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Foods that are rich in organosulfides are highly regarded for their broad range of functions
in disease prevention and health promotion since ancient time yet modern scientific study,
particularly clinical studies could not agree with traditional wisdom. One of the complexi-
ties is due to the labile nature of organosulfides, which are often transformed to different
structures depending on the processing conditions. The recent evidence on polysulfides
as H2S donors may open up a new avenue for establishing structure and health promotion
activity relationship. To put this development into perspective, we carried out a review on
the recent progress on the chemistry and biochemistry of organopolysulfides with empha-
sis on their cardioprotective property. First, we briefly surveyed the foods that are rich in
polysulfides and their structural diversity. This is followed by in-depth discussion on the
chemical transformations of polysulfides under various processing conditions. We further
reviewed the potential action mechanisms of polysulfides in cardioprotection through: (a)
hydrogen sulfide releasing activity; (b) radical scavenging activity; and (c) activity in enzyme
inhibition and intervention of gene regulation pathways. Based on the literature trend, we
can conclude that the emerging concept of organopolysulfides as naturally occurring H2S
donors is intriguing and warrants further research to establish the structure and activity
relationship of the organopolysulfides as H2S donors.
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INTRODUCTION
According to the World Health Organization data, cardiovascu-
lar disease (CVD) is the number one cause of deaths and there
will be estimated 23.3 million people who will die due to CVD
by 2030 globally, which is more than the total population of Aus-
tralia (1). Finding effective means for reducing the risk factors of
CVDs has been a long-standing research theme for decades and
much progress has been made and healthy diet is critically impor-
tant. Fruits and vegetable are the key components of a healthy
diet in part because they are rich in bioactive phytochemicals
such as polyphenolic antioxidants, anti-inflammatory agents, and
poly unsaturated fatty acids, particularly omega-3 fatty acids. For
example, flavanols are shown to improve endothelium-mediated
vasodilation (2) and European Food Safety Authority has approved
the claim that consumption of 200 mg flavanols from cocoa daily
can improve blood flow (3). In addition, cumulative evidence has
suggested that dietary organosulfur compounds have a wide range
of bioactivity, particularly cardiovascular health (4).

Cruciferous vegetables and the Allium family are known
for their rich contents of bioactive organosulfur compounds
(Figure 1). Cruciferous vegetables are rich in glucosinolates, which
undergo hydrolysis by thioglucosidase (myrosinase) to isothio-
cyanates (5) including sulforaphane in the broccoli (6), benzyl
isothiocyanate in garden cress (7), and phenyl-ethyl isothiocyanate
in watercress (8). While isothiocyanates from cruciferous veg-
etables have received great attention because of their potential

anti-cancer activity through modulation of phase II enzyme activ-
ities (9, 10), the organosulfides in Alliums are well known for
their broad spectrum of health promoting benefits, including anti-
microbial, anti-cancer, and cardioprotective effects (4, 11). Yet,
there is lack of consistent human clinical evidence to support
the traditional wisdom. The chemistry of dietary organosulfur
compounds is particularly complex because of their sensitivity to
structural transformation mediated by the enzymes in the vegeta-
bles or during food processing. Consequently, it is a challenge to
establish structure and bioactivity relationships. The bioactivity
of allicin from garlic has been extensively studied and reviewed.
However, human clinical trials in garlic found that allicin has
no effect on reducing cholesterol level (12). The other important
organosulfides in Alliums are volatile polysulfides readily formed
when garlic is processed. They have shown potential for cardio-
vascular health promotion. Of all the Allium species currently
known, garlic (Allium sativum) and onion (Allium cepa) are the
most popular species due to various health benefits associated with
their consumption. Garlic and onions have been greatly valued
for their medicinal uses throughout the history of civilization. A
large amount of literature have shown that the organosulfur com-
pounds in these two species are associated with their biological
functions against chronic ailments, including cancer, diabetes, and
CVDs (4, 11). Yet, the labile chemistry of dietary organosulfides
makes it challenging to establish structure and activity relation-
ship. In this review, we summarized recent literatures regarding the
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FIGURE 1 | Organosulfide-rich fruits and vegetables.

organopolysulfide chemistry, biochemistry, and potential action
mechanisms for promoting cardiovascular health, particularly as
natural donor of H2S. Based on this, the future research directions
of dietary organopolysulfides are suggested.

BRIEF SURVEY OF ORGANOSULFIDES RICH FOODS
The organosulfides in Alliums are classified into two major groups:
(1) oil-soluble polysulfides and (2) water-soluble thiosulfinates,
the intermediate formed upon the reaction of the vacuolar enzyme
alliinase with the non-volatile S-alk(en)yl-l-cysteine-sulfoxides
(ACSOs) present in the cell cytoplasm when Alliums are crushed.
Thiosulfinates from garlic and onions are known for their wide
biological activities, including antithrombotic, antihypertensive,
antioxidant, antibacterial, and antifungal effects and these biolog-
ical properties have been reviewed elsewhere (13, 14). Organopoly-
sulfides (di-, tri-, and tetrasulfides) are the major OSCs in the oil-
soluble components of Alliums. The formation of these lipophilic
compounds starts with the alliinase-ACSO reaction, which pro-
duces highly unstable intermediates sulfenic acids, pyruvate, and
ammonia. Condensation of sulfenic acids leads to the forma-
tion of thiosulfinates, which undergo further rearrangements into
polysulfides and other OSCs, including cepaenes and zwiebelanes
(Figure 2) (15). Alliinase is the key enzyme that facilitates the for-
mation of the oil-soluble OSCs. Due to the compartmentalization
of this enzyme and the ACSOs, cell rupture by cutting or macera-
tion is necessary to facilitate their release (16) for the reaction to
take place.

Aside from glucosinolates and isothiocyanates, S-methyl-l-
cysteine sulfoxide (MCSO, or metthiin), is present in vegetables
of genus Brassica (17). MCSO significantly contributes to the
typical spicy and pungent aromas of culinary processed Bras-
sica (18). Similar to Alliums, enzymatic catabolism of MCSO in
Brassicas generates other sensory-active sulfur compounds includ-
ing dimethyl thiosulfonate, dimethyl thiosulfinate, and dimethyl
sulfides (19). The enzyme responsible, termed cystine lyase (EC
4.4.1.8), behaves similarly as the alliinase in garlic, except that it
can also hydrolyze l-cystine (20). Hydrolysis of MCSO generates
highly reactive methyl sulfenic acid, which condenses to generate
methyl methanethiosulfinate. Subsequently, thermal degradation

of methyl methanethiosulfinate forms volatile polysulfides, major-
ity of which are composed of dimethyl disulfide and dimethyl
trisulfide (18). The occurrence, concentration, and distribution
of MCSO in cruciferous vegetables are well documented (18, 19,
21, 22) and its biological functions have recently been reviewed
in Ref. (23). In general, MSCO is found at about 1–2% dry
weight in vegetables that belong to Brassicaceae, especially those
of the genus Brassica (24). Although MCSO is universally present
in Brassicas, factors associated to species and varietal differences
influence the concentration and distribution of MCSO in these
plants (23). Other factors affecting MCSO concentrations include
environmental conditions, nutrient availability, harvest timing,
and storage practices (25–27). While is it generally accepted that
MCSO and other thermally generated breakdown products such
as S-methyl methanethiosulphinate and S-methyl methanethio-
sulfonate, contribute to the typical flavor of processed cruciferous
vegetables, their cardiovascular effect, although limited, has been
reported (28, 29).

Garlic has been used for centuries as a traditional remedy
to treat infectious diseases (30, 31). One of the main sulfur-
containing compounds present in raw garlic is γ-glutamylcysteine.
It has been proposed that γ-glutamylcysteine, along with glu-
tathione are the starting compounds, which undergo hydrolysis
and oxidation leading to the biosynthesis of ACSOs (13). In gar-
lic, S-allyl-l-cysteine sulfoxide (alliin) is the predominant ACSO,
while S-methyl-l-cysteine sulfoxide (methiin) and S-propenyl-l-
cysteine sulfoxide (isoalliin) are present in smaller amounts (32).
Another major compound formed upon hydrolysis of garlic is
S-allylcysteine (SAC), a water-soluble thiosulfinate produced dur-
ing aqueous garlic extraction catalyzed by the enzyme γ-glutamyl
transpeptidase (33). Some of the health-beneficial functions of
garlic are attributed to its organosulfur components, including the
main ACSO precursor alliin and allicin, a thiosulfinate resulting
from the lyses of alliin by alliinase. However, allicin is a tran-
sient compound that rapidly undergoes non-enzymatic decom-
position into numerous oil-soluble polysulfides such as diallyl
monosulfide (DAS), diallyl disulfide (DADS), diallyl trisulfide
(DATS), diallyl tetrasulfide, and allyl methyl trisulfide (34, 35).
The main components of garlic oil (Table 1) obtained by steam
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FIGURE 2 | Overview of organosulfide formation in Alliums.

and hydrodistillation are DADS, DATS, allyl methyl trisulfide, and
2-vinyl-4H-1,3-dithiin (36–40). All eight thiosulfinates containing
combinations of methyl, 1-propenyl, and 2-propenyl substituents
are present in garlic homogenates, which explains the presence of
lipid-soluble polysulfides with similar substituent combinations
in distilled garlic oil (41).

The organosulfide profile of onion oil includes polysulfides
with different combinations of methyl, propyl, and 1-propenyl
substituents, except for the compound with 1-propenyl and 1-
propene substituents on either side of the -S-S(=O)- group of
a thiosulfinate (60). 1-Propenyl 1-propenethiosulfinate (CH3-
CH=CH-SS(O)CH=CH-CH3) has not been detected in Allium
tissues possibly due to its oxidation to bissulfine or cyclization to
zwiebelanes and a possible reaction with sulfenic acids to form
cepaenes (15, 32).

Distilled oils and solvent extracts from other Allium species are
also known for their predominantly high contents of organosulfur
compounds. These species include Chinese chive (Allium tubero-
sum Rottl. ex.), leek (Allium porrum L.), shallot (Allium cepa L.
Aggregatum Group), rakkyo (Allium chinense G. Don), scallion
(Allium fistulosum L. var caispitosum), and Welsh onions (Allium
fistulosum L. var maichuon) (Figure 1). Summarized in Table 2
are the concentrations of the various oil-soluble polysulfides from
their respective sources. Apparently, the abundance of the individ-
ual compounds depends on which Allium species they are found,
although it is well known that garlic oil is rich in allyl polysulfides
while onion oil is typically characterized by their high amounts
of polysulfides with propyl substituents. While varietal differences

may have effects on the levels of polysulfides, it is rather premature
to conclude on this yet due to limited literature available.

Shallot is an important Allium species commonly used in many
Asian diets. High amounts of organosulfides have been reported
in the distilled and solvent extracted oils of shallot (42). Data from
our lab also shown that hydrodistilled oil from shallot originat-
ing from Vietnam contain high amounts of onion-type polysul-
fides (52). Distilled oil and solvent extracts of Welsh onions and
scallions consists 82–87% of organosulfides (50, 62). Similarly,
organosulfides from the essential oils of Chinese chive and rakkyo
comprised 88–94% of their total volatiles (44). Twelve varieties
of solvent extracted oil from Chinese chive were found to con-
tain disulfides, trisulfides, and vinyldithiins formed enzymatically
from methiin as their precursor (46). The individual polysulfides
in these less popular Allium species are listed in Table 1.

Organosulfur compounds are also present in the seeds of
Parkia speciosa Hassk, commonly known as “petai” or stinky
bean because of its unpleasant smell. In addition to its culi-
nary uses, stinky bean is believed to have anti-microbial (65,
66), antioxidant (67–69), hypoglycemic (70), antiulcer (71),
and antihypertensive (69) effects. Cyclic polysulfides are the
major components of cooked petai (63). Earlier reports indicate
that cyclic polysulfides [1,2,4-trithiolane (1), 1,3,5-trithiane (2),
1,2,4,6-tetrathiepane (5), and 1,2,3,5,6-pentathiepane (lenthion-
ine) (7), 1,2,4,5,7,8-hexathionine] were the major constituents
of stinky bean (Figure 3) (65, 68). In another study, hydro-
gen sulfide was found as the most abundant (41.3%) headspace
constituent of stinky bean (64). Other cyclic polysulfides that
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Table 1 | Acyclic and cyclic organopolysulfides from the oil-soluble components of common dietary sources.

Organosulfur compound Structure Source Reference

ACYCLIC DISULFIDE

Diallyl disulfide Garlic, shallot, onion, leek, Chinese chive, rakkyo (42–48)

Dipropyl disulfide Onion, shallot, leek, scallion, Welsh onion, rakkyo (42, 45, 48–52)

Dimethyl disulfide Shallot, garlic, scallion, Welsh onion, Chinese chive,

rakkyo

(43, 44, 46, 47, 49–51, 53)

Diethyl disulfide Durian (54–58)

Allyl methyl disulfide Garlic, Chinese chive, Rakkyo (40, 44, 46, 47, 53)

Allyl propyl disulfide Garlic (53)

Methyl propyl disulfide Leek, onion, shallot, scallion, Welsh onion, Rakkyo,

Chinese chive

(42–45, 49–51)

Methyl ethyl disulfide Durian, Rakkyo, Chinese chive (44, 59)

Ethyl propyl disulfide Durian, onion (49, 59)

Methyl 1-propenyl disulfide Leek, garlic, onion, shallot, scallion, Welsh onion,

Chinese chive, rakkyo

(40, 42–46, 49–51, 53)

Ethyl 1-propenyl disulfide Rakkyo, Chinese chive (44)

Allyl 1-(E)-propenyl disulfide Chinese chive (46)

Propyl 1-propenyl disulfide Leek, onion, shallot, scallion, Welsh onion, Chinese chive,

rakkyo

(42–45, 49–51)

ACYCLICTRISULFIDE

Diallyl trisulfide Garlic, rakkyo, Chinese chive (40, 44, 47, 53)

Dimethyl trisulfide Leek, garlic, shallot, onion, scallion, Welsh onion,

Chinese chive, rakkyo

(42, 43, 45, 46, 49–52)

Dipropyl trisulfide Leek, shallot, Chinese chive, onion, rakkyo (42, 44, 45, 48, 49, 52)

Diethyl trisulfide Durian (54–57, 59)

Allyl methyl trisulfide Garlic, Chinese chive, rakkyo (40, 44, 46, 47, 51, 53)

Methyl propyl trisulfide Onion, shallot, Chinese chive, rakkyo (42–44, 49, 51, 52)

Ethyl methyl trisulfide Rakkyo, Chinese chive (44)

Methyl 1-propenyl trisulfide Onion, shallot, Rakkyo, Chinese chive (42–44, 51)

Allyl 1-propenyl trisulfide Garlic, rakkyo (51)

Propyl 1-propenyl trisulfide Onion, shallot, Chinese chive (42–44, 49)

ACYCLICTETRASULFIDE

Dimethyl tetrasulfide Shallot, onion, rakkyo, Chinese chive (43, 44, 51)

Diallyl tetrasulfide Garlic (40)

Propyl 1-propenyl tetrasulfide Chinese chive, rakkyo (44)

Methyl pentyl tetrasulfide Chinese chive (44)

Dipropyl tetrasulfide Chinese chive, leek (44, 48)

Allyl propyl tetrasulfide Chinese chive (44)

(Continued)
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Table 1 | Continued

Organosulfur compound Structure Source Reference

CYCLIC POLYSULFIDES

3-Vinyl-[4H]-1,2-dithiin Garlic, Chinese chive (46, 51, 53)

2-Vinyl-[4H]-1,3-dithiin Garlic, Chinese chive (46, 51, 53)

[3H,4H]-1,2-dithiin Chinese chive (46)

[2H,4H]-1,3-dithiin Chinese chive (46)

3,5-Diethyl-1,2,4-trithiolane Leek, garlic, scallion, Welsh onion, rakkyo (45, 50, 51, 53)

3,5-dimethyl-1,2,4-trithiolane Durian, shallot (52, 59)

3-Methyl-5-ethyl-1,2,4-trithiolane Scallion, Welsh onion, rakkyo (50)

3-Ethyl-1,2-dithi-4-ene Onion, shallot (43, 49, 52)

3-Ethyl-1,2-dithi-5-ene Onion, shallot (43, 52)

have been found from stinky bean, include 3,5-dimethyl-1,2,4-
trithiolane (3), 1,2,4,5-tetrathiane (4), 1,2,4,5-tetrathiocane (6),
1,2,3,4,5,6-hexathiepane (8), and 1,2,4,5,7,8-hexathionane (9).

Of the edible fruits, durian (Durio zibethinus Murray) is per-
haps the only tropical fruit known for its organosulfur contents.
Durian, dubbed as the king of tropical fruits, is an exotic fruit with
extensive popularity in Southeast Asia due to its distinct taste, odor,
and texture. Of the 108 volatiles compounds determined in durian,
18 organosulfides were identified, making sulfurous compounds
the second major volatile constituents, after ester group (56).
Durian from Indonesia was reported to contain 17 (55) and 43
(72) organosulfides in two individual studies, with some common
organosulfides detected such as S-ethyl thioacetate, diethyl disul-
fide, and 3,5-dimethyl-1,2,4-trithiolane. The volatile constituents
of three different durian varieties D15, D28, and D74 were com-
pared and it was found that D28 has the highest organosulfides
content (54). In a separate study, organosulfides were the predom-
inant compounds in durian in terms of quantity, contributing to
more than 50% of the total volatiles (57).

Overall, there are various natural organosulfide sources includ-
ing durian, the Allium vegetables, and stinky bean with character-
istically high amounts of organosulfides. The formation of garlic-
and onion-type OSCs follow a similar reaction mechanism with
the ACSO-alliinase reaction as the main step after Alliums are
crushed. Except for garlic and onions, the biological functions of
the OSCs from these dietary sources are not yet fully explored.

TRANSFORMATIONS OF DIETARY ORGANOSULFIDES UNDER
DIFFERENT PROCESSING CONDITIONS
Unlike fruits, vegetables are commonly cooked before they are
consumed, except in the case where they are added as ingredients
to salads. In general, cooking methods that involve heating (i.e.,
boiling, steaming, and microwaving) are commonly used to pre-
pare homemade dishes. The most common commercially available
form of Allium products is the raw form. However, other forms of
Allium products have increased their popularity and availability
in the international market (11). Common Allium products avail-
able in the market include powdered or dried garlic flakes, garlic
and onion essential oils, naturally fermented garlic or aged gar-
lic extract (AGE), pickled fermented and unfermented garlic, and
pastes (73). An overview of the various processed forms of Allium
products is shown in Figure 4.

The study on the chemical transformation of single organosul-
fide would shed some light on the key reaction principles and
the factors governing the transformation in complex food matrix.
Sulfoxides are known to undergo β-elimination reaction upon
heating and this property has been applied in organic synthesis
of olefins sulfenic acids as by-products (74). In principle, ASCOs
can form sulfenic acid through thermal elimination perhaps at
higher temperature cooking in food matrix. However, this has not
been reported in the literature yet. Instead, the focus is on alli-
inase catalyzed β-elimination reaction at room temperature. The
resulting sulfenic acid quickly dehydrates to form allicin, which
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Tocmo et al. Cardioprotective roles of dietary organopolysulfides

Table 2 | Relative abundance of organopolysulfides from common

dietary sources.

Organosulfur compound Source Concentration

(GC% area)

ACYCLIC DISULFIDE

Diallyl disulfide Garlic 13.071,

29.102, 28.403

Chinese chive 0.704

Dipropyl disulfide Onion 1.185

Shallot 4.166

Scallion 8.817, 9.798

Welsh onion 0.477, 4.288

Chinese chive 5.504

Dimethyl disulfide Garlic 2.203

Shallot 1.996

Scallion 0.047, 0.248

Welsh onion 0.047, 0.788

Rakkyo 15.004

Chinese chive 7.304

Diethyl disulfide Durian 5.159, 2.1710

Allyl methyl disulfide Garlic 1.720, 9.103

Rakkyo 39.304

Chinese chive 4.804

Methyl propyl disulfide Garlic 0.203

Onion 1.075

Shallot 3.596

Scallion 0.787, 1.418

Welsh onion 0.597, 2.768

Rakkyo 1.304

Chinese chive 5.504

Methyl ethyl disulfide Durian 0.259, 0.2510

Ethyl propyl disulfide Durian 2.119

Methyl 1-propenyl disulfide

(cis/trans)

Garlic 0.402

Onion 0.725

Shallot 8.006

Scallion 0.027, 1.518

Welsh onion 5.917

Rakkyo 2.908

Chinese chive 2.404

Ethyl 1-propenyl disulfide Rakkyo 1.704

Chinese chive 3.704

Allyl 1-propenyl disulfide

(cis/trans)

Rakkyo 9.504

Chinese chive 2.404

Propyl 1-propenyl disulfide

(cis/trans)

Shallot 7.226

Scallion 3.967, 4.728

Welsh onion 0.207, 0.788

Chinese chive 6.404

ACYCLICTRISULFIDE

Diallyl trisulfide Garlic 11.491, 37.302,

20.403

Rakkyo 0.904

Chinese chive 0.404

Organosulfur compound Source Concentration

(GC% area)

Dimethyl trisulfide Garlic 0.202, 2.703

Onion 0.435

Shallot 18.816

Scallion 0.177, 1.758

Welsh onion 0.287, 6.148

Rakkyo 12.604

Chinese chive 6.04

Dipropyl trisulfide Shallot 5.556

Scallion 0.797

Welsh onion 1.818

Chinese chive 6.004

Durian 4.7710

Diethyl trisulfide Durian 2.809, 21.1710

Allyl methyl trisulfide Garlic 10.402, 17.503

Rakkyo 4.504

Chinese chive 3.404

Methyl propyl trisulfide Shallot 19.936

Scallion 0.287, 12.758

Welsh onion 0.917, 12.978

Chinese chive 9.904

Ethyl methyl trisulfide Rakkyo 1.104

Chinese chive 0.204

Methyl 1-propenyl trisulfide

(cis/trans)

Onion 0.825

Shallot 4.856

Scallion 0.887, 8.398

Welsh onion 1.437, 3.568

rakkyo 1.304

Chinese chive 2.904

Propyl 1-propenyl trisulfide Shallot 9.976

Scallion 0.107, 6.598

Welsh onion 4.037, 2.948

Chinese chive 7.704

ACYCLICTETRASULFIDE

Dimethyl tetrasulfide Scallion 0.547, 0.858

Welsh onion 0.367, 2.158

Rakkyo 1.104

Chinese chive 3.204

Diallyl tetrasulfide Garlic 3.002, 0.703

Propyl 1-propenyl tetrasulfide Scallion 0.498

Welsh onion 0.248

Dipropyl tetrasulfide Scallion 0.157, 1.118

Welsh onion 2.007, 0.828

Chinese chive 1.004

Allyl propyl tetrasulfide Chinese chive 1.304

CYCLIC POLYSULFIDES

3-Vinyl-[4H]-1,2-dithiin Garlic 32.703

2-Vinyl-[4H]-1,3-dithiin Garlic 43.903

[3H,4H]-1,2-dithiin Garlic 1.002

(Continued)
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Table 2 | Continued

Organosulfur compound Source Concentration

(GC% area)

[2H,4H]-1,3-dithiin Garlic 1.852

3,5-Diethyl-1,2,4-trithiolane Garlic 1.001, 0.503

Welsh onion 11.398

Rakkyo 8.428

3,5-Dimethyl-1,2,4-trithiolane Durian 2.309, 3.9110

3-Ethyl-1,2-dithi-4-ene Onion 0.765

3-Ethyl-1,2-dithi-5-ene Onion 0.705

1,2,4-trithiolane Stinky bean 50.6811, 4.7512

1,3,5-trithiane Stinky bean 0.2112

1,2,4,5-tetrathiane Stinky bean 2.5311, 0.3412

1,2,4,6-tetrathiepane stinky bean 11.2111

1,2,3,5,6-pentathiepane stinky bean 3.7811

References: 1(38); 2(40); 3(37); 4(44); 5(61); 6(42); 7(50); 8(62); 9(59); 10(58); 11(63);
12(64).

GC Column used: 1SE-52 on Chromosorb B; 2,3HP-5MS capillary column; 4DB-1

fused silica capillary column; 5DB-5 fused silica column; 6SCOT Carbowax 20M;
7,8HP-1 fused silica capillary column; 9DB-FFAP column; 10SPB-5 column; 11SPB-1

column; 12TC-WAX capillary column.

may undergo β-elimination again to regenerate sulfenic acid and
2-propenethial. The latter leads to the formation of cyclic sufides
through Diels–Alder reaction (75). Formation of disulfides and
polysulfides from allicin was proposed to be mediated by acid
(76) (Figure 5). Beta-elimination from methyl substituted sul-
foxide, S-methyl-l-cysteine sulfoxide, were shown to give rise to
primarily dimethyl disulfides, which are responsible for the char-
acteristic flavors of Alliums (18). Cyclic sulfides from stinky beans
are not as common. Chemically, they are likely to be formed
from formaldehyde and hydrogen sulfide followed by oxidation.
In biological system, their formation mechanisms remain to be
elucidated (63–65).

In home cooking,cloves or whole onions are often cut into small
pieces or crushed into pastes. Biotransformation of organosul-
fides in Alliums begins when cytoplasmic ACSOs are released and
mixed with the vacuolar alliinase. When garlic cloves or onion
are cooked as whole, deactivation of the alliinase would limit the
transformation of ACSOs, whereas fresh macerates of garlic or
onion would have high contents of thiosulfinates. Thiosulfinates
were found to be present in Allium homogenate with stability
lasting for 26 h under room temperature, except for considerable
losses observed in those represented by MeCH=CHS(O)SR and
MeS(O)SMe (60). Thiosulfinates can decompose to generate other
form of organosulfides (i.e., linear polysulfides) (15). This decom-
position is greatly affected by typical processing parameters such
as temperature, pH, and storage time (77, 78). Commercial Allium
products are available in the form of macerates (e.g., crushed gar-
lic in oil) or homogenates, but the more commonly available ones
are freeze-dried powder, essential oil, or cloves in fermented or
acidified brine (11, 79). In garlic or onion essential oils, thermal
decomposition of thiosulfinates generates various mono-, di- and
trisulfides as a result of different distillation processes (11, 13).

FIGURE 3 | Cyclic organopolysulfides from stinky bean.
1, 1,2,4-trithiolane; 2, 1,3,5-trithiane; 3, 3,5-dimethyl-1,2,4-trithiolane;
4, 1,2,4,5-tetrathiane; 5, 1,2,4,6-tetrathiepane; 6, 1,2,4,5-tetrathiocane;
7, 1,2,3,5,6-pentathiepane (lenthionine); 8, 1,2,3,4,5,6-hexathiepane;
9, 1,2,4,5,7,8-hexathionane.

Indeed, GC-MS analysis of Allium essential oil has revealed pre-
dominance of mixed polysulfides (Table 1). Essential oils from
Alliums are highly valued for their medical and biological func-
tions because of their contents of organopolysulfides, including
DADS, DATS, allyl methyl trisulfide, diallyl tetrasulfide in gar-
lic distilled oil and dipropyl disulfide, dipropyl trisulfide, methyl
propenyl disulfide, and methyl propyl trisulfide in distilled onion
oil (11). An overview of the organosulfide transformations in Alli-
ums as affected by various processing conditions is illustrated in
Figure 6.

Aside from distilled oils, powdered form of garlic or onion is
widely sold in the market. Freeze-drying is a major processing step
employed in making this product. Since cloves or whole onions
are typically used during freeze-drying, tissues remain intact;
hence, hydrolysis of ACSOs by alliinase may not occur. Therefore,
the powder basically has similar content of ACSO profile as the
fresh ones. Freeze-drying of high-pressure processed (HPP) onion
resulted in variable effects on the concentrations of major poly-
sulfides (80). Significant decreases (P < 0.05) in dipropyl disul-
fide (59–82%), dipropyl trisulfide (62–85%), and trans-propenyl
propyl disulfide (38–65%) were observed, retaining the levels
of dimethyl trisulfide and methyl 1-propenyl disulfide. In our
recently published work, we found that freeze-drying preserved
most of the individual organosulfides in shallot, although total
organosulfur compounds decreased due to reduction in the con-
centrations of only a few compounds (52). Moreover, freeze-
drying showed retention of polysulfides comparable with other
drying methods (air- and over-drying) (40). These observations
indicate that freeze-drying is a good alternative method in produc-
ing dried Allium products with comparable polysulfide contents
as those of the fresh.
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Tocmo et al. Cardioprotective roles of dietary organopolysulfides

FIGURE 4 | Overview of the different processing methods for Allium products.

FIGURE 5 | Proposed mechanism of chemical transformation from ACSO to organosulfides through elimination and acid-mediated nucleophilic
substitution reactions.

Other drying methods have also been shown to have direct
effects on the organosulfides of different Allium species. The
effects of microwave drying and cabinet drying on the volatile
components of hydrodistilled oil derived from garlic powder have
been compared (81). DADS and diallyl tetrasulfide increased with
both drying methods, however, DATS and allyl methyl trisul-
fide decreased, with microwave drying showing greater reduction.
The observed reduction of polysulfides with microwave drying
can be attributed to the effect of heat generated that might have
driven off the volatiles and deactivated alliinase. It has been previ-
ously demonstrated that heating at 80°C for 10 min can partially
deactivate alliinase (82).

The effect of long-term frozen storage (−20°C) of leek slices
showed significant reduction of 14 sulfur compounds after
12 months (45). Some polysulfides including, propyl (E)-propenyl
di- and trisulfides and dipropyl disulfide, increased after 2 weeks
but compounds such as dimethyl disulfide and 2-propenyl disul-
fide were not detected after 4–6 months. The increase in con-
centration after 2 weeks of frozen storage implies that alliinase
maintains its catalytic activity in sliced leeks even during 2 weeks
of freezing.

Due to the sensitivity of alliinase to heat, boiled Alliums are
expected to have no heat sensitive thiosulfinates, which have
their purported bioactivity. For instance, the loss in the in vitro
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FIGURE 6 | Overview of the transformations of organosulfur compounds in Alliums during processing.

anti-aggregatory activity (IVAA) of garlic was suggested to be due
to the sensitivity of thiosulfinates to heat after 10 min of boiling
(100°C) (83). Similar results were observed in onion thiosulfi-
nates. Boiling for 46 min completely suppressed IVAA, which the
author correlates with the decrease in thiosulfinates (84). Mini-
mal duration of boiling (<3 min) may preserve thiosulfinates as
indicated by a maintained IVAA of both onion and garlic (83,
84). In another study, heat treatment by microwave (500 W) and
convection oven (200°C) generally decreased thiosulfinate content
as indicated by a reduction in IVAA (78). However, the extent to
which these antiplatelet agents are destroyed varied depending on
the method (whole, quarters, and crushed) of sample preparation
with whole showing longer retention of IVAA (after 30 min) as
compared to quarters (20 min) and crushed samples (10 min).

Among the Allium products in the market, there appears to
be a fair acceptance of pickled blanched garlic, which comes as
either fermented or unfermented. The main step in the process
is blanching (90°C) of garlic cloves, which may deactivate alli-
inase and, therefore, have direct implication in the formation of
other organosulfur compounds. The next step is brining whereby

garlic cloves are immersed in an acidified brine containing lac-
tic acid (85). Fermented pickled garlic involves subjecting the
blanched garlic cloves to lactic acid bacteria fermentation, typi-
cally Lactobacillus plantarum or Lactobacillus pentosus (86). The
final pH of the brine is around 3.9 with a titratable acidity of
1.2% (as lactic acid) (86). It was found that only SAC and GSAC
slightly decreased after blanching (79). Therefore, blanching for
5 min is not that detrimental to the major OSC precursors in gar-
lic such as alliin. However, after pickling and fermentation, the
contents of alliin, isoalliin, and cycloalliin significantly decreased
and became even much lower (23–28% loss) after 1 year of stor-
age at refrigerated temperature (79). The blanching step is carried
out mainly to deactivate alliinase. Consequently, the contents of
oil-soluble polysulfides will be impacted by blanching. Pickling
and fermenting garlic may eliminate the pungent flavor brought
about by formation of thiosulfinates. Flavor improvement using
these processing techniques could be useful as a marketing strategy.
However, these processing methods may have critical implications
on the formation of other bioactive organosulfur compounds in
Alliums.
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The sensitivity of organosulfides to processing methods used
pose a challenge to processing Alliums so that the end products
have optimal bioactive organosulfides. This would require research
work that can delineate the structure and activity relationship
through mechanistic studies.

ACTION MECHANISMS OF POLYSULFIDES: AS H2S DONORS
Perhaps the most interesting and promising aspects of dietary
organosulfur compounds are their potentials to be precursors of
hydrogen sulfide (H2S), a colorless, flammable, and toxic gas with
the characteristic foul odor of rotten eggs. For quite a long time,
H2S attracted attention mainly because of its toxicity, however,
in the past decades H2S has been found as a gaseous signaling
molecule, which plays important roles in many physiological and
pathological conditions (87). H2S is the third and newest mem-
ber of gasotransmitter family, along with nitric oxide (NO) and
carbon monoxide (CO) (88, 89).

Since the discovery that endogenous H2S selectively enhance
N -methyl-d-aspartate (NMDA) receptor (a glutamate receptor
controlling synaptic plasticity and memory function) mediated
response in 1996 (90), tremendous progress has been made in the
understanding of H2S physiology. H2S is associated with a wide
yet still expanding range of physiological events – their cardio-
vascular benefits attracting the most attention (87, 91). The first
paper concerning the cardiovascular effect of H2S was published
in 1997 (92), in which H2S was found to induce smooth mus-
cle relaxation in vitro. Four years later it was reported that the
H2S was a KATP channel activator, which was responsible for the
vasorelaxation effect in vivo (93). Since then, the beneficial effects
of H2S have been shown in many other studies (94). Hydrogen sul-
fide dilates blood vessel (95),protects against ischemia-reperfusion
injury in myocardium (96), protects against heart failure by reduc-
ing oxidative stress, increasing myocardial vascular density, and
preserving mitochondrial function (97). Furthermore, H2S pre-
vents atherosclerosis by reducing smooth muscle cell proliferation
and inhibiting adhesion molecule expression (98).

Hydrogen sulfide is produced endogenously in mammalian tis-
sues mainly by enzymatic metabolism of l-cysteine. Currently,
four enzymes, including cystathionine γ-lyase (CSE), cystathion-
ine β-synthase (CBS), 3-mercaptopyruvate sulfur transferase (3-
MST), and cysteine aminotransferase (CAT) have been found to
be involved in its biological production (87, 99, 100). CSE and CBS
are believed to be the major enzymes responsible for endogenous
H2S synthesis. CSE has been reported in various organs including
kidney, liver, uterus, and placenta but it is predominantly found in
the vasculature and liver; while CBS is expressed in the liver and
central nervous system.

Some non-enzymatic pathways that lead to H2S generation
also exist, for example, the reaction between naturally occurring
polysulfides and biological thiols, mainly through thiol-disulfide
exchange reactions. The generation of H2S from the reaction
between glutathione and calicheamicin γ1 (a natural antitumor
agent with an allyl trisulfide group) was reported in 1994, when
Myers et al. were trying to elucidate how calicheamicin γ1 initi-
ated the DNA cleavage process (101). H2S was also generated upon
the reaction between glutathione and 7-methylbenzopentathiepin,
an analog of naturally occurring antibiotics varacin (102),

however the H2S generation in these studies attracted little
attention.

In 2007, Benavides et al. reported that DATS and DADS can
be converted to H2S by human red blood cells or rat aorta ring,
and the H2S produced exerts a vasorelaxant effect on rat aorta
(103). Hence, they suggested that H2S mediates the vasoactivity of
garlic. They also demonstrated that H2S production was through
the reaction between DADS/DATS and glutathione. Since the con-
ventional thiol-disulfide exchange between DADS and GSH does
not produce H2S, they proposed that DADS undergo nucleophilic
substitution at α carbon, producing the key intermediate allyl
perthiol, which subsequently reacts with GSH to release H2S (103).
They also found that the H2S releasing activity of organosulfurs
from garlic is higher for those with allyl substituents and increased
with increasing number of tethering sulfur atoms (103). Another
study found that DATS treatment can significantly increase the
H2S level, reduce the infarct size, and preserve cardiac function in
mice after myocardial ischemia-reperfusion. This study substanti-
ated the notion that DATS may be cardioprotective via H2S-related
pathway (104).

Besides these polysulfide H2S donors, another group of
organosulfur compounds that exert cardioprotective effects
through H2S mediated pathways are cysteine derivatives, including
SAC and its synthetic analog S-propargyl cysteine (R)-2-amino-
3-(2-propynylthio) propanoic acid, SPRC. Instead of releasing
H2S by themselves or by reacting with other compounds, they
are believed to function by mediating endogenous H2S produc-
tion. Increased CSE gene expression, elevated plasma H2S level
and decreased mortality, infarct size, and ventricular hypertrophy
were observed in acute myocardial infarction mice treated with
SAC (105) or SPPC (106). The abolishment of these beneficial
effects by a CSE inhibitor propargylglycine substantiated that their
cardioprotective functions are H2S dependent.

Although many organosulfur compounds have been found
from dietary source, only a few of them have been studied for
H2S releasing activity. From a chemical point of view, polysul-
fides with more than two tethering sulfur atoms should be able to
release H2S through thiol-disulfide exchange with GSH. Research
on the H2S releasing activity by these compounds might provide
new explanations for their purported cardiovascular benefits, and,
therefore, warrants in-depth investigation.

ORGANOPOLYSULFIDES AS REACTIVE OXYGEN SPECIES
SCAVENGERS
The implication of reactive oxygen species (ROS) in the devel-
opment of CVDs has been shown in numerous studies in the
past decades. The most important ROS in cardiovascular sys-
tem are superoxide anion radical (O�−

2 ) and hydrogen peroxide
(H2O2). O�−

2 is produced in vascular cells by a wide variety of
oxidases, including the predominant NADPH oxidases, as well
as lipoxygenases, xanthine oxidase, cytochrome P450, uncoupled
mitochondrial electron transfer chain, and uncoupled endothelial
nitric oxide synthase (eNOS) (107). O�−

2 undergoes dismuta-
tion by superoxide dismutase (SOD) to generate H2O2. Super-
oxide anion rapidly would react with NO to generate perox-
ynitrite (ONOO−). This reaction consumes NO and reduces it
activity in maintaining healthy cardiovascular functions. On the
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contrary, the resulting product, ONOO−, is an important lipid
oxidation mediator that will lead to the oxidation of low-density
lipoprotein (LDL), forming strong proatherogenic oxidized LDL
(ox-LDL) (108). Besides, ROS contributes to cardiovascular injury
through the modulation of multiple cellular responses, includ-
ing monocyte adhesion, platelet aggregation, vascular smooth
muscle cell apoptosis, migration and proliferation, inflamma-
tory gene expression, and dysfunction of endothelium dependent
relaxation (109).

Sulfur atoms in dietary organosulfides are electron rich and
ready to donate electrons in a redox reaction; therefore, they
are supposed to be good oxidant scavengers. AGE and garlic oil
containing high amounts of organosulfurs have been shown to
scavenge ROS and prevent damage caused by oxidative stress
(110–113). However, very limited reports studied the scavenging
activities of individual organosulfur compounds to certain types
of free radicals. Those reported works are inconsistent and incom-
parable likely because different evaluating methods and sample
concentrations were employed. In addition, nearly all of the studies
were in vitro tests carried out in simple chemical systems because
of the lack of analytical methods that can selectively target a spe-
cific free radical in vivo. But the general trend is, SAC, the water
soluble, major organosulfur compound in AGE, possess strong
scavenging activities against peroxynitrite (114, 115) and hydroxyl
radical (114–116), but has negligible effects toward O�−

2 or H2O2

(114, 116). However, the major lipophilic polysulfides in garlic
oil DADS and DATS can inhibit O�−

2 as much as SOD/ascorbic
acid can (114) and their activity increases with the number of
sulfur atoms; besides, they are good ONOO− scavengers but have
very limited effects on hydroxyl radical.or H2O2 (114). The potent
hypochlorite acid scavenging effect of SAC, DADS, and DATS as
well as some other thioallyl compounds such as allyl mercaptan,
allyl methyl sulfide, dipropyl sulfide, and allicin has been reported
in by several studies (115, 117, 118). Allicin is a good scavenger
against O�−

2 , OH·, and ONOO− (116, 117), but their activity
seems to be attributed to the sulfenic acid formed from the copper
elimination of allicin (119).

The cardioprotective effects of organosulfur compounds
against oxidative damage in cell lines or in animals have been
shown in several studies. SAC, which was able to inhibit LDL oxi-
dation, was also reported to dose-dependently inhibit the H2O2

formation in ox-LDL challenged human umbilical vein endothelial
cells (HUVEC) (120). Similar protective effect was also found in
bovine pulmonary artery endothelial cells (121). DATS and DADS
are reported to decrease the cellular peroxide level in ox-LDL-
treated HUVEC cells by as much as 50 and 43%, respectively (122).
DATS was shown to decrease the ROS and O�−

2 levels in H9c2 cells
induced by high-glucose treatment, and protect cardiac myocytes
from apoptotic cells death in culture medium as well as in diabetic
rats (123) through ROS related pathways. Similar effects were also
found in rats treated with DADS and garlic oil (124). However, it
needs to be pointed out that these protective effects against ROS
damage observed in cell lines or in experimental animals might
come from the combination of a wide range of physiological path-
ways such as enhancement of antioxidant enzyme expression or
inhibition of peroxidation enzymes production activity, instead of
direct free radical scavenging.

ENZYME ACTIVATION/INACTIVATION AND GENE
REGULATION
Recently, a number of studies have suggested that the beneficial
effects of organosulfides in cardiovascular health are associated
with their ability to modulate antioxidant genes and enzyme
expression (Table 3). In this section, we discuss these mechanisms
and present an overview of the important biochemical path-
ways associated in the cardioprotective effects of organosulfides
(Figure 7).

Nrf2 ACTIVATION AND ANTIOXIDANT GENE MODULATION
Oxidative stress, viewed at the molecular level, is linked to the
activities of nuclear factor-E-2-related factor (Nrf2) in the nucleus,
which upregulates genes that encode for the expression of antiox-
idant enzymes (132). It has been demonstrated that Nrf2 coor-
dinates the expression and upregulation of various antioxidant
enzymes, including heme oxygenase-1 (HO-1), glutathione S-
transferase (GST), and SOD (133, 134). These enzymes collectively
protect cardiomyocytes from oxidative stress (135, 136). For exam-
ple, SOD-1, one of the three SOD, works together with catalase
to detoxify superoxides and hydrogen peroxide (H2O2) (137).
Induced upregulation or downregulation of SOD-1 genes and
expression of the antioxidant enzyme SOD-1 are often evaluated
as an indicator of ROS stress.

The induced Nrf2-mediated antioxidant gene activation by
DATS is linked to several pathways, including MAPK, PKC, and
PI3K/AKT (138). Tsai et al. showed that the cytoprotective effect
of DATS against oxidative stress in high-glucose exposed neona-
tal cardiomyocytes and streptozotocin-induced diabetic rats is by
activation of the P13K/Akt/Nrf2 pathway (125). Expression of
Nrf2 proteins was upregulated by DATS in a time-dependent man-
ner resulting in a dose-dependent improvement of the expression
of antioxidant genes, including HO-1 and SOD2. Moreover, PI3K-
specific SiRNA and Nrf2-specific SiRNA transfected cells showed
normal levels of superoxide than those administered with DATS
alone, indicating that the antioxidative effect of DATS is suppressed
by Nrf2 and PI3K SiRNA, further suggesting that the cytoprotec-
tive effect of DATS against high-glucose-induced oxidative stress
is by the activation of P13K/Akt/Nrf2 pathway (125). The ability
of DATS to induce Nrf2 activation was further demonstrated in a
study that specifically looked at Keap1 cysteine 288 residue, one
of the cysteine residues that is essential in regulating Nrf2 activa-
tion (139). It was found that mono-allyl mono-sulfide may attach
to the Keap1 peptide fragment containing Cys288, indicating that
DATS specifically interacts with this cysteine residue accounting
for its ability to induce Nrf2 activation (139). Recently, raw garlic
homogenate administration to fructose fed-diabetic rats showed
increased myocardial Nrf2 expression, along with increased Mn-
superoxide dismutase (Mn-SOD) gene expression and, elevated
myocardial SOD, catalase, and glutathione peroxidase (GPx) activ-
ities (126). In addition to enhanced antioxidant gene and enzyme
expressions, this study also showed that garlic homogenate can
increase the levels of phospho-PI3K and phospho-AKT, indicating
that PI3K/AKT pathway plays a major role in cardiac hypertrophy
and oxidative stress by activating Nrf2, which, in turn regulates the
activation of antioxidant defense enzymes during cardiovascular
complications (126). In another study, administration of garlic oil
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Table 3 | In vivo and in vitro studies showing the effect of organosulfides on enzyme and gene regulation and the underlying mechanisms.

Organosulfide Study Enzyme/Gene Experimental object Dose Organosulfide

preparation

Mechanism Reference

DATS In vitro Antioxidant enzymes

(HO-1, SOD-1, SOD-2)

H9c2 high-glucose

cardiomyoblast cells

10 µM Garlic oil (40%

DATS)

Upregulate the P13K/Ak/Nrf2 pathway; activate

antioxidant enzyme system

(125)

In vivo Genes (HO-1, SOD-2,

yGCS)

Streptozotocin-induced

diabetic male Wistar

rats

Allicin, alliin, S-

allyl-l-cysteine,

deoxyalliin,

vinyldithiin

In vivo Myocardial catalase,

myocardial SOD,

glutathione peroxidase

(GPx) MnSOD gene

Sprague-Dawley rats 250 mg−1kg−1day−1 Raw garlic

homogenate

Activation of endogenous antioxidant defenses and

reduction of oxidative stress and cardiac

hypertrophy as a result of increased myocardial

Nrf2 expression; Increased Mn-SOD expression,

myocardial SOD, catalase, and GPx

(126)

DADS, DATS In vivo SOD-1 gene Weanling male Wistar

rats

40 mg−1kg−1 BW DADS

and DATS; 100 mg−1kg−1

BW GO

Garlic oil and pure

compounds

Increased expression of SOD-1 preserved

antioxidant action against oxidative stress during

diabetic cardiomyopathy

(124)

DATS In vivo Superoxide dismutase

(SOD), glutathione

peroxidase (GPx)

Obese diabetic rat;

high-glucose-induced

endothelial cell

Animal:

5.0 mg−1kg−1day−1 Cell:

25-100 µmol/L

Pure compound Elevated the activities of SOD and GSH-Px in

mitochondrium

(127)

DATS In vitro c-Jun N-terminal kinases

(JNKs)

H9c2 cardiomyoblast

cells; neonatal

cardiomyocytes

1–10 µM Garlic oil (40%

DATS)

Suppression of ROS-stimulated downstream

JNK/NF-κB signaling

(123)

DATS, DADS In vitro Endothelial NOS (eNOS) LDL-treated HUVEC 200 µM DADS 50 µM

DATS

Pure compounds Preserved the interaction of eNOS with calveolin-1;

suppressed the reduction of the cellular eNOS

protein by ox-LDL

(128)

Not specified In vivo Myocardial catalase, GPx,

mitovchondrial enzymes

i.e., citrate cynthase and B

hydroxyacyl CoA

dehydrogenase

Male Swiss albino mice 250–500 mg−1 kg−1day−1 Saline and

aqueous garlic

homogenate

Garlic homogenate preserved expression of

antioxidant enzymes and attenuated

isoproterenol-induced cardiac changes. GO

preserves activity of antioxidant defense enzymes

and their interaction with NO pathway

(129)

DATS In vivo eNOS MI/R mice model 200 µ/g Pure compound Activates eNOS and improved NO bioavailability (104)

Allicin In vivo SOD Wistar rats 6–10 mg−1 kg−1day−1 Pure compound Increase in SOD helps inhibit lipid peroxidation by

hyperhomocysteinemia and regulates the excretion

and balance of plasma endothelin and NO

(130)

SACS In vivo SOD, catalase Female Wistar albino

rats

0.111–0.222 mg−1 kg−1

SACS; 125–250 mg−1 kg−1

garlic homogenate

Fresh garlic

homogenate and

pure compound

Restoring SOD and catalase to normal levels (131)
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FIGURE 7 | Overview of cardioprotective effect of organosulfides via enzyme and gene regulations.

and pure compounds of DADS and DATS increased level of SOD-
1 expression and enhanced the PI3K/AKT signaling in diabetic
rats (124).

MODULATION OF ENDOTHELIAL NITRIC OXIDE SYNTHASE
Oxidized LDL is an important factor in the pathogenesis of ath-
erosclerosis (108). Ox-LDL promotes vascular dysfunction in var-
ious mechanisms, one of which is its inhibition of eNOS activity
resulting in the alteration of the NO-regulated responses in the
endothelial cells (140, 141). Organosulfur compounds from garlic
are involved in the modulation of eNOS activity and are respon-
sible for garlic’s anti-atherogenic effect. Lei et al. studied garlic’s
role against ox-LDL in HUVEC and found that the protective role
of DADS and DATS in eNOS activation and NO production is
associated with the PI3K/PKB pathway (128). Ox-LDL was found
to decrease PKB and eNOS phosphorylation but this effect was
abolished by DADS and DATS pretreatment along with restored
production of NO. Moreover, treatment with PI3K inhibitor wort-
manin attenuated the protective effect of DADS and DATS in eNOS
activation and recovery of NO production (128). Serine phospho-
rylation and blocking of eNOS activation may result from the
inhibition of PI3K/PKB pathway or from PKB site mutation on
the eNOS protein (at serine 1177) signifying the importance of
PI3K/PKB pathway in regulating eNOS activity (142). In another
study, garlic homogenate (250 mg kg−1 day−1 for 30 days) treat-
ment on isoproterenol-induced myocardial infarction mice model
relieved oxidative stress by significantly increasing release of GPx
and catalase activities (129). This study also demonstrated the pos-
itive association of NOS activation, NO production, and antioxi-
dant enzyme activity protection with garlic treatment suggesting
that the maintenance of redox balance through protecting the

activation of NOS and, hence, production of NO, explain garlic’s
protective role against myocardial damage. Moreover, eNOS acti-
vation was demonstrated by Predmore et al., showing that DATS
treated rat myocardial tissue had an increased eNOS phosphory-
lation at Ser1177 and elevated levels of NO metabolites, including
nitrite and nitrate (104).

MODULATION OF ANTIOXIDANT ENZYMES AND INHIBITION OF NADPH
OXIDASE ACTIVITY
The protective effect of DATS against hyperglycemia-induced
oxidative stress was demonstrated in an in vivo model of obese dia-
betic rats and in high-glucose-treated endothelial cells (127). The
reduction of mitochondrial oxidative stress was suggested to be the
action mechanism because attenuation of endothelial cell impair-
ment was observed along with enhanced activities of SOD and
GPx in the mitochondria upon administration of DATS. SOD and
GPx are antioxidative enzymes with detoxifying actions against
mitochondrial ROS (143). DATS attenuated the hyperglycemia-
induced NADPH oxidase and its related ROS production in the
mitochondria mainly by preserving but not upregulating the
activities of SOD and GPx (127). In another study, the effect
of low (6 mg kg−1 day−1) and high (10 mg kg−1 day−1) allicin
doses was demonstrated in hyperhomocysteinemia-induced vas-
cular endothelial dysfunction animal model (130). Hyperhomo-
cysteinemia is another cause of oxidative stress that may lead to
vascular endothelial dysfunction and injury (144, 145). Formation
of H2O2 may result from the self-oxidation of homocysteine at the
active free sulfhydryl group. Homocysteine level in rats with hyper-
homocysteinemia was reduced by treatment with allicin along with
an increase in SOD activity (130). Similar results were demon-
strated in another study employing fructose-induced hypertensive

www.frontiersin.org February 2015 | Volume 2 | Article 1 | 13

http://www.frontiersin.org
http://www.frontiersin.org/Food_Chemistry/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tocmo et al. Cardioprotective roles of dietary organopolysulfides

FIGURE 8 | Hydrogen sulfide as the common denominator for bioactivity of dietary organosulfur compounds.

rat models (131). SOD and catalase were restored to normal lev-
els after treatment with S-allyl cysteine sulfoxide (SACS) isolated
from fresh garlic homogenate.

In a recent paper, expression of p22phox and gp91phox,
the subunits comprising the membrane-bound component
cytochrome b558, and the subunits responsible for the activity of
NADPH oxidase increased along with the production of super-
oxide free radicals (O�−

2 ) in high-glucose-treated H9c2 cells but
was attenuated by treatment with DATS (1–10 µM). Production
of ROS by NADPH oxidase is related to the activation of c-Jun
N-terminal kinases (JNK) signaling and the transcriptional factor
NF-κB (146). Activation of JNK leads to their translocation into
the nucleus where they phosphorylate transcription factors includ-
ing c-Jun and p53 that are involved in the regulation of apoptosis
(147, 148). Treatment with DATS (1–10 µM) dose-dependently
inhibited the high-glucose activation of JNK, which was suggested
to be associated with the inhibition of NADPH oxidase-regulated
ROS generation in H9c2 cells and neonatal primary cardiomyocyte
(123). Treatment with DATS (1–10 µM) inhibited the nuclear
translocation of NF-κB in H9c2 cells and reduced the protein
levels of NF-κB in streptozotocin-induced diabetic rats (40 mg/kg
BW DATS) (123). Hyperglycemia is not only known to induce
ROS generation but also inflammation, which could activate tran-
scription regulators, including NF-κB, which, in turn, regulates
intracellular apoptosis (149, 150). Treatment with DATS pro-
tects high-glucose-treated neonatal cardiomyocytes and H9c2 cells
from ROS damage by inhibiting the activation of JNK/NF-κB
pathways (123).

CONCLUSION
There are significant scientific research papers suggesting that
dietary organosulfurs have broad range of bioactivity including
cancer chemoprevention and promotion of cardiovascular health.
While there is strong evidence to suggest that isothiocyanates may
be the active form in cruciferous vegetables for their cancer chemo-
preventive property, the daily intake of such compounds could be
very low because cooking of these vegetables will prevent their
formation. For other organosulfides, it remains a challenge to

pinpoint the compounds responsible for their purported health
promoting effects. Allicin was considered as the active compo-
nents of garlic and has been used as a marker compound in garlic
supplement standardization. The null results from clinical trials
make us reconsider other potential compounds. The discovery of
DATS and DADS as donors of hydrogen sulfide opens up a new
avenue for establishing evidence of organosulfide action mecha-
nisms on promoting cardiovascular health. It remains to be seen
whether H2S donating activity can be the unifying mechanism
for dietary organopolysulfides to exert their health benefits. H2S
is a “double-edged sword” as it is toxic at high concentrations.
Rapid burst of H2S from organosulfides may lead toxic effects
in vivo but it may be needed for their anti-microbial activity.
For cardiovascular health, slow (or controlled) release of H2S
from dietary polysulfides would be desired. There are many other
organosulfides in our diet that have not been investigated yet.
The outstanding ones include cyclic polysulfides founds in stinky
beans and mushrooms. While these polysulfides are important
flavoring molecules (sometime smelly!), little is known on their
health promoting activity. The high sulfur loading of them (i.e.,
compounds shown in Figure 3) would make them ideal reservoirs
of H2S, if they can be biotransformed to release H2S in human
body. Research work in the future shall be focused on establishing
the structure and H2S releasing potentials and rates of individ-
ual dietary polysulfides in cell line and animal model systems.
Since processing conditions can greatly alter the polysulfide pro-
files in foods, an H2S releasing activity guided optimization of
processing conditions would lead to optimal effectiveness of sup-
plements or functional foods based on Alliums and stinky beans
for their cardioprotective effects (Figure 8). The research is just
at the beginning on taming the pesky dietary organosulfides for
human health promoting and disease prevention.

ACKNOWLEDGMENTS
The authors thank the Agency of Science, Technology and Research
(A*Star) of Singapore for financial support (Grant Number: 112
177 0036) and the support of a Jiangsu Province Grant to NUSRI
for Food Science and Technology (platform2).

Frontiers in Nutrition | Food Chemistry February 2015 | Volume 2 | Article 1 | 14

http://www.frontiersin.org/Food_Chemistry
http://www.frontiersin.org/Food_Chemistry/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tocmo et al. Cardioprotective roles of dietary organopolysulfides

REFERENCES
1. WHO. Cardiovascular Disease. World Health Organization (2014). Available

from: <http://www.who.int/cardiovascular_diseases/en/>
2. Davison K, Coates AM, Buckley JD, Howe PRC. Effect of cocoa flavanols and

exercise on cardiometabolic risk factors in overweight and obese subjects. Int J
Obes (2008) 32:1289–96. doi:10.1038/ijo.2008.66

3. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific
opinion on the modification of the authorisation of a health claim related to
cocoa flavanols and maintenance of normal endothelium-dependent vasodi-
lation pursuant to Article 13(5) of Regulation (EC) No 1924/2006 following a
request in accordance with Article 19 of Regulation (EC) No 1924/2006. EFSA
J (2014) 12:3654. doi:10.2903/j.efsa.2014.3654

4. Tsai CW, Chen HW, Sheen LY, Lii CK. Garlic: health benefits and actions.
BioMedicine (2012) 2:17–29. doi:10.1016/j.biomed.2011.12.002

5. Moriarty RM, Naithani R, Surve B. Organosulfur compounds in can-
cer chemoprevention. Mini Rev Med Chem (2007) 7:827–38. doi:10.2174/
138955707781387939

6. Alvarez-Jubete L, Smyth TJ, Valverde J, Rai DK, Barry-Ryan C. Simultaneous
determination of sulphoraphane and sulphoraphane nitrile in Brassica veg-
etables using ultra-performance liquid chromatography with tandem mass
spectrometry. Phytochem Anal (2014) 25:141–6. doi:10.1002/pca.2480

7. Kassie F, Rabot S, Uhl M, Huber W, Qin HM, Helma C, et al. Chemo-
protective effects of garden cress (Lepidium sativum) and its constituents
towards 2-amino-3-methyl-imidazo[4,5-f]quinoline (IQ)-induced genotoxic
effects and colonic preneoplastic lesions. Carcinogenesis (2002) 23:1155–61.
doi:10.1093/carcin/23.7.1155

8. Rose P, Yen KW, Choon NO, Whiteman M. β-Phenylethyl and 8-
methylsulphinyloctyl isothiocyanates, constituents of watercress, suppress LPS
induced production of nitric oxide and prostaglandin E2 in RAW 264.7
macrophages. Nitric Oxide (2005) 12:237–43. doi:10.1016/j.niox.2005.03.001

9. Houghton CA, Fassett RG, Coombes JS. Sulforaphane: translational research
from laboratory bench to clinic. Nutr Rev (2013) 71:709–26. doi:10.1111/nure.
12060

10. Cui J, Li S. Inhibitors and prodrugs targeting CYP1: a novel approach in can-
cer prevention and therapy. Curr Med Chem (2014) 21:519–52. doi:10.2174/
09298673113206660277

11. Corzo-Martínez M, Corzo N, Villamiel M. Biological properties of onions and
garlic. Trends Food Sci Technol (2007) 18:609–25. doi:10.1016/j.tifs.2007.07.011

12. Gardner CD, Lawson LD, Block E, Chatterjee LM, Kiazand A, Balise RR, et al.
Effect of raw garlic vs commercial garlic supplements on plasma lipid concen-
trations in adults with moderate hypercholesterolemia: a randomized clinical
trial. Arch Intern Med (2007) 167:346–53. doi:10.1001/archinte.167.4.346

13. Rose P, Whiteman M, Moore PK,Yi ZZ. Bioactive S-alk(en)yl cysteine sulfoxide
metabolites in the genus Allium: the chemistry of potential therapeutic agents.
Nat Prod Rep (2005) 22:351–68. doi:10.1039/b417639c

14. Benkeblia N, Lanzotti V. Allium thiosulfinates: chemistry, biological properties
and their potential utilization in food preservation. Food (2007) 1:193–201.

15. Block E. The organosulfur chemistry of the genus Allium – Implications for
the organic chemistry of sulfur. Angew Chem Int Ed Engl (1992) 31:1135–78.
doi:10.1002/anie.199211351

16. Wafler U, Shaw ML, Lancaster JE. Effect of freezing upon alliinase activity in
onion extracts and pure enzyme preparations. J Sci Food Agric (1994) 64:315–8.
doi:10.1002/jsfa.2740640311

17. Manchali S, Chidambara Murthy KN, Patil BS. Crucial facts about health
benefits of popular cruciferous vegetables. J Funct Foods (2012) 4:94–106.
doi:10.1016/j.jff.2011.08.004

18. Kubec R, Drhová V, Velíšek J. Thermal degradation of S-methylcysteine and
its sulfoxide – important flavor precursors of Brassica and Allium vegetables. J
Agric Food Chem (1998) 46:4334–40. doi:10.1021/jf980379x

19. Kubec R, Svobodová M, Velíšek J. Gas-chromatographic determination of S-
methylcysteine sulfoxide in cruciferous vegetables. Eur Food Res Technol (2001)
213:386–8. doi:10.1007/s002170100384

20. Hamamoto A, Mazelis M. The C-S lyases of higher plants: isolation and proper-
ties of homogeneous cystine lyase from broccoli (Brassica oleracea var botrytis)
buds. Plant Physiol (1986) 80:702–6. doi:10.1104/pp.80.3.702

21. Marks HS, Hilson JA, Leichtweis HC, Stoewsand GS. S-methylcysteine sul-
foxide in Brassica vegetables and formation of methyl methanethiosulfinate
from brussels sprouts. J Agric Food Chem (1992) 40:2098–101. doi:10.1021/
jf00023a012

22. Kyung KH, Lee YC. Antimicrobial activities of sulfur compounds derived from
S-Alk(en)yl-l-cysteine sulfoxides in Allium and Brassica. Food Rev Int (2001)
17:183–98. doi:10.1081/FRI-100000268

23. Edmands WMB, Gooderham NJ, Holmes E, Mitchell SC. S-methyl-l-cysteine
sulphoxide: the Cinderella phytochemical? Toxicol Res (2013) 2:11–22. doi:10.
1039/c2tx20030a

24. Seigler DS. Plant Secondary Metabolism. Boston, MA: Kluwer Academic
(1998).

25. Griffiths DW, Macfarlanesmith WH, Boag B. The effect of cultivar,
sample date and grazing on the concentration of S-methylcysteine sulfox-
ide in oilseed and forage. J Sci Food Agric (1994) 64:283–8. doi:10.1002/jsfa.
2740640307

26. Kopsell DE, Randle WM, Eiteman MA. Changes in the S-alk(en)yl cysteine
sulfoxides and their biosynthetic intermediates during onion storage. J Am Soc
Hortic Sci (1999) 124:177–83.

27. Montaño A, Beato VM, Mansilla F, Orgaz F. Effect of genetic characteris-
tics and environmental factors on organosulfur compounds in garlic (Allium
sativum L.) grown in Andalusia, Spain. J Agri Food Chem (2011) 59:1301–7.
doi:10.1021/jf104494j

28. Fujiwara M, Itokawa Y, Uchino H, Inoue K. Anti-hypercholesterolemic effect
of a sulfur containing amino acid, S-methyl-l-cysteine sulfoxide, isolated from
cabbage. Experientia (1972) 28:254–5. doi:10.1007/BF01928671

29. Komatsu W, Miura Y, Yagasaki K. Suppression of hypercholesterolemia in
hepatoma-bearing rats by cabbage extract and its component, S-methyl-l-
cysteine sulfoxide. Lipids (1998) 33:499–503.

30. Delaha EC, Garagusi VF. Inhibition of mycobacteria by garlic extract (Allium
sativum). Antimicrob Agents Chemother (1985) 27:485–6. doi:10.1128/AAC.27.
4.485

31. Arora DS,Kaur J. Antimicrobial activity of spices. Int J Antimicrob Agents (1999)
12:257–62. doi:10.1016/S0924-8579(99)00074-6

32. Briggs WH, Xiao H, Parkin KL, Shen C, Goldman IL. Differential inhibition
of human platelet aggregation by selected Allium thiosulfinates. J Agric Food
Chem (2000) 48:5731–5. doi:10.1021/jf0004412

33. Iciek M, Kwiecien I, Włodek L. Biological properties of garlic and garlic-
derived organosulfur compounds. Environ Mol Mutagen (2009) 50:247–65.
doi:10.1002/em.20474

34. Lawson LD, Hughes BG. Characterization of the formation of allicin and other
thiosulfinates from garlic. Planta Med (1992) 58:345–50. doi:10.1055/s-2006-
961482

35. Amagase H, Petesch BL, Matsuura H, Kasuga S, Itakura Y. Intake of garlic and
its bioactive components. J Nutr (2001) 131:955S–62S.

36. Calvo-Gómez O, Morales-López J, López MG. Solid-phase microextraction-
gas chromatographic-mass spectrometric analysis of garlic oil obtained by
hydrodistillation. J Chromatogr A (2004) 1036:91–3. doi:10.1016/j.chroma.
2004.02.072

37. Kimbaris AC, Siatis NG, Daferera DJ, Tarantilis PA, Pappas CS, Polis-
siou MG. Comparison of distillation and ultrasound-assisted extraction
methods for the isolation of sensitive aroma compounds from garlic
(Allium sativum). Ultrason Sonochem (2006) 13:54–60. doi:10.1016/j.ultsonch.
2004.12.003

38. Sowbhagya HB, Purnima KT, Florence SP, Appu Rao AG, Srinivas P. Evalua-
tion of enzyme-assisted extraction on quality of garlic volatile oil. Food Chem
(2009) 113:1234–8. doi:10.1016/j.foodchem.2008.08.011

39. Li R, Chen WC, Wang WP, Tian WY, Zhang XG. Extraction of essential oils
from garlic (Allium sativum) using ligarine as solvent and its immunity activity
in gastric cancer rat. Med Chem Res (2010) 19:1092–105. doi:10.1007/s00044-
009-9255-z

40. Dziri S, Casabianca H, Hanchi B, Hosni K. Composition of garlic essential oil
(Allium sativum L.) as influenced by drying method. J Essent Oil Res (2014)
26:91–6. doi:10.1080/10412905.2013.868329

41. Lawson LD, Wang ZYJ, Hughes BG. Identification and HPLC quantitation of
the sulfides and dialk(en)yl thiosulfinates in commercial garlic products. Planta
Med (1991) 57:363–70. doi:10.1055/s-2006-960119

42. Wu JL, Chou CC, Chen MH, Wu CM. Volatile flavor compounds from shallots.
J Food Sci (1982) 47:606–8. doi:10.1111/j.1365-2621.1982.tb10133.x

43. Hanum T, Sinha NK, Guyer DE, Cash JN. Pyruvate and flavor develop-
ment in macerated onions (Allium cepa L.) by γ-glutamyl transpeptidase and
exogenous C-S lyase. Food Chem (1995) 54:183–8. doi:10.1016/0308-8146(95)
00027-G

www.frontiersin.org February 2015 | Volume 2 | Article 1 | 15

http://www.who.int/cardiovascular_diseases/en/
http://dx.doi.org/10.1038/ijo.2008.66
http://dx.doi.org/10.2903/j.efsa.2014.3654
http://dx.doi.org/10.1016/j.biomed.2011.12.002
http://dx.doi.org/10.2174/138955707781387939
http://dx.doi.org/10.2174/138955707781387939
http://dx.doi.org/10.1002/pca.2480
http://dx.doi.org/10.1093/carcin/23.7.1155
http://dx.doi.org/10.1016/j.niox.2005.03.001
http://dx.doi.org/10.1111/nure.12060
http://dx.doi.org/10.1111/nure.12060
http://dx.doi.org/10.2174/09298673113206660277
http://dx.doi.org/10.2174/09298673113206660277
http://dx.doi.org/10.1016/j.tifs.2007.07.011
http://dx.doi.org/10.1001/archinte.167.4.346
http://dx.doi.org/10.1039/b417639c
http://dx.doi.org/10.1002/anie.199211351
http://dx.doi.org/10.1002/jsfa.2740640311
http://dx.doi.org/10.1016/j.jff.2011.08.004
http://dx.doi.org/10.1021/jf980379x
http://dx.doi.org/10.1007/s002170100384
http://dx.doi.org/10.1104/pp.80.3.702
http://dx.doi.org/10.1021/jf00023a012
http://dx.doi.org/10.1021/jf00023a012
http://dx.doi.org/10.1081/FRI-100000268
http://dx.doi.org/10.1039/c2tx20030a
http://dx.doi.org/10.1039/c2tx20030a
http://dx.doi.org/10.1002/jsfa.2740640307
http://dx.doi.org/10.1002/jsfa.2740640307
http://dx.doi.org/10.1021/jf104494j
http://dx.doi.org/10.1007/BF01928671
http://dx.doi.org/10.1128/AAC.27.4.485
http://dx.doi.org/10.1128/AAC.27.4.485
http://dx.doi.org/10.1016/S0924-8579(99)00074-6
http://dx.doi.org/10.1021/jf0004412
http://dx.doi.org/10.1002/em.20474
http://dx.doi.org/10.1055/s-2006-961482
http://dx.doi.org/10.1055/s-2006-961482
http://dx.doi.org/10.1016/j.chroma.2004.02.072
http://dx.doi.org/10.1016/j.chroma.2004.02.072
http://dx.doi.org/10.1016/j.ultsonch.2004.12.003
http://dx.doi.org/10.1016/j.ultsonch.2004.12.003
http://dx.doi.org/10.1016/j.foodchem.2008.08.011
http://dx.doi.org/10.1007/s00044-009-9255-z
http://dx.doi.org/10.1007/s00044-009-9255-z
http://dx.doi.org/10.1080/10412905.2013.868329
http://dx.doi.org/10.1055/s-2006-960119
http://dx.doi.org/10.1111/j.1365-2621.1982.tb10133.x
http://dx.doi.org/10.1016/0308-8146(95)00027-G
http://dx.doi.org/10.1016/0308-8146(95)00027-G
http://www.frontiersin.org
http://www.frontiersin.org/Food_Chemistry/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tocmo et al. Cardioprotective roles of dietary organopolysulfides

44. Pino JA, Fuentes V, Correa MT. Volatile constituents of Chinese chive (Allium
tuberosum Rottl. ex Sprengel) and rakkyo (Allium chinense G. Don). J Agri Food
Chem (2001) 49:1328–30. doi:10.1021/jf9907034

45. Studsgaard Nielsen G, Larsen LM, Poll L. Formation of aroma compounds
and lipoxygenase (EC 1.13.11.12) activity in unblanched leek (Allium ampelo-
prasum Var. Bulga) slices during long-term frozen storage. J Agric Food Chem
(2003) 51:1970–6. doi:10.1021/jf020921o

46. Yabuki Y, Mukaida Y, Saito Y, Oshima K, Takahashi T, Muroi E, et al. Character-
isation of volatile sulphur-containing compounds generated in crushed leaves
of Chinese chive (Allium tuberosum Rottler). Food Chem (2010) 120:343–8.
doi:10.1016/j.foodchem.2009.11.028

47. Kim NY, Park MH, Jang EY, Lee J. Volatile distribution in garlic (Allium sativum
L.) by solid phase microextraction (SPME) with different processing condi-
tions. Food Sci Biotechnol (2011) 20:775–82. doi:10.1007/s10068-011-0108-4

48. Casella S, Leonardi M, Melai B, Fratini F, Pistelli L. The role of diallyl sulfides
and dipropyl sulfides in the in vitro antimicrobial activity of the essential oil
of garlic, Allium sativum L., and leek, Allium porrum L. Phytother Res (2013)
27:380–3. doi:10.1002/ptr.4725

49. Kallio H, Salorinne L. Comparison of onion varieties by headspace gas
chromatography-mass spectrometry. J Agric Food Chem (1990) 38:1560–4.
doi:10.1021/jf00097a029

50. Kuo MC, Ho CT. Volatile constituents of the distilled oils of welsh onions
(Allium fistulosum L. variety Maichuon) and scallions (Allium fistulosum
L. variety Caespitosum). J Agric Food Chem (1992) 40:111–7. doi:10.1021/
jf00022a036

51. Mochizuki E, Yamamoto T, Komiyama Y, Nakazawa H. Identification of Allium
products using flame photometric detection gas chromatography and dis-
tribution patterns of volatile sulfur compounds. J Agric Food Chem (1998)
46:5170–6. doi:10.1021/jf9803076

52. Tocmo R, Lin Y, Huang D. Effect of processing conditions on the organosul-
fides of shallot (Allium cepa L. Aggregatum Group). J Agric Food Chem (2014)
62:5296–304. doi:10.1021/jf500739n

53. Yu TH, Wu CM, Chen SY. Effects of pH adjustment and heat treatment on the
stability and the formation of volatile compounds of garlic. J Agric Food Chem
(1989) 37:730–4. doi:10.1021/jf00087a033

54. Wong KC, Tie DY. Volatile constituents of durian (Durio zibethinus Murr.).
Flavour Fragr J (1995) 10:79–83. doi:10.1002/ffj.2730100205

55. Weenen H, Koolhaas WE, Apriyantono A. Sulfur-containing volatiles of
durian fruits (Durio zibethinus Murr.). J Agric Food Chem (1996) 44:3291–3.
doi:10.1021/jf960191i

56. Jiang J, Choo SY, Omar N, Ahamad N. GC-MS analysis of volatile com-
pounds in durian (Durio zibethinus Murr.). Dev Food Sci (1998) 40:345–52.
doi:10.1016/S0167-4501(98)80058-7

57. Voon YY, Abdul Hamid NS, Rusul G, Osman A, Quek SY. Characterisation of
Malaysian durian (Durio zibethinus Murr.) cultivars: relationship of physico-
chemical and flavour properties with sensory properties. Food Chem (2007)
103:1217–27. doi:10.1016/j.foodchem.2006.10.038

58. Neti Y, Erlinda ID, Virgilio VG. The effect of spontaneous fermentation on the
volatile flavor constituents of durian. Int Food Res J (2011) 18:635–41.

59. Lee PR, Toh M, Yu B, Curran P, Liu SQ. Manipulation of volatile compound
transformation in durian wine by nitrogen supplementation. Int J Food Sci
Technol (2013) 48:650–62. doi:10.1111/ijfs.12012

60. Block E, Naganathan S, Putman D, Zhao S-H. Allium chemistry: HPLC analysis
of thiosulfinates from onion, garlic, wild garlic (ramsoms), leek, scallion, shal-
lot, elephant (great-headed) garlic, chive, and Chinese chive. Uniquely high allyl
to methyl ratios in some garlic samples. J Agric Food Chem (1992) 40:2418–30.
doi:10.1021/jf00024a017

61. Sinha NK, Guyer DE, Gage DE, Lira CT. Supercritical carbon dioxide extraction
of onion. Flavors and their analysis by gas chromatography-mass spectrometry.
J Agric Food Chem (1992) 40(5):842–5. doi:10.1021/jf00017a027

62. Kuo MC, Ho CT. Volatile constituents of the solvent extracts of welsh
onions (Allium fistulosum L. variety Maichuon) and scallions (Allium fis-
tulosum L. variety Caespitosum). J Agric Food Chem (1992) 40:1906–10.
doi:10.1021/jf00022a036

63. Frérot E, Velluz A, Bagnoud A, Delort E. Analysis of the volatile constituents
of cooked petai beans (Parkia speciosa) using high-resolution GC/ToF-MS.
Flavour Fragr J (2008) 23:434–40. doi:10.1002/ffj.1902

64. Miyazawa M, Osman F. Headspace constituents of Parkia speciosa seeds. Nat
Prod Lett (2001) 15:171–6. doi:10.1080/10575630108041277

65. Gmelin R, Susilo R, Fenwick GR. Cyclic polysulphides from
Parkia speciosa. Phytochemistry (1981) 20:2521–3. doi:10.1016/0031-9422(81)
83085-3

66. Sakunpak A, Panichayupakaranant P. Antibacterial activity of Thai edible
plants against gastrointestinal pathogenic bacteria and isolation of a new broad
spectrum antibacterial polyisoprenylated benzophenone, chamuangone. Food
Chem (2012) 130:826–31. doi:10.1016/j.foodchem.2011.07.088

67. Gan CY, Latiff AA. Optimisation of the solvent extraction of bioactive com-
pounds from Parkia speciosa pod using response surface methodology. Food
Chem (2011) 124:1277–83. doi:10.1016/j.foodchem.2010.07.074

68. Aisha AFA, Abu-Salah KM, Alrokayan SA, Ismail Z, Abdul Majid AMS. Eval-
uation of antiangiogenic and antoxidant properties of Parkia speciosa Hassk
extracts. Pak J Pharm Sci (2012) 25:7–14.

69. Siow HL, Gan CY. Extraction of antioxidative and antihypertensive bioac-
tive peptides from Parkia speciosa seeds. Food Chem (2013) 141:3435–42.
doi:10.1016/j.foodchem.2013.06.030

70. Jamaluddin F, Mohamed S, Lajis MN. Hypoglycaemic effect of Parkia speciosa
seeds due to the synergistic action of β-sitosterol and stigmasterol. Food Chem
(1994) 49:339–45. doi:10.1016/0308-8146(94)90002-7

71. Al Batran R, Al-Bayaty F, Jamil Al-Obaidi MM, Abdualkader AM, Hadi HA, Ali
HM, et al. In vivo antioxidant and antiulcer activity of Parkia speciosa ethano-
lic leaf extract against ethanol-induced gastric ulcer in rats. PLoS One (2013)
8:e64751. doi:10.1371/journal.pone.0064751

72. Näf R, Velluz A. Sulphur compounds and some uncommon esters in durian
(Durio zibethinus Murr.). Flavour Fragr J (1996) 11:295–303. doi:10.1002/
(SICI)1099-1026(199609)11:5<295::AID-FFJ585>3.3.CO;2-W

73. Fenwick GR, Hanley AB. The genus Allium – Part 3. Crit Rev Food Sci Nutr
(1985) 23:1–73. doi:10.1080/10408398509527419

74. Eustache J, Bisseret P, Van De Weghe P. 1.14 – One or more CC bond(s) by
elimination of S, Se, Te, N, P, As, Sb, Bi, Si, Ge, B, or metal functions. In: Taylor
ARKJK, editor. Comprehensive Organic Functional Group Transformations II.
Oxford: Elsevier (2005). p. 601–68.

75. Pfister-Guillouzo G, Senio A, Gracian F, Khalid M, Ripoll J, Vallee Y. FVT-
PES Study of reactivity of thionoacrylic compounds. New J Chem (1995)
19:1071–80.

76. Block E, John Dane A, Cody RB. Crushing garlic and slicing onions: detec-
tion of sulfenic acids and other reactive organosulfur intermediates from
garlic and other Alliums using direct analysis in real-time mass spectrom-
etry (DART-MS). Phosphorus Sulfur Silicon Relat Elem (2011) 186:1085–93.
doi:10.1080/10426507.2010.507728

77. Shen C, Xiao H, Parkin KL. In vitro stability and chemical reactivity of thiosul-
finates. J Agric Food Chem (2002) 50:2644–51. doi:10.1021/jf011013e

78. Cavagnaro PF, Galmarini CR. Effect of processing and cooking conditions on
onion (Allium cepa L.) induced antiplatelet activity and thiosulfinate content.
J Agric Food Chem (2012) 60:8731–7. doi:10.1021/jf301793b

79. Beato VM, Sánchez AH, De Castro A, Montaño A. Effect of processing and
storage time on the contents of organosulfur compounds in pickled blanched
garlic. J Agric Food Chem (2012) 60:3485–91. doi:10.1021/jf3002075

80. Colina-Coca C, González-Peña D, Vega E, De Ancos B, Sánchez-Moreno C.
Novel approach for the determination of volatile compounds in processed
onion by headspace gas chromatography-mass spectrometry (HS GC-MS).
Talanta (2013) 103:137–44. doi:10.1016/j.talanta.2012.10.022

81. Rao PP, Nagender A, Rao LJ, Rao DG. Studies on the effects of microwave
drying and cabinet tray drying on the chemical composition of volatile oils of
garlic powders. Eur Food Res Technol (2007) 224:791–5. doi:10.1007/s00217-
006-0364-3

82. Jansen H, Muller B, Knobloch K. Characterization of an alliin lyase prepara-
tion from garlic (Allium sativum). Planta Med (1989) 55:434–9. doi:10.1055/
s-2006-962059

83. Cavagnaro PF, Camargo A, Galmarini CR, Simon PW. Effect of cooking on gar-
lic (Allium sativum L.) antiplatelet activity and thiosulfinates content. J Agric
Food Chem (2007) 55:1280–8. doi:10.1021/jf062587s

84. Galmarini CR, Cavagnaro PF, Sance MM. Effect of heating on onion (Allium
cepa L.) antiplatelet activity and pungency sensory perception. Food Sci Technol
Int (2007) 13:447–53. doi:10.1177/1082013207088108

Frontiers in Nutrition | Food Chemistry February 2015 | Volume 2 | Article 1 | 16

http://dx.doi.org/10.1021/jf9907034
http://dx.doi.org/10.1021/jf020921o
http://dx.doi.org/10.1016/j.foodchem.2009.11.028
http://dx.doi.org/10.1007/s10068-011-0108-4
http://dx.doi.org/10.1002/ptr.4725
http://dx.doi.org/10.1021/jf00097a029
http://dx.doi.org/10.1021/jf00022a036
http://dx.doi.org/10.1021/jf00022a036
http://dx.doi.org/10.1021/jf9803076
http://dx.doi.org/10.1021/jf500739n
http://dx.doi.org/10.1021/jf00087a033
http://dx.doi.org/10.1002/ffj.2730100205
http://dx.doi.org/10.1021/jf960191i
http://dx.doi.org/10.1016/S0167-4501(98)80058-7
http://dx.doi.org/10.1016/j.foodchem.2006.10.038
http://dx.doi.org/10.1111/ijfs.12012
http://dx.doi.org/10.1021/jf00024a017
http://dx.doi.org/10.1021/jf00017a027
http://dx.doi.org/10.1021/jf00022a036
http://dx.doi.org/10.1002/ffj.1902
http://dx.doi.org/10.1080/10575630108041277
http://dx.doi.org/10.1016/0031-9422(81)83085-3
http://dx.doi.org/10.1016/0031-9422(81)83085-3
http://dx.doi.org/10.1016/j.foodchem.2011.07.088
http://dx.doi.org/10.1016/j.foodchem.2010.07.074
http://dx.doi.org/10.1016/j.foodchem.2013.06.030
http://dx.doi.org/10.1016/0308-8146(94)90002-7
http://dx.doi.org/10.1371/journal.pone.0064751
http://dx.doi.org/10.1002/(SICI)1099-1026(199609)11:5<295::AID-FFJ585>3.3.CO;2-W
http://dx.doi.org/10.1002/(SICI)1099-1026(199609)11:5<295::AID-FFJ585>3.3.CO;2-W
http://dx.doi.org/10.1080/10408398509527419
http://dx.doi.org/10.1080/10426507.2010.507728
http://dx.doi.org/10.1021/jf011013e
http://dx.doi.org/10.1021/jf301793b
http://dx.doi.org/10.1021/jf3002075
http://dx.doi.org/10.1016/j.talanta.2012.10.022
http://dx.doi.org/10.1007/s00217-006-0364-3
http://dx.doi.org/10.1007/s00217-006-0364-3
http://dx.doi.org/10.1055/s-2006-962059
http://dx.doi.org/10.1055/s-2006-962059
http://dx.doi.org/10.1021/jf062587s
http://dx.doi.org/10.1177/1082013207088108
http://www.frontiersin.org/Food_Chemistry
http://www.frontiersin.org/Food_Chemistry/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tocmo et al. Cardioprotective roles of dietary organopolysulfides

85. Rejano L, Sanchez AH, De Castro A, Montano A. Chemical characteristics and
storage stability of pickled garlic prepared using different processes. J Food Sci
(1997) 62:1120–3. doi:10.1111/j.1365-2621.1997.tb12226.x

86. De Castro A, Montaño A, Sánchez AH, Rejano L. Lactic acid fermenta-
tion and storage of blanched garlic. Int J Food Microbiol (1998) 39:205–11.
doi:10.1016/S0168-1605(98)00003-8

87. Li L, Rose P, Moore PK. Hydrogen sulfide and cell signaling. Annu Rev
Pharmacol Toxicol (2011) 51:169–87. doi:10.1146/annurev-pharmtox-
010510-100505

88. Mancardi D, Penna C, Merlino A, Del Soldato P, Wink DA, Pagliaro P. Physi-
ological and pharmacological features of the novel gasotransmitter: hydrogen
sulfide. Biochim Biophys Acta (2009) 1787:864–72. doi:10.1016/j.bbabio.2009.
03.005

89. Gadalla MM, Snyder SH. Hydrogen sulfide as a gasotransmitter. J Neurochem
(2010) 113:14–26. doi:10.1111/j.1471-4159.2010.06580.x

90. Abe K, Kimura H. The possible role of hydrogen sulfide as an endogenous
neuromodulator. J Neurosci (1996) 16:1066–71.

91. Polhemus DJ, Lefer DJ. Emergence of hydrogen sulfide as an endoge-
nous gaseous signaling molecule in cardiovascular disease. Circ Res (2014)
114:730–7. doi:10.1161/CIRCRESAHA.114.300505

92. Hosoki R, Matsuki N, Kimura H. The possible role of hydrogen sulfide as
an endogenous smooth muscle relaxant in synergy with nitric oxide. Biochem
Biophys Res Commun (1997) 237:527–31. doi:10.1006/bbrc.1997.6878

93. Zhao W, Zhang J, Lu Y, Wang R. The vasorelaxant effect of H2S as a novel
endogenous gaseous KATP channel opener. EMBO J (2001) 20:6008–16.
doi:10.1093/emboj/20.21.6008

94. Liu YH, Lu M, Hu LF, Wong PT, Webb GD, Bian JS. Hydrogen sulfide in the
mammalian cardiovascular system. Antioxid Redox Signal (2012) 17:141–85.
doi:10.1089/ars.2011.4005

95. Yang D, Wu L, Jiang B, Yang W, Qi J, Cao K, et al. H2S as a physiologic vasore-
laxant: hypertension in mice with deletion of cystathionine γ-lyase. Science
(2008) 322:587–90. doi:10.1126/science.1162667

96. Johansen D, Ytrehus K, Baxter GF. Exogenous hydrogen sulfide (H2S) protects
against regional myocardial ischemia-reperfusion injury – Evidence for a role
of K ATP channels. Basic Res Cardiol (2006) 101:53–60. doi:10.1007/s00395-
005-0569-9

97. Kondo K, Bhushan S, King AL, Prabhu SD, Hamid T, Koenig S, et al.
H2S protects against pressure overload-induced heart failure via upregula-
tion of endothelial nitric oxide synthase. Circulation (2013) 127:1116–27.
doi:10.1161/CIRCULATIONAHA.112.000855

98. Mani S, Li H, Untereiner A, Wu L, Yang G, Austin RC, et al. Decreased endoge-
nous production of hydrogen sulfide accelerates atherosclerosis. Circulation
(2013) 127:2523–34. doi:10.1161/CIRCULATIONAHA.113.002208

99. Chan MV,Wallace JL. Hydrogen sulfide-based therapeutics and gastrointestinal
diseases: translating physiology to treatments. Am J Physiol Gastrointest Liver
Physiol (2013) 305:G467–73. doi:10.1152/ajpgi.00169.2013

100. Song ZJ, Ng MY, Lee Z-W, Dai W, Hagen T, Moore PK, et al. Hydrogen sul-
fide donors in research and drug development. Med Chem Commun (2014)
5:557–70. doi:10.1039/c3md00362k

101. Myers AG, Cohen SB, Kwon BM. A study of the reaction of calicheamicin g1
with glutathionen in the presence of double-stranded DNA. J Am Chem Soc
(1994) 116:1255–71. doi:10.1021/ja00083a012

102. Chatterji T, Gates KS. Reaction of thiols with 7-methylbenzopentathi
epin. Bioorg Med Chem Lett (2003) 13:1349–52. doi:10.1016/s0960-894x(03)
00103-3

103. Benavides GA, Squadrito GL, Mills RW, Patel HD, Isbell TS, Patel RP, et al.
Hydrogen sulfide mediates the vasoactivity of garlic. Proc Natl Acad Sci U S A
(2007) 104:17977–82. doi:10.1073/pnas.0705710104

104. Predmore BL, Kondo K, Bhushan S, Zlatopolsky MA, King AL, Aragon JP, et al.
The polysulfide diallyl trisulfide protects the ischemic myocardium by preser-
vation of endogenous hydrogen sulfide and increasing nitric oxide bioavailabil-
ity. Am J Physiol Heart Circ Physiol (2012) 302:H2410–8. doi:10.1152/ajpheart.
00044.2012

105. Chuah SC, Moore PK, Zhu YZ. S-allylcysteine mediates cardioprotection in
an acute myocardial infarction rat model via a hydrogen sulfide-mediated
pathway. Am J Physiol Heart Circ Physiol (2007) 293:H2693–701. doi:10.1152/
ajpheart.00853.2007.-S-allylcysteine

106. Kan J, Guo W, Huang C, Bao G, Zhu Y, Zhu YZ. S-propargyl-cysteine, a
novel water-soluble modulator of endogenous hydrogen sulfide, promotes

angiogenesis through activation of signal transducer and activator of transcrip-
tion 3. Antioxid Redox Signal (2014) 20:2303–16. doi:10.1089/ars.2013.5449

107. Cai H, Griendling KK, Harrison DG. The vascular NADPH oxidases as thera-
peutic targets in cardiovascular diseases. Trends Pharmacol Sci (2003) 24:471–8.
doi:10.1016/S0165-6147(03)00233-5

108. Witztum JL, Steinberg D. Role of oxidized low density lipoprotein in atheroge-
nesis. J Clin Invest (1991) 88:1785–92. doi:10.1172/JCI115499

109. Papaharalambus CA, Griendling KK. Basic mechanisms of oxidative stress and
reactive oxygen species in cardiovascular injury. Trends Cardiovasc Med (2007)
17:48–54. doi:10.1016/j.tcm.2006.11.005

110. Imai J, Ide N, Nagae S, Moriguchi T, Matsuura H, Itakura Y. Antioxidant and
radical scavenging effects of aged garlic extract and its constituents. Planta Med
(1994) 60:417–20. doi:10.1055/s-2006-959522

111. Ide N, Lau B. Aged garlic extract attenuates intracellular oxidative stress. Phy-
tomedicine (1999) 6:125–31. doi:10.1016/S0944-7113(99)80047-6

112. Borek C. Antioxidant health effects of aged garlic extract. J Nutr (2001)
131:1010S–5S.

113. Dillon SA, Burmi RS, Lowe GM, Billington D, Rahman K. Antioxidant prop-
erties of aged garlic extract: an in vitro study incorporating human low
density lipoprotein. Life Sci (2003) 72:1583–94. doi:10.1016/S0024-3205(02)
02475-X

114. Kim J-M, Chang HJ, Kim W-K, Chang N, Chun HS. Structure-activity rela-
tionship of neuroprotective and reactive oxygen species scavenging activities
for Allium organosulfur compounds. J Agric Food Chem (2006) 54:6547–53.
doi:10.1021/jf060412c

115. Medina-Campos ON, Barrera D, Segoviano-Murillo S, Rocha D, Maldonado
PD, Mendoza-Patino N, et al. S-allylcysteine scavenges singlet oxygen and
hypochlorous acid and protects LLC-PK(1) cells of potassium dichromate-
induced toxicity. Food Chem Toxicol (2007) 45:2030–9. doi:10.1016/j.fct.2007.
05.002

116. Chung LY. The antioxidant properties of garlic compounds: allyl cysteine, alliin,
allicin, and allyl disulfide. J Med Food (2006) 9:205–13. doi:10.1089/jmf.2006.
9.205

117. Arguello-Garcia R, Medina-Campos ON, Perez-Hernandez N, Pedraza-
Chaverri J, Ortega-Pierres G. Hypochlorous acid scavenging activities of
thioallyl compounds from garlic. J Agric Food Chem (2010) 58:11226–33.
doi:10.1021/jf102423w

118. Wang H, Huang D. Dietary organosulfur compounds from garlic and cru-
ciferous vegetables as potent hypochlorite scavengers. J Funct Foods (2014).
doi:10.1016/j.jff.2014.07.001

119. Vaidya V, Ingold KU, Pratt DA. Garlic: source of the ultimate antioxi-
dants – sulfenic acids. Angew Chem Int Ed (2009) 48:157–60. doi:10.1002/anie.
200804560

120. Ho S, Ide N, Lau B. S-allyl cysteine reduces oxidant load in cells involved in the
atherogenic process. Phytomedicine (2001) 8:39–46. doi:10.1078/0944-7113-
00005

121. Ide N, Lau BH. Garlic compounds protect vascular endothelial cells from
oxidized low density lipoprotein-induced Injury. J Pharm Pharmacol (1997)
49:908–11. doi:10.1111/j.2042-7158.1997.tb06134.x

122. Lei Y-P, Chen H-W, Sheen L-Y, Lii C-K. Diallyl disulfide and diallyl trisulfide
suppress oxidized LDL–induced vascular cell adhesion molecule and E-selectin
expression through protein kinase A–and B–dependent signaling pathways. J
Nutr (2008) 138:996–1003.

123. Kuo WW, Wang WJ, Tsai CY, Way CL, Hsu HH, Chen LM. Diallyl trisufide
(DATS) suppresses high glucose-induced cardiomyocyte apoptosis by inhibit-
ing JNK/NFκB signaling via attenuating ROS generation. Int J Cardiol (2013)
168:270–80. doi:10.1016/j.ijcard.2012.09.080

124. Huang Y-T, Yao C-H, Way C-L, Lee K-W, Tsai C-Y, Ou H-C, et al. Diallyl trisul-
fide and diallyl disulfide ameliorate cardiac dysfunction by suppressing apop-
totic and enhancing survival pathways in experimental diabetic rats. J Appl
Physiol (2013) 114:402–10. doi:10.1152/japplphysiol.00672.2012

125. Tsai CY, Wang CC, Lai TY, Tsu HN, Wang CH, Liang HY, et al. Antioxidant
effects of diallyl trisulfide on high glucose-induced apoptosis are mediated by
the PI3K/Akt-dependent activation of Nrf2 in cardiomyocytes. Int J Cardiol
(2013) 168:1286–97. doi:10.1016/j.ijcard.2012.12.004

126. Padiya R, Chowdhury D, Borkar R, Srinivas R, Pal Bhadra M, Banerjee SK.
Garlic attenuates cardiac oxidative stress via activation of PI3K/AKT/Nrf2-
Keap1 pathway in fructose-fed diabetic rat. PLoS One (2014) 9:e94228.
doi:10.1371/journal.pone.0094228

www.frontiersin.org February 2015 | Volume 2 | Article 1 | 17

http://dx.doi.org/10.1111/j.1365-2621.1997.tb12226.x
http://dx.doi.org/10.1016/S0168-1605(98)00003-8
http://dx.doi.org/10.1146/annurev-pharmtox-010510-100505
http://dx.doi.org/10.1146/annurev-pharmtox-010510-100505
http://dx.doi.org/10.1016/j.bbabio.2009.03.005
http://dx.doi.org/10.1016/j.bbabio.2009.03.005
http://dx.doi.org/10.1111/j.1471-4159.2010.06580.x
http://dx.doi.org/10.1161/CIRCRESAHA.114.300505
http://dx.doi.org/10.1006/bbrc.1997.6878
http://dx.doi.org/10.1093/emboj/20.21.6008
http://dx.doi.org/10.1089/ars.2011.4005
http://dx.doi.org/10.1126/science.1162667
http://dx.doi.org/10.1007/s00395-005-0569-9
http://dx.doi.org/10.1007/s00395-005-0569-9
http://dx.doi.org/10.1161/CIRCULATIONAHA.112.000855
http://dx.doi.org/10.1161/CIRCULATIONAHA.113.002208
http://dx.doi.org/10.1152/ajpgi.00169.2013
http://dx.doi.org/10.1039/c3md00362k
http://dx.doi.org/10.1021/ja00083a012
http://dx.doi.org/10.1016/s0960-894x(03)00103-3
http://dx.doi.org/10.1016/s0960-894x(03)00103-3
http://dx.doi.org/10.1073/pnas.0705710104
http://dx.doi.org/10.1152/ajpheart.00044.2012
http://dx.doi.org/10.1152/ajpheart.00044.2012
http://dx.doi.org/10.1152/ajpheart.00853.2007.-S-allylcysteine
http://dx.doi.org/10.1152/ajpheart.00853.2007.-S-allylcysteine
http://dx.doi.org/10.1089/ars.2013.5449
http://dx.doi.org/10.1016/S0165-6147(03)00233-5
http://dx.doi.org/10.1172/JCI115499
http://dx.doi.org/10.1016/j.tcm.2006.11.005
http://dx.doi.org/10.1055/s-2006-959522
http://dx.doi.org/10.1016/S0944-7113(99)80047-6
http://dx.doi.org/10.1016/S0024-3205(02)02475-X
http://dx.doi.org/10.1016/S0024-3205(02)02475-X
http://dx.doi.org/10.1021/jf060412c
http://dx.doi.org/10.1016/j.fct.2007.05.002
http://dx.doi.org/10.1016/j.fct.2007.05.002
http://dx.doi.org/10.1089/jmf.2006.9.205
http://dx.doi.org/10.1089/jmf.2006.9.205
http://dx.doi.org/10.1021/jf102423w
http://dx.doi.org/10.1016/j.jff.2014.07.001
http://dx.doi.org/10.1002/anie.200804560
http://dx.doi.org/10.1002/anie.200804560
http://dx.doi.org/10.1078/0944-7113-00005
http://dx.doi.org/10.1078/0944-7113-00005
http://dx.doi.org/10.1111/j.2042-7158.1997.tb06134.x
http://dx.doi.org/10.1016/j.ijcard.2012.09.080
http://dx.doi.org/10.1152/japplphysiol.00672.2012
http://dx.doi.org/10.1016/j.ijcard.2012.12.004
http://dx.doi.org/10.1371/journal.pone.0094228
http://www.frontiersin.org
http://www.frontiersin.org/Food_Chemistry/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tocmo et al. Cardioprotective roles of dietary organopolysulfides

127. Liu LL, Yan L, Chen YH, Zeng GH, Zhou Y, Chen HP, et al. A role for dial-
lyl trisulfide in mitochondrial antioxidative stress contributes to its protec-
tive effects against vascular endothelial impairment. Eur J Pharmacol (2014)
725:23–31. doi:10.1016/j.ejphar.2014.01.010

128. Lei YP, Liu CT, Sheen LY, Chen HW, Lii CK. Diallyl disulfide and dial-
lyl trisulfide protect endothelial nitric oxide synthase against damage by
oxidized low density lipoprotein. Mol Nutr Food Res (2010) 54:S42–52.
doi:10.1002/mnfr.200900278

129. Khatua TN, Padiya R, Karnewar S, Kuncha M, Agawane SB, Kotamraju S,
et al. Garlic provides protection to mice heart against isoproterenol-induced
oxidative damage: role of nitric oxide. Nitric Oxide (2012) 27:9–17. doi:10.
1016/j.niox.2012.03.004

130. Liu DS, Gao W, Liang ES, Wang SL, Lin WW, Zhang WD, et al. Effects of allicin
on hyperhomocysteinemia-induced experimental vascular endothelial dys-
function. Eur J Pharmacol (2013) 714:163–9. doi:10.1016/j.ejphar.2013.05.038

131. Asdaq SM, Inamdar MN. Potential of garlic and its active constituent, S-allyl
cysteine, as antihypertensive and cardioprotective in presence of captopril. Phy-
tomedicine (2010) 17:1016–26. doi:10.1016/j.phymed.2010.07.012

132. Calvert JW, Jha S, Gundewar S, Elrod JW, Ramachandran A, Pattillo CB, et al.
Hydrogen sulfide mediates cardioprotection through nrf2 signaling. Circ Res
(2009) 105:365–74. doi:10.1161/CIRCRESAHA.109.199919

133. Kobayashi M,Yamamoto M. Molecular mechanisms activating the Nrf2-Keap1
pathway of antioxidant gene regulation. Antioxid Redox Signal (2005) 7:385–94.
doi:10.1089/ars.2005.7.385

134. Kobayashi M, Li L, Iwamoto N, Nakajima-Takagi Y, Kaneko H, Nakayama Y,
et al. The antioxidant defense system Keap1-Nrf2 comprises a multiple sensing
mechanism for responding to a wide range of chemical compounds. Mol Cell
Biol (2009) 29:493–502. doi:10.1128/MCB.01080-08

135. Zhu H, Jia Z, Misra BR, Zhang L, Cao Z, Yamamoto M, et al. Nuclear factor E2-
related factor 2-dependent myocardiac cytoprotection against oxidative and
electrophilic stress. Cardiovasc Toxicol (2008) 8:71–85. doi:10.1007/s12012-
008-9016-0

136. Li J, Ichikawa T, Villacorta L, Janicki JS, Brower GL, Yamamoto M, et al.
Nrf2 protects against maladaptive cardiac responses to hemodynamic stress.
Arterioscler Thromb Vasc Biol (2009) 29:1843–50. doi:10.1161/ATVBAHA.109.
189480

137. Zhu H, Itoh K, Yamamoto M, Zweier JL, Li Y. Role of Nrf2 signaling in regu-
lation of antioxidants and phase 2 enzymes in cardiac fibroblasts: protection
against reactive oxygen and nitrogen species-induced cell injury. FEBS Lett
(2005) 579:3029–36. doi:10.1016/j.febslet.2005.04.058

138. Lee JS, Surh YJ. Nrf2 as a novel molecular target for chemoprevention. Cancer
Lett (2005) 224:171–84. doi:10.1016/j.canlet.2004.09.042

139. Kim S, Lee HG, Park SA, Kundu JK, Keum YS, Cha YN, et al. Keap1 cysteine
288 as a potential target for diallyl trisulfide-induced Nrf2 activation. PLoS One
(2014) 9:e85984. doi:10.1371/journal.pone.0085984

140. Blair A, Shaul PW, Yuhanna IS, Conrad PA, Smart EJ. Oxidized low den-
sity lipoprotein displaces endothelial nitric-oxide synthase (eNOS) from
plasmalemmal caveolae and impairs eNOS activation. J Biol Chem (1999)
274:32512–9. doi:10.1074/jbc.274.45.32512

141. Ji Y, Diao J, Han Y, Huang Y, Bai H, Chen Q, et al. Pyridoxine prevents dys-
function of endothelial cell nitric oxide production in response to low-density

lipoprotein. Atherosclerosis (2006) 188:84–94. doi:10.1016/j.atherosclerosis.
2005.10.035

142. Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher AM. Activa-
tion of nitric oxide synthase in endothelial cells by Akt-dependent phosphory-
lation. Nature (1999) 399:601–5. doi:10.1038/21224

143. Dikalov S. Cross talk between mitochondria and NADPH oxidases. Free Radic
Biol Med (2011) 51:1289–301. doi:10.1016/j.freeradbiomed.2011.06.033

144. Weiss N, Keller C, Hoffmann U, Loscalzo J. Endothelial dysfunction and
atherothrombosis in mild hyperhomocysteinemia. Vasc Med (2002) 7:227–39.
doi:10.1191/1358863x02vm428ra

145. Weiss N, Heydrick SJ, Postea O, Keller C, Keaney JF Jr, Loscalzo J. Influence of
hyperhomocysteinemia on the cellular redox state – impact on homocysteine-
induced endothelial dysfunction. Clin Chem Lab Med (2003) 41:1455–61.
doi:10.1515/CCLM.2003.223

146. Tsai KH,Wang WJ, Lin CW, Pai P, Lai TY, Tsai CY, et al. NADPH oxidase-derived
superoxide anion-induced apoptosis is mediated via the JNK-dependent acti-
vation of NF-κB in cardiomyocytes exposed to high glucose. J Cell Physiol
(2012) 227:1347–57. doi:10.1002/jcp.22847

147. Huh JE, Kang KS, Chae C, Kim HM, Ahn KS, Kim SH. Roles of p38 and JNK
mitogen-activated protein kinase pathways during cantharidin-induced apop-
tosis in U937 cells. Biochem Pharmacol (2004) 67:1811–8. doi:10.1016/j.bcp.
2003.12.025

148. Ogino T, Ozaki M, Hosako M, Omori M, Okada S, Matsukawa A. Activa-
tion of c-Jun N-terminal kinase is essential for oxidative stress-induced Jurkat
cell apoptosis by monochloramine. Leuk Res (2009) 33:151–8. doi:10.1016/j.
leukres.2008.07.009

149. Shou Y, Li N, Li L, Borowitz JL, Isom GE. NF-κB-mediated up-regulation of
Bcl-Xs and Bax contributes to cytochrome c release in cyanide-induced apop-
tosis. J Neurochem (2002) 81:842–52. doi:10.1046/j.1471-4159.2002.00880.x

150. Wang S, Kotamraju S, Konorev E, Kalivendi S, Joseph J, Kalyanaraman B. Activa-
tion of nuclear factor-κB during doxorubicin-induced apoptosis in endothelial
cells and myocytes is pro-apoptotic: the role of hydrogen peroxide. Biochem J
(2002) 367:729–40. doi:10.1042/BJ20020752

Conflict of Interest Statement: The authors declare that the research was conducted
in the absence of any commercial or financial relationships that could be construed
as a potential conflict of interest.

Received: 15 October 2014; accepted: 05 January 2015; published online: 02 February
2015.
Citation: Tocmo R, Liang D, Lin Y and Huang D (2015) Chemical and biochemical
mechanisms underlying the cardioprotective roles of dietary organopolysulfides. Front.
Nutr. 2:1. doi: 10.3389/fnut.2015.00001
This article was submitted to Food Chemistry, a section of the journal Frontiers in
Nutrition.
Copyright © 2015 Tocmo, Liang , Lin and Huang . This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License (CC BY). The
use, distribution or reproduction in other forums is permitted, provided the original
author(s) or licensor are credited and that the original publication in this journal is cited,
in accordance with accepted academic practice. No use, distribution or reproduction is
permitted which does not comply with these terms.

Frontiers in Nutrition | Food Chemistry February 2015 | Volume 2 | Article 1 | 18

http://dx.doi.org/10.1016/j.ejphar.2014.01.010
http://dx.doi.org/10.1002/mnfr.200900278
http://dx.doi.org/10.1016/j.niox.2012.03.004
http://dx.doi.org/10.1016/j.niox.2012.03.004
http://dx.doi.org/10.1016/j.ejphar.2013.05.038
http://dx.doi.org/10.1016/j.phymed.2010.07.012
http://dx.doi.org/10.1161/CIRCRESAHA.109.199919
http://dx.doi.org/10.1089/ars.2005.7.385
http://dx.doi.org/10.1128/MCB.01080-08
http://dx.doi.org/10.1007/s12012-008-9016-0
http://dx.doi.org/10.1007/s12012-008-9016-0
http://dx.doi.org/10.1161/ATVBAHA.109.189480
http://dx.doi.org/10.1161/ATVBAHA.109.189480
http://dx.doi.org/10.1016/j.febslet.2005.04.058
http://dx.doi.org/10.1016/j.canlet.2004.09.042
http://dx.doi.org/10.1371/journal.pone.0085984
http://dx.doi.org/10.1074/jbc.274.45.32512
http://dx.doi.org/10.1016/j.atherosclerosis.2005.10.035
http://dx.doi.org/10.1016/j.atherosclerosis.2005.10.035
http://dx.doi.org/10.1038/21224
http://dx.doi.org/10.1016/j.freeradbiomed.2011.06.033
http://dx.doi.org/10.1191/1358863x02vm428ra
http://dx.doi.org/10.1515/CCLM.2003.223
http://dx.doi.org/10.1002/jcp.22847
http://dx.doi.org/10.1016/j.bcp.2003.12.025
http://dx.doi.org/10.1016/j.bcp.2003.12.025
http://dx.doi.org/10.1016/j.leukres.2008.07.009
http://dx.doi.org/10.1016/j.leukres.2008.07.009
http://dx.doi.org/10.1046/j.1471-4159.2002.00880.x
http://dx.doi.org/10.1042/BJ20020752
http://dx.doi.org/10.3389/fnut.2015.00001
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Food_Chemistry
http://www.frontiersin.org/Food_Chemistry/archive

	Chemical and biochemical mechanisms underlying the cardioprotective roles of dietary organopolysulfides
	Introduction
	Brief survey of organosulfides rich foods
	Transformations of dietary organosulfides under different processing conditions
	Action mechanisms of polysulfides: as H2S donors
	Organopolysulfides as reactive oxygen species scavengers
	Enzyme Activation/Inactivation and gene regulation
	Nrf2 activation and antioxidant gene modulation
	Modulation of endothelial nitric oxide synthase
	Modulation of antioxidant enzymes and inhibition of NADPH oxidase activity

	Conclusion
	Acknowledgments
	References


