
1
covers page
number

A systematic analysis of visual
and algorithmic letter fitting

Nathan Willis
September 2023

Thesis submitted for the degree of Doctor of Philosophy
Department of Typography & Graphic Communication

2

Declaration: I confirm that this is my own work and the use of all material
from other sources has been properly and fully acknowledged.

Nathan Willis

This research project was funded by the University of Reading.

covers page
number

3

Abstract

This thesis examines the process of ‘fitting’, or determining the preferred
spacing of the letters and other forms that comprise a typeface. Successful
fitting is important to the readability and aesthetics of type, and is
traditionally performed as a manual process. The objective is to determine
to what extent this manual process can be modelled and expressed in an
algorithm, to increase the theoretical understanding of fitting and suggest
practical strategies.

The research incorporates methodologies from several disciplines,
including historical studies, algorithmic analysis of procedures and
strategies employed in fitting, development of computational software,
and empirical testing.

The manual process of fitting was analysed from historical sources and
contemporary practice. From the study, an axiomatic model was developed
expressing the first principles of fitting Latin text for continuous reading
and interdependencies between those principles. Prior work was evaluated
in relation to the model and a new method was developed to fit typeforms
with open counters, a class of forms historically reported to be difficult to
fit.

A composite algorithm was developed that traverses the typeforms in a
typeface, fitting each form with the simplest technique applicable, until
the fitted set is complete. The composite algorithm was used to fit a set of
typefaces, which were tested in an online reader study. Readers were
shown a series of text samples, utilising original and refitted fonts, and
asked to mark letter sequences they felt exhibited poor spacing.

The composite algorithm achieved lower rates of reported poor spacing
for multiple letterform pairings than the alternative conditions. This
supports a view that the axiomatic model capably represents the
fundamental fitting process, that the novel method for fitting open
counters can improve on prior techniques, and that the composite
approach to algorithmic fitting, combining multiple discrete principles,
holds benefits for the fitting of typefaces.

covers page
number

5

Contents

1. Introduction 11

1.1 The task of fitting in typeface design 12
1.1.1 Evolving perspectives on fitting and automation 14
1.1.2 Defining success in letter fitting 17

1.2 Research questions 20
1.3 Scope and essential terminology 21
1.4 Methods 23
1.5 Potential impact of algorithmic fitting 24

2. Deriving a model for fitting Latin text 27

2.1 Manual fitting practices in Latin typeface design 27
2.1.1 The typeface-design process 28
2.1.2 The letter-fitting stage 30
2.1.3 Classes of typeforms 32
2.1.4 Representations of letter fitting in font files
 and font editors 33

2.2 Study of historical letter-fitting theory 35
2.2.1 Literature, practice, and education in type production 37
2.2.2 Related principles from lettering, writing, and calligraphy 38
2.2.3 Prior explorations into automating letter fitting 39
2.2.4 Continuity 42
2.2.5 Complexity 43

2.3 Identifying axioms from history and practice 44
2.3.1 Determining inclusion and exclusion of axioms 44
2.3.2 Essential axioms for Latin letter fitting 45

2.4 Determining the domains and ranges of axioms 55
2.4.1 Domain: the set of typeforms or profiles
 addressed by an axiom 56
2.4.2 Domain: the weight, width, slant, and optical sizes
 addressed by an axiom 58
2.4.3 Range: comparing axioms by whether they prohibit
 a result or provide a result 60
2.4.4 Range: comparing axioms by whether they concern
 relative space or absolute space 60

2.5 Evaluating the interactions, dependencies,
 and redundancies between axioms 63

2.5.1 Axioms that are exceptions to other axioms 63
2.5.2 Axioms that are prohibitions of a failure-condition 63
2.5.3 Dependencies and redundancies between axioms 64

6

3. Practical implementation considerations for the model 67

3.1 Cataloguing prior implementation work 67
3.2 Axioms with clear implementation and parameterization 71
3.3 Axioms lacking theoretical details needed for implementation 74

3.3.1 Analysis of the vertical-stroke-rhythm axiom 74
3.3.2 Analysis of the shells-of-space axiom 77

3.4 Axioms presenting unresolved questions 80
3.4.1 Analysis of the triplet-centring axiom 81
3.4.2 Open counters and concave profiles 83

3.5 Summarizing the practical considerations 86

4. Algorithm construction 87

4.1 Preliminaries 87
4.2 Investigations of the LOGOS centre-point method 88

4.2.1 Moments compared 89
4.2.2 Analysis of the re-implementation tests 92

4.3 Investigations of open-counter measurements 94
4.3.1 Analysis of the open-counter measurement tests 95

4.4 Constructing a composite algorithm 96
4.4.1 Testability and complexity concerns 97
4.4.2 Neutral default values for tunable parameters 102
4.4.3 Rival algorithms 104

5. Quantitative method for testing letter-fitting algorithms 107

5.1 Testing approaches 107
5.1.1 Testing and evaluation approaches seen in prior research 107
5.1.2 Explicit fitting value assessments 108
5.1.3 Reference document assessments 112
5.1.4 Human reader assessments 115

5.2 Drafting an approach to measure successful fitting 118
5.2.1 Prototyping and pilot testing 119
5.2.2 Assessment 121

5.3 Public testing framework 122
5.3.1 Survey test procedure 122
5.3.2 Recording marks from text samples 124
5.3.3 Procedure for preparation of sample texts 127
5.3.4 Preparation of font files 127

5.4 Typeface tests 129
5.4.1 Technical criteria 130
5.4.2 Stylistic and design-space font criteria 131
5.4.3 Public test batteries 132

7

6. Findings from quantitative tests 137

6.1 Test batteries and overall participation 137
6.1.1 General response statistics and demographics 139
6.1.2 Experience with type and typography in the response set 139

6.2 Exposure and mark data 141
6.2.1 General characteristics of the exposure set 141
6.2.2 General characteristics of the mark set 141

6.3 Defining metrics to evaluate fitting from the mark data 144
6.3.1 Per-pair metrics: exposure mark rates 144
6.3.2 Assessing results across typeforms and profiles 148

6.4 Evaluation of algorithms by typeface and letterform profile shape 150
6.4.1 Examining pairwise results involving the composite algorithm 150
6.4.2 Examining pairwise results by profile shape 157
6.4.3 Size and scope of the effects observed 158
6.4.4 Interpreting the results of the tests 159
6.4.5 Algorithm design 160

7. Conclusions 163

7.1 Modelling the manual practice of letter fitting 167
7.2 Analysis and implementation of algorithms 168
7.3 Quantitative test methodology 169
7.4 Discussion 171
7.5 Prospects for further research 172

Glossary 175

Bibliography 181

Appendix A: Mathematical and statistical notes 197

Appendix B: Software source code 203

Appendix C: Fonts tested 219

Appendix D: Refitting data 223

Appendix E: Quantitative test materials 263

9

Acknowledgements

I would like to thank Prof Fiona Ross, Dr Mary Dyson, and Dr Matthew
Lickiss for their unparalleled supervision and advice.

I would also like to thank the University of Reading, Graduate School,
and the Department of Typography & Graphic Communication for their
generous award of the studentship which allowed me to undertake this
research.

Along the way, I was the recipient of copious assistance, insight, and
counsel, both particular and general, from a number of friends and
colleagues as well as a few virtual strangers who still offered their time.
Among those, I owe my thanks to David Březina, Pat David, Julien Deswaef,
Behdad Esfahbod, Frank Grießhammer, Borna Izadpanah, Eric Kindel, Indra
Kupferschmid, Kent Lew, Cosimo Lupo, Ira Lusik, Francisca Monteiro, Roel
Nieskens, Pria Ravichandran, Irmi Wachendorff, Tiffany Wardle, and Josh
Willis, as well as others I’m sure I have forgotten.

I am particularly indebted to Graham Beck, Lida Lopes Cardozo
Kindersley, and the rest of the Cardozo-Kindersley Workshop in
Cambridge, for their hospitality and support, not merely with archival
material and information, but with advancing my understanding the
workings of the LOGOS project and the fuller history of its background and
its development.

This research would also not have been possible without my fellow
students, starting with Xunchang Cheng, Mohamad Dakak, Arjan Khara,
Soo Kim, Paul Ransom, Ferdinand Ulrich, and Cătălina Zlotea, plus many
others, who personified community even in the most unusual of
circumstances.

Finally, this project is dedicated to my family, who never wavered in
their encouragement.

11

1. Introduction

The essential difference between type and other forms of making letters,
such as handwriting, painting, or carving in wood or stone, has been
explained by noting that type letters are pre-made or pre-fabricated
(Smeijers 1996, p.21; Noordzij 2009, p. 9), and composed into a text some
time later, generally by someone other than the designer of the letters.
Hidden within this definition is the fact that the act of composing the text
creates shapes as well: the negative forms that are defined by the
boundaries of the letters’ positive forms as they are set together. This is, of
course, neither an undesirable accident nor a surprise to the designer of
the type. As such, a vital part of designing the letterforms is anticipating
and planning for these negative forms: what type designers call fitting.

More precisely, fitting is the process of determining the fixed
separation of the letterforms so that they will appear, to the reader’s eye,
balanced and harmonious when text is typeset. In earlier eras, when type
was manufactured as physical objects, the fitting of each letterform was
similarly physical. (See figure 1.1) When letterforms were cast in metal, the
dimensions of the casting inherited the dimensions of the mould (into
which the metal was poured), which in turn had inherited its dimensions
from the matrix (around which the mould was aligned), which had been
established several stages earlier in the manufacturing process, through
the judicious effort and manual labour of the punchcutter or justifier
(Carter 2002, p. 6–8).

In the present era of scalable digital typefaces, the dimensions of each
letterform are simply numerical values stored in a digital file, and the
designer of the typeface can specify and update them directly. For the Latin
script, composed in horizontal lines, the vertical bounds of the letterforms
are, for the most part, uniform throughout the typeface, and the values
that dictate the fixed separation for each letterform are the distances to
the left and right of the positive form, called sidebearings. (See figure 1.2) But
the judicious effort required to establish those values is still crucial,
because fitting digital typefaces must also address the eventual goal of
composing the letters into words, lines, paragraphs, and pages that readers
perceive as even and harmonious. As Walter Tracy wrote in 1986,

Letters do not live in isolation, They are the elements of meaning, the
components of visible language, and their spatial relationship with each other
is crucial, not only for the rapid recognition of words by the reader but for the
regularity of texture that is essential if the reader’s comprehension is to be
maintained for a long period. (Tracy 2003, p. 77–78)

If the fitting of the typeface is poor, the readability of the eventual text
suffers, and so in turn does the experience of the reader (Unger 2007, p.

Blumenthal’s illustration of
fitting as seen in metal types. All
of the forms are set on equal-
height bodies for vertical
alignment, but the sidebearings
(relative widths) are established
for each form (Blumenthal 1935,
p. 71).

Figure 1.1

Karow’s illustration of fitting as
seen in scalable digital type. The
sidebearings (A and B) are
numerical values chosen for each
form (Karow 1994, p. 179).

Figure 1.2

Sorry; this image could not be cleared
for redistribution.

12

149). This is doubtlessly why Tracy called the process of fitting
‘fundamental to the success of a type design’ (Tracy 2003, p. 71). Nor is his
choice of phrasing coincidental: fitting has long been recognized as an
integral part of the design process by those in the type-design field and
those in the broader community of typography. Charles Bigelow and
Jonathan Seybold, like others in the type and typography business,
occasionally ascribed more importance to fitting than letterform design: ‘It
is often claimed, with some justification, that a mediocre type design well
spaced will look superior to a good design, badly spaced’. (Bigelow and
Seybold 1981, p. 14).

That sentiment is perhaps intentionally hyperbolic, meant to draw the
readers’ attentions to the importance of fitting. It is also a statement
grounded in a practical reality, however, and points to another benefit of
good fitting. Much of Bigelow and Seybold’s discussion of fitting
highlighted its practical necessity for commercial printing: typefaces that
ship to customers in well-fitted form reduce the need for customers to
make adjustments when typesetting documents (Bigelow and Seybold
1981, p. 13). Publishers thus place additional value on high-quality fitting
for the convenience it provides to them, apart from its benefits for the
reader (Nicholson 1990).

This leads to a third important facet of fitting: as a marker of the type
designer’s skill or the typeface’s quality (Karow et al. 1994, p. 225). Several
writers have noted that poor fitting during the design process can lead to
lower-quality letterforms or make design problems more difficult to
identify and solve (Smeijers 1996, p. 26; Henestrosa et al. 2017, p. 81). The
notion of intrinsic quality certainly overlaps with commercial viability, but
quality is, at times and to particular people, an aspect of the typeface itself.
Fernando Mello expressed that viewpoint succinctly, writing that ‘A
typeface just can’t be good if its spacing is bad’ (Mello 2018, p. 33).

1.1 The task of fitting in typeface design

 Although there is broad consensus among type designers about the
importance and integrality of fitting to the design of typefaces, fitting as it
is practised is often a task separate from designing letterforms, relegated
to a distinct stage in the process that may be regarded as secondary
(Henestrosa et al. 2017, p. 80). The type designer designs some letterforms
(perhaps many), then pauses for a time and addresses fitting. Then the
process is repeated. Some would say that this subdivision of the tasks is an
outcome imposed by the specifics of printing technology. Gerrit Noordzij
wrote that ‘A letter is two shapes of different brightness (e.g. black and
white). The writer knows of the complicated relationship between both
shapes’, but that it was the ‘simplified view of an outsider’ that invented

13

typography and thus ‘reduced the background shapes to rectangles
whatever the shape of the strokes might be’ (Noordzij 2000, p.3–4).

Conversely, perhaps the differentiation between designing positive
forms and fitting them with respect to negative space is inescapable,
purely because it is the positive forms of the letters that are drawn, that
are inked by the printer and impressed onto the page, provided as keys on
a keyboard, and ultimately perceived against the background — whereas
the spaces between the forms are only permitted to emerge after the fact,
taking form as the words, lines, and pages begin to appear. (See figure 1.3)
This is evident in the literature of type; writers describe the letterforms
designed by Granjon or Baskerville. Rarely, if ever, does discussion centre
on the fitting of Benton or Koch.

Whatever the reason for this bifurcation between fitting and drawing,
the task of fitting is frequently described as an undertaking that is time-
consuming, if not outright challenging to master (Blumenthal p. 73; Tracy
2003, p. 77; Karow et al. 1993 B, p. 248; Campe and Rauche 2022, p. 93). But

The importance of fitting
illustrated at three scales.

Top: Fred Smeijers on fitting at
the level of the word (Smeijers
1996, p. 26). Used by permission.

Middle: Richard Rubinstein on
fitting at the level of the sentence
(Rubinstein 1988, p. 116).

Bottom: Elwyn and Michael
Blacker on fitting at the level of
the paragraph (Blacker and
Blacker 1993, p. 71).

Figure 1.3

Sorry; this image could not be cleared
for redistribution.

Sorry; this image could not be cleared
for redistribution.

14

type designers and typographers have also acknowledged that fitting is a
skill which can be acquired and honed to a high degree of expertise.
Moreover, since the earliest days of type-making, the general view has held
that desirable fitting appears to behave according to predictable rules,
(Fournier trans. Carter 1930, p. 160–161; Jamra 2004).

1.1.1 Evolving perspectives on fitting and automation
In the early to mid 20th century, some type designers spoke of these
predictable rules in terms of equations or fixed formulas (Blumenthal 1935,
p. 72; Dreyfus 2000, p. 31) and pursued discovering and defining them.
William Addison Dwiggins wrote to Rudolph Ruzicka in 1937 that ‘there
must be some general formula’ — but advised Ruzicka that Chauncy H.
Griffith at Mergenthaler Linotype disagreed (Dwiggins 1940 A, p. 6). By mid
1940, as Dwiggins’s correspondence with Griffith on the Falcon typeface
shows, Dwiggins was quite engaged with devising a formulaic system for
fitting, even creating his own notation for inter-letter spaces (n̝n or n̜n),
distances measured from vertical stem to vertical stem (n  ̞ n), and left and
right sidebearings (̛n, n̚ ) to document and relay his findings to Griffith
(Dwiggins 1940 B, p. 9).

As typesetting technology advanced, so did type designers’ relationship
to the task of fitting. Gerard Unger noted that the rules governing fitting in
metal type were crude when compared to those of photocomposition and
digital type (Unger 2018, p. 123). By the time those technologies had
supplanted metal as the norm, type designers and technologists had
shifted away from looking for a purely mathematical formula and began to
actively address the possibility of automatically applying fitting rules via
computer software.

In 1986, Walter Tracy published his own standardized fitting method in
the form of a heuristic, based on his long experience at Linotype, supplying
readers with a list of values that could be systematically applied to the
various letterforms (at least, in an upright roman typeface) by their shape.
(See figure 1.4) Notably, although his method provided pre-defined fitting
values for most of the Latin letterforms, Tracy supported them with
rationales: the round letter profiles receive the same amount of space

Walter Tracy’s heuristic fitting
system, for lowercase upright
Latin forms. It expresses
sidebearings for most letterforms
as a set of six repeatable values
(Tracy 2003, p. 75). On the
preceding page of the book, Tracy
provides a similar heuristic for
the capitals (not shown).

Figure 1.4

15

because they are the same shape; the diagonal letter profiles receive the
minimum amount of space because they trap a triangular region of white
space that cannot be removed, and so forth (Tracy 2003, p. 79). He
acknowledged that the heuristics sounded like a job for a computer, but
added that, in his estimation, a computer-based system could never be
wholly reliable (ibid., p. 77).

In contrast, the renowned stonecarver, calligrapher, and letter designer
David Kindersley fully embraced the potential of computer-based fitting
methods, writing ‘there are too many factors to be held in the head at the
same time. A trained eye can space a few words, but it is too much for
anyone to arrive at a proper space for each one of 100 characters or more
so that there is anything like perfect interchangeability. [...] No, today our
only chance is basic research with a computer to hand’. (Kindersley 1973,
p. 13) To that end, Kindersley pursued a decades-long project to develop a
software letter-fitting system in collaboration with Neil Wiseman and
others at the Cambridge Computer Laboratory. (See figure 1.5) The result of
that project, LOGOS, was marketed as a production tool to printers and
foundries in the late 1980s, but did not find commercial success.

Peter Karow, a scientist by training and pioneering type technologist by
trade, also dedicated years to researching methods for fitting type via
software at URW (Karow 1998). In 1993, URW promoted a new digital
typesetting engine called hz-program which included a module named kf
(’kerning on the fly’) for automatically altering the fitting of any font in a
document for optimal evenness (Seybold 1991; Karow 1992; Seybold and
Karsh 1993). (See figure 1.6) Although hz-program was much vaunted
preceding its launch, claiming to rival Gutenberg in typographic quality
(Zapf 1993; URW Software & Type 1993), it also fell short of finding success
in the marketplace. The company reorganized in 1995, with Karow

Top: The LOGOS fitting system
found a centrepoint for every
letterform (Kindersley 1987, p.
18).

Bottom: The LOGOS system fitted
letterforms by adjusting the
distances between centrepoints
(Sassoon 1987, p. 109).

Figure 1.5

Detail from the promotional
booklet for hz-program, showing
the results of fitting letters with
kf versus other typesetting
products. Each arrow indicates
fitting that the booklet claims is
incorrect or problematic (URW
1993, p. 19).

Figure 1.6

16

departing (Seybold 1995); subsequently the composition quality advertised
in hz-program took on a near-legendary mythos (Ecker et al. 1998; Eng
2009).

In the decades that followed, the question of fitting letterforms
automatically or with the assistance of computer software has continued
to engage the attention of type designers, font engineers, and software
developers alike. This research does not seek to identify a foolproof
method by which all the forms in a typeface can be correctly fitted without
human intervention (however ‘correctly’ may be defined), but to look at
the prior investigations into letter-fitting automation collectively, and at
how the various attempts to fit letters automatically or semi-automatically
relate to fitting as the task has been performed manually. In doing so, this
research provides observations and investigates approaches by which
future work on fitting letters by means of automated techniques might be
brought better into harmony with the task of fitting as it has traditionally
been conducted.

A great deal about the manual process of fitting is well-known within
the type-design field. The basic principles of evenness, balance, and
harmony are common citations within the historical discussions and
instructional materials concerning fitting, as are details of how those
principles interact with letterforms and how type designers can make
effective assessments. Nevertheless, the attempts to devise systems,
formulas, and software-automation tools for fitting typefaces over the
years found only limited success with type designers. Tracy’s heuristic
method provided an incomplete system; he enumerated several
letterforms that must be fitted visually: a, f, g, s, t, z, and S. The list notably
overlaps with Dwiggins’s list of ‘wolf intervals’ for which he could find no
formulaic solution: a, c, e, f, g, k, r, t, and s (Dwiggins 1940 B, p. 6). The
LOGOS and hz-program products, as mentioned above, were unable to
establish a foothold with type designers and manufacturers, despite their
respective pedigrees and substantial investments of time and effort.

This research does not attempt to find fault with the above examples or
other prior work, but instead to contend that they are worth revisiting in
the present context and that the subject is worth investigating as a shared
endeavour within the type-design community, best viewed as part of the
continuum of practise that includes manual fitting. The technology
available to the designers and producers of type has advanced considerably
since many of the prior letter-fitting investigations began. Thus, prior
work often sought to apply a homogenous method for fitting all
letterforms, but may have done so because the speed and cost of
computers and typesetters at the time necessitated it (Rubinstein, p. 121).
Similarly, there may be valuable connections to be uncovered between
independently developed methods that remained hidden when those
methods were kept private to preserve trade secrets. A holistic approach to
the analysis can address such issues.

17

1.1.2 Defining success in letter fitting
In order for this research project to talk in detail about improving fitting —
or even to compare whether one fitting for a particular typeface is better
or worse than another fitting — it is necessary to establish a useful
definition for what language like ‘correct’ fitting or ‘good’ fitting means.
This is not a trivial matter, because fitting, like other facets of typeface
design, inevitably involves aesthetic judgments, popular trends, and the
personal tastes of type designers and type consumers (Karow et al. 1993, p.
249, 259; Spiekermann 1987, p. 29).

The aesthetic component of fitting is most clearly visible in display
type. Where readability is not the paramount concern, type designers can
be seen to be more experimental with the treatment of the shapes formed
by inter-letter space and by open counters, illustrating that different
fitting details can affect the reader and the reception of the typeface in
ways wholly unrelated to readability. (See figures 1.7 and 1.8, over page) Even
within text typefaces, however, the personal style or idiosyncrasies of the
type designer can be seen. In his correspondence with Griffith about
developing a formula for the fitting of Falcon, Dwiggins called out the
fitting styles of Edward Maunde Thompson, William Morris, and Emery
Walker as exemplary of the book-style fitting effect he sought for Falcon,
but Bruce Rogers, Frederic Goudy, and Daniel Berkeley Updike as
consistently missing the mark (Dwiggins 1942).

The personal perspectives of type designers aside, what qualifies as
acceptable or exceptionally good fitting is also subject to shifts over time
(Unger 2018, p. 115). To an extent, the shifting understanding of fitting is
imposed by type production and printing. Bodo Kämmle noted that every
type manufacturing technology imposes a resolution or unit system, below
which the relationship between forms and sidebearings is lost because the
technology or data format cannot express finer distinctions (Kämmle in
Karow et al. 1993, p. 185–186). But the long-term trends in fitting are also
supported by the changing opinions and tastes of type designers and,
ultimately, of readers (Unger 2007, p. 150–151).

The type industry is cognizant of the fluctuating nature of taste and
preference over time, of course. (See figure 1.9, over page) In this project,
that factor can be accounted for when assessing fitting by acknowledging
that the fitting preferred today may have been viewed differently in the
past and may not be as well received in the future. As to the influence of
personal style and aesthetic effects, type designers and typographers may
never be in full agreement about the fitting of a particular typeface. There
is general agreement, however, that fitting which is regarded as meeting
the practical needs of legibility and readability with readers has succeeded
at its fundamental goal (Carter 1984, p. 3). Gerrit Noordzij observed that
illegible typography can still be beautiful, but that legibility is the more
important quality in the hierarchy (Noordzij 2000, p. 126). Given a choice

18

Figure 1.7
Lucas Descroix’s monospace typeface Nostra Sett plays with the negative spaces between the letterforms, demonstrating creativity in
fitting. Note, for examples, that the black foreground shapes of the letterforms are expanded to the point where they almost become the
background, drawing attention to the inter-letter spaces left between pairs of letterforms like sa (line two), ti (line five), and gi (line four).
(Descroix 2018, p. 4). Used by permission.

Figure 1.8
David Jonathan Ross’s typeface Fit allows the negative spaces between letterforms to fully dictate the positive shapes of the letters. All of
the spaces are of an equal width; the letterforms are adapted to maintain this space requirement. Notably, Fit is designed to this rule in
multiple weights and widths; the effect is preserved in thin and narrow versions (Ross 2017, p. 2). Used by permission.

19

Figure 1.9
A full-page advertisement from the July 1976 issue of the journal U&lc. The advertising copy discusses the then-contemporary trend of
phototypesetting with extremely close fitting, and calls attention both to the fact that close fitting is a recent phenomenon and that it
likely will be out-of-favour in the future (Frederic Ryder Company 1976, p. 37). From the collections of the department of Typography &
Graphic Communication, University of Reading. Photographed by the author.

20

between the two, there is, at least, a history of testing in legibility and
readability, providing examples to consult and from which test designs
tailored to fitting can be explored. Henestrosa notes that ‘a badly drawn
but properly spaced typeface is more useful than a properly drawn but
badly spaced typeface’ (Henestrosa et al. 2017, p. 80), echoing to a degree
the sentiment of Bigelow and Seybold, but underscoring that utility, all
other factors aside, is a fundamental requirement for type. Consequently,
this research bases its evaluations of fitting solely on the notion of
successfulness with readers, as distinguished from correctness or aesthetic
beauty.

1.2 Research questions

The aims of this research can be summarized by the following research
questions:

1. Can an algorithm be constructed that will generate letter fitting for a well-
designed typeface which cannot be distinguished from letter fitting determined
manually?

2. To what degree can the manual fitting process employed by type designers be
modelled?

As seen here, this project intentionally reframes the discussion somewhat
as an investigation into fitting by algorithm rather than into fitting
automation. The reasons for eschewing the term automation are twofold.
First, ‘automation’ connotes a lack of involvement by humans (be they type
designers or typographers). Although there might be occasions when full
automation in that sense is desired, there are many other occasions when
it surely is not. Second, ‘automation’ is difficult to define. Font editors such
as Glyphs already provide some user-interface affordances to avoid simple
repetition (Glyphs GmbH, 2023). For example, users can enter =n into the
right sidebearing field for m, and the program will automatically copy the
right sidebearing of n to the right sidebearing of m and keep the two
values synchronized if the right sidebearing of n is changed. That
synchronization might reasonably be considered automation, but it does
not speak to core principles.

This project refers instead to algorithms, a term which encapsulates the
meaning of a known and well-defined procedure. Algorithms might be
executed rapidly or repeatedly by a computer, but can be followed by a
person as well. Donald Knuth, who pioneered the analysis of algorithms in
computer science, defines an algorithm as a procedure that has five
properties: finiteness, definiteness, inputs, outputs, and effectiveness
(Knuth 1968, p. 4–6). Finiteness, as applied to this project, simply means
that there is some definition of when the procedure is complete.

21

Definiteness refers to the steps and conditions being well-defined, not
open to interpretation in the moment. Inputs and outputs are,
straightforwardly, what known elements are put into the algorithm before
it begins and what elements are produced by it. Effectiveness in Knuth’s
terminology refers to an algorithm being simple enough in its structure
that it can be written and understood and, perhaps, evaluated on the basis
of speed or complexity.

In the context of letter fitting, the inputs are clearly the set of
letterforms to be fitted and the outputs are the sidebearings for those
letterforms. Without too much additional effort, some additional inputs
could be defined, including the typographic context, and the set of outputs
could be modified to include kerning tables or other techniques for
representing the fitting to be stored in a font file or to be recorded in some
other context. Finiteness is similarly direct: a fitting algorithm has reached
the end when it has output all of the sidebearings asked for. The type
designer may wish to re-execute the algorithm with different inputs, but
there should be no ambiguity as to whether the sidebearings that were
asked for have been provided.

Perhaps the most important aspect of defining a letter-fitting algorithm
consistent with Knuth’s conditions is the notion of definiteness. Namely,
the manual process of fitting letterforms by eye (as described in the type
design literature) frequently makes reference to the designer’s intuition or
optical judgment — for example, ‘adjust the space between the two letters
until it looks balanced’. In a practical sense, attempts to formulate letter
fitting into an algorithm chiefly involve transforming these judgments into
more definite constructions. Or, to look at it another way, part of the
challenge is to identify the fundamental principles of the judgments the
designer makes, and convert each ‘judgment by eye’ from an intuitive
input supplied by the type designer into either an input that can be
computed from the letterforms or a specific action that is expressed in as
definite a step as is possible.

1.3 Scope and essential terminology

For pragmatic reasons, this research is limited to the Latin script, and
focuses on typefaces intended for typesetting text for continuous reading.
However, effort has been made to be alert to both where and how these
limitations impact the results. This work takes a strong position that fitting
can only be understood in a script-specific context, and must be evaluated
as such. Consequently, the construction of models for fitting and analysis
of fitting algorithms must also be understood in a script-specific sense.

It should also be noted that discussions of fitting in this work frequently
refer to the typeface being fitted — despite the fact that type designers, in
practice, will often perform fitting for incomplete typefaces or even for

22

extremely small sets of letterforms, any of which may be altered in further
design iterations. To facilitate a clear discussion of the fitting process, this
work adopts the convention that, at a given point in time when forms are
being fitted, those forms are regarded as complete (or, at least, fixed) and
they work together as a reasonable Latin text typeface. The intent is to
isolate the fitting principles at play when the design itself is not broken.
That is, asking what the sidebearings should be for a set of letterforms that
do not work well together — or are illegible or confusable due to design
problems — is not a meaningful question. As has been noted, further
design iterations may happen as the type designer chooses. Fitting can
only fit the forms as they exist in the moment.

Historical sources and public discourses about fitting can, at times, be
fluid about the terminology employed. This work attempts to standardize
on the term fitting to refer to the process of determining or adjusting the
spaces around the forms in a typeface. This is a choice common among
type designers, at least in written English, but it is not universal. Some
sources refer to this same task as ‘spacing’ or ‘letter spacing’. Where
quoted historical sources are unclear in their use of terminology, effort has
been made to explain the meaning from context.

Some historical sources also disagree as to whether the term fitting
includes only the setting of sidebearings, or includes both the setting of
sidebearings as well as determining kerns (i.e., kerning). In this work, the
term fitting is understood to encompass both sidebearing determination
and kerning, primarily because — as will be discussed in the next chapter
— there is not a hard delineation between the processes involved in the
two tasks. That is, the same fundamental principles are applied when
deciding the correct space between two letterforms in a kerned pair that
are applied when deciding on the correct space for sidebearings in an
unkerned pair.

Where typeforms themselves are discussed in this work, the blue-
background notation a is used to distinguish those forms from the
surrounding text for the ease of reading. Where literal tokens from
programming or markup are discussed, monospace formatting is used, to
better distinguish confusable items such as the kern table in OpenType
from the general word ‘kern’.

This work also makes occasional use of several other terms common in
type design, such as counter, serif, x-height, weight, and optical size, which are
considerably less fluid in their definition. For the convenience of the
reader, a brief glossary of those terms has been provided, found after the
conclusion of chapter 7.

23

1.4 Methods

This project’s inquiry into possible algorithms for letter fitting is
multidisciplinary. It begins with an examination and analysis of the
processes and techniques that type designers employ when performing
letter fitting manually. That examination, described in chapter 2, consists
of a historical study of the practice of letter fitting as it is recorded in the
literature and research of type design, educational and instructional
material for type design, the literature of fields closely related to type
design, and the recorded history of prior work developing letter-fitting
automation (or algorithmic fitting) tools and utilities.

The analysis of this studied material is used to define a conceptual
model, also described in chapter 2, for how the fitting of Latin text
typefaces is performed manually. This model consists of a finite set of rules
or axioms, each of which expresses a simple principle that helps determine
fitting for one or more letterforms. The set of axioms is explored as a
whole, to evaluate their interconnections as they are applied to a set of
Latin letterforms.

Chapter 3 describes a more detailed investigation into the axioms of the
Latin text fitting model, with a particular emphasis on those axioms that
have been historically under-studied in prior letter-fitting work. In brief,
some of the under-studied Latin text fitting axioms were found to be
favourable for a new implementation, but there are other axioms lacking
the degree of formalism necessary to be implemented in a fitting
algorithm. Chapter 4 explores the potential for designing a composite
fitting algorithm that combines several components, each implementing
different axioms from the model. The composite algorithm uses well-
established techniques to address letterforms with simple profile shapes in
conjunction with novel techniques to address letterforms with concave
profile shapes.

Chapter 5 begins by looking at various approaches to evaluating the
fitting of a typeface, and which approaches can be used to measure the
responses of readers in a quantifiable manner in line with the research
questions. For this project, the goal of such evaluations is to use an
algorithm to generate fitting for a typeface and then evaluate that fitting
in comparison to the original fitting or to the fitting generated by some
other algorithm. The method selected involves testing unaltered and
refitted fonts on the web with volunteer readers. The readers were shown
a series of randomized sample documents and asked to mark pairs of
characters on the samples that they felt exhibited poor fitting and, for each
mark, to indicate if there was ‘Not enough space’ or ‘Too much space’
between the pair. A series of such tests were staged featuring typefaces
with their original (manually determined) fitting, new fitting generated by
the composite algorithm from chapter 4, and new fitting generated by a re-
implementation of the kf algorithm from URW’s hz-program suite, for

24

comparison. The results of the test are presented in chapter 6 and are
interpreted with respect to the fitting algorithms.

This multidisciplinary nature of this research design necessitates, to an
extent, streamlining the breadth of the project. While the conceptual
model of fitting Latin text is as comprehensive as possible, the practical
investigations of fitting-axiom implementations, fitting-algorithm design,
and reader testing are of a focused nature, while revealing clear
opportunities for additional research.

This project has been motivated by the author’s belief as a researcher
that algorithmic fitting is prime for continued systematic study. As is the
case with many in the field, the author has had some measure of prior
academic or professional experience in a handful of disciplines that
address this research subject, including typeface design, mathematics, and
computer science. The overlapping of these perspectives where the task of
letter fitting is concerned allows this research to demonstrate that there is
value in the pursuit, in both practical and theoretical terms.

1.5 Potential impact of algorithmic fitting

The most immediate practical aim of this research is to advance the
current understanding of what is possible for letter fitting via algorithmic
means, by presenting techniques that could lead to more effective or more
efficient tools for type designers to employ when designing typefaces.
A resulting reduction in time required to perform fitting, especially on its
repetitive tasks, and a better-rounded understanding of letter fitting,
would no doubt be welcomed by some type designers.

But there are other potential practical benefits to consider. If the task of
fitting remains a flat list of hundreds of individual decisions about
sidebearings, then it likely cannot help but be considered daunting by type
designers. If, instead, an algorithm can give shape to the task, re-framing it
as an active task that is defined in terms of its own principles and
parameters, then new questions and affordances may become possible, and
experimenting with fitting directly becomes an accessible option. For
example, if the stroke rhythm of a typeface is too rigid and its readability
suffers, then improving the fitting by means of hundreds of adjustments
may seem to be a tedious chore. If, however, the fitting is adjustable via an
algorithm that offers a parameter for stroke rhythm, then improving the
fitting could be considerably less irksome, and invite more exploration.

It was also noted earlier that fitting interacts with the design of
letterforms, and that fitting issues can obscure or hide design problems.
Here, too, by providing richer tools for engaging with the task of fitting
directly, rather than as a large set of discrete, individual decisions, type
designers may reap benefits beyond simple time savings.

25

In addition to the potential for advancing practical fitting work, this
research seeks to promote the theoretical understanding of the task of
fitting and of how fitting is perceived, to the lasting benefit of the field. For
example, a solid understanding of the links between calligraphic tradition
and contemporary digital type (as encouraged by Noordzij and others) not
only empowers type designers to understand type history, but to push it in
new directions. So, too, the theories modelled and explored in this
research can serve as analytical tools for other researchers or students of
type history. A fuller understanding of how the principles of fitting behave
and interact permits new questions to be explored regarding how type is
fitted today and of how fitting can and should change — not just in Latin,
but in other scripts, and between scripts, as well.

Similarly, by encouraging the formalization of the ideas and processes
that are employed in fitting, this project provides a foundation on which
more rigorous discourse about fitting can be based. Fitting, like the design
and construction of letterforms, will always be an important topic of
discussion. But, where the terminology for discussing Latin type anatomy
and style is well-established and explicit, thus facilitating critique and all
manner of analysis, in fitting it has often remained abstract. More formal
language for discussing the principles of fitting and the fitting of specific
forms or typefaces can only lead to new insights into how space functions
in type design, typesetting, and reading.

27

2. Deriving a model for fitting Latin text

This research project explores the potential for algorithmically fitting
typefaces — a task which, both historically and in prevailing contemporary
practice, is performed manually. Before an algorithm appropriate to the
task can be reliably constructed, then, it is vital to understand the
constituent processes fundamental to the overall manual task, the context
in which those processes are administered, and how those processes are
understood by their practitioners. To that end, this chapter details the
analytical development of a model for letter fitting in Latin text, using
those accepted manual practices as a starting point.

As discussed in chapter 1, § 1.5, what constitutes successful letter fitting
is inherently specific to a writing system, and is often constrained further
by the specifics of the typographic setting. This project focuses initially on
the Latin writing system when used to set text for continuous reading, and
the model derived in this chapter is similarly focused on that writing
system and those typographic constraints. Electing to focus on Latin text is
a choice made for practicality, but effort has been made to maintain a
separation between the approach used for the research and the details of
the Latin-text fitting model itself. In this way, the model can serve as a
proving ground for the approach. Models for other writing systems or for a
divergent set of typographic constraints could be derived by employing
the same approach, even though the specific details of two such models
may vary considerably in the end.

2.1 Manual fitting practices in Latin typeface design

The task of letter fitting is regarded by professional typeface designers as
an integral component of designing a typeface (Tracy 2003, p. 71). Indeed,
rather than describing letter fitting as a secondary or even as a
complementary discipline, Fred Smeijers accounts an awareness of the
shapes between letters as inseparable from that of the letters themselves.
‘The white shapes make the background, the black shapes make the
foreground. The background makes the foreground, and the other way
around. Change one, and you change the other too’ (Smeijers 1996, p. 24).

 The literature survey of letter-fitting theory that will be described in
§ 2.2 examines as many of the historical sources as possible, but the
discussion must begin with an overview of the fitting process as it is
practised today. This permits deriving a model (and, ultimately,
algorithms) formulated with relevance for contemporary technology and
practitioners.

A full description of the typeface-design process from start to finish
would lie outside the scope of this research. Books that specifically
describe typeface design are scarce, at least compared to other disciplines

28

in printing and graphic design (Leonidas in Unger 2018, p. 7). In-depth
guidance on the task of fitting within the larger process of typeface design
can be found in Walter Tracy’s Letters of credit (Tracy 2003), Cristóbal
Henestrosa et al’.s How to create typefaces (Henestrosa et al. 2017), and Chris
Campe & Ulrike Rausch’s Making Fonts (Campe and Rausch 2022).
Additionally, a number of other works discuss aspects of typeface design
including manual letter fitting — sometimes to a considerable depth —
even if the overall work is not structured as a complete guide to the
typeface-design process. This includes Fred Smeijers’s Counterpunch
(Smeijers 1996), Karen Cheng’s Designing type (Cheng 2005), Jost Hochuli’s
Detail in typography (Hochuli 2015), Gerrit Noordzij’s The stroke of the pen
(Noordzij 1982) and The stroke (Noordzij 2009), Frank E Blokland’s On the
origin of patterning on movable Latin type (Blokland 2016), and Gerard Unger’s
While you’re reading (Unger 2007) and Theory of type design (Unger 2018).

The process of fitting typefaces manually is also discussed in users’
manuals and guides written for the users of specific font-design software,
such as Stephen Moye’s Fontographer: Type by Design (Moye 1995), David
Bergsland’s Practical Font Design With FontLab 5 (Bergsland 2016), and Eben
Sorkin et al’.s Start Designing with FontForge (Sorkin et al. 2012). Online
tutorials that frame the task of letter-fitting within typeface design can
also be found, such as Brandon Buerkle’s Spacing a Font (Buerkle 2018) or
Gunnlaugur SE Briem’s Notes on type design (Briem 1998), as can software-
specific guides, such as TypeMyType’s Introduction to spacing (TypeMyType
2021) for the Robofont editor and Rainer Erich Scheichelbauer’s Spacing
(Scheichelbauer 2013) for the Glyphs editor.

Still other sources document adjusting letter fitting in the context of
typesetting a document. As discussed in chapter 1, there is a distinction
between type-design fitting and typesetting fitting; the principles
discussed in typesetting literature are considered in the historical survey
of § 2.2, but are out of scope for the purpose of describing the manual
fitting practice of type designers in this section.

2.1.1 The typeface-design process
The procedure for Latin typeface design, as described in these sources,
commonly begins with the design of certain key typeforms — frequently
designing the lowercase letters first1 and, typically, starting with the
lowercase letterforms that feature simpler profiles: those that are
symmetrical on the left and right sides (n and o). This is followed by

1. Bergsland differs by recommending that designers start with the capital letters. However,
Bergsland's book is a self-published new-users' guide to FontLab 5, and is framed as a practical
introduction to that application, rather than a treatise about typeface design. Where it cites prior
authors, such as Tracy, it does so indirectly, via citations from Moye. David Kindersley also described a
manual fitting procedure starting with the capitals (Kindersley 1976), although it must be recognized
that the purpose of the booklet was to promote acceptance of the automated letter-fitting product he
was developing at the time.

29

progressively designing more and more typeforms, building off of the
forms with simple profiles by recombining the structural elements that
recur in multiple letterforms. (See figure 2.1)

The lowercase letters are followed by designing capital letters, followed
by numerals, symbols, punctuation, marks, and other ancillary typeforms
(Smeijers 1996, p. 123; José Scaglione in Henestrosa et al. 2017, p. 57-61;
Cheng 2005, p. 8–9; Bergsland 2016, p. 31, 62, 69–89; Unger 2007, p. 116–
122). (See figure 2.2) This approach to the design of the forms leverages
repeated shapes and components in the constructions of Latin letterforms,
and is not unique to the digital era. William A. Dwiggins, writing in 1937,
discussed a similar process that began with cellulose cut-outs, also starting
with the straight-sided and round profiles for simple typeforms, and
iteratively expanding the set of forms (Dwiggins 1940 A, p. 2, 4).

Designing each of the letters and other typeforms requires the typeface
designer to address and resolve any number of design problems, including
construction, consistency, proportion, balance, optical adjustments, and
consideration of weight and contrast. The designing of the individual
typeforms is an iterative loop that may involve repeatedly refining or
redesigning each typeform to improve it with respect to these design
problems. Determining the fitting for the typeface is similarly iterative,
consisting of determining a left sidebearing and a right sidebearing for
each typeform (Henestrosa et al. 2017, p. 81).

A persistent difference of opinion exists on the question of exactly
when letter fitting should be performed during the design of a typeface.

Iteratively designing letterforms
leverages repeated elements in
the construction of letters. In this
illustration, Henestrosa et al.
highlight recurring elements in
different colors and patterning
(Henestrosa et al. 2017, p. 45).
Used by permission.

Figure 2.1

An overview visualizing the multiple stages in a contemporary typeface-design process
(Scaglione in Henestrosa et al. 2017, p. 57–58). Used by permission.

Figure 2.2

30

The primary distinction is whether the fitting task should be undertaken
repeatedly at multiple points in time, at each point addressing the new
typeforms designed or revised since the previous iteration, or whether
cursory sidebearings should be assigned to each new typeform during the
design stage, and the fitting of the complete set undertaken only at or near
the end, at the point when all of the core typeforms are in their final or
near-final forms. Scaglione says that typeforms should be fitted as they are
designed (Scaglione in Henestrosa et al. 2017, p. 60,), while Henestrosa
recommends applying a simple set of provisional sidebearings initially and
addressing fitting for the typeface collectively only as the typeface nears
completion (Henestrosa et al. 2017, p. 80–81).

2.1.2 The letter-fitting stage
Regardless of when the task of fitting is undertaken, the task is represented
as separate from the task of designing the forms (Unger 2018 p. 123;
Henestrosa et al. 2017, p. 80). This separation of the tasks has historical
precedent in metal type founding, when the design of forms, the cutting of
punches, and the justification of matrices were often jobs handled by
different individuals (Smeijers 1996). Tracy observed that Eric Gill and
Reynolds Stone were both content to have their type designs fitted by
others without consultation, while Dwiggins preferred to remain actively
involved in the fitting stage (Tracy 2003, p. 71–72).

The process of determining the fit for a particular typeform is described
as requiring the assembly of test sequences of typeforms, evaluating the
sequences optically, then making iterative adjustments to the sidebearings
until the test sequences pass muster. The optical evaluation is variously
described as a judgment of rhythm (Unger 2018, p. 124), equality of inter-
letter areas (Henestrosa et al. 2017, p. 82; Smeijers 1996, p. 30), evenness
(Hochuli 2015, p. 25), or balance (Kindersley 1976, p. 18; Smeijers 1996,
p. 27). The test sequences recommended vary from author to author and
depend in part on whether fitting is attempted with a complete set of
letterforms or is attempted iteratively as new forms are designed. As the
number of fitted forms increases, more complex test sequences can be
employed, up to and including full test pages populated with real text.

As with the design of the letterforms themselves, most sources
recommend starting the fitting process with ‘control’ letters, then
gradually expanding the set by fitting new letters in conjunction with
those previously fitted. The most common letters recommended for Latin
text are those also recommended to be the first designed: n and o in the
lowercase and H and O in the capitals. As was the case with the design of
the letterforms, this choice is recommended because those letters feature
more-or-less symmetrical left and right side profiles and can thus be given
the same sidebearing on the left and the right. Here, too, the regularity of

31

Latin letterforms means that the fitting determined for these control
letters can subsequently be propagated to multiple other forms.2

Kerning is portrayed by most sources as an additional task within the
larger job of designing a typeface, distinct from the task of fitting. The
reason cited is that kerns can be added to make an adjustment to the space
between any two typeforms, and that the sheer number of possible
permutations means that there will always be some pairs of forms that,
when side by side, fail to pass the optical evaluations used for determining
the primary fitting (Cheng 2005, p. 226; Henestrosa et al. 2017, p. 89). The
inevitability of such pairs might suggest that the fitting task itself is not
converging on a solution, but most sources frame it in a different light:
openly acknowledging the number of permutations, but insisting that the
fitting task succeeds for the overwhelming majority of the permutations. It
is noteworthy that the pairs of forms most often highlighted as requiring
kerning are those that involve the less common profile shapes. The
straight and round profile shapes cover the majority of the letterforms, so
the majority of the permutations succeed without any kerning required.

As discussed in chapter 1, it is also important for the scope of this
research project to recognize that the optical evaluations of space
employed when undertaking kerning are the same evaluations employed
when performing the fitting task. Kerns, according to the contemporary
practice, exist to bring a small number of unusual permutations into
agreement with the same core principles that address the sizeable majority
of the permutations; the kerns are, therefore, a reinforcement of the
successful fitting, not a divergence from it.

Although the process of fitting is described as one that typeface
designers can learn through repetition (Smeijers 1996, p. 30), it is often
presented as challenging to master. Unger admonishes the reader that
some individual letterforms are ‘tricky’ to fit and may feature optical
illusions that mislead the designer into making poor fitting decisions.
Furthermore, he warns of the complexity caused by the number of
permutations, saying ‘many combinations of characters need special
attention’, and advising that the designer should plan to conduct fitting
tests ‘in many different combinations and for many languages’ (Unger
2018, p. 124).

Practical costs are associated with the manual fitting of typefaces as
well. Peter Karow speculated in 1994 that then-new digital font formats
were capable of storing pairwise spacing values for every permutation of
letter pairs, but that the limiting factor would be the time and resultant
financial burden of determining the spaces (Karow 1994, p. 248).

Whether due to the challenge or to the time requirement, some authors
describing the fitting process go so far as to label it a hardship. Henestrosa
sums up his viewpoint on the relationship between letter design and letter

2. Perhaps worth noting is the fact that starting the fitting process with n and o is advice that can be
followed when fitting a nearly complete set of forms, but which can also be followed when fitting each
form as it is designed, if one also follows the recommendation of designing n and o first.

32

fitting by saying ‘Drawing letters is fun, but spacing is tedious. Very
tedious. That is why I prefer to think that drawing is more important: in
this way I can spend more time enjoying myself than being bored’
(Henestrosa et al. 2017, p. 80), parenthetically adding in jest that ‘anyone
would rather be tortured by the Spanish Inquisition than be forced to
space fonts forever’.

2.1.3 Classes of typeforms
Critical to understanding the task of fitting as it is practised is a
recognition that many of the statements made about letter fitting carry
some implicit assumptions about the class of typeforms they will be
applied to. The most general domain to consider is the writing system,
which is generally specified or can be determined by the context of the
surrounding source or discussion. The sources referenced in the previous
section (as well as the axioms listed in the subsequent section) all apply to
fitting Latin text, because that was the selection criterion of the study. But
even within the Latin-text context, several principles are formulated as
statements about equality or similarity that, by necessity, can only be
understood as applying to some subset of typeforms that all belong to the
same classification: the letters, the letters of a particular case, the
numerals, all alphanumerical forms, all typeforms, et cetera.

In Latin, lowercase letters are fitted with respect to other lowercase
letters; capital letters are fitted against lowercase letters for use in running
text, but should be separately fitted against other capital letters when
typesetting all-capital text (Unger 2018, p. 125; Hochuli 2015, p. 23–25). It is
only within each classification that the other statements about how to
determine fitting operate. Most of the sources consulted in section 2.2’s
historical study explicitly make the distinction between lowercase-with-
capitals and all-capitals.

Less is said about fitting numerals, however, except to note that in many
contemporary typesetting environments, users of typefaces will expect
numerals to feature tabular alignment when setting columns of data
(Tracy 2003, p. 76; Henestrosa et al. 2017, p. 85). (See figure 2.3) A modern

Issues particular to the fitting of
numerals arise because numerals
are often typeset in contexts not
meant for continuous reading,
such as tabular data. The
proportional examples in the
illustration depict fitting similar
to that of letterforms, but
proportional fitting may not be
the default. The differences are
most clearly seen in the 1, but all
numerals can be affected.
(Henestrosa et al. 2017, p. 85).
Used by permission.

Figure 2.3

33

digital font can supply default fitting appropriate for numerals that are set
within texts meant for continuous reading by fitting them like lowercase
letterforms (Beier 2017, p. 150) and supply separate tabular fitting
appropriate for numerals used in columnar data, but there are no
guarantees that the software used to typeset documents with the font will
support both options or make them available to the user. Complicating
matters further, typefaces can include two distinct designs for the numeral
forms (ranging and non-ranging) requiring distinct fitting. (See again figure
2.3)

Considerably less still has been written about fitting for non-
alphanumeric symbols and punctuation, apart from general advice that
punctuation is a frequent target for kerning pairs. The paucity of
discussion suggests that, at the very least, if there are distinct rules
applying to some classes of typeforms but not to others, then either it is
the letterforms that are subject to the most stringent rules — with
numerals, symbols, and punctuation posing less difficult fitting problems
— or else the letterforms are so much more important to legibility,
readability, and other metrics of good fitting that any special rules for the
other classes of typeform are of less concern.

There are arguments to be made on either side. Good letter fitting is
vital to readability, it is thought, because readers identify letters and
combine them into words. As such, numerals and punctuation typically
serve a purpose in the text that is distinct from word formation. Every digit
of a date, monetary amount, or phone number must be taken in
individually for it to be correctly parsed by readers. Gerrit Noordzij
explained that the distinction is that each digit has a conceptual meaning
which changes if it is moved, saying ‘Unlike letters, numbers stand on their
own’ (Noordzij 2000, p. 184). Similarly, the purpose of a period or question
mark is to demark a meaningful break between words. But there are also
exceptions to be found wherein numerals and punctuation do participate
in words; ordinal numbers like 1st and 20th can be written with numerals
that function like letterforms and are read as such, and instances where
punctuation forms part of a word are commonplace.

In the discussion that follows, the distinction between all-capital fitting
and capital-and-lowercase fitting is preserved because it is the distinction
maintained in the source material. Where it can be addressed, the question
of engaging with other classes of typeforms will be treated explicitly but,
in general, it may suffice to regard ‘typeforms that make up parts of a
word’ as being equivalent to ‘letterforms’ when considering fitting.

2.1.4 Representations of letter fitting in font files and font editors
Regardless of the processes employed to determine the fitting for a
typeface, it must somehow be implemented and stored in the final product.
When type was manufactured in metal or wood, fitting decisions could be
made either when cutting the punches or when justifying the matrices.

34

Those decisions were then fixed into the physical substance of the type:
sidebearings as the dimensions of the individual types, and any kerns as
overhangs or undercuts that were, again, physically integrated into the
objects making up the product. When type transitioned to a representation
of the design stored on photographic plates and, subsequently, digital
storage, the fitting was initially preserved in the stored design, but could
be adjusted on the fly during typesetting.

The digital vector fonts in contemporary usage are typically distributed
in files based on the SFNT structure, which stores the contents of the font
within a number of separate data tables. TrueType and OpenType are
widely-used file specifications for what data tables should be included. In
these SFNT-structured file formats, each typeform is represented as a
‘glyph’ entry consisting of contour shapes that are stored in one table, plus
numeric dimensional information stored in other, ‘metrics’ tables. The
fitting of the glyph is stored as a numerical advanceWidth and a numerical
lsb offset. The glyph’s left sidebearing is equal to the lsb offset. The
advanceWidth is the horizontal distance that the rendering system
(whether for print or for on-screen display) should advance after it has
drawn the current glyph, before it begins drawing the next glyph. (See
figure 2.4) The right sidebearing is, thus, is not stored explicitly but is
computable as the advanceWidth minus the glyph’s rightmost extreme
point. Either sidebearing value could be a negative number. The
advanceWidth and lsb values are both specified in ‘font design units’,
which are an internal numerical scale derived from the ‘units per
em’ (UPEM) value stored in the font file.

Font editing programs, however, often attempt to simplify the
presentation of fitting data in the user interface, such as by showing the
left and right sidebearings directly, both as editable numerical fields and as
guidelines on the drawing canvas, rather than exposing the potentially
confusing underlying details of advance widths. (See figure 2.5) In both the
SFNT-structured font files and in the user interface, it is crucial to note
that each sidebearing value is a linear distance measured from the
outermost point in the form — including the lengths of any serifs,
overhangs, in-strokes, and out-strokes. The spaces between adjacent forms
are two-dimensional areas. To evaluate or modify the two-dimensional
area between letterforms, the full shape of the forms’ profiles must be
evaluated.

Kerns are stored in separate tables. Earlier TrueType fonts used a
dedicated kern table, while newer TrueType and OpenType fonts use the
GPOS table, tagged with a semantic feature name: kern is used for the
generic kerning feature, although other tags are defined.3 The kerning
information itself can either be pair-based, in which a list of specific two-

The advanceWidth and lsb
entries as stored in many digital
font formats. The right
sidebearing is not stored directly
and must be computed
(illustration by the author).

Figure 2.4

Screenshot of the sidebearings
for a typeform as presented in
the user interface of the Glyphs
font editor. The left and right
sidebearings are both presented
directly to the user in the grey
information box (screenshot by
the author).

Figure 2.5

advanceWidth

lsb

3. Semantically-tagged features for spacing were added by the OpenType Layout extension to the
original OpenType specification. Several other fitting-related semantic tags are officially registered,
including cpsp for capital-to-capital spacing, tnum for numerals with tabular spacing, pnum for
numerals with non-tabular spacing, and dist for adjusting positioning for orthographic correctness
(mainly in Indic and other Brhami-derived writing systems).

35

glyph sequences is stored with a numerical plus-or-minus adjustment to be
applied when the pair occurs, or class-based, in which the same adjustment
data can be designated for multiple set of similar forms (such as all of the
unaccented and accented versions of a given letter, or all forms that are
round on the left side).

Multiple other digital file formats have been used over the years.
Notably, several of those formats also stored fitting information as an
advance-width plus the left-sidebearing offset, even if the data was
formatted in a different structure. Adobe’s Type 1 font format and the TEX
typesetting system, for example, also stored fitting as advance-widths and
left sidebearing offsets, but with that data saved separately in ‘font
metrics’ files (Haralambous 2007, p. 626, 674). However, other font formats
have incorporated entirely different approaches to storing fitting
information. Agfa Compugraphics’s Intellifont format (Karow 1994, p. 156)
could store vectors of kerning-adjustment values at different heights for
every glyph, with separate vectors for the left and right sides, and separate
values designated for ‘text’ and ‘display’ sizes. Each vector represented
glyph widths defined at various vertical ‘sector’ heights measured against
the glyph.

The technique was correspondingly known as sector kerning and was
also employed by typesetting systems offered by software vendors in the
1970s and 1980s (Ward 1990). After Apple’s TrueType was adopted by
Microsoft in 1989, followed by Adobe’s merger of PostScript Type 1 format
with TrueType into the combined OpenType specification (Bigelow 2020 A;
2020 B), the market for alternative digital font formats was effectively
killed, and sector kerning disappeared with it — though, as will be seen in §
2.3, the sector-kerning concept was not permanently lost.

2.2 Study of historical letter-fitting theory

As mentioned in the preceding section, the task of manually fitting letters
is the subject of numerous discussions, guides, debates, and other written
accounts. Although the primary research question explores to what extent
that task can be automated or implemented in an algorithm,
understanding the task itself requires understanding the fundamental
principles involved when it is conducted manually by type designers. To
identify these principles, a study was conducted of the recorded theories of
letter fitting in typeface design.

Attempting to comprehend and describe the theories that underpin
manual practice of letter fitting is certainly not the only possible approach
to the problem but, in the past, it has been shown to be more fruitful than
attempting to build a letter fitting algorithm on a theory disconnected
from the craft as practised. Records exist of such attempts. Peter Karow
recounted a 1980 project at URW to implement a letter-fitting algorithm

36

modelled on magnetic forces (Karow 1998; Karow and Blokland 2013).
Sebastian Kosch made a similar attempt in 2010 (Kosch 2010 B). In both
instances, the researchers abandoned the line of investigation and
subsequently pursued algorithmic models based on automating the
processes of manual letter fitting.

Other researchers have posited theories about letter fitting based
entirely on a mathematical or scientific principle, such as Raph Levien’s
2006 exploration of assessing letter fitting with wavelets (Levien 2006).
These indirect approaches have seldom survived beyond the initial
proposal. Conversely, numerous projects initially focused on automating or
encoding practice-based theories of letter fitting have arisen
independently and persisted as active projects, even if their customer or
user base remained modest.

Where exactly one draws the line between a model that is based on
manual letter fitting and one that is not based on manual letter fitting
requires some interpretation, as a matter of course. A purely mathematical
model might be so far removed from the act of adjusting typeforms that
one type designer would call it incurably abstract, while, to the researcher
who derived it, that same model might appear to be a clear, direct
distillation of reality.

For the sake of the present investigation, however, the degree of
abstraction in the eventual algorithm is a distant concern. The starting
point is the practical body of knowledge and techniques possessed by type
designers. The aim of the study is to scrutinize the theories of letter fitting
within that body of knowledge and techniques then examine them
systematically, in order to acquire a picture that represents the commonly
accepted approach, complete with its details, leeways, limitations,
balances, and compromises.

Typeface design is a practical discipline; for most of its history, the
written record of how it has been performed takes the form either of
literature written by practitioners (either to explain the craft for the
comprehension of outsiders or to train new typeface designers) or of
deliberations between practitioners about the merits of various
techniques. The study conducted of letter-fitting theory began with these
sources, including literature from typeface design and type manufacturing
history, augmented by educational sources and interviews with type-
design educators.

The historical survey continued with a look at the corresponding
literature from related letter arts (such as lettering, writing, stonecarving,
and calligraphy), in order to catalogue the theoretical principles that those
practices use to explain the behaviour of space between letters. This was
followed by a study of the theories described in prior work on the
automation of letter fitting, including published writing, promotional
materials, patented inventions, and published software.

37

In each case, the procedure undertaken was to isolate the concepts in
those sources that were used to describe how letters should be correctly
fitted and to observe how those concepts were said to work in concert with
each other. The common concepts accepted across sources, in theory, could
be further distilled into a set of well-defined, core principles. This set of
principles, in turn, can serve as a framework in which to appraise existing
letter-fitting automation tools and as the basis for developing new
automation algorithms.

2.2.1 Literature, practice, and education in type production
The first stage of the study examined material specifically from the fields
of typeface design and type making. In its early history, many facets of the
printing business, including the processes of designing and manufacturing
type, were trade secrets characterized by fiercely protective attitudes of
their creators towards the dissemination of knowledge. Later historians
have gleaned much about the technology and norms of cutting punches
and adjusting matrices (Burnhill 2003; Blokland 2016), but there are scant
references addressing how letter-fitting decisions were made.

Fred Smeijers provided a chronological overview of the sources in
‘Putting letters next to each other’ (Smeijers 2014), noting that it was not
until the late 17th century that manuals recorded the details of justifying
matrices for public consumption. These earliest sources already appeal to
principles that endure to the present day. Pierre Simon Fournier’s 1764
Manuel Typographique (although not the first such manual) outlines the
‘setting’ of types beginning by filing down the sides of a sequence of three
m strikes, with the middle m inverted, until their vertical strokes appear to
be in an even visual rhythm, then applying the resulting sidebearing
measurements to the other forms, adjusting for round and diagonal profile
shapes (Fournier trans. Carter 1930, p. 158–161).

A persistence of the core principles cited can be observed, with new
assertions and new debates generally appearing only in response to
substantial changes in printing technology and type production. Joseph
Blumenthal’s 1935 advice for fitting foundry type (Blumenthal 1935) differs
little from Fournier’s, for example. But the introduction of photo-
composition in the mid-20th century suddenly permitted fitting letters so
close that they collided and even overlapped.4 The sources from that point
forward began to include warnings about the ills of overlapping forms.

There are occasional discussions of letter-fitting practice found in the
biographical and autobiographical works about type designers and other
practitioners during the eras of metal type and photocomposition. Some,
such as the compendium of Adrian Frutiger’s professional work edited by
Heidrun Osterer and Philipp Stamm, relate specific problems encountered
regarding fitting (Frutiger et al. 2021), but it is rare to find accounts of the

4. Collisions between printed letterforms were certainly possible in even the earliest metal-type
printing through overprinting or alignment trouble; it became a design-time concern during
photocomposition (Hochuli 2015, p. 26; Tracy 2003, p. 78).

38

decision-making process in such retrospectives. Isolated sources exist that
document the design of individual typefaces, but even these are often
written long after the fact — and often either for specific typefaces seen to
hold special significance or as part of biographical or autobiographical
profiles of particular type designers.5 Less common is correspondence, but
where it exists it can be revealing. William A. Dwiggins’s exchanges about
fitting with Chauncey Griffith at Linotype are candid and detailed.

Digital typesetting followed shortly after photocomposition, but it was
the advent of personal computers and desktop publishing that had the
bigger impact on the written narrative (Middendorp 2018, p. 11). Whereas,
before, typefaces had been designed almost exclusively in an industrial
context, affordable desktop computing empowered small digital foundries
and individuals to modify and create typefaces and subsequently use or sell
them, all using commodity hardware (Southall 2005, p. 156).6 Guides to
typeface design appeared as books offered to the public, both those framed
as practical handbooks for using a specific font editor (Moye 1995; Sorkin
et al. 2017; Bergsland 2016) and those illuminating the craft and logic of
the task in general (Smeijers 1996; Cheng 2005; Henestrosa et al. 2017;
Campe and Rausch 2022). As discussed in § 2.1, letter fitting constitutes
part of the core subject matter for these guides.

Online sources account for a predictably high percentage of the written
discussions about letter fitting produced since the start of the web-
publishing era. These, too, include guides aimed at users of particular font-
editing applications (Scheichelbauer 2013; TypeMyType 2021) and tutorials
written without focusing on a specific application (Briem 1998; Buerkle
2018). Simultaneously, online discussion channels, including email
discussion lists, social-media networks, and web-forum sites, provide for a
higher-volume and more rapid exchange of ideas between practitioners
than can be seen from the era of printed newsletters and periodicals.

Interviews were also conducted with type educators to characterize
how fitting is described in academic coursework, commercial workshops,
and the onboarding processes for newly-hired typeface designers at type
foundries.

2.2.2 Related principles from lettering, writing, and calligraphy
The second stage of the study examined the principles of fitting space
between letters as it is described in related arts beyond the craft of
typeface design. This may sound surprising, given that type, as defined for
this project in chapter 1, concerns pre-made letterforms that are combined
during typesetting. This pre-made nature distinguishes type from

5. Exceptions can be found, however, such as invited essays on the subject, e.g., John Dreyfus’s
exploration of spacing in Font — ostensibly a book reflecting on the work of Sumner Stone, but
covering broader matters (Dreyfus 2000).
6. The pricing of font-editing software was similarly democratizing. In 1989, Kingsley/ATF charged
$55,000 per seat for Type Designer, plus per-font royalties if the user wished to sell fonts created with
the program (Seybold 1989). That same year, Altsys’s Fontographer retailed for $495 (Ponting 1989).

39

disciplines where each letterform is designed and executed in situ, tailored
to the final composition — typically with a pre-determined text. In these
arts, such as writing, calligraphy, stonecarving, and lettering, the
practitioner is concerned simultaneously with determining the shapes of
bespoke letterforms and with the distribution of the surrounding space in
the piece.

As with type, there are design norms and ideals that constrain the
shapes of letters. But, even if one ignores the decorative end of the
spectrum and focuses on letters meant to be read comfortably, in lettering
arts the individual letterforms themselves are as malleable as the spaces
between them. Thus it can be more ambiguous to discriminate the
reasoning about space from the reasoning about positive forms.
Nevertheless, within a given writing system, type design and the crafting
of custom-fitted letterforms both share the same audience of readers and
the disciplines are preceded by a shared and overlapping (even
intertwined) history. So, though there is a limit to how much the literature
of lettering arts can speak to the designing and fitting of type, it may shed
a slightly different light on many of the same underlying principles.

Furthermore, the various lettering arts have been accessible as
individual pursuits for centuries, which has led to a greater number of
descriptive and instructive texts. In contrast, as was noted earlier, the
making of type was an industrial job requiring ‘whole teams of people’
until digital fonts and desktop computers transformed it into a pursuit
available to individuals (Scaglione in Henestrosa et al. 2017, p. 17).
Historical manuals and guides for the lettering arts pre-date the rise of
movable type for Latin and have continued to be published to the present
day.

As with the historical sources on typemaking, many of the core
principles related to letter fitting found today can be traced back to the
earliest writing on the subject. Perhaps the earliest example is Ludovico
Vicentino degli Arrighi, whose 1522 La Operina instructs calligraphers that
the distance between joined letters should be the width of the counter in n
(Arrighi 1522, p. 19). Many practitioners, of course, engaged with both
typeface design and the related arts, and emphasized their similarity.
Gerrit Noordzij connected Latin typeface design to calligraphy explicitly
(Noordzij 1973; 1982; 2009), including his discussions on the relationship
between interior and exterior space. The connection is reinforced within
the lettering arts as well, such as in calligrapher Michael Harvey’s usage of
commercial typefaces as examples for letterers to study (Harvey 1996).

2.2.3 Prior explorations into automating letter-fitting
The final stage of the study considered prior projects to automate the task
of letter fitting, either entirely or in part, by looking at patent filings,
product announcements and reviews in trade journals, brochures and
user’s manuals, and, where available, software source code. In the interest

40

of reproducible research, the search for patent filings was limited strictly
to expired patents. The study also filtered out products that dealt solely
with the logistics of storing fitting data, such as third-party libraries of
kerning tables sold for popular fonts — though that distinction is not
always made clear in promotional literature or trade-journal coverage.

Note that this study explored how the projects define and explain the
principles of letter fitting, rather than examining how the projects
implemented it. Inspection of the implementations’ internals, where
possible, was conducted later, as described in chapter 3. Not all projects
specify principles for fitting; some level of ‘spacing automation’ feature
was found in almost every commercial digital type-design program, but the
accompanying material rarely explored the theories involved.

Efforts to automate portions of the task of typemaking and typesetting
date back to the industrial era, but the early mechanical inventions
involving fitting were production aides to speed up manufacturing or
typesetting and did not capture the decision-making process of fitting
letters. This includes Linn Boyd Benton’s 1883 patent for ‘self-spacing
type’, which, despite its name, was merely a unitized casting machine that
supported six fixed body widths (Cost 1986, p. 25–28). Similar inventions
that regularized typesetting but required the designer to pre-determine
the fitting were produced in the early-to-mid 20th century, such as
Letraset’s alignment systems (Dowzall 1982; Dowzall and Houssian 1986). A
notable outlier here is the work of stonecarver and typeface designer David
Kindersley, who began researching letter-fitting in the 1950s using optical
measurements of the light levels transmitted and blocked by letterforms,
before moving into the realm of software.

Indeed, the adoption of digital typesetting precipitated a profusion of
letter-fitting automation efforts. Predictably, the number of projects
discoverable in the public record skews heavily towards the 21st century.
(See figure 2.6 below and table 2.1, over page, for a chronological list) As
Dwiggins’s correspondence and Kindersley’s optical fitting project
illustrate, type designers have contemplated fitting automation for much
longer, but the rise of desktop-computer–based typeface design — and, no
doubt, scriptable design software — provided new avenues for interested
parties to explore the task on their own.

In addition, the availability of free-to-use software-hosting services like
GitHub, SourceForge, and Google Code meant that many automation
projects were published online and remain available years later, even if the
project goes dormant. Comparable details about work done in earlier

Per-year count of the number of
letter-fitting automation projects
identified for the historical study.
The counts include all projects
identified for study, including
those projects for which detailed
information was ultimately
unavailable.

Figure 2.6

41
covers page
number

Project
LOGOS

Bell sector-spacing
URW force experiment

Arabic Calligraphic Engine
Tracy method

Gerber
Type Designer auto feature

Sector Kerning
hz-program kf

Fontlab auto feature
Kernus

InfoKern
Canon Shift

Omron
Neville

TypeArt
FontForge auto feature

AFDKO
Aldine FFT
KERNDICT

sqtroff
KernMaster
Perturbation

Sousa method
Wavelet masks

Cambria OpenType Math cut-ins
iKern

LetterModeller
Caslon Fourier analysis

Rhea
Rhea force experiment

SortsMill spacing by anchors
Tsukurimashou

Autokern
Blur-masking

Impallari macro
OpticalLetterSpacing.js

Typebutter
CJK Auto Spacing

Kernagic
Monokern

font-prediction_mahout
Novi Sad statistical analysis

BubbleKern
LS Cadencer
Fittingroom

Black Spacer
HT Letterspacer

Spaceman
KernKraft

Electric kerning
Octabox

Machine Learning of Fonts
Atokern / kerncritic

psoptkern
KernBot

HT Kerner
electricbubble

YinYangFit
CounterSpace

fontmetrics
RhythmInfluencer

type.tools AI
Andersson experiment

Hands Face Space
Kern On
Kerning

Building a spacing calculator
Kern Determiner

Year
1970
1973
1980
1985
1986
1986
1989
1990
1991
1992
1993
1993
1995
1996
1998
1999
2000
2000
2003
2003
2004
2004
2004
2005
2006
2007
2008
2009
2010
2010
2010
2010
2011
2012
2012
2012
2012
2012
2013
2013
2013
2014
2014
2015
2015
2015
2016
2016
2016
2016
2017
2017
2017
2018
2018
2018
2019
2019
2019
2019
2019
2020
2020
2020
2021
2021
2021
2021
2022

Table 2.1
Chronology of prior letter-fitting automation projects identified during the historical survey. Where not otherwise specified, the projects
were focused on fitting Latin text.

Publisher or lead authors
David Kindersley, Neil Wiseman
Max Mathews, Bell Telephone
Pater Karow, Margret Albrecht
DecoType
Walter Tracy
David Logan, Gerber Scientific
Kingsley/ATF
Compugraphic
URW
Fontlab Inc
URW
InfoComp
Kiyoshi Watanabe, Canon
Sawada et al., Omron
Paul Neville, William Fox
Calamus
FontForge project
Adobe
Sergei Egorov
Thomas Baruchel
SoftQuad
DTL
Cameron Browne et al., Canon
Miguel Sousa
Raph Levien
Microsoft
Igino Marini
Frank E. Blokland
William Berkson
Sebastian Kosch
Sebastian Kosch
Barry Schwartz
Matthew Skala
Charles M. Chen, Typefacet
Peter Weigel
Pablo Impallari
Gabi Schaffzin
David Hudson, Joel Richardson
Xin Yue
Øvind Kolås
Edward Cree
Ethan Petuchowski
Bojan Banjanin, Uroš Nedeljković
Toshi Omagari
Lukas Schneider
Sebastian Kosch
Jérémie Hornus, Black Foundry
Andrés Torresi, Huerta Tipográfica
Simon Cozens
Mark Fromberg
Matthew Skala
Martin Hosken, SIL
Antanas Kascenas
Simon Cozens
Raymond Luckhurst, Scriptit
Joey Grable
Simon Cozens
Sebastian Kosch
Sebastian Kosch
Simon Cozens
Simon Cozens
Maarten Renckens
type.tools
Rasmus Andersson
Simon Cozens
Tim Ahrens
Zeeshan Asghar
Dean Kalen
Simon Cozens

Scripts addressed (other than Latin)

Arabic

Japanese

Japanese

Chinese, Japanese, Korean Hangul

Arabic

Arabic

Arabic

42

decades is progressively harder to find: if the project was not patented or
the subject of a published account, it may be entirely lost to history.

 There have also been efforts aimed at making letter-fitting decisions
solely by statistically analysing the sidebearings and kerning data of large
sets of typefaces, although there is not much to show for the effort. Karow
undertook such analysis as part of a large statistical survey of the URW
library (Karow 1993). The published conclusion was that the statistical
model could not predict sidebearings based on the measured features of a
typeface, but neither the model nor the raw data was published.

More recently, it has become popular to apply machine-learning models
to construct the statistical model, with the same essential goal: analyse a
large set of typefaces as input, and predict the letter fitting for new
typefaces based on the analysis. Little has been gained from such projects,
either, perhaps because the models tend not to take typographic variables
(weight, optical size, style, etc.) into account, leading to questionable
methodologies, such as measuring linear sidebearings without adjusting
for the lengths of serifs (Kascenas 2017; Banjanin and Nedeljković 2014 A).7
Regardless, purely statistical models are less relevant to this survey
because they do not posit an underlying theory for fitting letterforms.

2.2.4 Continuity
Considering the written record as a whole, it is the continuity that stands
out. At times it is overt. Walter Tracy’s Letters of Credit is perhaps the most
common reference where letter-fitting is concerned; the book is a
reflection on the practice of making type, but it is detailed enough about
the practice (including the letter-fitting process) to serve double-duty as
instruction for new typeface designers. As noted in chapter 1, Tracy
detailed a heuristic method for assigning sidebearings to the basic Latin
alphabet, crediting the system to Harry Smith at Linotype ‘over thirty
years’ prior to the 1986 first-edition publication date (Tracy 2003, p. 72).
That heuristic, down to the exact tables Tracy included for capitals and
lowercase letters, has continued to be reproduced by other writers into the
21st century. (See figure 2.7, over page) Notably, Tracy presented the
heuristic as pragmatism distilled from experience; after much repetition, it
is often treated more like a formula.

Elsewhere, it is the terminology, illustrations, and framing of rules that
is repeated between sources. (See figure 2.8) Patterns can be discerned in
the language, carried through even to the software-based automation
projects examined in the final stage of the study. The fitting-automation
projects that survive and thrive derive their inspiration from the same
conventional wisdom seen in the literature — proposing novel approaches
only rarely and often without success. This can be seen in the novel force-
based model explored by URW, which was dropped and replaced by the kf

Top: Illustration from Blumenthal
in 1935 relating letter fitting to
calligraphic stroke rhythm (p. 73).

Bottom: Henestrosa et al. make
the same relation using a similar
illustration in 2017 (p. 33).

Figure 2.8

7. In 2020, Nic Schumann, Cem Eskinazi, and Marie Otsuka presented preliminary findings from a
machine-learning–based project that did seem to take typographic variables into account but, as of
this writing, the project has yet to publish results (type.tools 2020).

43

module in hz-program (see chapter 1). The patent filing for kf cites a list of
six fundamental letter-fitting principles, each derived from traditional
preparation (Karow et al., 1992).

2.2.5 Complexity
A key factor that differentiates sources in the written record is the degree
of complexity found in their letter-fitting methods. An increased
complexity in how the letter-fitting task is described or implemented often
correlates to a greater maturity and refinement of the tools and of the
output medium.

Fournier, for example, cites the need to balance the interior and
exterior space of typeforms, but provides only general guidance that
strokes should appear to be in consistent visual rhythm and that certain
forms require less exterior space than the standard, m. His method,
therefore, incorporates one rule (balancing the interior and exterior areas
of space) and one exception (the exterior spaces of some typeforms should
be reduced). By Tracy’s time, the method in use at Linotype has gained
further complexity, citing additional rules for typeforms with open
counters and testing fitting in triplets of typeforms, and enumerating
seven distinct classes of profile shape among the set of typeforms.

The same trajectory can be observed in the literature from lettering and
calligraphy — Arrighi’s text provides a single piece of advice on spacing
(relating the width of n to the standard inter-letter space); centuries later,
Jacoby and Schenk had developed substantially more layered rule systems
(Jacoby, p. 30–38; Schenk p. 16–18).

Walter Tracy’s heuristics for
fitting lowercase Latin letters,
reproduced by multiple authors
over the years.

Top: the 1986 table presented by
Tracy (Tracy 2003, p. 75).

Below: tables presented in Moye
1995 (p. 81), Cheng 2005 (p. 221),
and Beier 2017 (p. 146).

Figure 2.7

44

That these refinements of letter-fitting methods correspond to
refinements in printing technology and media is unsurprising. But it also
helps explain the apparent step backwards in complexity seen in letter-
fitting automation projects. The earliest software systems tend to
implement fitting using a small set of rules.8 But the early digital
typesetting systems provided lower-resolution bitmaps, and only evolved
toward vector-based formats and toward outputs rivalling the quality of
metal over the course of decades. As the capabilities of the technology
caught up part, the narrative of software-based fitting came to more
closely resemble that of the other craft traditions. Thus, early software
systems to automate letter fitting that dropped back to simpler methods
should be seen to do so out of necessity, not because knowledge of fitting
was lost or because known techniques fell out of favour.

2.3 Identifying axioms from history and practice

The individual principles cited time and time again by these sources may
be considered the basic tenets of letter fitting theory for a particular
writing system. For this research, the effort to decompose or reformulate
these letter-fitting first principles into axioms is a practical line of inquiry.
Algorithms, as defined in chapter 1, § 1.2.4, require a clear and concrete
expression. The functionality of a particular computer program can be
isolated into discrete components by analysing its functions, data
structures, and control interfaces. Thus, to make the most useful head-to-
head comparisons between fitting theories that are expressed as computer
programs and those that are expressed as manual procedures (as well as
comparisons within each group), representing the concepts as axioms
provides a more formal, but common language.

2.3.1 Determining inclusion and exclusion of axioms
In mathematics and logic, an axiom fills a special role in investigations and
proofs: axioms are accepted a priori to be true, and serve as the foundation
upon which other theories are more rigorously constructed. In other
words, the axioms of letter fitting should be the simplest possible
statements about letter fitting; starting points from which the more
complex ideas and practical advice proceed.

Naturally, not every axiom in the list is cited or considered by every
source. Similarly, the authors of any given letter-fitting automation
implementation might cite additional concepts as axiomatic, or might
explicitly reject certain axioms that others accept. Details of how prior
letter-fitting automation work has engaged with the axioms below is
discussed in chapter 3, § 3.1. The list that follows only seeks to enumerate
the most commonly accepted axioms found in Latin fitting algorithms,
practice, and the associated literature.

8. See chapter 3 and table 3.1.

45

When compiling the list, every effort was made to limit the list to
statements concerned purely with the task of fitting typeforms —
excluding, for example, precepts about the design of good letterforms as
well as more abstract statements about how space affects page-level
typography. As stated previously, the practice of letter fitting is interwoven
with the practice of designing letterforms but, in order to pinpoint the
conceptual first principles of letter fitting, one must assume that the
letterforms are, at the moment they are being fitted, correct.

Similarly, it was determined that the axiom list should be limited to
principles that are applied to a set of letterforms that is appropriate to be
fitted as a set, and not include principles that are guidance about which
letterforms require fitting. It is common advice in Latin text fitting to note
that, in Latin text that is meant for continuous reading, capital letters are
most often set against lowercase letters, and that therefore the default
spaces applied to the capitals should be capital-to-lowercase fitting, with
capital-to-capital fitting being determined separately. This precept is
widely accepted to the point where it could arguably be considered an
axiom. For this list, however, it was excluded on the grounds that it is a
precept purely about selecting the forms and is not a statement about
determining the actual space. In other words, even when this principle is
used to choose the correct set of forms, the typeface designer is no closer
to establishing the space for any of the forms.

Finally, the list of axioms is meant to isolate the rules applied during
letter fitting and not include advice on how a typeface designer should go
about finding the solutions. For example, several sources advise flipping a
sequence of test letters upside down before assessing if the spaces between
the letters appears equal. For the axioms enumerated in this project, it was
decided that flipping the letters upside down is merely advice about how
to search for an answer, but the underlying question in play is whether the
spaces between the letters appear equal; consequently, the axiom is that
the inter-letter spaces should appear equal, not that the letters should be
flipped upside down.

The same is true for other advice provided by letter-fitting sources,
such as advice about using printed samples versus on-screen samples,
inverting colours, squinting or standing at a distance, and so forth.
Admittedly, there is not always a clear line to draw, and no claim is made
that alternate decisions about inclusion or exclusion would necessarily
produce weaker results.

2.3.2 Essential axioms for Latin letter fitting
The survey of literature and automation implementations discussed earlier
gives the following set of commonly cited axioms for letter fitting Latin
text type. The list is broadly sorted in order from most-frequently–cited to
least-frequently–cited, but the precise ordering is not crucial. The

46

frequency with which an axiom is cited, by itself, does not denote its
relevance (as is explored further in § 2.4 and 2.5).

The designations assigned to each axiom are merely a convenient
shorthand to aid subsequent references and illustrations. The prefix ‘L‑’ is
meant here to serve as a reminder that these axioms stem from a study of
Latin letter fitting practice and should not be assumed to apply in equal
importance, if at all, to other writing systems. Some of the axioms are
particular to Latin for identifiable reasons, while some have application
both to Latin and other writing systems that share similar features, such as
a horizontal baseline or bicameral casing.

It should be noted that the phrasing of the axioms generally uses the
term space to refer to a two-dimensional region of area, but sources in the
literature and type designers in online discussions may say ‘space’ when it
is clear in context that a linear distance is referred to. Note, for example,
Walter Tracy’s heuristic, which says that diagonal-profile forms should be
assigned ‘minimum space’. In the supporting text, it is clear that Tracy is
referring to a minimum sidebearing distance. Where the sources are
unclear, attempts have been made to clarify the meaning. The list of
axioms is as follows:

Axiom L‑1: Profile Similarity — Similar profile shapes should be fitted with
similar space.

This axiom states that the amount of space fitted for a particular profile
shape should be the same as the amount fitted to that profile shape when it
appears in other forms. For example, the space fitted to the left side of o
and space fitted to the left side of c should be of equal area. (See figure 2.9)
This axiom is essentially universally accepted and is usually framed as
being self-evident, no doubt because it speaks to one of the most basic
tenets of a coherent visual design. It permits the propagation of fitting
values from one typeform to other typeforms that have similar shape.

In addition to being virtually undisputed by simplicity, however, this
axiom is also the basis for the notion that it is the shape alone that dictates
how much space a typeform needs. Namely, it is the visual appearance of,
for example, u that defines what space u should receive: not the fact that it
is recognizable by readers as the grapheme ‘lowercase u’, nor its Unicode
code point, nor its place or history with the alphabet.

This distinction comes to the forefront whenever fitting algorithms or
literature state rules or conditional tests phrased as references to the
letter. For example, Walter Tracy’s heuristic states that the right side of p
receives the same space as o, but v and w receive minimum space. That
heuristic only applies for upright Roman styles where the v and w have
diagonal profiles (as are seen in his illustrations). In an italic design where
the v and w take on round profile shapes, however, axiom L‑1 insists,
sensibly, that the right side of the v and w receive spaces similar to other
round profiles, because of their profile shape. (See figure 2.10)

ov ov
The similarity of any two profile
shapes is not determined by the
letters’ graphemes and may vary
based on style. The italic v on the
right has a round profile, which is
appropriate for the italic style
(illustration by the author). Fonts
shown: IM Fell French Canon,
upright & italic.

Figure 2.10

Similar profile shapes should
receive similar space (illustration
by the author). Font shown:
Tinos.

Figure 2.9

47

Illustrations of the principle of
setting optically equal space
between all pairs of letters in Latin
text.

Left: Mengelt 1993, p. 36.

Right: Campe and Rausch 2022, p. 94.

Figure 2.14

It must also be observed that in order to implement this axiom in
practice it is mandatory to have access to the profile shapes. For example, a
software fitting algorithm must know whether the g is one-storey or two-
storey in order to determine whether its profiles are similar to d and it
should therefore be assigned the same space as d or not. (See figure 2.11)
The practicality of determining profile shapes is discussed in chapter 3.

Nevertheless, ‘similar shapes’ does not necessitate ‘identical shapes’
and, in practice, the type designer or letter fitter is required to establish
the level of reasonable precision at which to work. Revisiting v and w, the
two letters’ outermost profiles share a basic construction and thus they are
generally considered similar, but the sides of v are often drawn at a
different angle than the sides of w. (See figure 2.12)

Axiom L‑2: Profile Reflection — The space fitted to a profile is the same if the
profile is reflected horizontally.

This axiom states that the similarity principle applies identically on both
sides of a form. For example, the left sidebearing of o and the right
sidebearing of b should be equal. This is a corollary to the previous axiom,
explicitly noting that the ‘equivalent profiles should get equivalent space’
principle is not dependent on the direction that the profile is facing. (See
figure 2.13)

 Although this is perhaps intuitive, clarifying that the reflective
principle applies in Latin text is important because it may not necessarily
hold for other writing systems. As was the case with the previous axiom,
this axiom is usually framed as being self-evident.

Axiom L‑3: Inter-letter Area Equality — The space between two letters in any
letter-pair should appear optically equal to the space between the two letters in
any other letter-pair.

This axiom is cited by the vast majority of sources and it is the basis for a
number of letter-fitting heuristic systems and automation tools. Its
straightforwardness makes it simple to state and to illustrate visually. (See
figure 2.14) But, unlike the preceding two axioms (which are also
straightforward to state), this axiom is not generally framed as being self-
evident, so many sources cite it as a first principle and invest some effort in
explaining it or demonstrating it. Certainly it is a principle pinned to a
writing system, rather than being a principle of ‘visual balance’ in the
abstract. Although it applies to Latin, it would not easily be applicable to
connected writing systems.

dgdg
Axioms about profile shapes can
dictate different fittings based on
construction (illustration by the
author). Font shown: Gentium
Plus.

Figure 2.11

vw
Different angles are used for the
side profiles of v and w, but the
two shapes are often described as
similar enough to be fitted with
the same space (illustration by
the author). Font shown: Gentium
Plus.

Figure 2.12

The principle that similar profile
shapes should receive similar
space also applies when the
profile shapes are reflected in the
horizontal direction (illustration
by the author). Font shown:
Tinos.

Figure 2.13

48

Illustrations of the principle of
setting optically equal space
between all pairs of letters in Latin
text.

Left: Mengelt 1993, p. 36.

Right: Campe and Rausch 2022, p. 94.

Figure 2.14

Some statements of this axiom allow for exceptions that apply to
certain letterforms or profiles but, even then, the principle is generally
accepted to apply for any arbitrarily-chosen letter pairs.

Axiom L‑4: Triplet Centring — When three letters are viewed in a sample
triplet, the middle letter should appear to be centred between the two letters on
either side.

This axiom is related to the previous axiom, in the sense that the goal is to
identify a fitting for (e.g.) abc wherein the space between ab appears
optically equal to the space between bc. However, this axiom differs
because it specifies placing three letters in a triplet, then assessing the
total position of the middle letter. (See figure 2.15) Therefore, that process
takes the width and the symmetry of the middle letter into account, which
the previous axiom does not. For instance, a highly asymmetrical
letterform like L should appear optically centred in the triplet HLH, even
though a naive measurement of the space would find substantially more
space between LH than between HL.

Note that this does not necessitate that only three letters be used in
every test sequence. Longer sequences are testable and, in practice, often
advised. Regardless of how long the test sequences are, though, the
evaluation asked for by this axiom is about whether the letter appears
centred between its immediate neighbours to each side.

This axiom strongly leverages the horizontal baseline layout in Latin
text setting; it may not apply to scripts that incorporate positioning
typeforms in two dimensions (such as subjoined forms or vowel, tone, and
pronunciation marks). Those scripts may instead ask a more complicated
question about a typeform appearing centred between its neighbours in
more than one direction.

Axiom L‑5: Vertical Stroke Rhythm — Vertical stems should appear optically
to be in a consistent rhythm for any sample letter sequence.

This axiom is a more specific distillation of the broad concept that pages of
text (or other large blocks of text) should have an even ‘colour’ or ‘texture’
but, importantly, the axiom connects that texture to the vertical-stroke
rhythm that underpins Latin text: the vertical stems of the letters in text
should seem to be spaced in an optically even rhythm. This property of

Letter fitting represented as the
centring of letters in triplets
(Highsmith 2020, p. 46).

Figure 2.15

49

Latin can be traced back to calligraphic and writing traditions for the
lowercase letters. (See figure 2.16) Most formulations note that the rhythm
should also appear observable in letterforms that do not feature stems. As
will be discussed in chapter 3, that can prove to be a challenge to
implement reliably.

The axiom is generally agreed upon for Latin text, though, as is the case
with some other axioms, it should not be taken for granted in other
writing systems. Gerry Leonidas has noted that the calligraphic tradition
for Greek is based on looping forms, which results in different rhythmic
structure (Leonidas 2018, p. 133). It is also important to note that the
definition of stem is inherited from the Latin calligraphic tradition. A stem
is a straight ‘main’ stroke in the letterform’s skeleton; it is not simply any
line with vertical orientation: vertical serifs and out-strokes found on s and
z are not generally counted as stems.

Axiom L‑6: Interior-Exterior Balance — The interior counter of n and the
interior counter of H should be the same optical size as the inter-letter area of
an nn pair and an HH pair, respectively.

This axiom is the first on the list to connect the size of inter-letter area to
the size of any intra-letter area. Generalizing, the principle is that the
internal space enclosed within the letterforms should appear equal to the
external space outside of the letterforms. For Latin text fitting, the more
common framing of the axiom is to state the equality of the interior and
exterior space for two key letterforms: n for lowercase and H for capitals
(See figure 2.17); choices which can act as a trivial test-case for the principle
of equality.

There is some disagreement among the sources regarding the precision
of the statement that the areas are optically equal. The earliest sources
tend to state, simply, that the two areas should be equal, while more recent
records tend to say that the inter-letter area should be slightly smaller
than the internal area of the n or H. Perhaps that discrepancy should be
attributed to changes in printing technology, or perhaps it represents a
shift in reader expectations. But, either way, the relationship between the
two areas is described as being a predetermined one for a particular
typeface. Namely, whether the type designer determines that the inter-

Gerrit Noordzij contended that stroke rhythm is the essential factor for letter fitting, because
consistent rhythm defines the word-image (Noordzij 2009, 42).

Figure 2.16

Smeijers calculated that the
counter within each n is equal to
the space between the pair by
counting grid squares (Smeijers
1996, p. 31).

Figure 2.17

50

letter area should be 100% of the interior area or it should be 95% of the
interior area, once that determination has been made, it remains fixed.
This fixed relationship becomes important when applying axiom L‑3: the
area that is determined for the inter-letter area of an nn pair and an HH
pair is the area that will be propagated to other inter-letter pairs.

The choice of n and H as the key letterforms is made because those
letterforms have straight, vertical strokes on both side profiles and the
letterforms conform to the ‘standard’ width for their case. Thus, assessing
the ratio of inside-to-outside space is simpler. Choosing h and N would
yield comparable results for most designs; some sources prefer o over n,
others m. However, because letter-fitting is usually conducted in the
context of designing a full complement of letters, there is little down side
to using n and H as a convention.

Nevertheless, some prior work does state this same axiom in broader
terms, contending, for example, that the inter-letter space of every
double-letterform pair should be optically the same as the interior space of
the pair. Although this broader framing of the axiom is testable for
letterforms that enclose space (such as oo, ee, or even xx), it is less
immediately clear how it should be examined for letterforms that do not
enclose any interior space (such as ii or LL).

This axiom is particular to Latin text and, as with the previous axiom, is
inherited from the general writing models used for Latin text throughout
its history. Unlike the previous axiom, however, the claimed relationship
between the interior counter size and the inter-letter space holds only for
‘normal’ weight, width, and text sizes.

Axiom L‑7: Concave Profile Truncation — When a letter’s counter is open on
one side, only part of the counter’s area should be measured as part of the total
inter-letter space between that letter and the adjacent letters.

This axiom also connects the size of inter-letter space to the size of an
intra-letter space. When fitting a letter with a concave profile or ‘open
counter’ (e.g., c or s), some percentage of the space bounded by the top,
bottom, and closed side of the counter is treated as optically belonging to
the interior of the letter and as not belonging to the inter-letter space.
Fitting algorithms differ as to what the appropriate percentage to assign is,
and as to how to compute it (See figure 2.18), but the principle is almost
universally agreed on.

Gerrit Noordzij illustrated the
ambiguous boundary between
interior and exterior space
occurring in open-counter
profiles by blending the colours
(Noordzij 2000, p. 168).

Figure 2.18

51

The same principle is generally held to be true for letters with
unbounded open counters (i.e., those forms that have two out of the ‘top,
bottom, and closed side’ but lack the third), such as the right side profiles
of r or F. It is usually acknowledged that different percentages apply for
the unbounded open counters and that, for such strongly-asymmetric
letterforms, avoiding a collision with the adjacent letter matters more than
the percentage of open-counter measurement does.

Axiom L‑8: Fixed-Height Measurement — The inter-letter area between two
lowercase letters in a letter-pair should be measured between the baseline and
the x-height. The inter-letter area between two capital letters should be
measured between the baseline and the capital height.

This axiom captures both a facet of conventional wisdom and a practical
observation. The conventional wisdom is that, in lowercase text, the forms
of letters between the baseline and the x-height include the majority of the
variety distinguishing one letter from another, whereas extenders exhibit
less variety and are more functional, distinguishing between certain
otherwise-similar forms (e.g., o versus b, d, p and q) by position. That
convention can be seen in phenomena like variable-length extenders as a
font feature or the increase of x-height (without a corresponding increase
in extender height) as weight and optical size vary.

The practical observation is that geometric measurements made to
support the equal–inter-letter–counters axiom indicate that
measurements between the baseline and x-height result in expected
fitting, but measurements that include extenders do not. (See figure 2.19)

The framing used here, specifying the top and bottom measurement
limits, applies to Latin lowercase letters fitted to other lowercase letters
(the first statement) and capital letters fitted to other capital letters (the
second statement). As discussed in § 2.1, the conventional wisdom is that
capital letters should by default be fitted to lowercase letters (with capital-
to-capital fitting incorporated as an alternate feature to be enabled for all-
capital text). In the capital-to-lowercase context, the convention is that the
extra height of capital letters be treated the same way as extenders, and
the inter-letter areas of capital letters measured only between the baseline
and the x-height.

The extent to which this axiom is specific to Latin is not clear. One
factor contributing to the prominence of the baseline-to-x-height
measurement zone may be that most of the ascenders in the basic Latin
lowercase letterforms are near-identical, plain vertical stems: b, d, h, k,
and l, with f often the sole outlier. In other bicameral scripts, the set of
ascending forms can exhibit noticeably more variation above the x-height,
such as β, δ, ζ, θ, λ, and ξ in Greek.9 Even within Latin, the axiom may lose

Smeijers noted that the area
between the letters is optically
bounded by somewhere within
the grey regions at the x-height
and baseline (Smeijers 1996, p.
31).

Figure 2.19

9. In other scripts, the baseline limit may also be challenged, not just the x-height. The descending
forms in Greek are similarly more diverse than Latin’s. Gerard Unger used the gg combination,
commonplace in Italian, to illustrate the importance of testing fitting across languages, pointing out
that its adjacent descenders could affect page colour (Unger 2018, p. 125). He may have chosen that
example because g, much like f, is an outlier among the Latin forms with descenders.

52

applicability with alphabets that include letterforms in addition to the
basic-lowercase set, of which there are many (such as ð, ß, ƀ, or ɗ).

Axiom L‑9: Single-Stroke Supplement — Single-stroke letters require more
space than is fitted to a normal-width letter that has the same side-profile
shape.

This axiom typically justifies adding additional space to single-stroke
letterforms (such as i, j, or l) than to normal-width letters (such as n or h)
of similar profile shape. It does so for practical reasons (e.g., to prevent the
single-stroke letter from being missed while reading by merging with an
adjacent letter, or to prevent sequences of several close vertical strokes
from forming a darker-than-normal patch within the text). Consequently,
this axiom might be regarded as practical advice, rather than as a principle
that directly dictates intrinsically correct fitting. However, because this
axiom is repeatedly cited as relating to the evenness of page colour, it does
function as a first principle, rather than as an exception-handling measure.
It is also notable that this axiom relates the space required to the total
width of the letter, rather than to its side- profile alone. (See figure 2.20)

As used in this framing, normal-width refers to letterforms that enclose
some internal space in a single counter.10 Which forms are considered
normal-width is Latin-specific, and not precisely defined. Only two
letterforms out of the 26 lowercase base Latin letters enclose double-width
counters in traditional upright designs: m and w. The proportion of single-
stroke, single-counter, and double-counter letterforms in other writing
systems is different: lowercase Cyrillic, for example, can have significantly
more double-counter letterforms (ж, м, ф, ш, щ, ы, and ю in several East
Slavic alphabets) but only one single-stroke letterform (і, in some East
Slavic alphabets) or none, and may require a different definition of normal-
width accordingly.

Axiom L‑10: Adjacent Extender Supplement — Adjacent extenders require
additional space.

This axiom is a corollary to the previous axiom’s advice about the practical
problems of adjacent vertical strokes. Notably, the axiom deals with
exception handling, advising that sequences of side-by-side extenders (e.g.,
lh, db, or gp in certain designs) should receive more inter-letter space than
similar pairings with one or more x-height–profile letters. In digital fonts,
such exception-handling is most often implemented as kerns, with the
default fitting being devoted to the common, x-height case. This axiom’s
applicability to any given typeface design is also style-dependent.

The i on the upper line is fitted
with more side-bearing space
than the n on the line below
(illustration by the author). Font
shown: Tinos.

Figure 2.20

10. See the definition of counter in the glossary.
11. See the historical discussion in § 2.1.3.

53

Axiom L‑11: Collision Avoidance — Letters should not touch or collide.

This axiom establishes that there is a minimum allowable space between
any two letters. Various formulations of the axiom do allow for exceptions
for auxiliary components of letterforms to touch (such as serifs or in-
strokes and out-strokes), but almost universally agree that stems, bowls,
and other primary elements of the form’s skeleton should never collide.

This is not a prohibition against kerning, but rather against typeforms
overlapping or colliding in the design. Notable also is the fact that
overlapping designs were not possible in cold-metal type (although, of
course, overlapping letters on the page were possible through over-
printing). This principle of barring collisions would be a requirement for
legibility (e.g., the potential confusion of rn for m or VV for W) even if it
was not found in fitting-related algorithms. (See figure 2.21)

Axiom L‑12: Diagonal Profile Limit — The diagonal-profile letters have so
much external space beneath the diagonals that they require zero or almost-
zero additional sidebearing spaces.

This axiom assumes the previous, collision-avoidance axiom, but further
specifies that diagonal-profile letters (such as v or w) can be known to
need zero or almost-zero sidebearings. Some sources explicitly connect
this to the size of the unbounded space below the diagonal profiles.

How small the minimum sidebearings should be is less clearly stated.
Notably, it is evident that the external space beneath the diagonals remains
a measurement of two-dimensional area, even though the advised
sidebearings are a linear distance.

Axiom L‑13: Shells of Space — Each letterform asserts some positive shell of
space outward from its contours, which is required and should not be intruded
upon by neighbouring letterforms.

This axiom is the basis for sector kerning11 and for several more recent
implementations of letter-fitting automation tools. The term shell here is a
choice by the author; sector-kerning systems often did not employ a term
for the region of asserted space, and newer implementations of the idea do
not have a standard term. In a certain sense, this axiom extends the earlier
axiom prohibiting collisions but, in practice, the claims of this axiom are
stronger and it is usually cited in reference to parts of a typeform that are
not in danger of colliding with their neighbours. For example, the axiom
might be cited as applying to vertical stems: e.g., the vertical stems require
some amount of space of their own, even if the letterform has serifs and
the serifs are the components that would collide with neighbouring letters
long before the vertical stems would.

Toshi Omagari’s BubbleKern
works by manipulating shells
around letterforms (Image from
unpublished presentation slides
in Omagari 2016, 33; used by
permission).

Figure 2.22

Collisions can result in
misidentified letterforms (Beier
2017, p. 148).

Figure 2.21

54

In most formulations, the axiom also posits that the region of space
asserted by a letterform is, collectively, a single and comparatively simple
area that conforms to a rough expansion of the letterform’s contours. In
practical implementations, however, this axiom is rarely cited with any
specific rules as to how the shell ought to be derived or how large it should
be. (See figure 2.22, over page)

Axiom L‑14: Enclosure Avoidance — Vertical overlaps between adjacent
letters are permissible so long as one of the letters remains strictly above the
other in the overlapping zone. (e.g., VA or Ta can overlap, but Cy should not).

This axiom notes that it is acceptable in a letter pair for the facing extreme
points of the letters to overlap each other horizontally, but that such
overlaps are not acceptable if they allow one letter to ‘enclose’ or wrap
around the other. In Latin, preventing such enclosures is important for
punctuation.

This axiom is not usually stated explicitly, but it is observed in warnings
against overly-close kerning, in particular with typeforms that ‘float’ above
the baseline, such as punctuation and mathematical operators.

Axiom L‑15: Upward Aperture Reduction — Vertical open apertures that are
open at the top (u, AI) should be smaller than vertical open apertures that are
open at the bottom (n, VI).

This axiom deals specifically with the relative amount of space required
when the inter-letter gap between some pair of letterforms creates a
region that points either up or down. This region is called an aperture here
to preserve clarity, but is sometimes referred to as an inter-letter counter
(analogous to the counter in a typeform) because sources often connect
this principle explicitly to the vertically-open counters in forms like u and
n. The counter size of the single-letter case (u versus n) can be considered
a letter-design issue, but linking that relationship to the two-letter case (AI
versus VI) re-frames it as a broader principle.

This axiom applies only to a small set of letterforms for Latin text, due
to the small number of side-profile permutations that can result in
upward-facing vertical inter-letter apertures. The proportion would likely
be different for other writing systems. (See figure 2.23)

Axiom L‑16: Diacritic Form Independence — Diacritics or other marks are
part of the letter to which they attach and, therefore, contribute to the profile
shape and space requirements of the letter.

In Latin text, diacritics are most often implemented as marks either above
the x-height or below the baseline. Consequently, they are, by default,
unaffected by several of the previous axioms. However, diacritics can be as
wide or wider than the base letter they modify, in which case it becomes
important for a fitting algorithm to include them when preventing
collisions or performing other such steps.

The IA pair is fitted closer than
the IV pair because IA is open in
the upward-facing direction
(Hochuli 2015, p. 29).

Figure 2.23

55

Typeface design practice in Latin permits raising or lowering diacritics
in most situations, including for collision avoidance. Moving diacritics
horizontally to prevent collisions is somewhat less common, although this
may be attributable to the risk that moving diacritics too far will result in
misidentifying letters. Even when diacritics are ‘floating’ or otherwise
discontiguous from the body of the letter, the placement of the diacritic is
usually treated as an isolated problem, distinct from the problem of fitting
the letters themselves to one another.

Note that this treatment of diacritics in Latin text differs from the
treatment in other writing systems. For example, Arabic ijam, harakat, and
other marks are often positioned separately, after the base rasm letters, in
order to achieve the ideal word image. Polytonic Greek can involve
diacritics that are placed to the side of capital letterforms, necessitating
adjustments to the fitting.

2.4 Determining the domains and ranges of axioms

When considering the set of axioms as a whole, an obvious first question to
pose is which axioms are the most important to successful letter fitting?
But ‘importance’ can be a loaded term, and one that potentially leads to
unreliable reasoning if it is simply left undefined. The order of the list is,
roughly speaking, sorted with the most frequently cited axioms first — an
order which perhaps reflects the axioms’ relative importance, at least, to
the writers and practitioners who discussed them. But this relationship
between citation frequency and importance is not guaranteed; the citation
order may also encompass an amalgamation of other criteria, such as
authors choosing to discuss the simplest-to-understand axioms first in
order to ease their readers into an unfamiliar subject matter.

A more practical way to define importance in the set of axioms would
be to examine how and when the axioms apply and what letter-fitting
results they produce when they are employed. That is, rather than
determining importance based on the literature and the consensus of type
designers, one could evaluate importance by scrutinizing how the axioms
relate to the typeforms and the space determinations.

In software-engineering parlance, the typeforms constitute inputs to an
axiom and the fitting constitutes an output. But that metaphor could prove
overly constricting to serve as a starting point. For preliminary reasoning,
to again borrow terminology from mathematics, one could say that each
axiom has a domain over which it applies, and a range that delineates what
possible results it can generate.

As discussed in § 2.1, the Latin text fitting axioms are limited in scope
by writing system and typographic context, and furthermore most axioms
carry an implicit assumption that they apply when used to fit a defined
class of typeforms, such as predominantly lowercase continuous text, or

56

all-capital text, or perhaps all-numeral data. Nonetheless, even when
operating entirely within the writing system and typographic context and
further focusing on the implicit typeform class, some of the fitting axioms
are more or less restricted in domain than are others. Most often, a given
axiom is restricted by which typeforms it is relevant to. Although several
axioms claim near-universality, others demonstrably do not and, instead,
are explicit about what forms they address. In other cases, axioms carry
implicit restrictions on the typeface styles to which they apply.

As a matter of practical usage, these conditions and limitations do not
invalidate the axioms; rather, the domains of each of the individual axioms
are factors that type designers and algorithm authors must be aware of.

The simplest distinction seen in the ranges of the axioms is whether the
axiom is defined to provide results for a desirable fitting outcome or to
prohibit an undesirable outcome. It is also instructive to consider the
nature of the result that an axiom provides. In the Latin axiom set, there
are two primary groups to consider: axioms that provide answers about
absolute, concrete values of space and axioms that provide answers about
the size of one space relative to another space. Absolute and relative
results both have value, but they are not interchangeable. These two
techniques for partitioning the axioms according to range are certainly not
the only options, but it will be seen in the following discussion that these
partitions have practical value for constructing letter-fitting algorithms.

2.4.1 Domain: the set of typeforms or profiles addressed by an axiom
The first domain to be examined is the set of typeforms and profiles that a
letter-fitting axiom addresses. This is a question that will eventually
provide practical value when implementing a fitting algorithm, since
establishing the correct domain helps ensure that the implementation
does not omit any forms in the typeface and does not waste effort through
duplication. More generally, as will be seen in chapter 4, knowing the
domains of all of the axioms enables strategic reasoning about how best to
cover all of the typeforms that comprise a typeface being fitted.

For the Latin text fitting axioms of § 2.3.2, eight out of the sixteen claim
to apply universally. These eight universal axioms are:

• L‑1: Profile Similarity
• L‑2: Profile Reflection
• L‑3: Inter-letter Area Equality
• L‑4: Triplet Centring
• L‑8: Fixed-Height Measurement
• L‑11: Collision Avoidance
• L‑13: Shells of Space
• L‑14: Enclosure Avoidance

57

Note that the claim of universal applicability is explicit in axioms L‑1, L‑2,
L‑4, L‑11, L‑13, and L‑14: each is framed as a universal principle. Axiom L‑8:
Fixed Height Measurement, however, poses a principle that claims to apply
to all typeforms in a set, but what the fixed height is is allowed to vary
depending on the forms in the chosen set. That is, when performing
lowercase fitting, the space between all typeforms should be measured
between the baseline and the x-height, but when performing capital
fitting, the space between all typeforms should be measured between the
baseline and the capital height. In both instances, the principle itself is still
held to be uniformly true; the difference in measuring points is a property
of the set of forms being considered.

Of the remaining eight axioms in the Latin text fitting set, seven axioms
apply to a limited set of typeforms. These axioms are:

• L‑5: Vertical Stroke Rhythm
• L‑7: Concave Profile Truncation
• L‑9: Single-Stroke Supplement
• L‑10: Adjacent Extender Supplement
• L‑12: Diagonal Profile Limit
• L‑15: Upward Aperture Reduction
• L‑16: Diacritic Form Independence

In each of these axioms, the limited applicability is a facet of the axiom
itself: they are phrased as applying to particular profile shapes or
constructions. One could perhaps argue that Axiom L‑14: Enclosure
Avoidance, which prohibits typeforms from enclosing one another, also
applies to only a limited set of typeforms on the grounds that there are
numerous pairs of typeforms that cannot enclose each other when placed
in sequence: consider ii, for a trivial example in most typeface designs.
However, for this analysis it was decided that the sole determining factor
should be the framing of the axiom. If there ever were a typeface design for
which the pair ii could be spaced so that one form was in danger of
enclosing the other, the axiom would, it seems, call such an enclosure a
fitting error.

The final group of axioms are those whose domain is limited to a
specific or even isolated set of typeforms. For the Latin text fitting axioms,
there is just one:

• L‑6: Interior-Exterior Balance
which is typically stated as applying to n in the lowercase and H in the
capitals. This group could certainly be regarded as a subset of the
preceding, limited-applicability set; it would be tempting to lump the two
groups together just to avoid the oddity of a group containing only one
axiom. But, in the general approach, it must be remembered that other
writing systems could have more axioms that specify particular forms.

58

Nevertheless, counting the exact number of typeforms addressed by the
limited-applicability axioms is a pertinent question when developing a
fitting algorithm. In the group listings above, the axioms were sorted by
the approximate number of lowercase Latin letterforms that they apply to.
In practice, the counting would need to take the constructions of each
form into account for each specific typeface. Note, for example, that the
different constructions for a and g affect which axioms are applicable. (See
figure 2.24, over page)

2.4.2 Domain: the weight, width, slant, and optical sizes addressed by an axiom
The other question of domain considered is how the axioms are restricted
in their applicability by the stylistic characteristics of the typeface. The
historical study in § 2.2 revealed that most of the letter-fitting discussions
for Latin text typefaces begins with a discussion of ‘regular’ weight and
‘normal’ width. As Unger pointed out, however, what constitutes ‘normal’
or ‘regular’ is not a simple question to answer; there are conventions to be
found by measuring large assortments of typefaces, but the terms are only
clear within the context of a particular design family (Unger 2007, p. 97).

There are multiple references indicating that Axiom L‑6: Interior-
Exterior Balance, which relates the inter-letter area to the interior space of
the key letters n or H, applies only to regular weights and normal widths.
Outside of that regular-and-normal zone, lighter-weight and wider designs
receive more inter-letter space, while heavier-weight and more condensed
designs receive less inter-letter space. But the relationship between the
weight and the width of the key letters and the standard inter-letter space
is not a simple mathematical formula.

Several sources discuss fitting slanted or italic styles, but they do not
claim that different or additional principles apply, nor that the rules
governing the fitting of upright forms do not apply.12 13

Many sources assert that the optical size of text set in a document
affects the necessary fitting. The smaller the optical size, the bigger the

12. The shapes of the profiles of the letterforms may differ between an upright and an italic style; see
the discussion following Axiom L‑1.
13. A detailed examination of the process for designing italic typeface styles and how it compares to
the process for designing upright styles is found in Gaultney 2020, incorporating both analysis of
typefaces and interviews with type designers. Concerns specific to letter fitting in italics are explored
in p. 193–195, and the effects of narrowed italic typeforms on the resultant fitting in p. 155–159.
 Gaultney reports that type designers interviewed cite the narrower and more complex shapes of
italic letterforms, the differing proportion of curved and diagonal constructions within the overall set
of typeforms (versus the set of upright forms), and asymmetry of serifs as factors that can make fitting
italic designs more difficult than fitting upright designs. He further notes that the main strokes of
italic forms tend to vary in angle from one form to another within a well-designed italic typeface. That
variation adds visual character, but complicates the testing of letter fitting.
 Nevertheless, Gaultney does reinforce the notion that a systematic approach to fitting is the norm
in italic design as it is in upright, although it must also be observed that the majority of italic styles in
contemporary typeface families are designed as secondary faces that are brought into harmony (fitting
included) with a primary upright style.

Figure 2.24
Highlighting the various side profiles of letterforms that are covered by different letter-fitting axioms. In these examples, both the one-storey
and two-storey constructions of a and g are shown. A given typeface in the real world is likely to only include one construction or the other for
each letter. Including both constructions is possible by adding alternate-forms features, but two constructions for a letter are not mixed-and-
matched within a text: one or the other will be the default. Consequently, the set-of-profiles-addressed domain for an axiom can be dependent
on the construction of the forms.

Some axioms (see page 52) claim to apply equally to all Latin letterforms, but in practice may only address a subset of the forms in a particular
typeface. For example, Axiom L–1: Profile Similarity, is applicable only to profiles exhibiting similarity to some other profile. Highlighted are
the sets of left profiles (above) and right profiles (below) that share similarity with at least one other profile. The left-profile and right-profile
similarity groups are separated to avoid conflation with Axiom L–2's consideration of reflected similarity. Notably, the construction of forms
matters: the left profile of two-storey a is not similar to any other letterform. Neither profile of two-storey g is similar to another profile.

The related principle of Axiom L–2: Profile Reflection highlights a distinct, but still sizable, set of profiles.

Axiom L–5: Vertical Stroke Rhythm addresses only profiles with vertical strokes, a large set in most Latin designs.

Axiom L–6: Interior-Exterior Balance, states a principle addressing only key letterforms: n for fitting lowercase Latin letters, and H for
fitting Latin capitals to capitals.

Axiom L–7: Concave Profile Truncation affects open-counter profiles, which includes the two-storey a and g constructions, but not their
one-storey equivalents. For forms such as k and R, opinion may vary as to whether each should be regarded as having an open counter.

The single-stroke forms addressed by Axiom L–9: Single Stroke Supplement. Note that, in this example, the top and base strokes on I
exclude it from the set. This is design-dependent; a J with a bowl resting on the baseline might not be considered a single-stroke form.

The forms addressed by Axiom L–10: Adjacent Extender Supplement, are also a small set. Notably, though, the axiom only affects these
forms by adjusting their fitting when they are adjacent in a text, rather than providing a general fitting.

The 'minimal space' prescribed by Axiom L–12: Diagonal Profile Limit addresses a limited set of forms in upright designs.

It is difficult to unequivocally enumerate which forms Axiom L–14: Enclosure Avoidance may apply to; much depends on the specific
design, but enclosure problems are likely only to occur where concave profiles, crossbars, and similar features are found. Straight stems
and bowls are rarely at risk of enclosing or being enclosed by an adjacent profile.

Most Latin designs include only a small set of letterforms for which Axiom L–15: Upward Aperture Reduction will ever apply.

60

spaces between the forms must be, relative to the body size of the forms.
This is generally stated to be a result stemming from readability. The
consensus viewpoint from the historical study is that the ‘smaller optical
sizes require additional space’ effect applies equally to all forms.
Consequently, Axiom L‑6, which posits a link between the interior space of
the key letterforms n and H and the general inter-letter area, is again
affected, because that axiom is framed as a relationship for letterforms of
‘regular’ and ‘normal’ proportions. The proportions of letterforms also
differ between different optical sizes of the same typeface, with smaller
optical sizes taking on wider interior spaces and smaller extenders.14

2.4.3 Range: comparing axioms by whether they prohibit a result or provide a result
In this research, the range of an axiom is defined as a characterization of
the outcome that the axiom produces when it is applied to perform fitting.
The most basic range to examine is whether the axiom provides a fitting
result that can be used to determine the space for a typeform or it
prohibits the conclusion of some undesirable fitting result.

In the Latin text fitting axiom set, there are two axioms that prohibit an
undesirable fitting result:

• L‑11: Collision Avoidance
• L‑14: Enclosure Avoidance

The remaining axioms, as phrased, each provide a fitting result. That is, the
axiom may not necessarily provide the final answer to the question ‘how
much space should be assigned to the sidebearings of this form?’ but it does
provide information leading the type designer in the correct direction.

It is interesting to note that the prohibitions are both lower limits; i.e.,
do not fit forms too closely together, or a problem could arise. The
rationales provided for the two prohibitions are essentially the same, that
the overly tight fitting is undesirable because it could result in forms being
misidentified by a reader. Because legibility and readability are basic
requirements for text setting — more fundamental to successful fitting
than aesthetics — this suggests that they should be considered of greater
importance.

2.4.4 Range: comparing axioms by whether they concern relative space or absolute
space
A more subtle distinction between the ranges of different axioms is found
in whether the axioms are concerned with absolute measurements of
space or relative measurements of space. ‘Absolute’ here does not
necessarily mean a concrete numeric value is the result, although it could
be. The distinction is that some of the Latin text fitting axioms, when
applied to a letterform, make a statement about the specific amount of
space belonging to that letterform (or, perhaps, to one of the profiles of

14. A fuller exploration of optical sizing differences is found in Ahrens et al., 2014. Fitting is discussed
on p. 44; letterform proportions are examined in p. 32–43.

61

that letterform), while other axioms address only the relative relationship
between sizes of space fitted to several letterforms or several profiles.

For example, Axiom L‑1: Profile Similarity declares that similar side
profiles require similar space. But, even if one accepts this as uncontested
truth, the axiom does not prescribe what the size of this similar space
should be — for any of the similar profiles.

Conversely, Axiom L‑11: Collision Avoidance, declaring that letterforms
must never touch or collide is addressing only a question of absolute space:
it must be, at a minimum, zero, between any two letterforms.

In the Latin text fitting axioms, the seven ‘relative space’ axioms are:
• L‑1: Profile Similarity
• L‑2: Profile Reflection
• L‑3: Inter-letter Area Equality
• L‑7: Concave Profile Truncation
• L‑9: Single-Stroke Supplement
• L‑10: Adjacent Extender Supplement
• L‑15: Upward Aperture Reduction

There are five ‘absolute space’ axioms found in the Latin text fitting axiom
set. These are:

• L‑6: Interior-Exterior Balance
• L‑11: Collision Avoidance
• L‑13: Shells of Space
• L‑14: Enclosure Avoidance
• L‑12: Diagonal Profile Limit

Ultimately, all letter-fitting areas must be resolved or transformed into an
absolute space. As was seen in § 2.1.4, font formats in usage today store a
typeface’s fitting as numerical distances (both sidebearings and kerns).15
Therefore, if a relative-space axiom exists for a given letterform or profile,
the letterform or profile must somehow be linkable to an absolute-space
axiom in order to make a usable contribution to the final fitting.

The remaining four axioms are either concerned with different
principles or have a more nebulous relationship to the absolute/relative
distinction. These are:

• L‑4: Triplet Centring
• L‑5: Vertical Stroke Rhythm
• L‑8: Fixed-Height Measurement
• L‑16: Diacritic Form Independence

15. It should be recalled that the numbers used in contemporary font formats are positions on a grid in
font units, rather than any physical distance. Nevertheless, the term absolute in this discussion still
indicates that applying the axiom produces a specific value, rather than stating a relative relationship
between values.

62

Universal

Specific

Relative Absolute

Axiom L‑8 and Axiom L‑16 are not easily grouped into one category or the
other. Axiom L‑8: Fixed-Height Measurement is a condition about how
measurements are made, but it is framed as being a condition that applies
to both relative and to absolute measurements. Axiom L‑16: Diacritic Form
Independence is a statement about how letterforms are differentiated from
other letterforms; when L‑16 is invoked, the other axioms apply to â and ą
exactly as they apply to a, with respect to both relative and absolute
measurements.

Axiom L‑4: Triplet Centring and Axiom L‑5: Vertical Stroke Rhythm
have perhaps more nuanced relationships to the absolute-or-relative
demarcation. L‑4 clearly makes a statement about two areas appearing
equal, which is a relative measurement. But the full impact of L‑4 would be
lost if it was reduced in the analysis to being the same as axiom L‑3’s
statement about equal inter-letter areas. L‑4 explicitly addresses the
optical centring of the typeform itself, in its positive-space, final rendered
form. As was noted in the discussion of Axiom L‑4, this centring is an
optical phenomenon that is not simple to resolve.

Likewise, Axiom L‑5 also concerns optical phenomena, although the
phenomena it concerns are found at a larger scale: the rhythm observed in
a text sequence of multiple forms. Here, as with Axiom L‑4, the question is
framed as one of relative space but, because it is a question that extends
beyond measuring the space between two forms, the difference is
important to retain, even if it is subtle.

Each of these ways of appraising the Latin text fitting axioms provides
some additional meaning, but none of them is the whole story on its own.
Figure 2–25 visualizes several factors together: estimating the universality
domain of the axioms (from universal to specific) on the vertical axis, and
sorting them by the relative-or-absolute range horizontally.

A visualization of the Latin text
fitting axioms that takes several
facets into account together. The
colour-coding highlights that
Axioms 4, 5, 8, and 16 do not
easily map into statements of
relative space or absolute space,
but exhibit some nuance.

Figure 2.25

63

When developing an algorithm meant to fit a complete typeface, the end
goal is to have absolute spaces determined for every typeform. Looking at
how each of the axioms available addresses these needs makes it clearer
why no one technique on its own has sufficed in prior projects.

2.5 Evaluating the interactions, dependencies, and redundancies
between axioms

The discussion of domains and ranges focused on illuminating the
relationships between each axiom and the various typeforms found in
Latin text. A distinctly different perspective on the importance and
behaviour of the axioms can be found by examining the interactions and
interconnectivity between the axioms. In particular, exploring importance
by how the constituent axioms work together can provide pragmatic
suggestions for constructing a letter-fitting algorithm.

2.5.1 Axioms that are exceptions to other axioms
One of the clearest relationships that can be identified is when one axiom
serves as an exception to another. Several of the relative-space axioms
behave in this way. Axiom L‑9: Single Stroke Supplement, Axiom L‑10:
Adjacent Extender Supplement, and Axiom L‑15: Upward Aperture
Reduction are direct statements of such a relationship. Each is expressed as
defining a set of typeforms for which the necessary space is proportionally
adjusted from the default inter-letter area, which is generically given as
the default in Axiom L‑3: Inter-letter Area Equality.

The concave-profile Axiom L‑7: Concave Profile Reduction is also an
exception to the equal-inter-letter area principle of Axiom L‑3. As with the
preceding exception examples, this axiom calls for a proportional
adjustment to the default inter-letter area, but the exact degree of the
adjustment is less clearly stated.

Axiom L‑12: Diagonal Profile Limit might also be considered an
exception to area-equality principle of axiom L‑3. Here again, Axiom L–12
calls for a different area than would otherwise be found via the inter-
letter-area principle, but Axiom L‑12 calls for an absolute: minimal space.

The standard-and-exception relationship has practical usefulness
because it suggests that the axioms are connected in such a way that they
could be implemented together in an algorithm., or used as ‘simple mode’
and ‘complex mode’ alternate procedures.

2.5.2 Axioms that are prohibitions of a failure-condition
The prohibitive Axioms, L‑11: Collision Avoidance and L‑14: Enclosure
Avoidance, were discussed in § 2.4.3. Both act, in a certain sense, as
exceptions to other axioms. But the relationship is distinct from the
standard-and-exception relationship discussed above. First, the prohibitive

64

axioms are not linked to other, specific axioms; they apply generally to the
full axiom set. That is, collisions between typeforms are wrong because
collisions are a serious problem for readers; to that end, for Axiom L‑11 it
does not matter which of the other axioms might otherwise cause a
collision: the collision of forms is prohibited regardless.

Second, the intent of the prohibitive axioms is explicit. Specifically, they
set limits on what the other more general axioms should generate, and
they do so for the stated purpose of avoiding a particular adverse condition
— rather than setting limits in order to support a favourable condition.
This distinction can be seen by examining rewording of the axioms. For
example, although ‘single-stroke forms should get additional space’ could
be rephrased as ‘it is wrong to not have additional space around single-
stroke forms’, that inverted construction does not make the goal of the
axiom clear.

Practically speaking, the prohibitive axioms are straightforward to
implement as tests or as parameters to an algorithm.

2.5.3 Dependencies and redundancies between axioms
Possibly the most complex relationships between axioms are those found
where two or more axioms address the same typeforms or, more generally,
overlapping domains of typeforms. Some of the axioms provide fitting for
the same letterforms and either act in agreement with each other or are
expected to reinforce each other’s outcomes.

This can be seen in the relationship between Axiom L‑5: Vertical Stroke
Rhythm when it is compared against Axioms L‑1: Profile Similarity, L‑2:
Profile Reflection, L‑3: Inter-letter Area Equality, and L‑6: Interior-Exterior
Balance, collectively. The relationships between Axioms L‑1, L‑2, L‑3, and
L‑6 are quite close and mutually reinforcing. Axiom L‑5 is distinct, saying
that the vertical stems of forms should appear in a consistent rhythm. But
that same consistency of vertical stems can also be arrived at by applying
the similarity, equal inter-letter area, and key-letterform Axioms L‑1, L‑2,
L‑3, and L‑6, in concert, to all of the forms that have vertical stems.

Conceptually, Axiom L‑5: Vertical Stroke Rhythm is not a simple
duplication of the collective application of L‑1, L‑2, L‑3, and L‑6, however,
because the domains differ. Axiom L‑5 has a smaller domain, given that it
only applies to typeforms with vertical stems; Axioms L‑1, L‑2, L‑3, and L‑6,
together, apply to typeforms with vertical stems and also to those forms
with round profiles, diagonal profiles, or divided profiles. As will be seen in
chapter 4, the practical job of constructing an algorithm must consider
whether the overlapping interaction between Axiom L‑5 and the collective
effect of Axioms L‑1, L‑2, L‑3, and L‑6 is best handled by implementing both
or by choosing one and dispensing with the other.

In other cases, the interaction between axioms can be more nebulous.
Axiom L‑7: Concave Profile Truncation states that only a portion of the
area enclosed by a concave side profile should be considered interior space,

65

So
If cropped at the baseline and the
x-height (green lines), the right-
side profile shape of S is round.
When considering the full profile
from the baseline to the capital-
height, however, the same S has a
more complex right-side profile
shape with an open side counter
(illustration by the author). Font
shown: Bodoni Moda Extra Bold.

Figure 2.26

Visualizing the interconnections
between the Latin text fitting
axioms. The colour scheme used
is the same as that for figure 24;
green indicates absolute-space
axioms; pink indicates relative-
space axioms; blue and rust
indicate the more nebulous
relationships of those axioms.

Figure 2.27

and the rest should be considered exterior space. This means that Axiom
L‑7 interacts with all of the other axioms that make a statement about
inter-letter areas: L‑1, L‑2, L‑3, L‑6, and L‑8. Thus, an algorithm must
establish how much of a concave-profile’s enclosed area to count towards
the inter-letter area, or else it cannot arrive at the inter-letter area values
that are required to apply the principles of the other axioms when the
algorithm fits forms with concave profiles.

The baseline-to-fixed-height measurement scheme of Axiom L‑8: Fixed-
Height Measurement also interacts with the axioms that measure inter-
letter areas: L‑1, L‑2, L‑3, L‑6, and L‑7, by virtue of dictating where the
inter-letter areas should be measured. But its interactions with the Axioms
concerning profile shapes and how they are grouped (L‑1 and L‑2) hide a
subtle caveat. Axioms L‑1 and L‑2 address how similar profile shapes should
be fitted, but what constitutes a ‘similar’ profile is in part determined by
the top and bottom measurement lines. This is a caveat that triggers
practical consequences for a fitting algorithm, because convention in Latin
fonts says that the default sidebearings of capital letters should be
determined by fitting them against lowercase letters (see § 2.1).
Consequently, there are some capital letterforms, such as the right side of
S, whose profile is a ‘round’ shape when measured from the baseline to the
x-height, but is semi-open when measured from the baseline to the cap
height. (See figure 2.26)

Ultimately, the fullness of the interactions between the algorithms is
more complex than can be listed in a simple table or mapped in a
visualization. Such an approach to characterizing the axiom set was tried
in this research, but the value of that attempt lies primarily in the mental
exercise of considering the interactions, rather than in the production of a
mapping that can prescribe the construction of an ideal fitting algorithm.
One such example is shown in figure 2.27 below, which visualizes all of the
inter-axiom interactions as simple edge connections. There is information
missing in this visualization, because the different varieties of interaction
are not distinguished from each other.

66

 Still, it is perhaps intriguing to note that Axiom L‑13: Shells of Space is
disconnected from the rest of the set, and it is likewise intriguing to note
which axioms are the most connected to others: Axioms L‑3: Inter-letter
Area Equality, L‑6: Interior-Exterior Balance, and L‑7: Concave Profile
Truncation. One could infer that addressing those axioms well is
important, or that ignoring them is hazardous, but there are multiple ways
one could traverse the graph even if some of the edge connections are
removed. The set of axioms remains a model on which an algorithm can be
developed, rather than a roadmap.

Any useful model for letter fitting in a particular writing system
requires not only the fundamental axioms, but also an understanding of
how the axioms operate as a set. Therefore it is important to understand
how the axioms are interrelated, and how they function collectively, not
just in isolation. In order to develop an algorithm to fit Latin text
typefaces, the model and an understanding of its structure are required.
The next step in that process is an exploration of how to move from the
theoretical model into a practical implementation that represents the
model faithfully while remaining pragmatic enough to be of use.

67

3. Practical implementation
considerations for the model

Chapter 2 detailed the derivation of a theoretical model for the fitting of
Latin text typefaces based on a set of interconnected, axiomatic principles
that correspond to the processes that type designers employ when fitting
typefaces manually. It concluded with a look at various properties and
interconnections between the axioms in the model at a conceptual level.

Assuming that the model sufficiently represents successful letter-fitting
practice, then the next step towards constructing a letter-fitting algorithm
is to move from the conceptual to the practical, examining the axioms’
potential implementability. Where the conceptual discussion dealt with
domains, ranges, and relationships, a practical algorithm requires inputs,
outputs, and various parameters.

In particular, the key questions to resolve are whether the axioms set
out measurements and testable conditions that are clearly defined,
whether they are efficient and can be replicated, and whether they offer
coherent parameters for typeface designers to utilize when stylistic or
aesthetic factors make such affordances desirable. For example, several
axioms make statements about spaces or forms appearing optically equal;
for implementation in an algorithm it must be determined if this optical
equality maps directly to a concrete measurement of equality or relies on
some judgment by the type designer that is more difficult to define.

In chapter 2 it was observed that most of the Latin text fitting axioms
are functionally independent of one another. This permits consideration of
each axiom in turn while constructing a fitting algorithm to follow the
model. Each axiom can be assessed from the standpoint of how practical it
is for implementation in software and how well the chosen axioms would
operate together in a composite algorithm.

3.1 Cataloguing prior implementation work

As a starting point, the prior letter-fitting algorithm implementations
covered in chapter two’s historical survey were examined closely, to note
where and how effectively they addressed the axioms of the model.
Revisiting this prior work can be worthwhile even in cases where the prior
work was considered unsuccessful at the time. Implementation efforts may
have fallen by the wayside purely for business reasons or happen-stance; in
others cases, several decades of evolving computer technology separate
the original project from the present, and those changes in computing
platforms might make algorithms that were impractical at the time
workable on a contemporary system (see also chapter two, § 2.2.5).

Chapter 2 included a list of prior projects that involved the
development of some form of fitting-automation algorithm. The table of

68

implementations in chapter two, § 2.2.3 summarized the approximate
publication date and creators of each implementation. That table can now
be extended by cross-referencing which of the axioms from the Latin text
fitting axiom set in chapter two, § 2.3 are implemented or rejected by each
project.

When compiling this information, sometimes a simple ‘yes or no’ is not
sufficient to capture the implementation’s adoption of a particular axiom.
The claims made by automation researchers and product vendors are often
considerably broader than the axioms implemented in practice, and the
promotional writing that accompanies an implementation frequently
makes reference to letter-fitting theories or principles that do not form
part of the implementation.

For example, both the promotional booklet for URW’s hz-program and its
original patent filing cite a number of fitting axioms (URW 1993, Karow
1992). But the implementation as it is described in that filing focuses solely
on the equalisation of inter-letter areas (Axiom L–3), and draws upon
Axiom L–8: Fixed-Height Measurement by computing the inter-letter areas
between the baseline and x-height. To account for such cases, a separate
mark was used to record the citation of an axiom that is not implemented.

Although a critical eye must always be trained on product-marketing
copy, it is worth remembering that a discrepancy between the letter-fitting
theories referenced in promotional material and the practical functionality
found in the final implementation as shipped with the product should not
be treated as an attempt at equivocation. For instance, URW might have
appealed to the notion of stem rhythm in the hz-program brochure because
the team believed that the stem-rhythm property would be a natural
outcome of applying kf’s equal-inter-letter-area calculations.

Table 3.1 (over page) summarizes this cross-referencing of prior
implementations against the Latin text fitting axioms. The table includes
several works for which complete internal details are not available; these
are coded in grey to distinguish them from the projects that could be
analysed more fully. Several of these projects were unavailable for close
examination because they were announced or advertised but were never
published, others are reported to be in regular use but only as internal
tools by their creators. For others, particularly among the earliest projects,
it was simply not possible to locate a functioning copy or study one using
contemporary software. They are included in the table to compare the
claims they made, but in some cases the claims are all that remain.

The table also preserves projects that focus on writing systems other
than Latin. Although the model at the centre of this research focuses on
Latin, it was seen in chapter two that some fitting axioms can be shared
across writing systems.

As in chapter 2, the table has deliberately avoided scrutinizing any
projects currently covered by active patents; searching online patent
databases does suggest that there may be some, but what those projects
add to the overall picture remains unknown.

69

Project
LOGOS

Bell sector-spacing
URW force experiment

Arabic Calligraphic Engine
Tracy method

Gerber
Type Designer auto feature

Sector Kerning
hz-program kf

Fontlab auto feature
Kernus

InfoKern
Canon Shift

Omron
Neville

TypeArt
FontForge auto feature

AFDKO
Aldine FFT
KERNDICT

sqtroff
KernMaster
Perturbation

Sousa method
Wavelet masks

Cambria OpenType Math cut-ins
iKern

LetterModeller
Caslon Fourier analysis

Rhea
Rhea force experiment

SortsMill spacing by anchors
Tsukurimashou

Autokern
Blur-masking

Impallari macro
OpticalLetterSpacing.js

Typebutter
CJK Auto Spacing

Kernagic
Monokern

font-prediction_mahout
Novi Sad statistical analysis

BubbleKern
LS Cadencer
Fittingroom

Black Spacer
HT Letterspacer

Spaceman
KernKraft

Electric kerning
Octabox

Machine Learning of Fonts
Atokern / kerncritic

psoptkern
KernBot

HT Kerner
electricbubble

YinYangFit
CounterSpace

fontmetrics
RhythmInfluencer

type.tools AI
Andersson experiment

Hands Face Space
Kern On
Kerning

Building a spacing calculator
Kern Determiner

covers page
number

Year
1970
1973
1980
1985
1986
1986
1989
1990
1991
1992
1993
1993
1995
1996
1998
1999
2000
2000
2003
2003
2004
2004
2004
2005
2006
2007
2008
2009
2010
2010
2010
2010
2011
2012
2012
2012
2012
2012
2013
2013
2013
2014
2014
2015
2015
2015
2016
2016
2016
2016
2017
2017
2017
2018
2018
2018
2019
2019
2019
2019
2019
2020
2020
2020
2021
2021
2021
2021
2022

L-1
c

Y

c

c
c

Y

Y

Y
Y

Y

Y

c
Y
Y

Y

Y

Y

Y
c

c

L-2
c

Y

c

c

Y

Y

Y

Y
R

Y

Y

Y

c

c

c

L-3
c

Y

Y

c

Y
Y

Y

c

c
Y

c
Y
c

Y

Y

c
Y

c

Y
Y

Y
Y
c
Y
c

Y
c
c

L-4
Y

c

c
c

c

c

c

c

c

c

L-5
c

c

c

Y

c
c

c
Y
Y
c

Y

Y

Y
c

c

c
c

c
Y

L-6
c

Y

c

Y

c
Y
c

c

Y

c

c
c

c

c

c

L-7
c

c

Y

c

c

c

c

c
Y

Y

c
Y
c

L-8
Y

c

Y

c

Y

c

c
Y
c

Y

c
c

Y

c
Y

Y

L-9
c

L-10 L-11
R

c
c

c

Y
Y

Y

Y
c

Y
c

Y
Y

Y

Y

Y

c
Y

Y

L-12

Y

Y

Y

c

Y

c

c

L-13

Y

Y
Y
Y

Y
Y
Y

Y

Y

Y

Y

c

Y

c

Y

Y

Y

L-14

c

c
c

Y
c

c

Y

L-15

Y

L-16

c

Table 3.1
Prior letter-fitting automation projects indexed by axioms addressed. A green disc indicates implementation; a dashed box indicates
citation of the principle; a red x indicates rejection of the principle. Grey backgrounds denote incomplete publicly-available detail. The
totals shown on the outer edges for rows and columns count implementations only, not citations.

total
2
1
0
0
5
1
1
1
4
0
0
1
1
1
1
2
2
3
1
1
0
0
2
5
0
2
0
5
1
1
0
2
3
3
0
4
1
0
0
4
0
0
0
2
4
1
0
3
0
2
0
4
0
1
1
2
3
2
0
4
0
1
0
1
1
0
1
0
1

13 8 16 1 7 4 4  8 0 0 12 4 15 2 1   0

70

Finally, several projects are included in the list even though the project
itself is not a tangible mechanism or a piece of computer software. This
choice goes back to the definition of ‘algorithm’ used in this research, as
defined in chapter 1. Walter Tracy’s heuristic system is the key example
here. Tracy recorded his method in Letters of credit as a didactic distillation
of his professional experience. There can certainly be a grey area between
plain written advice and a heuristic algorithm, but Tracy’s explanation of
his letter-fitting process is precise enough in its formulation of fitting to
warrant considering it an algorithm. The decision to include Tracy’s
heuristic method is bolstered by the fact that other implementation
projects cite it as the foundation on which their own, newer work builds —
such as Sousa’s heuristic.

Some interesting patterns are easy to observe in the table. Most
projects implement only one or two axioms; the projects focused on
developing a statistical model for fitting often implement none — perhaps
assuming that useful patterns emerge from the statistics alone. Tracy’s
method cites and implements ten axioms in total (as does Sousa’s method,
derived from Tracy’s), perhaps providing a clue as to its lasting popularity.

The axiom implemented most often is L–3: Inter-letter Area Equality,
followed by Axiom L–13: Shells of Space and Axiom L–1: Profile Similarity.
The Axiom L–13 implementations, however, were clustered mostly in the
1980s and 1990s, noticeably tapering off after 2000.

Implementation and citation counts are not the full story, of course.
Some axioms may go uncited because they are assumed to be true and
well-known rather than because they are ignored; this particularly applies
to Axiom L–1 and Axiom L–2: Profile Reflection (which were noted in
chapter 2 as being self-evident to some sources in the literature).
Conversely, projects that attempt only to generate kerning lookups for a
typeface might expect that the typeface being kerned already has ‘correct’
fitting in the default sidebearings for all its forms. Thus, the promotional
literature and manuals for kerning-only projects may cite multiple axioms
that they do not implement, on the assumption that the cited axioms will
have already been employed to fit the sidebearings of the font, before the
kerning process begins.

The table also does not capture when and how projects are historically
connected. For example, Peter Karow and Margret Albrecht’s work at URW
reportedly continued from the force experiments through the kf module in
URW’s hz-program suite (Karow 1998); some of the same concepts found
their way into URW’s Kernus, which was later integrated into DTL’s
KernMaster (Espinoza et al. 2016). Later, hz-program was licensed to Adobe,
and reportedly became the basis for ‘Optical Spacing’ features in several
Adobe desktop products (Karow 2015). The AFDKO spacer from Adobe cites
similar ideas, but it appears to be original code. Frank E. Blokland directly
supported the development of Kernagic, DTL LetterModeller, and LS
Cadencer (Blokland 2016; Schneider 2016), and indirectly inspired

71

Impallari’s spacing macro (Impallari 2012), which explains their similar
feature sets. The exchange of ideas is ongoing and often cyclical.

Some gaps in the table are notable. Perhaps curiously, the axiom that is
the most frequently cited, L–5: Vertical Stroke Rhythm, has been
implemented far less often than it has been cited. There are also three
axioms (L–9: Single-Stroke Supplement, L–10: Adjacent Extender
Supplement, and L–16: Diacritic Form Independence) that occur in the
literature but are not explicitly implemented, and two (L–4: Triplet
Centring and L–15: Upward Aperture Reduction) that have only been
implemented once. This is most surprising for Axiom L–4 , because that
axiom is universal in its claimed domain and is quite frequently referenced
in the literature.

This assessment of the prior work provided practical starting points
when moving forward with this research. For those axioms where
implementations were available for examination, the implementations
were studied as well as compared with each other on correctness and
efficiency. For some axioms with few known implementations, patterns
observed in the prior work revealed several categories of potential
difficulty that would need to be addressed for any new algorithm. In the
discussion that follows, the axioms are considered in three groups: the
axioms for which an implementation is clear, the axioms which are
difficult to implement because their formal definitions are lacking, and the
axioms which are well-defined but have unresolved questions warranting
further investigation.

3.2 Axioms with clear implementation and parameterization

Several of the Latin text fitting axioms are straightforward to implement.
Here, the term straightforward does not mean to imply that an axiom is
simple or can trivially be turned into a function and left to run with no
user interaction. Instead, calling an axiom straightforward means that it is
clear what measurements and decisions are involved, what form the results
will take, and, if there are parameters that should be left for the typeface
designer to choose, it is clear how the chosen parameters work. This set of
axioms includes the axioms that specify spaces of equal inter-letter area:

• L–1: Profile Similarity
• L–2: Profile Reflection
• L–3: Inter-letter Area Equality

The framing of these axioms and their implementation in prior work
shows that the areas they refer to can be calculated in the normal
geometric sense — as opposed to being optical judgments without a
straightforward definition. Thus, the areas involved can be calculated
directly from within a font editor or a font file. Many recent projects
compute the inter-letter areas directly from the Bézier vector contours;

72

older implementations often rasterized the vectors or were used on bitmap
fonts, in which case counting the filled and unfilled pixels is similar but
provides less resolution.

As was noted in the discussion of Axiom L–1 in chapter 2, the only
lingering question is whether the algorithm can determine which profiles
to consider similar without user intervention. There is little prior work to
draw on concerning automatically classifying forms by similarity. David
Březina explored modelling the visual coherence of forms as perceived by
readers (Březina 2018), but did not explore profile shapes or classification
by group explicitly. Sebastian Kosch’s Fittingroom, a JavaScript fitting-
automation project, undertook the grouping of typeforms with techniques
often used in machine-learning classifiers (Kosch 2015). But the more
common approach is to pre-define groups of letterforms based on the
traditional constructions in Latin letters, and enable the user to make
changes to the groupings only if the user wishes to use an atypical design.
This approach is used in LetterModeller and LS Cadencer (Blokland 2016;
Schneider 2015).

If one assumes there is a means available to determine which typeforms
each axiom covers, then several of the remaining axioms that apply to a
limited set of typeforms and are framed as exceptions to Axiom L–3 are
also clear:

• L–9: Single-Stroke Supplement
• L–10: Adjacent Extender Supplement
• L–15: Upward Aperture Reduction

with the addition of a parameter. That is to say, it is not ambiguous how an
algorithm would implement increasing or decreasing the space in these
cases. The size of the various exceptions requires a concrete decision,
which becomes the parameter tunable by the user.

Adding a user-tunable parameter also suffices to handle two other
axioms:

• L–6: Interior-Exterior Balance
• L–8: Fixed-Height Measurement

which are both straightforward to implement once the parameters have
been determined. Both of these axioms, notably, are universal in the
typeforms that they address, so the tuning of the parameters may require
some careful consideration by the user of the fitting algorithm: any
adjustments to the parameters would potentially impact many typeforms.

The relationship between the internal space of n and H and the inter-
letter area was discussed in chapter 2, where it was noted that the
literature of manual fitting left some leeway regarding the precise ratio
between the key form’s internal counter and the inter-letter area. The
same is, broadly speaking, true for the baseline-to-x-height measurement
limits. For some typeface designs, it might make sense to allow the user to

73

adjust one or the other by a few grid units to capture all of the details in
the letterforms.

From the perspective of implementing a fitting algorithm, however, the
more crucial factor is that the ‘baseline to x-height’ measurement zone
applies to lowercase Latin letters and to the typeforms that are fitted to
work with them. A real-world algorithm implementation must take that
into account, permitting different measurement zones to be defined for
capital-to-capital fitting as well as, perhaps, to numerals, punctuation, and
symbols. Therefore the measurement-zone parameter should not be a
single zone, but should instead be a set of potentially several such zones for
differing sets of typeforms.

The parameter question is perhaps marginally more difficult for the
diagonal-profile axiom:

• L–12: Diagonal Profile Limit
Here, too, the addition of a parameter is certainly required. What
distinguishes Axiom L–12 from the previous, ‘exception’ axioms is that the
axiom asks for an absolute-space measurement rather than a relative-space
adjustment. Thus, the parameter the user chooses is something that the
algorithm must test for, rather than just adding or subtracting to the
sidebearings determined by the other axioms. This matters because the
value of the ‘minimal’ space is absolute, but it is not defined by the axiom
itself. In extremely heavy or bold weights, it is easy to find examples where
manually-fitted typefaces use negative sidebearings for the diagonal-
profile letters.

Adding a parameter would also make the two prohibitive axioms:
• L–11: Collision Avoidance
• L‑14: Enclosure Avoidance

clear, by establishing tolerances for what the algorithm should consider
‘colliding’ and ‘overlapping’. Zero might be a plausible tolerance in either
case but, regardless of the chosen tolerance, these axioms can be more
complicated to implement, because testing Bézier vectors for overlaps and
collisions is more difficult than comparing measurements of areas. Even
when comparing adjacent forms as vector outlines, collisions and overlaps
can happen in any direction. Furthermore, when comparing rasterized
adjacent forms, one must also grapple with pixel-alignment and anti-
aliasing.

Finally, the axiom addressing diacritic forms:
• L–16: Diacritic Form Independence

is straightforward to implement because it deals with how typeforms are
classified before any of the other axioms come into play. There are still
some practical hurdles to consider, such as the various ways in which
diacritic forms can be encoded in Unicode. But, by and large, it is not
ambiguous to say whether or not a diacritic letterform should be

74

considered a separate letter: if in doubt, an algorithm can treat it as a
separate form without ill effect.

3.3 Axioms lacking theoretical details needed for implementation:
rhythm and shells

Of the four Latin text fitting axioms not discussed in the previous section,
two were identified as possessing underlying issues of clarity or precision
that would make their practical implementation in a fitting algorithm
difficult. Namely, the vertical-stroke-rhythm axiom (L–5) has not been
specified to precision that can be implemented in algorithmic terms, and
the shells-of-space axiom (L–13) is missing a unified theory that describes
how the shells themselves are devised — rendering the axiom an adequate
way of describing spaces, but incomplete as an approach to determining
spaces.

3.3.1 Analysis of the vertical-stroke-rhythm axiom
The vertical-stroke-rhythm axiom (L–5) ranks high among the most-cited
general principles of Latin text fitting literature. As was noted in chapter 2,
it is linked to the historical Latin calligraphic and handwriting tradition, a
connection which perhaps makes it an alluring notion to appeal to.

It can be seen by direct measurement that, in well-designed manually-
fitted typefaces, the exact stroke-to-stroke distances often vary in different
letterforms, even when those letterforms share the same profile shapes.
(See figure 3.1) This is a distinct difference from the equal-inter-letter area
axioms discussed in the previous section, for which the statements that
areas should ‘appear equal’ can be shown to translate into direct
measurements.

The variance observed in stroke-to-stroke distances is not entirely a
surprise, because each letterform is subject to the needs of other design
goals and optical compensations. But it calls into question whether
evenness in vertical stroke rhythm is contingent on some identifiable
tolerance. Frank E Blokland, a strong advocate for vertical stroke rhythm,
presents the illustration in figure 3.2 as evidence that Adrian Frutiger
designed typefaces with a deliberately even stroke rhythm, but the strokes
in the image vary in their alignment to the rhythm markers by close to a
full stem width. If the acceptable tolerance for vertical stroke rhythm is on
the order of the width of a stem, then perhaps vertical stroke rhythm is
not precise enough for use in an algorithm.

But this variation cannot be merely a matter of matching the tolerance
to the measurement precision, because the literature also supports the
idea that rhythm is not a precise stroke-to-stroke measurement. Several
sources note that sans-serif designs are typically fitted closer than serif
designs, which means that the stroke-to-stroke distance within straight
letters is different from the stroke-to-stroke distance between straight
letters (Karow 1994, p. 182; Mengelt p. 38; Beier 2017, p. 131). (See figure 3.3)

The precise stem-to-stem
distances, in font units, can be
unequal, but the typeface may
still be regarded as exhibiting
vertical stroke rhythm
(illustration by the author). Font
shown: Brill Roman.

Figure 3.1

270 238 264 243 253 260 262 251 253 268

The red lines, present in the
original, are evenly spaced, and
can be seen to align at different
horizontal positions on different
stems. (Blokland 2016, p. 115)

Figure 3.2

In sans-serif designs, vertical
stroke rhythm may not be seen in
a simple stem-to-stem
measurement (Beier 2017, p. 131).

Figure 3.3

75

In italic typefaces, it is further noted that the strokes themselves are
typically set at different angles for different letterforms (Unger 2018, p.
134; Beier 2017, p. 165). Despite these acknowledged exceptions, vertical
stem rhythm is still cited as an applicable design principle for those
typeface styles. Some sources even advise that overly exact rhythm is
aesthetically undesirable in a typeface.1 Walter Käch wrote ‘the rigid
repetitive effect of absolutely equal characters cannot give to the whole
appearance the liveliness of rhythmical undulations’ (Käch, p. 13). The
problem faced by a fitting algorithm is whether the ‘liveliness of rhythmic
undulation’ can be prescribed precisely enough to be implemented in
practice, or if the large tolerance and the number of exceptions permitted
render it too abstract.

Analysis of visual rhythm at the page level has been conducted
independently by Sergei Egorov and William Berkson, both using Fourier
transforms, which convert the spatial patterns of the typeset pages into
the frequency domain.2 In both projects, the results revealed common
rhythmic patterns across the pages examined: Egorov in leaves from Aldus
Manutius’ 1519 Cassisus Dio and Berkson in pages from William Caslon’s
1766 specimen book (Egorov 2005; Berkson 2010). But neither project
attempted to define that rhythmic structure; both were content to
demonstrate it visually. (See figure 3.4) More to the point, neither project’s
analysis provides a method to begin with a rhythmic structure and use that
structure to determine the sidebearings for letterforms.

Several prior fitting-automation works have implemented the stroke-
rhythm concept as either the sole or primary method for determining
fitting. The Impallari macro, DTL LetterModeller, and LS Cadencer
implementations each start with a standard rhythm value that is said to
provide sidebearings for the forms, but all three tools apply this standard
rhythm value only to letters that are defined as having a straight profile on

1. Wilkins et al. 2007 found that overly exact rhythm can negatively impact reading, with words
perceived as ‘striped’ resulting in poorer word recognition and reading speed.
2. Roger Watt also investigated techniques for using frequency-based analysis on pages of typeset text.
Watt’s investigation, however, focused on word space and line spacing (Sassoon et al. 1993, p. 178–201).

Egorov ran Fourier transforms on
images of Aldine italic leaves,
then visually identified
frequencies that appeared to
match stems of letterforms,
connecting strokes, and other
page features. The grey lines are
Egorov’s visualization of the
frequency for stems, not the
output of the Fourier transform
itself (Egorov 2005). Used by
permission.

Figure 3.4

76

both sides.3 For the remainder of the typeface, all three implementations
provide tables of pre-determined numerical adjustments that are assigned
to specific letters. Users have the ability to alter the tables of adjustments,
but no guidance is supplied for how to choose appropriate values. (See
figure 3.5)

The values of the pre-determined adjustments provided originated from
Blokland’s detailed analysis of Renaissance metal types. Blokland is open
about stating that connection for DTL LetterModeller and has advised type
designers that the numbers are bound to specific typeface styles and are
not to be expected to work beyond the confines of the styles defined
(Blokland 2019). For general implementation, though, an approach relying
on manually pre-determined adjustments leaves algorithms without a
starting point.

Moving away from pre-determined models, stem rhythm can be
trivially measured for the letterforms and profiles that feature literal
stems — that is, for straight profiles. For round profiles, an approximation
to a stem can be made by adjusting for the overshoot (indeed, this
adjustment is included in the pre-determined tables provided by the
Impallari macro, DTL LetterModeller, and LS Cadencer). This simple
approach to stem-approximation breaks down, however, in diagonal
profiles, concave profiles, and profiles that are divided.

An alternate approach to applying the stem-rhythm axiom to letters
without explicit stems is to calculate the ‘ink projection’ of each
letterform, resulting in the shadow of the form, as it were, and to look for
stems based on the peaks in the ink projection: the vertical slices of the
form where the ink projection has the most ink ostensibly represent the
closest approximation to an explicit stem. This technique has been
implemented in Kernagic and in RhythmInfluencer. (See figure 3.6)

Practical problems are quickly evident with this approach. First, some
diagonal and concave profiles may not produce peaks at all. This makes the
ink-projection approach effectively invalid for these forms. Second, stems,
by definition, have width — but peaks in the ink projection may not. Thus,
to assign a ‘virtual stem’ to a peak in the ink projection, decisions must be
made as to where to align the left and right boundaries of the virtual stem
in relation to the peak. Third, there are several forms, particularly in serif

Above: LS Cadencer cites vertical
stem rhythm as its fitting
principle (RevolverType 2019).

Below: LS Cadencer provides per-
letter adjustments in order to
make the generic stem rhythm
align with Renaissance types
(screenshot by the author).

Figure 3.5

RhythmInfluencer determines
virtual stems by calculating an
ink projection of each letterform.
Notably, the illustration omits
several forms that produce
projections difficult to turn into
virtual stems (Renckens 2020).

Figure 3.6

3. The adjustment values are indeed specified by letter, not by the shape of the form. This is possibly
because, as will be seen, the three implementations are each limited to particular typeface styles that
follow historical type conventions for form and proportion.

77

designs, that can produce phantom peaks in the ink projection because the
serifs, terminals, and other features cause interference. (See figure 3.7)

Another significant difficulty encountered when implementing this
axiom is that widths of the letterforms are different in all but the simplest
cases. Thus, the rhythm of the stems measured in a sample will have
inherent variances because of the letterform widths, which in turn means
that the sequence of letterforms used in a test sample to measure the
rhythm will alter the result. The word minimum will exhibit one rhythm,
adhesion a different rhythm: neither result is inherently more correct
than the other.

For this research, techniques for calculating a general stem rhythm for
a typeface based on the strokes of key letterforms (n or m) were
investigated practically, because it offered a straightforward line of inquiry.
However, the resulting fitting was inconsistent and far from the original
manual fitting for all non-straight profiles, with gaps between some forms
and collisions between others. The number of forms needing correction
outnumbers the number of forms solved.

The nebulous nature of these issues does not disprove the importance
of rhythm in typeface design or of Axiom L–5 in fitting. It does, however,
demonstrate that visual rhythm is a complex and layered subject posing
deep questions that have yet to be explored. As the axiom is typically
stated, stroke rhythm alone is not sufficiently precise to calculate
sidebearings. This helps explain why the Impallari macro, DTL
LetterModeller, and LS Cadencer may have resorted to supplying
predetermined adjustments for specific letterforms in specific styles, but
makes the axiom problematic for implementing a fitting algorithm.

3.3.2 Analysis of the shells-of-space axiom
The shells-of-space axiom (L–13) exhibits a similar degree of ambiguity:
like the previous axiom, it is believed to be true by many in the field of
typeface design, but the way it is formulated in the literature and prior
implementations omits details necessary to make it automatable in an
algorithm. Specifically, there is not a formalized theory defining the
dimensions of the shells or how the shapes of the shells adapt to particular
constructions of typeforms. Without such a definition, shells are not
something that an algorithm can create.

This may sound surprising, considering how many prior shells-of-space
implementations exist. But a closer examination of those projects reveals
that they largely relied on pre-determined shell construction, or were
limited purely to detecting collisions rather than providing sidebearings.

The notion of shells-of-space that surround all typeforms was popular
from the 1970s through the 1990s via the ‘sector kerning’ mechanisms in
some typesetting software as discussed in chapter 2. But the sizes and
geometries of the shells are rarely specified beyond the most basic
prohibition that forms should not overlap and collide.

Ink projections for some forms
and typeface styles may be
significantly more difficult to
convert into stems. The peaks in
the top-left ink projection may be
more easily identified with stem
locations than the other three
(screenshots by the author).

Perhaps notably, Renckens 2020
does not use these more difficult-
to-interpret letterforms in
illustrations. (Fonts shown: STIX,
upper right; Fira Sans Extra
Condensed, upper left and
bottom left and right.)

Figure 3.7

s s
z y

78

The earliest patents relating to sector-kerning implementations in
typesetting software perhaps provide clues as to why. Sector kerning
implementations of the era were developed as an alternate method of
storing fitting data for digital fonts at a time when computer memory and
storage was relatively expensive (compared with current systems). Namely,
storing a pairwise table of kerns for N typeforms would require N 2 table
cells, but storing a table of sector-kerning values instead always requires
far fewer cells: 2 × N × number-of-sectors (that is, two profiles for each
form, multiplied by the number of sectors).

To illustrate this difference, Bell Telephone’s 1973 patent specified
three sectors per form; Gerber’s 1986 patent specified four. (See figures 3.8
and 3.9) In 1985, Naiman cited the popularity of sector kerning including
the storage-and-memory-efficiency of the technique, using eight sectors
per form as the example.3 Even with eight sectors per form, a sector-
kerning table is smaller than a pairwise kerning table for every font with
more than 16 forms. A minimum of 52 forms are required for the Latin
lowercase and capitals, of course; even at the time, a standard font could be
anticipated to contain 100 forms or more (Naiman 1985, p. 77).

Storage and memory concerns aside, however, the early sector-kerning
products provided no theory or guidance as to how a typeface designer or
typographer should determine the values used to define the shell. In
particular, what is missing from these implementations is some description
for finding the optimal distance at each sector level; the widths of the
sectors for each form are assumed to be either predetermined or to be
established by the user. Ward Nicholson, in his detailed letter to The Seybold
Report, offers a glimpse into what the process would have been like. A
considerable time investment and manual effort was required of the
typographer to evaluate and adjust the fonts, but once the sector-kerning
tables were determined, they could be relied upon for any subsequent
printing job (Nicholson 1990).

Tellingly, the patents indicate that the procedure for applying the
sector kerns when typesetting the text was simply to shift the adjacent
forms closer horizontally until the first contact between the shells
occurred, which means that only a linear-distance separation was
measured.

But it is clear from some of the illustrations that the shells were not a
simple expansion of the profile shape by some fixed horizontal distance;
open counters could be filled in and special treatment could be paid to
diagonals. (See figure 3.10) So additional complexity was involved when the
shells were defined, even though no theory was expressed as to how to
construct the shells; it was assumed to be a task performed manually and
judged by eye.

Eventually, more efficient data formats for storing kerning information
were invented; instead of an N-by-N table with a cell for every possible pair
(with many of those cells remaining empty because the pair required no

3. Regrettably, Naiman did not identify the vendor of the sector-kerning system referenced.

Bell Telephone’s 1973 sector-
kerning patent stored three
sector-bounds per letterform,
depicted in this image as dots
(Mathews 1973, p. 2).

Figure 3.8

Gerber’s 1986 sector-kerning
patent stored four sector-bounds
per letterform (Logan 1986, p. 6).

Figure 3.9

A sector-kerning example shown
by Naiman. The width of the
sectors for T are not a simple
expansion-by-fixed-distance.
Similarly, the sector completely
fills in the aperture on the left
side of a (Naiman 1985, p. 81).

Figure 3.10

79

kerning), ‘short kerning’ tables were invented that only required storing a
list of the pairs requiring a kerning adjustment (Karow 1994, p .389). That
‘short’ list could, hypothetically, be as long as the typeface designer wished
to make it, but as a practical matter, it is always far smaller than the ‘long’
format. As that format took hold in the type industry, sector kerning fell
out of favour in the commercial market. The contemporary kern and GPOS
table formats described in chapter 2 are fundamentally the same as the
short format: only those pairs needing a kern are stored.

In 2015, Toshi Omagari revisited sector kerning with his BubbleKern
software utility. BubbleKern worked on the same core principle: given a
shell of space defined for every typeform as input, the BubbleKern engine
can calculate the kerning adjustments needed to shift any pair of adjacent
forms closer together until the shells touched (Omagari 2015). Two key
implementation details distinguish BubbleKern from the older sector-
kerning tools. First, BubbleKern is a plug-in integrated into a font editor,
which allows it to work directly with the Bézier contours at their native
font-unit resolution, rather than the lower-resolution bitmaps of the
earlier sector-kerning systems. (See figure 3.11) Thus BubbleKern can be
used to generate shells with infinitely many ‘sectors’ (as they would have
been termed in the sector-kerning era). The second is that BubbleKern
outputs its results in a standard GPOS feature, rather than a specialized
sector-kerning table. This means that fonts modified with BubbleKern
should work equally well on any platform — unlike sector-kerning tables,
which were typically only usable within the sector-kerning vendor’s own
typesetting system.

From the theoretical perspective, however, BubbleKern still does not
posit a complete theory for automatically generating the shells of space
that surround a typeform. BubbleKern includes a basic generator to create
an initial shell by expanding from the form by a fixed distance, and there
are hints in the BubbleKern user manual for typeface designers to improve
on these initial shells by editing them manually. But creating the shells
remains a manual responsibility left to the typeface designer.

This lack of theory describing the shells inhibits implementation in an
algorithm. Specifically, if one considers the width of the shell: expanding
the contours of a typeform by 10 units and expanding the contours of the
same typeform by 25 units would both create equally valid shells, in the
absence of some further conditions dictating what the necessary shell
must look like. Without an answer to that fundamental question, a shell of
any size greater than zero can certainly prevent collisions, but the shell
model cannot be automated further.

Occasional attempts have been made to propose novel means for
generating the shells. Independent type designer Peter Wiegel posited in
2012 that blurring images of letterforms would produce a shell-like field,
although it is not clear that he implemented the concept (Wiegel 2012).
(See figure 3.12) In 2004, a Canon patent suggested perturbing the outlines

BubbleKern, running as a plug-in
to the Glyphs font editor
(screenshot by the author).

Figure 3.11

Wiegel’s proposed method for
automatically generating shells
(Wiegel 2012).

Figure 3.12

80

of the letterforms by replacing the smooth contours with sine waves and
treating the resulting modified outline much like a shell. (See figure 3.13)
Although different in their approaches, it is noteworthy that the final
effect of both of these methods is simply to expand the typeform outward
in every direction and call the resulting shape the shell.

Several more recent efforts to explore the notion of shells have focused
on Arabic fonts, notably the Octabox method developed by Martin Hosken
(SIL 2017) and Simon Cozens’s Kern Determiner (Cozens 2022).

Both of these recent efforts focus solely on preventing collisions. Kern
Determiner creates a shell by expanding the typeform outward by a fixed
distance, although it does so in two dimensions rather than only
expanding the form horizontally. (See figure 3.14) The Octabox method
creates its shell by drawing a bounding box touching the form on all four
sides, then intersecting that with a second bounding box drawn the same
manner at 45-degree rotation. (See figure 3.15) These techniques are both
more sophisticated than the simple fixed-distance horizontal expansion of
sector kerning, but it is not clear to what degree either would work for
non-Arabic text (Latin in particular), and neither has yet been widely put
to the test. It must also be noted that both projects are limited in their
range: they define a way to prevent collisions and overlaps (as per the
prohibitive axioms, L–11: Collision Avoidance and L–14: Enclosure
Avoidanec), but they do not otherwise generate fitting values.

The lack of consensus about what constitutes a good shell impedes the
implementability of the shells-of-space axiom. Various approaches have
been tried, but the result has never amounted to more than a solution to
prevent collisions. The early implementations of sector kerning were
motivated by a desire to more efficiently use computer memory and
storage capacity, at the cost of requiring typographers to manually the
shells. It may be that the shells-of-space axiom as a whole constitutes a
different way of representing fitting data, or of thinking and talking about
space, but does not offer significant insights into determining fitting.

3.4 Axioms presenting unresolved questions: triplet centring and
open counters

The final two axioms in the Latin text fitting model prove challenging
because they are potentially implementable, but lack a widely accepted
definition for one or more key facets. In other words, the theories appear
complete and well-formulated in their inputs, outputs, and parameters —
in contrast to the axioms discussed in section 3.3 — but there are specific
missing pieces.

Canon’s proposed method for
generating shells by perturbing
letterform outlines with sine
waves (Browne et al. 2004, p. 5).

Figure 3.13

Kern Determiner marks a shell at
fixed distance, but following the
curves of the letterform (Cozens
2022).

Figure 3.14

Octabox shells are automatically
created by intersecting upright
and angled bounding boxes (SIL
2017). Used by permission.

Figure 3.15

81

3.4.1 Analysis of the triplet-centring axiom
Axiom L–4: Triplet Centring states that the middle letterform in a triplet of
letterforms should appear to be in the centre. It is clear from context in
discussions of this axiom that the centring involved is not merely a direct
measurement of equal linear distances nor of equal areas of space to the
left and right, but instead refers to the form itself appearing centred
between its neighbours.

Centring the form between its neighbours in the triplet, therefore,
depends on identifying the optical centre of the form in addition to
measuring the inter-letter areas. (See figure 3.16) This optical centrepoint,
once it is identified, would be straightforward to place on the coordinate
grid and use in measurements. But the definition of what that optical
centrepoint is and how to determine it has not been established.

As mentioned in chapter 1, David Kindersley explored the problem of
locating optical centrepoints in depth, beginning around 1961 and
continuing in some fashion until close to his passing in 1995. The output of
these investigations formed the core of LOGOS, a letter-fitting software
product marketed to commercial type manufacturers and other corporate
customers beginning in the early 1980s.

Kindersley first described the development of LOGOS in depth in An
essay in optical letter spacing and its mechanical application (Kindersley 1966), a
book that was updated in a 1976 edition (Kindersley 1976 C) with an
additional chapter covering the intervening ten years, then updated once
more in a 2001 edition that added a foreword by former LOGOS developer
Francis Cave discussing the progression of the project during Cave’s tenure
in the 1980s (Kindersley et al. 2001).

The core of the LOGOS fitting method is detailed in a patent granted in
1982 to Kindersley and his business partner from Cambridge University
Computing Laboratory, Neil Wiseman. The method starts by calculating the
optical centrepoint of each form. The project investigated several possible
formulae for that step; the patent describes what the project considered
most successful: the point that divides the letterform so that either side
produces the same value for a chosen mathematical moment.4 (See figure
3.17) The patent lists two options for the mathematical moment: the
second polar moment of area and the fourth polar moment of area; it also
suggests that the letterform could optionally be scaled or partially masked
out before the moment computations are made (Kindersley and Wiseman,
1982).

This concept of a point that splits the letterform into two halves that
each produce the same result from the chosen function is an extension of
one of Kindersley’s earliest investigations: measuring the light levels
transmitted by the shape of the letterform and locating the point at which

Above: an illustration of the
centring of letterforms in triplets
(Kindersley 1976 C, p. 16).

Below: Kindersley used the
‘balance’ metaphor to contend
that finding the optical
centrepoint of a letter in isolation
is a precursor to centring it in a
triplet (Kindersley 1962, p. 180).

Figure 3.16

Illustration of the calculation of a
mathematical moment for a given
letterform. (Kindersley and
Wiseman 1982, p. 3)

Figure 3.17

4. A moment in this usage is a mathematical quantity found by multiplying a static measurement of
some sort by a distance. For a comparison of the different moments investigated by Kindersley and
Wiseman, see chapter 4.

82

the left and right halves transmit the same amount of light. Kindersley
observed that the light-transmission calculations were not providing a
point that corresponded to his visual estimation of the forms’ optical
centrepoints. The search for a alternate mathematical formula that
matched Kindersley’s visual evaluations led to the options described in the
patent, although Kindersley expressed in correspondence to Wiseman that
the neither option enabled LOGOS to consistently produce acceptable
results for certain forms, namely, the strongly asymmetric forms like L, P,
F, and r (Kindersley 1976 A; 1976 B; 1977).

Crucially, however, the optical-centrepoint formula was just one
component of LOGOS, and the other major component is less clearly
supported by established letter-fitting theory. As discussed in chapter 2,
the centring of letterforms in a triplet only addresses the relative space on
either side of the letterform. To produce sidebearings for a form, the
relative spaces must be linked somehow to an absolute space.

Making this link was the second step in the LOGOS fitting method.
Kindersley’s original approach postulated that all optical centrepoints
should be spaced equidistant from each other horizontally, but it quickly
became apparent that that approach does not work when mixing wide and
narrow forms. Later versions of LOGOS dispensed with the equal-point-to-
point-distance idea and instead posited that there is a ‘characteristic
rectangle’ for each letter which would have the same mathematical
moment as the letter. The width of the characteristic rectangle would then
be measured, and LOGOS would assign it as the width of the letter, thus
linking the relative space of the centrepoint to an absolute space.

The question of how to build the characteristic rectangles was a
separate problem that occupied the project for some time; the LOGOS team
eventually settled on compressing the letterforms in the vertical direction
and constructing rectangles with side thicknesses that matched the
vertical and horizontal strokes thicknesses of the typeface being fitted
(Van Blokland 1986). (See figure 3.18) The formula for solving this
characteristic-rectangle relation for its width, given the stroke thicknesses
and the centrepoint of a letterform, is a complicated 5th-order polynomial
equation in six variables that does not have any generalized solution. Thus,
the LOGOS software could not implement a function to convert
centrepoints directly into characteristic widths, and instead pre-computed
the moments for a large set of possible characteristic widths and looked up
the closest match for each letterform. (See figure 3.19)

This was certainly an optimization necessary for practical reasons (once
the table had been precomputed, stored values could be looked up in
constant time), and indeed the mathematics behind the 5th-order equation
still have not been solved today. Regardless of the computational costs,
though, the characteristic-rectangle component seems to have been a
workaround imposed by the need to connect the centrepoint to a pair of

A lowercase o next to its
characteristic rectangle in the
LOGOS system (Kindersley 1976,
p. 32).

Figure 3.18

Scatterplot comparing the
computed widths of letterforms
against pre-computed standard
values. (Kindersley 1966, p. 10).

Figure 3.19

83

absolute sidebearings, rather than a discovery connected by a theoretical
model.

In the published account, Kindersley makes an atypical leap of logic by
declaring that, once found, optical centrepoints alone are sufficient to fit
letters. ‘Suddenly it dawned on me that the finding of centres and the
spaces were one and the same thing. Find the right centres and you will
then have in light value terms, through the wedge, the correct
space’ (Kindersley 2001, p. 21).5 Regrettably, unlike with the majority of his
research, Kindersley did not record investigations to document this
connection between optical centrepoints and widths. It is impossible to say
whether further work would have successfully resolved the remaining
issues in the LOGOS approach.

For this research project, though, the centrepoint-finding component
from LOGOS was deemed relevant for further investigation; first because
LOGOS is the sole known implementation of the triplet-centring axiom, and
second because it has not been explored in isolation from the canonical-
rectangle component. An unresolved question remains as to which, if any,
of the formulae presented as options for finding optical centrepoints
constitutes a formula suitable for determining centrepoints in the context
of a different triplet-centring implementation.

3.4.2 Open counters and concave profiles
The final axiom in the Latin text fitting set is Axiom L–7: Concave

Profile Truncation, which states that some of the area inside an open
counter should be considered external space that contributes to the total
inter-letter area between the profile and the adjacent typeform, while the
rest of the area inside the open counter should be considered internal
space. In the literature and the manual practices of letter fitting, this
principle is widely accepted. But it presents two practical difficulties for
implementing a fitting algorithm. First, there is no consensus on how
much of the area in the open counter is external and how much is internal,
nor where the boundary between the two is found. Second, there is not a
consensus on how to distinguish which profile shapes are truly an open
counter from those profile shapes that are merely marginally concave and
should not be processed with the open counters.

Fred Smeijers referred to the space within open counters as a ‘double-
function area’ and illustrated the vaguely defined boundary between
internal and external space with a hand-shaded hatched region that
deliberately does not show a fixed border. (See figure 3.20) But although
Smeijers stated that the boundary region in open counters ‘is certainly not
objectively exact or constant’, he added that he strongly suspects that
serifs play an importantly role to readers by partially defining the
boundary (Smeijers 1996, p. 32).

5. Kindersley used wedge to refer to the masking operation. The term originated from his earliest
research with measuring light transmission for letterforms; in those experiments, the mask was a
physical object presumably exhibiting some wedge-like characteristics..

Smeijers’ depiction of the “dual-
function” nature of open
counters (Smeijers 1996, p. 32)

Figure 3.20

84

Black Spacer clips into open
counters, cuts off open counters
at a fixed distance, and measures
some internal area reduced by a
fractional multiplier (Hornus
2016 A).

Figure 3.23

Three prior letter-fitting automation projects have implemented
related techniques for handling the double-function regions in open
counters: the kf module of hz-program, HT Letterspacer, and Black Spacer.
The higher-level approach is the same for all three: reduce the value
measured from the open counter shape, then use that reduced area in the
standard inter-letter-area computations used for all forms. The projects
differ in how they reduce the size of the open counter shape.

All three reduce the amount of space measured in open counters by
clipping the counter shape inward at fixed angles from the top and bottom.
HT Letterspacer clips in at 45 degrees by default (although this angle is
tunable), while kf clips in at different angles for the above and below
directions: by default, 42 degrees from above and 11.3 degrees from below
(the shallower angle from below chosen to adhere closer to baseline
serifs). (See figures 3.21 and 3.22) Black Spacer is only used internally at
Black Foundry, so its clipping angle is not documented, but screenshots
posted by creator Jérémie Hornus appear to clip in at roughly 30 degrees.

In addition to clipping the counter shape inward, HT Letterspacer and
Black Spacer also cut off the counter shape at a pre-determined distance
from the outer bound of the typeform. (See figure 3.23, over page) Black
Spacer adds a third technique that calculates the space in ‘hidden areas’
and scales down the calculated hidden-area contribution by a fractional
multiplier.6

Each of the three techniques: clipping into the open counter at an
angle, cutting off the counter space at a chosen distance, and fractionally
scaling the area measurement, serves to reduce the absolute amount of
measured area in one way or another. But none of the three is specified on
theoretical grounds: they work because they are capable of reducing the
measured area, and the user is expected to tune the parameters (cut-in
angle, cut-off distance, and scaling fraction) until the results match
expectations.

A fourth project, CounterSpace, implements a distinctly different
technique that reduces the area measured inside open counters by drawing
a shallower counter boundary. CounterSpace’s higher-level approach to
fitting also differs, however. The area within the shallower substitute
counter is not measured and directly incorporated into a calculation of
inter-letter area. Instead, the entire substitute profile is used in a
computation based on estimating the intensity of simulated lights between
the letterforms. (See figure 3.24)

The second difficulty with implementing the open-counter axiom is, in
a way, more fundamental: the determination of how concave a profile must
be in order for it to be considered an open counter. In the literature, the
list of forms exhibiting open counters is generally predictable. In the Latin
lowercase, c, e, s, and z are almost always included; k and x may be

6. From the illustrations posted online, the ‘hidden areas’ appear to be area within the open counter
but blocked by any protruding portion of the profile.

HT Letterspacer clips into open
counters and cuts off the open-
counter area at a user-specified
fixed distance from the extreme
edge of a profile. HT Letterspacer
treats the green area as external
space (HT Letterspacer 2016).

Figure 3.22

Examples of the effects that
choosing different clip-in angles
can have on the area measured as
inter-letter space in an open-
counter form. kf treated the
shaded regions as internal space
(Karow et al. 1992, p. 7).

Figure 3.21

CounterSpace partially fills in an
open counter with a shallower
curve. CounterSpace treats the
yellow area as internal space
(Cozens 2019).

Figure 3.24

85

n t
The left side of n is not usually
considered an open-counter or
concave profile, even if the serifs
technically surround some space
on three sides. The right side of t
might be more readily considered
concave, depending on the style
(illustration by the author). Font
shown: Gentium Plus.

Figure 3.25

included as well, although those are sometimes grouped with the diagonal
profiles. But lists such as these inevitably are pinned to historical tradition
and dependent on the constructions of the letterforms: a is often included
because the two-storey construction is more traditional; but it is omitted
when the typeface uses the single-storey construction a that demonstrably
does not have an open counter. Although it suffices to tell a typeface
designer how to approach open counters and rely on the designer to
correctly identify which forms need to be included, requiring
foreknowledge of the construction to know whether the fitting axiom is
relevant inhibits defining an algorithm: the algorithm must know whether
the typeface’s ‘a’ glyph uses the a or a form. The responsibility for
determining the construction of the glyph could be offloaded to a human
user, but determining it automatically is more difficult, raising the same
issues as automatically classifying forms by profile shape (see § 3.2).

It is possible to measure the curvature of the contours on the profile to
decide if the profile is concave, but ambiguities can occur. For example, few
readers or type designers would classify the left profile of n as exhibiting
an open counter, even though the serifs on the top and bottom make the
left profile concave in the mathematical sense. Considerably more
ambiguous are letterforms like t which, in a wide construction, can
plausibly form an open counter on the right profile. (See figure 3.25) The
asymmetrical forms r, f, F, L, and P can also be difficult to classify, because
there is not consensus on whether the unbounded areas above the
horizontal beam of L or below the overhangs of the other forms should be
considered open counters, or if those letterforms should instead be
handled like the diagonal-profile forms. The inward-angled clipping
technique employed by the kf module of hz-program, HT Letterspacer, and
Black Spacer have the effect of treating these unbounded profiles like open
counters, but it is not clear to what extent that is a deliberate choice or an
accident. The kf patent filing, for example, specifically illustrates the use of
a variety of clip-in angles for C and F, and the accompanying description
states that different angles may be chosen depending on the form. (See
several of the options depicted in figure 3.21)

In summary, the practical questions of a concave-profile-area
implementation begin with how to decide whether or not a particular
letterform should be subject to the concave-profile-area axiom. For a form
classified as sufficiently concave, the remaining question is how to reduce
the amount of area in the open counter that is counted toward inter-letter
area. There are techniques to choose from, but the merits and trade-offs
between the techniques could benefit by further investigation: how far
into an open counter to measure, how to divide the open-counter area into
interior and exterior portions, and what (if any) clip-in strategy to use.

86

3.5 Summarizing the practical considerations

The preceding analysis of the Latin text fitting axioms and of the prior
fitting-algorithm implementations revealed several possible lines of
inquiry worth practical investigation. The axioms that are clear in their
definitions of the measurements, decisions, and parameters involved were
determined in this research to be readily available for any implementation.
The two axioms lacking theoretical detail — Axiom L–5: Vertical Stroke
Rhythm and Axiom L–13: Shells of Space — were determined to be less
suitable for implementation in a practical algorithm at this stage. The
missing theoretical detail in these algorithms does not suggest that they
are fundamentally untrue, but suggests that there is some ambiguity about
the meaning of the underlying axiom itself.

In contrast, the triplet-centring axiom (L–4) and the open-counter-
truncation axiom (L–7) are less ambiguous at the theoretical level, instead
exhibiting unresolved questions that are more akin to implementation
details. Furthermore, the open-counter and triplet-centring axioms could
potentially provide fitting solutions for letterforms that are not easily
addressed by the straightforward axioms. For example, the open-counter
axiom would apply to several of the forms which Tracy left off of his
heuristic model and said ‘must be spaced visually’: a, f, g, s, t, and z in the
lowercase and S in the capitals (Tracy 2003, p. 71) and to profiles cited as
problematic by Dwiggins: a, c, e, f, g, k, r, t, and s (Dwiggins 1940 B, p. 6).
For his part, Kindersley focused considerable experimental time on the
letterforms with concave profiles (C and L in particular) because they were
not easy to fit.

Consequently, it was decided to investigate the possibility of finding
solutions for the unresolved questions of axioms L–4 and L–7, and attempt
to derive an algorithm for fitting Latin text that utilizes a composite of
those axioms and the straightforward axioms.

87

4. Algorithm construction

Chapter 3 evaluated the axioms of the Latin text fitting model on practical
grounds, with an eye towards constructing an algorithm useful for fitting
Latin text typefaces. The evaluation revealed two axioms that warranted
special investigation because they present unresolved implementation
questions, but are rooted in well-known, unambiguous theories.

This chapter will first detail the investigation of those axioms and the
development of practical implementations of the axioms. This will be
followed by the construction of a testable letter-fitting algorithm that
applies the new implementations for certain typeforms in composite
fashion, relying on other axioms for other typeforms.

4.1 Preliminaries

Constructing a full implementation of a letter-fitting algorithm based on
the axiomatic model involves implementation considerations that must be
made up front, in addition to the practical decisions that must be made
along the way.

First, it must be recalled that axioms L–4: Triplet Centring and L–7:
Concave Profile Truncation were identified in chapter 3 as needing further
investigation. But neither axiom alone nor the two axioms together are
sufficient to fit a large enough set of typeforms to set real-world text.
Specifically, neither of the axioms addresses absolute space: Axiom L–7 is
explicitly concerned only with relative space, while Axiom L–4 addresses
the relative spaces in a triplet, in conjunction with the positive form itself.
All of those relative spaces must be transformed or otherwise linked to
absolute spaces in order to output sidebearings. Furthermore, axiom L–4
applies only to those typeforms with open counters or concave side
profiles, which is a minority of the Latin alphabet.

One or more other axioms, then, will require implementation in order
to fit a typeface. It was noted in chapter 2 that multiple subsets of axioms
may address the same forms. Several high-level strategies for selecting the
axioms to implement are worth contemplating. An algorithm might
attempt to implement every axiom in the model, which would introduce
new questions of how to resolve discrepancies whenever two axioms
output different sidebearings for a form. Alternatively, an algorithm might
attempt to implement the fewest axioms necessary to fit all of the forms,
which would entail selective judgment about which axioms to omit. Other
strategies might fall somewhere in between these extremes.

For the sake of practicality, it was decided in this research project to
pursue choosing a minimal set of axioms that can fit the typeforms of
interest, and to prioritize the more-frequently-cited axioms and the
axioms with straightforward implementation details when making the
selection. There are, perhaps, typeface designers who employ a manual

88

process closer to the ‘use every axiom’ strategy, but for this research a
simpler algorithm is advantageous. First, it is more direct to implement,
but second, a simpler configuration makes it easier to interpret test results
of the algorithm as a whole and for individual typeforms.

The set of straightforward axioms listed in 3.2 includes axioms L–1:
Profile Similarity, L–2: Profile Reflection, L–3: Inter-letter Area Equality, L–
6: Interior-Exterior Balance, L–8: Fixed-Height Measurement, L–9: Single-
Stroke Supplement, L–10: Adjacent Extender Supplement, L–11: Collision
Avoidance, L–12: Diagonal Profile Limit, L–14: Enclosure Avoidance, L–15:
Upward Aperture Reduction, and L–16: Diacritic Form Independence.
Employed jointly, axioms L–1, L–2, L–3, and L–6 enable an algorithm to
start with the internal space of a key letterform (n or H), use that internal
space to establish a standard inter-letter area, and propagate that area to a
significant subset of the other forms. Using this core set of axioms as a
starting point, a composite algorithm was constructed by choosing
additional axioms to implement until the full set of letterforms has been
covered.

This strategy prioritized finding implementations for axioms L–4:
Triplet Centring and L–7: Concave Profile Truncation, which were
identified as potentially useful for forms with open counters or concave
profiles, a class of forms that are not addressed by the core set of
straightforward axioms. The following sections detail the investigations
into axioms L–4 and L–7, and conclude with discussions of how they can be
integrated into a single algorithm and the practical matter of setting
suitable default values for tunable parameters.

4.2 Investigations of the LOGOS centre-point method

In chapter 3, it was noted that only one complete implementation has been
identified for the triplet-centring axiom (L–4): the LOGOS project by David
Kindersley and Neil Wiseman. However, the LOGOS method involved two
steps: determining the optical centre-point for each form using a
mathematical moment calculation, followed by associating the form with a
characteristic rectangle of known width that had the same mathematical
moment. This second component was necessary to link the relative-space
information provided by the centre-point to a pair of absolute
sidebearings. The centre-point of the form would be placed at the centre-
point of the characteristic rectangle, and the left and right extents of the
characteristic rectangle would be used to set the left and right sidebearings
of the form.

One of the difficulties faced by the LOGOS project was establishing the
choice of mathematical moments. The rationale provided for the choice of
the 4th polar moment in the LOGOS product was practical, and based on an
iterative development process. Kindersley evaluated the results of refitting
typeforms via the two-part LOGOS method, then the team would iterate,
updating the software based on whether the evaluation showed

89

improvement or regression. The changes in each iteration could include
alterations to the characteristic rectangle definition, to the masking
scheme applied to the form, or to the choice of moment calculation.

For this research, it was determined that revisiting the centre-point-
finding component on its own (without the characteristic-rectangle
component) was worth investigating, in order to test whether the centre-
points could be utilized in some different fashion. Of potential interest was
determining if coupling the centre-point method with one or more of the
other axioms in the Latin text fitting model could provide the link between
the relative-space information and the absolute sidebearings.

To that end, the LOGOS centre-point algorithm was reimplemented in
Python, then applied to the Bézier glyphs in a set of OpenType fonts. (See
Appendix A) Thanks to the increase in processor speed in the years since
the initial LOGOS project, it was possible to test several of the mathematical
moment options described in the original LOGOS patent and surrounding
documentation. The tested moments included the second polar moment of
area and the fourth polar moment of area, as recommended in the patent,
plus the first moment of area. The first moment of area serves as a useful
comparison, both because it is referenced in Kindersley’s writing and
because it arose in Kindersley’s earliest light-transmission tests.

To provide useful context in which to assess the results of the re-
implementation test, a brief aside to look at the various moments follows
below.

4.2.1 Moments compared
Loosely speaking, a moment can be defined as any measurable quantity
multiplied by a distance; the precise definition varies between
mathematics, physics, and engineering — distinctions which complicate
the discussion of LOGOS, because the published material was often written
by Kindersley with an audience of non-scientists in mind. Thus, the
descriptions of moments in the texts fluctuates between the disciplines,
referring at times to ‘inertia’ (an engineering concept), at other times to
‘mass’ or ‘gravity’ (a physics concept), and at still others simply to ‘area’.
Fortunately, the LOGOS patent is specific in the formulas required, and
internal project correspondence is consistently more rigorous in its use of
terminology.

In two-dimensional geometry (as was implemented in LOGOS to
evaluate letterforms), the moments used are infinitesimal measurements,
which are summed up over the entire shape with a double integral.

90

Sx

Sy

The x and y coordinates for the
centroid of a form are found by
calculating the first moment of
area for x and y. The centroid is
analogous to the centre of mass
but notably, as in this example,
may lie in an unfilled region
(illustration by the author).

Figure 4.1

The first moment of area is the simplest, summing up merely the binary
yes-or-no of whether the infinitesimal shape is empty or filled at each
point. That results in the centre of area (or centroid) for the shape. (See
figure 4.1) The x and y coordinates are given by the formulas:

If a letterform were cut from solid material of uniform depth and
density, then the centroid would be the point upon which the form would
balance. This notion of balanced areas has an intuitive appeal relating it to
optical balance as discussed in the literature. More directly, the centroid
was also the point found by Kindersley’s mechanical measurements of light
transmission: equal areas to the left and right transmit equal amounts of
light to the left and right. (See figure 4.2)

Kindersley concluded from the light-transmission tests that the first
moment of area did not suffice to determine the optical centre-points of
forms, so the computational method in LOGOS was then switched to
measuring the second polar moment of area. This moment sums up the
infinitesimals in the shape multiplied by their distance (r) from the
centroid, squared:

When this also failed to produce satisfactory results, the project switched
to the fourth polar moment of area, which sums up the infinitesimals in
the shape multiplied by their distance (r) from the centroid, raised to the
fourth power:

In both moments, the distance r to the centroid can be re-expressed in x
and y coordinates by the Pythagorean theorem, which permits them to be
calculated for any typeform directly from the contour information stored
in a font file. (See figure 4.3)

The resulting formulas are somewhat computationally expensive, but
the method is complicated significantly by the fact that the polar moment
(whichever is chosen) is calculated repeatedly. For each of x and y,
separately, the method requires dividing the shape in two, calculating the
moments of each half, comparing the results, then repeating that process
with a new dividing line, recursively moving that line one way or the
other, until the two halves return the same calculated value.

The polar moments of area are
integrals over the entire form,
based on the distance r measured
from the centroid. In the second
polar moment, the quantity
integrated is r2 and in the fourth
polar moment, the quantity
integrated is r4. In both cases, the
centroid of the form must be
found first, adding computational
complexity (illustration by the
author).

See also figure 3.17 in chapter 3.

Figure 4.3

x

yr
dA

S

A diagram of the light-
transmission measurement
device used in Kindersley’s early
research, preceding the software-
based approach of LOGOS
(Kindersley 1973, p. 10).

Figure 4.2

91

Thus, the point returned by the LOGOS method is not, itself, a
measurement of the second polar moment of area; rather, it is the point
(x,y) for which

• x divides the typeform vertically, where the left portion of the
typeform computes a second polar moment of area around its
centroid that is equal to the second polar moment of area in the
right portion of the typeform computed around its centroid

• y divides the typeform horizontally, where the top portion of the
typeform computes a second polar moment of area around its
centroid that is equal to the second polar moment of area in the
bottom portion of the typeform computed around its centroid

Figure 4.4 highlights this. The higher moments have the practical effect
of shifting the dividing-line on the typeform in question, but higher
moments are increasingly indirect in what they measure.

In the published material, Kindersley refers to this second polar
moment of area as representing the moment of inertia, which it is
analogous to in structural or mechanical engineering. In this engineering
sense, the second polar moment of area measures a physical object’s
resistance to a twisting force through its centre. So, by analogy, the M2
point (as it will be called, for brevity, from here) could be said to represent
the point around which each half of the typeform is equally resistant to
twisting.

This resistance is, of course, purely an analogy, but typeface design
regularly employs comparable analogies to other physical concepts:
awkward letterforms may be called unbalanced, leaning forward or falling
backward. So some analogous connection between the geometry of the
shape and the physical world has value, up to a point. After all, type
designers and readers alike know that gravity is not actually pulling

In the first image, the vertical lines through the centroid, M2 point, and M4 point of the letterform are shown (left to right). The second
image shows the letterform split into two pieces at the centroid line: the resulting blue pieces have equal areas. The third image shows
the letterform split into two pieces at the M2 line: each of the resulting pieces computes to the same second-polar-moment-of-area value,
when those second polar moments are each calculated with respect to the centroid of that piece (shown as black dots). The fourth images
shows the same effect for the M4 point and the fourth polar moments of area. The same properties would hold true for splitting the
letterform horizontally through the centroid, M2 point, and M4 point (illustration by the author). Font shown: Yrsa.

Figure 4.4

M2(left)
M2(right) M4(left) M4(right)

92

letterforms toward the baseline; the asymmetric forms like P and r do not
fall over, c does not roll onto its left side, and the dots above i and j remain
suspended. The analogy appeals to everyday experiences readers know
from the physical world, but it has its limits.

The fourth polar moment of area point (called M4 from here) does not
have a meaning with any clear analogue to physical forces as did the M2
point, however. It can be stated that the M4 point is more strongly
influenced by how much of a shape’s area is distributed towards its
extremes rather than concentrated at the centre, but any connection to
the physical world akin to gravity or inertia is obscure at best. As noted in
chapter 3 § 3.4.1, Kindersley was not entirely convinced that the M4 point
was the ultimate solution and explored the possibility of adopting ‘higher
power’ moments, at least for the more problematic letterforms.

This raises an important question for implementing the LOGOS centre-
point component in a new context. If the primary rationale for choosing
the M4 point or a higher-moment point instead of the M2 point was that
the M4 point produced more acceptable results when it was further applied
to LOGOS’s characteristic-rectangle component, then the M4 point might
not be the ideal choice when the characteristic-rectangle component is not
used.

4.2.2 Analysis of the re-implementation tests
Examining the results of testing the LOGOS centre-point reimplementation,
it is apparent that the choice of mathematical moments is, indeed, pivotal.
The M4 point, preferred by LOGOS, is consistently closer to the outer
boundary of the letterform in each open-counter typeform (e.g., closer to
the right for c). This was expected based on Kindersley’s account; as noted
earlier, the M4 point appeared to have been adopted in LOGOS precisely
because Kindersley found the M2 point consistently too far inward for
open-counter and unbounded letterforms like c and L.

In lighter weights and sans-serif styles, particularly, the fourth polar
moment was observed to often be quite close to the outer edge of the open
counter. Mathematically, this is unsurprising, because the M4 point is
highly sensitive to forms where most of the shape is concentrated at the
extremes and little or none of the shape is found at the centre.

This high sensitivity to what happens at the edge of open counters may
have contributed to the LOGOS project’s decision to start masking and
scaling the letterforms before performing the moment calculations.
Without the masking and scaling, it is hard to say that many type designers
would consider the M4 point in figure 4.5 the optical centre-point of the
letter.

Another feature of the M2 and M4 points also stood out in the test
results. If vertical lines are drawn through the M2 and M4 points, the lines
were observed to be within the closed regions of the typeforms for almost
all forms, but were observed to be consistently in the open regions for

In heavier weights, the centroid
(marked in blue) can be located in
the interior region of the
letterform even in open-counter
forms, while the M2 point (in
gold) and M4 point (in red) are
consistently located in the open-
counter region (illustration by
the author). Font shown: Yrsa
Bold.

Figure 4.6

The M4 point of c in Alegreya
Sans. When decoupled from the
characteristic-rectangle method,
it is debatable whether the M4
point still matches expectations
for an optical centrepoint
(illustration by the author).

Figure 4.5

93

open-counter and concave-profile forms. Notably, this correlation was
observed across all weights and styles tested. In contrast, the centroid was
often located within the closed regions of open-counter and concave-
profile forms in heavier weights and condensed styles. (See figure 4.6, over
page)

Based on the consistency of this effect, it was conjectured that the M2 or
M4 line might prove useful as a practical test to use for classifying
typeforms as open-counter forms. As was noted in chapter 3, an objective
means for determining which typeforms should be classified as open-
counter forms would be useful for algorithms implementing axiom L–7,
because other forms (such as t) may be ambiguous.

The M2 and M4 points were compared to determine which would be
more reliable for this purpose. In the tested typefaces, the M4 point can be
observed to be pulled out towards the extremes in symmetrical typeforms,
while the M2 point remained consistently closer to the centroid. This effect
may be explained by the M4 point’s high sensitivity to wide apertures,
coinciding with slight asymmetries in the construction of the letterforms.
(See figure 4.7) Regardless of the cause, the effect contradicts intuition,
which would predict a generally symmetrical form to have an optical
centre-point near to the centroid. It was decided that this effect makes the
M4 point less reliable than the M2 point for use in a rule to test for open-
counter form classification.

Stated more formally, the conjectured rule is:

If there is any horizontal beam drawn from the outside of the profile that
intersects the vertical line through the M2 point without first crossing a closed
region, then the profile is considered an open-counter profile.

When this rule was applied to the lowercase Latin letters of the tested
fonts, the letterforms found in the standard lists of open-counter forms
popular in the literature (a, c, e, k, s, x, and z) were consistently classified
as featuring open-counter profiles, joined by two-storey constructions of g
and, in certain designs, t. (See figure 4.8)

The centroid (marked in blue)
and M2 point (in gold) often
appear close together in
symmetrical letterforms, but the
M4 point (in red) can be pulled
outward by even small optical
compensations (illustration by
the author). Font shown: Slabo
27px.

Figure 4.7

Using the M2 line to classify
profiles as open-counter profiles.
Green arrows indicate where a
horizontal beam from the outside
intersects the M2 line, meeting
the test to classify the profile as
an open-counter profile. Note
that t on the top row meets the
condition (albeit barely), whereas
the t on the bottom row does not.
Also note that on the top row, the
left profile of z on does not meet
the test, but the right profile does
(illustration by the author). Fonts
shown: top row: Source Serif 4;
bottom row: STIX Two Text.

Figure 4.8

94

The results for the capital Latin letters were comparable: when the M2
point was calculated for the full height of the letters, commonly-cited
letterforms (C, E, G, S, and Z) were consistently classified as featuring
open-counter profiles, joined by K in certain designs. There was more
variety observed in the results for calculating the M2 points of the capital
letters between the baseline and the x-height (as the literature suggests
might be preferable for fitting capital letters to lowercase letters). For
example, in heavier weights or designs with prominent serifs, E was
sometimes not classified as an open-counter form by the rule.

Although this is not conclusive evidence that the classification rule
works, it was considered plausible enough to warrant testing in
conjunction with a fitting algorithm. In particular, it was hypothesized that
the rule might be useful for an algorithm to automatically determine if
forms with common alternate constructions (such as a and g) should be
classified as open forms without requiring user intervention, as well as to
provide similar classifications for symbols and other typeforms.

4.3 Investigations of open-counter measurements

Implementing the above rule to test for open-counter forms in a fitting
algorithm establishes a link between Axiom L–4: Triplet Centring and
Axiom L–7: Concave Profile Truncation. Further exploration of the link
suggested that potentially other interesting results could follow. In chapter
3, it was noted that the unresolved questions for implementing Axiom L–7
were how to classify forms as open-counter forms and how to
appropriately reduce the measured area of the open counter such that part
of its area is counted as internal space and part of its area is counted as
external space.

One of the techniques used by prior fitting-automation
implementations to reduce the measured area of the internal counter is
cutting off the measured area at some chosen distance from the outside
edge. HT Letterspacer provides a fixed-distance parameter for this
technique, measuring all letterforms from their extrema in to the same
distance. (See figure 4.9) Published images showing Black Spacer’s
measurements of open counters appear to show a similar technique, with
all open-counter forms measured inward to the same distance.1

For HT Letterspacer, the use of a fixed-distance measurement into the
open counter is an acknowledged limitation. A feature request to enable
changing the measurement distance on a per-glyph basis was made on
GitHub in 2017 and later confirmed by HT Letterspacer’s lead developer
Andrés Torresi (Waxweiler and Torresi, 2018), although a per-glyph
distance has not yet been implemented in the program. In the feature
request, Nikolaus Waxweiler said that the fixed-distance parameter
produced unacceptable results for l designs that feature a ‘tail’ or out-
stroke on the right, and Torresi replied that allowing per-glyph

HT Letterspacer measures all
inter-letter areas from the edge
of the form in to a fixed distance;
this includes measurement in
open counters (HT Letterspacer
2016).

Figure 4.9

1. See chapter 3, figure 3.23.

95

measurement distance would also improve results for symbols. The brief
discussion of the feature request does not concern how to determine the
appropriate distance for a given form.

As implemented in HT Letterspacer, the fixed measurement distance is
defined in proportion to the x-height of the font. This likely explains why
Waxweiler highlighted l, a single-stroke form, as problematic: with the
fixed measurement distance defined in proportion to the x-height, a value
selected to be ideal for average-width typeforms could be too large for
narrower forms or too small for double-width forms. But the measurement
distance has the greatest impact on open-counter and concave-profile
forms, so a sub-optimal choice for the measurement distance might not be
noticed in the majority of letterforms.

In light of the link established between the L–4 and L–7 axioms for
classifying typeforms as open-counter forms, it was convenient to also
investigate whether the same link would provide insight into the question
of choosing an optimal measurement distance. If there is a natural
boundary within an open counter between the internal and external space,
then it would be reasonable to expect that boundary to be related to the
optical centre of the form. In other words, wherever the true optical centre
of the open-counter form lies (and however that true optical centre might
be defined), the area further behind the optical centre must be more
internal to the form than the area outside the optical centre.

In the above rule, the vertical line through the M2 point functions as the
determiner for classifying a typeform as an open-counter form, and does
so on the theoretical basis that the M2 point represents the optical centre-
point of the form — or, at the very least, an optical centre-point. If the M2
point is accepted to represent the optical centre-point, then it is worth
investigating whether the M2 point is also relevant to measurement depth
for open counters.

4.3.1 Analysis of the open-counter measurement tests
Consequently, experiments were conducted with a modified build of HT
Letterspacer, using the x position of the M2 point as the measurement
depth for open-counter forms. The preliminary experiment used the M2
line as the open-counter measurement distance and counted the full area
up to the measurement distance as exterior space, applying the equal-
inter-letter-areas axiom to determine the sidebearing for the open-
counter profile just as HT Letterspacer does for all other profile shapes.
The results of those experiments consistently moved the sidebearing
generated for the open-counter profile too far inward: significantly further
inward than the sidebearings in manually-fitted typefaces, and often into
negative numbers.

That pattern suggested that measuring the entire area to the M2 line
and counting it all as exterior space was insufficient. To account for this,
subsequent experiments coupled measuring in to the M2 line with the

96

other common techniques for addressing open counters: clipping in to the
counter at an angle and scaling the resulting measurement by a fractional
multiplier.

Promising initial results were seen with clipping in to the open counter
at 90 degrees and scaling the measured area inside the open counter down
by 50%. (See figure 4.10) Both the clipping-in technique and the fractional
scaling technique have been employed by prior open-counter work but,
just as importantly, both techniques align in general with how open-
counter fitting is discussed in the literature. Fred Smeijers noted, for
example, that the area inside a open counter was ‘double function’ and that
the protrusion of serifs provided a cue for the eye to cut off the area inside
and outside the counter (Smeijers 1996, p. 32).

The tested formulation of this experiment is perhaps blunt in its
application of these principles. Measuring 50% of the area in the dual-
function zone as internal space and 50% of the area as external space is
arguably a naive interpretation of ‘dual function’ but it does establish an
unbiased starting point and a tunable parameter. Similarly, clipping in at
90 degrees is pragmatic, because it is simple to trace and retains more of
the area to be measured inside the open counter, but it is also in agreement
with Smeijers’s incidental observation that the serifs at the border of the
double-function zone form an implied boundary. Neither should be
assumed to be the ideal ratio for all typeface designs.

4.4 Constructing a composite algorithm

Based on the results of the experiments with automatically classifying
open-counter forms and employing centre-points to define open-counter
measurement, it was decided to investigate incorporating those techniques
into a testable algorithm. Because the two experimental techniques
together do not generate sidebearings for a complete set of letterforms,
they must be combined with implementations of other axioms from the
Latin text fitting model.

As noted in the introduction to this chapter, the strategy employed by
this research has focused on finding the minimal set of axioms that covers
the sidebearings of the desired set of letterforms, in part because that
strategy permits a clearer evaluation of the results for individual
typeforms and of the successfulness for individual axioms.

Revisiting the minimal set of axioms described at the beginning of the
chapter, an algorithm designed to fit the Latin letterforms could start with
the internal area of a key form (n or H) and arrive at sidebearings for all of
the straight profiles using just Axiom L–8: Fixed-Height Measurement (to
set the appropriate measurement height) plus axioms L–6: Interior-
Exterior Balance, L–1: Profile Similarity, and L–2: Profile Reflection (to
propagate the standard inter-letter area from the key form to all of the
similar profiles). Adding Axiom L–3: Inter-letter Area Equality allows the

Above: measuring the area inside
the full open counter to the M2
line and considering it all
external space resulted in overly
close sidebearings for open-
counter profiles.

Below: clipping inward at 90
degrees, and scaling the
measured area bounded by the
open-counter (shown in green)
down by 50% resulted in more
reasonable sidebearings
(illustrations by the author).

Figure 4.10

97

algorithm to then apply the standard inter-letter area used for the straight
profiles to the round profiles. Adding Axiom L–12: Diagonal Profile Limit
allows the algorithm to provide sidebearings for the diagonal profiles.

At that stage, applying the experimental rules derived in this chapter
for axioms L–4: Triplet Centring and L–7: Concave Profile Truncation can
then be used to classify the remaining profiles as either convex profiles
that can be handled by applying the standard inter-letter area component
or concave profiles that should then be handled by the open-counter
component derived in this chapter.

At that point, the algorithm has produced a set sidebearings for each of
the letterforms, but it has not used every available axiom (such as the
exception axioms L–9: Single-Stroke Supplement, L–10: Adjacent Extender
Supplement, and L–15: Upward Aperture Reduction), which might be
important for some typeface designs. An ideal, complete algorithm that
incorporated as many axioms as possible might be anticipated to produce
more successful fitting for a wider assortment of typeface styles. For this
research, the subject of complexity was considered, and determination of
how complex to make the algorithm raised vital questions about its
practical testability.

4.4.1 Testability and complexity concerns
This project has defined successful letter fitting in terms of its acceptance
with readers when a fitted typeface is used to set text for continuous
reading. Consequently, the testing approaches envisioned from the early
stages of the project (including the final testing methodology to be
described in chapter 5) have anticipated that the typefaces refitted by
algorithmic means would be tested in use, to typeset readable text, rather
than by evaluating generated sidebearings in isolation.

With the setting of real-world text comes complexity, however. For any
particular pair of letters in an algorithmically fitted typeface, the more
axioms and tunable parameters that were involved in the generation of the
space ultimately seen in the typeset real-world text, the more independent
variables there are which potentially contribute to whether or not a reader
considers it acceptable. One possible means to simplify this issue might be
to construct an algorithm that applies only one axiom or tunable
parameter for each sidebearing. Upon further consideration, that can be
identified as impractical, because every letter pair will result in some
permutation of axioms or parameters. Some compromise needs to be made
between constructing a complex algorithm that incorporates a refined
method for fitting and a simple algorithm that makes problems easy to
identify.

In this project, the forms of greatest interest are those affected by the
techniques developed in this chapter, for automatically classifying forms as
open-counter forms and for determining sidebearings for open-counter
forms by measuring into the counter an amount based on the centre-point

98

formula. To prioritize analysis of those techniques, it was decided to focus
the test algorithm on those forms, and limit the test algorithm’s
complexity.

First, the test algorithm was used to generate sidebearings for the
capital letters by fitting the capitals to lowercase letters. The more
complex, ideal version of the algorithm would generate default
sidebearings for the capitals by fitting the capitals to lowercase, but also
generate a second set of sidebearings for capital-to-capital text and apply it
in an OpenType kern or cpsp GSUB feature.

Similarly, the test algorithm was used to generate sidebearings for the
numerals by fitting the numerals to lowercase letters. As will be seen in
chapter 5, the most common occurrences of numerals in the sample texts
is within sentences. Here, too, the ideal version of the algorithm would
generate a default set of sidebearings for the numerals by fitting the
numerals against the lowercase letters and a second set of numeral-to-
numeral sidebearings applied in an OpenType feature.

Third, it was decided not to generate new sidebearings for non-
alphanumeric symbols and punctuation. The main reason for this decision,
as mentioned in chapter 2, is that the literature and prior work of fitting
does not record a detailed enough discussion of fitting these typeforms to
construct a complete approach.

Fourth, it was decided not to implement kerning. Several distinct
reasons factored into this decision. One, and perhaps the most general of
the reasons, there is essentially no limit to the number of possible kerning
lookups that could be implemented, so any kerning feature added to a
typeface would constitute a large set of independent decisions about
letterform pairs, potentially obscuring analysis of the techniques of
greatest interest. Certainly it would interfere with the analysis to manually
make any kerning decisions; the only permissible method would be to
generate kerns as a step in the algorithm. Two, although several of the
exception axioms (L–9: Single-Stroke Supplement, L–10: Adjacent Extender
Supplement, and L–15: Upward Aperture Reduction) could be implemented
as a kern feature by the algorithm and were considered, it was observed
that those kerning features would still interact with the letterforms of
greatest interest for the analysis, again making evaluation of the algorithm
more difficult. Three, these exception axioms (L–9, L–10, and L–15) each
introduce a separate user-tunable parameter (the space modifier for
single-stroke forms, the space modifier for adjacent extenders, and the
space modifier for upward-open counters), adding more independent
variables.

This set of compromises for the testable version of the algorithm was
not easy to establish, but it ensures that the letterforms of greatest interest
— those which have been refitted by the new techniques discussed in this
chapter — will appear in words surrounded by other letterforms also fitted
by the algorithm, which are therefore expected to be most congruous.

99

The standard inter-letter area is divided equally between the left and right profiles of n, also as per Axiom L–6 and Axiom L–3: Inter-
letter Area Equality.

The downside to employing this compromise for a test with readers is
that it cannot ensure that the generated fitting used will not stand out to
readers as noticeably different from instances of unmodified fitting
retained from the original version of the typeface or as noticeably different
from instances where a manual typeface-design fitting process would have
applied a kern.

Listing 4.1 (over page) provides a step-by-step overview of the test
algorithm, accompanied by figure 4.11 below, which depicts visually how
the algorithm might proceed to address the typeforms in an input
typeface.

The interior area of the key letterform n is measured, and used to calculate the standard inter-letter area. This utilizes Axiom L–6:
Interior-Exterior Balance.

The left and right profiles of the remaining letterforms are examined to classify them as concave or not. The open-counter rule (detailed
in § 4.3) makes this classification in accordance with Axiom L–4: Triplet Centring.

Non-concave profiles are handled in the same manner as n, applying the standard inter-letter area as per axioms L–1: Profile Similarity
and L–2: Profile Reflection. Shown in orange, for illustrative purposes, are cases where this computation might result in a sidebearing less
than the minimum sidebearing parameter, Pd, which was chosen earlier.

Concave profiles are handled using the open-counter procedure developed in § 4.3. This procdure applies Axiom L–7: Concave Profile
Truncation. Again shown in orange are cases where this computation might result in a sidebearing less than the minimum sidebearing
parameter, Pd.

Any sidebearings less than the minimum sidebearing parameter, Pd, can be capped at Pd. This implements Axiom L–12: Diagonal Profile
Limit, as well as reducing the likelihood of collisions and enclosures.

Figure 4.11
A hypothetical overview of how the composite algorithm proceeds through a set of letterforms. Each line depicts the state of the
letterform set after the completion of a subsequent stage of processing. At the input stage, no sidebearings have been determined.

The algorithm's five tunable parameters should be established before processing any of the letterforms. The question of choosing
appropriate default values is discussed in § 4.4.2.

Pi (Pb,Pt) Pa Pc Pd→

This example depicted the cascade of operations in groups of profiles; in practice it might be more effective to process letterforms one at
a time, rather than attempting to address all concave-profile forms in a distinct stage or to cap all sidebearings at the minimum-
sidebearing parameter at the end. It should also be noted that the depicted grouping of the example letterforms as concave or non-
concave is illustrative only.

100

Listing 4.1
Composite Latin Sidebearing Algorithm (simplified). Given a set of Latin letterforms comprising a well-designed typeface as input,
determine the left and right sidebearing (lsb and rsb) for each letterform.

A1: [Initialization] Choose values for the tunable parameters

Pi: The multiplier to convert the interletter area measured on the key letter n into
the standard interletter area. See the discussion in section 4.4.2 for default
values.
Pb and Pt: The bottom and top bounds between which measurements are made. By default,
set Pb to the baseline and set Pt to the x-height.
Pa: The angle at which to clip in when measuring the areas inside open counters. By
default, set Pa to 90 degrees.
Pc: The fractional multiplier used to scale down the areas measured inside open
counters. By default, set Pc to 0.5.
Pd: The minimum sidebearing distance. By default, set Pd to zero.

A2: [Determine the standard interletter area] Measured from the interior area of key
letter n

Measure the An, area on the interior of n, between Pb and Pt.
Set the standard interletter area S = An · Pi

A3: [Calculate standard sidebearings for n] Assign sidebearings that give half of S
to the left and half of S to the right side of n

Measure the exterior area El on the left side of n, between Pb and Pt, from the left
extremum to the contour of the letterform. Subtract E from the one-half of S that has
been allocated to the left side. Divide that value by the height of the measurement
zone (between Pb and Pt), and result is the left sidebearing.

Set lsb(n) = ((0.5 · S) - El) / (Pt - Pb)

Repeat that procedure for the corresponding measurements on the right side of n to
determine the right sidebearing.

Set rsb(n) = ((0.5 · S) - Er) / (Pt - Pb)

A4: [Classify the side profiles of remaining letterforms] For each letterform
remaining in the set, determine whether the each of the left profile and right
profile of the letterform is considered concave, using the following sub-procedure:

 B1: Find the M2 point of the letterform. See section 4.2.1 for details.

 B2: If any horizontal beam can be drawn from the left extreme of the letterform
 that intersects the vertical M2 line, then the left profile is considered
 concave. Otherwise, the profile is considered not concave.

 B3: If any horizontal beam can be drawn from the right extreme of the letterform
 that intersects the vertical M2 line, then the right profile is considered
 concave. Otherwise, the profile is considered not concave.

A5: [Calculate sidebearings for standard profiles] For each profile classified as not
concave in step A4, calculate the left or right sidebearing as in step A3.

This step should set either the lsb or the rsb for the form in question. Unlike step
A3, the left and right profiles are handled separately to account for letterforms
where one profile might be concave but the other profile not.

101

Thus, either:

Set either lsb(form) = ((0.5 · S) - El) / (Pt - Pb)

or:

Set rsb(form) = ((0.5 · S) - Er) / (Pt - Pb)

A6: [Calculate sidebearings for concave profiles] For each profile classified as
concave in step A4, divide the profile's area into its exterior and interior
components. Scale the interior component's area by the multiplier Pc. Use the
resulting total area, in place of the exterior area, to calculate the sidebearing.

 C1: Temporarily divide the area of the profile by drawing a chord between the
 extremum above the M2 point of the letterform and the extremum below the M2 point.

 C2: Measure the exterior area E on the side of the profile, between Pb and Pt,
 from the extremum to boundary formed by the contour of the letterform and the
 temporary chord.

 C3: Measure the interior area I bounded on the sides by the M2 line and the
 temporary chord and bounded above and below by the contour of the letterform,
 cutting in at angle Pa from the vertical.

 C4: Scale I by by the multiplier Pc and add E, giving the adjusted concave-
 profile area C.

 Set C = (Pc · I) + E

 C5: Use C to calculate the sidebearing, replacing the value of El or Er as were
 used for non-concave profiles.

 Set either lsb(form) = ((0.5 · S) - C) / (Pt - Pb)

 or rsb(form) = ((0.5 · S) - C) / (Pt - Pb)

A7: [Apply minimum sidebearing distances where needed]

If lsb(form) < Pd, set lsb(form) = Pd

If rsb(form) < Pd, set rsb(form) = Pd

A8: [Iterate until all sidebearings have been calculated] Remove each completed
profile from the input set and repeat from step A4 with the next profile. When no
profiles remain in the input set, the procedure is complete.

Listing 4.1, continued

102

4.4.2 Neutral default values for tunable parameters
The testable form of the composite fitting algorithm includes a set of five
tunable parameters:

• the ratio between the interior space of the key letter (n or H)
and the standard inter-letter area

• the upper and lower heights between which the inter-letter
areas are measured

• the clip-in angle used to measure the area within open counters
• the fractional scaling factor applied to the measured area within

open counters
• the minimum space to be assigned for diagonal forms

As discussed earlier in section 4.3, the initial implementation of the open-
counter measurement technique was set to a clip-in angle of 90 degrees
and a scaling factor of 50%. For a first implementation, those numbers
were selected to be neutral defaults and permit further exploration. The
upper and lower heights for measuring inter-letter areas were set to the
baseline and the x-height of each typeface. This pairing is the default for
inter-letter area measurements as Axiom L–8: Fixed-Height Measurement
is typically framed in the literature but, as discussed in chapter 2, is also
tunable.

Selecting neutral default values for the other parameters required more
careful consideration. It was noted in chapter 2’s discussion of the key
letterform measurement axiom (L–6: Interior-Exterior Balance) that many
sources in the literature assert that there is a fixed relationship between
the interior space of the key letterform (n or H) and the standard inter-
letter area for any given typeface, but that the ratio between the two is not
necessarily 1:1.

Walter Tracy advised a ratio of 19 or 19.5 units of inter-letter area for 20
units of key-letterform area (a factor of 0.95 to 0.975), but it must be
remembered that he was writing about normal weight, upright serif roman
designs (Tracy 2003, p. 74). During the development of the Falcon typeface,
William A. Dwiggins wrote in a letter to Chauncey Griffith that he had
established the desired ratio as .033 to .0335 (a factor of 0.98507), although
that measurement was made with m as the key letter (Dwiggins 1940, p. 3).
Based on the accompanying illustrations, Dwiggins was also referring to
the upright (serif) roman. Other sources attest that sans-serif designs and
heavier or lighter weights will typically exhibit a different ratio between
the key letterform and the standard inter-letter area, but no sources were
identified that provided advice on choosing the ratio.

To determine a reasonable default value suitable for more weights and
for sans-serif designs, analysis was performed on the top 100 most-used

103

Latin text fonts from Google Fonts (Google Fonts 2021).2 Each font’s weight
was recorded as a ratio between the width of a lowercase vertical stroke
and the x-height, rather than relying on the CSS weight value. Also
recorded were the contrast ratio (calculated as the ratio between the
thicknesses of vertical and horizontal strokes in the lowercase o), the
length of lowercase serif, and the width of the internal counter of n. This
data set was analysed using ordinary least squares multiple linear
regression.

This regression technique results in a formula that takes the
independent variables (here, the weight, contrast ratio, serif thickness, and
internal counter width of each font) as input and returns the dependent
variable (here, the ratio between the internal area of n and the standard
inter-letter area), modelled on how the variables behave in the data set.
The regression analysis on this set of Google Fonts data resulted in an R-
squared value of 0.709, meaning that the input variables can collectively
account for about 71% of the variability in the ratio between the internal
area of n and the standard inter-letter area. (See Appendix A)

This is not a particularly robust result, and indicates that the variables
used leave considerable leeway. However, the resulting formula was used
solely to provide default values for the ratio of the key-letterform’s internal
counter to the standard inter-letter area, with the understanding that the
ratio could be used as a tunable parameter in the fitting algorithm. As was
discussed in chapter 2, prior attempts to create a predictive model for the
sidebearings of letterforms through statistical analysis of measurements
made on a corpus of typefaces have generally not proven useful; it should
be noted that the linear regression here was performed with a goal
distinctly different in both scope and meaning. It is to be expected that the
inter-letter area ratio would be a tunable parameter of particular interest
to typeface designers, precisely because it has an effect on all letterforms.
A default value needs only to be reasonable — and controls made available
to the typeface designer — for the mechanism to be useful.

Establishing a reasonable default value for the minimum space to be
assigned to diagonal profiles proved to be less clear-cut. The technique of
applying linear regression against a large set of existing typefaces, when
repeated with the sidebearings of v as the dependent variable, did not
yield a plausible model. Several attempts were made, but no set of
independent variables produced a linear regression model with an R-
squared value above 0.30. This may be due to the fact that there are
multiple, incompatible viewpoints among typeface designers. Some
designs allow the minimum sidebearings of v and other diagonal

2. The selection criteria also excluded monospace fonts, fonts from the ‘display’ and handwriting
categories, and fonts featuring only small-cap letterforms.

104

The different angles of the sides
of the serifs on x and v will create
a triangular region of space
between the letterforms even if
both sidebearings are set to zero
(illustration by the author). Font
shown: Literata at optical size 11,
enlarged.

Figure 4.12

letterforms to be negative, some do not. Some designs permit negative
sidebearings but compensate with extensive kerning.

From analysing typeface samples it can be observed that the minimum
space value matters most in serif designs, where there is risk of collisions
that could result in letterforms being misidentified. Thus, in a sans serif
design, the diagonal letterforms may still receive the minimum
sidebearing value, but that value will be larger on average than what would
be found in serif designs, and the larger values exhibit a larger tolerance
making them more difficult to characterize with a formula.

It can also be observed by examining samples that the ‘minimum space’
as it is framed in the axiom must ultimately refer to a two-dimensional
area, because there are designs where the shapes of serifs, in-strokes, and
out-strokes leave a visible gap between adjacent diagonal forms even when
the sidebearings are set to zero. (See figure 4.12) Although the axiom often
frames the minimum as a linear distance, that may be a simplification out
of pure convenience.

Other factors outside the design itself, such as the aesthetics and norms
of the era in which the typeface was designed, may also play a role; further
study is surely warranted. For the purpose of establishing a neutral default
value for the minimum-space parameter in the test algorithm, a simple
average of the sidebearings for diagonal letters, normalized to the width of
the vertical strokes of lowercase letters, was taken separately for serif and
sans-serif designs.

4.4.3 Rival algorithms
A final consideration investigated at this stage was whether testing the
results of the composite algorithm only against the unmodified, manually-
fitted version of the same typeface would provide sufficiently detailed data
from which to draw useful conclusions about the components of the tested
algorithm. The central research question of this project is to what extent
an algorithm can generate letter fitting that is considered, by readers, to
be as successful as fitting determined manually. Testing the composite
algorithm’s fitting results against the unmodified, manual fitting is
therefore imperative.

The investigations of individual fitting axioms discussed in this chapter,
however, revealed open-counter and concave-profile forms to be of
particular interest. Consequently, it was decided to also implement a
second, simpler letter-fitting algorithm to potentially serve as a rival (in
the sense of ‘alternate treatment’) test condition.

105

3. It must be remembered, however, that the kf algorithm was originally not used in standalone
fashion. Instead, the hz-program suite would selectively alter the fitting of letterforms in conjunction
with other typesetting operations (such as expanding or compressing letterforms and adjusting word
spaces) to justify lines of text.

The algorithm selected for this purpose was the kf algorithm from
URW’s hz-program suite. Like the composite algorithm, the kf algorithm
applies a standard inter-letter area to every letterform, measuring
between the baseline and the x-height. The kf algorithm differs by using o
as the key letterform to determine the standard inter-letter area. As noted
in the discussion of Axiom L–7: Concave Profile Truncation in chapter 3,
the kf algorithm also clips in to open counters, but it considers the area
measured to be entirely exterior space counted toward the standard inter-
letter area.

It was hypothesized that the composite algorithm would fare better in
testing for the open-counter forms than would the kf algorithm due to the
composite algorithm’s more detailed handling of open-counter forms. In
addition, the kf algorithm was considered an appropriate choice because
no quantitative studies of its performance are publicly available, despite
the frequency with which hz-program is referenced in the literature.3

The design of the quantitative testing framework, test materials, and
procedures is detailed in chapter 5.

107

5. Quantitative method for testing letter-
fitting algorithms

5.1 Testing approaches

Qualitatively assessing the letter fitting of a typeface is, traditionally, a task
tackled by experienced typeface designers drawing on their practical
expertise and personal judgment. But relying on a qualitative assessment
by the researcher does not suffice for this project, due to the subjectivity of
individual judgment. Furthermore, the research comprises applying fitting
algorithms to multiple typefaces of varying design styles; attempting to
consolidate subjective judgments made across stylistically different
typefaces into a single conclusion compounds the subjectivity problem.

In order to draw meaningful conclusions about the algorithms, it is
preferable to establish a method for making quantitative assessments that
can identify the strengths and weaknesses of algorithms as well as
observing positive or negative effects that might be caused by alterations
to a particular algorithm. The central challenge for quantitative testing is
developing methods that remain consistent with the definition of
successful fitting established in chapter 1. The method proposed reflects
the aggregate of assessments made by individual readers, and allows
certain empirical observations to be made about how different test
algorithms perform in those assessments.

5.1.1 Testing and evaluation approaches seen in prior research
Structured testing of letter fitting algorithms is rare. Individual developers
of past letter-fitting automation tools often relied principally on their own
judgment to gauge success. As a first approximation, this is a sensible
approach, because it enables the developer to catch flaws early and to
identify software bugs. But if it is employed as the sole or primary means of
evaluating algorithms, it is susceptible to an undesirable skew favouring
personal taste and, more importantly, unconscious observer-expectancy or
confirmation biases.

Vendors of commercial letter-fitting automation tools often publicize
their work through the use of typeset reference samples. Although these
samples are intriguing as artefacts, they should be considered at best as
promotional work, the content of which was chosen selectively and cannot
be assumed representative of an impartial assessment.

In both the individual-developer and the commercial-vendor classes,
some prior work also utilizes direct numerical comparisons of the
sidebearings or kerns generated by an algorithm. How these comparisons
are made and the significance assigned to them varies.

Several legibility and readability studies have examined the effects of
altering the spaces between letterforms, but only by adding or subtracting
space uniformly to all forms (i.e., typographic letterspacing), rather than

108

the fitting of typeforms individually. A number of these studies have
focused on specific groups of readers, such as children (Reynolds and
Walker 2004), low-vision readers (Beier et al. 2021) or readers with dyslexia
(Galliussi et al., 2020; Łuniewska et al. 2022). Even when addressing the
general reading population, the factors studied are often directed at the
reading process, such as fixation time (Perea and Gómez 2012 A, B), word
recognition (Perea et al. 2011; 2012), or letter recognition (Coates 2015).
There have been studies that examine the impact of typographic
letterspacing on reading speed (Chung 2002; Yu et al. 2007), although there
is a curious tendency for those studies to test only with monospace
typefaces, which are not typically regarded as optimal for continuous
reading. Regardless of the participants or test designs, however, studies of
typographic letterspacing have only limited applicability to the task of
fitting individual typeforms in the typeface-design process.

There are, however, some prior examples of structured testing in letter-
fitting research. In 2007, Fernando de Mello Vargas tested Tracy’s and
Sousa’s letter fitting systems on Adobe’s Minion and Myriad typefaces
(Mello 2007). In 2014, Bojan Banjanin and Uroš Nedeljković tested Tracy’s
and Sousa’s methods against the built-in automated-spacing feature of
FontLab Studio 5, using a typeface designed in-house. The same year, they
analysed the side-bearings of ten well-known commercial typefaces and
attempted to derive a formula for the letterforms not covered in Tracy’s
and Sousa’s methods (Banjanin and Nedeljković 2014 A, B).

Examining these structured-research cases in conjunction with self-
assessments of individual developers and commercial vendors, one can
group the approaches according to the metric by which they measure
success. In the broadest terms, all approaches to testing a fitting algorithm
rely on evaluating the fitting produced by the algorithm against some
target. The target could be another, explicit set of fitting values meant to
represent a known-success or known-failure condition, it could be a
specific text-setting or treatment (such as a specimen or reference
document), or it could be an assessment made by a reader. Each of these
approaches was considered for use as a testing methodology in this project.

5.1.2 Explicit fitting value assessments
Evaluating an algorithm based on its ability to produce a set of target
fitting values is generally done by taking an existing typeface (one that
was, presumably, manually fitted) and measuring how precisely the
algorithm reproduces the original fitting. This technique was employed by
Vargas, whose analysis noted to what degree the two test algorithms
diverged from the original fittings on specific letterforms. Although his
analysis discusses key letterforms and profile shapes, he did not publish
the exact numbers and stopped short of drawing the final conclusions
based on the differences, settling instead for recording visual observations
about particular letterform and profile combinations. In contrast, Banjanin

109

and Nedeljković’s first paper focuses primarily on tabulating the numerical
differences between the tested methods, presenting tables and radial plots
of sidebearing values, but not showing any samples of the refitted
typefaces. (See figure 5.1)

There is clarity in this comparative evaluation approach: the numerical
measurements are concrete, generally unambiguous to make, and enable
standard statistical tests to be applied. The approach also makes it possible
to implement small changes to an algorithm and look for granular
observations on how the outcome is affected by the changes.

However, this method rests upon a subtle assumption: that the original
letter fitting in each test typeface is, in all cases, beyond improvement.
This is a risky premise to begin with — one which cannot be universally
guaranteed and which falls back on the researcher making a subjective
judgment about the quality of each typeface chosen to be a target.1 If a test
algorithm were to arrive at a fitting solution for some letter combination
that readers might prefer over the original, then rejecting that result
simply because it differs from the original is a step in the wrong direction.

More fundamentally, this assessment approach masks another concern,
which is that (according to standard type-design practice) the original
fitting of the typeface was determined by the original type designer
conducting their own assessments based on their personal judgments.
Consequently, the ultimate basis for concluding that a re-fitted typeface is
successful has been delegated elsewhere, with the responsibility shifted to
the personal judgments previously made by the typeface designer.

Radial plots of the differences between sidebearings generated by competing algorithms (Banjanin and Nedeljković 2014 A, p. 446). For
each letterform on the perimeter, the distance from the centre of the circle to its dot marker denotes the size of the form’s sidebearing in
font units. The three methods tested were plotted together, distinguished by line style to make patterns or divergences more readily
visible at a glance. Measured values are not indicated on the plots, but numerical tables were included in the paper.

Figure 5.1

1. Invariably, the test typefaces selected by a researcher are open to criticism, particularly on the
question of whether they adequately represent high-quality design and fitting. Primarily, though, the
risk is that the researcher would choose a set of test typefaces based on convenience rather than on
typographic quality.

110

Delegating responsibility in this fashion might suffice for a particular
practical typeface project, but it risks overlooking or obscuring important
insights that could be found when exploring and evaluating algorithms.

In addition, if mimicking the fitting of a particular type designer is
established as the goal, then the results will invariably capture that
designer’s idiosyncrasies and tastes, commingled with the fundamental
principles. An algorithm that succeeds in reproducing Robert Slimbach’s
letter fitting, for example, might fail significantly at reproducing Adrian
Frutiger’s.

Alternatively, some prior work begins by constructing a statistical
model of the fitting values for a set of input typefaces and evaluates the
algorithm by how closely its output conforms to or diverges from the
average. This is the technique employed in Banjanin and Nedeljković’s
second paper, which computed a fitting formula by averaging the
sidebearings of ten popular fonts (Banjanin and Nedeljković 2014 B). Their
results were inconclusive, but it is noteworthy that their statistical model
consisted only of the sidebearing measurements for each letterform, scaled
as a percentage of the sidebearings for n. The ten test fonts in their sample
varied considerably in weight, stroke contrast, and proportion, but the
model did not address those factors or document the selection of the
typefaces.

Peter Karow conducted a larger and more detailed statistical study in
1993 as one part of his Schriftstatistik project. He amassed a data set of
(among other measurements) the sidebearings, stroke widths, and counter
widths of 10,000 typefaces in the URW library and analysed it numerically.
In addition to incorporating detailed measurements on weight, width, and
other typographic variables, the assembled data model normalized all of
the measurements to the em-square of each font. Although the project
reported to have found several reliable relationships between other facets
of typeface designs (such as letterform proportions), it concluded that side-
bearings could not be predicted mathematically from those measurements
(Karow 1993, p. 315). (See figure 5.2, over page)

In one sense, several of the machine-learning projects discussed in
chapter 2 are themselves statistical models compiled from measurements
made on a set of test fonts; the distinction is that their stated goal is often
an attempt to build a model that provides letter-fitting solution as its
output, rather than building the model to serve as a standard against
which letter-fitting results are judged. That is, if the model is detailed
enough, then it encapsulates enough information to output letter fitting
solutions simply by plugging in the inputs for a test font.

In practice, the neural networks developed by Kascenas2 were intended
to output letter-fitting solutions, but the networks themselves were
evaluated by comparing fitting generated by the networks against the
original fonts’ sidebearings and kerning values (Kascenas 2017). It is also
standard practice to segment the input data that is prepared for training a

2. See chapter 2, § 2.2.3.

111

neural network; the larger part of the data set is then used as the training
material, and the smaller part held in reserve to use as test data. Kascenas
employed this technique as well. The approach is well accepted in
machine-learning research; for the present topic, it is mentioned not in
criticism but simply to note that the final evaluation technique is still a
comparison between the fitting algorithm’s output and the original font’s
default fitting.

The accuracy and robustness of the statistical model is paramount in
this evaluation approach, and a model that captures the full spectrum of
typeface design seems, thus far, to have proved elusive to establish. This
may be because of the sheer number of the typographic variables at play in
the design of typefaces, or perhaps because any such statistical model must
account for not only the typographic variables, but also with the shifting
expectations, changing display and printing technologies, trends that were
current when each individual typeface in the statistical set was published,
and the personal idiosyncrasies of each typeface’s designer.

Perhaps a model fully capturing that level of complexity is possible, but
it is, at least, a complicated task in its own right. Even so, the applicability

Examples of scatterplots published in Schriftstatistik, plotting character sidebearings against other metrics for typefaces from the URW
library. The quantity Bn represents the width between the vertical strokes of lowercase n. The vertical axes represent the left sidebearing
distance if it was measured to the vertical stroke of n (rather than to the serif). The left plot shows sans-serif typefaces, with the text
commenting ‘the left side bearings show a clear connection with the widths of the white counter’ (Karow 1993, p. 339). The right plot
shows serif typefaces, of which the text says ‘Apparently, the typeface designers are having a hard time agreeing on how to handle the
serifs’ (ibid., p. 340), seemingly concluding that the plot does not reveal a relationship between the left sidebearing distance and Bn, a
conclusion reiterated in the chapter summary that ‘no connection at all’ was seen between sidebearings and counters in roman typefaces
(ibid., p. 315).

The book reproduces many such plots, but regrettably it does not provide the raw measurement data or report linear regression models,
although regression is referred to in the text and some of the plots include regression lines. For others, such as these, only the image and
summary conclusions are provided.

Figure 5.2

112

of a statistical model is restricted to the scope of the typefaces measured to
build the model. Optimizing an algorithm for average fitting does not
supply insights into the fitting process that can be easily applied to styles
that depart from the norm found in the data set, and cannot be
extrapolated to novel designs.

More immediately, though, gauging the success of a fitting algorithm by
comparing it against a statistical model can determine only the degree to
which the fitting produced matches or diverges from the average fitting.
But the ‘average’ fitting is only precisely correct for the typefaces exactly
average on each of the variables in the statistical model, and is not
necessarily the most successful fitting for any other typeface.
Furthermore, targeting a statistical average must take into account all of
the individual forms in the typeface. It is not clear how a refitted typeface
that is statistically average on some forms and different on other forms
should be judged. As is the case for attempting to reproduce the original
fitting, attempting to target a statistical match risks concealing new
insights from discovery.

5.1.3 Reference document assessments
Although less frequently seen in a research context, the use of reference
documents to assess the output of a fitting algorithm is a common
approach in promotional materials and public discussion forums. Often,
the same text will be shown as typeset with two versions of the same
typeface: one that uses the original fitting and the other showing the
revised fitting.

Mello’s comparison of Tracy and Sousa’s fitting models, as noted above,
included a direct comparison between the original and algorithmic fittings
for the typefaces in his evaluation. However, Mello also employed side-by-
side comparisons of sample paragraphs and made separate observations
about the results of the fitting algorithms based on evaluations of those
sample paragraphs. (See figure 5.3, over page)

Among the vendors of commercial letter-fitting products, the
reference-document approach is more common. URW’s promotional
booklet for the hz-program typesetting engine showcased that software’s
capabilities3 by typesetting test pages against the same text as typeset by
PostScript (See figure 5.4, over page), arguing that even the worst hz-program
sample was visibly superior to the PostScript sample (URW 1993, p. 38).
Hermann Zapf, who collaborated with URW on the development of hz-
program (even lending it his initials) made similar claims supported with
typeset page samples in About micro-typography and the hz-program (Zapf
1993). Lukas Schneider published a reference document featuring

3. The hz-program product consisted of a number of individual modules handling discrete aspects of
typesetting. In a somewhat unusual marketing choice, the individual components were regularly
named and discussed independently of each other and the whole. The kf module was used to alter
letter fitting.

113

paragraph comparisons for nineteen fonts re-fitted by his LS Cadencer
program versus their manually-fitted originals (Schneider 2016).

Those examples are perhaps best seen as demonstrations rather than
self-contained assessments; the reference documents are presented to the
reader to evaluate, with only the implication that the re-fitted typeface
will be seen as performing well. But there are instances of reference
documents being used as assessment materials as well. Kindersley and
Wiseman, who published several promotional works featuring the output
of their LOGOS fitting software without an accompanying original to
compare it against, generated numerous sample documents during LOGOS’s
development (Kindersley 1962, 1973, 1987).

The publication of reference-document comparisons was not limited to
the vendors themselves, however. In 1993, Jonathan Seybold had the same
page of The Seybold Report on Publishing Systems typeset separately by both
hz-program and PageMaker, published the resulting article as an in-depth
analysis, and invited readers to provide feedback (Seybold 1993).

This assessment method has an intuitive appeal, because it puts the
refitted typeface to the test in practical usage. Thus, it meshes well with
the principle of defining success as how well the fitted typeface performs
in a text setting. The major obstacle to employing it as a research

Mello presents the same paragraph in two sample typefaces in their original form as well as
two versions of each typeface refitted by algorithm (Mello 2007, p. 12). Shown at 50% scale.

Figure 5.3

114

Page detail from the kf section of the hz-program brochure, which advertises the module’s letter-fitting functionality through
the use of full-paragraph samples rather than per-letterform details (URW 1993, p. 18). The large kf logo at the bottom of the
page is characteristic for URW’s approach of marketing the individual components of hz-program as distinct products.
Photographed by the author.

Figure 5.4

115

evaluation method is that no specific documents exist that serve as
universal references. URW’s hz-program booklet used for its sample text a
page from Karow’s Schrifttechnologie, published the prior year —
undoubtedly a convenient option for the publisher, but not one that would
be selected to demonstrate objectivity in the assessment.

Regardless of the choice of reference document, qualitatively assessing
a full-column or full-page reference document as a whole does not easily
provide a means to evaluate the impact of adjustments to the fitting
algorithm. Other factors play a role in the decisions made in the
typesetting engine, including line-breaking, hyphenation, and letterform
expansion. For comparing the results of full typesetting engines like hz-
program and PageMaker, seeing the sum total of these factors in the output
is explicitly the point. But the effects of these other factors obscure the
impact of the kf component of hz-program that was responsible for
adjusting the fitting.

Just as importantly, it should be observed that the refitted documents in
these examples are not presented as being successes because they
accurately recreate the original, but instead because they are as pleasing —
or more pleasing — to the eye of the reader. So assessing a refitted typeface
by using it to create a reference document ultimately relies on an
assessment to be made by a reader.

5.1.4 Human reader assessments
As discussed in chapter 1, this project defines ‘successful’ fitting in terms of
acceptability by readers. On that basis, testing letter-fitting algorithms by
means of reader assessments adheres most closely to the goal. Type design
literature sometimes describes fitting as a task “for the eye alone” (Griffith,
quoted in Dwiggins 1940 A, p. 6), but simply because the ends of the
process involve the human visual system does not mean it cannot be
examined systematically — as experimental research into legibility has
shown in recent years. The difficulties of staging human assessments come
down to who the assessors are, the circumstances in which the tests are
performed, and what the assessment task comprises.

As noted earlier, the judgment of a single individual (particularly when
that individual is the experimenter) is unreliable due to the the risk of
unconscious biases weighting the judgment toward one algorithm or away
from another algorithm. Collecting multiple, independent assessments by
human assessors would, at the very least, provide some mitigation of that
problem.

Any human assessment of whether any given typeface is well-fitted is a
qualitative conclusion based on value judgments. Nevertheless, when
subject-matter experts (e.g., experienced type designers or typographers)
make such judgments, they do so within a historical, cultural, and
technological context that can be observed and scrutinized. Within such a
known context, it is possible to quantitatively record responses to letter

116

fitting and to derive and document patterns from the observations. A
survey of Venetian typographers during the Incunabula period might
establish a discernibly different baseline definition for well-fitted
typefaces than a survey of North American type designers in the mid-20th
century, but one would expect each of those groups to exhibit internal
consistencies and reflect a degree of consensus.

Conducting tests with large sets of letter-fitting experts would, in
theory, provide for reliable assessments, but it immediately raises the
thorny problem of defining who is considered an expert. The type-design
field does not have a standards body that certifies levels of expertise;
restricting participation to individuals with specific career or educational
credentials would risk being exclusionary and introducing a range of
biases. Relying on self-described experts, however, poses its own risks and
is little better than inviting broad participation and counting on the
individual’s interest level and follow-through to weed out those with less
proficiency. Regardless of how a set of experts might be collected, though,
asking experts to repeatedly examine and grade letter-fitting samples in
laboratory conditions could easily exhaust their available time — all the
more rapidly as more variables are incorporated into the test samples.

Assessment tests with the general reading public could provide
statistical validity when conducted in large enough numbers, although the
test design should perhaps record some measure of participants’ level of
typographic expertise as a potentially intervening variable. Indeed,
because typographic non-experts make up the majority of the reading
public, one would not expect the non-experts’ assessments of letter fitting
to contradict the assessments of experts (in fact, if they did so, then it
could be argued that the experts’ assessments are misaligned, on the
grounds that the non-experts are nonetheless experienced readers). But
the methodology could anticipate that the assessment task would be
perceived as more difficult by at least a portion of the non-expert group
due to unfamiliarity, perhaps resulting in greater variability in the data.

There are also technical constraints to consider when devising human
tests. For example, large numbers of responses are necessary for statistical
validity, and every additional variable to be tested (such as fitting
algorithm, typefaces’ weights and widths, optical sizes, and style
variations) increases the desired number of test exposures. But large-scale
testing becomes impractical to do in person or with printed samples,
leaving digital displays as the only viable environment. As a result, though,
the typefaces used in the test can only be assessed at screen resolutions.

Similarly, to record a large number of responses, the tests would have to
be conducted on a publicly available web site that participants would
access using their own computers and choice of web browsers. Without the
ability to control the browser, operating system, and display, those factors
must be counted as possible intervening variables during subsequent
analysis. They increase the generality of the results, but must be
considered.

117

In any human-assessment test methodology, a crucial decision is what
tasks the test respondents are asked to perform. When testing letter
fitting, there are several possibilities. Respondents could be asked to rate
typefaces’ letter fitting directly (either with a binary yes–no question, or
along a Likert scale, or by indicating a preference among several samples),
or asked to identify specific instances of letter-fitting problems, or asked to
make their own spacing alterations to the fonts in the test — such as is
seen in Mark MacKay’s web-based game Kern Type (MacKay 2011).

Regardless of the specific scale involved, rating systems are encodings
of qualitative judgments, rather than quantities to be measured directly.
Therefore, they are less straightforward when the goal is refining an
algorithm to produce optimal results. In addition, rating an entire typeface
lacks granularity. When testing letter-fitting algorithms, it is to be
expected that a given algorithm might prove more successful at fitting
certain patterns of forms (e.g., straight-sided to straight-sided profile
pairs) but less successful at fitting others (e.g., round to round profile
pairs). A testing method which does not offer any insight into the problem
at that level is less useful to the overall research problem.

Asking respondents to make adjustments to spaces between characters
would provide the most granular data, but it would do so at a high cost. As
discussed in chapter 2, manually adjusting the letter fitting of a typeface
requires a significant amount of time to do (especially when, as in this
research project, testing the complete letter fitting of each typeface is the
goal). Asking for a large time investment from each respondent is likely to
limit or reduce the overall number of participants, as well as potentially
limiting the usefulness of the results — if, for example, participants are
only motivated to make adjustments to some letter combinations before
they find themselves losing interest in the task.

It is also possible that some volunteers with little or no prior
typography experience might feel intimidated by the complexity of
performing a manual letter-fitting task, leading to fewer responses, which
could weaken the generality of the results, skewing in favour of
respondents with extensive typography experience.

Asking respondents to identify and mark perceived letter-fitting
problems in samples lies somewhere in the middle. It is a granular enough
technique that it can provide data about which profile combinations an
algorithm succeeds or fails on, but the task itself is easier for potential
respondents to perform than is making letter-fitting adjustments. The
number and distribution of problems reported by respondents can be
aggregated to estimate the collective response to different algorithms. The
method does, nevertheless, have its downsides.

First, making marks on a web page to record perceived errors requires
the introduction of a software tool with its own specialized user interface,
separate from the built-in web-browsing controls that respondents are
familiar with. This increases the complexity of the task and presents

118

additional opportunities for failure. Second, it relies on the respondent’s
choice to take an action, which increases the artificiality of the test.4 Both
factors underscore the need for a large sample size.

Finally, the design of the specimens that respondents are asked to assess
is an important consideration. Letter fitting for continuous reading is of
greatest concern in this project, so showing specimens that utilize a
traditional document structure are preferable to showing individual words
in isolation. Constructing such specimen documents is not trivial however;
factors such as the contents of the texts and the lengths of the documents
could affect the amount of time respondents are willing to spend on the
task, and care must be taken to ensure that the content and layout include
the character sequences of interest.

5.2 Drafting an approach to measure successful fitting

For this project, it was decided that the most desirable test methodology
would collect responses from human readers in a text-setting environment
that closely resembles the continuous reading experience. The participants
would be asked for an assessment that provides data at the level of
individual typeforms or profiles, so that the effects of alterations made to
the fitting of the test typefaces could be empirically compared. The
methodology should provide safeguards against biases in the
measurements and permit analysis of variables not controlled — such as
the typographic experience level of the participants — to assess their
impact.

Based on the options enumerated above, the approach chosen for this
project was a public-facing human assessment test, implemented as a web-
based application that asks respondents to mark what they consider to be
letter-fitting errors in sample texts. This application was designed as an
anonymous survey that showed document samples to each respondent,
with the fonts used in the samples selected at random from a pool of test
fonts (which included both the original, unmodified version of each font as
well as fonts with their fitting modified by the tested algorithms). Efforts
were made to resolve design trade-offs by prioritizing ease-of-use for the
respondents where possible, while ensuring that only quantifiable,
detailed data was collected.

This design assumes that when respondents report more letter-fitting
errors, on average, in test font ‘A’ than they report in test font ‘B’, then the
letter fitting of test font ‘B’ should be considered more successful. The
problem of assessing an automated letter-fitting algorithm can then be
framed as measuring the reported dissatisfaction rate of test fonts fitted by
the algorithm, with rates measured on the full character set as well as on
subsets of the typeforms, grouped by profile shape.

4. Artificiality in this context principally means the potential for the ‘laboratory’ nature of the task to
affect the criteria that respondents use to decide whether to make a mark (e.g., by feeling pressured to
make marks because ‘marking errors’ is the task or, conversely, to be cautious about making marks
while being observed), or to introduce ease-of-use concerns with the tools (e.g., leading to marginal
error cases going unmarked that the respondent might have identified in a different format of test,
such as an in-person interview session).

119

Because the survey design allowed the original, unmodified version of
each font to be tested in addition to algorithmically re-fitted versions, it
uses control data from the same participants for comparisons between the
test conditions, rather than assuming that the original fitting in each test
font is more successful for every form. The design also permitted testing
over a range of typeface style variations, as well as across multiple
languages.

5.2.1 Prototyping and pilot testing
No suitable off-the-shelf component was available, so the test framework
was prototyped and developed with custom code, written primarily in
Python using the Flask framework (Pallets 2010). The interactive tool that
participants used to highlight and mark letter-fitting errors was based on
the AnnotatorJS JavaScript utility (OpenAnnotation 2015). Several small
JavaScript snippets captured technical details about the browser session
during each survey response session.

A pilot test was conducted with in-person volunteers, wherein a
sequence of document samples was shown using randomized test fonts.
The document samples were presented in pseudo-page layouts (See figure
5.6, over page), and respondents asked to mark any text that appeared to
have incorrect fitting in their opinion. When text was marked, a pop-up
box asked the respondent to tag the perceived fitting problem as “Too
much space” or “Not enough space”. (See figure 5.5) Respondents were told
that they could view up to six samples, but that they were allowed to drop
out of the test at whatever point they chose. In the pilot-test sessions, all of
the respondents used the same laptop and pointing device, but two
different web browsers were tested (Mozilla Firefox and Google Chrome).
The experimenter (that is, the author) was physically present for the pilot
test sessions but did not direct the respondents beyond answering
clarifying questions about the instructions and troubleshooting the laptop
if problems arose.

For the pilot test, six fonts were chosen from the Google Fonts web
service that, together, covered a variety of weight, width, and serif styles,
as well as both upright and italic designs. (See figure 5.7, over page) The fonts
chosen were:

• Cantarell, a humanist sans serif at regular weight and normal
width.

• Fira Sans Extra Condensed, a sans serif design at extra-narrow
width.

• Alfa Slab One, a slab serif designed at an extremely heavy weight.
• Libre Caslon Text Italic, an old-style serif italic design.
• Rajdhani Light, a square-sided sans serif at light weight.
• Tenor Sans, a sans serif design with moderately wide glyphs and

high stroke contrast.

The AnnotatorJS pop-up utility
used by respondents to tag
perceived letter-fitting errors in
the pilot test.

Figure 5.5

120
covers page
number

Screenshot of the pilot-test application, depicting typeface specimen number 6. The marks made on the specimen by the respondent
are visible as yellow highlighting. The marking tool, AnnotatorJS, visibly preserved these highlights on the samples, allowing
respondents to see which (if any) characters on each sample they had already marked.

Figure 5.6

Screenshots juxtaposing sample paragraphs of the six typefaces used in testing-application specimens during the pilot-test runs.
Top row, left to right: Cantarell, Fira Sans Extra Condensed. Middle row, left to right: Libre Caslon Text Italic, Alfa Slab One. Bottom
row, left to right: Rajdhani Light, Tenor Sans. All samples are rasterized screen images shown at 100% of original rendered size.

Figure 5.7

121

5.2.2 Assessment
In total, 31 volunteers attempted a trial run in the pilot-test phase,
although not all volunteers worked through all of the available samples.
The average number of samples completed was 4.7, perhaps suggesting
that a six-sample session was too long. All of the respondents in the pilot
test were able to perform the task, although some reported finding the
pointing device, screen size, and scrolling settings difficult because they
differed from the respondents’ home computer.

The font files used only the default, built-in letter fitting. To cross-
check the data-collection model and analysis process, a small number of
artificial letter-fitting adjustments was inserted into the samples. Two such
benchmarking checks were added to each sample page at random
locations: one check that increased the spacing between a pair of
letterforms and one check that reduced the spacing between a pair of
letterforms. The benchmark checks were one- or two-pixel changes to the
inter-letter spacing, made by wrapping an HTML element around
the letterforms in question.

On average, respondents marked 40% of the benchmark checks at rates
higher than the average character pair. This distinction was particularly
noticeable in the Libre Caslon Text Italic and Alfa Slab One samples. This
method has limited granularity, in that the adjustments made must be
specified in CSS units, and even ‘CSS pixels’ may differ from ‘display pixels’
on the screen of the respondent’s computer. Thus, although it proved
instructive during the pilot-testing phase, it was not retained for the
public tests.5

As anticipated, a number of minor issues were uncovered during the
pilot test that suggested helpful revisions should be made to the
framework, the wording of instructions, and the design or implementation
of the specimen layouts. Notable changes are discussed in the description
of the public tests that follows.

5. It was also observed in verbal comments made by the respondents that the benchmark adjustments
proved to be a distracting element in the sample-marking task. Respondents who commented on the
benchmark adjustments said that, once they had noticed a benchmarking pair, they interpreted the
sample-marking task as being a search for fitting errors that were similarly prominent, and that
affected the subsequent marks they made.

122

5.3 Public testing framework

After the conclusion of the pilot test, a framework to test fitting algorithms
with respondents from the general public was developed. The framework
was used to deploy tests in a series of three test batteries, collecting
responses for typefaces in their original fitting as well as in refitted forms
produced by the two fitting algorithms discussed in chapter 4: the
composite algorithm developed in chapter 4 based on the axiomatic Latin
text fitting model, and the rival kf algorithm.

Unlike the pilot test, which presented the same samples and test fonts
to each respondent (and used only the original fittings of the test fonts),
the public test batteries required more involved preparation of the test
fonts and text samples. Apart from these preparatory steps, however, the
public testing methodology retained the same general format as the pilot:
anonymous respondents were asked to view a series of specimen pages of
text in a web browser, with instructions to highlight and flag any character
pairs they perceived as being too close to each other or too far apart.

The public survey application reused the Flask and AnnotatorJS
components that formed the core of the pilot-test design, with the
addition that all of the sample texts and test fonts were stored on the
application server and delivered directly from its own storage.

5.3.1 Survey test procedure
The survey consisted of three stages. Respondents visiting the survey web
site were first presented with a welcome page that outlined the general
task and informed them that they could only continue if they were at least
18 years of age. Any participants who continued with the survey at that
point were presented with a more detailed disclosure and consent form (as
per University research ethics policy), followed by a set of demographic
questions. The general demographic questions were:

• The respondent’s self-reported age group
• Whether the respondent self-identified as a fluent reader of the

sample-text language
• Whether the respondent reported having uncorrected vision

There were also three demographic questions meant to characterize the
typographic experience level of the respondent on different axes:

• Whether the respondent self-identified as type designer
• Whether the respondent’s work involved type or typography
• Whether the respondent had ever received formal training in

type, lettering, calligraphy, or a related subject
If respondents answered yes to the question about receiving formal
training, they were asked to provide a description of the training in their

123

own words. The application server also recorded the following information
for each survey response:

• The class of device used (desktop/laptop or mobile)6

• The language used in the sample texts (English, German, or
French)

In the pilot tests and first public test battery, only English samples were
presented. Additional samples in German and French were added for the
second test battery. Similarly, the pilot test and first test battery featured
only one layout of the samples, a multicolumn layout intended for desktop
and laptop displays. A mobile-device layout using a single column was
added at the start of the second test battery.

Following the demographic questionnaire, respondents were given
specific task instructions. They were told that the site recorded their
personal assessment of font spacing and that the fonts used in the samples
may have their original fitting or have fitting that was altered, but they
were not told what algorithms were employed, what characters were
affected, or whether the test font on any particular page used the original
fitting or an altered fitting. They were also told that their assessments of
the spacing in the samples was not a test of their skill and that there were
no particular correct or incorrect responses.

The instructions also asked respondents to ensure that JavaScript was
active and custom font overrides were deactivated, and to check that other
potential customizations were disabled before starting the survey. They
were also asked to keep their browser at its default, 100% zoom level.

Respondents were instructed to mark pairs of letters, using the mouse
or pointer to highlight text, that looked to them as if it had incorrect
spacing for any reason, and to mark the highlighted letters as ‘Too much
space’ or ‘Not enough space’ in the pop-up window that appeared once text
was highlighted. (See figure 5.8, over page) They were not given a time limit
and were told that they could take as much or as little time as they wished,
and that it was acceptable to not make any marks at all if they did not want
to.

After each sample exposure, respondents were shown a ‘reset’ page
intended to provide a visual break and clear out any lingering visual
impressions between samples. The reset page also provided a text-input
box in which respondents could add any additional comments about the
previous sample, and gave them a brief reminder of the task instructions.

6. The application server attempted to guess the class of device based on window dimensions, but that
guess was used only to pre-fill a device-class selection field on the landing page. Site visitors were able
to change the selected device class before beginning the test.

124

5.3.2 Procedure for recording marks on text samples
For each survey response, the application server chose five test fonts at
random from among the currently active test-font pool (where each font
chosen could be in any of the three test conditions) and constructed five
text samples, each composed of three sample blocks chosen at random
from the currently active sample-text pool in the respondent’s chosen
language and device class. The sample-text pool consisted of 22 sample
blocks in each language (English, German, and French), with the mobile
device-class blocks being abbreviated versions of the desktop device-class
blocks. In the early trials, the text-sample blocks were chosen randomly
with replacement, but the application server was updated to choose them
without replacement out of concern that seeing duplicated text in the
samples might spark confusion.

Each combination of test font and text sample shown to a respondent is
here termed an exposure. The application server would proceed to show up
to five exposures to each respondent. After the fifth exposure, the
respondent was thanked, told that the survey session was complete, and
provided with a set of links to the original Wikipedia pages from which the
source texts were drawn.7 The limit of five total exposures per response
was put in place to prevent fatigue from setting in. This limit was
established experimentally in the pilot-test phase, where respondents
were able to view up to six exposures, and a marked increase in drop-outs
was observed after the fifth exposure.

7. Providing links to the original pages for this source material was a requirement of Wikipedia's
content license, not part of the test procedure.

Screenshots illustrating the task
of marking on text samples.

Top: upon highlighting characters
with the cursor, the pop-up
button appears.

Middle: clicking the pop-up
button presents the respondent
with the two categorical choices
for the mark.

Bottom: marks remain visible on
the sample, using different
colours for ‘Too much space’ and
‘Not enough space’ marks to let
the respondent keep track of the
marks previously made.

Figure 5.8

125

Screenshot of a desktop/laptop
layout text sample as seen in the
public-testing version of the
survey web application, showing
the three sizes of text used in the
three blocks.

Figure 5.9

For the desktop device class, the text samples used a two-column layout
designed to average between 50 and 70 characters per line, with 16-point
text occupying the first column, and the second column occupied by a
block of 12-point text followed by a block of 10-point text. These font-size
and layout selections were chosen to emulate a ‘main body’ column
accompanied by a secondary ‘sidebar’ column, beneath which was a
tertiary footnote section or page footer. (See figure 5.9)

The 16-, 12-, and 10-point sizes were chosen to fall within the typical
size range used in online texts meant for continuous reading (Carter 1984).
This restriction in size and layout involves trade-offs. The two-column
design broadly resembles that of the typography that might be found in a
real-world document, but only up to a point. It does not contain images or
headings and subheadings, it uses the same font for each typographic
element in the hierarchy, and is arguably unusual for including multi-
paragraph body text at multiple sizes.

For the mobile device class, the text samples used a single-column, full-
width layout, with a single paragraph set in each of three sizes: 16-point,

126

followed by 12-point, followed by 10-point. (See figure 5.10) This simplified
layout was meant to more closely reflect the layouts used in mobile web
page designs.

In both layouts, sample blocks used and which sample block was used
for each of the three sizes was determined at random by the app server in
order to vary the text presented. Randomizing the text blocks used in each
sample (and which text block was used for each of the 16-, 12-, and 10-
point sections of the layout) was done to provide more variety in the
samples and a more even distribution of character pairs among the font
sizes. If all “sample one” pages used the same text, there might be more
mark data collected for the character pairs in the “sample one” text than
for the pairs in “sample five.”

The application server also recorded some secondary information with
each sample exposure:

• The userAgent string
• The local start time
• The local finish time
• The sequence number of the exposure within the possible five-

exposure set
• An encrypted version of the visitor’s IP address

The userAgent strings sent by the browser were parsed into a best guess
for the operating system and web browser made using the DeviceDetector
Python library (Burkholder 2021). The encrypted record of the IP address
was a one-way cryptographic hash of the IP address of the respondent’s
computer made with the Cryptolog Python library (Lee et al., 2016). This
hash function is an irreversible transformation of the original IP address
seen by the server, mixed with a random seed that was deleted at the end
of the experiment. The hashed IP address would theoretically allow
analysis of whether any respondents visited the site multiple times, but
without their origin IP being discoverable.

In addition, the application server recorded the following information
for each annotation mark made by the respondent:

• The characters highlighted as an error
• The error category (‘Too much space’ or ‘Not enough space’)
• The timestamp at which the mark was made
• The position of the marked characters in the paragraph
• The position of the paragraph on the sample page (i.e., the text

block, which indicated point size, and paragraph number within
the block)

• The height and width of the window or tab
• The zoom-level of the window or tab

Figure 5.10

Screenshot of a mobile-device
layout text sample as seen in the
public-testing version of the
survey web application, showing
the three sizes of text used in the
three blocks.

127

The window size was added to the data set after the pilot test, during
which some respondents were observed to resize their browser window for
reading comfort. Some pilot-test respondents were also observed to zoom
in on the text samples, despite the instructions asking them not to do so, so
the zoom-level was also added to the data set. However, later testing
revealed that the zoom-level of the window could not be recorded reliably
across browsers, so that information was not used during the analysis
stage.

5.3.3 Preparation of sample texts
The source texts for the samples were articles chosen randomly from
Wikipedia pages in each of the test languages (English for the first battery;
English, French, and German for the subsequent test batteries),
interspersed with isolated lines of unrelated sample words selected to
introduce less-common letter combinations.

In the article-selection process, it was decided to excise any randomly-
chosen pages that were biographical stubs or geographic places, noting
that these two page categories were frequently shorter, did not exhibit
multi-paragraph stretches of text, and tended to include far more numbers
(typically birth-and-death years) and family- and place-name words in
their shorter paragraphs.

The source texts were further prepared for use in the samples by
removing all words in other alphabets (most frequently, IPA
pronunciations or etymologies from other languages), mathematical
formulas and other specialist symbols, and subscripts or superscripts. Each
text was also checked against a list of offensive words and, for the German
and French texts, reviewed in an independent scan by a native reader to
ensure that no potentially divisive subject matter was unintentionally
included.

Interspersed between these Wikipedia paragraphs were single lines
featuring individual words separated by commas. They included proper
nouns chosen to introduce less common capital-to-lower-case letter
sequences and some words set in all capital letters, to increase variety in
the pairing shown across the entire exposure set. These single-line
interspersions also served to separate the topically-independent Wikipedia
paragraphs from each other.

5.3.4 Preparation of font files
The font files were prepared and uploaded to the application server. For
the test fonts refitted by an algorithm, this process involved applying the
newly calculated fittings to a copy of each font file.

The software implementation of the test algorithms, as detailed in
chapter 4, output a set of sidebearings (and, optionally, a set of kerns) for
each input font. To prepare the test fonts deployed on the survey site, it

128

was decided that modifying the font binaries by patching in the new
sidebearing and kerning information was preferable to attempting to build
a new version of each test font from its original source files.

First, although all of the fonts eventually selected for the tests were
published under an open license (see section 5.4.1), they differed in regard
to what materials were included in the published releases. Some of the
fonts were published only as a TrueType or OpenType binary, while others
included source files. Second, in cases where source files were available,
the contents varied in format and in completeness. Some of the source files
are published in the .glyphs or in .vfb file formats, each of which includes
the vector shapes, font features, metrics, and metadata. Others are
published with vector shapes and metrics in the .UFO file format, plus
smart-font features stored separately in the .FEA file format, and metadata
in other ancillary file formats.

This distinction reflects the differing development and engineering
processes used by the designers and foundries, which indicates the
practical challenge of rebuilding the fonts from source. Different foundries
use different applications and build tools, perhaps even incorporating a
multi-stage (even supervised) process, and the full details of the build are
not necessarily documented. Rebuilding the fonts from source without full
access to the build process would risk introducing undocumented changes.

Consequently, the test fonts were modified by a Python script that read
the new fitting information generated by each algorithm and applied
changes directly to the binary font file, using the ttLib module of the
FontTools Python library (FontTools 2013).

In addition, all of the original kerning features (including TrueType
kern tables as well as any ‘kern’, ‘dist’, or ‘cpsp’ features in the GSUB
table) were removed from test fonts that had been refitted by algorithm.
This step is necessary to produce a font file that encapsulates only the
fitting generated by the algorithm. It was clear by visual examination that
removing the kerning features from the refitted fonts would cause some
character pairs to appear problematic, but mixing kerning adjustments
made by the original designer in with sidebearings generated by an
algorithm results in a fitting that does not purely represent the algorithm,
potentially confusing the data analysis.

Several other smart-font features could arguably impact the perceived
successfulness of a font’s fitting as well, and the question of what features
to preserve required careful consideration. For example, ligature
substitutions may replace two-letter sequences with a single typeform
representing both letters in ligated form. In English, fi is perhaps the most
common ligation. In fi ligatures, the two component letterforms are still
meant to be regarded by readers as being the two original letters, just
optically corrected to accommodate for the effect of collisions. The f and i
components of the fi ligature may or may not touch in the ligated form;

129

the goal is only to correct their visual appearance. Most notably for this
research project, the interior space within the fi ligature generally remains
(at least, below the crossbar of the f) and should approximate the inter-
letter space given to the fi pair nominally.

It could be argued that the fi ligature and similar space-enclosing
ligatures convey a full inter-letter space with them that might differ
noticeably from the inter-letter spaces in the surrounding text and disrupt
the overall regularity of the fitting used in the test font. Removing the
ligature forms, however, could cause collisions or overlaps, and redrawing
the ligatures would require the author to impose design decisions.
Weighing these risks, it was ultimately decided to leave the ligatures in the
test fonts, as originally designed, and to note that fact when analysing
response data for the letter pairs impacted.

In the final step, all of the font files deployed in the tests, including the
modified font files and those that retain the original letter fitting, were
anonymized with a FontTools Python script to remove the font and font-
family names, manufacturer information, and other human-readable
metadata from the internal font tables. This measure was taken as a
precaution to preclude respondents from discovering the original font
names by inspecting the HTML source of the test page or web-font files
themselves, either manually or through the use of web-browser
extensions, so that no preconceived opinions based on individual font or
foundry names would influence the responses. The font file name was then
replaced with a randomized hexadecimal identifier.

5.4 Typeface tests

Tests utilising the framework were deployed in a series of batteries on a
public-facing web site, which was promoted in discussion forums, via
mentions in conference talks and on social media, and by encouraging
participants to share links to the test site. Deploying the tests in a series of
batteries enabled changes to be made to the typeface test pool to adjust to
the real-world response rate, particularly at the start of the public tests, as
will be described in the following section.

The typefaces used in the tests arguably constitute the most critical
portion of the test materials, because they provide the input context for
the two fitting algorithms tested and are also the focus of the task that
survey participants are asked to perform. The selection process involved
examining typefaces on a technical level (that is, the binary font files
themselves) as well as on the stylistic and typographic qualities of the
typeface designs.

130

5.4.1 Technical criteria
The initial criteria used to select test fonts were technical in nature, largely
to accommodate the realities of the refitting process and the web
application server used for the survey site. For this test framework, it was
decided to work with open-licensed fonts.8 The reasons were twofold.

First, electing to work with open-licensed fonts would enable fully
reproducible experiments, thus making the findings of more use to
subsequent research projects. Second, initial enquiries with commercial
foundries indicated that it would be costly (in both time and complexity, if
not in outright monetary expense) to negotiate licensing agreements
necessary to modify and deploy a large array of proprietary fonts on the
public testing web site.

Within the sphere of open-licensed fonts, however, the test design
identified for use typefaces that had been designed and published by
established type foundries. This decision, hopefully, permitted some level
of confidence that the font files had been subject to a quality-assurance
process reflecting general industry-standard criteria, and that the
typefaces’ designs and their default fittings could be expected to fall within
contemporary type design convention.

In addition to the licensing and foundry criteria, several of the selected
fonts were available from their foundries in both static-font and variable-
font format. In those cases, the tests were conducted only with static
versions of each font. This decision was made in order to avoid any
potential inconsistencies that might arise for the design-space instances in
the variable-font versions.

Variable fonts are typically compiled from a set of distinct master font
files, each of which are designed and tested manually. The masters are
designed at pre-defined locations in the design space, often at the extreme
point of each variation-axis combination (e.g., Extra Bold Extended, Extra
Bold Condensed, Extra Light Extended, and Extra Light Condensed) plus a
‘regular’ master representing the centre. In between these masters,
instances representing the intermediate characteristics somewhere along
each variation axis are created by interpolating between the data in each of
the masters.

Due to this interpolation, for any given instance in a variable font file,
the sidebearings (as well as the contours of the forms) are interpolated
values calculated when the text is rendered, and may even differ
depending on the particulars of the computing environment. Thus, the
sidebearings in an interpolated instance have potentially not been
consciously set by the type designer. Ideally, a well-crafted variable font
will have been put through a rigorous quality-control process that did
involve manual evaluation of the fitting at numerous instances, but that

8. The term open licensed here refers to any font with a license that permits royalty-free redistribution
and modification. These license rights are sometimes referred to broadly as open source, but source-
code publication is not required by the Open Font License (OFL), the most popular license choice of the
set.

131

cannot be guaranteed. By using the static font versions instead, there is a
higher likelihood that the exact sidebearings used in the font file had been
manually determined and tested.

5.4.2 Stylistic and design-space font criteria
Since the goal of this research is to explore letter-fitting algorithms that
work across a broad range of typeface styles, a matrix of common Latin
type styles and variation axes was developed, ranking the possible
permutations by relevance and availability. (See figure 5.11)

The stylistic and design-space variations considered apply only to
proportional typeface designs. Although letter fitting is relevant to
monospace designs as well, the additional constraints of monospace fitting
and the tightly-linked design restrictions it imposes make monospace
typefaces out of scope for this test design.

The rankings of importance were informed by the analysis of prior
work on letter-fitting automation. For example, records indicated that
earlier algorithms which were successful on upright styles at regular
weights and normal widths often failed at generating letter fitting for
typefaces at the extremes of the weight and width variation axes, so those
variation axes were rated as of higher priority. Little prior work exists in
exploring the effects of optical size, but the reported experiences of kf in
URW’s hz-program suite indicate that it did not create a substantial problem
for the algorithm (URW 1993, Zapf 1993).

Sans-serif typefaces frequently pair their upright designs with an
oblique, rather than a ‘true italic’ slanted variant. Prior research indicated
that oblique designs can be mathematically de-skewed into an
intermediate, temporary upright that functions in a reasonably similar
manner as the original upright design in many prior letter-fitting

 Optical size Weight Width Slant/italic
Uncommon Less important Less important
Uncommon Less important Less important
Uncommon Less important Less important

Less important Uncommon
Less important Less important
Less important Less important
Less important Uncommon
Less important Uncommon

Uncommon Uncommon Uncommon Rarely available
Uncommon Uncommon Uncommon Rarely available
Uncommon Uncommon Uncommon Rarely available

 Rarely available Rarely available Rarely available Rarely available

Figure 5.11
Matrix of typeface styles and typographic design variations, colour-coded by their assessed relevance for testing. Green indicates higher
relevance, followed by yellow, then by orange. Because pre-existing typefaces from established foundries were used, the relative
uncommonness of a style or variant was considered a relevant factor in the assessment. The styles marked with * were explored for non-
joining implementations.

Grotesque sans
Humanist sans

Square sans
Old-style serif

Transitional serif
Didone serif

Slab serif
Rounded serif

* Informal calligraphic
* Casual handwriting

Blackletter
Brush lettering

132

algorithm experiments. Serif typefaces, however, frequently pair the
upright design with a distinctly different italic design that does not
respond well when de-skewed. Therefore, italic variations were rated as a
higher priority for serif styles but as less important for sans serifs.

Finally, certain typeface styles (such as blackletter and handwriting
faces) are rarely designed in multiple weights, widths, and optical sizes at
all. Thus, while it is still valuable to test any letter-fitting algorithm on
these styles, they are of lesser importance. Notably, in contemporary
typography, these styles tend to be used more for decorative and display
purposes, and not in running text meant for continuous reading.

The typefaces that had been used in the pilot test were chosen from a
broad range of styles, as was noted in § 5.2.1. However, the results of the
pilot test suggested that respondents had a substantially more difficult
time assessing fitting problems in italic designs and in extreme weights.
This effect is seen in a lower percentage of ‘benchmark check’ adjustments
marked by respondents in the pilot test.

For the public testing phase, test typefaces were chosen to address the
higher-relevance style and design variations from the priority matrix. The
choices avoided extremes of weight and width, based on the pilot-test
experience, although upright and italic forms were still initially included.
The test typefaces were also selected to provide a variety of serif and sans-
serif constructions, stroke contrast, and letterform constructions. This
choice permitted the tests to focus on discovering patterns related to the
stylistic differences with less risk of intervening effects from weight and
width variance complicating the results.

5.4.3 Public test batteries
The first battery of tests featured typefaces with unaltered fitting, to
collect control-group data, gauge the expected response rate, and
potentially identify any issues not anticipated or observed in the
controlled conditions of the pilot test. These typefaces were selected to
cover a range of typographic variables, including upright and italic styles,
weight and optical-size variation, and stylistic construction. In total, 29
test fonts were used in this battery. The fonts in the first test battery were:

• Abril Fatface Regular: a heavy-weight, high-contrast Didone-
style serif typeface.

• Alegreya Regular, Alegreya Italic, Alegreya Sans Regular, and
Alegreya Sans Italic: a family of related serif and sans-serif
designs in contemporary upright and italic styles.

• Amiri Regular and Amiri Italic, and Arabic-and Latin typeface,
the Latin version of which is an old-style serif typeface of
moderate contrast, modelled on Garamond.9

• Andika Regular, a sans serif typeface using simplified letterform
constructions for beginning readers.

9. The original intent of this choice was to permit the eventual testing of Arabic in addition to Latin.
The Latin component of Amiri is an adaptation of the Crimson Text typeface.

133

• Bellefair Regular, an old-style serif design with a distinctly low x-
height and short serifs.

• Gentium Plus Regular and Gentium Plus Italic, a serif typeface
featuring large x-height and calligraphic terminals.

• IM Fell Double Pica Regular and IM Fell Double Pica Italic, a
transitional serif design.

• Literata Regular, in three optical sizes: opsz10, opsz14, and
opsz18, a modern serif design with upright stress and thin serifs.

• Neuton Regular, a Dutch-inspired serif with heavy stroke weight.
• and , a transitional serif family.
• Slabo 13px Regular, a low-contrast, slab-serif typeface developed

with web usage in mind.
• Sorts Mill Goudy Regular and Sorts Mill Goudy Italic, an old-style

serif family reviving Frederic Goudy’s Goudy Oldstyle.
• Source Sans Pro Light, Source Sans Pro Regular, and Source Sans

Pro SemiBold, a gothic sans-serif typeface in multiple weights.
• Tinos Regular and Tinos Italic, a transitional serif design with

somewhat straight profiles, short serifs and angular terminals.
• Yrsa Regular and Yrsa Medium, a contemporary serif design with

notably heavy serifs, available in multiple weights.
The number of responses collected in the first battery was somewhat lower
than initially hoped for, considering the number of test fonts; a total of 203
sample exposures were recorded (for a mean of 7 per test font).

In the second battery of tests, the test fonts deployed differed primarily
by including modified versions of the typefaces, refitted using either the
composite algorithm developed in chapter 4 or the rival algorithm, which
reimplemented the kf component of URW’s hz-program suite. This battery
reduced the number of typefaces compared to the first battery, out of
concern for collecting enough responses for statistical validity for each
typeface / algorithm permutation. It was also decided for the second
battery to reduce the number of typographic variables, focusing primarily
on the ‘regular’ weight and upright styles.10 The second battery retained
five of the typefaces from the first battery (Alegreya Sans, Source Sans Pro
Regular, Slabo 13px Regular, Literata Regular at optical size opsz14, and
Yrsa Regular) and added:

• Source Serif 4 Regular, a serif typeface designed to complement
Source Sans Pro from the earlier test batteries.

In this battery, all of the test fonts were deployed in the original fitting and
in versions refitted by each of the two test algorithms.

10. The second battery also coincided with the added options for respondents to view samples in
German or French (in addition to English), and to select a mobile view that formatted the samples in a
single column deemed more accessible for smartphones. Those changes were made on the application
server and did not impact the typeface selection.

134

The third battery added a small set of additional typefaces chosen to
extend the pool of test fonts with additional typographic weights, widths,
and optical sizing, complementing the typefaces deployed with battery
two. Each additional test font in this battery, as in battery two, was
deployed in the original fitting and in versions refitted by each of the two
test algorithms. The third battery included:

• STIX Two Text Regular, a high-contrast transitional serif design
with a vertical stress axis.

• Slabo 27px Regular, a slab-serif typeface designed as an optical-
size variant of Slabo 13px Regular from the earlier test
batteries.11

• Fira Sans Condensed, a condensed sans serif chosen to test in a
width variation distinct from ‘normal’ width.12

• Yrsa Bold, a bold-weight variant of Yrsa Regular from the earlier
test batteries.13

The full set of typefaces used in the tests, along with sample typeforms for
each, is provided in table 5.1 (over page), grouped by their deployment in
the test batteries.

To some extent, the oversized selection in the first test battery could be
considered a missed opportunity, because with a smaller set of test fonts,
more exposures might have been collected for each. But accurately
assessing the real-world response rate of the survey was a valuable stage,
and allowed the later test batteries to be adapted accordingly.
Furthermore, the exposures of the test fonts that were used only in the
first battery still form an important part of the control group, and help
further the analysis of readers’ responses that followed.

That analysis, which is the focus of the next chapter, evaluated the
marks made by survey respondents for patterns, both within each tested
typeface, and between the profile shapes of the typeforms.

11. Slabo 27px was chosen for its potential to capture optical-size differences from Slabo 13px. This
pairing was selected over the alternative option of adding a Literata optical-size variant because the
slab-serif design of the Slabo faces is more distinctive within the test pool than Literata’s serif design.
Slabo also exhibits the rare design property of changing the construction of g between the 13px and
27px sizes.
12. The sans serif designs from the earlier batteries did not exist in a condensed-width variant.
13. Yrsa Bold was chosen over Yrsa Medium in order to test a more extreme weight variant.

135

Sample formsTypeface
Cantarell Regular

Fira Sans Extra Condensed
Alfa Slab One Regular

Libre Caslon Text Italic
Rajdhani Light

Tenor Sans Regular

Abril Fatface Regular
Alegreya Regular

Alegreya Italic
Alegreya Sans Italic

Amiri Regular
Amiri Italic

Andika Regular
Bellefair Regular

Gentium Plus Regular
Gentium Plus Italic

IM Fell Double Pica Regular
IM Fell Double Pica Italic

Literata Regular optical size 10
Literata Regular optical size 18

Neuton Regular

Sorts Mill Goudy Regular
Sorts Mill Goudy Italic
Source Sans Pro Light

Source Sans Pro SemiBold
Tinos Regular

Tinos Italic
Yrsa Medium

Alegreya Sans Regular
Source Sans Pro Regular

Slabo 13px Regular
Literata Regular optical size 14

Yrsa Regular
Source Serif 4 Regular

STIX Two Text Regular
Slabo 27px Regular

Fira Sans Condensed
Yrsa Bold

Table 5.1
Typefaces deployed in the test batteries, listed sequentially and with key letterforms shown.

Pilot test

Battery 1 (only)

Battery 1 onward

Battery 2 onward

Battery 3 onward

137

6. Findings from quantitative tests

The testing methodology outlined in chapter 5 was designed to measure
the responses of readers to the fitting of Latin text when viewed on the
web, with the ultimate goal of measuring the success of fitting algorithms
among readers. As was described in that chapter, the raw data collected in
readers’ responses is where each reader chose to mark a sequence of
letterforms on a sample text as looking like the fitting is incorrect, plus an
indicator of whether they feel that the fitting of the marked forms is too
tight or too loose. The data from these marks thus encapsulates the exact
typeforms marked, the typeface used in the sample, the fitting algorithm
employed to fit the typeface, and, by extension, any influences brought on
by the sample itself (such as its language) or by the reader. Analysing this
raw data to measure the responses of readers to the fitting algorithms in a
useful and statistically valid manner necessitates some processing.

This chapter will detail how the raw data was analysed to define metrics
appropriate to assessing fitting algorithms, present findings based on those
metrics, and offer an interpretation of how the findings relate to the test
algorithms used. The development of these metrics was a process that
required careful consideration not just of the specifics of the testing
framework, but also of the research problem and the Latin text fitting
model, as all three intersect in the data. Before exploring the data itself,
the discussion will begin with a summary of the testing and its overall
participation, in order to establish a solid understanding of the conditions
in which the data was collected.

6.1 Test batteries and overall participation

As described in chapter 5, tests were deployed in a series of batteries on a
public-facing web site, which was promoted in discussion forums, via
mentions in conference talks and on social media, and through
encouraging participants to share links to the test site. Deploying the tests
in a series of batteries enabled changes to be made to the typeface test pool
to accommodate the real-world response rate.

The first battery of tests featured typefaces with unaltered fitting, to
collect control-group data, gauge the expected response rate, and
potentially identify any issues not foreseen during the pilot-testing phase.
In total, 29 test fonts were used in this battery; a total of 203 sample
exposures were recorded, a mean of 7 exposures per test font.

The second and third batteries of tests included modified versions of
typefaces, refitted using either the composite algorithm developed in
chapter 4 or the rival algorithm, which reimplemented the kf component
of URW’s hz-program suite, in addition to the unaltered versions of each
typeface. The total counts of sample exposures recorded during the tests is
summarized in table 6.1 (over page).

138

Table 6.1
The number of exposures recorded for each test typeface, in each fitting-algorithm test condition.’“Control’ refers to the original,
unaltered fitting. Typefaces marked with an asterisk (*) were used in the pilot test only. Pilot-test responses were included in the general-
response and demographic analysis.

1. Early in the testing, a version of this typeface that had been refitted using a flawed version of the kf
algorithm, which did not correctly set the minimum sidebearings for diagonal profiles, was
accidentally exposed on the test site and received 16 exposures. Marks from those exposures were
included in the general response statistics, such as the breakdowns by demographic group, but the
marks were removed and not included in the head-to-head comparisons of algorithms.

Sample formsTypeface
* Cantarell Regular

* Fira Sans Extra Condensed
* Alfa Slab One Regular

* Libre Caslon Text Italic
* Rajdhani Light

* Tenor Sans Regular

Abril Fatface Regular
Alegreya Regular

Alegreya Italic
Alegreya Sans Italic

Amiri Regular
Amiri Italic

Andika Regular
Bellefair Regular

Gentium Plus Regular
Gentium Plus Italic

IM Fell Double Pica Regular
IM Fell Double Pica Italic

Literata Regular optical size 10
Literata Regular optical size 18

Neuton Regular

Sorts Mill Goudy Regular
Sorts Mill Goudy Italic
Source Sans Pro Light

Source Sans Pro SemiBold
Tinos Regular

Tinos Italic
Yrsa Medium

Alegreya Sans Regular
Source Sans Pro Regular

Slabo 13px Regular
Literata Regular optical size 14

Yrsa Regular
Source Serif 4 Regular

STIX Two Text Regular
Slabo 27px Regular

Fira Sans Condensed
Yrsa Bold

 31
 29
 26
 22
 20
 18

6
8

10
3
5
9
6
6
9
2
5

11
11

7
4
6

10
8
7
4
5
7
5

10
21
18

7
20
20
29
25
18
16

8

34
25
29
26
27
24
21
18
10
11

1

Control Composite kf

32

35
38
26
24
26
17
20
14

139

In total, nine of the typefaces had exposures recorded in all three of the
test conditions (control group and both fitting algorithms). One additional
typeface, Source Sans Pro Regular, received exposures in the version
refitted by the rival kf algorithm, but none in the version refitted by the
composite algorithm. Although regrettable, it is believed that this is an
effect of the randomized selection of test fonts shown to each respondent.

6.1.1 General response statistics and demographics
Across all of the tests, there were 390 respondents who viewed at least one
text sample. 1035 exposures were viewed in total, out of which 611
exposures received at least one mark on a sequence of characters. This
resulted in 8320 marked sequences (a mean of 8 marks per exposure).
Among the exposures receiving at least one mark, the mean was 13.6 marks
per exposure.

Beginning with battery two, the testing site began by asking the
respondents to select the language they wished to view samples in and
whether they wished to view a desktop/laptop (multi-column) layout
identical to the layout used in the first battery and pilot test, or a mobile
device layout that used a single column and shorter overall sample
paragraphs. Counting all responses before battery two as English-language
and desktop-layout (which was the only configuration available), 345
respondents (88.5%) who viewed a sample exposure viewed samples in
English, 33 (8%) viewed samples in German, and 12 (3%) viewed samples in
French. (See figure 6.1) In total, 281 of the respondents (72%) used the
desktop/laptop multi-column layout. (See figure 6.2)

The basic demographic questions asked each respondent about their
language fluency with the language selected for sample text exposures,
normal or corrected eyesight, and general age range. Of the 345 English-
sample respondents, 20 said they considered themselves not fluent
readers; all respondents who viewed German and French samples said they
considered themselves fluent in those languages. 364 of the respondents
(93%) reported that they either had normal vision or their vision was
corrected to normal. (See figure 6.3)

The age-range question was limited by the requirement that
participants in the tests be 18 or older. Of the respondents, 91 (23%) said
they were 18 and 29 years of age, 195 (49%) said they were from 30 and 44
years of age, 85 (22%) said they were from 45 to 59 years of age, and 19 (5%)
said they were age 60 or older. (See figure 6.4)

6.1.2 Experience with type and typography in the response set
An early concern that arose during the design of the testing framework
was whether it would be possible to recruit volunteer participants of
varied backgrounds while sufficiently representing relevant typographic
experience levels, and how that factor might in turn impact the resulting
data. In particular, a potential critique of the methodology was that an

Yes
93.3%

 No
6.7%

Mobile
27.9%

Desktop
72.1%

Device classes of respondents.
Figure 6.2

Age ranges reported of
respondents.

Figure 6.4

Vision status reported of
respondents. ‘Yes’ indicates
normal or corrected-to normal
vision.

Figure 6.3

8.5%

English,
not fluent

5.1%

English,
fluent
83.3%

German

French
3.1%

Language and fluency reported
by respondents.

Figure 6.1

 50.0%
 23.3%

 4.8%

 21.8%

140

anonymous, public-facing web site would attract a disproportionately large
number of respondents with little or no typographic or typeface-design
experience, although how the proportion of experienced respondents
could affect the results is not known. To measure that factor, the
questionnaire section asked about three conditions:

• Whether the respondent self-identified as type designer
• Whether the respondent’s work involved type or typography
• Whether the respondent had ever received formal training in

type, lettering, calligraphy, or a related subject.
The questions were worded to examine various dimensions in which a
respondent might be considered experienced. On these questions, 128
respondents (33%) described themself as a type designer, 247 (63%) said
their work involved type or typography, and 189 (49%) said that they had
received formal training in type or one of the listed related subjects. (See
figure 6.5)

Respondents who reported having received formal training were asked
to describe it in their own words. 163 provided a description. Of those:

• 72 mentioned a specific college or post-graduate degree
• 38 mentioned college or school courses
• 6 mentioned non-academic study courses or workshops
• 6 mentioned internships or formal on-the-job training
• 29 mentioned either being self-taught or referenced their own

work experience (other than on-the-job training)

Typographic experience reported by respondents, by respondent and by exposures viewed. Respondents were each asked three
questions related to their experience level with type and typography.

Figure 6.5

Type designers Typography work or jobType-related training

Proportion of respondents

Proportion of exposures

Yes
63.3%

No
36.7%

Yes
64.5%

No
35.5%

Yes
52.4%

Yes
37.6%

No
62.4%

Yes
48.5%

No
51.5%

Yes
32.8%

No
67.2%

No
47.6%

141

Some respondents mentioned items in multiple categories; some were
difficult to classify or interpret. The above classifications are meant to be
descriptive only. Across the three questions, it is believed that the sample
contained a satisfactory mix of respondents with different degrees and
varieties of typographic experience.

6.2 Exposure and mark data

The preceding look at the responses can provide perspective into the
sample of respondents, but the core data collected is the marks of ‘Too
much space’ and ‘Not enough space’ made by the respondents on specific
letterforms seen in the exposures. Here, too, some general observations
can be made about the overall characteristics of the responses that assist
the analysis.

6.2.1 General characteristics of the exposure set
Two high-level patterns of potential interest were observed in the set of
exposures. The first is the dropout rate. Of 390 respondents that viewed
one exposure, 216 (55%) proceeded to view additional exposures, with 147
eventually viewing all five exposures available during a session. (See figure
6.6) What percentage of the respondents who viewed an exposure but
stopped the survey without attempting to assess the sample cannot be
reliably determined.

The second pattern observed in the exposure set relates to the question
of typographic experience level raised in the previous section. All three
experience-level groupings accounted for a larger proportion of exposures
viewed than their corresponding proportion in the respondent set.
Although respondents who identified themselves as type designers
constituted 33% of the respondents, they viewed 389 (38%) of the total
exposures. Respondents who said they had received training viewed 542
(52%) of the exposures (from 49% of the respondents), and respondents
who said their work involved type or typography viewed 668 (65%) of the
exposures, (from 63% of the respondents). This may reflect a higher degree
of motivation among the typographic-experience group to complete the
task. (See again figure 6.5)

6.2.2 General characteristics of the mark set
Regarding the marks recorded on the exposures, the text contents of each
exposure was randomized to reduce the chances of marks being skewed
towards certain letterforms based on their position in the sample page and
to avoid confusion caused by showing respondents the same text multiple
times.2 As a result, the exposures varied in length and in the set of letter-
pairs they contained. The desktop/laptop multi-column layout was

Respondent drop-out rate as
visible in the number of
exposures viewed. The sixth
exposures reported in the figure
are from the pilot-testing phase,
which permitted six total
exposures.

Figure 6.6

2. Randomization of sample texts: as was discussed in chapter five, § 5.3.3.

142

distinctly longer, with an average of 4757 characters (including all
typeforms and word spaces) among the exposures viewed by respondents.
The mobile, single-column layout was abbreviated, with an average of 1447
characters (including all typeforms and word spaces). (See figure 6.7)

The variation in lengths between exposures is perhaps most important
when considering how the marks made are used to estimate respondents’
level of satisfaction with the fitting in the exposure: ‘marks per exposure’
alone is not a sufficient metric on which to compare algorithms, due to the
varying lengths of the exposures. A ‘marks per thousand characters’ rate
might be a better first approximation although, as will be seen in § 6.3, an
elementary mark count (even when normalized by the number of
characters) is not sufficiently detailed to be the basis for evaluating fitting
algorithms.

Nevertheless, it is useful to observe the overall rates at which exposures
were marked, simply to note the level at which any signals in the data may
be found. Across all exposures, there were an average of 4.2 marks per
thousand characters (SD = 27.7); 7.1 marks per thousand characters (SD =
35) if exposures with zero marks are excluded. (See figure 6.8, over page)

These unadjusted rates do not take into account whether the
respondents marked pairs of forms on the samples, as the instructions
asked them to do. Even in the pilot test, some respondents were observed
to highlight and mark entire words or phrases, and the free-form nature of
the test could not prevent this. Across all of the test batteries, the majority
of the 8320 marks made were, as instructed, pairs of exactly two characters
(‘characters’ here including word spaces in addition to typeforms). Of the
remaining marks, 126 were less than two characters long,3 926 were three-
character marks, 363 were four-character marks, and so on, tapering off
with mark-length, with a small number of marks persisting in the count up
to 33 and a few outliers beyond that range. (See figure 6.9, over page) Four
marks (all made in the pilot test) were more than 300 characters in length;
whether this is due to error, to the respondent intentionally registering

3. 121 of these marks were one-character long. 5 of the marks were zero characters in length. The
situation causing zero-length marks is unclear, but is most likely the result of users attempting to
select text outside the sample area.

Lengths of exposures viewed by
respondents in the collected data
set, in characters. Because the
method involved randomizing the
sample pages, the exposures
varied in length. The two clusters
clearly distinguish the longer,
mutli-column layout shown to
desktop/laptop devices from the
shorter single-column layout
shown to mobile devices.

The six spikes correspond to the
pilot-test response sessions,
which used a non-randomized set
of sample texts and thus did not
vary in length.

Figure 6.7

143

dissatisfaction with an entire paragraph, or to some other cause could not
be determined.

It was decided to include the greater-than-length-two marks in the data
analysis on the grounds that they represent a respondent’s intentional
reaction to the fitting of the marked section of the sample and each such
mark could be unambiguously be split into constituent pairs (e.g., an abc
sequence was split into two pairs: ab and bc). Marks of less than length two
were dropped from the analysis because they could not be unambiguously
associated with a pair. When these subdivided marks were added to the
length-two mark set, there were a total of 18583 marked pairs. 17721 of
these marked pairs were on the desktop/laptop layout (95%).

Each mark made was tagged by the respondent according to whether it
showed ‘Too much space’ or ‘Not enough space’. Across all three test
conditions, the ‘Not enough space’ marks accounted for 14028 of the
marked pairs (75%). A similar ratio was observed when looking only at the
control group of typefaces using their original, unaltered fitting: 8541 out
of 11298 marked pairs (75%) made on control-group exposures were ‘Not
enough space’ marks. Each exposure also showed sample text in three sizes.

Right: The number of marked
sequences made per thousand
characters in each exposure. A
large number of exposures
received zero marks, perhaps in
some cases due to drop-outs.

Below right: The second chart
removes the zero-mark column to
more easily see the other
columns.

Figure 6.8

Length in characters of the
sequences marked by all
respondents. Note that this chart
plots the original length of each
sequence as it was marked by the
respondent; marks of longer than
two characters were split into
pairs before the data set was
analysed.

Figure 6.9

144

The 16-point text blocks received the most marks (of both mark categories)
at 13662 (74%), followed by the 12 point at 3247 (17%), and 10 point at 1674
(9%).

6.3 Defining metrics to evaluate fitting from the mark data

Fundamentally, the testing framework used in this research was developed
to measure each respondent’s level of dissatisfaction of the fitting seen in
each exposure. The expectation is that analysing many such results from
many respondents for a particular algorithm provides a valid estimate for
how successful the algorithm would be received by readers outside of the
testing framework.

The first step in this process was determining how the marks made on
pairs of typeforms in the exposures are best integrated into a meaningful
evaluator of an algorithm. It is simple enough to split the data collected
into three sets of exposures, one for each of the test conditions (the control
group with the original fitting in each font, the group of fonts refitted by
the composite algorithm, and the group of fonts refitted by the rival kf
algorithm). Within each of those test conditions, each of the raw marks
comprise a pair of typeforms from one of the exposures plus the
respondent’s tag indicating whether the pair exhibited ‘Too much space’ or
‘Not enough space’ (from here, the terms ‘loose’ and ‘tight’, respectively,
will be used for the sake of brevity). Developing a meaningful evaluator
began with analysing those marks.

6.3.1 Per-pair metrics: exposure mark rates
As discussed in chapter 2, the Latin fitting process focuses on determining
left and right sidebearings for each typeform. It has been assumed in this
analysis that when a respondent marks a pair ab in an exposure as having
unacceptable fitting, that response correlates to a potential problem with
either the right sidebearing of a, the left sidebearing of b, or with both. In
accordance with this principle, the marked ab pairs are interpreted as
marks on the interior, facing profiles in between the forms (the right
profile of a and the left profile of b), and not as marks on the external
profiles. Counting these marks across all of the pair permutations in the
mark set, if there are more marks on the right profile of a than marks on
the left profile of b, then the right profile of a has scored worse under that
test condition, allowing the right profile of a to be identified as the more
likely location of the problem (although the marks on both profiles must
still be counted; both profiles in a pair could exhibit a problem, or the
problem could be unique to the pair).

This basic relationship is complicated by the fact that each mark is
tagged with the ‘loose’ or ‘tight’ designator, which indicate opposing
problems. In aggregate, an equal number of ‘loose’ and ‘tight’ marks for a

145

particular profile were treated as balancing each other out. This would
certainly be the natural interpretation for a marked pair in a single
exposure: if the same respondent marked ab as overly tight twice and
overly loose twice, then perhaps some visual problem does exists with one
or both profiles in the pair, but it cannot be decisively attributed to a tight-
or-loose fitting issue. Applying this same logic across multiple respondents
and exposures generalizes to a degree, but it remains in line with the
overall assessment methodology: if equal numbers of respondents
independently mark the pair ab as being overly loose and as being overly
tight in a particular test condition, then no conclusion should be drawn
about whether the pair is fitted too loose or too close by that test
condition’s fitting algorithm.

To aggregate the marks across a given subset of exposures (for example,
across all exposures of a typeface within a given test condition), the
number of exposures where a mark was made for each pair was counted,
and each such count was divided by the number of exposures in which the
pair occurred in the sample text. This was done to normalize the counts for
more frequently-occurring pairs of forms receiving more marks. This
results in a fractional value between 0 and 1 representing what proportion
of exposures containing a given pair received a mark for that pair.4

This ratio was calculated separately for the ‘loose’ and ‘tight’ marks. A
heatmap matrix can be constructed to visualize either ratio for a given
subset of exposures and potentially identify patterns of interest. (See an
example for one typeface at figure 6.10, over page) Even at this early stage, some
patterns are discernible from visual inspection, by structuring the
heatmap matrices to group the typeforms by class (namely, lowercase
letterforms, capital letterforms, numerals, and punctuation & other
symbols). With both test algorithms, there are noticeably more
occurrences of high ‘tight’ mark ratios in the capital-to-capital segments of
the heatmaps. This pattern was expected based on the construction of the
test algorithms, because both test algorithms fitted the capitals for capital-
to-lowercase text usage and did not implement a separate set of capital-to-
capital fittings via a kerning feature.

It was also observed that the numeral-to-numeral segments of the
heatmaps exhibited more of high ‘tight’ mark ratios in both test
algorithms. The construction and the practical implementations of the test
algorithms did not specifically predict this pattern, but it is perhaps
interesting to observe in reference to the theoretical discussions about
how numerals are fitted.5 The test algorithms fitted the numerals for
setting with the lowercase letterforms, using the same method; as Noordzij
and others have noted, however, numerals serve a different function than

4. Other methods of aggregating the marks across exposures were explored. Of note, the method
chosen, counting all exposures in which the pair was marked, rather than the number of separate marks
made in those exposures, guards against undue influence by respondents who marked longer-than-
two-character sequences. For example, if one respondent marked every occurrence of an exceptionally
common pair (such as te), then that single response could outweigh multiple other respondents who
chose to mark each pair only once.
5. See chapter 2.

146

Heatmap matrices of mark ratios for Yrsa Regular in the three test conditions. Left column is ‘tight’ mark ratios; right column is ‘loose’ mark
ratios. The rows of each matrix index the first character in each mark pair; the columns index the second character. Forms are sorted by case and
profile shape (right-side profiles on row indices; left-side profiles on column indices).

Figure 6.10
C

o
m

p
o

si
te

 a
lg

o
ri

th
m

C
o

n
tr

o
l g

ro
u

p
R

iv
a

l k
f

a
lg

o
ri

th
m

147

do individual letterforms. The rules of fitting numerals perhaps warrants
investigation.

The next step consolidated the ‘tight’ mark ratio and ‘loose’ mark ratio
for each of the pairs into a single signal representing the balance of the
two. The result is a measurement of whether the overall perception of the
pair skewed towards ‘tight’ or ‘loose’. As was the case when deciding how
to reconcile instances of a single respondent marking the same pair of
forms in conflicting fashion, a small amount of information is lost, but it
preserves the overall response to the pair across all of the exposures in the
set. This consolidation subtracted the ‘tight’ mark ratio from ‘loose’ mark
ratio, which results in a value between -1 and 1, with negative numbers
representing overly ‘tight’ and positive numbers representing overly
‘loose’. (See figure 6.11)

This metric will be referred to as the exposure mark rate and forms the
basis for the following analysis. Here, and in the following analysis, it
should be noted that the exposure mark rate measures the aggregate
response as to whether a pair is too ‘tight’ or too ‘loose’, but it does not

When a profile receives some
‘tight’ and some ‘loose’ marks
(left chart), subtracting the ratios
reveals the balance between the
two (right chart). Shown here are
the left-profile rates for
lowercase letterforms in Fira Sans
Condensed, from the control-
group exposures.

It should be noted that these
ratios are computed separately
for the left and right profile of
each form.

The order of the forms visible in
the index is an automatic sort on
the basis of the left profile shape,
which has the benefit of grouping
similarly-shaped forms together
in the chart.

Figure 6.11

148

measure how ‘tight’ or how ‘loose’ the pair is. That is, if ab features an
exposure mark rate of 0.2 and bc an exposure mark rate of 0.4, this
indicates that there was more agreement that bc was fitted too loosely in
the samples, but it does not mean that the sidebearings of bc in the
samples are twice as far from correct as the sidebearings of ab.

6.3.2 Assessing results across typeforms and profiles
As defined, the exposure mark rate for a pair of forms represents the
aggregate response across the given subset of exposures for that pair of
forms, and it can be calculated for every pair occurring in the exposure
subset. Across all of the sample texts used in the test (and seen in the
heatmap matrices), there were a total of 110 different characters, giving
12100 possible pairs and 12100 possible exposure mark rates — although
not every pair occurred in the sample text.

Several approaches were considered for how to convert those individual
exposure mark rates into an assessment of the overall response to the
given subset of exposures. In a blunt approach, one could simply take the
mean or median of all of the exposure mark rates for every exposure in a
particular test condition and arrive at a number, but that number would
reveal little in the way of useful insight. Furthermore, because the
typefaces tested were chosen to represent a number of distinct
typographic design styles, consolidating them into a single group would
risk obscuring differences by typographic variables. For this research, it
was decided that the most informative approach was to analyse each of the
tested typefaces independently. Within each, it was decided to cluster the
letterforms by their profile shapes, and test for statistical differences
between algorithms on a per-profile-shape basis. There are two benefits to
analysing forms by profile-shape clusters.

First, as was discussed in chapter 2, the fitting process for Latin text
fonts incorporates a number of distinct axioms that are applied to groups
of similarly-shaped profiles. Consequently, similarly shaped profiles are
expected to have similar fitting — both by typeface designers when
performing fitting (as per axioms L–1 and L–2) and by readers when
encountering text. Thus, although an analysis at the per-letterform level
might discover atypical cases (such as the left sidebearing of c, e, and o
differing substantially), those incidents would be expected to be rare and
likely indicate errors rather than revealing a meaningful pattern.

Second, clustering the letterforms by profile shapes leverages
knowledge about how the test algorithms affect similar profiles. Both of
the test algorithms that were implemented deliberately apply similar
fitting to similar profile shapes, and the composite algorithm developed in
chapter 4 incorporated a distinct method to fitting open-counter profiles
as well as several tunable parameters, such as the ratio between the
internal space of n and the standard inter-letter area, or minimum-
distance parameter for diagonal profiles. Thus, clustering the mark error

149

rates by profile shape could provide insight into whether or not the
distinct method employed for open-counter profiles or any of the tunable
parameters may correlate to a different acceptance response from those of
other profile shapes, perhaps informing future development. In a case
where the details of the fitting algorithm were not known, this profile-
shape clustering step might be less applicable.

Using this approach, it was possible to analyse each of the nine
typefaces that received exposures in all three test conditions via a
substantially smaller batch of computations and statistical tests (and to
increase the reliability of the metrics by analysing larger data sets), while
still retaining connections to the methods used to develop the test
algorithms and, ultimately, to the fitting processes employed manually by
type designers working with Latin text typefaces.

The final consideration was determining what comparisons between
the three test conditions were of interest to the research questions of this
project. It was decided that pairwise comparisons would provide the most
useful conclusions. Specifically, it was of interest whether there were
profile shapes in any of the test typefaces for which the composite
algorithm performed better, worse, or similarly to the original fitting from
the control group, or (separately) for which the composite algorithm
performed better, worse, or similarly to the rival kf algorithm.
Comparisons between the original fitting and the rival kf algorithm could
also prove useful, as an assessment of the kf algorithm conducted
independently of URW’s internal tests, apart from the interest in the
composite algorithm as a product of this research project. As mentioned
above, it was of special interest how the composite algorithm performed
with open-counter profiles, and investigating that question necessitates
looking at all of the profile shapes.

For these comparisons, it was decided to focus on the lowercase
letterforms for a number of practical reasons. First, the lowercase-to-
lowercase fitting overwhelmingly dominates Latin text set for continuous
reading — even in German, which utilises more capital-to-lowercase
pairings than French and English. Second, with nine typefaces receiving
exposures in three test conditions, it was deemed important to limit the
total number of comparisons tested. Third, but related to the second
reason, there are unresolved questions encountered when determining
how to categorise the profile shapes of capital forms fitted to lowercase
forms. For example, in pairings such as Co, it could be argued that clipping
the C at the x-height, as would be done for measuring inter-letter area
between the baseline and x-height, makes its right-side profile unbounded,
like L. But this depends on the openness or closedness of the aperture on C
as well as on the relative x-height of the o. Ideally, all permutations could
be tested, but here again, the practical problem of controlling the number
of tests makes this difficult. It was decided to focus on the well-defined
lowercase-to-lowercase comparisons for this project, to establish initial
results before extending into other areas.

150

6.4 Evaluation of algorithms by typeface and letterform profile shape

For the nine typefaces that received exposures in all three test conditions,
the left and right profiles of the letterforms were categorised into six
profile-shape groups: straight, round, diagonal, full open, half open, and
unbounded, as determined by the shape of each profile between the
baseline and the x-height. The ‘unbounded’ category referred to forms
where there was a horizontal main stroke at either the baseline or the x-
height, but not at the other, in particular r. This categorisation step was
performed by hand early in the test-font preparation process; in practice,
only the a, g, and J letterforms were found to vary in profile shape among
the upright typeface styles; the lowercase diagonal-profile letterforms (v,
w, and y) were categorised as round for some of the italic typefaces,
although ultimately there were no italic typefaces tested in all three test
conditions.

The analysis took each of the nine typefaces in turn, subsetting the
exposures for that typeface from the data set and, within the subset,
computing the exposure mark rates for the lowercase-to-lowercase pairs in
each test condition. For each profile shape, the exposure mark rates were
extracted, both for the left-side profiles and the right-side profiles. This
resulted in 54 subsets of data to analyse (9 typefaces × 6 profile shapes),
testing to see if statistically significant differences could be identified
between the three test conditions in any of the subsets.

A series of preliminary one-way ANOVA tests with α=0.05 was
conducted, using the null hypothesis (H0) that the means of the exposure
mark rates were equal between the three test conditions. In 15 of the 54
tests, a significant difference was reported at the chosen significance level
(0.05), which should provide grounds to reject the null hypothesis for those
typeface/profile-shape combinations. However, the one-way ANOVA tests
cannot report which of the test-conditions resulted in a mean exposure
mark rate significantly different from the others.

As a result, the analysis next conducted a series of Tukey Honestly
Significant Difference (HSD) tests, also at α=0.05, which performs pairwise
comparisons between the three test conditions for each of the 54
typeface / profile-shape combinations. This provided three head-to-head
comparisons in each combination:

• The composite algorithm vs the control group
• The composite algorithm vs the rival kf algorithm
• The control group vs the rival kf algorithm

for a total of 162 pairwise comparisons. The Tukey HSD tests reported 19
pairwise combinations where a significant difference was found (the p
value for each comparison varies, and is reported in the tables that follow).

151

The pairings where the mean exposure mark rates were significantly
different, grouped by profile shape, were:

Straight profiles:
• Slabo 13px Regular — composite algorithm vs control group
• Slabo 13px Regular — control group vs kf algorithm
• STIX Two Text Regular — composite algorithm vs kf algorithm
• Yrsa Bold — composite algorithm vs control group
• Yrsa Bold — composite algorithm vs kf algorithm

Round profiles:
• Alegreya Sans Regular — control group vs kf algorithm
• Literata Regular, opsz 14 — composite algorithm vs control group
• Literata Regular, opsz 14 — composite algorithm vs kf algorithm
• Slabo 13px Regular — composite algorithm vs control group
• Slabo 13px Regular — control group vs kf algorithm
• STIX Two Text Regular — composite algorithm vs kf algorithm
• Yrsa Bold — composite algorithm vs kf algorithm

Full-open profiles:
• Fira Sans Condensed — composite algorithm vs control group
• Literata Regular, opsz 14 — composite algorithm vs control group
• Slabo 13px Regular — composite algorithm vs kf algorithm
• Yrsa Regular — composite algorithm vs control group
• Yrsa Regular — control group vs kf algorithm

Half-open profiles:
• Literata Regular, opsz 14 — composite algorithm vs control group
• Yrsa Regular — composite algorithm vs kf algorithm

These pairings are designated with a Yes in the ‘reject H0’ column of the
Tukey HSD tables that follow.

Each table is accompanied by a graph showing the means and 95%
confidence interval for all three test conditions. This is important to the
interpretation of the results. An exposure mark rate closer to zero
corresponds to better acceptance of the fitting among respondents who
viewed the exposures in the subset, but the Tukey HSD’s result indicates
only whether there were significantly fewer marks or significantly more
marks between the mean exposure mark rates of the test conditions at the
tested error rate; it does not report which mean was closer to zero. For

152

each pairing of significant difference in the tables that follow, the test
condition closer to zero is highlighted in gold — indicating that the
highlighted test condition showed a significantly lower reader-
dissatisfaction rate.

covers page
number

0.0141 0.0218 0.0017 0.0266 Yes

-0.0105 0.0665 -0.0216 0.0005 No

-0.0247 0.0 -0.0373 -0.012 Yes

Tukey Honestly Significant Difference test, FWER=0.05:
Slabo 13px Regular, profile shape "straight"

-0.0027 0.7924 -0.0124 0.007 No

-0.011 0.0242 -0.0209 -0.0011 Yes

-0.0084 0.115 -0.0182 0.0015 No

Tukey Honestly Significant Difference test, FWER=0.05:
STIX Two Text Regular, profile shape "straight"

153
covers page
number

-0.0042 0.0347 -0.0081 -0.0002 Yes

-0.0044 0.008 -0.0079 -0.001 Yes

-0.0003 0.9865 -0.0042 0.0036 No

Tukey Honestly Significant Difference test, FWER=0.05:
Literata Regular at opsz 14, profile shape "round"

0.0088 0.0436 0.0002 0.0175 Yes

0.0108 0.0073 0.0024 0.0191 Yes

0.0019 0.869 -0.007 0.0109 No

Tukey Honestly Significant Difference test, FWER=0.05:
Yrsa Bold, profile shape "straight"

-0.0076 0.39 -0.0211 0.006 No

0.0072 0.3897 -0.0057 0.0201 No

0.0148 0.0409 0.0005 0.0291 Yes

Tukey Honestly Significant Difference test, FWER=0.05:
Alegreya Sans Regular, profile shape "round"

154
covers page
number

0.0044 0.2039 -0.0017 0.0104 No

0.0059 0.0473 0.0001 0.0117 Yes

0.0015 0.8459 -0.0049 0.008 No

-0.0127 0.0749 -0.0264 0.001 No

-0.0162 0.0126 -0.0296 -0.0028 Yes

-0.0035 0.8203 -0.0172 0.0102 No

0.0322 0.0003 0.013 0.0513 Yes

-0.0045 0.7987 -0.0208 0.0119 No

-0.0366 0.0 -0.0558 -0.0174 Yes

Tukey Honestly Significant Difference test, FWER=0.05:
Slabo 13px Regular, profile shape "round"

Tukey Honestly Significant Difference test, FWER=0.05:
STIX Two Text Regular, profile shape "round"

Tukey Honestly Significant Difference test, FWER=0.05:
Yrsa Bold, profile shape "round"

155
covers page
number

-0.0112 0.6225 -0.0396 0.0172 No

-0.0314 0.0066 -0.0554 -0.0073 Yes

-0.0201 0.2207 -0.0487 0.0084 No

-0.011 0.013 -0.0201 -0.0019 Yes

-0.006 0.1872 -0.014 0.002 No

0.0051 0.4014 -0.0042 0.0143 No

-0.0373 0.0308 -0.0718 -0.0027 Yes

-0.0097 0.7335 -0.0402 0.0208 No

0.0275 0.1351 -0.0063 0.0613 No

Tukey Honestly Significant Difference test, FWER=0.05:
Fira Sans Condensed, profile shape "full-open"

Tukey Honestly Significant Difference test, FWER=0.05:
Literata Regular at opsz 14, profile shape "full-open"

Tukey Honestly Significant Difference test, FWER=0.05:
Slabo 13px Regular, profile shape "full-open"

156
covers page
number

0.0015 0.3725 -0.0011 0.0041 No

0.003 0.0078 0.0006 0.0053 Yes

0.0015 0.3509 -0.001 0.004 No

-0.0041 0.001 -0.0067 -0.0014 Yes

-0.0019 0.1346 -0.0043 0.0004 No

0.0022 0.1272 -0.0005 0.0048 No

-0.0084 0.0296 -0.0161 -0.0007 Yes

0.0005 0.987 -0.0065 0.0074 No

0.0088 0.0236 0.001 0.0167 Yes

Tukey Honestly Significant Difference test, FWER=0.05:
Yrsa Regular, profile shape "full-open"

Tukey Honestly Significant Difference test, FWER=0.05:
Literata Regular at opsz 14, profile shape "half-open"

Tukey Honestly Significant Difference test, FWER=0.05:
Yrsa Regular, profile shape "half-open"

157

Collectively, these test results present a mixed picture; each of the three
test conditions (the two algorithms and the control group) fared better,
with statistical significance, in more than one of the pairwise comparisons.
Furthermore, no significant difference was found in 143 of the 162 pairwise
comparisons. Thus, there is not a clear ‘winner’ to declare across the full
set of typefaces tested on that basis.

Nevertheless, the fact that the two algorithms tested were only shown
to be less preferable than the control group at the α=0.05 significance level in
3 of the comparisons was a more successful outcome than had been
anticipated. Among the pairwise comparisons, and within the individual
profile-shape groups, there are more interesting distinctions to note.

6.4.1 Examining pairwise results involving the composite algorithm
In the pairwise comparisons between the composite algorithm and the
control group, there were 8 typeface + profile-group tests in which a
significant difference in the mean exposure mark rate was observed. Out of
those 8, the composite algorithm exhibited a lower reader-dissatisfaction
rate in 5 comparisons, which is the result regarded as a success. A closer-
to-zero mean suggests that fewer respondents considered the fitting to
look incorrect for those typeforms when the composite algorithm had
been used to generate the letter fitting. Conversely, in the 3 comparisons
for which the control group had a lower reader-dissatisfaction rate, more
respondents considered the fitting of the typeforms incorrect when the
composite algorithm had been used to generate the letter fitting.

In the pairwise comparisons between the composite algorithm and the
rival kf algorithm, there were 7 typeface + profile-group tests in which a
significant difference in the mean exposure mark rate was observed. Out of
those 7, the composite algorithm exhibited a lower reader-dissatisfaction
rate in just 2 comparisons, and the rival kf algorithm exhibited a lower
reader-dissatisfaction rate in 5. This suggests that the kf algorithm
produced more acceptable fitting for the tested exposures than did the
composite algorithm.

As discussed in section 6.3.2, though, attempts to reduce the data down
to a single, overall success signal discards too much information to be of
practical applicability. In particular, although it is intriguing to look at the
the head-to-head pairwise comparisons between algorithms as a group, the
question of greater interest was whether the tests would identify any
significant differences between the algorithms that can be reliably linked
to the design and implementation of the algorithms themselves. Any such
differences could shed new light on algorithm implementation or on the
axiomatic model upon which the composite algorithm was designed.

6.4.2 Examining pairwise results by profile shape
To that end, it is arguably more revealing to consider the results of the
Tukey HSD tests by looking at the profile-shape groups. On that question,

158

in four of the profile shapes, statistically significant differences were
identified in one or more of the pairwise comparisons: straight profiles,
round profiles, full-open profiles, and half-open profiles.

In the straight profiles, the composite algorithm was identified as
having a preferable mean exposure mark rate for Slabo 13px Regular (vs
the control group) and STIX Two Text Regular (vs the rival kf algorithm),
but a less preferable mean exposure mark rate for Yrsa Bold (vs the control
group). In the round profiles, the composite algorithm was identified as
having a preferable mean exposure mark rate only for Slabo 13px Regular
(vs the control group), and a less preferable mean exposure mark rate for
Literata Regular at opsz 14 (vs the control group and vs the rival kf
algorithm) and for STIX Two Text and Yrsa Bold (vs the rival kf algorithm).
In the half-open profile group, though, the composite algorithm was
identified as having a less preferable mean exposure mark rate for both
Literata Regular at opsz 14 (vs the control group) and Yrsa Regular (vs rival
kf algorithm).

In the full-open profile group, though, the composite algorithm was
identified as having a preferable mean exposure mark rate for Fira Sans
Condensed, Literata Regular at opsz 14, and Yrsa Regular (vs the control
group) and for Slabo 13px (vs the rival kf algorithm).

Because the composite algorithm employed novel techniques for fitting
open-counter profiles, the lower reader-dissatisfaction rate indicated by
the tests may suggest that the techniques have merit and are worth further
exploration. The results of these pairwise comparisons are far from an
overwhelming success for the techniques, most notably because the only
statistically significant differences found for the half-open profiles showed
the composite algorithm to exhibit a higher reader-dissatisfaction rate.

By the same token, the composite algorithm fared less successfully than
the control group and the rival kf algorithm in the pairwise comparisons
for straight and round profiles, a result which could inform further
refinement. Recall that in the composite algorithm, the straight and round
profiles were both fitted strictly on the basis of the standard inter-letter
area rule, which computed a standard inter-letter area by calculating the
interior space of the key letterform n and scaling that by a tunable
parameter. Thus, if further testing were conducted, an interesting avenue
for future research might be to adjust the tunable parameter and assess
whether that produces more preferable outcomes.

6.4.3 Size and scope of the effects observed
Drawing inferences directly from the data or the statistical tests must only
be done cautiously. The overall signal in the data is small; on average, most
respondents marked only a few sequences as looking incorrect. That
overall threshold for marks made by respondents corresponds to the low
exposure mark rates calculated, but it is also built into the test:

159

respondents were not asked to exhaustively evaluate pairs of letterforms
or sequences, but instead only to mark what they noticed.

This was by design, of course: the testing methodology sought to
measure where differences in letter fitting were perceived as noticeable by
readers in a Latin text setting. The overall small signal observed in the test
may, therefore, be explained by concluding that the two test algorithms
produced fitting that was close to the acceptable tolerances of readers in
the real world, but both of the test algorithms may still benefit from
further refinement. More sensitive measurement might necessitate testing
with greater numbers of readers or relying on other testing methods.

To assess the size of the effect observable between test conditions and
whether it constituted a meaningful effect for real-world typeface design,
the mean exposure mark rates were examined for each typeface + profile-
shape group. There are, of course, separate ranges for each of the pairwise
comparisons. Overall, the 95% confidence intervals for the mean exposure
mark rates in those pairwise comparisons where a significant difference
was reported ranged from -0.08 to +0.06. Those extremes correspond to 6–
8% of occurrences of a particular profile shape being identified as
exhibiting a fitting problem (either too ‘tight’ or too ‘close’) by the
respondents. Some profile shapes, however, exhibited exposure mark rates
one or two orders of magnitude smaller — which may signify that all of the
test conditions performed equally well.

Because this measurement methodology is new, there is no pre-defined
standard against which this size of effect can be judged. However, it did
seem reasonable to hypothesize that a 6–8% rate of readers regarding a
letterform as being poorly fit would constitute a significant issue for
typeface designers or typographers.

6.4.4 Interpreting the results of the tests
Pure numbers aside, in order to interpret the meaning of the test results it
should also be recalled that a more noticeable problem with the fitting of a
particular pair of letterforms is not the same as saying that the fitting is
more wrong. In real-world text settings, some pairs may be more noticeable
for semantic reasons (such as pairs occurring at the beginnings of
sentences) or because of the layout (such as the first or last lines in a
paragraph). The randomization of the texts in the tests was intended to
temper this effect, but there may also be other cases in which a fitting
problem is more noticeable.

In addition, not all letterform profiles are of equal importance because
letters are used at different frequencies; that is, the letterforms and
profiles in real texts — regardless of the language — are not evenly
distributed (Grigas and Juškevičienė, 2018). Yet that fact by itself does not
mean that the most frequently occurring pairings matter more. It was
observed in the study of Latin letter-fitting practice in chapter 2 that some
of the fitting axioms are tied to legibility, such as the prohibition against

160

collisions in axiom L–11. For text settings, then, ranking the letterforms by
the frequency at which they occur in the language could be misleading; it
may be instead that deciding the importance of pairs should also involve
considering the fitting axioms.

Weighting the prohibition of collisions as more serious, even if they
occur only in infrequent combinations, is just one example. It was noted in
chapter 3 that some of the Latin fitting axioms, such as the vertical stroke-
rhythm axiom (L–5), apply to text at a larger scale than pairs of adjacent
forms. If the importance of vertical stroke rhythm lies in how it dominates
the patterns of Latin text for continuous reading, then perhaps straight-
profile letterforms should be considered more important when
interpreting the results of quantitative tests such as those in this project.

6.4.5 Algorithm design
Some final interpretations drawn from the quantitative test results are
observations about the test algorithms themselves. It was reassuring to see
that the novel method developed for open-counter profiles in the
composite algorithm showed some positive results, not simply because it
uses a different technique from the rival kf algorithm, but because it
suggests that improvements could be made by considering the various
fitting axioms independently of each other. That has implications for the
development of letter-fitting algorithms for other scripts and for
continuing to improve on Latin text fitting: identifying and understanding
the rules that govern fitting in a script, even incrementally, can improve
how algorithms fit text, without necessarily requiring the development of
a new algorithm from scratch.

It was interesting to note that the rival kf algorithm was found to have
statistically significant advantages over the composite algorithm and the
control group in several of the tested font and profile-shape groups.
However, in the head-to-head comparison, it should be remembered that
the tested version of the kf algorithm was a new reimplementation based
on the documentation available in the original patent, rather than being
the original URW software. Attempts were made not to deviate from the
details available, but several parameters that were described only as
options in the patent filing, and values for those parameters had to be
chosen.

Notably, that includes two parameters which were also used in the
composite algorithm: the minimum sidebearing distance and the choice of
scaling factor used in computing the standard inter-letter area. As
described in the published material, the kf algorithm used o as the key
letterform from which the standard inter-letter area for lowercase forms
was calculated, but no multiplier or adjustment factor was described to
scale the interior counter-area of o. Instead, the unadjusted interior
counter area was used. In contrast, the composite algorithm always scaled
down the interior area of its key letter (n), to follow the advice of the

161

letter-fitting literature. The practical result was that the kf algorithm
consistently used a larger inter-letter area than the composite algorithm.

That unscaled value for kf’s inter-letter area perhaps reflects the intent
of the algorithm accurately, but it should be recalled that in the
quantitative tests, a significantly larger proportion of all marks made (75%)
were of the ‘tight’ variety. That could mean that a consistently larger inter-
letter area will consistently skew towards better results, even with all
other factors being equal; it may be that tight spacing errors are more
noticeable to readers in this test methodology. There are sources in type-
design literature that advise the use of uniformly looser fitting for smaller
point sizes (Unger 2007, p. 115; Hochuli 2015, p. 26), in addition to some
readability studies that suggest uniformly looser typographic spacing
improves readability for some readers (Beier et al. 2021; Łuniewska et al.
2022).

The other tunable parameter chosen for the reimplementation of the kf
algorithm was the minimum distance; zero was used in the tested
reimplementation for the sake of simplicity. That choice by itself is perhaps
defensible, but when used in combination with the consistently looser
fitting of the kf reimplementation’s inter-letter counter area, it is unknown
whether it affected the kf test condition for better or worse.

Ultimately, of course, speculating on how changes to any of the
algorithms or parameters could impact quantitative test results is a
theoretical topic. In an ideal world, it would be possible to stage tests with
every permutation of parameters and in a wide variety of typeface styles.
But time and volunteer respondents are both finite, relatively scare
resources. The quantitative testing described in this chapter provided
some insights into how successfully the test algorithms might be received
if employed to fit other typefaces, but on its own, it did not definitively
answer the project’s research questions about the overall viability of a
letter-fitting algorithm to generate fitting that cannot be distinguished
from manually-determined fitting and about the modelling of manual-
fitting processes. As will be discussed in the next chapter, there are
potentially useful insights to be gleaned from other portions of the project,
such as the historical survey, axiomatic modelling, and analysis, that may
inform other useful research into algorithmic letter fitting.

163

7. Conclusions

This research has sought to investigate how and to what extent an
algorithm can perform the task of letter fitting a well-designed text
typeface, in a manner that is consistent with the proven manual fitting
processes of type practitioners, as type is experienced and is assessed by
readers when they engage with text in the real world. By its very nature,
these questions are multi-faceted; to begin with, they invoke the
independent perspectives and concerns of distinct groups of people — type
designers and readers — and they furthermore require probing into the
processes of design and reading. Exploring the research questions has thus
required a multi-disciplinary approach. First, by seeking to establish
reliable connections between the designer’s experience and the reader’s,
via the avenue of the typeface itself. Second, by deriving a method to
empirically assess the results reported by the reader in a manner that can
likewise be meaningfully linked back to the designer’s craft.

Maintaining this link has been a conscious exercise throughout the
research, specifically because it holds the possibility for uncovering new
insights. Where prior legibility and readability research has looked at the
spacing of letters, it has tended to do so at the typographic level: adding or
subtracting the same distances between all of the typeforms in a text.
While such research is useful in the typesetting context, those studies have
not examined the fitting of particular forms as is done during typeface
design. Conversely, there have been investigations into employing
statistical analysis to describe and characterize the fitting of existing
typefaces, either purely formulaically or by loading sets of typefaces into
machine-learning training systems. But those approaches can only capture
the results of fitting already done. Thus, neither approach offers much to
typeface designers to increase their understanding of the process, or
speaks to how the task of fitting can and should be approached for
typefaces that designers will create or refine tomorrow.

Chapter 2 began by examining the task of letter-fitting as it is practised,
as it is taught, and as it is captured in the historical literature of
typemaking and related disciplines and in typeface design tools. From that
examination, it derived an axiomatic model focused on capturing how type
designers perform the fitting task when designing Latin text typefaces.
The model that it derived consists of 16 axioms that reflect the first
principles of fitting Latin text typefaces, at least so far as a consensus
approach can be established. The axioms themselves are not an algorithm
that performs letter fitting, but a set of interrelated principles, each of
which individually provides answers to some — but not all — of the letter-
fitting decisions required for a given set of typeforms.

Each of the axioms provides a more formal expression of a principle
likely known to practitioners of letter fitting, including where the

164

principle can be applied and where it cannot, as well as what sort of
answer the axiom can provide. There are some axioms concerned with the
relative size of one space compared to another, but other axioms that
provide absolute minimums or other limits. The final portion of chapter 2
demonstrates that this more formalized expression has practical utility, by
discussing how various axioms interact with one another in a network of
relationships that type designers must navigate. Although the focus of this
research project has been the fitting of Latin typefaces for text settings, the
specificity and the historical footing for the axioms in the model show that
the model functions within a particular typographic context.
Consequently, as noted in the discussion of the axiomatic model, the same
research-based derivation process could be used to explore fitting in other
scripts and writing systems.

Chapter 3 examined the Latin text fitting model as a construct in its
own right, with a particular focus on finding and understanding which
facets of the model can be clearly mapped to procedures in an algorithm,
which are less formally described and thus pose practical challenges for an
algorithmic implementation, and which are well-understood theoretically
but still require further investigation. It identified two axioms as
opportune for more detailed investigation: the optical centring of forms
within a triplet and the handling of forms with concave or ‘open-counter’
side-profiles.

Chapter 4 reported on investigations into these two axioms and the
identification of a potential connection to link them for practical
application. On one hand, the fundamental question of fitting typeforms
with an open-counter profile is where to define the boundary between the
interior and exterior space of the open-counter profile. Prior work at
automating letter fitting had acknowledged the need to determine a
boundary, but none had established an approach grounded in theory. On
the other hand, finding the optical centres of typeforms is a problem that
was explored at great length by the LOGOS project of David Kindersley and
Neil Wiseman — though the LOGOS method, as a whole, utilized its optical
centrepoints in concert with other innovative techniques and sought to
produce fitting for every typeform in the same fashion.

Through the investigation of these two axioms, it was theorized that
the problem of defining the interior-exterior boundary for open-counter
profiles might be addressed by finding the optical centre of the typeform
in question. This possibility was suitably well-defined to be put to the test,
given that the LOGOS centrepoint method is documented and could be
implemented. But it also held value as a potential test of the axiomatic
model for Latin text fitting; the model states that open-counter profiles are
governed by principles that do not apply to closed profiles.

The majority of the prior work implementing letter-fitting automation
tools has not addressed different profile-shapes with different techniques,
and where the prior work has treated different profile shapes with distinct

165

techniques, the different treatments have generally been coincidental
(such as the differing effects seen with the kf algorithm’s fixed cut-in
angles) or opaque (such as LS Cadencer’s pre-determined measurement
tables). Chapter 4 then concluded by exploring how to incorporate the
testable new method for handling of open-counter profiles into a
composite fitting algorithm that combined several techniques to address a
complete set of Latin text typefaces.

Chapter 5 explored the practical problem of putting any letter-fitting
algorithm to the test with readers. It looked at the prior testing regimens
and comparison methods found in scholarly research, commercial product
marketing, and in publicly available records of software development. It
established that testing refitted typefaces with readers could reliably
record responses to fitting algorithms with the general public, removed
from the risk of experimenter bias, while capturing information detailed
enough to study the results of fitting algorithms at the per-typeface and
per-profile levels.

It then described the construction of a framework that can be used to
survey readers about what they perceive as unacceptable letter-fitting
between individual pairs of typeforms, for fonts viewed in randomized
sample text documents, by asking the readers to mark pairs of forms on
each sample. By surveying a broad sample of the reading public, using
fonts randomly chosen from the original versions and versions refitted by
test algorithms, the framework can collect data that captures potential
differences in the readers’ responses to the algorithms.

The test framework was deployed on a publicly available web site,
testing various Latin text fonts in stages. A set of nine fonts chosen to cover
a variety of letterform constructions, styles, and typographic weights and
widths was tested in three conditions: the original, manual letter fitting; a
refitted version modified by the composite algorithm developed in chapter
4; and a refitted version modified by a reimplementation of the kf
algorithm from URW’s hz-program suite.

Chapter 6 reported on the results of those tests. The number of marks
made on forms in test exposures were consolidated into metrics that
represent the overall level of dissatisfaction of readers for letterforms of
different profile shapes. There were statistically significant differences
found between the composite algorithm developed in chapter 4, the rival kf
algorithm, and the original fittings of the same fonts. For letterforms with
open-counter profiles, the composite algorithm resulted in a lower rate of
dissatisfaction among the test respondents, although with other letter-
form profile shapes, the novel algorithm resulted in a higher rate of
dissatisfaction. This mixed result suggests that the method used to fit
open-counter forms has merit, but that additional refinement of
techniques for other profile shapes would likely be required to devise an
algorithm that consistently tests well with readers.

166

While the results of the tests showed an advantage for the composite
algorithm in some profile shapes and a disadvantage in other profile
shapes, that divergence can be perhaps explained by the choice made in
chapters 3 and 4 to focus attention on developing a new technique for
fitting open-counter profiles. The novel techniques developed in chapter 3
were specific to open-profile shapes and, thus, were expected to result in
an observable effect on those shapes. The fitting of other profile shapes is
governed by other axioms, and without the benefit of tuning for those
profile shapes, the composite algorithm was not assumed to result in
significantly better results for those other shapes. Consequently, I believe
that the project as a whole points to an affirmative answer to the primary
research question, which asked if an algorithm can be constructed that will
generate letter fitting for a well-designed typeface which cannot be
distinguished from letter fitting determined manually. The testing
methodology reframed the original goal of the research question from the
somewhat imprecise phrasing of ‘cannot be distinguished’ into a more
quantifiable notion of evaluating success with readers in text for
continuous reading. The composite algorithm constructed and tested in
the project tested similarly with readers for many typeforms across several
typefaces, but its success with open-counter profiles fitted by the focused
techniques shows that there is promise in further exploration.

Re-examining the central research question, the course of the research
project showed that the original question was too general in its framing of
letter fitting as a singular, perhaps monolithic, task. Fitting is often
described as a single stage in the design process in the historical sources,
but that is surely a rhetorical device to accentuate its importance: all of the
forms in a typeface must be addressed before the fitting process can be
considered complete enough for the typeface to be used. The literature of
type design and the practices taught to type designers, however, are clear
that the task of fitting involves multiple considerations, multiple
evaluations, and multiple choices and trade-offs.

It is true that many letter-fitting automation tools in years past
approached fitting with a singular approach, such as the kf algorithm’s
application of an equal inter-letter area to all forms or the LOGOS
algorithm’s application of triplet centring to all forms. But this research
has shown that there are realizable gains to be made by constructing
fitting algorithms with more nuance and complexity than was perhaps
feasible on the computing systems that were prevalent when those
algorithms were offered on the commercial market. It has also shown that
systematic exploration of fitting can still reveal new useful insights that
can potentially improve the performance of algorithmic letter fitting.

Although the primary research question was formulated in terms of the
creation of an algorithm, when the project is considered as a whole, the
course of the research contained several distinct contributions to the field
that warrant discussion in turn.

167

7.1 Modelling the manual practice of letter fitting

The analysis of the manual practices of Latin text fitting described in
chapter 2 and the axiomatic model based on that analysis offer a new
perspective on a task that is shared by all typeface design projects.
Historical research in type design has often investigated the practices of
type designers and manufacturers, but it has rarely explored the problem
of constructing a conceptual model based on those practices and giving it
formal expression.

At the pragmatic level, of course, the formal model provides a structural
substrate for developing fitting algorithms. But there are additional
benefits to the model in its own right. A well-defined model permits
systematic discussion and detailed debate about the task of fitting, by
providing a common set of terminology and precise definitions.
Furthermore, the examination in the workings of the model in the
abstract, rather than while fitting a specific typeface, can enhance the
understanding of how fitting is performed in typeface design or of how
‘successful fitting’ is seen in text. The discussion of domains, ranges,
interactions, and interdependencies of Latin text fitting axioms that
concluded chapter 2 illustrates both.

Deliberate attention was also paid, during the analysis of historical
Latin fitting and the development of the Latin text fitting model, to
consciously maintain a separation between the analysis and the particulars
of the Latin script. Where possible, it was noted when axioms in the Latin
text fitting model were unique to the script or could be known to function
differently in other scripts. That analysis shows that building a script-
specific model, consistent with the practice of fitting text in a particular
script, is a repeatable process with general application beyond Latin alone.

The utility of the model also reinforces the value of systematically
analysing historical narratives that frame type design (and potentially
other design processes) as a craft that is performed manually and must,
therefore, be taught only within a manual context. Analysis of the manual
craft can deepen the understanding of the problems that the craftsperson
solves and of the tooling available for solving design problems; probing
those topics is not always comfortable, but — far from discounting the
historical narrative — re-examining these historical processes can move
the discourse forward by uncovering additional useful information.

 Similarly, it is widely accepted — within type design as well as within
other design studies — that there is always value in revisiting prior art. The
novel techniques and the connections between them pointed to by this
research demonstrate that rewards can be yielded by revisiting prior
efforts at modelling, automation, and tool development. As noted in § 2.2.5,
models describing the process of letter fitting can often be more complete
complete than the technology of the day could implement conveniently. By
revisiting prior analysis of design processes, design discourse can mitigate
the loss of potentially valuable insights that are easy to overlook.

168

7.2 Analysis and implementation of algorithms

The practical component of this project involved, perhaps most notably,
the design and software implementation of a technique for establishing
sidebearings for typeforms with concave or open-counter side profiles,
based on combining concepts known from prior letter-fitting
implementations in a new way. It is undeniable that this specific technique,
even if refined further, would at best provide useful answers for a subset of
the typeforms that need to be fitted in a Latin text typeface. But, more
generally, the results indicate that it is possible to incrementally improve a
fitting algorithm in a form-by-form fashion. Furthermore, the practical
investigations and experimentation that led to the technique afforded
other opportunities to gain insight into the implementation of typeform-
fitting software and the overall design of algorithms for fitting.

 Based on the historical survey, it appears that the LOGOS component
developed for this project may be the first independently written
reimplementation of the core LOGOS methods since the original project.
Similarly, although there are implementations recorded for other
components in the hz-program suite (Thê ́Thành 2000), the
reimplementation of the kf algorithm for this project may also be the first.
In both cases, independently developing and putting the algorithms to the
test was instructive in ways apart from their direct use in the fitting
algorithms.

The LOGOS reimplementation revealed new avenues for exploring how
letterforms are classified. The centrepoint-finding component was
developed in order to address the problem of defining the boundary
between interior and exterior space, but in practice it may provide an
objective test for whether a form should be classified as having an open-
counter profile, which can be a nebulous question for forms such as f, t,
and r, in some typefaces.

In the higher-level problem of devising a multi-part algorithm that
determines letter-fitting for a set of typeforms, implementing the kf
algorithm helped highlight issues about how the Latin text fitting axioms
should be mapped into a tool that is practical for type designers. For
example, although type-design literature dating back to Fournier has
posited that the interior width of the counter in the key letterform n
should form the basis for the standard inter-letter area of all of the
typeforms (Axiom L–6: Interior-Exterior Balance), implementing that rule
during development revealed that there is considerable disagreement
about the exact ratio between that interior width and the standard inter-
letter area (see chapter 2, p. 49–50). The published kf patent does not
address this ratio, nor do contemporary software tools dealing with fitting
by equal inter-letter areas, such as HT Letterspacer. The only way to make
adjustments to this ratio when working with HT Letterspacer is to edit the
Python source code and, even then, applying a different ratio requires
altering several hard-coded values.

169

In the course of this project’s practical implementation, engaging with
these issues raised new questions about whether the relationship between
the counter in the key letterform n and the standard inter-letter area is
well-understood, particularly as it varies across weight, width, and style,
and it revealed many opportunities to re-evaluate how tunable settings
and decisions that should be available to the type designer might be
presented as easily understood parameters either in discussions of letter
fitting or in letter-fitting software tools.

More generally, this project’s findings about the interconnectivity and
interactions between the oft-cited principles of letter fitting show that a
systematic discussion — and even dissection — of aspects of design work
holds practical value for the craft. At times, design work can be too easily
categorized as dominated by the need for intuitive judgment. Type design,
with its scrupulous attention to detail and its concern with practical
outcomes like readability, is more resistant to this temptation that some
other fields. The practical findings of this work reinforce that systematic
investigation can generate usable insights, and has a place within the
discourse.

7.3 Quantitative test methodology

The testing framework described in chapter 5 and the analytical methods
used in chapter 6 to evaluate fitting algorithms are both contributions with
general usage for conducting type research. As was noted at the start of
chapter 5, there has been little structured research into letter fitting, and
the evaluation methods that were historically employed were deemed not
appropriate for assessing the success of letter-fitting algorithms with
readers. The assessment methods in prior research were deemed not to be
appropriate often because they did not test with readers, and relied
instead on the evaluations of the researcher (which are subject to bias). But
other issues were identified, such as reliance on fixed sample texts, or by
ultimately defining the metric for success as whether or not an algorithm
reproduced letter fitting identical to the original fitting of the typeface.

The methodology developed in this project provides a new, general
framework for testing fitting with readers that addresses those concerns
directly. Tests can be conducted in large sample sizes, recording basic
technical and demographic variables about the participants, while
preserving their anonymity. The tests conducted for this research show
that it is possible to recruit participants in significant numbers both from
the general reading public and from within the more narrow confines of
people who possess experience with type and typography. Where the data
itself is concerned, the framework was deployed in tests that focused on
the most fundamental fitting question for Latin text: whether two adjacent
typeforms are too close or too far apart in the horizontal direction. But it is

170

capable of more general tests; it would be simple to add more options to
the choices offered when a respondent highlights characters and thus
investigate other questions, such as whether diacritics, marks, or
secondary forms are considered to be positioned too high or too low in the
vertical direction. Potentially, additional enhancements to the same basic
mark-making technique would also enable the testing of scripts that
feature other letter-fitting questions.

In the analysis stage, the data collected by the framework was detailed
enough that the typeforms of each tested typeface could be collated by
profile shape, but the same data format would permit analysis of each
typeform individually or across the entire typeface. For this project,
metrics were defined that captured the patterns of marks made by profile
shape, but that decision was based on the functionality of the algorithms
being tested. The same test framework and data format could alternatively
be used to analyse the effect of a fitting change on a single form, on classes
of forms defined in some other fashion, or perhaps even to look for
previously unknown relationships between forms and classes.

It is also notable that the test framework permits direct-comparison
analysis of fitting algorithms when those algorithms are used to refit the
same typeface. For this project, such head-to-head comparisons were
deemed important, because they permitted the comparison of a new
fitting algorithm against the original, unmodified fitting of each font, and
did so without assuming that reproducing the original fitting of the font
was the universal measure of success. Nevertheless, the framework itself
and the data model are general enough that this style of algorithm-versus-
algorithm test is not the only possible experiment. The testing framework
could be used without modification to make comparisons across
demographic groups, across languages, on changes made to the design of
typeforms, or on incremental changes to the parameters of any particular
fitting algorithm.

Naturally, there are limits to what the framework and data model can
test. Perhaps the most notable limitations are that the framework is a web-
only, client-server testing environment that does not test printed samples
and — in remote tests — cannot record all of the system or environmental
factors (such as the brightness and dot-pitch of the display or room
lighting) that might be of interest to researchers. However, some of these
technical limitations may be surmountable by further development of the
software, or by performing tests in a controlled environment.

It is also not essential to the testing methodology that letter-fitting be
the sole task given to test respondents. The core functionality of the
framework could potentially be incorporated into broader tests with
readers or user-experience research, with letter-fitting issues being just
one among several forms of feedback obtained. To consider the testing
methodology more generally, the quantitative component of this project
illustrates that empirical testing and analysis is capable of addressing

171

design questions beyond the legibility and readability studies that have
steadily gained popularity in recent years.

7.4 Discussion

The new technique developed for fitting typeforms with open-counter
profiles showed promise in the public tests. But it must be remembered
that addressing those forms makes up only one part of the overall task of
fitting a typeface, and that the tests attempted to measure success with
readers by providing a specific form of feedback: marking letterforms
where the fitting appeared incorrect. To progress further towards the
development of a fully comprehensive fitting algorithm, work remains to
be done.

As discussed in chapter 4, the scope of the composite algorithm was
restricted so that it could be tested. The restrictions put in place for the
tests are areas where the composite algorithm can clearly be extended,
including implementing kerning, implementing the exception rules for
single-stroke forms or adjacent extenders, implementing capital-to-capital
fitting, and the further refinement of the tunable parameters. Likewise, the
testing methodology can be extended. There are facets of the test
framework that could be further refined, such as the layout and design of
the text samples. Additionally, there are technical improvements to
consider, like developing methods for monitoring aspects of the response
session (such as detecting the zoom level of the browser or custom tweaks
to font settings which may interfere with the test) that could not be
reliably monitored during the public tests.

In addition to specifics such as these, there are other, more
architectural aspects to designing a fitting algorithm that warrant further
consideration. For example, it was noted in chapter 4 that a decision had
been made to design an algorithm capable of addressing the basic Latin
letterforms in the simplest fashion. That meant that each sidebearing was
determined once, based on a rule chosen according to the shape of the
profile. But chapter 4 also noted that this was not the only possible
approach. There may be improvements to be seen by finding other ways to
traverse the entire set of letterforms, perhaps invoking several axioms on
each profile and finding a technique to balance the results. There is also
the possibility that further exploration of the two axioms deemed
incomplete in chapter 3 (L–5: Vertical Stroke Rhythm and L–3: Shells of
Space) can bear fruit and that they will prove useful for algorithmic fitting,
and that more detailed explorations of the interactions between the
axioms can yield further insight.

Then again, perhaps it goes without saying that more complex or more
nuanced fitting algorithms could be developed with further study, for that
is likely always the case. Computer scientist Donald Knuth, in his foreword

172

to Robert Sedgewick and Philippe Flajolet’s An Introduction to the Analysis of
Algorithms, wrote:

People who analyze algorithms have double happiness. First of all they
experience the sheer beauty of elegant mathematical patterns that surround
elegant computational procedures. They receive a practical payoff when their
theories make it possible to get other jobs done more quickly and more
economically. (Knuth in Sedgewick and Flajolet 2013)

Although this project, like many investigations into algorithmic letter
fitting before it, initially looked at fitting algorithms as utilities for tackling
the job of letter fitting more quickly and economically, perhaps the most
far-reaching outcome of the research is not the techniques or algorithms
themselves, but rather the more thorough understanding of the
procedures used in letter fitting and the underlying patterns that govern
how typeforms in Latin are fitted. That understanding was developed
through the systematic examination of the Latin letter-fitting task as it is
practised, and by translating optical judgements and intuitive rules into
more concrete and definite expressions.

This systematic understanding of fitting, as a task composed of known
rules and relationships, can yield dividends over a patchwork of disparate
techniques, even if fitting continues to be done by a designer manually.
The research findings confirm that algorithmic approaches to letter fitting
have a role to play in the future of type design that extends beyond the
promise of any one-size-fits-all ‘generate the fitting’ button. Thinking
about the model that governs successful fitting — in any script — can lead
to practical improvements in visualization and tooling for typeface design,
for experimentation with fitting and space in general, and to richer
conversations about the function that space plays in the design and
reading of letters.

7.5 Prospects for further research

Additional research could explore the task of fitting in other writing
systems and in Latin fitting beyond the setting of text for continuous
reading. A great deal of the literature and historical record for letter fitting
within Latin text has focused on ‘regular’ weights and proportions, with
less scrutiny applied to lighter and heavier weights, width variations, and
optical sizing, which is a sensible point from which to start, but leaves
considerable typographic design-space unexplored — as well as the fitting
of numerals and punctuation. Furthermore, the task of fitting is
intertwined with design questions, such as the classification of letterforms
and the optical alignment of diacritics and marks, that have seldom been
the object of scholarly research.

173

Perhaps it also goes without saying that no historical survey can ever be
one hundred percent comprehensive. In addition to the Latin fitting
axioms exhibiting unresolved questions discussed in § 3.3, there are
numerous historical investigations into letter fitting as a process or letter-
fitting automation worthy of detailed scrutiny. There are also potentially
interesting lines of inquiry to be found in more formally analysing the
historical trends of letter fitting across the history of type manufacturing,
as well as in analysing and characterizing the fitting styles unique to
particular type designers.

On the analytical front, there are potential avenues for further research
in establishing other metrics by which to assess readers’ satisfaction, not
just dissatisfaction, with fitting, as well as to explore the role of letter-
fitting in reading speed and comprehension — which have typically studied
only typographic spacing. It is also evident that other testing
methodologies could be used in parallel, including tests on printed samples
or side-by-side comparison tests. There are open questions regarding how
fine a change in letter fitting can be before readers can no longer
distinguish between small adjustments. It is not clear that data granular
enough to tell a type designer ‘five more units of space are needed here’
can ever be collected. That is to say, it may be that clearing the
‘dissatisfaction’ hurdle with readers is all that can be asked of an
algorithm, and that goal may answer the practical question of algorithmic
fitting that cannot be distinguished from manual fitting. But even if that
were shown to be the case, that deeper understanding of the accuracy and
noticability of letter fitting could open the door to new approaches in
spacing lines and paragraphs.

There are also many questions left to explore regarding how a letter-
fitting algorithm can and should be implemented as a tool for the type
designer. The unattended algorithm that calculates sidebearings for all the
forms in a typeface might be welcomed by enough users to survive as a
viable utility for quite some time. But, as was discussed in chapter 2, the
process of designing a typeface is iterative, passing from design to fitting to
testing and back again numerous times with even the most experienced
type designer. Ultimately, a letter-fitting algorithm must make itself useful
to that process, as employed by type designers in their practice. The
approaches, models, and frameworks explored in this research project
form a launching point for researchers to continue to pursue these
questions and develop a more fully realized understanding of the
relationships between letterforms and the spaces that surround them
when type is set.

175

Glossary

i. Conventions used in this work

As noted in chapter one, § 1.3, this work has adopted some conventions in
terminology for the purpose of clarity, where more variation may be found
in the historical sources or online discourse. The term fitting is used in
place of ‘spacing’ in order to distinguish the task of letter fitting in
typeface design more clearly from typographic spacing or tracking.

Along those same lines, when discussing fitting, this work makes an
effort to use the term letterform to refer to the shapes of letters being
fitted, as distinguished from the conceptual components of the alphabet,
or the term typeform to refer to the broader category of shapes of letters,
ligatures, numerals, punctuation marks and other symbols. This facilitates
a clearer discussion in some cases, such as distinguishing between the one-
storey and two-storey forms of a and g. Nevertheless, the literature of
fitting commonly refers to the task itself as “letter fitting”, which is
preserved for clarity; it is of course clear that this term is one that reflects
the overwhelming importance of letterforms versus the other typeforms
that make up a text.

Wherever possible, this work has also adhered to the convention of
using typeface when referring to the design of a family of letters, and font
when referring to the final product — in contemporary usage, the digital
file produced, installed on a computer, and used in the various experiments
and tests of chapters 3 through 5. Nevertheless, the distinction between
the typeface and the font is nebulous in some discussions of practice.

This work has also standardized on using the term legibility to refer to
the ease with which a letterform can be recognized and distinguished from
other forms, and the term readability to refer to a reader’s ease or comfort
in comprehending a text.

ii. Definitions

For terminology used in this work when referring to typography or the
anatomy of typeforms, effort was made to adhere to standardized
definitions as found in historical sources (Tracy 2003; Cheng 2005; Baines
and Haslam 2005; Rosendorf 2016). For terms from web specifications,
TrueType, and OpenType, effort was made to adhere to standardized
definitions from their respective vendors (World Wide Web Consortium
2023; Apple Inc 2023; Microsoft 2022). A brief reference is included for
convenience.
The advance width of a typeform is the total horizontal distance that the

form contributes when it is added to a word or to a line of text,
including the width of the form itself and its sidebearings.

176

Aperture refers to an opening that is partially bounded by the contours of
a letterform. Some sources equate aperture with the distance from one
side of the opening to the other, and not with any white area enclosed
within the letterform, but the distinction is nebulous.

The baseline in Latin type is the invisible line that runs along the bottom
of virtually all letterforms, not including any descenders, and not
including any undershoots. For digital fonts, the baselines corresponds
to y=0 in the internal coordinate system.

Black, foreground, and ink are used more-or-less interchangeably to refer
to the positive image of a typeform.

Body size refers to the total height, typically expressed in font units, of a
typeform, including all of the empty space above and below. In metal
type, the body size would be the physical top-to-bottom size of the sort.
Consequently, most forms in a typeface have the same body size, and
some usage of the term refers to the body size of the entire typeface.

Bowl refers to a round or elliptical component of a letterform.
Bézier curves are the quadratic or cubic function segments that make up

the contours of a typeform in contemporary digital vector fonts. Béziers
can be curved or straight.

CSS or Cascading Style Sheets is the W3C specification for stylistic markup
in HTML documents.

CSS Weight is a numeric font property defined in the CSS specification
meant to represent the typical range of typefaces’ weights. CSS Weight
is defined to be a number from 1 to 1000, and regular text weight is
defined to be CSS Weight 400. These numbers, however, are conventions
and not measured quantities, and thus do not map consistently to the
stroke thicknesses or density of fonts.

Capital height is the height of capital letters in a typeface. The capital
height is typically stored as a font-wide property in digital fonts files,
and is measured on a straight-sided capital form like H. Letterforms like
A or O may overshoot the value and diacritics on capitals may exceed
the capital height, but are still regarded as being at the capital height.

Contour or curve refers to any of the lines that define the shapes of a
typeform.

Contrast refers to the ratio seen between the thickest and thinnest strokes
of a letterform or typeface. In Latin, vertical strokes tend to be the
thickest and horizontal strokes tend to be the thinnest, but the thickest
and thinnest points may be found at any angle, depending on the style.
Regardless, only the main strokes of letterforms are generally
considered when discussing contrast; thin serifs or thick terminals do
not factor into contrast.

177

Counter refers to a region of white space that in bounded, enclosed, or
partially enclosed by the contours of a letterform. A closed counter
refers to such a region that is bounded on all sides, such as the interior
of o, p, b, or d. Some sources will also consider a counter closed if it is
bounded on all sides except at the baseline, such as the interior of n or
h. Regardless, it is widely accepted that an open counter refers to such
a region that is not enclosed on one side or not enclosed at the top.

Design space refers to the set of possible variations within which a
typeface family might include individual member fonts: the full range
of weights from thin to heavy, the full set of widths from condensed to
extended, the various optical sizes from caption to headline, and
perhaps even other variants.

Diacritic refers to any mark or sign added to a basic letterform, which in
combination results in a new form. Most Latin diacritics are positioned
above or below the letterform, although there are exceptions.

Em is a unit that refers to the maximum body size of the forms in a
typeface. When text is rendered with CSS, the em is scaled to be the
point size declared for the font (e.g., 10 point or 16 point). Internally,
the grid system in which the contours of the forms are defined covers
one em in width and one em in height. Historically, body size was
closely related to the em, but in casual usage, the em may also be used
to refer to width, while body size is generally only a term used for
height.

An extender is a stroke in a Latin letterform that either rises above the x-
height (termed an ascender) or drops below the baseline (termed a
descender).

A family of typefaces or fonts is a set of typefaces or fonts that are
designed and intended to work together, often sharing construction,
stylistic touches, and proportions, but varying in weight, width, slant,
or optical size.

Font units are the numeric coordinates that are used internally to define
the points and contours of a typeform. They have no physical size, and
start at (0, 0) at the leftmost point on the baseline.

A glyph is the commonly used technical term for how a typeform is stored
in a digital font file: the contours, metrics, and various metadata needed
to render it or print it. Most glyphs represent typeforms, but digital
font formats can include other elements (such as diacritics and reusable
components), so there can be a distinction. For example, the letterform
j may be stored as two component glyphs, one for the dot and one for
the base stroke, to simplify the inclusion of related forms like ȷ.́

GPOS and GSUB are the tables in OpenType or TrueType font files that
contain smart-font features such as ligature substitution rules (GSUB)

178

and contextual positioning rules (GPOS). The GPOS table is where most
kerning information is stored in contemporary digital fonts.

Green’s Theorem is a relationship in calculus that allows the computation
of integrals on a two-dimensional shape (such as the shape’s area) by
converting them into distinct but related integrals that operate entirely
on the boundary curves of the shape.

A kern, in contemporary digital fonts, is an adjustment made between two
adjacent typeforms. In metal and wood type, the term may have
referred instead to the actual cuts made into a sort or the overhanging
part of the sort after the cut was made.

A matrix, in metal typemaking, was a hardened metal block containing the
negative cavity of a typeform. When a matrix was fitted into a mould,
the molten metal was poured to cast a sort. The negative of the
typeform was struck into the blank matrix with a punch, after which
the matrix had to be justified to ensure its sides and faces were straight
and that the correct space was allocated on each side.

A mould, in metal typemaking, was the receptacle holding the matrix and
in which a metal type sort was cast.

A numeral refers, in this work, to the decimal digits 0 through 9.
Oblique and italic refer to slanted typeface styles in Latin. Various sources

debate the nuanced meaning of italic, which can involve changes to the
skeletons and proportions of forms, but in this work the term is used
strictly in contrast with upright or roman styles.

OpenType is a digital font-file specification, managed jointly by Microsoft,
Adobe, and other groups. Much of its contents overlaps with the
TrueType specification.

Optical size refers to the intended rendered or printed size for which a
typeface was designed. Many of the proportions and construction
details of the typeforms may vary between a small optical size and a
large optical size. Optical sizes are sometimes described by type
designers in semantic terms (such as caption or headline), but some
designers describe them in point size.

Overshoots and undershoots are regions of a typeform that go beyond the
standard vertical measurement lines (e.g., above the x-height or below
the baseline). Round forms and pointed vertices often undershoot or
overshoot deliberately in order to achieve optical harmony with
straight forms. It is generally understood that a form with undershoots
or overshoots is still considered to be “on the baseline” or “at x-height”.

Phototypesetting refers to printing made by exposing the images of
typeforms onto light-sensitive media, either by flashing light through a
film negative or by drawing the form with a cathode-ray tube (CRT)
emitter. Either way, the use of photographic exposure meant that

179

positioning of typeforms (including fitting and kerning) did not have
the physical limitations of metal typesetting.

Point size is the measurement unit used to describe the physical size at
which a typeface is printed or rendered. In CSS, a point is nominally
defined as 1⁄72 of one inch. In theory, the em square of a digital font is
scaled so that it equals the point size defined for the text, but software
and display devices make this relationship somewhat unreliable.

Profile refers to the outer shape of one side of a typeform (either the left
or right side).

A punch was the steel tool into which a typeform was carved in metal
typemaking. The punch was driven into a blank matrix to create the
cavity into which the molten metal was eventually cast.

The term script and writing system are used in roughly the same way in
this work, referring to the system of representation for a written or
printed language. In other works and historical sources, the distinction
between the two can become quite important; here both refer in
general to an alphabet or other set of typeforms, regardless of language.

A serif in Latin type is the small, ancillary stroke attached to the ends of
many main strokes in letterforms. Certain typeface styles can be
difficult to classify as serif or sans-serif designs, because there is
ambiguity as to when flared stroke endings begin to be called serifs.

SFNT is the underlying structure of contemporary digital fonts, including
all TrueType, OpenType, and WOFF font formats.

The sidebearing of a form is distance from the outermost edge on one side
of the form itself to the boundary width of the form on that side.

The skeleton or construction of a form is the arrangement of its main
strokes, regardless of whether or not it includes serifs.

A sort, as used here, is a single unit of metal type, as cast in a mould. A sort
may contain a single letterform, a ligature, or more.

Stem refers to a straight, vertical main stroke in Latin type. Stems are
distinguished from bowls, diagonal strokes, and various connecting
strokes in discussions of visual stem rhythm.

A stroke is any shape in a typeform that corresponds to linear gesture or
mark made by a writing implement. Strokes can be large or small,
straight or curved, but are typically distinguished from dots.

Style refers broadly to any design characteristics or motifs expressed in
the typeforms and character of a typeface. In this work, the term is used
to distinguish such creative facets of a typeface from facets that are
more concretely assessed, such as letterform proportions, weight and
width.

180

A terminal is the ending of a stroke; in some forms with open counters,
such as a or c, the size and shape of the terminal has a major effect on
how open or how closed the aperture is.

TrueType is a digital font-file specification maintained by Apple. Most, but
not all, of its contents overlap with the OpenType specification.

Type 1 is a retired digital font-file specification maintained by Adobe.
UPEM or units per em, is the number of font units in the em of a particular

font. The UPEM value is stored as a font-wide property in digital font
files.

The terms upright and roman refer to typeface styles in Latin for which
the main vertical strokes of the forms are perpendicular to the baseline.
As with italic and oblique, some historical sources are concerned with
more specific definitions, but in this work only the broad distinction is
intended.

Variable fonts are digital font files that use recent enhancements to the
OpenType and TrueType formats to effectively combine several
members of a font family into a single file. Typically a variable font will
incorporate several weights, widths, or optical sizes of a typeface, and
settings allow users to choose between them when typesetting, or to
adjust the parameters to values in between.

WOFF and WOFF2 are compressed file formats encoding OpenType or
TrueType fonts. The formats are optimized for web browser usage, but
retain all of the core information about the typeforms.

The weight of a typeface is a descriptive term communicating the
heaviness of the strokes. The typical stroke widths of typefaces meant
for continuous reading are often referred to as ‘regular’, with other
variants named in comparison: thinner variants called ‘light’ and
thicker variants called ‘bold’, etc., but such terms by themselves do not
have formal definitions.

The width of a typeface is a descriptive term communicating the relative
horizontal and vertical proportions of the letterforms. Typical
proportions in typefaces meant for continuous reading are often
referred to as ‘normal’ or a similar term, and other proportions are
described relative to that: ‘narrow’, ‘wide’, ‘condensed’, ‘extended’, etc.
As with weight, however, such terms do not have formal definitions.

The x-height of a Latin typeface is the height of the tops of lowercase
letterforms above the baseline, not including any ascenders. The
letterform x is the standard reference because it has no ascender and its
top typically does not overshoot. However, the measurement is
generally understood to refer to a standard, font-wide value; forms with
overshoots are considered to still be at the same x-height as the others.

181

Bibliography

1. Works cited

Adobe Type. ‘AFDKO’, 28 September, 2010. http://www.adobe.com/content/
dam/Adobe/en/devnet/opentype/afdko/ Accessed via https://
web.archive.org/web/20100928011722/http://www.adobe.com/content/
dam/Adobe/en/devnet/opentype/afdko/

Apple Inc. ‘Fonts - TrueType Reference Manual’. Apple Developer. Accessed
27 September, 2023. https://developer.apple.com/fonts/TrueType-
Reference-Manual/

Ahrens, Tim, and Shoko Mugikura. Size-Specific Adjustments to Type Designs:
An Investigation of the Principles Guiding the Design of Optical Sizes, Just
Another Foundry, 2014.

Arrighi, Ludovico Vicentino degli. La Operina, 1522.
Baines, Phil, and Andrew Haslam. Type and typography. Second edition.

London: Laurence King, 2005.
Banjanin, Bojan, and Uroš Nedeljković. ‘Comparing different letter spacing

methods in sans-serif typeface design’. In Proceedings of the 7th
Internationsl Symposium on Graphic Engineering and Design (GRID14). GRID.
Novi Sad, Serbia: University of Novi Sad, Faculty of Technical Sciences,
Department of Graphic Engineering and Design, 2014.

———. ‘Sidebearings Analysis of Alphabet Letters with Complex Shape’.
University of Novi Sad, Faculty of Technical Sciences, Department of
Graphic Engineering and Design, 20 November, 2014.

Baruchel, Thomas. ‘KERNDICT’. CTAN: Package T1infos, 2002. https://
ctan.org/pkg/t1infos

Beier, Sofie, Chiron A. T. Oderkerk, Birte Bay, and Michael Larsen.
‘Increased Letter Spacing and Greater Letter Width Improve Reading
Acuity in Low Vision Readers’. Information Design Journal 26, no. 1 (19
July, 2021): 73–88. https://doi.org/10.1075/idj.19033.bei

Beier, Sofie. Type Tricks: Your Personal Guide to Type Design. Amsterdam: BIS
Publishers, 2017.

Bergsland, David. Practical Font Design with FontLab 5. Mankato, MN: Radiqx
Press, 2016.

Berkson, William. ‘Reviving Caslon’. I Love Typography, 26 July, 2010. https://
ilovetypography.com/2010/07/26/reviving-caslon-the-snare-of-
authenticity/

Bigelow, Charles, and Jonathan Seybold. ‘Aesthetics vs Technology: Does
Digital Typesetting Mean Degraded Type Design?’ The Seybold Report 10,
no. 24 (24 August, 1981).

———. ‘The Font Wars, Part 1’. IEEE Annals of the History of Computing 42, no.
1 (1 January, 2020): 7–24. https://doi.org/10.1109/MAHC.2020.2971202

182

———. ‘The Font Wars, Part 2’. IEEE Annals of the History of Computing 42, no.
1 (1 January, 2020): 25–40. https://doi.org/10.1109/MAHC.2020.2971745

Blacker, Elwyn, and Michael Blacker. ‘Spoiled for choice’. In Sassoon,
Rosemary, ed. Computers and Typography. Oxford, England: Intellect,
1993:69–74.

Blokland, Frank E, and Simon Cozens. ‘Understanding the LeMo Cadence
Grid’. TypeDrawers. Accessed 11 March, 2019. http://typedrawers.com/
discussion/1140/understanding-the-lemo-cadence-grid.

Blokland, Frank E. LetterModeller Manual. Dutch Type Library, Autumn 2016.
———. ‘On the origin of patterning in movable Latin type: Renaissance

standardisation, systematisation, and unitisation of textura and roman
type’. Thesis. Leiden University, 2016.

Blumenthal, Joseph. ‘The Fitting of Type’. In The Dolphin, 2:71–81. New
York, N.Y.: Limited Editions Club, 1935.

Březina, David. ‘Coherence in Typeface Design: Visual Similarity of
Characters in Cyrillic, Devanagari, and Latin’. Thesis. University of
Reading, 2018.

Briem, Gunnlaugur SE. ‘Notes on Type Design’. FontLab 8, 1998. https://
help.fontlab.com/fontlab/8/tutorials/briem/

Browne, Cameron Bolitho, Michael Richard Arnold, and Paul Quentin Scott.
Automatic kerning of text. United States US6829748B1, filed 26 November,
1999, and issued 7 December, 2004. https://patents.google.com/patent/
US6829748B1/en

Buerkle, Brandon. ‘Spacing a Font, Part 1’. Society of Fonts (blog), 19
September, 2018. https://www.societyoffonts.com/2018/09/19/
spacing-a-font-part-1/

———. ‘Spacing a Font, Part 2’. Society of Fonts (blog), 26 September, 2018.
https://www.societyoffonts.com/2018/09/26/spacing-a-font-part-2/

Burkholder, Dave. ‘Device-Detector: Python3 Port of Matomo’s Device
Detector’. Accessed 1 June, 2023. https://github.com/thinkwelltwd/
device_detector

Burnhill, Peter. Type Spaces: In-House Norms in the Typography of Aldus
Manutius. London: Hyphen Press, 2003.

Campe, Chris, and Ulrike Rausch. Making Fonts: A Comprehensive Guide to
Professional Type-Design. Berkeley, California: Gingko Press Inc., 2022.

Carter, Harry Graham. ‘Optical Scale in Type Founding’. Printing Historical
Society Bulletin 13 (September 1984).

———. A View of Early Typography up to about 1600. Reprinted with an
introduction by James Mosley. London: Hyphen Press, 2002.

Celso, Alejandro Lo. ‘Rhythm in Type Design’. MATD dissertation,
University of Reading, 2000.

Cheng, Karen. Designing Type. New Haven: Yale University Press, 2005.
Chung, Susana T L. ‘The Effect of Letter Spacing on Reading Speed in

Central and Peripheral Vision’. Investigative Ophthalmology & Visual
Science 43, no. 4 (1 April, 2002): 1270–76.

183

Coates, Daniel Robert. ‘Quantifying Crowded and Uncrowded Letter
Recognition’. PhD dissertation, University of California at Berkeley,
2015.

Cost, Patricia. ‘The Contributions of Linn Boyd Benton and Morris Fuller
Benton to the Technology of Typesetting and Typeface Design’. Thesis,
Rochester Institute of Technology, 1986.

Cozens, Simon. ‘Spaceman: Just Space, Man’. Simoncozens, 2016. https://
github.com/simoncozens/Spaceman

———. ‘Atokern’. Simoncozens, 12 December, 2018. https://github.com/
simoncozens/atokern

———. ‘Fontmetrics Library’. Simoncozens, 24 March, 2019. http://
simoncozens.github.io/fontmetrics-library/

———. ‘Countershape-Based Spacing and Kerning Library and Plugin’.
Simoncozens/CounterSpace, 8 November, 2019. https://github.com/
simoncozens/CounterSpace

———. ‘HT LetterKerner’. GitHub gist, 1 February 2019. https://
gist.github.com/simoncozens/4f506dacb99d8e4b1f96f5fbfc102fa5

———. ‘Hands, Face, Space’. GitHub gist, 18 October, 2021. https://
gist.github.com/simoncozens/03da7e5ad7f52af711948ed52a797e23

———. ‘Kern Determiner’. Simoncozens, 29 October, 2022. https://
github.com/simoncozens/kerndeterminer

Cree, Edward. ‘Monokern’. Ec429, 2013. https://github.com/ec429/
monokern

Descroix, Lucas. Nostra v 0.3, typeface specimen. 9 December, 2018. https://
www.futurefonts.xyz/lucas-descroix/nostra?v=0.3

Dowzall, Martin E. Indicia alignment device. United States US4364184A, filed
11 June, 1980, and issued 21 December, 1982. https://
patents.google.com/patent/US4364184A/

Dowzall, Martin Edward, and Vazgen John Houssian. Apparatus for use in
spacing letters. European Union EP0180316A2, filed 23 September, 1985,
and issued 7 May, 1986. https://patents.google.com/patent/
EP0180316A2/

Dreyfus, John. ‘Watch this space’. In Clayton, Ewan, John Dreyfus, Gerald
Fleuss, David M. Levy, Tom Perkins, and Sumner Stone. Font: Sumner
Stone, Calligraphy, and Type Design in a Digital Age. Ditchling, Sussex:
Edward Johnston Foundation and Ditchling Museum, 2000:31–34.

Dwiggins, William. WAD to RR: A Letter about Designing Type. Cambridge,
Massachusetts: Harvard College Library, Department of Printing and
Graphic Arts, 1940.

———. ‘Causerie On Fitting’, Letter to Chauncy H. Griffith, 72m31-02.
Chauncey Hawley Griffith papers, 1903-1969. 10 May 1940, University of
Kentucky Special Collections Research Center.

———. Letter to Chauncy H. Griffith, 72m31-02. Chauncey Hawley Griffith
papers, 1903-1969. 18 August 1942, University of Kentucky Special
Collections Research Center.

184

Ecker, Heinz-Dieter. ‘HZ (Hermann Zapf)-Algorithm’, 8 May, 1999. http://
www.pvv.ntnu.no/~aslakr/hz.html

Egorov, Sergei. ‘Aldine Italic in Fourier Plane’, 16 March, 2005. http://
www.malgil.com/esl/aldus-fft/

Eng, Torbjørn. ‘InDesign, the Hz-Program and Gutenberg’s Secret’, 20
September, 2009. http://www.typografi.org/justering/gut_hz/
gutenberg_hz_english.html

Espinoza, Ramiro et al. ‘In Praise of Kernus 3.0’ TypeDrawers, 24 January,
2016. http://typedrawers.com/discussion/1337/in-praise-of-kernus-3-0

FontForge. ‘Auto Width and Auto Kern’. Accessed 11 March, 2019. http://
fontforge.github.io/autowidth.html

FontTools. ‘FontTools’. FontTools, 24 July, 2013. https://github.com/
fonttools/fonttools.

Fournier, Pierre Simon. Fournier on Typefounding. The Text of the Manuel
Typographique, 1764-1766, Translated and Edited with Notes by Harry Carter.
Translated by Harry Graham Carter. London: Soncino Press, 1930.

Frömberg, Mark. ‘Kernkraft’. March 8, 2019. https://github.com/BBoxType/
Kernkraft

Frutiger, Adrian, Heidrun Osterer, and Philipp Stamm. Adrian Frutiger -
Typefaces: Complete Works. Third edition. Basel: Birkhäuser, 2021.

Galliussi, Jessica, Luciano Perondi, Giuseppe Chia, Walter Gerbino, and
Paolo Bernardis. ‘Inter-Letter Spacing, Inter-Word Spacing, and Font
with Dyslexia-Friendly Features: Testing Text Readability in People with
and without Dyslexia’. Annals of Dyslexia 70 (14 March, 2020). https://
doi.org/10.1007/s11881-020-00194-x

Gaultney, James Victor. ‘Designing italics: Approaches to the design of
contemporary secondary text typefaces’. Thesis, University of Reading,
2020.

Google Fonts. ‘Analytics’. Google Fonts. Accessed 8 November, 2021. https://
fonts.google.com/analytics

Grable, Joey. ‘Joeygrable94/KernBot ’. 2018. https://github.com/
joeygrable94/KernBot

Grigas, Gintautas, and Anita Juškevičienė. ‘Letter Frequency Analysis of
Languages Using Latin Alphabet’. International Linguistics Research 1, no.
1 (26 March, 2018): p18–p18. https://doi.org/10.30560/ilr.v1n1p18

HT Letterspacer. ‘HTLetterspacer on GitHub’. Huertatipografica/
HTLetterspacer, 4 August, 2016. https://github.com/huertatipografica/
HTLetterspacer

Haralambous, Yannis. Fonts & Encodings. First ed. Sebastopol, Calif: O’Reilly
Media, 2007.

Harvey, Michael. Creative Lettering Today. New York: Published by Design
Books, 1996.

Henestrosa, Cristobal, Laura Meseguer, and José Scaglione. How to Create
Typefaces: From Sketch to Screen. Madrid: Tipo E Editorial, 2017.

185

Highsmith, Cyrus. Inside Paragraphs: Typographic Fundamentals. Second
edition. New York: Princeton Architectural Press, 2020.

Hochuli, Jost. Detail in Typography. Translated by Charles Whitehouse. Paris:
Éditions B42, 2015.

Hornus, Jeremie. ‘Counter Shape https://t.co/ULZhXiiE4W’. Tweet.
Twitter, 24 September, 2016. https://twitter.com/JeremieHornus/status/
779754639403212801

Impallari, Pablo. ‘Spacing Macro’. Impallari Type, 12 July, 2012. http://
www.impallari.com/projects/overview/spacing-macro, Accessed 10
March, 2018 via https://web.archive.org/web/20180310055208/http://
www.impallari.com/projects/overview/spacing-macro

Jamra, Mark. ‘Basic Character Spacing in Type Design’, 2004. https://
typeculture.com/academic-resource/articles-essays/basic-character-
spacing-in-type-design/

Karow, Peter et al. Font Technology: Description and Tools. Hamburg
(Harksheider Strasse 102): URW Software & Type GmbH, 1994.

Karow, Peter, and Frank E Blokland. Digital Typography & Artificial
Intelligence. The Hague: Dutch Type Library, 2013.

Karow, Peter, Bodo Kämmle, and Margret Albrecht. Process for spacing of
typefaces. European Union EP0465704A1, filed 11 July, 1990, and issued
15 January, 1992. https://patents.google.com/patent/EP0465704A1/en

Karow, Peter, and John R. MacMillan. Pointsize-variable character spacing.
United States US5937420A, filed 23 July, 1996, and issued 10 August,
1999. https://patents.google.com/patent/US5937420/en.

Karow, Peter. ‘URW’s Hz-Program’. The Seybold Report on Publishing Systems
21, no. 13 (30 March, 1992): 47.

———. Typeface Statistics. URW Edition No. 1. Hamburg: URW Verlag, 1993.
———. Digital Typefaces: Description and Formats. Berlin, Heidelberg: Springer

Berlin Heidelberg, 1994. https://doi.org/10.1007/978-3-642-78105-6
———. ‘Two Decades of Typographic Research at URW: A Retrospective’. In

Electronic Publishing, Artistic Imaging, and Digital Typography, edited by
Roger D. Hersch, Jacques André, and Heather Brown, 1375:265–80.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. https://doi.org/
10.1007/BFb0053276

———. ‘Digital Typography with Hermann Zapf ’. TUGboat 36, no. 2 (2015).
Kascenas, Antanas. ‘Machine Learning of Fonts’. Master of Infomatics

report. School of Informatics, University of Edinburgh, 2017.
Kindersley, David, and Neil Wiseman. Spacing of characters in or in preparation

for printing. GB2004502, filed 20 September, 1978, and issued 24 March,
1982.

Kindersley, David. ‘Towards Perfect Spacing’. Book Design and Production 5,
no. 3 (1962): 178–83.

———. An Essay in Optical Letter Spacing and Its Mechanical Application.
London: Wynkyn de Worde Society, 1966.

186

———. Space Craft. The Wynkyn de Worde Society Stationers Hall Meeting.
Great Sutton St. London: Moore & Matthes, 1973.

———. Optical Letter Spacing for New Printing Systems. Second edition. Great
Britain: The Wynkyn de Worde Society, 1976.

———. Letter to Neil Wiseman, 4 August 1976. Cambridge University
Library, Department of Manuscripts and University Archives, Neil
Wiseman papers, MS Wiseman.

———. Letter to Neil Wiseman, 16 September 1976. Cambridge University
Library, Department of Manuscripts and University Archives, Neil
Wiseman papers, MS Wiseman.

———. Letter to Colin Campbell, 6 September 1977. Cambridge University
Library, Department of Manuscripts and University Archives, Neil
Wiseman papers, MS Wiseman.

———. ‘How Close?’ The Seybold Report on Publishing Systems 16, no. 15 (13
April, 1987): 34.

Kindersley, David, and Lida Lopes Cardozo. David Kindersley’s Workshop:
Letters in Stone & Glass and on Paper. Rijksmuseum Meermanno-
Westreenianum/Museum van Het Boek. ’S-Gravenhage: Staatsuitgeverij,
1987.

Kindersley, David, Lida Lopes Cardozo, and Francis Cave. Optical Letter
Spacing for New Printing Systems. Third edition. Cambridge: Cardozo
Kindersley, 2001.

Knuth, Donald Ervin. The Art of Computer Programming. Volume 1: Fundamental
Algorithms. Addison-Wesley Series in Computer Science and Information
Processing. Reading, Mass: Addison-Wesley, 1968.

Knuth, Donald Ervin. ‘Foreword’. In Sedgewick, Robert, and Philippe
Flajolet. An Introduction to the Analysis of Algorithms. Second edition.
Upper Saddle River, NJ: Addison-Wesley, 2013.

Kolås, Øyvind. ‘Kernagic’. Hodefoting, 26 April 2013. https://github.com/
hodefoting/kernagic/

Kosch, Sebastian. ‘Spacing Research’, Aldusleaf.Org, 2010. http://
aldusleaf.org/rhea.php, accessed via http://web.archive.org/web/
20130326013609/http://aldusleaf.org/rhea.php

———. ‘Fittingroom on GitHub’ Skosch/Fittingroom 3 December, 2015. https://
github.com/skosch/fittingroom

———. ‘Towards an Attention-Based Letterfitting Model’, 2020. https://
skosch.github.io/electricbubble/

Käch, Walter. Rhythm and Proportion in Lettering. Translated by Elizabeth
Friedlander. Olten und Freiburg im Breisgau: Walter-Verlag, 1956.

Kämmle, Bodo. ‘Letter Spacing’. In Karow, Peter et al. Font Technology:
Description and Tools. Hamburg (Harksheider Strasse 102): URW Software
& Type GmbH, 1994:173–192.

Lee, Micah F, William Budington, and Dan Auerbach. ‘Cryptolog’. Electronic
Frontier Foundation, 2015. https://github.com/EFForg/cryptolog

187

Leonidas, Gerry. ‘Designing Greek’. In Wittner, Ben, Sascha Thoma, and
Timm Hartmann, eds. Bi-Scriptual: Typography and Graphic Design with
Multiple Script Systems. 1st edition. Salenstein: Niggli, 2018.

Levien, Raph et al. ‘David Kindersley on Spacing’. Typophile, 18 May, 2006.
http://typophile.com/node/19789#comment-123868, accessed via
https://web.archive.org/web/20120827024823/http://typophile.com/
node/19789#comment-123868

Logan, David J. Method and apparatus for automatically spacing characters
during composition. United States US4591999, issued 27 May, 1986.

Luckhurst, Raymond. ‘Psoptkern’. ScriptIt, 2018. https://github.com/
scriptituk/psoptkern

MacKay, Mark. ‘Kern Type’, 10 November, 2011. https://type.method.ac.
Mathews, M. Apparatus and method for spacing or kerning typeset characters.

United States US3712443A, filed 19 August, 1970, and issued 23 January,
1973. https://patents.google.com/patent/US3712443A/en?
oq=US3712443

Mello Vargas, Fernando de. ‘Approaches to Applying Spacing Methods in
Seriffed and Sans-Serif Typeface Designs’. MATD dissertation,
University of Reading, 2007.

———. ‘Journey into Spacing’. TypeNotes 2, 2018: 30–35.
Mengelt, Christian, and Roger D. Hersch, ed. ‘Visual Aspects of Type’. In

Visual and Technical Aspects of Type. Cambridge: Cambridge University
Press, 1993:34–46.

Microsoft. ‘OpenType Specification (OpenType 1.9)’. Microsoft Typography,
16 June, 2022. https://learn.microsoft.com/en-us/typography/
opentype/spec/

Middendorp, Jan. Dutch Type. Reprint of 2004 original edition. Berlin: Druk
Editions, 2018.

Moye, Stephen. Fontographer: Type by Design. 1st ed. New York: MIS:Press,
1995.

Naiman, Avi C. ‘High-Quality Text For Raster Displays’. MSc thesis,
University of Toronto, 1985.

Neville, Paul H., and William J. Fox. Method and apparatus for automatic,
shape-based character spacing. United States US5803629A, filed 14 March,
1997, and issued 8 September, 1998. https://patents.google.com/patent/
US5803629/en.

Nicholson, Ward. ‘The Sector Kerning Debate’. The Seybold Report on
Publishing Systems 19, no. 11 (26 February, 1990): 44–48.

Noordzij, Gerrit. ‘A programme for teaching letterforms’ In Fernand
Baudin, and John Dreyfus. ATypI Dossier A–Z 73. Association
Typographique Internationale, 1973.

———. The Stroke of the Pen: Fundamental Aspects of Western Writing. The
Hague: Koninklijke Academie van Beeldende Kunsten, 1982.

———. De handen van de zeven zusters. Amsterdam: Van Oorschot, 2000.

188

———. Letterletter: An Inconsistent Collection of Tentative Theories That Do Not
Claim Any Other Authority than Common Sense. Point Roberts, Calif: Hartley
and Marks, 2000.

———. The stroke: theory of writing. English edition, translated by Peter
Enneson. London: Hyphen Press, 2005.

Omagari, Toshi. BubbleKern. 1 September, 2015. http://tosche.net/2015/09/
bubblekern.html

———. ‘BubbleKern’. Presented at ATypI, 2016. Video published online 24
October 2016. https://www.atypi.org/type-typography/bubblekern

OpenAnnotation. ‘Annotator v1.2.10’. Openannotation/Annotator, 26
February, 2015. https://github.com/openannotation/annotator/
releases/tag/v1.2.10

Pallets Project. ‘Flask Documentation (2.3.x)’, 2010. https://
flask.palletsprojects.com/en/2.3.x/

Perea, Manuel, Carmen Moret-Tatay, and Pablo Gómez. ‘The Effects of
Interletter Spacing in Visual-Word Recognition’. Acta Psychologica 137,
no. 3 (July 2011): 345–51. https://doi.org/10.1016/j.actpsy.2011.04.003.

Perea, Manuel, Victoria Panadero, Carmen Moret-Tatay, and Pablo Gómez.
‘The Effects of Inter-Letter Spacing in Visual-Word Recognition:
Evidence with Young Normal Readers and Developmental Dyslexics’.
Learning and Instruction 22, no. 6 (1 December, 2012): 420–30. https://
doi.org/10.1016/j.learninstruc.2012.04.001

Perea, Manuel, and Pablo Gomez. ‘Increasing Interletter Spacing Facilitates
Encoding of Words’. Psychonomic Bulletin & Review 19, no. 2 (1 April,
2012): 332–38. https://doi.org/10.3758/s13423-011-0214-6

———. ‘Subtle Increases in Interletter Spacing Facilitate the Encoding of
Words during Normal Reading’. Edited by Kevin Paterson. PLoS ONE 7,
no. 10 (17 October, 2012): e47568. https://doi.org/10.1371/
journal.pone.0047568

Perktold, Josef, Skipper Seabold, Kevin Sheppard, ChadFulton, Kerby
Shedden, Jbrockmendel, J-Grana6, et al. ‘Statsmodels/Statsmodels:
Release 0.14.0’. Zenodo, 5 May, 2023. https://doi.org/10.5281/
ZENODO.593847

Petuchowski, Ethan. ‘Font-Prediction_mahout’. Ethanp, 2014. https://
github.com/ethanp/font-prediction_mahout

Ponting, Bob. ‘Font Editor Now Creates Postscript Hints’. InfoWorld, 21
August, 1989.

Renckens, Maarten. ‘RhythmInfluencer’. Artengar/Glyphs_Plugins, 3
December, 2020. https://github.com/Artengar/Glyphs_Plugins

Revolver Type Foundry. ‘Tools’. Revolver Type, Accessed 11 March, 2019.
https://www.revolvertype.com/tools/cadencer.html/

Reynolds, Linda, and Sue Walker. ‘‘You Can’t See What the Words Say’:
Word Spacing and Letter Spacing in Children’s Reading Books’. Journal of
Research in Reading 27, no. 1 (2004): 87–98. https://doi.org/10.1111/
j.1467-9817.2004.00216.x

189

Rosendorf, Theodore. The Typographic Desk Reference. Second edition. New
Castle, Delaware: Oak Knoll Press, 2016.

Ross, David Jonathan. Fit, typeface specimen. 2017. https://djr.com/fit
Rubinstein, Richard. Digital Typography: An Introduction to Type and

Composition for Computer System Design. Reading, Mass.: Addison-Wesley
Pub. Co., 1988.

SIL International. ‘What Is Special About Awami Nastaliq?’ Awami Nastaliq.
17 July, 2017. https://software.sil.org/awami/what-is-special/

Sassoon, Rosemary, ed. Computers and Typography. Oxford, England:
Intellect, 1993.

Sassoon, Rosemary. The Practical Guide to Lettering & Applied Calligraphy.
London: Thames and Hudson, 1987.

Sawada, Akira, Hiroshi Kumamoto, and Takashi Suzuki. Apparatus and
Method For Adjusting Character Spacing. US Patent 5,501,538, issued 26
March, 1996.

Schaffzin, Gabi. ‘OpticalLetterSpacing.Js’. GabiSchaffzin, 2012. https://
github.com/GabiSchaffzin/OpticalLetterSpacing.js

Scheichelbauer, Rainer Erich. ‘Kerning’. Glyphs, 28 September, 2021. https://
glyphsapp.com/learn/kerning

———. ‘Spacing’. Glyphs, 25 July, 2022. https://glyphsapp.com/learn/
spacing

Schneider, Lukas. LS Cadencer & LS Cadenculator. Revolver Type Foundry,
2016.

Schwartz, Barry. ‘Spacing by anchors’. Sortsmill, 14 October, 2021. https://
github.com/chemoelectric/sortsmill/blob/
90b97a9296582211a133970bb577013c9c86ed81/tools/
spacing_by_anchors.py

Seybold, Jonathan, and Arlene E. Karsh. ‘Composition Quality: Can URW
‘One-Up’ Gutenberg with Hz-Program?’ The Seybold Report on Publishing
Systems 22, no. 11 (22 February, 1993): 3–9.

Seybold, Jonathan. ‘Kingsley/ATF Now Shipping Fonts’. The Seybold Report
on Publishing Systems 4, no. 2 (16 October, 1989): 23.

———. ‘Kerning on the Desktop’. The Seybold Report on Publishing Systems 18,
no. 16 (22 May, 1989): 27–28.

———. ‘URW Reoganizes; Karow, Rubow Depart’. The Seybold Report on
Publishing Systems 24, no. 13 (13 March, 1995): 2.

———. ‘URW Software for Better Justification’. The Seybold Report on
Publishing Systems 21, no. 7 (6 December, 1991): 27.

Smeijers, Fred. Counterpunch. London: Hyphen Press, 1996.
———. ‘Putting Letters next to Each Other: A Historical Overview’. Vom Buch

Auf Die Straße: Große Schrift Im Öffentlichen Raum, Journal der HGB, no. 3
(2014): 227–250.

Sorkin, Eben, Jason Pagura, Vernon Adams, Ben Martin, Nathan Willis, and
Molly Sharp. Start Designing with FontForge: A Guide to Making Type. Book
Sprints, FontForge Press, 2012.

190

Southall, Richard. Printer’s Type in the Twentieth Century: Manufacturing and
Design Methods. London : New Castle, DE: British Library ; Oak Knoll
Press, 2005.

Spells, Henry D. System and method for automatically spacing characters. US
Patent 5,623.593, issued 22 April, 1997.

Spiekermann, Erik. Rhyme & Reason: A Typographic Novel. Translated by Paul
Stiff. Berlin: H Berthold AG, 1987.

Thê ́Thành, Hàn. ‘Micro-Typographic Extensions to the TEX Typesetting
System’. Thesis. Masaryk University Brno, 2000.

Tracy, Walter. Letters of Credit: A View of Type Design. Second edition. Boston:
D.R. Godine, 2003.

Type.tools. ‘Machine Learning Kerning – The Kids Are Kerned Out’. TypeLab
2020. Typographics, 19 June, 2020. https://vimeo.com/431803660

TypeMyType. ‘Introduction to Spacing’. Robofont, 2021. https://
robofont.com/documentation/tutorials/spacing-intro/

URW Software & Type GmbH. Hz-Program: Micro-Typography for Advanced
Typesetting. Hamburg, 1993.

Unger, Gerard. While You’re Reading. New York: Mark Batty, 2007.
———. Theory of Type Design. Rotterdam: nai010 publishers, 2018.
Van Blokland, Petr. Cambridge Super Vision report. 29 July, 1986. Cardozo-

Kinderlsey Workshop archives.
Watanabe, Kiyoshi. Character processing apparatus capable of automatic

kerning. United States US5432890A, filed 7 October, 1994, and issued July
11, 1995. https://patents.google.com/patent/US5432890A/

Waxweiler, Nikolaus, and Andrés Torresi. ‘Idea: Per-Glyph Parameters?’, 2
May, 2018. https://github.com/huertatipografica/HTLetterspacer/
issues/37

Wiegel, Peter. ‘Peter Wiegel’s Auto Spacing Idea’. Ft-Devel, 14 June, 2012.
https://lists.nongnu.org/archive/html/freetype-devel/2012-06/
msg00084.html

Wilkins, A J, Smith, J, Willison, C K, Beare, T, Boyd, A, Hardy, G, Mell, L,
Peach, C, and Harper, S. (2007). Stripes within words affect reading.
Perception 36, no. 12, p. 1788-1803.

The World Wide Web Consortium. ‘W3C Standards and Drafts’. W3C, 26
September, 2023. https://www.w3.org/TR/

Yu, Deyue, Sing-Hang Cheung, Gordon E. Legge, and Susana T. L. Chung.
‘Effect of Letter Spacing on Visual Span and Reading Speed’. Journal of
Vision 7, no. 2 (February 1, 2007): 2. https://doi.org/10.1167/7.2.2

Yue, Xin. ‘Yuex/Cjk-Auto-Spacing’. 2013. https://github.com/yuex/cjk-
auto-spacing

Zapf, Hermann. ‘About Micro-Typography and the Hz-Program’. Electronic
Publishing 6, no. 3 (September 1993): 283–88.

’Zhspacing on Google Code’. Accessed 11 March, 2019. https://
code.google.com/archive/p/zhspacing/

191

Łuniewska, Magdalena, Marta Wójcik, and Katarzyna Jednoróg. ‘The Effect
of Inter-Letter Spacing on Reading Performance and Eye Movements in
Typically Reading and Dyslexic Children’. Learning and Instruction 80
(August 2022): 101576. https://doi.org/10.1016/
j.learninstruc.2021.101576

2. Additional sources consulted in historical study

The historical study of letter-fitting literature, practice, and fitting-
automation projects, described in chapter 2, § 2.2, also reviewed the
following sources.

Ahrens, Tim. ‘Kern On’. Accessed 18 June, 2021. https://kern-on.com/
Andersson, Rasmus. ‘Working through Some Ideas for Machine Learning-

Based Automatic Kerning’. Tweet. Twitter, 25 April, 2020. https://
twitter.com/rsms/status/1254181634569416704.

Baltus, Viktor. ‘A Revised Spacing Chart’. Type Design Class. Accessed 14
September, 2022. https://www.typedesignclass.com/resources/revised-
spacing-chart

———. ‘Spacing and Kerning Your Font’. Type Design Class. Accessed 14
September, 2022. https://www.typedesignclass.com/resources/spacing-
and-kerning-basics

Bartels, Samuel A. The Art of Spacing: A Treatise on the Proper Distribution of
White Space in Typography. Chicago: Inland Printer, 1926.

Bauermeister, Benjamin. A Manual of Comparative Typography: The PANOSE
System. New York: Van Nostrand Reinhold, 1988.

Beier, Sofie. Reading Letters: Designing for Legibility. Amsterdam: BIS, 2012.
Berlow, David. Interview. Video, 25 May, 2023.
Biľak, Peter. ‘Size-Specific Spacing of Fonts’. Typotheque, Accessed 4 June,

2021. https://www.typotheque.com/articles/size-
specific_spacing_of_fonts

Blokland, Frank E. et al. ‘The LeMo method’, Typedrawers. October 2014.
http://typedrawers.com/discussion/749/the-lemo-method

Blokland, Frank E. LetterModeller 5.0, 19 December 2014. http://
www.lettermodel.org/wordpress/?page_id=13#LeMo

Bohm, Thomas. ‘Micro-Typography: How To Space And Kern Punctuation
Marks And Other Symbols’. Smashing Magazine, May 2020. https://
www.smashingmagazine.com/2020/05/micro-typography-space-kern-
punctuation-marks-symbols/.

Chen, Charles M. Typefacet Autokern, 21 October 2012. http://
charlesmchen.github.io/typefacet/topics/autokern/index.html

192

Cozens, Simon et al. ‘A New Approach to Spacing?’ TypeDrawers. Accessed 11
March, 2019. http://typedrawers.com/discussion/1736/a-new-
approach-to-spacing

Daines, Mike. ‘Letters — Slate Cut’. Baseline 8, 1986, p.16–17.
Dutch Type Library. KernMaster Manual. Hamburg: ’s-Hertogenbosch, 2004.
Dutch Type Library. ‘History’. DTL Font Tools. Accessed 18 July, 2021. https://

www.fontmaster.nl/history.html/.
FontLab, Ltd. FontLab Studio 5.0.2 for Mac User Manual. 2006.
Fontsmith. ‘How to Space a Typeface’. 5 February, 2018. https://

www.fontsmith.com/blog/2018/02/05/how-to-space-a-typeface.
Frutiger, Adrian, Maurice Besset, Emil Ruder, and Hans Rudolf Schneebeli.

Type, Sign, Symbol. Zurich: ABC Edition, 1980.
Gates, David. Lettering for Reproduction. New York: Watson Guptill, 1976.
G i ll, Eric. An Essay on Typography. London: Penguin Books, 2013.
Goudy, Frederic W. The Alphabet; and Elements of Lettering: Revised and

Enlarged with Many Full-Page Plates and Other Illustrations Drawn & Arranged
by the Author. New York: Dover, 1963.

Goudy, Frederic W. Typologia: Studies in Type Design and Type Making - with
Comments on the Invention of Typography : The First Types, Legibility and Fine
Printing. London: University of California Press, 1977.

Harradine, John. On the Nature of the Fendragon. Wellingborough: Skelton’s
Press, 1977.

Harvey, Michael. Lettering Design Form & Skill in the Design & Use of Letters.
Barre, Mass: Barre, 1976.

Hess, Stanley. The Modification of Letterforms. New York: Art Direction Book
Co., 1981.

Hudson, David. ‘TypeButter’. Hudsonfoo, 13 July, 2012. https://github.com/
hudsonfoo/typebutter

Hudson, John, Laurence Penney, et al. ‘Laurence Penney’s Kern-font
proposal’, Comp.fonts. 18–25 May 1996. https://groups.google.com/d/
topic/comp.fonts/GEjTE9_H52M/discussion

Hudson, John. Scholarly types, 18 November 2009. Video published online 20
March 2012. https://www.youtube.com/watch?v=DT5Qn_Dhiqk

Invers Software. TypeArt 2.0: Der mächtigste Fonteditor für Calamus-Fonts im
CFN-Format. Ulf Dunkel, 2007. Accessed via https://www.calamus.net/les/
dl.php?File=TA2deMan.pdf

Jacoby, Henry Sylvester. A Text-Book on Plain Lettering. New York, The
Engineering News Publishing Company, 1901. http://archive.org/
details/textbookonplainl00jacorich

Jamra, Mark. ‘Form and Proportion in a Text Typeface: A Few Guidelines’.
TypeCulture, 2003. https://typeculture.com/wp-content/uploads/
2016/02/tc_article_7.pdf

Johnston, Edward. Writing & Illuminating & Lettering. New York: Dover
Publications, 1995.

193

Joss, Molly W, Jonathan Seybold, and Andrew Tribute. ‘Harlequin’s
Automatic Kerning’. The Seybold Report on Publishing Systems 20, no. 8 (7
January, 1991): 16.

Kalen, Dean. ‘Building a Spacing Calculator’. TypeWknd, 2021. Video
published at https://www.youtube.com/watch?v=ZS8WqPxGoAk

Karow, Peter. ‘Extending control of digital typography’, Visible language
XXXII, no. 2 (1998), p. 100–127.

Kindel, Eric. ‘A Reconstruction of Stencilling Based on the Description by
Gilles Filleaudes Billettes’. In Typography Papers 9. Hyphen Press, 2014, p.
28–65.

Kindersley, David. ‘Optical letter spacing’, The Penrose annual, Volume 62
(1969), p. 167–176.

———.‘Eye spacing: are letters black or white?’, ATypI summary report of the
second working seminar on the teaching of letterforms. Department of
Typography & Graphic Communication, University of Reading, 1976, p.
16–20.

Kindersley, David, and Lida Lopes Cardozo. Letters Slate Cut. Cambridge:
Cardozo Kindersley, 1990.

Kindersley, David and Neil Wiseman. ‘Computer-aided letter design’,
Printing World 202, no. 44 (31 October 1979): 13–17.

Kosch, Sebastian. ‘Fitting letters with nonnegative matrix factorization’, 28
November 2015. https://aldusleaf.org/fitting-letters-with-nonnegative-
matrix-factorization/

Leonidas, Gerry. ‘A few things about typeface design’. Letter Exchange Forum
18, September 2009.

———. Interview. Video, 24 May, 2023.
Levien, Raph et al. ‘The Bouma of Space Craft’. Typophile, 7 April, 2005.

http://www.typophile.com/node/10191
Lucas, Alex John. ‘The Fundamentals of Spacing a Typeface a Typeface’.

Alex John Lucas a Typeface Designer. 14 April, 2019. https://
alexjohnlucas.com/type/spacing-a-typeface

Lücke, Karsten, URW++, and Dutch Type Library. DTL OTMaster Manual.
Hamburg: ’s-Hertogenbosch, 2016.

Macrakis, Michael S, and Greek Font Society, eds. Greek Letters: From Tablets
to Pixels. New Castle, Del: Oak Knoll Press, 1996.

Macromedia. ‘Using Fontographer 4.1: Metrics — Spacing and Kerning’. In
Using Fontographer, 4th ed., 143–52. San Francisco, CA, 1996.

Marini, Igino. iKern, 2008. http://ikern.com
⸻. The iKern theory, 8 January 2011. http://ikern.com/k1/ikern/the-

ikern-theory/
⸻. Introduction to iKern, 7 February 2016. http://ikern.com/k1/wp-

content/uploads/iKern_Intro_2016_02_07.pdf
Marini, Igino, Jérémie Hornus, Nathan Willis, Tim Ahrens, and Toshi

Omagari. ‘Automated Kerning and Spacing: Present and Future’.
Presented at ATypI Tech Talks, 29 October 2022.

194

McQueen, Clyde D, and R G Beausoleil. ‘Infinifont: A Parametric Font
Generation System’. Electronic Publishing 6, no. 3 (September 1993): 117–
32.

Mills, Ross, and John Hudson. Mathematical typesetting. Canada: Microsoft
Corporation, 2007.

Mitchell, Terena Frederick. Writing Arabic: A Practical Introduction to Ruq’ah
Script. London; New York: Oxford University Press, 1970.

Mulvey, Frank. Graphic Perception of Space. New York; London: Reinhold Book
Corp. ; Studio Vista, 1969.

Nemeth, Titus. ‘On Arabic Justification, Part 1 – a Brief History’. TypoArabic,
15 November, 2019. https://research.reading.ac.uk/typoarabic/on-
arabic-justification-part-1/.

———. ‘On Arabic Justification, Part 2 – Software Implementations’.
TypoArabic, 18 December, 2019. https://research.reading.ac.uk/
typoarabic/on-arabic-justification-part-2-software-implementations/.

———. ‘On Arabic Justification, Part 3 – Historical Models’. TypoArabic, 11
March, 2020. https://research.reading.ac.uk/typoarabic/on-arabic-
justification-part-3-historical-models/.

Nemeth, Titus, ed. Arabic Typography: History and Practice. 1st edition.
Salenstein: Niggli, 2023.

Nicholson, Ward. ‘URW’s Kernus; auto kern-pair generators; sector
kerning’, Comp.fonts. 1 January 1996. https://groups.google.com/d/msg/
comp.fonts/6AWQ1JEGzRE/4VzJ7G_-_HUJ

Omagari, Toshi. BubbleKern manual, 5 September 2015. https://github.com/
Tosche/BubbleKern/blob/master/BubbleKern%20Manual.pdf

⸻. ‘BubbleKern’, Tosche. Initial commit 1 September 2015. https://
github.com/Tosche/BubbleKern/

Peters, Yves. ‘Adventures in Space: Kerning’. FontShop, 23 February, 2016.
https://www.fontshop.com/content/adventures-in-space-kerning.

———. ‘Adventures in Space: Spacing’. FontShop, 4 February, 2016. https://
www.fontshop.com/content/adventures-in-space_spacing.

———. ‘Adventures in Space: Special Cases’. FontShop, 6 April, 2016. https://
www.fontshop.com/content/adventures-in-space-special-cases.

———. ‘Adventures in Space: Tracking’. FontShop, 25 April, 2016. https://
www.fontshop.com/content/adventures-in-space_tracking.

———. ‘Adventures in Spacing: Spaces’. FontShop, 14 June, 2016. https://
www.fontshop.com/content/adventures-in-space_spaces.

Phillips, Arthur. ‘Guide to Mathematical Composition: Spacing’. The
Monotype Recorder 40, no. 4 (Winter 1956): 12–15.

Phinney, Thomas. About Adobe’s optical kerning, 2010. http://
blog.extensis.com/adobe/about-adobe%E2%80%99s-optical-
kerning.php

Phinney, Thomas. ‘On Kerning (and Spacing) Fonts’. Phinney on Fonts, 14
January, 2014. https://www.thomasphinney.com/2014/01/kerning-and-
spacing-fonts/.

195

Quin, Liam et al. ‘Re: f-ligature frustrations’, Comp.fonts. 14 May 1996.
Accessed via https://groups.google.com/d/msg/comp.fonts/
GGPtw0gROY0/jSkHZljDPvMJ

Re, Margaret, et al., Typographically speaking: the art of Matthew Carter.
Baltimore, Maryland: Princeton Architectural Press, 2003.

Salkic, Zlatan. ‘DecoType’s Advanced Composition Engine’. Medium (blog),
22 February, 2023. https://zlatansalkic.medium.com/decotypes-
advanced-composition-engine-dc22a9cbd912

Samara, Timothy. Letterforms: Type Design from Past to Future. Beverly, MA:
Rockport, 2018.

Scheichelbauer, Rainer Erich. Interview. Video, 10 August, 2023.
Schenk, Walter. Die Schriften des Malers. Gießen: Fachbuchverlag Dr

Pfannenberg & Co, 1958.
Shahn, Ben. Love and Joy about Letters. London: Cory, Adams & Mackay, 1964.
Shaw, Paul. ‘The Tricky Art of Letter-Spacing’. Salon, 14 November, 2011.

https://www.salon.com/2011/11/14/letter_spacing_imprint/
Shaw, Paul, ed. The Eternal Letter: Two Millennia of the Classical Roman Capital.

Cambridge, Massachusetts: The MIT Press, 2015. p.40–47.
Skala, Matthew. Electric kerning, 9 December 2010. http://ansuz.sooke.bc.ca/

entry/133
⸻. Tsukurimashou project, last updated 11 December 2015. http://

tsukurimashou.osdn.jp/
⸻. Tsukurimashou user’s manual, version 0.9, 17 August 2014. http://

tsukurimashou.osdn.jp/tsukurimashou.pdf
Slinn, Judy, Sebastian Carter, Richard Southall, Andrew Boag, and

Monotype Corporation, eds. History of the Monotype Corporation. London:
Printing Historical Society [u.a.], 2014, p. 308–315.

Sousa, Miguel. ‘Spacing method’, Typophile. 22 October 2005. http://
www.typophile.com/node/15794

Thiemich, Thomas. ‘Die Andere Seite Der Schrift’. Unpublished research
paper, Hochschule für Grafik und Buchkunst, 2018.

Thompson, Tommy. How to Render Roman Letter Forms: A Pattern to
Understanding and Drawing Roman Letters and Other Styles of Lettering and
Type Faces Related to Them. New York: American Studio Books, 1946.

TypeNetwork. ‘Spacing Primer | Variable Fonts’. Accessed 14 August, 2019.
https://variablefonts.typenetwork.com/topics/spacing/

Vane, Olivia. “Timeline Design for Visualising Cultural Heritage Data.”
Thesis, Royal College of Art, 2019.

Wardle, Tiffany. ‘Experimental typefaces of William Addison Dwiggins:
Falcon, Charter, Arcadia, and Stuyvesant’. MATD dissertation, University
of Reading, 2000.

Weber, Hendrik. Italic: What Gives Typography Its Emphasis. Translated by Dan
Reynolds. 1st English edition. Salenstein: Niggli, 2021.

196

Wichary, Marcin. ‘Space Yourself ’. Smashing Magazine, 21 October, 2015.
https://www.smashingmagazine.com/2015/10/space-yourself/

Wilme, B.P. A hand-book for mapping, engineering, and architectural drawing.
London: John Weale, 1846.

Willis, Nathan. ‘Conceptual approaches to automated letter fitting’. MATD
dissertation, University of Reading, 2017.

Willis, Nathan. ‘Four Takes on the Problem of Spacing Automation’.
Presented at TypeCon 2019, 1 September 2019.

Willis, Nathan. ‘Thinking About Talking About Spacing’. Herb Lubalin Lecture
Series, Cooper Union, 20 September 2020.

Zapf, Hermann. Hermann Zapf and His Design Philosophy. Chicago: Society of
Typographic Arts, 1987.

Zhukov, Maxim. ‘The Peculiarities of Cyrillic Letterforms’. Typography
Papers, no. 1 (March 1996).

197

Appendix A: mathematical and statistical
notes

i. Calculation of moments in LOGOS
As discussed in chapter 4, the LOGOS software determined the centrepoint
of a letterform by:

1. Splitting the letterform into two halves
2. Finding the centroid of each half
3. Calculating the fourth polar moment of each half, with respect to
 the centroid of that half
4. Comparing the two moments
5. Repeating the above steps 1–4, splitting the letterform in a
 different spot
6. Stopping the process when the two moments compared are equal

The generic formula for the fourth polar moment, converted to x and y by
the Pythagorean theorem (see figure A–1), is:

which can be expanded to

Crucially, each of these three integrals is a planar moment:

allowing the fourth polar moment to be expressed more compactly in
those terms:

A duplication of figure 4.3. The
polar moments of area are
integrals over the entire form,
based on the distance r measured
from the centroid of the form, S.
In the fourth polar moment, the
quantity integrated is r4. The
centroid of the form must be
found first, adding computational
complexity (illustration by the
author).

Figure A.1

x

yr
dA

S

198

m

Practically speaking, this is a useful result because the FontTools Python
library provides a MomentsPen module designed for calculating various
moments, directly on the Bézier curves of the glyphs in a TrueType or
OpenType digital font. With modification, the MomentsPen module was
used to calculate fourth polar moments for the composite algorithm
developed in chapter 4. The modifications used are listed in appendix B.

ii. Computation of canonical rectangles in LOGOS
Naturally, the fact that the approach above is workable for the fourth polar
moments required by LOGOS suggests that the other components in the
original LOGOS method should also be explored. Specifically, the canonical-
rectangle component of the original LOGOS also utilized fourth polar
moments.

As a reminder, the canonical rectangle component determined a new
width for each letterform in a typeface by calculating the fourth polar
moments of a set of rectangular shapes, then matching each letterform to a
rectangle that produced the same calculated result.

The rectangles used in this technique were bespoke for each typeface:
they had the same height as the letterforms, and had vertical and
horizontal strokes the same thickness as the vertical and horizontal strokes
of the letterforms. The simpler construction of the rectangles makes the
moments computations far more straightforward than for the arbitrarily
complicated Bézier curves of a letterform: each is a rectangle of height h
and width w, with a smaller rectangle of height h' and width w' removed
from its centre. (See figure A.2) The moment for the canonical rectangle is
thus the moment of the outer rectangle minus the moment of the inner
rectangle.

Recall from the previous section that the fourth polar moment is found
with the formula:

For the outer and inner rectangles, these integrals can be found by
plugging in h, w, h', and w'. For the outer rectangle:

w

w'

h'h

A hypothetical canonical
rectangle in the LOGOS method.
The thicknesses of the vertical
and horizontal sides of the
rectangle must be chosen to
match the vertical and horizontal
stroke thicknesses of the
letterform. The goal of the
technique is to find a width w
such that the rectangle's moment
matches that of the letterform
(illustration by the author).

Figure A.2

199

The integral for Iyyyy is similar to that of Ixxxx, but with w and h trading
places:

The integral for Ixxyy is more involved, but also solvable as an equation:

As a result, calculating the value of the expression for the outer rectangle
requires only plugging in w and h:

The inner rectangle works the same way for w' and h', and the moment for
the entire canonical rectangle is found by subtracting them:

200

The difficulty of the method arises from the need to solve this equation
for the canonical width, w. Most of the other variables, including M, h, h',
and w' are known from the letterform. The height of the canonical
rectangle h is the height of the letterform. The thicknessess of the vertical
and horizontal strokes in the letterform are both known, and those give h'
and give the difference between w and w':

and the value of M is meant to be the same as that of the moment
calculated separately for the letterform. The final equation is algebraic, but
of the fifth order in the variable of interest, w:

Thus, it cannot be solved for w, even with the other values inserted.
If one could compute w directly during the fitting process, then the

width for each letterform could be calculated in a single function call. The
fact that the equation does not permit this explains why the original LOGOS
method chose, instead, to pre-compute moments for a range of different
widths and find a match by using a table look-up.

iii. Linear regression model for standard inter-letter-area default
values in composite algorithm

As discussed in chapter 4, § 4.4.2, a linear regression analysis was
conducted on a sample of the top 100 most-used Latin text fonts from the
Google Fonts library, with the goal of establishing a neutral default setting
for the standard inter-letter-area parameter for the composite fitting
algorithm. The intent of the analysis was to determine a default value for
the ratio between the internal counter area of the key letter n and the
standard inter-letter area, derived from each font's measurements.

For the analysis, six measurements were made on each font in the
sample:

• counter: the width of internal counter of n
• stroke: the width of the vertical stroke of i
• contrast: the ratio of the thinnest and thickest strokes of o
• xh: the x-height
• serif: the length of the serif of n
• bearing: the left sidebearing of n + the right sidebearing of n

201

Each of the above raw measurements was divided by the UPEM value of the
font, in order to normalize the data across the sample set. The choice of
measurements was based on the measurement techniques used in the
PANOSE system (Bauermeister 1988) and in Karow's Schriftstatistick project
(Karow 1993). Illustrations of these measurements are shown in figure A.3.
Some of the specifics (such as measuring the stroke-width on i rather than
on n) were chosen in order to automate the process for batch
measurement of the set.

An ordinary least squares multiple regression analysis was then
performed using the statsmodels Python library (Perktold et al., 2023),
with bearing as the dependent variable. The output of that analysis is
reproduced below.

 OLS Regression Results
==

Dep. Variable: bearing R-squared: 0.709

Model: OLS Adj. R-squared: 0.708

Method: Least Squares F-statistic: 480.9

Date: Wed, 03 May 2023 Prob (F-statistic): 2.37e-261

Time: 08:59:21 Log-Likelihood: 2197.1

No. Observations: 991 AIC: -4382.

Df Residuals: 985 BIC: -4353.

Df Model: 5

Covariance Type: nonrobust

==

 coef std err t P>|t| [0.025 0.975]

--

const 0.0293 0.011 2.642 0.008 0.008 0.051

counter 0.3292 0.018 18.175 0.000 0.294 0.365

stroke -0.1130 0.026 -4.300 0.000 -0.165 -0.061

contrast -0.0006 8.29e-05 -7.069 0.000 -0.001 -0.000

xh 0.1119 0.020 5.706 0.000 0.073 0.150

serif -1.0223 0.032 -31.510 0.000 -1.086 -0.959

==

Omnibus: 106.804 Durbin-Watson: 0.876

Prob(Omnibus): 0.000 Jarque-Bera (JB): 466.693

Skew: -0.406 Prob(JB): 4.56e-102

Kurtosis: 6.262 Cond. No. 420.

==

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly

specified.

n
o
i

counter

serif

o-wide

o-narr

stroke

contrast = o-narr / o-wide

xh

n-lsb n-rsb

bearing = n-lsb + n-rsb

Measurements made on glyphs
from the top 100 most-used Latin
text fonts in the Google Fonts
library (illustration by the
author).

Figure A.3

203

Imports
from fontTools.pens.statisticsPen import StatisticsPen
from fontTools.misc.symfont import x, y, printGreenPen
from fontTools.pens.basePen import BasePen
from fontTools.pens.momentsPen import MomentsPen

This function auto-generates an extension of the built-in MomentsPen,
using the symfont symbolic algebra to build numerical approximations
of the integrals via Green's Theorem. It *must* be run and the resulting
NewMomentsPen class definition *must* declared before the
statisticsPen can be defined in the next stage.
#
The auto-generated NewMomentsPen is extremely long, consisting of
polynomial expansions for the numerical approximations for different
Bezier curve types. This is as expected.
Note that the function-naming convention differs from the default
MomentsPen.
printGreenPen('NewMomentsPen', [
 ('area', 1),
 ('Planar1stMomentWrtX', y),
 ('Planar1stMomentWrtY', x),
 ('Planar2ndMomentWrtX', y**2),
 ('Planar2ndMomentWrtY', x**2),
 ('Planar3rdMomentWrtX', y**3),
 ('Planar3rdMomentWrtY', x**3),
 ('Planar4thMomentWrtX', y**4),
 ('Planar4thMomentWrtY', x**4),
 ('ProductMomentXY', x*y),
 ('ProductMomentXXY', x*x*y),
 ('ProductMomentXYY', x*y*y),
 ('ProductMomentXXYY', x*x*y*y),
])

This class creates a NewStatisticsPen that can return the polar moments
of TTGlyphs as required by the LOGOS reimplementation
class NewStatisticsPen(NewMomentsPen):

"""Pen calculating area, center of mass, variance and
standard-deviation, covariance and correlation, 0th to 4th
planar moments, four product moments, 2nd and 4th polar
moments, and slant, of glyph shapes.
Note that all the calculated values are 'signed'. Ie. if the
glyph shape is self-intersecting, the values are not correct
(but well-defined). As such, area will be negative if contour
directions are clockwise. Moreover, variance might be negative
if the shapes are self-intersecting in certain ways."""

def __init__(self, glyphset=None):
NewMomentsPen.__init__(self, glyphset=glyphset)
self.__zero()

Appendix B: software source code

i. Moments for LOGOS reimplmentation

This code extends the FontTools MomentsPen module to add polar
moments as required by the LOGOS reimplementation.

204

def _closePath(self):
NewMomentsPen._closePath(self)
self.__update()

def __zero(self):
self.meanX = 0
self.meanY = 0
self.varianceX = 0
self.varianceY = 0
self.stddevX = 0
self.stddevY = 0
self.covariance = 0
self.correlation = 0
self.slant = 0
Backward-compatibility properties
Do not rely on these in new code.
self.momentX = 0
self.momentY = 0
self.momentXX = 0
self.momentYY = 0
self.momentXY = 0
Polar 2nd and 4th moments
self.Polar2ndMoment = 0
self.Polar4thMoment = 0

def __update(self):

area = self.area
if not area:

self.__zero()
return

Center of mass
https://en.wikipedia.org/wiki/Center_of_mass#A_continuous_volume
self.meanX = meanX = self.Planar1stMomentWrtY / area
self.meanY = meanY = self.Planar1stMomentWrtX / area

Var(X) = E[X^2] - E[X]^2
self.varianceX = varianceX = self.Planar2ndMomentWrtY / area - meanX**2
self.varianceY = varianceY = self.Planar2ndMomentWrtX / area - meanY**2

self.stddevX = stddevX = math.copysign(abs(varianceX)**.5, varianceX)
self.stddevY = stddevY = math.copysign(abs(varianceY)**.5, varianceY)

Covariance(X,Y) = (E[X.Y] - E[X]E[Y])
self.covariance = covariance = self.ProductMomentXY / area - meanX*meanY

Correlation(X,Y) = Covariance(X,Y) / (stddev(X) * stddev(Y))
https://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient
correlation = covariance / (stddevX * stddevY)
self.correlation = correlation if abs(correlation) > 1e-3 else 0

slant = covariance / varianceY
self.slant = slant if abs(slant) > 1e-3 else 0

Backward-compatibility properties
Do not rely on these in new code.
self.momentX = self.Planar1stMomentWrtY
self.momentY = self.Planar1stMomentWrtX
self.momentXX = self.Planar2ndMomentWrtY

205

self.momentYY = self.Planar2ndMomentWrtX
self.momentXY = self.ProductMomentXY

Polar 2nd and 4th moments
#
(Polar 1st and 3rd moments don't have polynomial solutions easily
plugged into GreenPen form at present.)
self.Polar2ndMoment = self.Planar1stMomentWrtX + self.Planar1stMomentWrtY
self.Polar4thMoment = self.Planar4thMomentWrtX + self.Planar4thMomentWrtY + \
2*self.ProductMomentXXYY

##
#
Originally implemented as a module named logosTools.py
#
##

Imports
from fontTools.ttLib import TTFont, TTCollection, removeOverlaps
import math
import os
import brotli
from beziers.line import Line
from beziers.point import Point
from beziers.path import BezierPath
from beziers.boundingbox import BoundingBox
import matplotlib.pyplot as plt
from fontTools.pens.boundsPen import BoundsPen
from fontTools.pens.statisticsPen import StatisticsPen
from fontTools.pens.transformPen import TransformPen
from fontTools.pens.ttGlyphPen import TTGlyphPen
from fontTools.pens.areaPen import AreaPen
from fontTools.pens.recordingPen import RecordingPen, DecomposingRecordingPen
from fontTools.misc.transform import Offset, Scale
import pathops

Utility functions
def clip_glyph(glyphName, font, xMin, yMin, xMax, yMax):

ii. LOGOS centrepoint reimplementation

This code implements a basic LOGOS centrepoint-finding technique. It
requires the use of the NewMomentsPen and NewStatisticsPen classes
from the previous section.

206

 """Clip the given glyph at the X and Y bounds provided and
 return the resulting tGlyph object.
 """
 gpath = removeOverlaps.skPathFromGlyph(glyphName, font.getGlyphSet())
 #gpath = pathFromGlyph(glyph)
 # make a Path from the box coordinates
 box = pathops.Path()
 box.moveTo(xMin, yMin)
 box.lineTo(xMax, yMin)
 box.lineTo(xMax, yMax)
 box.lineTo(xMin, yMax)
 box.close()
 # intersect the Paths
 clipped = pathops.op(gpath, box, pathops.PathOp.INTERSECTION)
 return removeOverlaps.ttfGlyphFromSkPath(clipped)

def bsearch_mid_h(glyphName, font, metric):
 """High-level binary search wrapper, left-right."""

 #bpen = BoundsPen(glyphSet)
 #glyphSet[glyphName].draw(bpen)
 #xMin, yMin, xMax, yMax = bpen.bounds # values have been offset; unneeded

 glyph = BezierPath.fromFonttoolsGlyph(font, glyphName)
 bbox = glyph[0].bounds()
 for b in glyph:
 bbox.extend(b.bounds())
 xMin, yMin, xMax, yMax = bbox.left, bbox.bottom, bbox.right, bbox.top

 # debug
 #print(xMin, yMin, xMax, yMax)

 start = xMin
 end = xMax

 mid = (start + end) / 2

 # debug
 #print("start: ", start, "mid: ", mid, "end: ", end)

 while (start <= end):

 left = metric(glyphName, font, xMin, yMin, mid, yMax)
 right = metric(glyphName, font, mid, yMin, xMax, yMax)
 #debug
 #print(left, right)

 if math.isclose(left, right):
 # debug
 #print("left/right converge - start: ", start, "mid: ", mid, "end: ", end)
 return mid

 if (start == mid) or (mid == end):
 # debug
 #print("middle converge - start: ", start, "mid: ", mid, "end: ", end)
 return mid

 if left < right: # if metric(left) is smaller than metric(right), true midpoint is further
right
 start = mid
 mid = (end + mid) / 2

207

 # debug
 #print("start: ", start, "mid: ", mid, "end: ", end)
 else: # if metric(right) is smaller than metric(left), true midpoint is further left
 end = mid
 mid = (start + mid) / 2
 # debug
 #print("start: ", start, "mid: ", mid, "end: ", end)

 return -1

def bsearch_mid_v(glyphName, font, metric):
 """High-level binary search wrapper, top-bottom."""

 glyph = BezierPath.fromFonttoolsGlyph(font, glyphName)
 bbox = glyph[0].bounds()
 for b in glyph:
 bbox.extend(b.bounds())
 xMin, yMin, xMax, yMax = bbox.left, bbox.bottom, bbox.right, bbox.top

 # debug
 #print(xMin, yMin, xMax, yMax)

 start = yMin
 end = yMax

 mid = (start + end) / 2

 # debug
 #print("start: ", start, "mid: ", mid, "end: ", end)

 while (start <= end):

 bottom = metric(glyphName, font, xMin, yMin, xMax, mid)
 top = metric(glyphName, font, xMin, mid, xMax, yMax)
 #debug
 #print(bottom, top)

 if math.isclose(bottom, top):
 # debug
 #print("top/bottom converge - start: ", start, "mid: ", mid, "end: ", end)
 return mid

 if (start == mid) or (mid == end):
 # debug
 #print("middle converge - start: ", start, "mid: ", mid, "end: ", end)
 return mid

 if bottom < top: # if metric(bottom) is smaller than metric(top), true midpoint is further
top
 start = mid
 mid = (end + mid) / 2
 # debug
 #print("start: ", start, "mid: ", mid, "end: ", end)
 else: # if metric(top) is smaller than metric(bottom), true midpoint is further bottom
 end = mid
 mid = (start + mid) / 2
 # debug
 #print("start: ", start, "mid: ", mid, "end: ", end)

 return -1

208

def plot_metric_x(glyphName, font, metricval, metriclabel, plt, color=None):
 """Add a result to the matplotlib plot plt"""
 #bp = BoundsPen(font.getGlyphSet())
 #glyphSet[glyphName].draw(bp)
 #xMin, yMin, xMax, yMax = bp.bounds
 glyph = BezierPath.fromFonttoolsGlyph(font, glyphName)
 bbox = glyph[0].bounds()
 for b in glyph:
 bbox.extend(b.bounds())
 xMin, yMin, xMax, yMax = bbox.left, bbox.bottom, bbox.right, bbox.top

 point1 = [metricval, yMin - 10]
 point2 = [metricval, yMax + 10]
 x_values = [point1[0], point2[0]]
 y_values = [point1[1], point2[1]]

 if color:
 plt.plot(x_values, y_values,label=metriclabel, color=color)
 else:
 plt.plot(x_values, y_values,label=metriclabel)
 plt.legend()

 return 0

def plot_metric_y(glyphName, font, metricval, metriclabel, plt, color=None):
 """Add a result to the matplotlib plot plt"""
 #bp = BoundsPen(glyphSet)
 #glyphSet[glyphName].draw(bp)
 #xMin, yMin, xMax, yMax = bp.bounds
 glyph = BezierPath.fromFonttoolsGlyph(font, glyphName)
 bbox = glyph[0].bounds()
 for b in glyph:
 bbox.extend(b.bounds())
 xMin, yMin, xMax, yMax = bbox.left, bbox.bottom, bbox.right, bbox.top

 point1 = [xMin - 10, metricval]
 point2 = [xMax + 10, metricval]
 x_values = [point1[0], point2[0]]
 y_values = [point1[1], point2[1]]

 if color:
 plt.plot(x_values, y_values,label=metriclabel, color=color)
 else:
 plt.plot(x_values, y_values,label=metriclabel)

 plt.legend()

 return 0

def plot_metric_pt(glyphName, font, metricval_x, metricval_y, metriclabel, plt, color=None):
 """Add an (x,y) point result to the matplotlib plot plt"""
 if color:
 plt.plot(metricval_x, metricval_y, marker="o", markersize=5, label=metriclabel,
markerfacecolor=color, markeredgecolor=color)
 else:
 plt.plot(metricval_x, metricval_y, marker="o", markersize=5, label=metriclabel)

209

 plt.legend()

 return 0

def area_metric(glyphName, font, xMin, yMin, xMax, yMax):
 """"Simple metric function to compute the area of the glyph when
 clipped by the given bounds.
 """
 spen = NewStatisticsPen(font.getGlyphSet())

 clipped_glyph = clip_glyph(glyphName, font, xMin, yMin, xMax, yMax)

 clipped_glyph.draw(spen, font.getGlyphSet())
 #debug
 #print(apen.value)
 return spen.area

def secondpolar_metric(glyphName, font, xMin, yMin, xMax, yMax):
 """Compute second polar moment of the glyph when clipped by
 the given bounds.
 """

 glyphset = font.getGlyphSet()

 # back up the original glyph
 backuppen = DecomposingRecordingPen(glyphset)
 glyphset[glyphName].draw(backuppen)

 # Clip the active glyph
 clipped_glyph = clip_glyph(glyphName, font, xMin, yMin, xMax, yMax)

 # Insert the clipped glyph into the font
 dcpen = DecomposingRecordingPen(glyphset)
 clipped_glyph.draw(dcpen, font["glyf"])
 path = pathops.Path()
 pathPen = path.getPen()
 dcpen.replay(pathPen)
 ttPen = TTGlyphPen(None)
 path.draw(ttPen)
 font["glyf"][glyphName] = ttPen.glyph()

 # Find the centroid of the clipped glyph
 # x coordinate
 cx = bsearch_mid_h(glyphName, font, area_metric)
 # y coordinate
 cy = bsearch_mid_v(glyphName, font, area_metric)

 # Set up a statistics pen
 spen = NewStatisticsPen(glyphset)

 # Re-center the clipped glyph to the centroid
 # and get its stats
 pen = TransformPen(spen, Offset(x=-cx, y=-cy))
 glyphset[glyphName].draw(pen)

 # Restore the original glyph so it is ready for the next iteration
 backuppath = pathops.Path()
 backuppathPen = backuppath.getPen()

210

 backuppen.replay(backuppathPen)
 backupttPen = TTGlyphPen(None)
 backuppath.draw(backupttPen)
 font["glyf"][glyphName] = backupttPen.glyph()

 return spen.Polar2ndMoment

def fourthpolar_metric(glyphName, font, xMin, yMin, xMax, yMax):
 """Compute fourth polar moment of the glyph when clipped by
 the given bounds.
 """

 glyphset = font.getGlyphSet()

 # back up the original glyph
 backuppen = DecomposingRecordingPen(glyphset)
 glyphset[glyphName].draw(backuppen)

 # Clip the active glyph
 clipped_glyph = clip_glyph(glyphName, font, xMin, yMin, xMax, yMax)

 # Insert the clipped glyph into the font
 dcpen = DecomposingRecordingPen(glyphset)
 clipped_glyph.draw(dcpen, font["glyf"])
 path = pathops.Path()
 pathPen = path.getPen()
 dcpen.replay(pathPen)
 ttPen = TTGlyphPen(None)
 path.draw(ttPen)
 font["glyf"][glyphName] = ttPen.glyph()

 # Find the centroid of the clipped glyph
 # x coordinate
 cx = bsearch_mid_h(glyphName, font, area_metric)
 # y coordinate
 cy = bsearch_mid_v(glyphName, font, area_metric)

 # Set up a statistics pen
 spen = NewStatisticsPen(glyphset)

 # Re-center the clipped glyph to the centroid
 # and get its stats
 pen = TransformPen(spen, Offset(x=-cx, y=-cy))
 glyphset[glyphName].draw(pen)

 # Restore the original glyph so it is ready for the next iteration
 backuppath = pathops.Path()
 backuppathPen = backuppath.getPen()
 backuppen.replay(backuppathPen)
 backupttPen = TTGlyphPen(None)
 backuppath.draw(backupttPen)
 font["glyf"][glyphName] = backupttPen.glyph()

 return spen.Polar4thMoment

def plot_logos_stats(glyphName, font, plt):
 glyphset = font.getGlyphSet()

211

 xheight = f['OS/2'].sxHeight

 glyph_image = BezierPath.fromFonttoolsGlyph(font, glyphName)
 bbox = glyph_image[0].bounds()
 for b in glyph_image:
 b.plot(ax)
 bbox.extend(b.bounds())

 xMin, yMin, xMax, yMax = bbox.left, bbox.bottom, bbox.right, bbox.top

 # back up the original glyph
 backuppen = DecomposingRecordingPen(glyphset)
 glyphset[glyphName].draw(backuppen)

 # Clip the active glyph
 clipped_glyph = clip_glyph(glyphName, font, xMin, 0, xMax, xheight)

 # Insert the clipped glyph into the font
 dcpen = DecomposingRecordingPen(glyphset)
 clipped_glyph.draw(dcpen, font["glyf"])
 path = pathops.Path()
 pathPen = path.getPen()
 dcpen.replay(pathPen)
 ttPen = TTGlyphPen(None)
 path.draw(ttPen)
 font["glyf"][glyphName] = ttPen.glyph()

 glyph_cropped_image = BezierPath.fromFonttoolsGlyph(font, glyphName)
 for b in glyph_cropped_image:
 b.plot(ax)

 cx = bsearch_mid_h(glyphName, font, area_metric)
 cy = bsearch_mid_v(glyphName, font, area_metric)
 print("Centroid: (", cx, ",", cy, ")")

 plt.plot(cx, cy, marker="$\u22c8$", markersize=10, label="Centroid", markerfacecolor="blue",
markeredgecolor="blue")

 m2x = bsearch_mid_h(glyphName, font, secondpolar_metric)
 m2y = bsearch_mid_v(glyphName, font, secondpolar_metric)

 print("Polar2M: (", m2x, ",", m2y, ")")
 plt.plot(m2x, m2y, marker="$\u25ce$", markersize=10, label="Polar2M", markerfacecolor="orange",
markeredgecolor="orange")

 m4x = bsearch_mid_h(glyphName, font, fourthpolar_metric)
 m4y = bsearch_mid_v(glyphName, font, fourthpolar_metric)

 print("Polar4M: (", m4x, ",", m4y, ")")
 plt.plot(m4x, m4y, marker="$\u27d0$", markersize=10, label="Polar4M", markerfacecolor="red",
markeredgecolor="red")

 # Restore the original glyph so it is ready for the next iteration
 backuppath = pathops.Path()
 backuppathPen = backuppath.getPen()
 backuppen.replay(backuppathPen)
 backupttPen = TTGlyphPen(None)
 backuppath.draw(backupttPen)
 font["glyf"][glyphName] = backupttPen.glyph()

212

 return cx, cy, m2x, m2y, m4x, m4y

def x_logos_stats(glyphName, font):
 glyphset = font.getGlyphSet()
 xheight = font['OS/2'].sxHeight

 glyph_image = BezierPath.fromFonttoolsGlyph(font, glyphName)
 bbox = glyph_image[0].bounds()
 for b in glyph_image:
 #b.plot(ax)
 bbox.extend(b.bounds())

 xMin, yMin, xMax, yMax = bbox.left, bbox.bottom, bbox.right, bbox.top

 # back up the original glyph
 backuppen = DecomposingRecordingPen(glyphset)
 glyphset[glyphName].draw(backuppen)

 # Clip the active glyph
 clipped_glyph = clip_glyph(glyphName, font, xMin, 0, xMax, xheight)

 # Insert the clipped glyph into the font
 dcpen = DecomposingRecordingPen(glyphset)
 clipped_glyph.draw(dcpen, font["glyf"])
 path = pathops.Path()
 pathPen = path.getPen()
 dcpen.replay(pathPen)
 ttPen = TTGlyphPen(None)
 path.draw(ttPen)
 font["glyf"][glyphName] = ttPen.glyph()

 #glyph_cropped_image = BezierPath.fromFonttoolsGlyph(font, glyphName)
 #for b in glyph_cropped_image:
 # b.plot(ax)

 cx = bsearch_mid_h(glyphName, font, area_metric)
 cy = bsearch_mid_v(glyphName, font, area_metric)
 #print("Centroid: (", cx, ",", cy, ")")

 #plt.plot(cx, cy, marker="$\u22c8$", markersize=10, label="Centroid", markerfacecolor="blue",
markeredgecolor="blue")

 m2x = bsearch_mid_h(glyphName, font, secondpolar_metric)
 m2y = bsearch_mid_v(glyphName, font, secondpolar_metric)

 #print("Polar2M: (", m2x, ",", m2y, ")")
 #plt.plot(m2x, m2y, marker="$\u25ce$", markersize=10, label="Polar2M",
markerfacecolor="orange", markeredgecolor="orange")

 m4x = bsearch_mid_h(glyphName, font, fourthpolar_metric)
 m4y = bsearch_mid_v(glyphName, font, fourthpolar_metric)

 #print("Polar4M: (", m4x, ",", m4y, ")")
 #plt.plot(m4x, m4y, marker="$\u27d0$", markersize=10, label="Polar4M", markerfacecolor="red",
markeredgecolor="red")

 # Restore the original glyph so it is ready for the next iteration
 backuppath = pathops.Path()

213

 backuppathPen = backuppath.getPen()
 backuppen.replay(backuppathPen)
 backupttPen = TTGlyphPen(None)
 backuppath.draw(backupttPen)
 font["glyf"][glyphName] = backupttPen.glyph()

 return cx, cy, m2x, m2y, m4x, m4y

def cap_logos_stats(glyphName, font):
 glyphset = font.getGlyphSet()
 capheight = font['OS/2'].sCapHeight

 glyph_image = BezierPath.fromFonttoolsGlyph(font, glyphName)
 bbox = glyph_image[0].bounds()
 for b in glyph_image:
 #b.plot(ax)
 bbox.extend(b.bounds())

 xMin, yMin, xMax, yMax = bbox.left, bbox.bottom, bbox.right, bbox.top

 # back up the original glyph
 backuppen = DecomposingRecordingPen(glyphset)
 glyphset[glyphName].draw(backuppen)

 # Clip the active glyph
 clipped_glyph = clip_glyph(glyphName, font, xMin, 0, xMax, capheight)

 # Insert the clipped glyph into the font
 dcpen = DecomposingRecordingPen(glyphset)
 clipped_glyph.draw(dcpen, font["glyf"])
 path = pathops.Path()
 pathPen = path.getPen()
 dcpen.replay(pathPen)
 ttPen = TTGlyphPen(None)
 path.draw(ttPen)
 font["glyf"][glyphName] = ttPen.glyph()

 #glyph_cropped_image = BezierPath.fromFonttoolsGlyph(font, glyphName)
 #for b in glyph_cropped_image:
 # b.plot(ax)

 cx = bsearch_mid_h(glyphName, font, area_metric)
 cy = bsearch_mid_v(glyphName, font, area_metric)
 #print("Centroid: (", cx, ",", cy, ")")

 #plt.plot(cx, cy, marker="$\u22c8$", markersize=10, label="Centroid", markerfacecolor="blue",
markeredgecolor="blue")

 m2x = bsearch_mid_h(glyphName, font, secondpolar_metric)
 m2y = bsearch_mid_v(glyphName, font, secondpolar_metric)

 #print("Polar2M: (", m2x, ",", m2y, ")")
 #plt.plot(m2x, m2y, marker="$\u25ce$", markersize=10, label="Polar2M",
markerfacecolor="orange", markeredgecolor="orange")

 m4x = bsearch_mid_h(glyphName, font, fourthpolar_metric)
 m4y = bsearch_mid_v(glyphName, font, fourthpolar_metric)

 #print("Polar4M: (", m4x, ",", m4y, ")")

214

 #plt.plot(m4x, m4y, marker="$\u27d0$", markersize=10, label="Polar4M", markerfacecolor="red",
markeredgecolor="red")

 # Restore the original glyph so it is ready for the next iteration
 backuppath = pathops.Path()
 backuppathPen = backuppath.getPen()
 backuppen.replay(backuppathPen)
 backupttPen = TTGlyphPen(None)
 backuppath.draw(backupttPen)
 font["glyf"][glyphName] = backupttPen.glyph()

 return cx, cy, m2x, m2y, m4x, m4y

##
#
Batch-computation of M2 and M4 points at x-height
#
##
import logosTools as lt
import os, argparse, csv
from beziers.path import BezierPath
from beziers.boundingbox import BoundingBox
import matplotlib.pyplot as plt
from fontTools.ttLib import TTFont, TTCollection
from fontTools.misc.cliTools import makeOutputFileName

import glob, sys

Example glyphlist; basic Latin
glyphlist = ["a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q",
"r", "s", "t", "u", "v", "w", "x", "y", "z", "A", "B", "C", "D", "E", "F", "G", "H", "I", "J", "K",
"L", "M", "N", "O", "P", "Q", "R", "S", "T", "U", "V", "W", "X", "Y", "Z", '0', '1', '2', '3', '4',
'5', '6', '7', '8', '9', '@', '(', '[', '!', '{', '?', '#', '$', '%', '&', ')', '}', ']', '\'',
"\"", '.', ',', ':', ';', '*', '^', '+', '-', '=', '_']

#glyphlist = ["”", '.', ',', ':', ';', '*', '^', '+', '-', '=', '_']
#glyphlist = ["’"]
filepath = sys.argv[1]
d, infile = os.path.split(filepath)
fontfile, ext = os.path.splitext(infile)

We'll use fontname as the name rather than extracting it from the binary
outfile = makeOutputFileName(input=fontfile, extension=".csv")

f = TTFont(filepath)

cm = f.getBestCmap()

with open(outfile, 'w', encoding='utf8') as csvfile:
 writer=csv.writer(csvfile)
 writer.writerow(['glyph', 'cx', 'cy', 'm2x', 'm2y', 'm4x', 'm4y'])

 for g in glyphlist:
 stats = []
 stats.append(g)

 cx, cy, m2x, m2y, m4x, m4y = lt.x_logos_stats(cm[ord(g)], f)

 stats.append(cx) # This method of saving results clearly is not efficient, but works

215

 stats.append(cy) #
 stats.append(m2x) #
 stats.append(m2y) #
 stats.append(m4x)
 stats.append(m4y)

 print(stats)
 fig, ax = plt.subplots()
 plt.axis('scaled')

 glyph_image = BezierPath.fromFonttoolsGlyph(f, cm[ord(g)])
 bbox = glyph_image[0].bounds()

 # draw the glyph image
 for b in glyph_image:
 b.plot(ax)
 bbox.extend(b.bounds())

 xMin, yMin, xMax, yMax = bbox.left, bbox.bottom, bbox.right, bbox.top

 # draw the cropping lines
 for y in (0, f['OS/2'].sxHeight):
 point1 = [xMin - 10, y]
 point2 = [xMax + 10, y]
 x_values = [point1[0], point2[0]]
 y_values = [point1[1], point2[1]]
 plt.plot(x_values, y_values, color="gray")

 # draw the metrics
 plt.plot(cx, cy, marker="$\u22c8$", markersize=10, label="Centroid",
markerfacecolor="blue", markeredgecolor="blue")
 plt.plot(m2x, m2y, marker="$\u25ce$", markersize=10, label="Polar2M",
markerfacecolor="orange", markeredgecolor="orange")
 plt.plot(m4x, m4y, marker="$\u27d0$", markersize=10, label="Polar4M",
markerfacecolor="red", markeredgecolor="red")
 plt.legend()
 ax.set_title(fontfile + " \'" + g + "\'")

 svgfilename = fontfile + "_" + cm[ord(g)] + "_x_logos.svg"
 plt.savefig(svgfilename, dpi=300, bbox_inches="tight")

 # write the list as a row to the CSV
 writer.writerow(stats)

##
#
Batch-computation of M2 and M4 points at cap-height
#
##
import logosTools as lt
import os, argparse, csv
from beziers.path import BezierPath
from beziers.boundingbox import BoundingBox
import matplotlib.pyplot as plt
from fontTools.ttLib import TTFont, TTCollection
from fontTools.misc.cliTools import makeOutputFileName

import glob, sys

216

Example glyphlist; would need to be checked against actual heights
glyphlist = ["b", "d", "f", "h", "i", "j", "k", "l", "t", "A", "B", "C", "D", "E", "F", "G", "H",
"I", "J", "K", "L", "M", "N", "O", "P", "Q", "R", "S", "T", "U", "V", "W", "X", "Y", "Z", '0', '1',
'2', '3', '4', '5', '6', '7', '8', '9', '@', '(', '[', '!', '{', '?', '#', '$', '%', '&', ')', '}',
']', '\'', "\"", '*', '^']

#glyphlist = ["”", '.', ',', ':', ';', '*', '^', '+', '-', '=', '_']
#glyphlist = ["’"]
filepath = sys.argv[1]
d, infile = os.path.split(filepath)
fontfile, ext = os.path.splitext(infile)

We'll use fontname as the name rather than extracting it from the binary
outfile = makeOutputFileName(input=fontfile, extension="_caps.csv")

f = TTFont(filepath)

cm = f.getBestCmap()

with open(outfile, 'w', encoding='utf8') as csvfile:
 writer=csv.writer(csvfile)
 writer.writerow(['glyph', 'cx', 'cy', 'm2x', 'm2y', 'm4x', 'm4y'])

 for g in glyphlist:
 stats = []
 stats.append(g)

 cx, cy, m2x, m2y, m4x, m4y = lt.cap_logos_stats(cm[ord(g)], f)

 stats.append(cx) # Still not efficient
 stats.append(cy) #
 stats.append(m2x) #
 stats.append(m2y) #
 stats.append(m4x)
 stats.append(m4y)

 print(stats)
 fig, ax = plt.subplots()
 plt.axis('scaled')

 glyph_image = BezierPath.fromFonttoolsGlyph(f, cm[ord(g)])
 bbox = glyph_image[0].bounds()

 # draw the glyph image
 for b in glyph_image:
 b.plot(ax)
 bbox.extend(b.bounds())

 xMin, yMin, xMax, yMax = bbox.left, bbox.bottom, bbox.right, bbox.top

 # draw the cropping lines
 for y in (0, f['OS/2'].sxHeight):
 point1 = [xMin - 10, y]
 point2 = [xMax + 10, y]
 x_values = [point1[0], point2[0]]
 y_values = [point1[1], point2[1]]
 plt.plot(x_values, y_values, color="gray")

 # draw the metrics

217

 plt.plot(cx, cy, marker="$\u22c8$", markersize=10, label="Centroid",
markerfacecolor="blue", markeredgecolor="blue")
 plt.plot(m2x, m2y, marker="$\u25ce$", markersize=10, label="Polar2M",
markerfacecolor="orange", markeredgecolor="orange")
 plt.plot(m4x, m4y, marker="$\u27d0$", markersize=10, label="Polar4M",
markerfacecolor="red", markeredgecolor="red")
 plt.legend()
 ax.set_title(fontfile + " \'" + g + "\'")

 svgfilename = fontfile + "_" + cm[ord(g)] + "_cap_logos.svg"
 plt.savefig(svgfilename, dpi=300, bbox_inches="tight")

 # write the list as a row to the CSV
 writer.writerow(stats)

219

Appendix C: fonts tested

i. Pilot test

Cantarell Regular, designed by Dave Crossland, the Cantarell Project: 2009.
Version 0.30. https://cantarell.gnome.org/

Fira Sans Extra Condensed, designed by Carrois Apostrophe: 2014. Version
4.203. https://github.com/mozilla/Fira

Alfa Slab One Regular, designed by José M. Solė: 2016. Version 2.00. https://
github.com/google/fonts/tree/main/ofl/alfaslabone

Libre Caslon Text Italic, designed by Pablo Impallari, Impallari Type: 2018.
Version 1.10. https://github.com/thundernixon/Libre-Caslon

Rajdhani Light, Latin designed by Shiva Nalleperumal, Indian Type
Foundry: 2014. Version 1.20. https://github.com/itfoundry/rajdhani

Tenor Sans Regular, designed by Denis Masharov: 2010. Version 1.00.
https://github.com/google/fonts/tree/main/ofl/tenorsans

ii. Public test batteries

Abril Fatface Regular, designed by TypeTogether: 2011. Version 1.001.
https://www.type-together.com/abril-fatface-free

Alegreya Regular, designed by Juan Pablo del Peral, Huerta Tipográfica:
2011. Version 2.003. https://www.huertatipografica.com/en/fonts/
alegreya-ht-pro

Alegreya Italic, designed by Juan Pablo del Peral, Huerta Tipográfica: 2011.
Version 2.003. https://www.huertatipografica.com/en/fonts/alegreya-
ht-pro

Alegreya Sans Italic, designed by Juan Pablo del Peral, Huerta Tipográfica:
2013. Version 2.004. https://www.huertatipografica.com/en/fonts/
alegreya-sans-ht

Amiri Regular, Latin designed by Sebastian Kosch, Amiri Font Project: 2010.
Version 0.113. https://www.amirifont.org/

Amiri Italic, Latin designed by Sebastian Kosch, Amiri Font Project: 2010.
Version 0.113. https://www.amirifont.org/

Andika Regular, designed by SIL International: 2004. Version 5.000. https://
software.sil.org/andika/

Bellefair Regular, designed by Nick Shinn and Liron Lavi Turkenic: 2015.
Version 1.003. https://github.com/shinntype/bellefair

Gentium Plus Regular, designed by Victor Gaultney, SIL International: 2003.
Version 5.000. https://software.sil.org/gentium/

Gentium Plus Italic, designed by Victor Gaultney, SIL International: 2003.
Version 5.000. https://software.sil.org/gentium/

IM Fell Double Pica Regular, designed by Igino Marini: 2010. Version 3.00.
https://iginomarini.com/fell/the-revival-fonts/

220

IM Fell Double Pica Italic, designed by Igino Marini: 2010. Version 3.00.
https://iginomarini.com/fell/the-revival-fonts/

Literata Regular optical size 10, designed by Veronika Burian and José
Scaglione: TypeTogether, 2017. Version 3.002. https://www.type-
together.com/literata-font

Literata Regular optical size 18, designed by Veronika Burian and José
Scaglione: TypeTogether, 2017. Version 3.002. https://www.type-
together.com/literata-font

Neuton Regular, designed by Brian Zick: 2010. Version 1.560. https://
github.com/anoxic/neuton

 Version 1.000W OFL. h t t p s : / /
f o n t s . g o o g l e . c o m / s p e c i m e n / P T + S e r i f

 Version 1.000W OFL. h t t p s : / / f o
n t s . g o o g l e . c o m / s p e c i m e n / P T + S e r i f

Sorts Mill Goudy Regular, designed by Barry Schwartz: 2010. Version
003.101. https://www.theleagueofmoveabletype.com/sorts-mill-goudy

Sorts Mill Goudy Italic, designed by Barry Schwartz: 2010. Version 003.101.
https://www.theleagueofmoveabletype.com/sorts-mill-goudy

Source Sans Pro Light, designed by Paul D. Hunt: Adobe, 2010. Version
2.021. https://fonts.adobe.com/fonts/source-sans

Source Sans Pro SemiBold, designed by Paul D. Hunt: Adobe, 2010. Version
2.021. https://fonts.adobe.com/fonts/source-sans

Tinos Regular, designed by Steve Matteson: Ascender, 2010. Version 1.23.
https://github.com/googlefonts/tinos

Tinos Italic, designed by Steve Matteson, Ascender, 2010. Version 1.23.
https://github.com/googlefonts/tinos

Yrsa Medium, designed by Anna Giedrys, David Brezina, the Yrsa-Rasa
Project: Rosetta Type, 2015. Version 1.001. https://rosettatype.com/
custom-services/Yrsa-and-Rasa-for-Google

Alegreya Sans Regular, designed by Juan Pablo del Peral: Huerta
Tipográfica, 2013. Verison 2.004. https://www.huertatipografica.com/
en/fonts/alegreya-sans-ht

Source Sans Pro Regular, designed by Paul D. Hunt: Adobe, 2010. Version
2.021. https://fonts.adobe.com/fonts/source-sans

Slabo 13px Regular, designed by John Hudson: Tiro Typeworks, 2013.
Version 1.02 Build 005a. https://github.com/TiroTypeworks/Slabo

Literata Regular optical size 14, designed by Veronika Burian and José
Scaglione: TypeTogether, 2017. Version 3.002. https://www.type-
together.com/literata-font

Yrsa Regular, designed by Anna Giedrys, David Brezina, the Yrsa-Rasa
Project: Rosetta Type, 2015. Version 1.001. https://rosettatype.com/
custom-services/Yrsa-and-Rasa-for-Google

Source Serif 4 Regular, designed by Frank Grießhammer: Adobe, 2014.
Version 4.004. https://fonts.adobe.com/fonts/source-serif-4

221

STIX Two Text Regular, designed by Ross Mills, John Hudson, and Paul
Hanslow: Tiro Typeworks, 2021. Version 2.13 b171. https://
www.stixfonts.org/

Slabo 27px Regular, designed by John Hudson: Tiro Typeworks, 2013.
Version 1.02 Build 0003a. https://github.com/TiroTypeworks/Slabo

Fira Sans Condensed, designed by Carrois Apostrophe: 2015. Version 4.203.
https://github.com/mozilla/Fira

Yrsa Bold, designed by Anna Giedrys, David Brezina, the Yrsa-Rasa Project:
Rosetta Type, 2015. Version 1.001. https://rosettatype.com/custom-
services/Yrsa-and-Rasa-for-Google

223

Appendix D: refitting data

i. Samples of fonts tested

The following pages show samples of each font tested in each test
condition. Sample text blocks are pulled from the public-testing set.

Alegreya Sans Regular, control (original fitting)

224

Alegreya Sans Regular, composite algorithm

225

Alegreya Sans Regular, rival kf algorithm

226

Fira Sans Condensed, control (original fitting)

227

Fira Sans Condensed, composite algorithm

228

Fira Sans Condensed, rival kf algorithm

229

Literata Regular opsz 14, control (original fitting)

230

Literata Regular opsz 14, composite algorithm

231

Literata Regular opsz 14, rival kf algorithm

232

Slabo 13px, control (original fitting)

233

Slabo 13px, composite algorithm

234

Slabo 13px, rival kf algorithm

235

Slabo 27px, control (original fitting)

236

Slabo 27px, composite algorithm

237

Slabo 27px, rival kf algorithm

238

Source Sans Pro Regular, control (original fitting)

239

Source Sans Pro Regular, rival kf algorithm

240

Source Serif 4 Regular, control (original fitting)

241

Source Serif 4 Regular, composite algorithm

242

Source Serif 4 Regular, rival kf algorithm

243

STIX Two Text Regular, control (original fitting)

244

STIX Two Text Regular, composite algorithm

245

STIX Two Text Regular, rival kf algorithm

246

Yrsa Regular, control (original fitting)

247

Yrsa Regular, composite algorithm

248

Yrsa Regular, rival kf algorithm

249

Yrsa Bold, control (original fitting)

250

Yrsa Bold, composite algorithm

251

Yrsa Bold, rival kf algorithm

252

ii. Sidebearing values

The following tables provide the left and right sidebearing values for each
of the fonts in the public tests, in each of the test conditions used.

LSB typeform RSB

 kf composite control control composite kf

 3 10 14 A 22 10 11
 3 10 14 Acircumflex 22 10 11
 3 10 14 Agrave 22 10 11
 83 55 93 B 39 12 40
 54 26 38 C 23 10 -176
 83 55 93 D 38 19 48
 84 56 93 E 23 -23 -103
 84 56 93 Eacute 23 -23 -103
 84 56 93 Egrave 23 -23 -103
 84 56 93 F -6 -40 -140
 54 26 38 G 62 -17 -80
 85 57 94 H 94 56 84
 84 56 93 I 93 56 84
-43 -71 6 J 93 53 81
 84 56 94 K 0 10 -72
 84 56 90 L 3 10 -115
 63 35 60 M 61 37 65
 85 57 94 N 93 55 83
 54 26 38 O 37 23 51
 54 26 38 Ocircumflex 37 23 51
 54 26 38 Odieresis 37 23 51
 84 56 93 P 35 10 -87
 54 26 38 Q -94 -112 -84
 83 55 93 R 35 10 12
-33 14 42 S 43 9 -2
-100 -128 22 T 21 -126 -98
 68 39 74 U 74 36 64
 68 39 74 Udieresis 74 36 64
-51 -71 15 V 7 -57 -63
-44 -48 21 W 8 -55 -60
-40 10 29 X 28 10 -40
-86 -80 15 Y 14 -89 -103
-34 -6 31 Z 36 -15 -88
 12 14 42 a 30 -3 25
 12 14 42 acircumflex 30 -3 25
 12 14 42 adieresis 30 -3 25
 12 14 42 agrave 30 -3 25
 83 55 84 b 43 26 54
 53 25 42 c 17 16 -52
 53 25 42 ccedilla 17 16 -52
 52 23 42 d 21 -3 25
 52 23 42 e 44 15 0
 52 23 42 eacute 44 15 0
 52 23 42 ecircumflex 44 15 0
 52 23 42 egrave 44 15 0
 23 10 36 f -47 -35 -67
 50 22 55 g 2 -4 -37
 83 55 84 h 72 50 78
 78 50 75 i 76 51 79
 78 50 81 dotlessi 83 51 79
 78 50 -13 icircumflex -12 51 79
 23 50 23 idieresis 24 51 79
-1 -29 5 j 83 55 83
 83 55 84 k 8 10 -9
 83 55 84 l 83 55 83
 84 56 80 m 72 50 78
 84 56 80 n 72 50 78
 54 26 42 o 44 26 54
 54 26 42 ocircumflex 44 26 54
 54 26 42 odieresis 44 26 54
 26 26 37 oe 37 15 15
 83 54 80 p 43 26 54
 52 24 42 q 80 55 83
 84 56 80 r 7 10 -36
 19 19 32 s 42 23 22
-5 -5 36 germandbls 9 23 22
 24 -4 25 t 13 12 -12
 78 50 72 u 20 -1 27
 78 50 72 ucircumflex 20 -1 27
 78 50 72 udieresis 20 -1 27
 78 50 72 ugrave 20 -1 27
 17 10 20 v 8 10 4
 24 10 20 w 8 10 13
 15 10 23 x 18 10 10
-23 -16 -17 y 11 10 4
-4 16 33 z 33 13 -5

Alegreya Sans Regular

253

 LSB typeform RSB

 kf composite control control composite kf

 4 9 7 A 7 9 4
 4 9 7 Acircumflex 7 9 4
 4 9 7 Agrave 7 9 4
 80 52 85 B 38 9 37
 50 22 50 C 15 9 0
 80 52 85 D 50 17 45
 80 52 85 E 39 9 0
 80 52 85 Eacute 39 9 0
 80 52 85 Egrave 39 9 0
 80 52 85 F 19 -42 -41
 51 24 50 G 55 8 -12
 80 52 85 H 85 52 80
 80 52 85 I 84 52 80
-17 -45 2 J 80 52 79
 80 52 85 K -3 9 -64
 80 52 85 L 14 9 0
 60 32 55 M 55 32 60
 80 52 85 N 85 52 80
 51 23 50 O 50 23 51
 51 23 50 Ocircumflex 50 23 51
 80 52 50 Odieresis 50 9 0
 50 22 85 P 28 -4 20
 80 52 50 Q 20 -21 6
-67 -3 85 R 19 -2 -16
-94 -122 22 S 38 -128 -100
 68 40 11 T 5 40 68
 68 40 75 U 74 40 68
-38 40 75 Udieresis 74 40 -37
 5 -35 7 V 8 -35 5
 0 -23 23 W 23 -23 0
-74 9 4 X 4 9 -74
-32 -66 4 Y 4 -66 -68
-5 -10 25 Z 35 -3 42
-5 4 40 a 44 14 42
-5 4 40 acircumflex 44 14 42
-5 4 40 adieresis 44 14 42
 80 4 40 agrave 44 14 53
 47 52 81 b 51 26 0
 47 20 49 c 18 9 0
 51 20 49 ccedilla 18 9 80
 49 24 51 d 81 52 -1
 49 21 49 e 44 5 -1
 49 21 49 eacute 44 5 -1
 49 21 49 ecircumflex 44 5 -1
 13 21 49 egrave 44 5 -64
 18 -15 13 f -56 -55 -28
 80 -10 20 g 3 1 75
 66 38 81 h 77 38 66
 66 38 67 i 67 38 66
 66 38 81 dotlessi 81 38 66
 66 38 -23 icircumflex -23 38 66
-13 38 -21 idieresis -19 38 66
 80 -41 -12 j 67 38 -21
 78 52 81 k 1 -2 10
 80 50 76 l 17 -18 75
 80 52 81 m 77 48 75
 48 52 81 n 77 47 48
 48 20 49 o 49 20 48
 48 20 49 ocircumflex 49 20 48
 49 20 49 odieresis 49 20 44
 48 49 49 oe 44 44 -1
 80 20 81 p 51 5 54
 51 52 51 q 81 26 80
 80 51 81 r 7 81 0
-14 52 23 s 34 9 3
 81 0 81 germandbls 32 10 32
 13 81 11 t -3 32 3
 11 -15 77 u 81 10 -36
 75 -17 77 ucircumflex 81 -14 80
 75 48 77 udieresis 81 52 80
 75 48 77 ugrave 81 52 80
 75 48 9 v 9 52 80
 0 48 19 w 19 52 2
 25 9 4 x 4 9 26
 0 9 9 y 8 9 0
 3 9 20 z 26 9 2

Fira Sans Condensed

254

 LSB typeform RSB

 kf composite control control composite kf

-45 8 15 A 15 8 -38
 13 10 62 B 43 32 34
 50 48 50 C 54 8 -183
 13 10 62 D 50 35 37
 13 10 62 E 53 33 -4
 13 10 62 F 43 -43 -90
 52 50 50 G 33 -22 -63
 13 10 62 H 62 11 14
 9 7 62 I 62 7 9
-93 8 40 J 35 -17 -15
 9 7 62 K 18 8 -131
 13 10 62 L 60 8 -93
 4 2 66 M 59 -3 -1
 14 11 62 N 62 1 4
 52 50 50 O 50 46 48
 13 10 62 P 25 -99 -96
 53 51 50 Q -117 -115 -113
 13 10 62 R 26 8 -59
 3 48 56 S 58 30 6
-158 -44 42 T 42 -44 -157
-16 -18 49 U 46 -19 -17
-112 -107 21 V 21 -114 -118
-81 -83 21 W 21 -92 -89
-78 8 15 X 14 8 -87
-155 -143 21 Y 21 -150 -159
-50 17 58 Z 60 12 -34
 37 56 52 a 5 -7 -5
 5 2 17 b 46 58 60
 54 51 46 c 29 34 -44
 57 55 46 d 24 16 18
 53 51 46 e 38 44 2
 23 21 41 f -66 -76 -105
 39 37 25 g 1 15 -64
 13 11 42 h 31 14 16
 23 21 40 i 24 12 14
 14 12 34 j 88 82 85
 14 11 42 k -8 8 -59
 14 11 42 l 25 12 15
 26 24 46 m 31 14 16
 26 24 46 n 31 14 16
 53 51 46 o 46 51 54
 19 17 28 p 46 58 60
 57 55 46 q 17 12 15
 26 24 46 r 7 8 -45
 42 58 49 s 30 58 46
 19 16 37 t 5 30 -4
 16 14 27 u 30 17 19
-38 8 12 v 11 8 -42
-26 8 7 w 7 8 -29
-21 8 7 x 3 8 -34
-48 4 10 y 2 8 -48
 30 55 37 z 27 52 28
 53 51 46 oe 38 44 2
 23 20 41 germandbls 25 58 46
 23 21 40 dotlessi 24 12 24
-45 8 15 Acircumflex 15 8 -38
-45 8 15 Agrave 15 8 -38
 13 10 62 Eacute 53 33 -4
 13 10 62 Egrave 53 33 -4
 52 50 50 Ocircumflex 50 46 48
 52 50 50 Odieresis 50 46 48
-16 -18 49 Udieresis 46 -19 -17
 37 56 52 acircumflex 5 -7 -5
 37 56 52 adieresis 5 -7 -5
 37 56 52 agrave 5 -7 -5
 54 51 46 ccedilla 29 34 -44
 53 51 46 eacute 38 44 2
 53 51 46 ecircumflex 38 44 2
 53 51 46 egrave 38 44 2
 23 21 -13 icircumflex 24 12 14
 23 21 -16 idieresis 23 12 14
 53 51 46 ocircumflex 46 51 54
 53 51 46 odieresis 46 51 54
 16 14 27 ucircumflex 30 17 19
 16 14 27 udieresis 30 17 19
 16 14 27 ugrave 30 17 19

Literata Regular opsz 14

255

 LSB typeform RSB

 kf composite control control composite kf

-36 6 -60 A 0 6 -34
 20 18 0 B 80 35 37
 36 34 25 C 80 6 -125
 20 18 0 D 85 33 35
 20 18 0 E 80 8 10
 20 18 0 F 80 6 -97
 34 32 25 G 60 -33 -32
 20 18 0 H 60 18 20
 20 18 0 I 60 18 20
-29 -31 -40 J 60 9 11
 20 18 0 K 60 6 -81
 20 18 0 L 60 6 -104
 20 18 0 M 60 18 20
 20 18 0 N 60 9 11
 37 35 25 O 85 35 37
 20 18 0 P 55 6 -106
 37 35 25 Q 40 -11 -10
 20 18 0 R 60 6 -18
 9 43 -5 S 55 21 -3
-79 6 0 T 60 6 -79
-8 -9 0 U 60 -11 -9
-86 -74 -60 V 0 -75 -90
-85 -73 -60 W 0 -74 -87
-50 6 0 X 60 6 -51
-129 -98 -60 Y 0 -98 -129
-20 20 0 Z 80 28 -15
-36 6 -60 Agrave 0 6 -24
-36 6 -60 Acircumflex 0 6 -24
 20 18 0 Egrave 80 8 60
 20 18 0 Eacute 80 8 60
 37 35 25 Ocircumflex 85 35 73
 37 35 25 Odieresis 85 35 73
-8 -9 0 Udieresis 60 -11 68
 2 26 -5 a 50 11 13
 9 7 0 b 80 34 36
 31 30 20 c 60 30 -53
 36 34 20 d 60 18 20
 35 33 20 e 60 30 -1
 28 26 0 f -60 -74 -86
 35 34 20 g 120 67 68
 20 18 0 h 50 12 13
 28 26 0 i 60 18 20
 0 -2 -20 j 110 59 61
 20 18 0 k 60 12 -34
 20 18 0 l 60 18 20
 28 26 0 m 50 12 13
 28 26 0 n 50 12 13
 34 32 20 o 80 33 35
 20 18 0 p 80 34 36
 35 34 20 q 60 7 8
 28 26 0 r 40 6 -34
 22 38 30 s 80 36 20
 15 13 0 t 50 36 -17
 13 11 -10 u 60 18 20
-28 6 -40 v 40 6 -23
-28 6 -40 w 40 6 -23
-11 6 0 x 60 6 -14
-28 6 -40 y 40 6 -23
 25 44 0 z 60 46 25
 2 26 -5 agrave 50 11 43
 2 26 -5 acircumflex 50 11 43
 2 26 -5 adieresis 50 11 43
 31 30 20 ccedilla 60 30 49
 35 33 20 egrave 60 30 45
 35 33 20 eacute 60 30 45
 35 33 20 ecircumflex 60 30 45
 0 26 0 dotlessi 60 18 60
-30 26 -30 icircumflex 30 18 30
-40 26 -40 idieresis 20 18 20
 34 32 20 ocircumflex 80 33 66
 34 32 20 odieresis 80 33 66
 34 34 20 oe 60 30 30
 27 27 1 germandbls 60 36 36
 13 11 -10 ugrave 60 18 37
 13 11 -10 ucircumflex 60 18 37
 13 11 -10 udieresis 60 18 37

Slabo 13px Regular

256

 LSB typeform RSB

 kf composite control control composite kf

 0 12 0 A 0 12 0
 9 10 30 B 40 28 27
 33 34 40 C 30 12 0
 9 10 30 D 47 26 25
 9 10 30 E 30 14 0
 9 10 30 F 10 -58 -70
 32 33 40 G 30 12 0
 9 10 30 H 30 10 9
 9 10 30 I 30 10 9
-23 -22 6 J 30 2 1
 9 10 30 K 0 12 0
 9 10 30 L 20 12 0
 7 8 20 M 20 7 6
 9 10 30 N 30 2 1
 36 37 47 O 47 36 35
 9 10 30 P 37 12 0
 35 37 47 Q -60 -72 -73
 9 10 30 R 0 12 0
 0 34 30 S 30 20 0
-93 -91 17 T 17 -91 -93
-12 -11 20 U 20 -12 -13
-81 -70 0 V 0 -72 -83
-80 -68 0 W 0 -70 -82
 0 12 0 X 0 12 0
-110 -99 0 Y 0 -99 -112
 0 8 30 Z 40 13 0
 0 12 0 Agrave 0 -12 0
 0 12 0 Acircumflex 0 -12 0
 9 10 30 Egrave 30 50 0
 9 10 30 Eacute 30 50 0
 36 37 47 Ocircumflex 47 57 35
 36 29 47 Odieresis 47 14 35
-12 12 20 Udieresis 20 35 -13
 10 29 40 a 10 14 34
 33 12 25 b 40 35 0
 34 34 40 c 40 30 17
 34 35 40 d 20 19 0
 24 35 35 e 30 28 -62
 21 25 30 f -52 -50 0
 17 22 20 g 10 28 15
 24 19 20 h 20 16 17
-3 25 30 i 20 19 52
 17 -2 0 j 41 53 0
 17 19 30 k 0 19 17
 24 19 30 l 20 19 15
 24 25 30 m 10 16 15
 34 25 30 n 10 16 35
 17 36 35 o 35 36 35
 34 19 25 p 40 36 10
 24 35 40 q -10 11 0
 16 25 30 r 10 12 14
 15 37 35 s 30 32 0
 14 16 20 t 20 31 17
 0 15 20 u 20 19 0
 0 12 0 v 0 12 0
 0 12 0 w 0 12 0
 0 12 0 x 0 12 0
 12 12 0 y 0 12 6
 10 36 30 z 30 32 13
 10 29 40 agrave 10 14 34
 10 29 40 acircumflex 10 14 34
 33 29 40 adieresis 10 14 34
 34 34 40 ccedilla 40 30 17
 24 35 35 egrave 30 28 -62
 24 35 35 eacute 30 28 -62
 24 35 35 ecircumflex 30 28 -62
-3 25 30 dotlessi 20 19 52
-3 25 -13 icircumflex -13 19 52
-3 25 -10 idieresis -10 19 52
 17 36 35 ocircumflex 35 36 35
 17 36 35 odieresis 35 36 35
 17 36 35 oe 30 28 -62
 21 25 30 germandbls 30 32 0
 0 15 20 ugrave 20 19 0
 0 15 20 ucircumflex 20 19 0
 0 15 20 udieresis 20 19 0

Slabo 27px Regular

257

 LSB typeform RSB

 kf control control kf

 12 3 A 3 12
 94 90 B 40 48
 59 52 C 32 -186
 94 90 D 51 54
 94 90 E 49 -109
 94 90 F 26 -155
 58 52 G 67 -15
 94 90 H 90 94
 94 90 I 90 94
-112 31 J 87 84
 94 90 K 4 -38
 94 90 L 26 -143
 94 90 M 90 94
 94 90 N 90 94
 59 52 O 51 59
 94 90 P 43 -110
 59 52 Q 37 44
 94 90 R 25 24
-47 42 S 39 -5
-104 28 T 28 -104
 75 87 U 87 76
-39 0 V 0 -37
 6 23 W 24 8
-18 15 X 15 -18
-76 -1 Y -1 -76
-32 45 Z 42 -78
 17 52 a 71 85
 94 82 b 46 62
 56 46 c 25 -74
 60 47 d 82 94
 56 46 e 38 4
 37 30 f -27 -32
 50 45 g 12 -27
 94 82 h 73 87
 79 67 i 65 77
-29 -40 j 66 78
 94 82 k 9 -3
 92 82 l 39 48
 94 82 m 76 87
 94 82 n 76 87
 56 46 o 46 56
 94 82 p 48 61
 60 47 q 82 94
 94 82 r -3 -59
 6 28 s 32 17
 27 24 t 13 -11
 87 75 u 82 94
 7 12 v 12 8
 27 24 w 24 29
 12 14 x 14 12
-3 12 y 12 10
-4 31 z 26 -6
 12 3 Agrave 3 -6
 12 3 Acircumflex 3 -6
 94 90 Egrave 49 45
 94 90 Eacute 49 45
 59 52 Ocircumflex 51 44
 59 52 Odieresis 51 44
 75 87 Udieresis 87 99
 17 52 agrave 71 106
 17 52 acircumflex 71 87
 17 52 adieresis 71 96
 56 46 ccedilla 25 15
 56 46 egrave 38 28
 56 46 eacute 38 28
 56 46 ecircumflex 38 28
-32 -32 icircumflex -32 -32
-23 -23 idieresis -23 -23
 82 82 dotlessi 82 82
 56 46 ocircumflex 46 36
 56 46 odieresis 46 36
 46 46 oe 38 38
 82 82 germandbls 29 29
 87 75 ugrave 82 70
 87 75 ucircumflex 82 70
 87 75 udieresis 82 70

Source Sans Pro Regular

258

 LSB typeform RSB

 kf composite control control composite kf

-49 7 13 A 15 7 -49
 4 2 38 B 44 29 31
 48 46 48 C 42 7 -178
 4 2 38 D 47 40 42
 4 2 40 E 41 31 -5
 4 2 40 F 35 -106 -115
 48 46 48 G 23 -30 -96
 4 2 38 H 38 2 4
 4 2 38 I 38 2 4
-86 -88 -23 J 29 -11 -9
 4 2 38 K 13 7 -85
 4 2 40 L 38 7 -102
 6 4 36 M 38 2 4
 9 7 38 N 34 -4 -1
 52 49 48 O 48 48 51
 4 2 38 P 31 7 -105
 52 50 48 Q 48 49 51
 4 2 38 R 17 7 -28
 3 48 40 S 48 35 -7
-134 -54 20 T 20 -54 -133
-21 -24 32 U 29 -24 -22
-128 -127 14 V 10 -126 -122
-96 -115 14 W 10 -116 -97
-85 7 11 X 10 7 -84
-129 -140 19 Y 11 -149 -137
-41 13 24 Z 24 21 -39
 37 48 47 a 9 -3 -1
 14 12 33 b 47 57 59
 53 51 47 c 37 29 -54
 58 56 47 d 32 16 18
 54 52 47 e 43 38 7
 25 23 37 f -79 -98 -116
 40 37 34 g 29 26 -43
 14 11 33 h 27 14 16
 26 23 37 i 39 20 22
-90 -92 -73 j 74 68 70
 14 11 33 k 10 7 -38
 14 11 33 l 36 15 18
 26 24 37 m 29 14 17
 26 24 37 n 29 14 16
 52 49 47 o 47 49 51
 18 16 40 p 47 57 59
 58 56 47 q 17 6 8
 26 24 39 r 14 7 -72
 41 55 48 s 45 47 35
 11 9 19 t 11 37 -19
 15 13 21 u 35 20 22
-42 7 12 v 17 7 -43
-29 7 12 w 17 7 -30
-22 7 17 x 17 7 -27
-53 -3 4 y 12 7 -40
 26 51 33 z 30 47 22
-49 7 13 Agrave 15 7 77
-49 7 13 Acircumflex 15 7 77
 4 2 40 Egrave 41 31 77
 4 2 40 Eacute 41 31 77
 52 49 48 Ocircumflex 48 48 44
 52 49 48 Odieresis 48 48 44
-21 49 32 Udieresis 29 48 82
 37 48 47 agrave 9 -3 19
 37 48 47 acircumflex 9 -3 19
 37 48 47 adieresis 9 -3 19
 53 51 47 ccedilla 37 29 31
 54 52 47 egrave 43 38 36
 54 52 47 eacute 43 38 36
 54 52 47 ecircumflex 43 38 36
 12 23 12 icircumflex 12 20 12
 8 23 8 idieresis 5 20 5
 37 23 37 idotless 39 20 39
 52 49 47 ocircumflex 47 49 42
 52 49 47 odieresis 47 49 42
 49 49 47 oe 43 38 38
 16 16 33 germandbls 26 47 47
 15 13 21 ugrave 35 20 41
 15 13 21 ucircumflex 35 20 41
 15 13 21 udieresis 35 20 41

Source Serif 4 Regular

259

 LSB typeform RSB

 kf composite control control composite kf

-60 7 3 A 4 7 -64
-4 7 36 B 35 33 33
 47 47 50 C 38 7 -184
-5 7 35 D 50 39 39
-4 7 36 E 28 29 4
-4 7 36 F 14 -119 -119
 49 49 50 G 35 7 -59
-4 7 36 H 35 7 -5
-6 7 34 I 35 7 -5
-60 7 0 J 21 -13 -13
-6 7 34 K 6 7 -151
 2 7 42 L 17 7 -110
-2 7 28 M 45 7 4
-1 7 29 N 27 -6 -6
 47 47 50 O 50 45 45
 3 7 44 P 25 7 -119
 46 46 50 Q 23 15 15
 3 7 43 R -5 7 -71
 8 47 35 S 33 33 7
-147 -147 15 T 16 -146 -146
-30 -30 20 U 18 -28 -28
-147 -124 -10 V -7 -119 -140
-137 -120 -10 W 1 -106 -110
-95 7 2 X 4 7 -94
-167 -153 -5 Y -5 -156 -163
-62 7 28 Z 27 18 -43
-60 7 3 Agrave 4 7 -64
-60 7 3 Acircumflex 4 7 -64
-4 7 36 Egrave 28 29 4
-4 7 36 Eacute 28 29 4
 47 47 50 Ocircumflex 50 45 45
 47 47 50 Odieresis 50 45 45
-30 -30 20 Udieresis 18 -28 -28
 24 42 38 a 4 7 1
 10 10 8 b 35 51 51
 51 51 33 c 19 26 -45
 51 51 33 d 25 19 19
 51 51 34 e 30 31 -7
 14 14 18 f -72 -65 -89
 31 31 21 g 12 32 -30
 12 12 22 h 21 11 11
 26 26 32 i 28 18 18
-104 -104 -95 j 65 70 70
 16 16 26 k 3 7 -70
 16 16 26 l 23 14 14
 26 26 32 m 23 14 14
 26 26 32 n 21 10 10
 49 49 34 o 34 50 50
 18 18 22 p 35 51 51
 51 51 33 q 14 19 19
 23 23 29 r 7 7 -57
 56 63 39 s 27 48 40
 32 32 37 t 3 7 -17
 16 16 23 u 30 21 21
-45 7 -13 v -17 7 -44
-49 7 -17 w -13 7 -40
-28 7 -2 x -3 7 -25
-51 7 -12 y -10 7 -39
 15 40 31 z 33 51 25
 24 42 38 agrave 4 7 1
 24 42 38 acircumflex 4 7 1
 24 42 38 adieresis 4 7 1
 51 51 33 ccedilla 19 26 -45
 51 51 34 egrave 30 31 -7
 51 51 34 eacute 30 31 -7
 51 51 34 ecircumflex 30 31 -7
 26 -10 -6 icircumflex 28 26 18
 26 -35 -29 idieresis 5 1 18
 26 32 32 dotlessi 28 28 18
 49 49 34 ocircumflex 34 50 50
 49 49 34 odieresis 34 50 50
 49 49 34 oe 30 31 -7
 14 14 22 germandbls 31 48 40
 16 16 23 ugrave 30 21 21
 16 16 23 ucircumflex 30 21 21
 16 16 23 udieresis 30 21 21

STIX Two Text Regular

260

 LSB typeform RSB

 kf composite control control composite kf

-93 16 2 A -1 16 -93
 17 12 109 B 111 87 92
 129 124 125 C 121 16 -319
 17 12 109 D 124 106 111
 17 12 109 E 92 16 -179
 16 11 109 F 67 -178 -359
 126 121 124 G 89 -13 -147
 17 12 109 H 109 12 17
 17 12 109 I 110 13 18
-96 -101 -7 J 97 4 9
 17 12 109 K 14 16 -186
 17 12 109 L 59 16 -225
-24 16 63 M 44 16 -38
 17 12 109 N 97 7 12
 133 128 125 O 125 116 121
 17 12 109 P 79 16 -228
 132 127 125 Q -30 -40 -35
 17 12 109 R 32 16 -66
 33 116 133 S 113 64 2
-292 16 77 T 77 16 -292
-1 -6 101 U 98 -13 -8
-273 -248 -9 V 8 -245 -248
-225 -231 -2 W 10 -215 -210
-175 16 25 X 23 16 -168
-332 -314 -7 Y 17 -298 -297
-92 20 67 Z 120 75 -47
-18 76 97 a 56 29 35
 0 -5 -15 b 112 120 125
 122 117 111 c 102 83 -84
 126 121 113 d 71 46 51
 124 119 111 e 115 88 -15
 47 42 80 f -119 -160 -234
 92 86 92 g 48 63 -90
 23 18 46 h 55 27 32
 55 50 84 i 70 42 47
-70 -76 -48 j 199 200 206
 23 18 46 k 32 16 -73
 20 14 46 l 53 22 27
 55 50 84 m 55 26 32
 55 50 84 n 56 28 33
 126 121 113 o 112 121 126
 38 33 61 p 113 121 126
 126 121 112 q 56 58 63
 55 50 84 r 72 16 -101
 104 133 122 s 108 117 87
 42 37 63 t 30 44 -100
 34 29 58 u 71 47 52
-73 16 18 v 28 16 -63
-35 16 27 w 30 16 -32
-43 16 48 x 50 16 -38
-75 7 27 y 21 16 -59
 39 94 85 z 114 126 62
-93 16 2 Agrave -1 16 94
-93 16 2 Acircumflex -1 16 94
 17 12 109 Egrave 92 16 184
 17 12 109 Eacute 92 16 184
 133 128 125 Ocircumflex 125 116 117
 133 128 125 Odieresis 125 116 117
-1 -6 101 Udieresis 96 -13 198
-18 76 97 agrave 56 29 171
-18 76 97 acircumflex 56 29 171
-18 76 97 adieresis 56 29 171
 122 117 111 ccedilla 102 83 91
 124 119 111 egrave 115 88 102
 124 119 111 eacute 115 88 102
 124 119 111 ecircumflex 115 88 102
-3 50 -3 icircumflex 54 42 54
 84 50 84 dotlessi 70 42 70
-16 50 -16 idieresis 50 42 50
 126 121 113 ocircumflex 112 121 99
 126 121 113 odieresis 112 121 99
 113 121 113 oe 115 88 115
 81 45 81 germandbls 73 117 73
 34 29 58 ugrave 71 47 95
 34 29 58 ucircumflex 71 47 95
 34 29 58 udieresis 71 47 95

Yrsa Regular

261

 LSB typeform RSB

 kf composite control control composite kf

0 35 -17 A -10 35 0
-5 -58 89 B 79 -1 154
43 41 94 C 99 35 -130
-5 -58 89 D 94 20 34
-5 -58 89 E 72 35 0
-5 -58 89 F 43 -171 -197
47 43 95 G 64 -54 -58
-5 -58 89 H 89 -59 -5
-5 -58 89 I 89 -58 -5
-130 -191 -41 J 75 -71 -11
-5 -58 89 K 10 34 0
-5 -58 89 L 46 37 0
-70 -102 40 M 32 -108 -80
-5 -58 89 N 70 -76 -16
49 44 94 O 94 32 49
-5 -58 89 P 46 34 0
47 43 94 Q -86 -151 -134
-5 -58 89 R 26 35 154
43 53 110 S 86 -2 11
-164 -321 56 T 56 -319 -163
-7 -74 84 U 84 -84 -16
-214 -217 -20 V -4 -219 -200
-181 -206 -12 W -5 -211 -173
0 35 16 X 8 35 0
-238 -259 -24 Y 9 -238 -204
-56 -41 49 Z 96 14 -14
-61 0 65 a 39 -35 -27
-57 -66 -26 b 82 32 121
37 28 79 c 76 4 -85
45 36 82 d 52 -14 -5
43 35 82 e 80 4 -66
2 -7 67 f -142 -137 -171
10 1 64 g 30 -8 118
-31 -39 29 h 42 -33 -25
6 -3 69 i 50 -19 -10
-146 -155 -82 j 164 114 123
-31 -39 29 k 21 35 -106
-30 -39 35 l 44 -29 -20
6 -3 69 m 42 -34 -26
6 -3 69 n 42 -33 -25
41 33 81 o 82 32 42
-15 -24 47 p 81 33 42
44 36 82 q 23 -27 -18
6 -2 69 r 46 35 0
51 63 97 s 74 36 20
-21 -30 47 t 10 -127 -118
-18 -27 50 u 51 -14 -6
0 35 5 v 18 35 0
0 35 11 w 20 35 0
0 35 40 x 27 35 0
0 35 15 y 9 35 0
-15 26 58 z 81 52 5
0 35 -17 Agrave -10 35 0
0 35 -17 Acircumflex -10 35 0
-5 -58 89 Egrave 72 35 0
-5 -58 89 Eacute 72 35 0
49 44 94 Ocircumflex 94 32 49
49 44 94 Odieresis 94 32 49
-7 -74 84 Udieresis 78 -84 -16
-61 0 65 agrave 39 -35 -27
-61 0 65 acircumflex 39 -35 -27
-61 0 65 adieresis 39 -35 -27
37 28 79 ccedilla 76 4 -85
43 35 82 egrave 80 4 -66
43 35 82 eacute 80 4 -66
43 35 82 ecircumflex 80 4 -66
6 -3 -11 icircumflex 44 -19 -10
6 -3 69 dotlessi 50 -19 -10
6 -3 -35 idieresis 19 -19 -10
41 33 81 ocircumflex 82 32 42
41 33 81 odieresis 82 32 42
41 33 81 oe 79 4 -66
2 -7 67 germandbls 42 36 20
-18 -27 50 ugrave 51 -14 -6
-18 -27 50 ucircumflex 51 -14 -6
-18 -27 50 udieresis 51 -14 -6

Yrsa Bold

263

Appendix E: quantitative test materials

i. Public test web-application screenshots

The following pages provide screenshots of the desktop/laptop and mobile
variants of each page used in the public tests. Only one example is included
for the text-specimen page; all five specimen pages were identical in
formatting and varied by the randomly selected test font and sample text
generated by the application server.

Welcome page, desktop/laptop

Disclosure & consent page, desktop/laptop

264

Demographic questions page, desktop/laptop

Typographic experience questions page, desktop/laptop

265

Task instructions page, desktop/laptop

Specimen page, desktop/laptop

266

Between‐specimens reset page, desktop/laptop

Thank you page, desktop/laptop

267

Welcome page, mobile

Disclosure & consent page, mobile

268

Demographic questions page, mobile

Typographic experience questions page, mobile

269

Task instructions page, mobile

Specimen page, mobile

270

Between‐specimens reset page, mobile

Thank you page, mobile

271

ii. Exposure mark count heatmaps

The following pages provide per–letter-pair heatmap plots of the "tight"
and "loose" exposure mark rates for the fonts tested in the quantitative
public tests, in each test condition for which data was collected.

As described in chapter 6, § 6.3.1, the exposure mark rates shown
represent the proportion from 0 to 1.0 of exposures in which each letter
pair received a mark out of the total number of exposures that included
that pair. Each cell is thus shaded according to the proportionate number
of marks for the pair, not by how often the pair occurred in the sample
texts. Cells with no border indicate the pair did not occur in an exposure.

Vertical axes index the first form of each pair; horizontal axes index the
second form of each pair. Within each axis, forms are sorted by class
(lowercase – capital – numeral – punctuation and symbols – word space); within
each class, forms are sorted by profile shape on the interior side (i.e., by
the right profile of the first form and the left profile of the second form) in
the order straight – round – diagonal – open – half-open – unbounded.

272

C
o

m
p

o
si

te
 a

lg
o

ri
th

m
C

o
n

tr
o

l g
ro

u
p

R
iv

a
l k

f
a

lg
o

ri
th

m

Alegreya Sans Regular: exposure mark rates

Tight Loose

273

C
o

m
p

o
si

te
 a

lg
o

ri
th

m
C

o
n

tr
o

l g
ro

u
p

R
iv

a
l k

f
a

lg
o

ri
th

m

Fira Sans Condensed: exposure mark rates

Tight Loose

274

C
o

m
p

o
si

te
 a

lg
o

ri
th

m
C

o
n

tr
o

l g
ro

u
p

R
iv

a
l k

f
a

lg
o

ri
th

m

Literata Regulra opsz 14: exposure mark rates

Tight Loose

275

C
o

m
p

o
si

te
 a

lg
o

ri
th

m
C

o
n

tr
o

l g
ro

u
p

R
iv

a
l k

f
a

lg
o

ri
th

m

Slabo 13px: exposure mark rates

Tight Loose

276

C
o

m
p

o
si

te
 a

lg
o

ri
th

m
C

o
n

tr
o

l g
ro

u
p

R
iv

a
l k

f
a

lg
o

ri
th

m

Slabo 27px: exposure mark rates

Tight Loose

277

C
o

n
tr

o
l g

ro
u

p
R

iv
a

l k
f

a
lg

o
ri

th
m

Source Sans Pro Regular: exposure mark rates

Tight Loose

278

C
o

m
p

o
si

te
 a

lg
o

ri
th

m
C

o
n

tr
o

l g
ro

u
p

R
iv

a
l k

f
a

lg
o

ri
th

m

Source Serif 4 Regular exposure mark rates

Tight Loose

279

C
o

m
p

o
si

te
 a

lg
o

ri
th

m
C

o
n

tr
o

l g
ro

u
p

R
iv

a
l k

f
a

lg
o

ri
th

m

STIX Two Text Regular: exposure mark rates

Tight Loose

280

C
o

m
p

o
si

te
 a

lg
o

ri
th

m
C

o
n

tr
o

l g
ro

u
p

R
iv

a
l k

f
a

lg
o

ri
th

m

Yrsa Regular: exposure mark rates

Tight Loose

281

C
o

m
p

o
si

te
 a

lg
o

ri
th

m
C

o
n

tr
o

l g
ro

u
p

R
iv

a
l k

f
a

lg
o

ri
th

m

Yrsa Bold: exposure mark rates

Tight Loose

282

ii. Per-letterform profile mark balances

The following pages provide per-letterform balances for the left and right
profiles of the lowercases letters from the quantitative public tests.
Balances are shown for all the fonts tested in the quantitative public tests,
in each test condition for which data was collected.

As described in chapter 6, § 6.3.1, each balance represents the difference
between the "tight" and "loose" exposure mark rate for that profile, which
is interpreted as capturing the overall bias of the rate at which marks were
made on the profile in the text exposures.

All of the plots are indexed identically, sorted by left profile shape, for
ease of comparing the left and right balances for each form. The orange
colour bars represent a balance on the side of the "tight" mark class; blue
colour bars represent a balance on the side of the "loose" mark class.

283
covers page
number

Le
ft

 p
ro

fi
le

s
R

ig
h

t
p

ro
fi

le
s

Alegreya Sans Regular: per‐letterform profile mark balances, lowercase

Control group Composite algorithm Rival kf algorithm

284
covers page
number

Le
ft

 p
ro

fi
le

s
R

ig
h

t
p

ro
fi

le
s

Fira Sans Condensed: per‐letterform profile mark balances, lowercase

Control group Composite algorithm Rival kf algorithm

285
covers page
number

Le
ft

 p
ro

fi
le

s
R

ig
h

t
p

ro
fi

le
s

Literata Regular opsz 14: per‐letterform profile mark balances, lowercase

Control group Composite algorithm Rival kf algorithm

286
covers page
number

Le
ft

 p
ro

fi
le

s
R

ig
h

t
p

ro
fi

le
s

Slabo 13px: per‐letterform profile mark balances, lowercase

Control group Composite algorithm Rival kf algorithm

287
covers page
number

Le
ft

 p
ro

fi
le

s
R

ig
h

t
p

ro
fi

le
s

Slabo 27px: per‐letterform profile mark balances, lowercase

Control group Composite algorithm Rival kf algorithm

288
covers page
number

Le
ft

 p
ro

fi
le

s
R

ig
h

t
p

ro
fi

le
s

Source Sans Pro Regular: per‐letterform profile mark balances, lowercase

Control group Rival kf algorithm

289
covers page
number

Le
ft

 p
ro

fi
le

s
R

ig
h

t
p

ro
fi

le
s

Source Serif 4 Regular: per‐letterform profile mark balances, lowercase

Control group Composite algorithm Rival kf algorithm

290
covers page
number

Le
ft

 p
ro

fi
le

s
R

ig
h

t
p

ro
fi

le
s

STIX Two Text Regular: per‐letterform profile mark balances, lowercase

Control group Composite algorithm Rival kf algorithm

291
covers page
number

Le
ft

 p
ro

fi
le

s
R

ig
h

t
p

ro
fi

le
s

Yrsa Regular: per‐letterform profile mark balances, lowercase

Control group Composite algorithm Rival kf algorithm

292
covers page
number

Le
ft

 p
ro

fi
le

s
R

ig
h

t
p

ro
fi

le
s

Yrsa Bold: per‐letterform profile mark balances, lowercase

Control group Composite algorithm Rival kf algorithm

