’, but it does not 

When a profile receives some 
‘tight’ and some ‘loose’ marks 
(left chart), subtracting the ratios 
reveals the balance between the 
two (right chart). Shown here are 
the left-profile rates for 
lowercase letterforms in Fira Sans 
Condensed, from the control-
group exposures.

It should be noted that these 
ratios are computed separately 
for the left and right profile of 
each form.

The order of the forms visible in 
the index is an automatic sort on 
the basis of the left profile shape, 
which has the benefit of grouping 
similarly-shaped forms together 
in the chart.

Figure 6.11
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measure how ‘tight’ or how ‘loose’ the pair is. That is, if ab features an 
exposure mark rate of 0.2 and bc an exposure mark rate of 0.4, this 
indicates that there was more agreement that bc was fitted too loosely in 
the samples, but it does not mean that the sidebearings of bc in the 
samples are twice as far from correct as the sidebearings of ab.

6.3.2 Assessing results across typeforms and profiles
As defined, the exposure mark rate for a pair of forms represents the 
aggregate response across the given subset of exposures for that pair of 
forms, and it can be calculated for every pair occurring in the exposure 
subset. Across all of the sample texts used in the test (and seen in the 
heatmap matrices), there were a total of 110 different characters, giving 
12100 possible pairs and 12100 possible exposure mark rates — although 
not every pair occurred in the sample text.

Several approaches were considered for how to convert those individual 
exposure mark rates into an assessment of the overall response to the 
given subset of exposures. In a blunt approach, one could simply take the 
mean or median of all of the exposure mark rates for every exposure in a 
particular test condition and arrive at a number, but that number would 
reveal little in the way of useful insight. Furthermore, because the 
typefaces tested were chosen to represent a number of distinct 
typographic design styles, consolidating them into a single group would 
risk obscuring differences by typographic variables. For this research, it 
was decided that the most informative approach was to analyse each of the 
tested typefaces independently. Within each, it was decided to cluster the 
letterforms by their profile shapes, and test for statistical differences 
between algorithms on a per-profile-shape basis. There are two benefits to 
analysing forms by profile-shape clusters.

First, as was discussed in chapter 2, the fitting process for Latin text 
fonts incorporates a number of distinct axioms that are applied to groups 
of similarly-shaped profiles. Consequently, similarly shaped profiles are 
expected to have similar fitting — both by typeface designers when 
performing fitting (as per axioms L–1 and L–2) and by readers when 
encountering text. Thus, although an analysis at the per-letterform level 
might discover atypical cases (such as the left sidebearing of c, e, and o 
differing substantially), those incidents would be expected to be rare and 
likely indicate errors rather than revealing a meaningful pattern.

Second, clustering the letterforms by profile shapes leverages 
knowledge about how the test algorithms affect similar profiles. Both of 
the test algorithms that were implemented deliberately apply similar 
fitting to similar profile shapes, and the composite algorithm developed in 
chapter 4 incorporated a distinct method to fitting open-counter profiles 
as well as several tunable parameters, such as the ratio between the 
internal space of n and the standard inter-letter area, or minimum-
distance parameter for diagonal profiles. Thus, clustering the mark error 
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rates by profile shape could provide insight into whether or not the 
distinct method employed for open-counter profiles or any of the tunable 
parameters may correlate to a different acceptance response from those of 
other profile shapes, perhaps informing future development. In a case 
where the details of the fitting algorithm were not known, this profile-
shape clustering step might be less applicable.

Using this approach, it was possible to analyse each of the nine 
typefaces that received exposures in all three test conditions via a 
substantially smaller batch of computations and statistical tests (and to 
increase the reliability of the metrics by analysing larger data sets), while 
still retaining connections to the methods used to develop the test 
algorithms and, ultimately, to the fitting processes employed manually by 
type designers working with Latin text typefaces.

The final consideration was determining what comparisons between 
the three test conditions were of interest to the research questions of this 
project. It was decided that pairwise comparisons would provide the most 
useful conclusions. Specifically, it was of interest whether there were 
profile shapes in any of the test typefaces for which the composite 
algorithm performed better, worse, or similarly to the original fitting from 
the control group, or (separately) for which the composite algorithm 
performed better, worse, or similarly to the rival kf algorithm. 
Comparisons between the original fitting and the rival kf algorithm could 
also prove useful, as an assessment of the kf algorithm conducted 
independently of URW’s internal tests, apart from the interest in the 
composite algorithm as a product of this research project. As mentioned 
above, it was of special interest how the composite algorithm performed 
with open-counter profiles, and investigating that question necessitates 
looking at all of the profile shapes.

For these comparisons, it was decided to focus on the lowercase 
letterforms for a number of practical reasons. First, the lowercase-to-
lowercase fitting overwhelmingly dominates Latin text set for continuous 
reading — even in German, which utilises more capital-to-lowercase 
pairings than French and English. Second, with nine typefaces receiving 
exposures in three test conditions, it was deemed important to limit the 
total number of comparisons tested. Third, but related to the second 
reason, there are unresolved questions encountered when determining 
how to categorise the profile shapes of capital forms fitted to lowercase 
forms. For example, in pairings such as Co, it could be argued that clipping 
the C at the x-height, as would be done for measuring inter-letter area 
between the baseline and x-height, makes its right-side profile unbounded, 
like L. But this depends on the openness or closedness of the aperture on C 
as well as on the relative x-height of the o. Ideally, all permutations could 
be tested, but here again, the practical problem of controlling the number 
of tests makes this difficult. It was decided to focus on the well-defined 
lowercase-to-lowercase comparisons for this project, to establish initial 
results before extending into other areas.
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6.4 Evaluation of algorithms by typeface and letterform profile shape

For the nine typefaces that received exposures in all three test conditions, 
the left and right profiles of the letterforms were categorised into six 
profile-shape groups: straight, round, diagonal, full open, half open, and 
unbounded, as determined by the shape of each profile between the 
baseline and the x-height. The ‘unbounded’ category referred to forms 
where there was a horizontal main stroke at either the baseline or the x-
height, but not at the other, in particular r. This categorisation step was 
performed by hand early in the test-font preparation process; in practice, 
only the a, g, and J letterforms were found to vary in profile shape among 
the upright typeface styles; the lowercase diagonal-profile letterforms (v, 
w, and y) were categorised as round for some of the italic typefaces, 
although ultimately there were no italic typefaces tested in all three test 
conditions.

The analysis took each of the nine typefaces in turn, subsetting the 
exposures for that typeface from the data set and, within the subset, 
computing the exposure mark rates for the lowercase-to-lowercase pairs in 
each test condition. For each profile shape, the exposure mark rates were 
extracted, both for the left-side profiles and the right-side profiles. This 
resulted in 54 subsets of data to analyse (9 typefaces × 6 profile shapes), 
testing to see if statistically significant differences could be identified 
between the three test conditions in any of the subsets.

A series of preliminary one-way ANOVA tests with α=0.05 was 
conducted, using the null hypothesis (H0) that the means of the exposure 
mark rates were equal between the three test conditions. In 15 of the 54 
tests, a significant difference was reported at the chosen significance level 
(0.05), which should provide grounds to reject the null hypothesis for those 
typeface/profile-shape combinations. However, the one-way ANOVA tests 
cannot report which of the test-conditions resulted in a mean exposure 
mark rate significantly different from the others.

As a result, the analysis next conducted a series of Tukey Honestly 
Significant Difference (HSD) tests, also at α=0.05, which performs pairwise 
comparisons between the three test conditions for each of the 54 
typeface / profile-shape combinations. This provided three head-to-head 
comparisons in each combination:

• The composite algorithm vs the control group
• The composite algorithm vs the rival kf algorithm
• The control group vs the rival kf algorithm

for a total of 162 pairwise comparisons. The Tukey HSD tests reported 19 
pairwise combinations where a significant difference was found (the p 
value for each comparison varies, and is reported in the tables that follow). 
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The pairings where the mean exposure mark rates were significantly 
different, grouped by profile shape, were:

Straight profiles:
• Slabo 13px Regular — composite algorithm vs control group
• Slabo 13px Regular — control group vs kf algorithm
• STIX Two Text Regular — composite algorithm vs kf algorithm
• Yrsa Bold — composite algorithm vs control group
• Yrsa Bold — composite algorithm vs kf algorithm

Round profiles:
• Alegreya Sans Regular — control group vs kf algorithm
• Literata Regular, opsz 14 — composite algorithm vs control group
• Literata Regular, opsz 14 — composite algorithm vs kf algorithm
• Slabo 13px Regular — composite algorithm vs control group
• Slabo 13px Regular — control group vs kf algorithm
• STIX Two Text Regular — composite algorithm vs kf algorithm
• Yrsa Bold — composite algorithm vs kf algorithm

Full-open profiles:
• Fira Sans Condensed — composite algorithm vs control group
• Literata Regular, opsz 14 — composite algorithm vs control group
• Slabo 13px Regular — composite algorithm vs kf algorithm
• Yrsa Regular — composite algorithm vs control group
• Yrsa Regular — control group vs kf algorithm

Half-open profiles:
• Literata Regular, opsz 14 — composite algorithm vs control group
• Yrsa Regular — composite algorithm vs kf algorithm

These pairings are designated with a Yes in the ‘reject H0’ column of the 
Tukey HSD tables that follow. 

Each table is accompanied by a graph showing the means and 95% 
confidence interval for all three test conditions. This is important to the 
interpretation of the results. An exposure mark rate closer to zero 
corresponds to better acceptance of the fitting among respondents who 
viewed the exposures in the subset, but the Tukey HSD’s result indicates 
only whether there were significantly fewer marks or significantly more 
marks between the mean exposure mark rates of the test conditions at the 
tested error rate; it does not report which mean was closer to zero. For 
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each pairing of significant difference in the tables that follow, the test 
condition closer to zero is highlighted in gold — indicating that the 
highlighted test condition showed a significantly lower reader-
dissatisfaction rate.

covers page 
number

0.0141 0.0218 0.0017 0.0266 Yes

-0.0105 0.0665 -0.0216 0.0005 No

-0.0247 0.0 -0.0373 -0.012 Yes

Tukey Honestly Significant Difference test, FWER=0.05:
Slabo 13px Regular, profile shape "straight"

-0.0027 0.7924 -0.0124 0.007 No

-0.011 0.0242 -0.0209 -0.0011 Yes

-0.0084 0.115 -0.0182 0.0015 No

Tukey Honestly Significant Difference test, FWER=0.05:
STIX Two Text Regular, profile shape "straight"
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covers page 
number

-0.0042 0.0347 -0.0081 -0.0002 Yes

-0.0044 0.008 -0.0079 -0.001 Yes

-0.0003 0.9865 -0.0042 0.0036 No

Tukey Honestly Significant Difference test, FWER=0.05:
Literata Regular at opsz 14, profile shape "round"

0.0088 0.0436 0.0002 0.0175 Yes

0.0108 0.0073 0.0024 0.0191 Yes

0.0019 0.869 -0.007 0.0109 No

Tukey Honestly Significant Difference test, FWER=0.05:
Yrsa Bold, profile shape "straight"

-0.0076 0.39 -0.0211 0.006 No

0.0072 0.3897 -0.0057 0.0201 No

0.0148 0.0409 0.0005 0.0291 Yes

Tukey Honestly Significant Difference test, FWER=0.05:
Alegreya Sans Regular, profile shape "round"
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covers page 
number

0.0044 0.2039 -0.0017 0.0104 No

0.0059 0.0473 0.0001 0.0117 Yes

0.0015 0.8459 -0.0049 0.008 No

-0.0127 0.0749 -0.0264 0.001 No

-0.0162 0.0126 -0.0296 -0.0028 Yes

-0.0035 0.8203 -0.0172 0.0102 No

0.0322 0.0003 0.013 0.0513 Yes

-0.0045 0.7987 -0.0208 0.0119 No

-0.0366 0.0 -0.0558 -0.0174 Yes

Tukey Honestly Significant Difference test, FWER=0.05:
Slabo 13px Regular, profile shape "round"

Tukey Honestly Significant Difference test, FWER=0.05:
STIX Two Text Regular, profile shape "round"

Tukey Honestly Significant Difference test, FWER=0.05:
Yrsa Bold, profile shape "round"
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covers page 
number

-0.0112 0.6225 -0.0396 0.0172 No

-0.0314 0.0066 -0.0554 -0.0073 Yes

-0.0201 0.2207 -0.0487 0.0084 No

-0.011 0.013 -0.0201 -0.0019 Yes

-0.006 0.1872 -0.014 0.002 No

0.0051 0.4014 -0.0042 0.0143 No

-0.0373 0.0308 -0.0718 -0.0027 Yes

-0.0097 0.7335 -0.0402  0.0208 No

0.0275 0.1351 -0.0063 0.0613 No

Tukey Honestly Significant Difference test, FWER=0.05:
Fira Sans Condensed, profile shape "full-open"

Tukey Honestly Significant Difference test, FWER=0.05:
Literata Regular at opsz 14, profile shape "full-open"

Tukey Honestly Significant Difference test, FWER=0.05:
Slabo 13px Regular, profile shape "full-open"
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covers page 
number

0.0015 0.3725 -0.0011 0.0041 No

0.003 0.0078 0.0006 0.0053 Yes

0.0015 0.3509 -0.001 0.004 No

-0.0041 0.001 -0.0067 -0.0014 Yes

-0.0019 0.1346 -0.0043 0.0004 No

0.0022 0.1272 -0.0005 0.0048 No

-0.0084 0.0296 -0.0161 -0.0007 Yes

0.0005 0.987 -0.0065 0.0074 No

0.0088 0.0236 0.001 0.0167 Yes

Tukey Honestly Significant Difference test, FWER=0.05:
Yrsa Regular, profile shape "full-open"

Tukey Honestly Significant Difference test, FWER=0.05:
Literata Regular at opsz 14, profile shape "half-open"

Tukey Honestly Significant Difference test, FWER=0.05:
Yrsa Regular, profile shape "half-open"
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Collectively, these test results present a mixed picture; each of the three 
test conditions (the two algorithms and the control group) fared better, 
with statistical significance, in more than one of the pairwise comparisons. 
Furthermore, no significant difference was found in 143 of the 162 pairwise 
comparisons. Thus, there is not a clear ‘winner’ to declare across the full 
set of typefaces tested on that basis.

Nevertheless, the fact that the two algorithms tested were only shown 
to be less preferable than the control group at the α=0.05 significance level in 
3 of the comparisons was a more successful outcome than had been 
anticipated. Among the pairwise comparisons, and within the individual 
profile-shape groups, there are more interesting distinctions to note.

6.4.1 Examining pairwise results involving the composite algorithm
In the pairwise comparisons between the composite algorithm and the 
control group, there were 8 typeface + profile-group tests in which a 
significant difference in the mean exposure mark rate was observed. Out of 
those 8, the composite algorithm exhibited a lower reader-dissatisfaction 
rate in 5 comparisons, which is the result regarded as a success. A closer-
to-zero mean suggests that fewer respondents considered the fitting to 
look incorrect for those typeforms when the composite algorithm had 
been used to generate the letter fitting. Conversely, in the 3 comparisons 
for which the control group had a lower reader-dissatisfaction rate, more 
respondents considered the fitting of the typeforms incorrect when the 
composite algorithm had been used to generate the letter fitting.

In the pairwise comparisons between the composite algorithm and the 
rival kf algorithm, there were 7 typeface + profile-group tests in which a 
significant difference in the mean exposure mark rate was observed. Out of 
those 7, the composite algorithm exhibited a lower reader-dissatisfaction 
rate in just 2 comparisons, and the rival kf algorithm exhibited a lower 
reader-dissatisfaction rate in 5. This suggests that the kf algorithm 
produced more acceptable fitting for the tested exposures than did the 
composite algorithm.

As discussed in section 6.3.2, though, attempts to reduce the data down 
to a single, overall success signal discards too much information to be of 
practical applicability. In particular, although it is intriguing to look at the 
the head-to-head pairwise comparisons between algorithms as a group, the 
question of greater interest was whether the tests would identify any 
significant differences between the algorithms that can be reliably linked 
to the design and implementation of the algorithms themselves. Any such 
differences could shed new light on algorithm implementation or on the 
axiomatic model upon which the composite algorithm was designed.

6.4.2 Examining pairwise results by profile shape
To that end, it is arguably more revealing to consider the results of the 
Tukey HSD tests by looking at the profile-shape groups. On that question, 
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in four of the profile shapes, statistically significant differences were 
identified in one or more of the pairwise comparisons: straight profiles, 
round profiles, full-open profiles, and half-open profiles. 

In the straight profiles, the composite algorithm was identified as 
having a preferable mean exposure mark rate for Slabo 13px Regular (vs 
the control group) and STIX Two Text Regular (vs the rival kf algorithm), 
but a less preferable mean exposure mark rate for Yrsa Bold (vs the control 
group). In the round profiles, the composite algorithm was identified as 
having a preferable mean exposure mark rate only for Slabo 13px Regular 
(vs the control group), and a less preferable mean exposure mark rate for 
Literata Regular at opsz 14 (vs the control group and vs the rival kf 
algorithm) and for STIX Two Text and Yrsa Bold (vs the rival kf algorithm). 
In the half-open profile group, though, the composite algorithm was 
identified as having a less preferable mean exposure mark rate for both 
Literata Regular at opsz 14 (vs the control group) and Yrsa Regular (vs rival 
kf algorithm).

In the full-open profile group, though, the composite algorithm was 
identified as having a preferable mean exposure mark rate for Fira Sans 
Condensed, Literata Regular at opsz 14, and Yrsa Regular (vs the control 
group) and for Slabo 13px (vs the rival kf algorithm).

Because the composite algorithm employed novel techniques for fitting 
open-counter profiles, the lower reader-dissatisfaction rate indicated by 
the tests may suggest that the techniques have merit and are worth further 
exploration. The results of these pairwise comparisons are far from an 
overwhelming success for the techniques, most notably because the only 
statistically significant differences found for the half-open profiles showed 
the composite algorithm to exhibit a higher reader-dissatisfaction rate.

By the same token, the composite algorithm fared less successfully than 
the control group and the rival kf algorithm in the pairwise comparisons 
for straight and round profiles, a result which could inform further 
refinement. Recall that in the composite algorithm, the straight and round 
profiles were both fitted strictly on the basis of the standard inter-letter 
area rule, which computed a standard inter-letter area by calculating the 
interior space of the key letterform n and scaling that by a tunable 
parameter. Thus, if further testing were conducted, an interesting avenue 
for future research might be to adjust the tunable parameter and assess 
whether that produces more preferable outcomes.

6.4.3 Size and scope of the effects observed
Drawing inferences directly from the data or the statistical tests must only 
be done cautiously. The overall signal in the data is small; on average, most 
respondents marked only a few sequences as looking incorrect. That 
overall threshold for marks made by respondents corresponds to the low 
exposure mark rates calculated, but it is also built into the test: 
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respondents were not asked to exhaustively evaluate pairs of letterforms 
or sequences, but instead only to mark what they noticed.

This was by design, of course: the testing methodology sought to 
measure where differences in letter fitting were perceived as noticeable by 
readers in a Latin text setting. The overall small signal observed in the test 
may, therefore, be explained by concluding that the two test algorithms 
produced fitting that was close to the acceptable tolerances of readers in 
the real world, but both of the test algorithms may still benefit from 
further refinement. More sensitive measurement might necessitate testing 
with greater numbers of readers or relying on other testing methods.

To assess the size of the effect observable between test conditions and 
whether it constituted a meaningful effect for real-world typeface design, 
the mean exposure mark rates were examined for each typeface + profile-
shape group. There are, of course, separate ranges for each of the pairwise 
comparisons. Overall, the 95% confidence intervals for the mean exposure 
mark rates in those pairwise comparisons where a significant difference 
was reported ranged from -0.08 to +0.06. Those extremes correspond to 6–
8% of occurrences of a particular profile shape being identified as 
exhibiting a fitting problem (either too ‘tight’ or too ‘close’) by the 
respondents. Some profile shapes, however, exhibited exposure mark rates 
one or two orders of magnitude smaller — which may signify that all of the 
test conditions performed equally well.

Because this measurement methodology is new, there is no pre-defined 
standard against which this size of effect can be judged. However, it did 
seem reasonable to hypothesize that a 6–8% rate of readers regarding a 
letterform as being poorly fit would constitute a significant issue for 
typeface designers or typographers.

6.4.4 Interpreting the results of the tests
Pure numbers aside, in order to interpret the meaning of the test results it 
should also be recalled that a more noticeable problem with the fitting of a 
particular pair of letterforms is not the same as saying that the fitting is 
more wrong. In real-world text settings, some pairs may be more noticeable 
for semantic reasons (such as pairs occurring at the beginnings of 
sentences) or because of the layout (such as the first or last lines in a 
paragraph). The randomization of the texts in the tests was intended to 
temper this effect, but there may also be other cases in which a fitting 
problem is more noticeable. 

In addition, not all letterform profiles are of equal importance because 
letters are used at different frequencies; that is, the letterforms and 
profiles in real texts — regardless of the language — are not evenly 
distributed (Grigas and Juškevičienė, 2018). Yet that fact by itself does not 
mean that the most frequently occurring pairings matter more. It was 
observed in the study of Latin letter-fitting practice in chapter 2 that some 
of the fitting axioms are tied to legibility, such as the prohibition against 
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collisions in axiom L–11. For text settings, then, ranking the letterforms by 
the frequency at which they occur in the language could be misleading; it 
may be instead that deciding the importance of pairs should also involve 
considering the fitting axioms. 

Weighting the prohibition of collisions as more serious, even if they 
occur only in infrequent combinations, is just one example. It was noted in 
chapter 3 that some of the Latin fitting axioms, such as the vertical stroke-
rhythm axiom (L–5), apply to text at a larger scale than pairs of adjacent 
forms. If the importance of vertical stroke rhythm lies in how it dominates 
the patterns of Latin text for continuous reading, then perhaps straight-
profile letterforms should be considered more important when 
interpreting the results of quantitative tests such as those in this project.

6.4.5 Algorithm design
Some final interpretations drawn from the quantitative test results are 
observations about the test algorithms themselves. It was reassuring to see 
that the novel method developed for open-counter profiles in the 
composite algorithm showed some positive results, not simply because it 
uses a different technique from the rival kf algorithm, but because it 
suggests that improvements could be made by considering the various 
fitting axioms independently of each other. That has implications for the 
development of letter-fitting algorithms for other scripts and for 
continuing to improve on Latin text fitting: identifying and understanding 
the rules that govern fitting in a script, even incrementally, can improve 
how algorithms fit text, without necessarily requiring the development of 
a new algorithm from scratch.

It was interesting to note that the rival kf algorithm was found to have 
statistically significant advantages over the composite algorithm and the 
control group in several of the tested font and profile-shape groups. 
However, in the head-to-head comparison, it should be remembered that 
the tested version of the kf algorithm was a new reimplementation based 
on the documentation available in the original patent, rather than being 
the original URW software. Attempts were made not to deviate from the 
details available, but several parameters that were described only as 
options in the patent filing, and values for those parameters had to be 
chosen.

Notably, that includes two parameters which were also used in the 
composite algorithm: the minimum sidebearing distance and the choice of 
scaling factor used in computing the standard inter-letter area. As 
described in the published material, the kf algorithm used o as the key 
letterform from which the standard inter-letter area for lowercase forms 
was calculated, but no multiplier or adjustment factor was described to 
scale the interior counter-area of o. Instead, the unadjusted interior 
counter area was used. In contrast, the composite algorithm always scaled 
down the interior area of its key letter (n), to follow the advice of the 
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letter-fitting literature. The practical result was that the kf algorithm 
consistently used a larger inter-letter area than the composite algorithm.

That unscaled value for kf’s inter-letter area perhaps reflects the intent 
of the algorithm accurately, but it should be recalled that in the 
quantitative tests, a significantly larger proportion of all marks made (75%) 
were of the ‘tight’ variety. That could mean that a consistently larger inter-
letter area will consistently skew towards better results, even with all 
other factors being equal; it may be that tight spacing errors are more 
noticeable to readers in this test methodology. There are sources in type-
design literature that advise the use of uniformly looser fitting for smaller 
point sizes (Unger 2007, p. 115; Hochuli 2015, p. 26), in addition to some 
readability studies that suggest uniformly looser typographic spacing 
improves readability for some readers (Beier et al. 2021; Łuniewska et al. 
2022).

The other tunable parameter chosen for the reimplementation of the kf 
algorithm was the minimum distance; zero was used in the tested 
reimplementation for the sake of simplicity. That choice by itself is perhaps 
defensible, but when used in combination with the consistently looser 
fitting of the kf reimplementation’s inter-letter counter area, it is unknown 
whether it affected the kf test condition for better or worse.

Ultimately, of course, speculating on how changes to any of the 
algorithms or parameters could impact quantitative test results is a 
theoretical topic. In an ideal world, it would be possible to stage tests with 
every permutation of parameters and in a wide variety of typeface styles. 
But time and volunteer respondents are both finite, relatively scare 
resources. The quantitative testing described in this chapter provided 
some insights into how successfully the test algorithms might be received 
if employed to fit other typefaces, but on its own, it did not definitively 
answer the project’s research questions about the overall viability of a 
letter-fitting algorithm to generate fitting that cannot be distinguished 
from manually-determined fitting and about the modelling of manual-
fitting processes. As will be discussed in the next chapter, there are 
potentially useful insights to be gleaned from other portions of the project, 
such as the historical survey, axiomatic modelling, and analysis, that may 
inform other useful research into algorithmic letter fitting.
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7. Conclusions

This research has sought to investigate how and to what extent an 
algorithm can perform the task of letter fitting a well-designed text 
typeface, in a manner that is consistent with the proven manual fitting 
processes of type practitioners, as type is experienced and is assessed by 
readers when they engage with text in the real world. By its very nature, 
these questions are multi-faceted; to begin with, they invoke the 
independent perspectives and concerns of distinct groups of people — type 
designers and readers — and they furthermore require probing into the 
processes of design and reading. Exploring the research questions has thus 
required a multi-disciplinary approach. First, by seeking to establish 
reliable connections between the designer’s experience and the reader’s, 
via the avenue of the typeface itself. Second, by deriving a method to 
empirically assess the results reported by the reader in a manner that can 
likewise be meaningfully linked back to the designer’s craft.

Maintaining this link has been a conscious exercise throughout the 
research, specifically because it holds the possibility for uncovering new 
insights. Where prior legibility and readability research has looked at the 
spacing of letters, it has tended to do so at the typographic level: adding or 
subtracting the same distances between all of the typeforms in a text. 
While such research is useful in the typesetting context, those studies have 
not examined the fitting of particular forms as is done during typeface 
design. Conversely, there have been investigations into employing 
statistical analysis to describe and characterize the fitting of existing 
typefaces, either purely formulaically or by loading sets of typefaces into 
machine-learning training systems. But those approaches can only capture 
the results of fitting already done. Thus, neither approach offers much to 
typeface designers to increase their understanding of the process, or 
speaks to how the task of fitting can and should be approached for 
typefaces that designers will create or refine tomorrow. 

Chapter 2 began by examining the task of letter-fitting as it is practised, 
as it is taught, and as it is captured in the historical literature of 
typemaking and related disciplines and in typeface design tools. From that 
examination, it derived an axiomatic model focused on capturing how type 
designers perform the fitting task when designing Latin text typefaces. 
The model that it derived consists of 16 axioms that reflect the first 
principles of fitting Latin text typefaces, at least so far as a consensus 
approach can be established. The axioms themselves are not an algorithm 
that performs letter fitting, but a set of interrelated principles, each of 
which individually provides answers to some — but not all — of the letter-
fitting decisions required for a given set of typeforms.

Each of the axioms provides a more formal expression of a principle 
likely known to practitioners of letter fitting, including where the 
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principle can be applied and where it cannot, as well as what sort of 
answer the axiom can provide. There are some axioms concerned with the 
relative size of one space compared to another, but other axioms that 
provide absolute minimums or other limits. The final portion of chapter 2 
demonstrates that this more formalized expression has practical utility, by 
discussing how various axioms interact with one another in a network of 
relationships that type designers must navigate. Although the focus of this 
research project has been the fitting of Latin typefaces for text settings, the 
specificity and the historical footing for the axioms in the model show that 
the model functions within a particular typographic context. 
Consequently, as noted in the discussion of the axiomatic model, the same 
research-based derivation process could be used to explore fitting in other 
scripts and writing systems.

Chapter 3 examined the Latin text fitting model as a construct in its 
own right, with a particular focus on finding and understanding which 
facets of the model can be clearly mapped to procedures in an algorithm, 
which are less formally described and thus pose practical challenges for an 
algorithmic implementation, and which are well-understood theoretically 
but still require further investigation. It identified two axioms as 
opportune for more detailed investigation: the optical centring of forms 
within a triplet and the handling of forms with concave or ‘open-counter’ 
side-profiles.

Chapter 4 reported on investigations into these two axioms and the 
identification of a potential connection to link them for practical 
application. On one hand, the fundamental question of fitting typeforms 
with an open-counter profile is where to define the boundary between the 
interior and exterior space of the open-counter profile. Prior work at 
automating letter fitting had acknowledged the need to determine a 
boundary, but none had established an approach grounded in theory. On 
the other hand, finding the optical centres of typeforms is a problem that 
was explored at great length by the LOGOS project of David Kindersley and 
Neil Wiseman — though the LOGOS method, as a whole, utilized its optical 
centrepoints in concert with other innovative techniques and sought to 
produce fitting for every typeform in the same fashion.

Through the investigation of these two axioms, it was theorized that 
the problem of defining the interior-exterior boundary for open-counter 
profiles might be addressed by finding the optical centre of the typeform 
in question. This possibility was suitably well-defined to be put to the test, 
given that the LOGOS centrepoint method is documented and could be 
implemented. But it also held value as a potential test of the axiomatic 
model for Latin text fitting; the model states that open-counter profiles are 
governed by principles that do not apply to closed profiles.

The majority of the prior work implementing letter-fitting automation 
tools has not addressed different profile-shapes with different techniques, 
and where the prior work has treated different profile shapes with distinct 
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techniques, the different treatments have generally been coincidental 
(such as the differing effects seen with the kf algorithm’s fixed cut-in 
angles) or opaque (such as LS Cadencer’s pre-determined measurement 
tables). Chapter 4 then concluded by exploring how to incorporate the 
testable new method for handling of open-counter profiles into a 
composite fitting algorithm that combined several techniques to address a 
complete set of Latin text typefaces.

Chapter 5 explored the practical problem of putting any letter-fitting 
algorithm to the test with readers. It looked at the prior testing regimens 
and comparison methods found in scholarly research, commercial product 
marketing, and in publicly available records of software development. It 
established that testing refitted typefaces with readers could reliably 
record responses to fitting algorithms with the general public, removed 
from the risk of experimenter bias, while capturing information detailed 
enough to study the results of fitting algorithms at the per-typeface and 
per-profile levels.

It then described the construction of a framework that can be used to 
survey readers about what they perceive as unacceptable letter-fitting 
between individual pairs of typeforms, for fonts viewed in randomized 
sample text documents, by asking the readers to mark pairs of forms on 
each sample. By surveying a broad sample of the reading public, using 
fonts randomly chosen from the original versions and versions refitted by 
test algorithms, the framework can collect data that captures potential 
differences in the readers’ responses to the algorithms.

The test framework was deployed on a publicly available web site, 
testing various Latin text fonts in stages. A set of nine fonts chosen to cover 
a variety of letterform constructions, styles, and typographic weights and 
widths was tested in three conditions: the original, manual letter fitting; a 
refitted version modified by the composite algorithm developed in chapter 
4; and a refitted version modified by a reimplementation of the kf 
algorithm from URW’s hz-program suite.

Chapter 6 reported on the results of those tests. The number of marks 
made on forms in test exposures were consolidated into metrics that 
represent the overall level of dissatisfaction of readers for letterforms of 
different profile shapes. There were statistically significant differences 
found between the composite algorithm developed in chapter 4, the rival kf 
algorithm, and the original fittings of the same fonts. For letterforms with 
open-counter profiles, the composite algorithm resulted in a lower rate of 
dissatisfaction among the test respondents, although with other letter-
form profile shapes, the novel algorithm resulted in a higher rate of 
dissatisfaction. This mixed result suggests that the method used to fit 
open-counter forms has merit, but that additional refinement of 
techniques for other profile shapes would likely be required to devise an 
algorithm that consistently tests well with readers.
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While the results of the tests showed an advantage for the composite 
algorithm in some profile shapes and a disadvantage in other profile 
shapes, that divergence can be perhaps explained by the choice made in 
chapters 3 and 4 to focus attention on developing a new technique for 
fitting open-counter profiles. The novel techniques developed in chapter 3 
were specific to open-profile shapes and, thus, were expected to result in 
an observable effect on those shapes. The fitting of other profile shapes is 
governed by other axioms, and without the benefit of tuning for those 
profile shapes, the composite algorithm was not assumed to result in  
significantly better results for those other shapes. Consequently, I believe 
that the project as a whole points to an affirmative answer to the primary 
research question, which asked if an algorithm can be constructed that will 
generate letter fitting for a well-designed typeface which cannot be 
distinguished from letter fitting determined manually. The testing 
methodology reframed the original goal of the research question from the 
somewhat imprecise phrasing of ‘cannot be distinguished’ into a more 
quantifiable notion of evaluating success with readers in text for 
continuous reading. The composite algorithm constructed and tested in 
the project tested similarly with readers for many typeforms across several 
typefaces, but its success with open-counter profiles fitted by the focused 
techniques shows that there is promise in further exploration.

Re-examining the central research question, the course of the research 
project showed that the original question was too general in its framing of 
letter fitting as a singular, perhaps monolithic, task. Fitting is often 
described as a single stage in the design process in the historical sources, 
but that is surely a rhetorical device to accentuate its importance: all of the 
forms in a typeface must be addressed before the fitting process can be 
considered complete enough for the typeface to be used. The literature of 
type design and the practices taught to type designers, however, are clear 
that the task of fitting involves multiple considerations, multiple 
evaluations, and multiple choices and trade-offs.

It is true that many letter-fitting automation tools in years past 
approached fitting with a singular approach, such as the kf algorithm’s 
application of an equal inter-letter area to all forms or the LOGOS 
algorithm’s application of triplet centring to all forms. But this research 
has shown that there are realizable gains to be made by constructing 
fitting algorithms with more nuance and complexity than was perhaps 
feasible on the computing systems that were prevalent when those 
algorithms were offered on the commercial market. It has also shown that 
systematic exploration of fitting can still reveal new useful insights that 
can potentially improve the performance of algorithmic letter fitting.

Although the primary research question was formulated in terms of the 
creation of an algorithm, when the project is considered as a whole, the 
course of the research contained several distinct contributions to the field 
that warrant discussion in turn.
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7.1 Modelling the manual practice of letter fitting

The analysis of the manual practices of Latin text fitting described in 
chapter 2 and the axiomatic model based on that analysis offer a new 
perspective on a task that is shared by all typeface design projects. 
Historical research in type design has often investigated the practices of 
type designers and manufacturers, but it has rarely explored the problem 
of constructing a conceptual model based on those practices and giving it 
formal expression.

At the pragmatic level, of course, the formal model provides a structural 
substrate for developing fitting algorithms. But there are additional 
benefits to the model in its own right. A well-defined model permits 
systematic discussion and detailed debate about the task of fitting, by 
providing a common set of terminology and precise definitions. 
Furthermore, the examination in the workings of the model in the 
abstract, rather than while fitting a specific typeface, can enhance the 
understanding of how fitting is performed in typeface design or of how 
‘successful fitting’ is seen in text. The discussion of domains, ranges, 
interactions, and interdependencies of Latin text fitting axioms that 
concluded chapter 2 illustrates both. 

Deliberate attention was also paid, during the analysis of historical 
Latin fitting and the development of the Latin text fitting model, to 
consciously maintain a separation between the analysis and the particulars 
of the Latin script. Where possible, it was noted when axioms in the Latin 
text fitting model were unique to the script or could be known to function 
differently in other scripts. That analysis shows that building a script-
specific model, consistent with the practice of fitting text in a particular 
script, is a repeatable process with general application beyond Latin alone. 

The utility of the model also reinforces the value of systematically 
analysing historical narratives that frame type design (and potentially 
other design processes) as a craft that is performed manually and must, 
therefore, be taught only within a manual context. Analysis of the manual 
craft can deepen the understanding of the problems that the craftsperson 
solves and of the tooling available for solving design problems; probing 
those topics is not always comfortable, but — far from discounting the 
historical narrative — re-examining these historical processes can move 
the discourse forward by uncovering additional useful information.

 Similarly, it is widely accepted — within type design as well as within 
other design studies — that there is always value in revisiting prior art. The 
novel techniques and the connections between them pointed to by this 
research demonstrate that rewards can be yielded by revisiting prior 
efforts at modelling, automation, and tool development. As noted in § 2.2.5, 
models describing the process of letter fitting can often be more complete 
complete than the technology of the day could implement conveniently. By 
revisiting prior analysis of design processes, design discourse can mitigate 
the loss of potentially valuable insights that are easy to overlook.
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7.2 Analysis and implementation of algorithms

The practical component of this project involved, perhaps most notably, 
the design and software implementation of a technique for establishing 
sidebearings for typeforms with concave or open-counter side profiles, 
based on combining concepts known from prior letter-fitting 
implementations in a new way. It is undeniable that this specific technique, 
even if refined further, would at best provide useful answers for a subset of 
the typeforms that need to be fitted in a Latin text typeface. But, more 
generally, the results indicate that it is possible to incrementally improve a 
fitting algorithm in a form-by-form fashion. Furthermore, the practical 
investigations and experimentation that led to the technique afforded 
other opportunities to gain insight into the implementation of typeform-
fitting software and the overall design of algorithms for fitting.

 Based on the historical survey, it appears that the LOGOS component 
developed for this project may be the first independently written 
reimplementation of the core LOGOS methods since the original project. 
Similarly, although there are implementations recorded for other 
components in the hz-program suite (Thê  ́Thành 2000), the 
reimplementation of the kf algorithm for this project may also be the first. 
In both cases, independently developing and putting the algorithms to the 
test was instructive in ways apart from their direct use in the fitting 
algorithms.

The LOGOS reimplementation revealed new avenues for exploring how 
letterforms are classified. The centrepoint-finding component was 
developed in order to address the problem of defining the boundary 
between interior and exterior space, but in practice it may provide an 
objective test for whether a form should be classified as having an open-
counter profile, which can be a nebulous question for forms such as f, t, 
and r, in some typefaces. 

In the higher-level problem of devising a multi-part algorithm that 
determines letter-fitting for a set of typeforms, implementing the kf 
algorithm helped highlight issues about how the Latin text fitting axioms 
should be mapped into a tool that is practical for type designers. For 
example, although type-design literature dating back to Fournier has 
posited that the interior width of the counter in the key letterform n 
should form the basis for the standard inter-letter area of all of the 
typeforms (Axiom L–6: Interior-Exterior Balance), implementing that rule 
during development revealed that there is considerable disagreement 
about the exact ratio between that interior width and the standard inter-
letter area (see chapter 2, p. 49–50). The published kf patent does not 
address this ratio, nor do contemporary software tools dealing with fitting 
by equal inter-letter areas, such as HT Letterspacer. The only way to make 
adjustments to this ratio when working with HT Letterspacer is to edit the 
Python source code and, even then, applying a different ratio requires 
altering several hard-coded values.
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In the course of this project’s practical implementation, engaging with 
these issues raised new questions about whether the relationship between 
the counter in the key letterform n and the standard inter-letter area is 
well-understood, particularly as it varies across weight, width, and style, 
and it revealed many opportunities to re-evaluate how tunable settings 
and decisions that should be available to the type designer might be 
presented as easily understood parameters either in discussions of letter 
fitting or in letter-fitting software tools.

More generally, this project’s findings about the interconnectivity and 
interactions between the oft-cited principles of letter fitting show that a 
systematic discussion — and even dissection — of aspects of design work 
holds practical value for the craft. At times, design work can be too easily 
categorized as dominated by the need for intuitive judgment. Type design, 
with its scrupulous attention to detail and its concern with practical 
outcomes like readability, is more resistant to this temptation that some 
other fields. The practical findings of this work reinforce that systematic 
investigation can generate usable insights, and has a place within the 
discourse.

7.3 Quantitative test methodology

The testing framework described in chapter 5 and the analytical methods 
used in chapter 6 to evaluate fitting algorithms are both contributions with 
general usage for conducting type research. As was noted at the start of 
chapter 5, there has been little structured research into letter fitting, and 
the evaluation methods that were historically employed were deemed not 
appropriate for assessing the success of letter-fitting algorithms with 
readers. The assessment methods in prior research were deemed not to be 
appropriate often because they did not test with readers, and relied 
instead on the evaluations of the researcher (which are subject to bias). But 
other issues were identified, such as reliance on fixed sample texts, or by 
ultimately defining the metric for success as whether or not an algorithm 
reproduced letter fitting identical to the original fitting of the typeface.

The methodology developed in this project provides a new, general 
framework for testing fitting with readers that addresses those concerns 
directly. Tests can be conducted in large sample sizes, recording basic 
technical and demographic variables about the participants, while 
preserving their anonymity. The tests conducted for this research show 
that it is possible to recruit participants in significant numbers both from 
the general reading public and from within the more narrow confines of 
people who possess experience with type and typography. Where the data 
itself is concerned, the framework was deployed in tests that focused on 
the most fundamental fitting question for Latin text: whether two adjacent 
typeforms are too close or too far apart in the horizontal direction. But it is 
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capable of more general tests; it would be simple to add more options to 
the choices offered when a respondent highlights characters and thus 
investigate other questions, such as whether diacritics, marks, or 
secondary forms are considered to be positioned too high or too low in the 
vertical direction. Potentially, additional enhancements to the same basic 
mark-making technique would also enable the testing of scripts that 
feature other letter-fitting questions.

In the analysis stage, the data collected by the framework was detailed 
enough that the typeforms of each tested typeface could be collated by 
profile shape, but the same data format would permit analysis of each 
typeform individually or across the entire typeface. For this project, 
metrics were defined that captured the patterns of marks made by profile 
shape, but that decision was based on the functionality of the algorithms 
being tested. The same test framework and data format could alternatively 
be used to analyse the effect of a fitting change on a single form, on classes 
of forms defined in some other fashion, or perhaps even to look for 
previously unknown relationships between forms and classes.

It is also notable that the test framework permits direct-comparison 
analysis of fitting algorithms when those algorithms are used to refit the 
same typeface. For this project, such head-to-head comparisons were 
deemed important, because they permitted the comparison of a new 
fitting algorithm against the original, unmodified fitting of each font, and 
did so without assuming that reproducing the original fitting of the font 
was the universal measure of success. Nevertheless, the framework itself 
and the data model are general enough that this style of algorithm-versus-
algorithm test is not the only possible experiment. The testing framework 
could be used without modification to make comparisons across 
demographic groups, across languages, on changes made to the design of 
typeforms, or on incremental changes to the parameters of any particular 
fitting algorithm.

Naturally, there are limits to what the framework and data model can 
test. Perhaps the most notable limitations are that the framework is a web-
only, client-server testing environment that does not test printed samples 
and — in remote tests — cannot record all of the system or environmental 
factors (such as the brightness and dot-pitch of the display or room 
lighting) that might be of interest to researchers. However, some of these 
technical limitations may be surmountable by further development of the 
software, or by performing tests in a controlled environment.

It is also not essential to the testing methodology that letter-fitting be 
the sole task given to test respondents. The core functionality of the 
framework could potentially be incorporated into broader tests with 
readers or user-experience research, with letter-fitting issues being just 
one among several forms of feedback obtained. To consider the testing 
methodology more generally, the quantitative component of this project 
illustrates that empirical testing and analysis is capable of addressing 
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design questions beyond the legibility and readability studies that have 
steadily gained popularity in recent years. 

7.4 Discussion

The new technique developed for fitting typeforms with open-counter 
profiles showed promise in the public tests. But it must be remembered 
that addressing those forms makes up only one part of the overall task of 
fitting a typeface, and that the tests attempted to measure success with 
readers by providing a specific form of feedback: marking letterforms 
where the fitting appeared incorrect. To progress further towards the 
development of a fully comprehensive fitting algorithm, work remains to 
be done.

As discussed in chapter 4, the scope of the composite algorithm was 
restricted so that it could be tested. The restrictions put in place for the 
tests are areas where the composite algorithm can clearly be extended, 
including implementing kerning, implementing the exception rules for 
single-stroke forms or adjacent extenders, implementing capital-to-capital 
fitting, and the further refinement of the tunable parameters. Likewise, the 
testing methodology can be extended. There are facets of the test 
framework that could be further refined, such as the layout and design of 
the text samples. Additionally, there are technical improvements to 
consider, like developing methods for monitoring aspects of the response 
session (such as detecting the zoom level of the browser or custom tweaks 
to font settings which may interfere with the test) that could not be 
reliably monitored during the public tests.

In addition to specifics such as these, there are other, more 
architectural aspects to designing a fitting algorithm that warrant further 
consideration. For example, it was noted in chapter 4 that a decision had 
been made to design an algorithm capable of addressing the basic Latin 
letterforms in the simplest fashion. That meant that each sidebearing was 
determined once, based on a rule chosen according to the shape of the 
profile. But chapter 4 also noted that this was not the only possible 
approach. There may be improvements to be seen by finding other ways to 
traverse the entire set of letterforms, perhaps invoking several axioms on 
each profile and finding a technique to balance the results. There is also 
the possibility that further exploration of the two axioms deemed 
incomplete in chapter 3 (L–5: Vertical Stroke Rhythm and L–3: Shells of 
Space) can bear fruit and that they will prove useful for algorithmic fitting, 
and that more detailed explorations of the interactions between the 
axioms can yield further insight.

Then again, perhaps it goes without saying that more complex or more 
nuanced fitting algorithms could be developed with further study, for that 
is likely always the case. Computer scientist Donald Knuth, in his foreword 
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to Robert Sedgewick and Philippe Flajolet’s An Introduction to the Analysis of 
Algorithms, wrote:

People who analyze algorithms have double happiness. First of all they 
experience the sheer beauty of elegant mathematical patterns that surround 
elegant computational procedures. They receive a practical payoff when their 
theories make it possible to get other jobs done more quickly and more 
economically. (Knuth in Sedgewick and Flajolet 2013)

Although this project, like many investigations into algorithmic letter 
fitting before it, initially looked at fitting algorithms as utilities for tackling 
the job of letter fitting more quickly and economically, perhaps the most 
far-reaching outcome of the research is not the techniques or algorithms 
themselves, but rather the more thorough understanding of the 
procedures used in letter fitting and the underlying patterns that govern 
how typeforms in Latin are fitted. That understanding was developed 
through the systematic examination of the Latin letter-fitting task as it is 
practised, and by translating optical judgements and intuitive rules into 
more concrete and definite expressions.

This systematic understanding of fitting, as a task composed of known 
rules and relationships, can yield dividends over a patchwork of disparate 
techniques, even if fitting continues to be done by a designer manually. 
The research findings confirm that algorithmic approaches to letter fitting 
have a role to play in the future of type design that extends beyond the 
promise of any one-size-fits-all ‘generate the fitting’ button. Thinking 
about the model that governs successful fitting — in any script — can lead 
to practical improvements in visualization and tooling for typeface design, 
for experimentation with fitting and space in general, and to richer 
conversations about the function that space plays in the design and 
reading of letters.

7.5 Prospects for further research

Additional research could explore the task of fitting in other writing 
systems and in Latin fitting beyond the setting of text for continuous 
reading. A great deal of the literature and historical record for letter fitting 
within Latin text has focused on ‘regular’ weights and proportions, with 
less scrutiny applied to lighter and heavier weights, width variations, and 
optical sizing, which is a sensible point from which to start, but leaves 
considerable typographic design-space unexplored — as well as the fitting 
of numerals and punctuation. Furthermore, the task of fitting is 
intertwined with design questions, such as the classification of letterforms 
and the optical alignment of diacritics and marks, that have seldom been 
the object of scholarly research.
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Perhaps it also goes without saying that no historical survey can ever be 
one hundred percent comprehensive. In addition to the Latin fitting 
axioms exhibiting unresolved questions discussed in § 3.3, there are 
numerous historical investigations into letter fitting as a process or letter-
fitting automation worthy of detailed scrutiny. There are also potentially 
interesting lines of inquiry to be found in more formally analysing the 
historical trends of letter fitting across the history of type manufacturing, 
as well as in analysing and characterizing the fitting styles unique to 
particular type designers.

On the analytical front, there are potential avenues for further research 
in establishing other metrics by which to assess readers’ satisfaction, not 
just dissatisfaction, with fitting, as well as to explore the role of letter-
fitting in reading speed and comprehension — which have typically studied 
only typographic spacing. It is also evident that other testing 
methodologies could be used in parallel, including tests on printed samples 
or side-by-side comparison tests. There are open questions regarding how 
fine a change in letter fitting can be before readers can no longer 
distinguish between small adjustments. It is not clear that data granular 
enough to tell a type designer ‘five more units of space are needed here’ 
can ever be collected. That is to say, it may be that clearing the 
‘dissatisfaction’ hurdle with readers is all that can be asked of an 
algorithm, and that goal may answer the practical question of algorithmic 
fitting that cannot be distinguished from manual fitting. But even if that 
were shown to be the case, that deeper understanding of the accuracy and 
noticability of letter fitting could open the door to new approaches in 
spacing lines and paragraphs.

There are also many questions left to explore regarding how a letter-
fitting algorithm can and should be implemented as a tool for the type 
designer. The unattended algorithm that calculates sidebearings for all the 
forms in a typeface might be welcomed by enough users to survive as a 
viable utility for quite some time. But, as was discussed in chapter 2, the 
process of designing a typeface is iterative, passing from design to fitting to 
testing and back again numerous times with even the most experienced 
type designer. Ultimately, a letter-fitting algorithm must make itself useful 
to that process, as employed by type designers in their practice. The 
approaches, models, and frameworks explored in this research project 
form a launching point for researchers to continue to pursue these 
questions and develop a more fully realized understanding of the 
relationships between letterforms and the spaces that surround them 
when type is set. 
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Glossary

i. Conventions used in this work

As noted in chapter one, § 1.3, this work has adopted some conventions in 
terminology for the purpose of clarity, where more variation may be found 
in the historical sources or online discourse. The term fitting is used in 
place of ‘spacing’ in order to distinguish the task of letter fitting in 
typeface design more clearly from typographic spacing or tracking.

Along those same lines, when discussing fitting, this work makes an 
effort to use the term letterform to refer to the shapes of letters being 
fitted, as distinguished from the conceptual components of the alphabet, 
or the term typeform to refer to the broader category of shapes of letters, 
ligatures, numerals, punctuation marks and other symbols. This facilitates 
a clearer discussion in some cases, such as distinguishing between the one-
storey and two-storey forms of a and g. Nevertheless, the literature of 
fitting commonly refers to the task itself as “letter fitting”, which is 
preserved for clarity; it is of course clear that this term is one that reflects 
the overwhelming importance of letterforms versus the other typeforms 
that make up a text.

Wherever possible, this work has also adhered to the convention of 
using typeface when referring to the design of a family of letters, and font 
when referring to the final product — in contemporary usage, the digital 
file produced, installed on a computer, and used in the various experiments 
and tests of chapters 3 through 5. Nevertheless, the distinction between 
the typeface and the font is nebulous in some discussions of practice.

This work has also standardized on using the term legibility to refer to 
the ease with which a letterform can be recognized and distinguished from 
other forms, and the term readability to refer to a reader’s ease or comfort 
in comprehending a text.

ii. Definitions

For terminology used in this work when referring to typography or the 
anatomy of typeforms, effort was made to adhere to standardized 
definitions as found in historical sources (Tracy 2003; Cheng 2005; Baines 
and Haslam 2005; Rosendorf 2016). For terms from web specifications, 
TrueType, and OpenType, effort was made to adhere to standardized 
definitions from their respective vendors (World Wide Web Consortium 
2023; Apple Inc 2023; Microsoft 2022). A brief reference is included for 
convenience.
The advance width of a typeform is the total horizontal distance that the 

form contributes when it is added to a word or to a line of text, 
including the width of the form itself and its sidebearings.
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Aperture refers to an opening that is partially bounded by the contours of 
a letterform. Some sources equate aperture with the distance from one 
side of the opening to the other, and not with any white area enclosed 
within the letterform, but the distinction is nebulous. 

The baseline in Latin type is the invisible line that runs along the bottom 
of virtually all letterforms, not including any descenders, and not 
including any undershoots. For digital fonts, the baselines corresponds 
to y=0 in the internal coordinate system.

Black, foreground, and ink are used more-or-less interchangeably to refer 
to the positive image of a typeform. 

Body size refers to the total height, typically expressed in font units, of a 
typeform, including all of the empty space above and below. In metal 
type, the body size would be the physical top-to-bottom size of the sort. 
Consequently, most forms in a typeface have the same body size, and 
some usage of the term refers to the body size of the entire typeface.

Bowl refers to a round or elliptical component of a letterform.
Bézier curves are the quadratic or cubic function segments that make up 

the contours of a typeform in contemporary digital vector fonts. Béziers 
can be curved or straight.

CSS or Cascading Style Sheets is the W3C specification for stylistic markup 
in HTML documents. 

CSS Weight is a numeric font property defined in the CSS specification 
meant to represent the typical range of typefaces’ weights. CSS Weight 
is defined to be a number from 1 to 1000, and regular text weight is 
defined to be CSS Weight 400. These numbers, however, are conventions 
and not measured quantities, and thus do not map consistently to the 
stroke thicknesses or density of fonts.

Capital height is the height of capital letters in a typeface. The capital 
height is typically stored as a font-wide property in digital fonts files, 
and is measured on a straight-sided capital form like H. Letterforms like 
A or O may overshoot the value and diacritics on capitals may exceed 
the capital height, but are still regarded as being at the capital height.

Contour or curve refers to any of the lines that define the shapes of a 
typeform. 

Contrast refers to the ratio seen between the thickest and thinnest strokes 
of a letterform or typeface. In Latin, vertical strokes tend to be the 
thickest and horizontal strokes tend to be the thinnest, but the thickest 
and thinnest points may be found at any angle, depending on the style. 
Regardless, only the main strokes of letterforms are generally 
considered when discussing contrast; thin serifs or thick terminals do 
not factor into contrast.
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Counter refers to a region of white space that in bounded, enclosed, or 
partially enclosed by the contours of a letterform. A closed counter 
refers to such a region that is bounded on all sides, such as the interior 
of o, p, b, or d. Some sources will also consider a counter closed if it is 
bounded on all sides except at the baseline, such as the interior of n or 
h. Regardless, it is widely accepted that an open counter refers to such 
a region that is not enclosed on one side or not enclosed at the top.

Design space refers to the set of possible variations within which a 
typeface family might include individual member fonts: the full range 
of weights from thin to heavy, the full set of widths from condensed to 
extended, the various optical sizes from caption to headline, and 
perhaps even other variants.

Diacritic refers to any mark or sign added to a basic letterform, which in 
combination results in a new form. Most Latin diacritics are positioned 
above or below the letterform, although there are exceptions.

Em is a unit that refers to the maximum body size of the forms in a 
typeface. When text is rendered with CSS, the em is scaled to be the 
point size declared for the font (e.g., 10 point or 16 point). Internally, 
the grid system in which the contours of the forms are defined covers 
one em in width and one em in height. Historically, body size was 
closely related to the em, but in casual usage, the em may also be used 
to refer to width, while body size is generally only a term used for 
height.

An extender is a stroke in a Latin letterform that either rises above the x-
height (termed an ascender) or drops below the baseline (termed a 
descender). 

A family of typefaces or fonts is a set of typefaces or fonts that are 
designed and intended to work together, often sharing construction, 
stylistic touches, and proportions, but varying in weight, width, slant, 
or optical size.

Font units are the numeric coordinates that are used internally to define 
the points and contours of a typeform. They have no physical size, and 
start at (0, 0) at the leftmost point on the baseline.

A glyph is the commonly used technical term for how a typeform is stored 
in a digital font file: the contours, metrics, and various metadata needed 
to render it or print it. Most glyphs represent typeforms, but digital 
font formats can include other elements (such as diacritics and reusable 
components), so there can be a distinction. For example, the letterform 
j may be stored as two component glyphs, one for the dot and one for 
the base stroke, to simplify the inclusion of related forms like ȷ.́

GPOS and GSUB are the tables in OpenType or TrueType font files that 
contain smart-font features such as ligature substitution rules (GSUB) 
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and contextual positioning rules (GPOS). The GPOS table is where most 
kerning information is stored in contemporary digital fonts.

Green’s Theorem is a relationship in calculus that allows the computation 
of integrals on a two-dimensional shape (such as the shape’s area) by 
converting them into distinct but related integrals that operate entirely 
on the boundary curves of the shape. 

A kern, in contemporary digital fonts, is an adjustment made between two 
adjacent typeforms. In metal and wood type, the term may have 
referred instead to the actual cuts made into a sort or the overhanging 
part of the sort after the cut was made.

A matrix, in metal typemaking, was a hardened metal block containing the 
negative cavity of a typeform. When a matrix was fitted into a mould, 
the molten metal was poured to cast a sort. The negative of the 
typeform was struck into the blank matrix with a punch, after which 
the matrix had to be justified to ensure its sides and faces were straight 
and that the correct space was allocated on each side.

A mould, in metal typemaking, was the receptacle holding the matrix and 
in which a metal type sort was cast.

A numeral refers, in this work, to the decimal digits 0 through 9.
Oblique and italic refer to slanted typeface styles in Latin. Various sources 

debate the nuanced meaning of italic, which can involve changes to the 
skeletons and proportions of forms, but in this work the term is used 
strictly in contrast with upright or roman styles.

OpenType is a digital font-file specification, managed jointly by Microsoft, 
Adobe, and other groups. Much of its contents overlaps with the 
TrueType specification.

Optical size refers to the intended rendered or printed size for which a 
typeface was designed. Many of the proportions and construction 
details of the typeforms may vary between a small optical size and a 
large optical size. Optical sizes are sometimes described by type 
designers in semantic terms (such as caption or headline), but some 
designers describe them in point size.

Overshoots and undershoots are regions of a typeform that go beyond the 
standard vertical measurement lines (e.g., above the x-height or below 
the baseline). Round forms and pointed vertices often undershoot or 
overshoot deliberately in order to achieve optical harmony with 
straight forms. It is generally understood that a form with undershoots 
or overshoots is still considered to be “on the baseline” or “at x-height”.

Phototypesetting refers to printing made by exposing the images of 
typeforms onto light-sensitive media, either by flashing light through a 
film negative or by drawing the form with a cathode-ray tube (CRT) 
emitter. Either way, the use of photographic exposure meant that 
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positioning of typeforms (including fitting and kerning) did not have 
the physical limitations of metal typesetting.

Point size is the measurement unit used to describe the physical size at 
which a typeface is printed or rendered. In CSS, a point is nominally 
defined as  1⁄72 of one inch. In theory, the em square of a digital font is 
scaled so that it equals the point size defined for the text,  but software 
and display devices make this relationship somewhat unreliable.

Profile refers to the outer shape of one side of a typeform (either the left 
or right side).

A punch was the steel tool into which a typeform was carved in metal 
typemaking. The punch was driven into a blank matrix to create the 
cavity into which the molten metal was eventually cast.

The term script and writing system are used in roughly the same way in 
this work, referring to the system of representation for a written or 
printed language. In other works and historical sources, the distinction 
between the two can become quite important; here both refer in 
general to an alphabet or other set of typeforms, regardless of language.

A serif in Latin type is the small, ancillary stroke attached to the ends of 
many main strokes in letterforms. Certain typeface styles can be 
difficult to classify as serif or sans-serif designs, because there is 
ambiguity as to when flared stroke endings begin to be called serifs.

SFNT is the underlying structure of contemporary digital fonts, including 
all TrueType, OpenType, and WOFF font formats.

The sidebearing of a form is distance from the outermost edge on one side 
of the form itself to the boundary width of the form on that side. 

The skeleton or construction of a form is the arrangement of its main 
strokes, regardless of whether or not it includes serifs.

A sort, as used here, is a single unit of metal type, as cast in a mould. A sort 
may contain a single letterform, a ligature, or more.

Stem refers to a straight, vertical main stroke in Latin type. Stems are 
distinguished from bowls, diagonal strokes, and various connecting 
strokes in discussions of visual stem rhythm.

A stroke is any shape in a typeform that corresponds to linear gesture or 
mark made by a writing implement. Strokes can be large or small, 
straight or curved, but are typically distinguished from dots.

Style refers broadly to any design characteristics or motifs expressed in 
the typeforms and character of a typeface. In this work, the term is used 
to distinguish such creative facets of a typeface from facets that are 
more concretely assessed, such as letterform proportions, weight and 
width.
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A terminal is the ending of a stroke; in some forms with open counters, 
such as a or c, the size and shape of the terminal has a major effect on 
how open or how closed the aperture is.

TrueType is a digital font-file specification maintained by Apple. Most, but 
not all, of its contents overlap with the OpenType specification.

Type 1 is a retired digital font-file specification maintained by Adobe.
UPEM or units per em, is the number of font units in the em of a particular 

font. The UPEM value is stored as a font-wide property in digital font 
files.

The terms upright and roman refer to typeface styles in Latin for which 
the main vertical strokes of the forms are perpendicular to the baseline. 
As with italic and oblique, some historical sources are concerned with 
more specific definitions, but in this work only the broad distinction is 
intended.

Variable fonts are digital font files that use recent enhancements to the 
OpenType and TrueType formats to effectively combine several 
members of a font family into a single file. Typically a variable font will 
incorporate several weights, widths, or optical sizes of a typeface, and 
settings allow users to choose between them when typesetting, or to 
adjust the parameters to values in between.

WOFF and WOFF2 are compressed file formats encoding OpenType or 
TrueType fonts. The formats are optimized for web browser usage, but 
retain all of the core information about the typeforms.

The weight of a typeface is a descriptive term communicating the 
heaviness of the strokes. The typical stroke widths of typefaces meant 
for continuous reading are often referred to as ‘regular’, with other 
variants named in comparison: thinner variants called ‘light’ and 
thicker variants called ‘bold’, etc., but such terms by themselves do not 
have formal definitions.

The width of a typeface is a descriptive term communicating the relative 
horizontal and vertical proportions of the letterforms. Typical 
proportions in typefaces meant for continuous reading are often 
referred to as ‘normal’ or a similar term, and other proportions are 
described relative to that: ‘narrow’, ‘wide’, ‘condensed’, ‘extended’, etc. 
As with weight, however, such terms do not have formal definitions.

The x-height of a Latin typeface is the height of the tops of lowercase 
letterforms above the baseline, not including any ascenders. The 
letterform x is the standard reference because it has no ascender and its 
top typically does not overshoot. However, the measurement is 
generally understood to refer to a standard, font-wide value; forms with 
overshoots are considered to still be at the same x-height as the others.
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Appendix A: mathematical and statistical 
notes

i. Calculation of moments in LOGOS
As discussed in chapter 4, the LOGOS software determined the centrepoint 
of a letterform by:

1. Splitting the letterform into two halves
2. Finding the centroid of each half
3. Calculating the fourth polar moment of each half, with respect to
     the centroid of that half
4. Comparing the two moments
5. Repeating the above steps 1–4, splitting the letterform in a
    different spot
6. Stopping the process when the two moments compared are equal

The generic formula for the fourth polar moment, converted to x and y by 
the Pythagorean theorem (see figure A–1), is:

which can be expanded to

Crucially, each of these three integrals is a planar moment:

allowing the fourth polar moment to be expressed more compactly in 
those terms:

A duplication of figure 4.3. The 
polar moments of area are 
integrals over the entire form, 
based on the distance r measured 
from the centroid of the form, S. 
In the fourth polar moment, the 
quantity integrated is r4. The 
centroid of the form must be 
found first, adding computational 
complexity (illustration by the 
author).

Figure A.1
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Practically speaking, this is a useful result because the FontTools Python 
library provides a MomentsPen module designed for calculating various 
moments, directly on the Bézier curves of the glyphs in a TrueType or 
OpenType digital font. With modification, the MomentsPen module was 
used to calculate fourth polar moments for the composite algorithm 
developed in chapter 4. The modifications used are listed in appendix B.

ii. Computation of canonical rectangles in LOGOS
Naturally, the fact that the approach above is workable for the fourth polar 
moments required by LOGOS suggests that the other components in the 
original LOGOS method should also be explored. Specifically, the canonical-
rectangle component of the original LOGOS also utilized fourth polar 
moments.

As a reminder, the canonical rectangle component determined a new 
width for each letterform in a typeface by calculating the fourth polar 
moments of a set of rectangular shapes, then matching each letterform to a 
rectangle that produced the same calculated result.

The rectangles used in this technique were bespoke for each typeface: 
they had the same height as the letterforms, and had vertical and 
horizontal strokes the same thickness as the vertical and horizontal strokes 
of the letterforms. The simpler construction of the rectangles makes the 
moments computations far more straightforward than for the arbitrarily 
complicated Bézier curves of a letterform: each is a rectangle of height h 
and width w, with a smaller rectangle of height h' and width w' removed 
from its centre. (See figure A.2)  The moment for the canonical rectangle is 
thus the moment of the outer rectangle minus the moment of the inner 
rectangle.

Recall from the previous section that the fourth polar moment is found 
with the formula:

For the outer and inner rectangles, these integrals can be found by 
plugging in h, w, h', and w'. For the outer rectangle:

w

w'

h'h

A hypothetical canonical 
rectangle in the LOGOS method. 
The thicknesses of the vertical 
and horizontal sides of the 
rectangle must be chosen to 
match the vertical and horizontal 
stroke thicknesses of the 
letterform. The goal of the 
technique is to find a width w 
such that the rectangle's moment 
matches that of the letterform 
(illustration by the author).

Figure A.2
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The integral for Iyyyy is similar to that of Ixxxx, but with w and h trading 
places:

The integral for Ixxyy is more involved, but also solvable as an equation:

As a result, calculating the value of the expression for the outer rectangle 
requires only plugging in w and h:

The inner rectangle works the same way for w' and h', and the moment for 
the entire canonical rectangle is found by subtracting them:
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The difficulty of the method arises from the need to solve this equation 
for the canonical width, w. Most of the other variables, including M, h, h', 
and w' are known from the letterform. The height of the canonical 
rectangle h is the height of the letterform. The thicknessess of the vertical 
and horizontal strokes in the letterform are both known, and those give h' 
and give the difference between w and w':

and the value of M is meant to be the same as that of the moment 
calculated separately for the letterform. The final equation is algebraic, but 
of the fifth order in the variable of interest, w:

Thus, it cannot be solved for w, even with the other values inserted.
If one could compute w directly during the fitting process, then the 

width for each letterform could be calculated in a single function call. The 
fact that the equation does not permit this explains why the original LOGOS 
method chose, instead, to pre-compute moments for a range of different 
widths and find a match by using a table look-up.

iii. Linear regression model for standard inter-letter-area default 
values in composite algorithm

As discussed in chapter 4, § 4.4.2, a linear regression analysis was 
conducted on a sample of the top 100 most-used Latin text fonts from the 
Google Fonts library, with the goal of establishing a neutral default setting 
for the standard inter-letter-area parameter for the composite fitting 
algorithm. The intent of the analysis was to determine a default value for 
the ratio between the internal counter area of the key letter n and the 
standard inter-letter area, derived from each font's measurements.

For the analysis, six measurements were made on each font in the 
sample:

• counter: the width of internal counter of n
• stroke: the width of the vertical stroke of i
• contrast: the ratio of the thinnest and thickest strokes of o
• xh: the x-height
• serif: the length of the serif of n
• bearing: the left sidebearing of n + the right sidebearing of n
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Each of the above raw measurements was divided by the UPEM value of the 
font, in order to normalize the data across the sample set. The choice of 
measurements was based on the measurement techniques used in the 
PANOSE system (Bauermeister 1988) and in Karow's Schriftstatistick project 
(Karow 1993). Illustrations of these measurements are shown in figure A.3. 
Some of the specifics (such as measuring the stroke-width on i rather than 
on n) were chosen in order to automate the process for batch 
measurement of the set.

An ordinary least squares multiple regression analysis was then 
performed using the statsmodels Python library (Perktold et al., 2023), 
with bearing as the dependent variable. The output of that analysis is 
reproduced below.

                            OLS Regression Results                            
==============================================================================

Dep. Variable:                bearing   R-squared:                       0.709

Model:                            OLS   Adj. R-squared:                  0.708

Method:                 Least Squares   F-statistic:                     480.9

Date:                Wed, 03 May 2023   Prob (F-statistic):          2.37e-261

Time:                        08:59:21   Log-Likelihood:                 2197.1

No. Observations:                 991   AIC:                            -4382.

Df Residuals:                     985   BIC:                            -4353.

Df Model:                           5                                         

Covariance Type:            nonrobust                                         

==============================================================================

                 coef    std err          t      P>|t|      [0.025      0.975]

------------------------------------------------------------------------------

const          0.0293      0.011      2.642      0.008       0.008       0.051

counter        0.3292      0.018     18.175      0.000       0.294       0.365

stroke        -0.1130      0.026     -4.300      0.000      -0.165      -0.061

contrast      -0.0006   8.29e-05     -7.069      0.000      -0.001      -0.000

xh             0.1119      0.020      5.706      0.000       0.073       0.150

serif         -1.0223      0.032    -31.510      0.000      -1.086      -0.959

==============================================================================

Omnibus:                      106.804   Durbin-Watson:                   0.876

Prob(Omnibus):                  0.000   Jarque-Bera (JB):              466.693

Skew:                          -0.406   Prob(JB):                    4.56e-102

Kurtosis:                       6.262   Cond. No.                         420.

==============================================================================

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly 

specified.

n
o
i

counter

serif

o-wide

o-narr

stroke

contrast = o-narr / o-wide

xh

n-lsb n-rsb

bearing = n-lsb + n-rsb

Measurements made on glyphs 
from the top 100 most-used Latin 
text fonts in the Google Fonts 
library (illustration by the 
author).

Figure A.3
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# Imports
from fontTools.pens.statisticsPen import StatisticsPen
from fontTools.misc.symfont import x, y, printGreenPen
from fontTools.pens.basePen import BasePen
from fontTools.pens.momentsPen import MomentsPen

# This function auto-generates an extension of the built-in MomentsPen,
# using the symfont symbolic algebra to build numerical approximations
# of the integrals via Green's Theorem. It *must* be run and the resulting
# NewMomentsPen class definition *must* declared before the
# statisticsPen can be defined in the next stage.
#
# The auto-generated NewMomentsPen is extremely long, consisting of
# polynomial expansions for the numerical approximations for different
# Bezier curve types. This is as expected.
# Note that the function-naming convention differs from the default
# MomentsPen.
printGreenPen('NewMomentsPen', [
      ('area', 1),
      ('Planar1stMomentWrtX', y),
      ('Planar1stMomentWrtY', x),
      ('Planar2ndMomentWrtX', y**2),
      ('Planar2ndMomentWrtY', x**2),
      ('Planar3rdMomentWrtX', y**3),
      ('Planar3rdMomentWrtY', x**3),
      ('Planar4thMomentWrtX', y**4),
      ('Planar4thMomentWrtY', x**4),
      ('ProductMomentXY', x*y),
      ('ProductMomentXXY', x*x*y),
      ('ProductMomentXYY', x*y*y),
      ('ProductMomentXXYY', x*x*y*y),
     ])

# This class creates a NewStatisticsPen that can return the polar moments
# of TTGlyphs as required by the LOGOS reimplementation
class NewStatisticsPen(NewMomentsPen):

"""Pen calculating area, center of mass, variance and
standard-deviation, covariance and correlation, 0th to 4th
planar moments, four product moments, 2nd and 4th polar
moments, and slant, of glyph shapes.
Note that all the calculated values are 'signed'. Ie. if the
glyph shape is self-intersecting, the values are not correct
(but well-defined). As such, area will be negative if contour
directions are clockwise.  Moreover, variance might be negative
if the shapes are self-intersecting in certain ways."""

def __init__(self, glyphset=None):
NewMomentsPen.__init__(self, glyphset=glyphset)
self.__zero()

Appendix B: software source code

i. Moments for LOGOS reimplmentation

This code extends the FontTools MomentsPen module to add polar 
moments as required by the LOGOS reimplementation.
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def _closePath(self):
NewMomentsPen._closePath(self)
self.__update()

def __zero(self):
self.meanX = 0
self.meanY = 0
self.varianceX = 0
self.varianceY = 0
self.stddevX = 0
self.stddevY = 0
self.covariance = 0
self.correlation = 0
self.slant = 0
# Backward-compatibility properties
# Do not rely on these in new code.
self.momentX = 0
self.momentY = 0
self.momentXX = 0
self.momentYY = 0
self.momentXY = 0
# Polar 2nd and 4th moments
self.Polar2ndMoment = 0
self.Polar4thMoment = 0

def __update(self):

area = self.area
if not area:

self.__zero()
return

# Center of mass
# https://en.wikipedia.org/wiki/Center_of_mass#A_continuous_volume
self.meanX = meanX = self.Planar1stMomentWrtY / area
self.meanY = meanY = self.Planar1stMomentWrtX / area

#  Var(X) = E[X^2] - E[X]^2
self.varianceX = varianceX = self.Planar2ndMomentWrtY / area - meanX**2
self.varianceY = varianceY = self.Planar2ndMomentWrtX / area - meanY**2

self.stddevX = stddevX = math.copysign(abs(varianceX)**.5, varianceX)
self.stddevY = stddevY = math.copysign(abs(varianceY)**.5, varianceY)

#  Covariance(X,Y) = ( E[X.Y] - E[X]E[Y] )
self.covariance = covariance = self.ProductMomentXY / area - meanX*meanY

#  Correlation(X,Y) = Covariance(X,Y) / ( stddev(X) * stddev(Y) )
# https://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient
correlation = covariance / (stddevX * stddevY)
self.correlation = correlation if abs(correlation) > 1e-3 else 0

slant = covariance / varianceY
self.slant = slant if abs(slant) > 1e-3 else 0

# Backward-compatibility properties
# Do not rely on these in new code.
self.momentX = self.Planar1stMomentWrtY
self.momentY = self.Planar1stMomentWrtX
self.momentXX = self.Planar2ndMomentWrtY
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self.momentYY = self.Planar2ndMomentWrtX
self.momentXY = self.ProductMomentXY

# Polar 2nd and 4th moments
#
# (Polar 1st and 3rd moments don't have polynomial solutions easily
#  plugged into GreenPen form at present.)
self.Polar2ndMoment = self.Planar1stMomentWrtX + self.Planar1stMomentWrtY
self.Polar4thMoment = self.Planar4thMomentWrtX + self.Planar4thMomentWrtY + \
2*self.ProductMomentXXYY

##############################################
#
# Originally implemented as a module named logosTools.py
#
##############################################

# Imports
from fontTools.ttLib import TTFont, TTCollection, removeOverlaps
import math
import os
import brotli
from beziers.line import Line
from beziers.point import Point
from beziers.path import BezierPath
from beziers.boundingbox import BoundingBox
import matplotlib.pyplot as plt
from fontTools.pens.boundsPen import BoundsPen
from fontTools.pens.statisticsPen import StatisticsPen
from fontTools.pens.transformPen import TransformPen
from fontTools.pens.ttGlyphPen import TTGlyphPen
from fontTools.pens.areaPen import AreaPen
from fontTools.pens.recordingPen import RecordingPen, DecomposingRecordingPen
from fontTools.misc.transform import Offset, Scale
import pathops

# Utility functions
def clip_glyph(glyphName, font, xMin, yMin, xMax, yMax):

ii. LOGOS centrepoint reimplementation

This code implements a basic LOGOS centrepoint-finding technique. It 
requires the use of the NewMomentsPen and NewStatisticsPen classes 
from the previous section.
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    """Clip the given glyph at the X and Y bounds provided and
       return the resulting tGlyph object.
       """
    gpath = removeOverlaps.skPathFromGlyph(glyphName, font.getGlyphSet())
    #gpath = pathFromGlyph(glyph)
    # make a Path from the box coordinates
    box = pathops.Path()
    box.moveTo(xMin, yMin)
    box.lineTo(xMax, yMin)
    box.lineTo(xMax, yMax)
    box.lineTo(xMin, yMax)
    box.close()
    # intersect the Paths
    clipped = pathops.op(gpath, box, pathops.PathOp.INTERSECTION)
    return removeOverlaps.ttfGlyphFromSkPath(clipped)

def bsearch_mid_h(glyphName, font, metric):
    """High-level binary search wrapper, left-right."""

    #bpen = BoundsPen(glyphSet)
    #glyphSet[glyphName].draw(bpen)
    #xMin, yMin, xMax, yMax = bpen.bounds # values have been offset; unneeded
    
    glyph = BezierPath.fromFonttoolsGlyph(font, glyphName)
    bbox = glyph[0].bounds()
    for b in glyph:
        bbox.extend(b.bounds())
    xMin, yMin, xMax, yMax = bbox.left, bbox.bottom, bbox.right, bbox.top
    
    # debug
    #print(xMin, yMin, xMax, yMax)
    
    start = xMin
    end = xMax

    mid = (start + end) / 2
    
    # debug
    #print("start: ", start, "mid: ", mid, "end: ", end)
        
    while (start <= end):

        left = metric(glyphName, font, xMin, yMin, mid, yMax)
        right = metric(glyphName, font, mid, yMin, xMax, yMax)
        #debug
        #print(left, right)
        
        if math.isclose(left, right):
            # debug
            #print("left/right converge - start: ", start, "mid: ", mid, "end: ", end)
            return mid

        if (start == mid) or (mid == end):
            # debug
            #print("middle converge - start: ", start, "mid: ", mid, "end: ", end)
            return mid
        
        if left < right: # if metric(left) is smaller than metric(right), true midpoint is further 
right
            start = mid
            mid = (end + mid) / 2



207

            # debug
            #print("start: ", start, "mid: ", mid, "end: ", end)
        else: # if metric(right) is smaller than metric(left), true midpoint is further left
            end = mid
            mid = (start + mid) / 2
            # debug
            #print("start: ", start, "mid: ", mid, "end: ", end)
            
    return -1

def bsearch_mid_v(glyphName, font, metric): 
    """High-level binary search wrapper, top-bottom."""
    
    glyph = BezierPath.fromFonttoolsGlyph(font, glyphName)
    bbox = glyph[0].bounds()
    for b in glyph:
        bbox.extend(b.bounds())
    xMin, yMin, xMax, yMax = bbox.left, bbox.bottom, bbox.right, bbox.top
    
    # debug
    #print(xMin, yMin, xMax, yMax)
    
    start = yMin
    end = yMax

    mid = (start + end) / 2
    
    # debug
    #print("start: ", start, "mid: ", mid, "end: ", end)
        
    while (start <= end):

        bottom = metric(glyphName, font, xMin, yMin, xMax, mid)
        top = metric(glyphName, font, xMin, mid, xMax, yMax)
        #debug
        #print(bottom, top)
        
        if math.isclose(bottom, top):
            # debug
            #print("top/bottom converge - start: ", start, "mid: ", mid, "end: ", end)
            return mid

        if (start == mid) or (mid == end):
            # debug
            #print("middle converge - start: ", start, "mid: ", mid, "end: ", end)
            return mid
        
        if bottom < top: # if metric(bottom) is smaller than metric(top), true midpoint is further 
top
            start = mid
            mid = (end + mid) / 2
            # debug
            #print("start: ", start, "mid: ", mid, "end: ", end)
        else: # if metric(top) is smaller than metric(bottom), true midpoint is further bottom
            end = mid
            mid = (start + mid) / 2
            # debug
            #print("start: ", start, "mid: ", mid, "end: ", end)
            
    return -1
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def plot_metric_x(glyphName, font, metricval, metriclabel, plt, color=None):
    """Add a result to the matplotlib plot plt"""
    #bp = BoundsPen(font.getGlyphSet())
    #glyphSet[glyphName].draw(bp)
    #xMin, yMin, xMax, yMax = bp.bounds
    glyph = BezierPath.fromFonttoolsGlyph(font, glyphName)
    bbox = glyph[0].bounds()
    for b in glyph:
        bbox.extend(b.bounds())
    xMin, yMin, xMax, yMax = bbox.left, bbox.bottom, bbox.right, bbox.top
    
    point1 = [metricval, yMin - 10]
    point2 = [metricval, yMax + 10]
    x_values = [point1[0], point2[0]]
    y_values = [point1[1], point2[1]]
    
    if color:
        plt.plot(x_values, y_values,label=metriclabel, color=color)
    else:
        plt.plot(x_values, y_values,label=metriclabel)
    plt.legend()

    return 0

def plot_metric_y(glyphName, font, metricval, metriclabel, plt, color=None):
    """Add a result to the matplotlib plot plt"""
    #bp = BoundsPen(glyphSet)
    #glyphSet[glyphName].draw(bp)
    #xMin, yMin, xMax, yMax = bp.bounds
    glyph = BezierPath.fromFonttoolsGlyph(font, glyphName)
    bbox = glyph[0].bounds()
    for b in glyph:
        bbox.extend(b.bounds())
    xMin, yMin, xMax, yMax = bbox.left, bbox.bottom, bbox.right, bbox.top
    
    point1 = [xMin - 10, metricval]
    point2 = [xMax + 10, metricval]
    x_values = [point1[0], point2[0]]
    y_values = [point1[1], point2[1]]
    
    if color:
        plt.plot(x_values, y_values,label=metriclabel, color=color)
    else:
        plt.plot(x_values, y_values,label=metriclabel)
        
    plt.legend()

    return 0

def plot_metric_pt(glyphName, font, metricval_x, metricval_y, metriclabel, plt, color=None):
    """Add an (x,y) point result to the matplotlib plot plt"""
    if color:
        plt.plot(metricval_x, metricval_y, marker="o", markersize=5, label=metriclabel, 
markerfacecolor=color, markeredgecolor=color)
    else:
        plt.plot(metricval_x, metricval_y, marker="o", markersize=5, label=metriclabel)
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    plt.legend()

    return 0
    

def area_metric(glyphName, font, xMin, yMin, xMax, yMax):
    """"Simple metric function to compute the area of the glyph when
        clipped by the given bounds.
    """
    spen = NewStatisticsPen(font.getGlyphSet())

    clipped_glyph = clip_glyph(glyphName, font, xMin, yMin, xMax, yMax)

    clipped_glyph.draw(spen, font.getGlyphSet())
    #debug
    #print(apen.value)
    return spen.area

def secondpolar_metric(glyphName, font, xMin, yMin, xMax, yMax):
    """Compute second polar moment of the glyph when clipped by
       the given bounds.
    """

    glyphset = font.getGlyphSet()
    
    # back up the original glyph
    backuppen = DecomposingRecordingPen(glyphset)
    glyphset[glyphName].draw(backuppen)
    
    # Clip the active glyph
    clipped_glyph = clip_glyph(glyphName, font, xMin, yMin, xMax, yMax)
    
    # Insert the clipped glyph into the font
    dcpen = DecomposingRecordingPen(glyphset)
    clipped_glyph.draw(dcpen, font["glyf"])
    path = pathops.Path()
    pathPen = path.getPen()
    dcpen.replay(pathPen)
    ttPen = TTGlyphPen(None)
    path.draw(ttPen)
    font["glyf"][glyphName] = ttPen.glyph()

    # Find the centroid of the clipped glyph
    # x coordinate
    cx = bsearch_mid_h(glyphName, font, area_metric)    
    # y coordinate
    cy = bsearch_mid_v(glyphName, font, area_metric)

    # Set up a statistics pen
    spen = NewStatisticsPen(glyphset)
    
    # Re-center the clipped glyph to the centroid
    # and get its stats
    pen = TransformPen(spen, Offset(x=-cx, y=-cy))
    glyphset[glyphName].draw(pen)
    
    # Restore the original glyph so it is ready for the next iteration
    backuppath = pathops.Path()
    backuppathPen = backuppath.getPen()
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    backuppen.replay(backuppathPen)
    backupttPen = TTGlyphPen(None)
    backuppath.draw(backupttPen)
    font["glyf"][glyphName] = backupttPen.glyph()
    

    return spen.Polar2ndMoment

def fourthpolar_metric(glyphName, font, xMin, yMin, xMax, yMax):
    """Compute fourth polar moment of the glyph when clipped by
       the given bounds.
    """

    glyphset = font.getGlyphSet()
    
    # back up the original glyph
    backuppen = DecomposingRecordingPen(glyphset)
    glyphset[glyphName].draw(backuppen)
    
    # Clip the active glyph
    clipped_glyph = clip_glyph(glyphName, font, xMin, yMin, xMax, yMax)
    
    # Insert the clipped glyph into the font
    dcpen = DecomposingRecordingPen(glyphset)
    clipped_glyph.draw(dcpen, font["glyf"])
    path = pathops.Path()
    pathPen = path.getPen()
    dcpen.replay(pathPen)
    ttPen = TTGlyphPen(None)
    path.draw(ttPen)
    font["glyf"][glyphName] = ttPen.glyph()

    # Find the centroid of the clipped glyph
    # x coordinate
    cx = bsearch_mid_h(glyphName, font, area_metric)    
    # y coordinate
    cy = bsearch_mid_v(glyphName, font, area_metric)

    # Set up a statistics pen
    spen = NewStatisticsPen(glyphset)
    
    # Re-center the clipped glyph to the centroid
    # and get its stats
    pen = TransformPen(spen, Offset(x=-cx, y=-cy))
    glyphset[glyphName].draw(pen)
    
    # Restore the original glyph so it is ready for the next iteration
    backuppath = pathops.Path()
    backuppathPen = backuppath.getPen()
    backuppen.replay(backuppathPen)
    backupttPen = TTGlyphPen(None)
    backuppath.draw(backupttPen)
    font["glyf"][glyphName] = backupttPen.glyph()
    

    return spen.Polar4thMoment

def plot_logos_stats(glyphName, font, plt):
    glyphset = font.getGlyphSet()
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    xheight = f['OS/2'].sxHeight
    
    glyph_image = BezierPath.fromFonttoolsGlyph(font, glyphName)
    bbox = glyph_image[0].bounds()    
    for b in glyph_image:
        b.plot(ax)
        bbox.extend(b.bounds())
        
    xMin, yMin, xMax, yMax = bbox.left, bbox.bottom, bbox.right, bbox.top

    
    # back up the original glyph
    backuppen = DecomposingRecordingPen(glyphset)
    glyphset[glyphName].draw(backuppen)
    
    # Clip the active glyph
    clipped_glyph = clip_glyph(glyphName, font, xMin, 0, xMax, xheight)
    
    # Insert the clipped glyph into the font
    dcpen = DecomposingRecordingPen(glyphset)
    clipped_glyph.draw(dcpen, font["glyf"])
    path = pathops.Path()
    pathPen = path.getPen()
    dcpen.replay(pathPen)
    ttPen = TTGlyphPen(None)
    path.draw(ttPen)
    font["glyf"][glyphName] = ttPen.glyph()
    
    glyph_cropped_image = BezierPath.fromFonttoolsGlyph(font, glyphName)
    for b in glyph_cropped_image:
        b.plot(ax)
    
    cx = bsearch_mid_h(glyphName, font, area_metric)
    cy = bsearch_mid_v(glyphName, font, area_metric)
    print("Centroid: (", cx, ",", cy, ")")
    
    plt.plot(cx, cy, marker="$\u22c8$", markersize=10, label="Centroid", markerfacecolor="blue", 
markeredgecolor="blue")

    m2x = bsearch_mid_h(glyphName, font, secondpolar_metric)
    m2y = bsearch_mid_v(glyphName, font, secondpolar_metric)
    
    print("Polar2M: (", m2x, ",", m2y, ")")
    plt.plot(m2x, m2y, marker="$\u25ce$", markersize=10, label="Polar2M", markerfacecolor="orange", 
markeredgecolor="orange")

    m4x = bsearch_mid_h(glyphName, font, fourthpolar_metric)
    m4y = bsearch_mid_v(glyphName, font, fourthpolar_metric)
    
    print("Polar4M: (", m4x, ",", m4y, ")")
    plt.plot(m4x, m4y, marker="$\u27d0$", markersize=10, label="Polar4M", markerfacecolor="red", 
markeredgecolor="red")
    
     # Restore the original glyph so it is ready for the next iteration
    backuppath = pathops.Path()
    backuppathPen = backuppath.getPen()
    backuppen.replay(backuppathPen)
    backupttPen = TTGlyphPen(None)
    backuppath.draw(backupttPen)
    font["glyf"][glyphName] = backupttPen.glyph()
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    return cx, cy, m2x, m2y, m4x, m4y

def x_logos_stats(glyphName, font):
    glyphset = font.getGlyphSet()
    xheight = font['OS/2'].sxHeight
    
    glyph_image = BezierPath.fromFonttoolsGlyph(font, glyphName)
    bbox = glyph_image[0].bounds()    
    for b in glyph_image:
        #b.plot(ax)
        bbox.extend(b.bounds())
        
    xMin, yMin, xMax, yMax = bbox.left, bbox.bottom, bbox.right, bbox.top

    
    # back up the original glyph
    backuppen = DecomposingRecordingPen(glyphset)
    glyphset[glyphName].draw(backuppen)
    
    # Clip the active glyph
    clipped_glyph = clip_glyph(glyphName, font, xMin, 0, xMax, xheight)
    
    # Insert the clipped glyph into the font
    dcpen = DecomposingRecordingPen(glyphset)
    clipped_glyph.draw(dcpen, font["glyf"])
    path = pathops.Path()
    pathPen = path.getPen()
    dcpen.replay(pathPen)
    ttPen = TTGlyphPen(None)
    path.draw(ttPen)
    font["glyf"][glyphName] = ttPen.glyph()
    
    #glyph_cropped_image = BezierPath.fromFonttoolsGlyph(font, glyphName)
    #for b in glyph_cropped_image:
    #    b.plot(ax)
    
    cx = bsearch_mid_h(glyphName, font, area_metric)
    cy = bsearch_mid_v(glyphName, font, area_metric)
    #print("Centroid: (", cx, ",", cy, ")")
    
    #plt.plot(cx, cy, marker="$\u22c8$", markersize=10, label="Centroid", markerfacecolor="blue", 
markeredgecolor="blue")

    m2x = bsearch_mid_h(glyphName, font, secondpolar_metric)
    m2y = bsearch_mid_v(glyphName, font, secondpolar_metric)
    
    #print("Polar2M: (", m2x, ",", m2y, ")")
    #plt.plot(m2x, m2y, marker="$\u25ce$", markersize=10, label="Polar2M", 
markerfacecolor="orange", markeredgecolor="orange")

    m4x = bsearch_mid_h(glyphName, font, fourthpolar_metric)
    m4y = bsearch_mid_v(glyphName, font, fourthpolar_metric)
    
    #print("Polar4M: (", m4x, ",", m4y, ")")
    #plt.plot(m4x, m4y, marker="$\u27d0$", markersize=10, label="Polar4M", markerfacecolor="red", 
markeredgecolor="red")
    
     # Restore the original glyph so it is ready for the next iteration
    backuppath = pathops.Path()
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    backuppathPen = backuppath.getPen()
    backuppen.replay(backuppathPen)
    backupttPen = TTGlyphPen(None)
    backuppath.draw(backupttPen)
    font["glyf"][glyphName] = backupttPen.glyph()
    
    return cx, cy, m2x, m2y, m4x, m4y

def cap_logos_stats(glyphName, font):
    glyphset = font.getGlyphSet()
    capheight = font['OS/2'].sCapHeight
    
    glyph_image = BezierPath.fromFonttoolsGlyph(font, glyphName)
    bbox = glyph_image[0].bounds()    
    for b in glyph_image:
        #b.plot(ax)
        bbox.extend(b.bounds())
        
    xMin, yMin, xMax, yMax = bbox.left, bbox.bottom, bbox.right, bbox.top

    
    # back up the original glyph
    backuppen = DecomposingRecordingPen(glyphset)
    glyphset[glyphName].draw(backuppen)
    
    # Clip the active glyph
    clipped_glyph = clip_glyph(glyphName, font, xMin, 0, xMax, capheight)
    
    # Insert the clipped glyph into the font
    dcpen = DecomposingRecordingPen(glyphset)
    clipped_glyph.draw(dcpen, font["glyf"])
    path = pathops.Path()
    pathPen = path.getPen()
    dcpen.replay(pathPen)
    ttPen = TTGlyphPen(None)
    path.draw(ttPen)
    font["glyf"][glyphName] = ttPen.glyph()
    
    #glyph_cropped_image = BezierPath.fromFonttoolsGlyph(font, glyphName)
    #for b in glyph_cropped_image:
    #    b.plot(ax)
    
    cx = bsearch_mid_h(glyphName, font, area_metric)
    cy = bsearch_mid_v(glyphName, font, area_metric)
    #print("Centroid: (", cx, ",", cy, ")")
    
    #plt.plot(cx, cy, marker="$\u22c8$", markersize=10, label="Centroid", markerfacecolor="blue", 
markeredgecolor="blue")

    m2x = bsearch_mid_h(glyphName, font, secondpolar_metric)
    m2y = bsearch_mid_v(glyphName, font, secondpolar_metric)
    
    #print("Polar2M: (", m2x, ",", m2y, ")")
    #plt.plot(m2x, m2y, marker="$\u25ce$", markersize=10, label="Polar2M", 
markerfacecolor="orange", markeredgecolor="orange")

    m4x = bsearch_mid_h(glyphName, font, fourthpolar_metric)
    m4y = bsearch_mid_v(glyphName, font, fourthpolar_metric)
    
    #print("Polar4M: (", m4x, ",", m4y, ")")
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    #plt.plot(m4x, m4y, marker="$\u27d0$", markersize=10, label="Polar4M", markerfacecolor="red", 
markeredgecolor="red")
    
     # Restore the original glyph so it is ready for the next iteration
    backuppath = pathops.Path()
    backuppathPen = backuppath.getPen()
    backuppen.replay(backuppathPen)
    backupttPen = TTGlyphPen(None)
    backuppath.draw(backupttPen)
    font["glyf"][glyphName] = backupttPen.glyph()
    
    return cx, cy, m2x, m2y, m4x, m4y

##############################################
#
# Batch-computation of M2 and M4 points at x-height
#
##############################################
import logosTools as lt
import os, argparse, csv
from beziers.path import BezierPath
from beziers.boundingbox import BoundingBox
import matplotlib.pyplot as plt
from fontTools.ttLib import TTFont, TTCollection
from fontTools.misc.cliTools import makeOutputFileName

import glob, sys

# Example glyphlist; basic Latin
glyphlist = ["a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", 
"r", "s", "t", "u", "v", "w", "x", "y", "z", "A", "B", "C", "D", "E", "F", "G", "H", "I", "J", "K", 
"L", "M", "N", "O", "P", "Q", "R", "S", "T", "U", "V", "W", "X", "Y", "Z", '0', '1', '2', '3', '4', 
'5', '6', '7', '8', '9', '@', '(', '[', '!', '{', '?', '#', '$', '%', '&', ')', '}', ']', '\'', 
"\"", '.', ',', ':', ';', '*', '^', '+', '-', '=', '_']

#glyphlist = ["”", '.', ',', ':', ';', '*', '^', '+', '-', '=', '_']
#glyphlist = ["’"]
filepath = sys.argv[1]
d, infile = os.path.split(filepath)
fontfile, ext = os.path.splitext(infile)

# We'll use fontname as the name rather than extracting it from the binary
outfile = makeOutputFileName(input=fontfile, extension=".csv")

f = TTFont(filepath)

cm = f.getBestCmap()

with open(outfile, 'w', encoding='utf8') as csvfile:
    writer=csv.writer(csvfile)
    writer.writerow(['glyph', 'cx', 'cy', 'm2x', 'm2y', 'm4x', 'm4y'])

    for g in glyphlist:
        stats = []
        stats.append(g)

        cx, cy, m2x, m2y, m4x, m4y = lt.x_logos_stats(cm[ord(g)], f)
        
        stats.append(cx)  # This method of saving results clearly is not efficient, but works
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        stats.append(cy)  # 
        stats.append(m2x) # 
        stats.append(m2y) # 
        stats.append(m4x)
        stats.append(m4y)

        print(stats)
        fig, ax = plt.subplots()
        plt.axis('scaled')

        glyph_image = BezierPath.fromFonttoolsGlyph(f, cm[ord(g)])
        bbox = glyph_image[0].bounds()

        # draw the glyph image
        for b in glyph_image:
            b.plot(ax)
            bbox.extend(b.bounds())
        
        xMin, yMin, xMax, yMax = bbox.left, bbox.bottom, bbox.right, bbox.top

        # draw the cropping lines
        for y in (0, f['OS/2'].sxHeight):
            point1 = [xMin - 10, y]
            point2 = [xMax + 10, y]
            x_values = [point1[0], point2[0]]
            y_values = [point1[1], point2[1]]
            plt.plot(x_values, y_values, color="gray")

        # draw the metrics
        plt.plot(cx, cy, marker="$\u22c8$", markersize=10, label="Centroid", 
markerfacecolor="blue", markeredgecolor="blue")
        plt.plot(m2x, m2y, marker="$\u25ce$", markersize=10, label="Polar2M", 
markerfacecolor="orange", markeredgecolor="orange")
        plt.plot(m4x, m4y, marker="$\u27d0$", markersize=10, label="Polar4M", 
markerfacecolor="red", markeredgecolor="red")
        plt.legend()
        ax.set_title(fontfile + " \'" + g + "\'")

        svgfilename = fontfile + "_" + cm[ord(g)] + "_x_logos.svg"
        plt.savefig(svgfilename, dpi=300, bbox_inches="tight")

        
        # write the list as a row to the CSV
        writer.writerow(stats) 

##############################################
#
# Batch-computation of M2 and M4 points at cap-height
#
##############################################
import logosTools as lt
import os, argparse, csv
from beziers.path import BezierPath
from beziers.boundingbox import BoundingBox
import matplotlib.pyplot as plt
from fontTools.ttLib import TTFont, TTCollection
from fontTools.misc.cliTools import makeOutputFileName

import glob, sys
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# Example glyphlist; would need to be checked against actual heights
glyphlist = ["b", "d", "f", "h", "i", "j", "k", "l", "t", "A", "B", "C", "D", "E", "F", "G", "H", 
"I", "J", "K", "L", "M", "N", "O", "P", "Q", "R", "S", "T", "U", "V", "W", "X", "Y", "Z", '0', '1', 
'2', '3', '4', '5', '6', '7', '8', '9', '@', '(', '[', '!', '{', '?', '#', '$', '%', '&', ')', '}', 
']', '\'', "\"", '*', '^']

#glyphlist = ["”", '.', ',', ':', ';', '*', '^', '+', '-', '=', '_']
#glyphlist = ["’"]
filepath = sys.argv[1]
d, infile = os.path.split(filepath)
fontfile, ext = os.path.splitext(infile)

# We'll use fontname as the name rather than extracting it from the binary
outfile = makeOutputFileName(input=fontfile, extension="_caps.csv")

f = TTFont(filepath)

cm = f.getBestCmap()

with open(outfile, 'w', encoding='utf8') as csvfile:
    writer=csv.writer(csvfile)
    writer.writerow(['glyph', 'cx', 'cy', 'm2x', 'm2y', 'm4x', 'm4y'])

    for g in glyphlist:
        stats = []
        stats.append(g)

        cx, cy, m2x, m2y, m4x, m4y = lt.cap_logos_stats(cm[ord(g)], f)
        
        stats.append(cx)  # Still not efficient
        stats.append(cy)  # 
        stats.append(m2x) #
        stats.append(m2y) #
        stats.append(m4x)
        stats.append(m4y)

        print(stats)
        fig, ax = plt.subplots()
        plt.axis('scaled')

        glyph_image = BezierPath.fromFonttoolsGlyph(f, cm[ord(g)])
        bbox = glyph_image[0].bounds()

        # draw the glyph image
        for b in glyph_image:
            b.plot(ax)
            bbox.extend(b.bounds())
        
        xMin, yMin, xMax, yMax = bbox.left, bbox.bottom, bbox.right, bbox.top

        # draw the cropping lines
        for y in (0, f['OS/2'].sxHeight):
            point1 = [xMin - 10, y]
            point2 = [xMax + 10, y]
            x_values = [point1[0], point2[0]]
            y_values = [point1[1], point2[1]]
            plt.plot(x_values, y_values, color="gray")

        # draw the metrics



217

        plt.plot(cx, cy, marker="$\u22c8$", markersize=10, label="Centroid", 
markerfacecolor="blue", markeredgecolor="blue")
        plt.plot(m2x, m2y, marker="$\u25ce$", markersize=10, label="Polar2M", 
markerfacecolor="orange", markeredgecolor="orange")
        plt.plot(m4x, m4y, marker="$\u27d0$", markersize=10, label="Polar4M", 
markerfacecolor="red", markeredgecolor="red")
        plt.legend()
        ax.set_title(fontfile + " \'" + g + "\'")

        svgfilename = fontfile + "_" + cm[ord(g)] + "_cap_logos.svg"
        plt.savefig(svgfilename, dpi=300, bbox_inches="tight")

        
        # write the list as a row to the CSV
        writer.writerow(stats)





219

Appendix C: fonts tested

i. Pilot test

Cantarell Regular, designed by Dave Crossland, the Cantarell Project: 2009. 
Version 0.30. https://cantarell.gnome.org/

Fira Sans Extra Condensed, designed by Carrois Apostrophe: 2014. Version 
4.203. https://github.com/mozilla/Fira

Alfa Slab One Regular, designed by José M. Solė: 2016. Version 2.00. https://
github.com/google/fonts/tree/main/ofl/alfaslabone

Libre Caslon Text Italic, designed by Pablo Impallari, Impallari Type: 2018. 
Version 1.10. https://github.com/thundernixon/Libre-Caslon

Rajdhani Light, Latin designed by Shiva Nalleperumal, Indian Type 
Foundry: 2014. Version 1.20. https://github.com/itfoundry/rajdhani

Tenor Sans Regular, designed by Denis Masharov: 2010. Version 1.00. 
https://github.com/google/fonts/tree/main/ofl/tenorsans

ii. Public test batteries

Abril Fatface Regular, designed by TypeTogether: 2011. Version 1.001. 
https://www.type-together.com/abril-fatface-free

Alegreya Regular, designed by Juan Pablo del Peral, Huerta Tipográfica: 
2011. Version 2.003. https://www.huertatipografica.com/en/fonts/
alegreya-ht-pro

Alegreya Italic, designed by Juan Pablo del Peral, Huerta Tipográfica: 2011. 
Version 2.003. https://www.huertatipografica.com/en/fonts/alegreya-
ht-pro

Alegreya Sans Italic, designed by Juan Pablo del Peral, Huerta Tipográfica: 
2013. Version 2.004. https://www.huertatipografica.com/en/fonts/
alegreya-sans-ht

Amiri Regular, Latin designed by Sebastian Kosch, Amiri Font Project: 2010. 
Version 0.113. https://www.amirifont.org/

Amiri Italic, Latin designed by Sebastian Kosch, Amiri Font Project: 2010. 
Version 0.113. https://www.amirifont.org/

Andika Regular, designed by SIL International: 2004. Version 5.000. https://
software.sil.org/andika/

Bellefair Regular, designed by Nick Shinn and Liron Lavi Turkenic: 2015. 
Version 1.003. https://github.com/shinntype/bellefair

Gentium Plus Regular, designed by Victor Gaultney, SIL International: 2003. 
Version 5.000. https://software.sil.org/gentium/

Gentium Plus Italic, designed by Victor Gaultney, SIL International: 2003. 
Version 5.000. https://software.sil.org/gentium/

IM Fell Double Pica Regular, designed by Igino Marini: 2010. Version 3.00. 
https://iginomarini.com/fell/the-revival-fonts/
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IM Fell Double Pica Italic, designed by Igino Marini: 2010. Version 3.00. 
https://iginomarini.com/fell/the-revival-fonts/

Literata Regular optical size 10, designed by Veronika Burian and José 
Scaglione: TypeTogether, 2017. Version 3.002. https://www.type-
together.com/literata-font

Literata Regular optical size 18, designed by Veronika Burian and José 
Scaglione: TypeTogether, 2017. Version 3.002. https://www.type-
together.com/literata-font

Neuton Regular, designed by Brian Zick: 2010. Version 1.560. https://
github.com/anoxic/neuton

                                                                                      Version 1.000W OFL. h t t p s : / / 
f o n t s . g o o g l e . c o m / s p e c i m e n / P T + S e r i f 

                                                                                 Version 1.000W OFL. h t t p s : / / f o 
n t s . g o o g l e . c o m / s p e c i m e n / P T + S e r i f 

Sorts Mill Goudy Regular, designed by Barry Schwartz: 2010. Version 
003.101. https://www.theleagueofmoveabletype.com/sorts-mill-goudy

Sorts Mill Goudy Italic, designed by Barry Schwartz: 2010. Version 003.101. 
https://www.theleagueofmoveabletype.com/sorts-mill-goudy

Source Sans Pro Light, designed by Paul D. Hunt: Adobe, 2010. Version 
2.021. https://fonts.adobe.com/fonts/source-sans

Source Sans Pro SemiBold, designed by Paul D. Hunt: Adobe, 2010. Version 
2.021. https://fonts.adobe.com/fonts/source-sans

Tinos Regular, designed by Steve Matteson: Ascender, 2010. Version 1.23. 
https://github.com/googlefonts/tinos

Tinos Italic, designed by Steve Matteson, Ascender, 2010. Version 1.23. 
https://github.com/googlefonts/tinos

Yrsa Medium, designed by Anna Giedrys, David Brezina, the Yrsa-Rasa 
Project: Rosetta Type, 2015. Version 1.001. https://rosettatype.com/
custom-services/Yrsa-and-Rasa-for-Google

Alegreya Sans Regular, designed by Juan Pablo del Peral: Huerta 
Tipográfica, 2013. Verison 2.004. https://www.huertatipografica.com/
en/fonts/alegreya-sans-ht

Source Sans Pro Regular, designed by Paul D. Hunt: Adobe, 2010. Version 
2.021. https://fonts.adobe.com/fonts/source-sans

Slabo 13px Regular, designed by John Hudson: Tiro Typeworks, 2013. 
Version 1.02 Build 005a. https://github.com/TiroTypeworks/Slabo

Literata Regular optical size 14, designed by Veronika Burian and José 
Scaglione: TypeTogether, 2017. Version 3.002. https://www.type-
together.com/literata-font

Yrsa Regular, designed by Anna Giedrys, David Brezina, the Yrsa-Rasa 
Project: Rosetta Type, 2015. Version 1.001. https://rosettatype.com/
custom-services/Yrsa-and-Rasa-for-Google

Source Serif 4 Regular, designed by Frank Grießhammer: Adobe, 2014. 
Version 4.004. https://fonts.adobe.com/fonts/source-serif-4
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STIX Two Text Regular, designed by Ross Mills, John Hudson, and Paul 
Hanslow: Tiro Typeworks, 2021. Version 2.13 b171. https://
www.stixfonts.org/

Slabo 27px Regular, designed by John Hudson: Tiro Typeworks, 2013. 
Version 1.02 Build 0003a. https://github.com/TiroTypeworks/Slabo

Fira Sans Condensed, designed by Carrois Apostrophe: 2015. Version 4.203. 
https://github.com/mozilla/Fira

Yrsa Bold, designed by Anna Giedrys, David Brezina, the Yrsa-Rasa Project: 
Rosetta Type, 2015. Version 1.001. https://rosettatype.com/custom-
services/Yrsa-and-Rasa-for-Google
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Appendix D: refitting data

i. Samples of fonts tested

The following pages show samples of each font tested in each test 
condition. Sample text blocks are pulled from the public-testing set.

Alegreya Sans Regular, control (original fitting)
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Alegreya Sans Regular, composite algorithm
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Alegreya Sans Regular, rival kf algorithm
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Fira Sans Condensed, control (original fitting)
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Fira Sans Condensed, composite algorithm
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Fira Sans Condensed, rival kf algorithm
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Literata Regular opsz 14, control (original fitting)
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Literata Regular opsz 14, composite algorithm
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Literata Regular opsz 14, rival kf algorithm
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Slabo 13px, control (original fitting)
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Slabo 13px, composite algorithm
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Slabo 13px, rival kf algorithm
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Slabo 27px, control (original fitting)
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Slabo 27px, composite algorithm



237

Slabo 27px, rival kf algorithm
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Source Sans Pro Regular, control (original fitting)
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Source Sans Pro Regular, rival kf algorithm
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Source Serif 4 Regular, control (original fitting)
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Source Serif 4 Regular, composite algorithm
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Source Serif 4 Regular, rival kf algorithm
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STIX Two Text Regular, control (original fitting)
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STIX Two Text Regular, composite algorithm
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STIX Two Text Regular, rival kf algorithm
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Yrsa Regular, control (original fitting)



247

Yrsa Regular, composite algorithm



248

Yrsa Regular, rival kf algorithm
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Yrsa Bold, control (original fitting)
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Yrsa Bold, composite algorithm
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Yrsa Bold, rival kf algorithm
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ii. Sidebearing values

The following tables provide the left and right sidebearing values for each 
of the fonts in the public tests, in each of the test conditions used.

LSB  typeform RSB

 kf composite control control composite  kf

 3  10  14 A  22  10  11
 3  10  14 Acircumflex  22  10  11
 3  10  14 Agrave  22  10  11
 83  55  93 B  39  12  40
 54  26  38 C  23  10 -176
 83  55  93 D  38  19  48
 84  56  93 E  23 -23 -103
 84  56  93 Eacute  23 -23 -103
 84  56  93 Egrave  23 -23 -103
 84  56  93 F -6 -40 -140
 54  26  38 G  62 -17 -80
 85  57  94 H  94  56  84
 84  56  93 I  93  56  84
-43 -71  6 J  93  53  81
 84  56  94 K  0  10 -72
 84  56  90 L  3  10 -115
 63  35  60 M  61  37  65
 85  57  94 N  93  55  83
 54  26  38 O  37  23  51
 54  26  38 Ocircumflex  37  23  51
 54  26  38 Odieresis  37  23  51
 84  56  93 P  35  10 -87
 54  26  38 Q -94 -112 -84
 83  55  93 R  35  10  12
-33  14  42 S  43  9 -2
-100 -128  22 T  21 -126 -98
 68  39  74 U  74  36  64
 68  39  74 Udieresis  74  36  64
-51 -71  15 V  7 -57 -63
-44 -48  21 W  8 -55 -60
-40  10  29 X  28  10 -40
-86 -80  15 Y  14 -89 -103
-34 -6  31 Z  36 -15 -88
 12  14  42 a  30 -3  25
 12  14  42 acircumflex  30 -3  25
 12  14  42 adieresis  30 -3  25
 12  14  42 agrave  30 -3  25
 83  55  84 b  43  26  54
 53  25  42 c  17  16 -52
 53  25  42 ccedilla  17  16 -52
 52  23  42 d  21 -3  25
 52  23  42 e  44  15  0
 52  23  42 eacute  44  15  0
 52  23  42 ecircumflex  44  15  0
 52  23  42 egrave  44  15  0
 23  10  36 f -47 -35 -67
 50  22  55 g  2 -4 -37
 83  55  84 h  72  50  78
 78  50  75 i  76  51  79
 78  50  81 dotlessi  83  51  79
 78  50 -13 icircumflex -12  51  79
 23  50  23 idieresis  24  51  79
-1 -29  5 j  83  55  83
 83  55  84 k  8  10 -9
 83  55  84 l  83  55  83
 84  56  80 m  72  50  78
 84  56  80 n  72  50  78
 54  26  42 o  44  26  54
 54  26  42 ocircumflex  44  26  54
 54  26  42 odieresis  44  26  54
 26  26  37 oe  37  15  15
 83  54  80 p  43  26  54
 52  24  42 q  80  55  83
 84  56  80 r  7  10 -36
 19  19  32 s  42  23  22
-5 -5  36 germandbls  9  23  22
 24 -4  25 t  13  12 -12
 78  50  72 u  20 -1  27
 78  50  72 ucircumflex  20 -1  27
 78  50  72 udieresis  20 -1  27
 78  50  72 ugrave  20 -1  27
 17  10  20 v  8  10  4
 24  10  20 w  8  10  13
 15  10  23 x  18  10  10
-23 -16 -17 y  11  10  4
-4  16  33 z  33  13 -5

Alegreya Sans Regular
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 LSB  typeform  RSB  

 kf composite control control composite  kf

 4  9  7      A  7  9  4
 4  9  7      Acircumflex  7  9  4
 4  9  7      Agrave  7  9  4
 80  52  85     B  38  9  37
 50  22  50     C  15  9  0
 80  52  85     D  50  17  45
 80  52  85     E  39  9  0
 80  52  85     Eacute  39  9  0
 80  52  85     Egrave  39  9  0
 80  52  85     F  19 -42 -41
 51  24  50     G  55  8 -12
 80  52  85     H  85  52  80
 80  52  85     I  84  52  80
-17 -45  2      J  80  52  79
 80  52  85     K -3  9 -64
 80  52  85     L  14  9  0
 60  32  55     M  55  32  60
 80  52  85     N  85  52  80
 51  23  50     O  50  23  51
 51  23  50     Ocircumflex  50  23  51
 80  52  50     Odieresis  50  9  0
 50  22  85     P  28 -4  20
 80  52  50     Q  20 -21  6
-67 -3  85     R  19 -2 -16
-94 -122  22     S  38 -128 -100
 68  40  11     T  5  40  68
 68  40  75     U  74  40  68
-38  40  75     Udieresis  74  40 -37
 5 -35  7      V  8 -35  5
 0 -23  23     W  23 -23  0
-74  9  4      X  4  9 -74
-32 -66  4      Y  4 -66 -68
-5 -10  25     Z  35 -3  42
-5  4  40     a  44  14  42
-5  4  40     acircumflex  44  14  42
-5  4  40     adieresis  44  14  42
 80  4  40     agrave  44  14  53
 47  52  81     b  51  26  0
 47  20  49     c  18  9  0
 51  20  49     ccedilla  18  9  80
 49  24  51     d  81  52 -1
 49  21  49     e  44  5 -1
 49  21  49     eacute  44  5 -1
 49  21  49     ecircumflex  44  5 -1
 13  21  49     egrave  44  5 -64
 18 -15  13     f -56 -55 -28
 80 -10  20     g  3  1  75
 66  38  81     h  77  38  66
 66  38  67     i  67  38  66
 66  38  81     dotlessi  81  38  66
 66  38  -23    icircumflex -23  38  66
-13  38  -21    idieresis -19  38  66
 80 -41  -12    j  67  38 -21
 78  52  81     k  1 -2  10
 80  50  76     l  17 -18  75
 80  52  81     m  77  48  75
 48  52  81     n  77  47  48
 48  20  49     o  49  20  48
 48  20  49     ocircumflex  49  20  48
 49  20  49     odieresis  49  20  44
 48  49  49     oe  44  44 -1
 80  20  81     p  51  5  54
 51  52  51     q  81  26  80
 80  51  81     r  7  81  0
-14  52  23     s  34  9  3
 81  0  81     germandbls  32  10  32
 13  81  11     t -3  32  3
 11 -15  77     u  81  10 -36
 75 -17  77     ucircumflex  81 -14  80
 75  48  77     udieresis  81  52  80
 75  48  77     ugrave  81  52  80
 75  48  9      v  9  52  80
 0  48  19     w  19  52  2
 25  9  4      x  4  9  26
 0  9  9      y  8  9  0
 3  9  20     z  26  9  2

Fira Sans Condensed
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  LSB   typeform   RSB  

 kf composite control  control composite  kf

-45  8  15  A  15  8 -38
 13  10  62  B  43  32  34
 50  48  50  C  54  8 -183
 13  10  62  D  50  35  37
 13  10  62  E  53  33 -4
 13  10  62  F  43 -43 -90
 52  50  50  G  33 -22 -63
 13  10  62  H  62  11  14
 9  7  62  I  62  7  9
-93  8  40  J  35 -17 -15
 9  7  62  K  18  8 -131
 13  10  62  L  60  8 -93
 4  2  66  M  59 -3 -1
 14  11  62  N  62  1  4
 52  50  50  O  50  46  48
 13  10  62  P  25 -99 -96
 53  51  50  Q -117 -115 -113
 13  10  62  R  26  8 -59
 3  48  56  S  58  30  6
-158 -44  42  T  42 -44 -157
-16 -18  49  U  46 -19 -17
-112 -107  21  V  21 -114 -118
-81 -83  21  W  21 -92 -89
-78  8  15  X  14  8 -87
-155 -143  21  Y  21 -150 -159
-50  17  58  Z  60  12 -34
 37  56  52  a  5 -7 -5
 5  2  17  b  46  58  60
 54  51  46  c  29  34 -44
 57  55  46  d  24  16  18
 53  51  46  e  38  44  2
 23  21  41  f -66 -76 -105
 39  37  25  g  1  15 -64
 13  11  42  h  31  14  16
 23  21  40  i  24  12  14
 14  12  34  j  88  82  85
 14  11  42  k -8  8 -59
 14  11  42  l  25  12  15
 26  24  46  m  31  14  16
 26  24  46  n  31  14  16
 53  51  46  o  46  51  54
 19  17  28  p  46  58  60
 57  55  46  q  17  12  15
 26  24  46  r  7  8 -45
 42  58  49  s  30  58  46
 19  16  37  t  5  30 -4
 16  14  27  u  30  17  19
-38  8  12  v  11  8 -42
-26  8  7  w  7  8 -29
-21  8  7  x  3  8 -34
-48  4  10  y  2  8 -48
 30  55  37  z  27  52  28
 53  51  46  oe  38  44  2
 23  20  41  germandbls  25  58  46
 23  21  40  dotlessi  24  12  24
-45  8  15  Acircumflex  15  8 -38
-45  8  15  Agrave  15  8 -38
 13  10  62  Eacute  53  33 -4
 13  10  62  Egrave  53  33 -4
 52  50  50  Ocircumflex  50  46  48
 52  50  50  Odieresis  50  46  48
-16 -18  49  Udieresis  46 -19 -17
 37  56  52  acircumflex  5 -7 -5
 37  56  52  adieresis  5 -7 -5
 37  56  52  agrave  5 -7 -5
 54  51  46  ccedilla  29  34 -44
 53  51  46  eacute  38  44  2
 53  51  46  ecircumflex  38  44  2
 53  51  46  egrave  38  44  2
 23  21 -13  icircumflex  24  12  14
 23  21 -16  idieresis  23  12  14
 53  51  46  ocircumflex  46  51  54
 53  51  46  odieresis  46  51  54
 16  14  27  ucircumflex  30  17  19
 16  14  27  udieresis  30  17  19
 16  14  27  ugrave  30  17  19

Literata Regular opsz 14
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  LSB    typeform    RSB   

 kf composite control  control composite  kf

-36  6 -60  A  0  6 -34
 20  18  0  B  80  35  37
 36  34  25  C  80  6 -125
 20  18  0  D  85  33  35
 20  18  0  E  80  8  10
 20  18  0  F  80  6 -97
 34  32  25  G  60 -33 -32
 20  18  0  H  60  18  20
 20  18  0  I  60  18  20
-29 -31 -40  J  60  9  11
 20  18  0  K  60  6 -81
 20  18  0  L  60  6 -104
 20  18  0  M  60  18  20
 20  18  0  N  60  9  11
 37  35  25  O  85  35  37
 20  18  0  P  55  6 -106
 37  35  25  Q  40 -11 -10
 20  18  0  R  60  6 -18
 9  43 -5  S  55  21 -3
-79  6  0  T  60  6 -79
-8 -9  0  U  60 -11 -9
-86 -74 -60  V  0 -75 -90
-85 -73 -60  W  0 -74 -87
-50  6  0  X  60  6 -51
-129 -98 -60  Y  0 -98 -129
-20  20  0  Z  80  28 -15
-36  6 -60  Agrave  0  6 -24
-36  6 -60  Acircumflex  0  6 -24
 20  18  0  Egrave  80  8  60
 20  18  0  Eacute  80  8  60
 37  35  25  Ocircumflex  85  35  73
 37  35  25  Odieresis  85  35  73
-8 -9  0  Udieresis  60 -11  68
 2  26 -5  a  50  11  13
 9  7  0  b  80  34  36
 31  30  20  c  60  30 -53
 36  34  20  d  60  18  20
 35  33  20  e  60  30 -1
 28  26  0  f -60 -74 -86
 35  34  20  g  120  67  68
 20  18  0  h  50  12  13
 28  26  0  i  60  18  20
 0 -2 -20  j  110  59  61
 20  18  0  k  60  12 -34
 20  18  0  l  60  18  20
 28  26  0  m  50  12  13
 28  26  0  n  50  12  13
 34  32  20  o  80  33  35
 20  18  0  p  80  34  36
 35  34  20  q  60  7  8
 28  26  0  r  40  6 -34
 22  38  30  s  80  36  20
 15  13  0  t  50  36 -17
 13  11 -10  u  60  18  20
-28  6 -40  v  40  6 -23
-28  6 -40  w  40  6 -23
-11  6  0  x  60  6 -14
-28  6 -40  y  40  6 -23
 25  44  0  z  60  46  25
 2  26 -5  agrave  50  11  43
 2  26 -5  acircumflex  50  11  43
 2  26 -5  adieresis  50  11  43
 31  30  20  ccedilla  60  30  49
 35  33  20  egrave  60  30  45
 35  33  20  eacute  60  30  45
 35  33  20  ecircumflex  60  30  45
 0  26  0  dotlessi  60  18  60
-30  26 -30  icircumflex  30  18  30
-40  26 -40  idieresis  20  18  20
 34  32  20  ocircumflex  80  33  66
 34  32  20  odieresis  80  33  66
 34  34  20  oe  60  30  30
 27  27  1  germandbls  60  36  36
 13  11 -10  ugrave  60  18  37
 13  11 -10  ucircumflex  60  18  37
 13  11 -10  udieresis  60  18  37
 

Slabo 13px Regular
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  LSB    typeform    RSB   

 kf composite control control composite  kf

 0  12  0  A  0  12  0
 9  10  30  B  40  28  27
 33  34  40  C  30  12  0
 9  10  30  D  47  26  25
 9  10  30  E  30  14  0
 9  10  30  F  10 -58 -70
 32  33  40  G  30  12  0
 9  10  30  H  30  10  9
 9  10  30  I  30  10  9
-23 -22  6  J  30  2  1
 9  10  30  K  0  12  0
 9  10  30  L  20  12  0
 7  8  20  M  20  7  6
 9  10  30  N  30  2  1
 36  37  47  O  47  36  35
 9  10  30  P  37  12  0
 35  37  47  Q -60 -72 -73
 9  10  30  R  0  12  0
 0  34  30  S  30  20  0
-93 -91  17  T  17 -91 -93
-12 -11  20  U  20 -12 -13
-81 -70  0  V  0 -72 -83
-80 -68  0  W  0 -70 -82
 0  12  0  X  0  12  0
-110 -99  0  Y  0 -99 -112
 0  8  30  Z  40  13  0
 0  12  0  Agrave  0 -12  0
 0  12  0  Acircumflex  0 -12  0
 9  10  30  Egrave  30  50  0
 9  10  30  Eacute  30  50  0
 36  37  47  Ocircumflex  47  57  35
 36  29  47  Odieresis  47  14  35
-12  12  20  Udieresis  20  35 -13
 10  29  40  a  10  14  34
 33  12  25  b  40  35  0
 34  34  40  c  40  30  17
 34  35  40  d  20  19  0
 24  35  35  e  30  28 -62
 21  25  30  f -52 -50  0
 17  22  20  g  10  28  15
 24  19  20  h  20  16  17
-3  25  30  i  20  19  52
 17 -2  0  j  41  53  0
 17  19  30  k  0  19  17
 24  19  30  l  20  19  15
 24  25  30  m  10  16  15
 34  25  30  n  10  16  35
 17  36  35  o  35  36  35
 34  19  25  p  40  36  10
 24  35  40  q -10  11  0
 16  25  30  r  10  12  14
 15  37  35  s  30  32  0
 14  16  20  t  20  31  17
 0  15  20  u  20  19  0
 0  12  0  v  0  12  0
 0  12  0  w  0  12  0
 0  12  0  x  0  12  0
 12  12  0  y  0  12  6
 10  36  30  z  30  32  13
 10  29  40  agrave  10  14  34
 10  29  40  acircumflex  10  14  34
 33  29  40  adieresis  10  14  34
 34  34  40  ccedilla  40  30  17
 24  35  35  egrave  30  28 -62
 24  35  35  eacute  30  28 -62
 24  35  35  ecircumflex  30  28 -62
-3  25  30  dotlessi  20  19  52
-3  25 -13  icircumflex -13  19  52
-3  25 -10  idieresis -10  19  52
 17  36  35  ocircumflex  35  36  35
 17  36  35  odieresis  35  36  35
 17  36  35  oe  30  28 -62
 21  25  30  germandbls  30  32  0
 0  15  20  ugrave  20  19  0
 0  15  20  ucircumflex  20  19  0
 0  15  20  udieresis  20  19  0

Slabo 27px Regular
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    LSB  typeform      RSB

 kf control  control  kf

 12  3  A  3  12
 94  90  B  40  48
 59  52  C  32 -186
 94  90  D  51  54
 94  90  E  49 -109
 94  90  F  26 -155
 58  52  G  67 -15
 94  90  H  90  94
 94  90  I  90  94
-112  31  J  87  84
 94  90  K  4 -38
 94  90  L  26 -143
 94  90  M  90  94
 94  90  N  90  94
 59  52  O  51  59
 94  90  P  43 -110
 59  52  Q  37  44
 94  90  R  25  24
-47  42  S  39 -5
-104  28  T  28 -104
 75  87  U  87  76
-39  0  V  0 -37
 6  23  W  24  8
-18  15  X  15 -18
-76 -1  Y -1 -76
-32  45  Z  42 -78
 17  52  a  71  85
 94  82  b  46  62
 56  46  c  25 -74
 60  47  d  82  94
 56  46  e  38  4
 37  30  f -27 -32
 50  45  g  12 -27
 94  82  h  73  87
 79  67  i  65  77
-29 -40  j  66  78
 94  82  k  9 -3
 92  82  l  39  48
 94  82  m  76  87
 94  82  n  76  87
 56  46  o  46  56
 94  82  p  48  61
 60  47  q  82  94
 94  82  r -3 -59
 6  28  s  32  17
 27  24  t  13 -11
 87  75  u  82  94
 7  12  v  12  8
 27  24  w  24  29
 12  14  x  14  12
-3  12  y  12  10
-4  31  z  26 -6
 12  3  Agrave  3 -6
 12  3  Acircumflex  3 -6
 94  90  Egrave  49  45
 94  90  Eacute  49  45
 59  52  Ocircumflex  51  44
 59  52  Odieresis  51  44
 75  87  Udieresis  87  99
 17  52  agrave  71  106
 17  52  acircumflex  71  87
 17  52  adieresis  71  96
 56  46  ccedilla  25  15
 56  46  egrave  38  28
 56  46  eacute  38  28
 56  46  ecircumflex  38  28
-32 -32  icircumflex -32 -32
-23 -23  idieresis -23 -23
 82  82  dotlessi 82  82
 56  46  ocircumflex  46  36
 56  46  odieresis  46  36
 46  46  oe  38  38
 82  82  germandbls  29  29
 87  75  ugrave  82  70
 87  75  ucircumflex  82  70
 87  75  udieresis  82  70
 

Source Sans Pro Regular
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  LSB   typeform    RSB   

 kf composite control   control composite  kf

-49  7  13  A  15  7 -49
 4  2  38  B  44  29  31
 48  46  48  C  42  7 -178
 4  2  38  D  47  40  42
 4  2  40  E  41  31 -5
 4  2  40  F  35 -106 -115
 48  46  48  G  23 -30 -96
 4  2  38  H  38  2  4
 4  2  38  I  38  2  4
-86 -88 -23  J  29 -11 -9
 4  2  38  K  13  7 -85
 4  2  40  L  38  7 -102
 6  4  36  M  38  2  4
 9  7  38  N  34 -4 -1
 52  49  48  O  48  48  51
 4  2  38  P  31  7 -105
 52  50  48  Q  48  49  51
 4  2  38  R  17  7 -28
 3  48  40  S  48  35 -7
-134 -54  20  T  20 -54 -133
-21 -24  32  U  29 -24 -22
-128 -127  14  V  10 -126 -122
-96 -115  14  W  10 -116 -97
-85  7  11  X  10  7 -84
-129 -140  19  Y  11 -149 -137
-41  13  24  Z  24  21 -39
 37  48  47  a  9 -3 -1
 14  12  33  b  47  57  59
 53  51  47  c  37  29 -54
 58  56  47  d  32  16  18
 54  52  47  e  43  38  7
 25  23  37  f -79 -98 -116
 40  37  34  g  29  26 -43
 14  11  33  h  27  14  16
 26  23  37  i  39  20  22
-90 -92 -73  j  74  68  70
 14  11  33  k  10  7 -38
 14  11  33  l  36  15  18
 26  24  37  m  29  14  17
 26  24  37  n  29  14  16
 52  49  47  o  47  49  51
 18  16  40  p  47  57  59
 58  56  47  q  17  6  8
 26  24  39  r  14  7 -72
 41  55  48  s  45  47  35
 11  9  19  t  11  37 -19
 15  13  21  u  35  20  22
-42  7  12  v  17  7 -43
-29  7  12  w  17  7 -30
-22  7  17  x  17  7 -27
-53 -3  4  y  12  7 -40
 26  51  33  z  30  47  22
-49  7  13  Agrave  15  7  77
-49  7  13  Acircumflex  15  7  77
 4  2  40  Egrave  41  31  77
 4  2  40  Eacute  41  31  77
 52  49  48  Ocircumflex  48  48  44
 52  49  48  Odieresis  48  48  44
-21  49  32  Udieresis  29  48  82
 37  48  47  agrave  9 -3  19
 37  48  47  acircumflex  9 -3  19
 37  48  47  adieresis  9 -3  19
 53  51  47  ccedilla  37  29  31
 54  52  47  egrave  43  38  36
 54  52  47  eacute  43  38  36
 54  52  47  ecircumflex  43  38  36
 12  23  12  icircumflex  12  20  12
 8  23  8  idieresis  5  20  5
 37  23  37  idotless  39  20  39
 52  49  47  ocircumflex  47  49  42
 52  49  47  odieresis  47  49  42
 49  49  47  oe  43  38  38
 16  16  33  germandbls  26  47  47
 15  13  21  ugrave  35  20  41
 15  13  21  ucircumflex  35  20  41
 15  13  21  udieresis  35  20  41

Source Serif 4 Regular
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  LSB   typeform    RSB   

 kf composite control   control composite  kf

-60  7  3  A  4  7 -64
-4  7  36  B  35  33  33
 47  47  50  C  38  7 -184
-5  7  35  D  50  39  39
-4  7  36  E  28  29  4
-4  7  36  F  14 -119 -119
 49  49  50  G  35  7 -59
-4  7  36  H  35  7 -5
-6  7  34  I  35  7 -5
-60  7  0  J  21 -13 -13
-6  7  34  K  6  7 -151
 2  7  42  L  17  7 -110
-2  7  28  M  45  7  4
-1  7  29  N  27 -6 -6
 47  47  50  O  50  45  45
 3  7  44  P  25  7 -119
 46  46  50  Q  23  15  15
 3  7  43  R -5  7 -71
 8  47  35  S  33  33  7
-147 -147  15  T  16 -146 -146
-30 -30  20  U  18 -28 -28
-147 -124 -10  V -7 -119 -140
-137 -120 -10  W  1 -106 -110
-95  7  2  X  4  7 -94
-167 -153 -5  Y -5 -156 -163
-62  7  28  Z  27  18 -43
-60  7  3  Agrave  4  7 -64
-60  7  3  Acircumflex  4  7 -64
-4  7  36  Egrave  28  29  4
-4  7  36  Eacute  28  29  4
 47  47  50  Ocircumflex  50  45  45
 47  47  50  Odieresis  50  45  45
-30 -30  20  Udieresis  18 -28 -28
 24  42  38  a  4  7  1
 10  10  8  b  35  51  51
 51  51  33  c  19  26 -45
 51  51  33  d  25  19  19
 51  51  34  e  30  31 -7
 14  14  18  f -72 -65 -89
 31  31  21  g  12  32 -30
 12  12  22  h  21  11  11
 26  26  32  i  28  18  18
-104 -104 -95  j  65  70  70
 16  16  26  k  3  7 -70
 16  16  26  l  23  14  14
 26  26  32  m  23  14  14
 26  26  32  n  21  10  10
 49  49  34  o  34  50  50
 18  18  22  p  35  51  51
 51  51  33  q  14  19  19
 23  23  29  r  7  7 -57
 56  63  39  s  27  48  40
 32  32  37  t  3  7 -17
 16  16  23  u  30  21  21
-45  7 -13  v -17  7 -44
-49  7 -17  w -13  7 -40
-28  7 -2  x -3  7 -25
-51  7 -12  y -10  7 -39
 15  40  31  z  33  51  25
 24  42  38  agrave  4  7  1
 24  42  38  acircumflex  4  7  1
 24  42  38  adieresis  4  7  1
 51  51  33  ccedilla  19  26 -45
 51  51  34  egrave  30  31 -7
 51  51  34  eacute  30  31 -7
 51  51  34  ecircumflex  30  31 -7
 26 -10 -6  icircumflex  28  26  18
 26 -35 -29  idieresis  5  1  18
 26  32  32  dotlessi  28  28  18
 49  49  34  ocircumflex  34  50  50
 49  49  34  odieresis  34  50  50
 49  49  34  oe  30  31 -7
 14  14  22  germandbls  31  48  40
 16  16  23  ugrave  30  21  21
 16  16  23  ucircumflex  30  21  21
 16  16  23  udieresis  30  21  21

STIX Two Text Regular
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  LSB   typeform    RSB   

 kf composite control   control composite  kf

-93  16  2  A -1  16 -93
 17  12  109  B  111  87  92
 129  124  125  C  121  16 -319
 17  12  109  D  124  106  111
 17  12  109  E  92  16 -179
 16  11  109  F  67 -178 -359
 126  121  124  G  89 -13 -147
 17  12  109  H  109  12  17
 17  12  109  I  110  13  18
-96 -101 -7  J  97  4  9
 17  12  109  K  14  16 -186
 17  12  109  L  59  16 -225
-24  16  63  M  44  16 -38
 17  12  109  N  97  7  12
 133  128  125  O  125  116  121
 17  12  109  P  79  16 -228
 132  127  125  Q -30 -40 -35
 17  12  109  R  32  16 -66
 33  116  133  S  113  64  2
-292  16  77  T  77  16 -292
-1 -6  101  U  98 -13 -8
-273 -248 -9  V  8 -245 -248
-225 -231 -2  W  10 -215 -210
-175  16  25  X  23  16 -168
-332 -314 -7  Y  17 -298 -297
-92  20  67  Z  120  75 -47
-18  76  97  a  56  29  35
 0 -5 -15  b  112  120  125
 122  117  111  c  102  83 -84
 126  121  113  d  71  46  51
 124  119  111  e  115  88 -15
 47  42  80  f -119 -160 -234
 92  86  92  g  48  63 -90
 23  18  46  h  55  27  32
 55  50  84  i  70  42  47
-70 -76 -48  j  199  200  206
 23  18  46  k  32  16 -73
 20  14  46  l  53  22  27
 55  50  84  m  55  26  32
 55  50  84  n  56  28  33
 126  121  113  o  112  121  126
 38  33  61  p  113  121  126
 126  121  112  q  56  58  63
 55  50  84  r  72  16 -101
 104  133  122  s  108  117  87
 42  37  63  t  30  44 -100
 34  29  58  u  71  47  52
-73  16  18  v  28  16 -63
-35  16  27  w  30  16 -32
-43  16  48  x  50  16 -38
-75  7  27  y  21  16 -59
 39  94  85  z  114  126  62
-93  16  2  Agrave -1  16  94
-93  16  2  Acircumflex -1  16  94
 17  12  109  Egrave  92  16  184
 17  12  109  Eacute  92  16  184
 133  128  125  Ocircumflex  125  116  117
 133  128  125  Odieresis  125  116  117
-1 -6  101  Udieresis  96 -13  198
-18  76  97  agrave  56  29  171
-18  76  97  acircumflex  56  29  171
-18  76  97  adieresis  56  29  171
 122  117  111  ccedilla  102  83  91
 124  119  111  egrave  115  88  102
 124  119  111  eacute  115  88  102
 124  119  111  ecircumflex  115  88  102
-3  50 -3  icircumflex  54  42  54
 84  50  84  dotlessi  70  42  70
-16  50 -16  idieresis  50  42  50
 126  121  113  ocircumflex  112  121  99
 126  121  113  odieresis  112  121  99
 113  121  113  oe  115  88  115
 81  45  81  germandbls  73  117  73
 34  29  58  ugrave  71  47  95
 34  29  58  ucircumflex  71  47  95
 34  29  58  udieresis  71  47  95

Yrsa Regular



261

  LSB    typeform    RSB   

 kf composite control   control composite  kf

0  35 -17  A -10  35  0
-5 -58  89  B  79 -1  154
43  41  94  C  99  35 -130
-5 -58  89  D  94  20  34
-5 -58  89  E  72  35  0
-5 -58  89  F  43 -171 -197
47  43  95  G  64 -54 -58
-5 -58  89  H  89 -59 -5
-5 -58  89  I  89 -58 -5
-130 -191 -41  J  75 -71 -11
-5 -58  89  K  10  34  0
-5 -58  89  L  46  37  0
-70 -102  40  M  32 -108 -80
-5 -58  89  N  70 -76 -16
49  44  94  O  94  32  49
-5 -58  89  P  46  34  0
47  43  94  Q -86 -151 -134
-5 -58  89  R  26  35  154
43  53  110  S  86 -2  11
-164 -321  56  T  56 -319 -163
-7 -74  84  U  84 -84 -16
-214 -217 -20  V -4 -219 -200
-181 -206 -12  W -5 -211 -173
0  35  16  X  8  35  0
-238 -259 -24  Y  9 -238 -204
-56 -41  49  Z  96  14 -14
-61  0  65  a  39 -35 -27
-57 -66 -26  b  82  32  121
37  28  79  c  76  4 -85
45  36  82  d  52 -14 -5
43  35  82  e  80  4 -66
2 -7  67  f -142 -137 -171
10  1  64  g  30 -8  118
-31 -39  29  h  42 -33 -25
6 -3  69  i  50 -19 -10
-146 -155 -82  j  164  114  123
-31 -39  29  k  21  35 -106
-30 -39  35  l  44 -29 -20
6 -3  69  m  42 -34 -26
6 -3  69  n  42 -33 -25
41  33  81  o  82  32  42
-15 -24  47  p  81  33  42
44  36  82  q  23 -27 -18
6 -2  69  r  46  35  0
51  63  97  s  74  36  20
-21 -30  47  t  10 -127 -118
-18 -27  50  u  51 -14 -6
0  35  5  v  18  35  0
0  35  11  w  20  35  0
0  35  40  x  27  35  0
0  35  15  y  9  35  0
-15  26  58  z  81  52  5
0  35 -17  Agrave -10  35  0
0  35 -17  Acircumflex -10  35  0
-5 -58  89  Egrave  72  35  0
-5 -58  89  Eacute  72  35  0
49  44  94  Ocircumflex  94  32  49
49  44  94  Odieresis  94  32  49
-7 -74  84  Udieresis  78 -84 -16
-61  0  65  agrave  39 -35 -27
-61  0  65  acircumflex  39 -35 -27
-61  0  65  adieresis  39 -35 -27
37  28  79  ccedilla  76  4 -85
43  35  82  egrave  80  4 -66
43  35  82  eacute  80  4 -66
43  35  82  ecircumflex  80  4 -66
6 -3 -11  icircumflex  44 -19 -10
6 -3  69  dotlessi  50 -19 -10
6 -3 -35  idieresis  19 -19 -10
41  33  81  ocircumflex  82  32  42
41  33  81  odieresis  82  32  42
41  33  81  oe  79  4 -66
2 -7  67  germandbls  42  36  20
-18 -27  50  ugrave  51 -14 -6
-18 -27  50  ucircumflex  51 -14 -6
-18 -27  50  udieresis  51 -14 -6

Yrsa Bold
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Appendix E: quantitative test materials

i. Public test web-application screenshots

The following pages provide screenshots of the desktop/laptop and mobile 
variants of each page used in the public tests. Only one example is included 
for the text-specimen page; all five specimen pages were identical in 
formatting and varied by the randomly selected test font and sample text 
generated by the application server.

Welcome page, desktop/laptop

Disclosure & consent page, desktop/laptop
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Demographic questions page, desktop/laptop

Typographic experience questions page, desktop/laptop
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Task instructions page, desktop/laptop

Specimen page, desktop/laptop
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Between‐specimens reset page, desktop/laptop

Thank you page, desktop/laptop
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Welcome page, mobile

Disclosure & consent page, mobile
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Demographic questions page, mobile

Typographic experience questions page, mobile
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Task instructions page, mobile

Specimen page, mobile
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Between‐specimens reset page, mobile

Thank you page, mobile
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ii. Exposure mark count heatmaps

The following pages provide per–letter-pair heatmap plots of the "tight" 
and "loose" exposure mark rates for the fonts tested in the quantitative 
public tests, in each test condition for which data was collected. 

As described in chapter 6, § 6.3.1, the exposure mark rates shown 
represent the proportion from 0 to 1.0 of exposures in which each letter 
pair received a mark out of the total number of exposures that included 
that pair. Each cell is thus shaded according to the proportionate number 
of marks for the pair, not by how often the pair occurred in the sample 
texts. Cells with no border indicate the pair did not occur in an exposure.

Vertical axes index the first form of each pair; horizontal axes index the 
second form of each pair. Within each axis, forms are sorted by class 
(lowercase – capital – numeral – punctuation and symbols – word space); within 
each class, forms are sorted by profile shape on the interior side (i.e., by 
the right profile of the first form and the left profile of the second form) in 
the order straight – round – diagonal – open – half-open – unbounded.
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ii. Per-letterform profile mark balances

The following pages provide per-letterform balances for the left and right 
profiles of the lowercases letters from the quantitative public tests. 
Balances are shown for all the fonts tested in the quantitative public tests, 
in each test condition for which data was collected. 

As described in chapter 6, § 6.3.1, each balance represents the difference 
between the "tight" and "loose" exposure mark rate for that profile, which 
is interpreted as capturing the overall bias of the rate at which marks were 
made on the profile in the text exposures.

All of the plots are indexed identically, sorted by left profile shape, for 
ease of comparing the left and right balances for each form. The orange 
colour bars represent a balance on the side of the "tight" mark class; blue 
colour bars represent a balance on the side of the "loose" mark class.
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