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1. Introduction
Vegetation plays a key role in the Earth system, regulating carbon, water, and energy exchanges between vege-
tation and atmosphere. Transpiration, photosynthesis, and respiration are the main processes that govern these 
exchanges and link vegetation to the climate (Bonan, 2008; Bonan et al., 1992, 2003). Evapotranspiration (ET, 
with accompanying latent-heat release) and photosynthesis are tightly linked. Transpiration is the dominant com-
ponent of ET, hence plants are the main conduit of water from the soil to the atmosphere. Plants control both 
transpiration and the flux of carbon dioxide (CO2) into leaves by regulating the opening or closing of stomata. 

Abstract Vegetation regulates land-atmosphere, water, and energy exchanges and is an essential component 
of land-surface models (LSMs). However, LSMs have been handicapped by assumptions that equate acclimated 
photosynthetic responses to the environment with the fast responses observable in the laboratory. The effects of 
acclimation can be taken into account by including PFT-specific values of photosynthetic parameters, but at the 
cost of increasing parameter requirements. Here, we develop an alternative approach for including acclimation 
in LSMs by adopting the P model, an existing light-use efficiency model for gross primary production (GPP) 
that implicitly predicts the acclimation of photosynthetic parameters on a weekly to monthly timescale via 
optimality principles. We demonstrate that it is possible to explicitly separate the fast and slow photosynthetic 
responses to environmental conditions, allowing the simulation of GPP at the sub-daily timesteps required for 
coupling in an LSM. The resulting model reproduces the diurnal cycles of GPP recorded by eddy-covariance 
flux towers in a temperate grassland and boreal, temperate and tropical forests. The best performance is 
achieved when biochemical capacities are adjusted to match recent midday conditions. Comparison between 
this model and the operational LSM in the European Centre for Medium-range Weather Forecasts climate 
model shows that the new model has better predictive power in most of the sites and years analyzed, 
particularly in summer and autumn. Our analyses suggest a simple and parameter-sparse method to include 
both instantaneous and acclimated responses within an LSM framework, with potential applications in weather, 
climate, and carbon-cycle modeling.

Plain Language Summary Vegetation regulates the exchanges of energy, water, and carbon dioxide 
between the land and the atmosphere. Numerical climate models represent these processes, focusing mainly on 
their rapid variations in response to changes in the environment (including temperature and light) on timescales 
of seconds to hours. However, plants also adjust their physiology to environmental changes over longer periods 
within the season. Here, we have adapted a simple model that formulates plant behavior in terms of optimal 
trade-offs between different processes, so it simulates processes on both timescales. This model correctly 
reproduces the daily cycle of carbon dioxide uptake by plants, as recorded in different kinds of vegetation. We 
show that plants optimize their behavior for midday conditions, when the light is greatest, and adjust to longer-
term environmental variations on a timescale of a week to a month. The model conveniently avoids the need 
to give specific, fixed values to physiological variables (such as photosynthetic capacity) for different types of 
plants. The optimality assumptions mean that the model gives equally good results in tropical, temperate, and 
boreal forests, and in grasslands, using the same equations, and a very small number of input variables.
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Through photosynthesis plants convert solar radiation into growth, storing carbon that otherwise would remain in 
the atmosphere as a climate-modifying greenhouse gas. CO2 is removed from the atmosphere by photosynthesis, 
but released again by autotrophic (plant) and heterotrophic (soil microbial) respiration (Ciais et al., 2013). Con-
temporary land surface models (LSMs) represent all these interactions. Nevertheless, LSMs make inconsistent 
future projections of changes in the carbon and water cycles under the same future scenarios (Ciais et al., 2013; 
Prentice et al., 2015). They do not predict global primary production and its interannual variability correctly 
(Anav et al., 2015), and differ greatly, for example, in the responses of photosynthesis to temperature and CO2 
(Anav et al., 2013). These issues suggest that the treatment of plant responses to environmental changes in LSMs 
needs improvement.

Plants respond to environmental changes on multiple timescales. At the ecosystem level, plants adapt to envi-
ronmental changes on timescales of decades to centuries through competition and migration, such that species 
replacement maintains ecosystems that are optimally adjusted to the environment at a given location. However, 
at leaf level, plants respond to environmental changes on shorter timescales. Short-term (fast) responses occur 
almost instantaneously (seconds to hours). These are the plant responses to environmental stimuli before any 
type of physiological, structural, or biochemical adjustment, such as synthesizing new enzymes (e.g., Rubis-
co), occurs. Longer-term responses–known as acclimation—occur over timescales of days to weeks (Mäkelä 
et al., 2019) or longer (Prentice & Cowling, 2013; Smith & Dukes, 2013). These are physiological and structural 
adjustments that ensure that plants optimize their behavior to match environmental conditions on weekly to 
monthly timescales. Plant acclimation is manifested as alterations in the short-term response functions of physi-
ological processes (Smith & Dukes, 2013), such as setting a “basal” amount of enzyme or increasing the optimal 
temperature for photosynthesis, as a result of past environmental conditions. Key photosynthetic traits, such as 
the maximum rate of carboxylation (Vcmax) or the maximum rate of electron transport (Jmax) vary systematically 
with growth conditions, both in space and in time (Rogers et al., 2017; Togashi et al., 2018) due to acclimation.

Many current LSMs describe only the instantaneous responses of photosynthesis to environmental conditions. 
Originally LSMs used prescribed, plant functional type (PFT)-dependent values for photosynthetic traits. Modern 
versions of these models recognize the spatial and temporal variability of these traits within PFTs as a function 
of environmental conditions and thus include dynamic responses of photosynthetic (e.g., ORCHIDEE and JS-
BACH; see Figure 3 and Table 3 in Smith & Dukes, 2013) and (autotrophic) respiratory processes to temperature 
(e.g., JULES and CLM4.5). The approach used to account for plant acclimation remains a model parametrization, 
and therefore the differences between PFTs are maintained (Atkin et al., 2008; Kattge & Knorr, 2007; Lawrence 
et al., 2019; Lombardozzi et al., 2015). Furthermore, the inclusion of acclimation generally involves additional 
parameters, with a consequent increase in model complexity (Fisher & Koven, 2020). Attempts have been made 
to include plant acclimation to light in soil-vegetation-atmosphere (SVAT) models (e.g., Meir et al., 2002) and 
terrestrial biosphere (TBM) models (e.g., Luo & Keenan, 2020) but most current LSMs do not address all aspects 
of acclimation. Many studies (e.g., Smith et al., 2019; Walker et al., 2017) have stressed the importance of includ-
ing acclimation in models—using photosynthetic parameters that vary according to the climate—and indicated 
that this should lead to improved future projections. It has also been suggested that models that do not account for 
acclimation might overestimate the positive feedback between climate and vegetation in future scenarios (Smith 
et al., 2017).

Models of leaf behavior based on eco-evolutionary optimality theory (Franklin et al., 2020; Harrison et al., 2021), 
where eco-evolutionary refers to the fact that plants adjust to environmental conditions on both ecological and 
evolutionary timescales and implicitly account for acclimation (Smith et al., 2019; Wang et al., 2017, 2020). 
However, these models have not been applied at the sub-daily timestep required for an LSM. To do this, it is 
necessary to treat the instantaneous and acclimated responses of photosynthesis separately.

In this study, we apply an existing optimality-based model for gross primary production (GPP), the P model 
(Stocker et al., 2020; Wang et al., 2017), to evaluate the potential of modeling the two timescales in a parsimo-
nious way. We extend the model to include both the instantaneous and acclimated responses in the simulation 
of GPP at a sub-daily timestep, by adopting two alternative averaging methods that allow explicit differentiation 
between the two responses. We test the resulting version of the P model at sub-daily timesteps using GPP de-
rived from eddy covariance flux-tower measurements from boreal, temperate, and tropical forests and also at a 
temperate grassland site over different seasons and multiple years. We compare the model performance to that 
of the CHTESSEL LSM (Balsamo et al., 2009; Boussetta, Balsamo, Beljaars, Panareda, et al., 2013) used at the 
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European Centre for Medium-Range Weather Forecasts (ECMWF). This extended version of the P model repro-
duces the diurnal cycle of GPP through the growing seasons of multiple years and is generally more accurate than 
CHTESSEL, with no need for changing parameters between biomes. Our work thus provides a proof-of-concept 
for including acclimated responses in an LSM framework.

2. Materials and Methods
2.1. The P Model

The P model (Wang et al., 2017) is an optimality-based model of GPP driven by solar radiation, temperature, 
vapor pressure deficit (VPD), ambient CO2, and the fraction of absorbed photosynthetically active radiation 
(fAPAR), which is assumed to be related to leaf area index (LAI) by Beer's law (Stocker et al., 2020; Figure 1). 

Figure 1. Flowchart of the P model. The model inputs (shown in blue circles) are air temperature (T; °C), site elevation (z; m), ambient carbon dioxide (CO2; 
µmolCO2 mol−1), vapor pressure deficit (VPD; Pa), photosynthetic photon flux density (PPFD; µmol Photon m−2 s−1) and the fraction of absorbed photosynthetically 
active radiation (fAPAR; unitless). The red rectangles are the temperature dependent parameters and the green rectangle is the model output. Parameter definitions are 
given in Table 1. For details of the P model equations see Wang et al. (2017) and Stocker et al. (2020).
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Although most applications of the P model have used satellite-derived fAPAR data as inputs (Stocker et al., 2020; 
Wang et al., 2017), the model has also been run by estimating LAI from predicted GPP (Qiao et al., 2020) thus 
making it possible to project future conditions. In this study, we use satellite-derived fAPAR to develop the ap-
proach to separating the instantaneous and acclimated timescales, but then use observed LAI data for the compar-
ison with CHTESSEL. The P model is based on the Farquhar et al. (1980) biochemical model of photosynthesis 
(FvCB), but incorporates additional eco-evolutionary optimality hypotheses, which express the acclimation of 
plant photosynthetic capacities and stomatal behavior to environmental changes: the coordination hypothesis 
(Maire et al., 2012) and the least-cost hypothesis (Prentice et al., 2014). The coordination hypothesis states that 
plants tend to optimize their performance by adjusting their photosynthetic capacities (Vcmax and Jmax, Table 1) 
to use all of the available light. This leads to the conclusion that Vcmax and Jmax should be continually adjusted to 
environmental variations according to general rules that do not depend on PFTs. The least-cost hypothesis states 

Symbol Description Unit or value Reference

Vcmax Maximum rate of carboxylation (or maximum rate of Rubisco activity) µmol CO2 m
−2 s−1 Wang et al., 2017

ΔHa Activation energy for Vcmax 65 330 [J mol−1] Bernacchi et al., 2001

Jmax Maximum rate of electron transport µmol electrons m−2 s−1 Wang et al., 2017

ΔHaj Activation energy for Jmax 43 990 [J mol−1] Bernacchi et al., 2003

R Universal gas constant 8.314 [J mol−1 K−1] ―

χ = ci:ca Ratio of leaf-internal to ambient partial pressures of CO2 Unitless Prentice et al., 2014; Wang 
et al., 2017

ci Leaf-internal CO2 partial pressure Pa Wang et al., 2017

ca Ambient CO2 partial pressure Pa

ξ Sensitivity of χ to vapor pressure deficit (VPD or D) Pa1/2 Wang et al., 2017

gs Stomatal conductance to CO2 µmol CO2 m
−2 s−1 Medlyn et al., 2011; 

Prentice et al., 2014

φ0 (T) Temperature dependence function of quantum efficiency mol mol−1 Bernacchi et al., 2003

β The ratio of cost factors for carboxylation and transpiration capacities at 25°C 146 (unitless) Stocker et al., 2020

c* The cost factor for electron-transport capacity 0.41 (unitless) Wang et al., 2017

KC Michaelis-Menten constant for carboxylation Pa Farquhar et al., 1980; 
Bernacchi et al., 2001

KC25 Michaelis-Menten constant for carboxylation at 25°C 39.97 [Pa] Bernacchi et al., 2001

ΔH KC Activation energy for KC 79 430 [J mol−1] Bernacchi et al., 2001

KO Michaelis-Menten constant for oxygenation Pa Farquhar et al., 1980; 
Bernacchi et al., 2001

Ko25 Michaelis-Menten constant for oxygenation at 25°C 27 480 [Pa] Bernacchi et al., 2001

ΔH Ko Activation energy for Ko 36 380 [J mol−1] Bernacchi et al., 2001

K The effective Michaelis-Menten coefficient for Rubisco kinetics Pa Farquhar et al., 1980

Γ* Photorespiratory compensation point Pa Farquhar et al., 1980; 
Bernacchi et al., 2001

Γ*25 Photorespiratory compensation point at 25°C 4.332 [Pa] Bernacchi et al., 2001

ΔH Γ* Activation energy for Γ* 37 830 [J mol−1] Bernacchi et al., 2001

η* Temperature dependence of the viscosity of the water, relative to its value at 25°C unitless Huber at al. 2009

Pa(z) Atmospheric pressure at given elevation (z) Pa Berberan-Santos et al., 1997

J Rate of electron transport µmol electrons m−2 s−1 Smith, 1937

AC Rubisco-limited assimilation rate µmol CO2 m
−2 s−1 Farquhar et al., 1980

AJ Electron-transport limited assimilation rate µmol CO2 m
−2 s−1 Farquhar et al., 1980

A Assimilation rate µmol CO2 m
−2 s−1 Farquhar et al., 1980

Table 1 
Definitions of Photosynthetic Parameters, Rates, and Constants Used in the P Model
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that plants minimize the sum of carbon and water costs—in terms of the maintenance costs for transpiration and 
carboxylation capacities. This hypothesis leads to an optimal ratio of the leaf-internal to ambient CO2 partial 
pressure (ci:ca, Table 1) applicable to all C3 plants.

The P model implicitly represents plant adaptation and acclimation, via photosynthetic capacity and stomatal 
behavior, over a timescale of days to weeks. It reproduces observed variation in Vcmax, Jmax, and stomatal con-
ductance for CO2 (gs: Table 1) along environmental gradients (Bloomfield et al., 2019; Dong et al., 2020; Smith 
et al., 2019; Wang et al., 2017, 2020). It also includes the measured effect of low temperatures on the intrinsic 
quantum efficiency of photosynthesis (φ0(T): Table 1) (Rogers et al., 2017, 2019; Singsaas et al., 2001). The 
parameters in the P model are either approximately constant and known from independent physiological studies, 
or estimated from analyses of independent data (c* and β: see Table 1). The P model performs as well as more 
parameter-rich models (e.g., Zhang et al., 2019) at weekly to monthly time steps (Stocker et al., 2020), that is, at 
the timescale of acclimation of key quantities such as Vcmax and Jmax.

2.2. Timescales of Acclimation

To implement the P model at a sub-daily timestep requires an explicit distinction between the fast (instantaneous) 
response of photosynthetic rates (Ac, AJ: Figure 1) and the slower acclimated response of photosynthetic traits 
(Vcmax, Jmax, and ξ: Figure 1). To account for the acclimation of photosynthetic traits we first use a method that in-
volves computing a running mean of model inputs over a defined antecedent period. With this method, we tested 
three approaches to find the optimal timescale for acclimation: the “daily” approach computes a running mean of 
average daytime conditions; the “3 hr” approach considers an average of three values from the middle of each day; 
the “noon” approach considers only conditions around midday. The inputs are used to obtain the optimal values 
of Vcmax and Jmax (Equations 1 and 2). These represent the slow (acclimated) responses of the photosynthetic traits 
(Wang et al., 2017):

�cmax[opt] = �0�abs
(�� +�)
(�� + 2Γ∗)

√

√

√

√

√1 −
[

�∗
(�� + 2Γ∗)
(�� − Γ∗)

]

2
3 (1)

�max[opt] = 4 �0�abs
√

√

√

√

√

√

√

1

1 −
[

�∗(�� + 2Γ∗)
(�� − Γ∗)

]

2
3

− 1 (2)

where ci is the leaf-internal CO2 partial pressure (Pa), Γ* is the photorespiratory compensation point (Pa), K is the 
effective Michaelis-Menten coefficient (Pa), φ0 is the intrinsic quantum efficiency of photosynthesis (mol mol−1), 
following the temperature dependence function φ0 (T) reported in Bernacchi et al. (2003), Iabs is the absorbed 
light, which is a product of the incoming photosynthetic photon flux density (PPFD, µmol photon m−2s−1) and 
fAPAR. c* = 0.41 is a cost factor for electron transport capacity.

A standard function for the temperature response of Vcmax and Jmax, the Arrhenius equation (Equation  3), is 
then used to adjust both photosynthetic traits from the average (optimal) temperature to the actual temperature 
(Equations 3a and 3b). This adjustment for each half-hourly timestep represents the instantaneous response in 
the model.

param (�1) = param (�0) exp
[

(Δ��

�

)

(

1
�0

− 1
�1

)]

 (3)

�cmaxadjusted = �cmax[opt] exp
[

(Δ��

�

)

(

1
�0

− 1
�1

)]

 (3a)

�maxadjusted = �max[opt] exp
[(

Δ���

�

)(

1
�0

− 1
�1

)]

 (3b)
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where T0 is the average temperature computed by a 15-day running mean (K) and T1 is the actual half-hourly 
temperature (K), R is the universal gas constant, and ΔHa (ΔHaj) is the activation energy (J mol−1). The parameter 
values used in the Arrhenius equation are those measured by Bernacchi et al. (2001, 2003) and listed in Table 1.

Using the same logic for the stomatal conductance, we include a dynamic optimization of stomatal conductance 
operating on the ci:ca ratio (χ, Equation 4) to obtain acclimated and optimal values of ξ, a parameter that deter-
mines the sensitivity of χ to VPD (Prentice et al., 2014). The acclimated response of ξ to environmental condi-
tions (see e.g., Lin et al., 2015; Marchin et al., 2016) — is included in the ci formula (Equation 5), which is then 
immediately updated at every half-hourly timestep with the actual VPD to include the fast response of stomata 
to VPD:

𝜒𝜒 = Γ∗

𝑐𝑐𝑎𝑎
+

(1 − Γ∗∕𝑐𝑐𝑎𝑎)𝜉𝜉

𝜉𝜉 +
√

𝐷𝐷
 (4)

𝑐𝑐𝑖𝑖 =
𝜉𝜉𝑐𝑐𝑎𝑎 + Γ∗

√

𝐷𝐷

𝜉𝜉 +
√

𝐷𝐷
, 𝜉𝜉 =

√

𝛽𝛽(𝐾𝐾 + Γ∗)
1.6𝜂𝜂∗ (5)

where ci is the leaf-internal and ca is the ambient CO2 partial pressure (Pa), D is the vapor pressure deficit 
(Pa), β = 146 is the ratio of the cost factors for carboxylation and transpiration capacities (at 25°C) (Stocker 
et al., 2020), and η* is the viscosity of water relative to its value at 25°C.

The acclimated parameters (Vcmax, Jmax, χ and thus ci), adjusted to the actual conditions (Equations 3a, 3b, and 5) 
and the instantaneous parameters –ci, K and Γ*- are used to compute the photosynthetic assimilation rates (Ac 
and AJ: Table 1). These are the two limiting rates for carbon assimilation; their minimum value gives the GPP.

2.3. Incorporating Acclimation in a Land-Surface Modeling Framework

Storing daily data to compute a running-mean would be computationally costly in an LSM context. We therefore 
tested whether the longer-term acclimation timescales could be mimicked based on a technique used to incorpo-
rate memory in other aspects of climate modeling, the exponential weighted moving average method. This meth-
od, here called the weighted mean approach, is used in forecasting systems that deal with inaccurate prediction 
caused by the insufficiency of historical observations and allows for a self-starting forecasting process without 
having to store past data (Yu et al., 2020). The method is used in a variety of applications in forecasting, from 
estimating soil moisture from precipitation (Campos de Oliveira et al., 2017) to vegetation acclimation processes 
(e.g., Vanderwel et al., 2015).

This weighted mean approach is an alternative way to manage the fast and slow responses of plants to environ-
mental changes. It uses the exponential moving average (EMA) equation (see Text S1, Equation 7 in Supporting 
Information S1) – which computes a mean in which the contribution of antecedent days decays exponentially 
with distance from the present–to obtain the acclimated parameters and the reciprocal and canonical forms of the 
Arrhenius equations (see Text S1, Equations 6 and 8 in Supporting Information S1) to obtain the instantaneous 
values of Vcmax and Jmax. Thus, the weighted mean approach differs from the running mean approach in that it is 
applied to the photosynthetic variables Vcmax, Jmax, and ci directly rather than to model inputs. We use these bio-
chemical quantities at standard temperature (25°C), Vcmax25 and Jmax25 to emulate what happens in nature. Vcmax25 
reflects the quantity of active Rubisco in the canopy. Plants adjust the amount of Rubisco (Vcmax25) slowly; it can-
not, for example, change during the night when photosynthesis does not occur. The “basal” amount of Rubisco is 
related to past conditions, the actual Vcmax at any one timestep is adjusted from the basal rate by enzyme kinetics.

The weighted mean approach is applied as follows. First, optimal Vcmax and Jmax (Equations 1 and 2) are computed 
based on conditions at noon; then, Vcmax25 and Jmax25 are obtained using the reciprocal formula of the Arrhenius 
equation (h−1; see, Text S1, Equation 3a*** in Supporting Information S1) (see Text S1, Equation 6 in Support-
ing Information S1) and used in the EMA equation. Computing the EMA equation, the acclimated responses of 
Vcmax25 and Jmax25 (for the current day) are obtained and then, using the canonical form of the Arrhenius equation 
(see, Text S1, Equation 8 in Supporting Information S1), the instantaneous responses of both photosynthetic traits 
are computed at each half-hourly timestep. Like Vcmax25 and Jmax25, ξ should vary slowly; however, ξ has no “fast” 
reaction to temperature, so the Arrhenius function is not needed. After having obtained ξ for the current day, ci is 
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adjusted with the fast variation in VPD for each half-hourly timestep. Finally, these acclimated parameters—also 
adjusted to match the actual environmental conditions—are used to compute both photosynthetic rates (Ac, AJ) 
and thus GPP at a sub-daily timestep.

To initialize the model simulations, we assume that on the very first day available in the data set, the acclimated 
responses of Vcmax25 or Jmax25 (V25, Equation 7 in Supporting Information S1) are given by V25,opt only. The weight 
of V25,opt decreases exponentially as time progresses (see Text S1, Equation 9 in in Supporting Information S1). 
So, it is necessary to spin-up the model for about 2 months before evaluation of model performance. Then, we 
apply Equation 7 in Supporting Information S1 as discussed previously.

The EMA equation includes a parameter (α), the constant smoothing factor. According to Equation 9, Text S1 in 
Supporting Information S1, α = 0.067 corresponds to about 15 days of memory. We therefore set α = 0.067 for 
consistency with the running mean method. We also tested a range of alternative values of α: 0.33, 0.143, 0.1, 
0.067, 0.033, 0.022, and 0.0167, corresponding to 3, 7, 10, 15, 30, 45, and 60 days, respectively.

2.4. The CHTESSEL Model

We compare predictions from our extended P model to results from the ECMWF operational LSM, CHTESSEL 
(Balsamo et al., 2009; Boussetta, Balsamo, Beljaars, Panareda, et al., 2013). This is the new version of the Hy-
drology-Tiled ECMWF scheme for Surface Exchange over Land (H-TESSEL) (Balsamo et al., 2009; Viterbo 
et al., 1999), where the interface between the surface and the atmosphere is represented by grid-boxes, which are 
tiled according to surface characteristics and grid-box fluxes are calculated for each tile (mosaic approach). It 
thus includes many PFT-specific fixed parameters. CHTESSEL includes a photosynthesis-stomatal conductance 
sub-model (A-gs, Jacobs, 1994; Jacobs et al.,1996) in its CO2 exchange module, but does not include any explicit 
representation of acclimation. CHTESSEL is part of the ECMWF operational model, the Integrated Forecast 
System (IFS), which is an atmospheric model and data assimilation system. When the LSM is fully coupled to the 
atmospheric model in IFS, then vegetation and CO2 fluxes are modeled online within IFS. However, here we test 
the model in offline mode driven by the same environmental variables (solar radiation, temperature, atmospheric 
CO2, and atmospheric humidity deficit) measured at eddy-covariance flux tower sites.

2.5. Data and Evaluation

We initially compared P model predictions with sub-daily observations from five sites from the FLUXNET2015 
data set (Pastorello et al., 2020) using the most recent common year (2014) for all five sites. We chose sites 
that represent a range of climate and vegetation types (Table 2): boreal forest (FI-Hyy), temperate deciduous 
broadleaf (US-UMB) and mixed (BE-Vie) forests, tropical forest (GF-Guy), and temperate grassland (CH-Cha). 
The FLUXNET data set provide meteorological variables (PPFD_IN, VPD_F, TA_F, and CO2_F_MDS) on 
a half-hourly timestep at each site, as well as observed GPP. We used GPP based on the daytime partitioning 
method (GPP_DT_CUT_REF) (Lasslop et al., 2010; Pastorello et al., 2020). Since the FLUXNET2015 data set 
does not provide fAPAR, we obtained this from the MCD15A3H Collection 6 data set (Myneni et al., 2015). 
The MODIS FPAR product has a spatial resolution of 500 m and a temporal resolution of four days. We used the 
version of these data from Stocker et al. (2020) that has been filtered to remove data points where clouds were 
present and linearly interpolated from 4 days to daily. We used linear interpolation to derive fAPAR on the same 
sub-daily temporal resolution as the meteorological forcing.

We then performed more extensive evaluations based (a) on an additional five sites from the FLUXNET2015 
data set and (b) examining additional years at all 10 sites. The additional sites were chosen to represent the same 
five biomes used in the initial analysis (Table 2). We compared observed and simulated GPP over the growing 
season, where the growing season at each site was determined using the threshold approach defined by Lasslop 
et al. (2012). This approach defines the start and end of the growing season as the days that correspond to GPP 
values of >20% of the 0.05 and 0.95 quantile range. We also selected individual weeks corresponding to the early 
growing season (spring), the peak growing season (summer), and the late growing season (autumn) to examine 
whether model performance varied seasonally.

The FLUXNET2015 data set provides information about the quality of data, through the quality-flag variables 
(see supplementary Table SM1 in Pastorello et al., 2020). We removed data points where the quality control (QC) 
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is flagged as medium or poor prior to comparison with model outputs. We computed the percentage of “good” 
observations for each year analyzed. Times when there are no meteorological or GPP observations are necessarily 
ignored in the comparisons. There is no information that can be used to assess the quality of the fAPAR data and 
LAI data.

Model goodness-of-fit was measured using R2, root-mean square error (RMSE), relative root-mean square error 
(nRMSE, which is the RMSE normalized by the standard deviation of the observations), and the bias error (BE). 

These metrics have been computed using the “hydroGOF” R package. The 
median RMSE, nRMSE, R2, and BE, were obtained by computing an RMSE, 
nRMSE, R2, and BE for each half hour of every week during the growing sea-
son at each site. We estimated the number of weeks when model performance 
was reasonable by examining the RMSE distribution to determine a thresh-
old to exclude outliers, which might be associated with data uncertainties. 
The weeks used to illustrate the comparisons with observations were chosen 
because they have the maximum number of reliable observations, although 
complete information is given in the summary tables (Tables S1 and S2 in 
Supporting Information S2).

We evaluated and compared the performance of the newly developed ver-
sion of the P model and CHTESSEL in different seasons and over different 
years at all of the sites. For this comparison we forced both models with the 
same meteorological inputs and LAI data. The LAI time series were derived 
from MODIS LAI collection 5 (Boussetta, Balsamo, Beljaars, Kral, & Jar-
lan, 2013; Myneni et al., 2002). Both models were run in stand-alone mode 
(i.e., OSM-Ags for CHTESSEL) and tested against the same GPP recorded 
by eddy-covariance flux towers.

3. Results
We tested the optimal timescale for acclimation to light availability by com-
paring simulations using average daily inputs, 3-hourly average inputs cen-
tered on noon and midday conditions. The use of average daily inputs leads 
to an underestimation of the observed GPP at all of the test sites, which is 
substantial (BE: −1.79) at CH-Cha (Table 3). However, model predictions 

Site name Site ID Latitude (°) Longitude (°) Elevation (m) MAT (°C) MAP (mm) IGBP vegetation type

Hyytiälä FI-Hyy 61.84741 24.29477 181 3.8 709 Evergreen needleleaf 
forest

Vielsalm BE-Vie 50.30493 5.99812 493 7.8 1062 Mixed forest

University of Michigan Biological Station US-UMB 45.5598 −84.7138 234 5.8 803 Deciduous broadleaf 
forest

French Guiana GF-Guy 5.27877 −52.92486 48 25.7 3041 Evergreen broadleaf forest

Chamau CH-Cha 47.21022 8.41044 393 9.5 1136 Grassland

Fyodorovskoye RU-Fyo 56.4615 32.9221 265 3.9 711 Evergreen needleleaf 
forest

Sylvania Wilderness Area US-Syv 46.2420 −89.3477 540 3.8 826 Mixed forest

Morgan Monroe State Forest US-MMS 39.3232 −86.4131 275 10.9 1032 Deciduous broadleaf 
forest

Santarem-Km83-Logged Forest BR-Sa3 −3.0180 −54.9714 100 26.1 2044 Evergreen broadleaf forest

Grillenburg DE-Gri 50.9500 13.5126 385 7.8 901 Grassland

Note. MAT: mean annual temperature (°C); MAP: mean annual precipitation (mm).

Table 2 
Summary of the Characteristics of the FLUXNET2015 Sites Used for Model Evaluation

Site ID Year Approaches Median RMSE Median R2 Median BE

BE-Vie 2014 Daily 2.69 0.91 −0.92

BE-Vie 2014 3 hr 2.07 0.93 −0.19

BE-Vie 2014 Noon 2.28 0.94 0.01

FI-Hyy 2014 Daily 2.74 0.86 −0.51

FI-Hyy 2014 3 hr 2.43 0.90 0.86

FI-Hyy 2014 Noon 2.53 0.91 0.99

GF-Guy 2014 Daily 3.35 0.95 −0.80

GF-Guy 2014 3 hr 2.94 0.97 0.49

GF-Guy 2014 Noon 3.67 0.98 2.04

US-UMB 2014 Daily 3.18 0.84 −0.21

US-UMB 2014 3 hr 3.66 0.88 1.84

US-UMB 2014 Noon 3.54 0.88 1.98

CH-Cha 2014 Daily 5.28 0.83 −1.79

CH-Cha 2014 3 hr 4.53 0.87 0.07

CH-Cha 2014 Noon 3.89 0.88 1.07

Table 3 
Summary of Model Performance Statistics (RMSE Is the Root Mean 
Square Error, R2 Is the Coefficient of Determination, and BE Is the Bias 
or Systematic Error) to Compare the Use of Three Approaches (i.e., Daily, 
3 Hours, and Noon) Over the Growing Season at Five Flux Tower Sites in 
2014
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of GPP using 3-hourly or midday inputs are both consistent with the observations. At BE-Vie (Figure 2), for 
example, model performance during a single week in August 2014 using average daily inputs is poorer (R2: 0.92) 
than either the 3-hourly averages (R2: 0.98) or midday conditions (R2: 0.98). This is also the case at the other four 
sites (Figures S1, S2, S3, and S4 in Supporting Information S2) and considering performance over the whole 
year (Table 3). The three averaging approaches affect the seasonal trends of the key photosynthetic parameters 
differently, here illustrated using 2014 as an example. Both Vcmax and Jmax show upward trends in spring (Figure 
S4a in Supporting Information S2) reaching their maximum values in summer (Figure S4b in Supporting Infor-
mation S2), then downward trends in the later part of the year (Figure S4c in Supporting Information S2). This 
general behavior is common to the different averaging approaches, but the daily approach leads to lower values 
than the other approaches. This difference propagates into sub-daily variations of simulated GPP, which depart 

Figure 2. Sub-daily trends in model inputs (absorbed light: Iabs; temperature: Ta; and vapor pressure deficit: VPD) during one week in August 2014 at the Vielsalm 
(BE-Vie) site and the simulated Rubisco-limited assimilation rate (AC; µmol CO2 m

−2 s−1), electron-transport limited assimilation rate (AJ; µmol CO2 m
−2 s−1), and gross 

primary production (GPP) using the running mean approach with inputs for average daytime conditions (DAILY), averaged over three hours from the middle of the day 
(3HOUR) and around midday (NOON). The model inputs—Iabs, Ta, and VPD—are in units of µmol Photon m−2 s−1, °C and Pa, respectively. Simulated GPP (GPPp) is 
shown in red and the GPP derived from eddy covariance flux-tower measurements (GPPo) is shown in gray, both expressed in µmol CO2 m

−2 s−1. The gray shaded areas 
represent the uncertainty in GPPo calculated by the daytime partitioning method in the FLUXNET2015 data set.
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further from observations if the daily approach is used (Figure S4b in Supporting Information S2). These results 
support the hypothesis that plants coordinate their biochemical capacities to match the maximum level of light 
during a day, optimizing to near-midday rather than average daytime conditions.

We designed two tests (A and B) to illustrate the importance of acclimation for P model performance. In Test A, 
the average value of modeled optimal Vcmax, Jmax, and ξ over the growing season was applied as constants through 
the year to simulate behavior at the BE-Vie site. In Test B, the constant values of Vcmax, Jmax, and ξ from BE-Vie 
were applied at the other sites (Figure 3). Applying temporally constant parameter values based on average grow-
ing-season conditions led to a greater underestimate of GPP both in summer and autumn (Figures S4e and S4f in 
Supporting Information S2) and a poorer overall model performance at BE-Vie than when acclimation is allowed 
to occur (Table S3 in Supporting Information S2). Applying these same values at other sites shows how important 

Figure 3. Comparison of simulated gross primary production by the P model “with” and “without acclimation’ (GPPp, labeled with site ID and “with acclimation” 
or “without acclimation”) and the GPP derived from eddy covariance flux-tower measurements (GPPo) for a single week in August 2014 at each of the five 
FLUXNET2015 sites (site IDs are displayed in the top left corner). GPP is expressed in µmol CO2 m

−2 s−1. The gray shaded areas represent the uncertainty in GPPo 
calculated by the daytime partitioning method in the FLUXNET2015 data set.
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it is to account for acclimation to spatial variability in environmental condi-
tions. In summer, while the P model “with acclimation” correctly reproduced 
diurnal cycles of GPP as recorded by flux tower measurements, the P model 
“without acclimation” underestimated GPP at all five sites (Figure 3; Figure 
S4h in Supporting Information S2). In autumn, three of the five sites (i.e., 
GF-Guy; US-UMB; CH-Cha) showed a large underestimation (Figure S4i 
in Supporting Information  S2), while in spring the P model's tendency to 
overpredict GPP at some sites was exacerbated (Figure S4g in Supporting 
Information S2). In comparisons of predicted and observed GPP, all metrics 
(Table S3 in Supporting Information S2) were consistently better for the P 
model “with acclimation” than “without acclimation”.

Comparison of predicted and observed GPP at all five sites shows that the 
running-mean model (“with acclimation”) accurately mimics the diurnal cy-
cles of GPP (Figure 3). The median R2 over all weeks (Table 4) ranges from 
0.88 (CH-Cha, US-UMB) to 0.98 (GF-Guy). The median RMSE ranges from 
3.89 μmol CO2 m

−2 s−1 (CH-Cha) to 2.28 μmol CO2 m
−2 s−1 (BE-Vie). The 

median nRMSE ranges from 69.65% (FI-Hyy) and 37.25% (GF-Guy) to a 
high value at US-UMB (110.8%) The median BE ranges from 2.04  μmol 
CO2 m

−2 s−1 (GF-Guy) to 0.01 μmol CO2 m
−2 s−1 (BE-Vie). There does not 

appear to be a relationship between the quality of the model fit and the length of the growing season. The model 
produces a good fit to observations at most of the sites for at least 80% of the individual weeks in 2014 (Table 4). 
The poorest performance in terms of number of weeks simulated accurately (68%) is for FI-Hyy and probably re-
flects uncertainties in the fAPAR inputs for this site. The model overall simulates the sub-daily trends of observed 
GPP well at these sites for other years (i.e., 2013, 2012, and 2011), showing values of median R2 > 0.90 for four 
of the five sites, with the lowest value of 0.84 at CH-Cha in 2012 (Table S1 in Supporting Information S2). At 
annual timescales model simulations are close to the observations, with relatively low values of median BE for 
most sites (Table S1 in Supporting Information S2).

Comparisons at the additional sites (Table S2 in Supporting Information S2) again confirm that the model per-
forms reasonably well: the median R2 over all the years and sites ranges from 0.86 to 0.97. Model performance is 
particularly good at the tropical site BR-Sa3, with a median R2 of about 0.9 for all four years available in the data 
set. The median RMSE is high at both US-MMS (6.27 μmol CO2 m

−2 s−1) and US-Syv (6.52 μmol CO2 m
−2 s−1) 

in 2013, as is the bias error. The model also overpredicts GPP at these two sites in 2012, resulting in a higher error 
than the other sites, although the median R2 is good (0.94: US-MMS; 0.95: US-Syv). Again, high error values 
are often associated with a lower number of reliable observations. There are only 61% observations available 
for the US-MMS site in 2013, and 47% for the US-Syv. High errors are also registered at the tropical site (BR-
Sa3) in 2000, where there is 46.4% of observations over the growing season and the median RMSE is 7.16 μmol 
CO2 m

−2 s−1, although the R2 is high.

The use of a 15-day period for calculating the running mean is a compromise. In three of the sites analyzed, the 
highest median RMSE and the lowest median R2 (Figure S5 in Supporting Information S2) is obtained for a short-
er timescale (between three and seven days). After seven days the median R2 increases for each site, except for 
FI-Hyy, which also shows a sharper downward trend in the bias error than the other cases. There are no significant 
changes in the computed metrics at timescale beyond 15 days, as the median RMSE and R2 are rather constant 
at four out of five sites. Although among these sites there are some differences, in most of the cases these results 
suggest that the optimum timeframe for acclimation is between 10 and 30 days, where 15 days is an average 
timeframe across all five sites (Figure S5 in Supporting Information S2).

Comparison between observed and simulated GPP shows very little difference between the running mean and 
weighted mean approaches (Figure 4, Table 5). Visual comparison (Figure 4) indicates that the two approaches 
produce essentially identical estimates of GPP at BE-Vie, FI-Hyy, and GF-Guy. The median RMSE, R2 and BE 
are slightly better for the weighted mean at BE-Vie, FI-Hyy, and GF-Guy than the running mean approach (Ta-
ble 5). The weighted mean approach appears to produce marginally better results for the US-UMB site (R2: 0.89), 
although both the median RMSE and BE are higher than those computed with the running mean, but a marginally 
worse estimate at the CH-Cha site (RMSE: 4.27 μmol CO2 m

−2 s−1, Table 5).

Site ID
No. 

Weeks
Median 
RMSE

Median 
nRMSE

Median 
R2

Median 
BE

% Good 
Weeks

BE-Vie 52 2.28 39.95 0.94 0.01 86.5%

FI-Hyy 38 2.53 69.65 0.91 0.99 68.4%

GF-Guy 52 3.67 37.25 0.98 2.04 82.7%

US-UMB 37 3.54 110.8 0.88 1.98 83.8%

CH-Cha 52 3.89 53.55 0.88 1.07 80.8%

Note. The number of weeks (No. weeks) is the length of the growing season at 
each site in 2014. The percentage of good weeks is estimated after excluding 
those weeks where the RMSE exceeds a threshold value of twice the median 
RMSE.

Table 4 
Summary of Model Performance Statistics at Five Flux Tower Sites in 2014 
(RMSE Is the Root Mean Square Error, nRMSE Is the Relative Root Mean 
Square Error, R2 Is the Coefficient of Determination, and BE Is the Bias or 
Systematic Error)
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Nevertheless, even for these two sites, the model performance using the weighted mean approach is consistent 
with the observed trends in the diurnal cycle. The R2 values at the other sites (Table 5) are almost identical and 
although the RMSE suggested the running mean approach is better at four sites and worse at the fifth site, this is 
not consistent with the BE values.

The extended version of the P model, using the weighted mean approach, performs better overall than the CHT-
ESSEL LSM. A visual comparison indicates that there is a better fit to the observed GPP at US-UMB and FI-Hyy 
(Figure 5) compared to the CHTESSEL simulations. The median R2 over the growing season ranges from 0.88 
to 0.98 for the P model compared to 0.68 to 0.91 for CHTESSEL (Table 6), and shows that the model performs 
better (sometimes substantially better) at every site. Comparing the range in the median RMSE between observed 
and predicted GPP from both models, there is a difference of about 1 μmol CO2 m

−2 s−1. Model errors are also less 
for the P model than CHTESSEL, with the exception of the US-Syv site, where the P model overpredicts GPP 

Figure 4. Comparison of the running mean (GPP_run.m) and weighted mean (GPP_weig.m) approaches for calculating gross primary production (GPP) for a single 
week in August 2014 at each of the five FLUXNET2015 sites. GPP is in units of µmol CO2 m

−2 s−1. The gray shaded areas represent the uncertainty in GPPo calculated 
by the daytime partitioning method in the FLUXNET2015 data set.
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in 2006 substantially (median RMSE 12.11 μmol CO2 m
−2 s−1) despite good observational coverage (98%) for 

this year. P model performance is better in summer (Figure 5, Figures S7, and S10 in Supporting Information S2) 
and autumn (Figures S8 and S11 in Supporting Information S2) than during the spring (Figures S6 and S9 in 
Supporting Information S2). There are differences between the vegetation type assigned in CHTESSEL and that 
present at some of these flux tower sites (e.g., US-UMB, see Table S4 in Supporting Information S2). However, 
this does not appear to explain the poorer overall performance of CHTESSEL, since the P model performs better 
both at these sites and sites with the correct vegetation type assigned (e.g., FI-Hyy). However, CHTESSEL cap-
tures the magnitude (though not necessarily the shape) of the diurnal variability during spring better than the P 
model at sites with cold winters (FI-Hyy, US-UMB, US-Syv, RU-Fyo, and US-MMS), where the P model tends 
to overestimate GPP.

4. Discussion
We have developed a version of the P model that predicts GPP at sub-daily timescales. This extended model 
reproduces well the diurnal cycle of GPP as recorded by flux-tower measurements across a range of different 
vegetation types. We have intentionally kept the model as simple as possible, as recommended for example, by 
Prentice et al. (2015), in the interests of clarity. The model has few parameters and their values are known from 
independent evidence. It does not distinguish between PFTs. We have succeeded in obtaining good simulations 
of flux data based on a minimal representation of the canopy as a big leaf. The complexity of the extended model 
(Figure 1) is only related to characteristics of the Farquhar et al. (1980) model itself, and those necessary to im-
plement optimality hypotheses that have been extensively tested–see for example, Smith et al. (2019) for Vcmax, 
Wang et al. (2017) for χ and the ratio Jmax:Vcmax.

We have shown that plants at these flux sites adjust to midday conditions rather than average daytime conditions. 
It is reasonable to expect that plants would optimize to conditions during the midday period, when the light is 
greatest (Haxeltine & Prentice, 1996; Maire et al., 2012; Smith et al., 2019). While this may be a good global ap-
proximation, we recognize that it may not be appropriate under some conditions. In dry areas, for example, plants 
effectively stop photosynthesizing in the warmest part of the day to minimize water loss and hydraulic damage. 
Midday depression in GPP, resulting from stomatal closure under high VPD, is characteristic of both crops and 
natural vegetation in dry areas (e.g., Pathre et al., 1998; Rambal et al., 2003; Wagle et al., 2015). Presumably, in 
such circumstances, plants may acclimate to early morning rather than midday conditions.

We have also shown that the timeframe for acclimation of carboxylation and electron-transport capacities, and 
the response of leaf-level carbon dioxide drawdown to vapor pressure deficit (VPD) is of the order of 15 days. 

Site ID Years
Median RMSE 

(running)
Median RMSE 

(weighted)
Median R2 
(running)

Median R2 
(weighted)

Median BE 
(running)

Median BE 
(weighted)

BE-Vie 2014 2.28 2.02 0.94 0.95 0.01 −0.003

FI-Hyy 2014 2.53 2.24 0.91 0.92 0.99 0.87

GF-Guy 2014 3.67 3.62 0.98 0.98 2.04 1.99

US-UMB 2014 3.54 3.75 0.88 0.89 1.98 2.02

CH-Cha 2014 3.89 4.27 0.88 0.90 1.07 0.67

DE-Gri 2014 2.12 2.30 0.97 0.97 −0.37 −0.39

RU-Fyo 2014 4.35 4.47 0.88 0.88 2.36 2.01

US-MMS 2014 4.25 4.01 0.95 0.94 2.01 1.96

US-Syv 2014 5.97 6.02 0.86 0.86 3.62 3.74

BR-Sa3 2003 5.31 5.63 0.91 0.92 1.43 −0.03

Note. These comparisons were made for 2014, except in the case of BR-Sa3 where data for 2014 were not available and an 
alternative year was used.

Table 5 
Summary of Model Performance Statistics (RMSE Is the Root Mean Square Error, R2 Is the Coefficient of Determination, 
and BE Is the Bias or Systematic Error) Using the Running Mean (Running) and Weighted Mean (Weighted) Methods Over 
the Growing Season at Each of the Sites
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Accounting for environmental variations over longer time periods does not produce significant differences in 
model performance metrics. In the original version of the P model (Stocker et al., 2020; Wang et al., 2017), de-
signed to simulate GPP at weekly to monthly time steps, these acclimated responses are implicit. Here they are 
explicit. Our analyses show that this distinction between fast and slow responses is essential to correctly predict 
plants' responses to the environment. However, we have not attempted to separate the acclimated timescales of 
carboxylation and electron-transport processes. While it is known that the Rubisco capacity acclimates to temper-
ature over weeks, there is little evidence for the acclimation timescale of transport capacity.

The running mean and weighted averaging methods produce equally good simulations of the diurnal cycle of 
GPP. The weighted mean approach, using noon conditions as a timeframe, makes it possible to include acclima-
tion in LSMs in a relatively straightforward way without having to specify PFT-specific parameters. Comparison 

Figure 5. Comparison of simulated gross primary production by the P model (in red, labeled with site ID and “P-model”) and by CHTESSEL (in blue, labeled with 
site ID and “OSM-Ags”) and the GPP derived from eddy covariance flux-tower measurements (GPPo, in gray) for a single week in August 2014 at each of the five core 
FLUXNET2015 sites. GPP is in units of µmol CO2 m

−2 s−1. The gray shaded areas represent the uncertainty in GPPo calculated by the daytime partitioning method in 
the FLUXNET2015 data set.
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shows that the extended version of the P model using the weighted mean approach provides better estimates of 
GPP than CHTESSEL at most sites and for most years analyzed. LSMs have to specify different values of Vcmax25 
and Jmax25 for plants growing in different environments, as represented by PFTs, precisely because they do not rep-
resent acclimation. Moreover, the need to specify PFTs creates uncertainty in model evaluations, as shown here 
(Figure 5) for a number of cases where the PFT assignments in the operational model do not match the actual PFT 
at the flux sites. As our results show, simulation would be more accurate, as well as requiring fewer parameters, 
if acclimation were allowed universally (in time and space) – so accounting more realistically both for seasonal 
variation, and presumably also representing the responses to environmental change better.

We have adapted the P model to work at a half-hourly timescale, as the model has previously been tested at 
monthly and weekly timescales only. The method proposed here has succeeded in representing sub-daily as 
well as seasonal dynamics of GPP in different biomes with no need for site- or PFT-specific calibration. How-
ever, some issues still need to be addressed. There is a tendency for the model to overpredict GPP in spring 
compared to CHTESSEL at some sites, particularly those where the winters are cold. This is a known issue 
(Stocker et al., 2020) and suggests that the P model does not account properly for the time required to adjust to 
cold conditions at the start of the growing season. Similarly, the P model (in common with many LSMs), tends 
to overpredict GPP in very dry areas because the model does not account for the effect of low soil moisture (as 
opposed to atmospheric dryness) on photosynthesis (Stocker et al., 2020). Combining the VPD response and the 
response to soil moisture at sub-daily timescale is a challenge that needs to be addressed before the model can be 
applied globally.

5. Conclusions
We have adapted an existing optimality-based modeling framework to operate successfully at sub-daily timescale. 
The P model, without PFT-dependent photosynthetic parameters, accurately predicts GPP at half-hourly timestep 
across a range of different biomes. The method we propose is able to manage both timescales of acclimation. The 
weighted mean approach is suitable for implementation in an LSM. Our results suggest a way forward for LSMs 
to reduce their dependence on multiple parameters while, at the same time, taking into account plants' acclimation 
to the environment.

Site ID Years
Median RMSE P 

model
Median RMSE 

CHTESSEL
Median R2 P 

model
Median R2 

CHTESSEL
Median BE P 

model
Median BE 
CHTESSEL

BE-Vie 2014 1.73 3.19 0.95 0.89 −0.02 −1.52

FI-Hyy 2014 2.21 2.85 0.92 0.81 1.07 −1.06

GF-Guy 2014 3.8 4.10 0.98 0.91 2.14 0.95

US-UMB 2014 3.53 4.81 0.88 0.68 1.19 −1.65

CH-Cha 2014 4.3 5.20 0.9 0.89 −1.83 −2.12

DE-Gri 2014 3.49 5.49 0.97 0.89 −1.49 −2.78

RU-Fyo 2014 2.66 2.86 0.89 0.84 1.26 −1.46

US-MMS 2014 4.04 6.51 0.95 0.72 1.93 −2.52

US-Syv 2006 12.11 2.32 0.94 0.86 7.71 −0.46

BR-Sa3 2003 6.13 8.33 0.92 0.86 −1.60 −4.76

Table 6 
Summary of the Two Models' Performance Statistics (Root-Mean Square Error is the Root Mean Square Error, R2 Is the 
Coefficient of Determination, and BE Is the Bias or Systematic error) Over the Growing Season at Each of the Sites. These 
Comparisons Were Made for 2014, Except in the Case of BR-Sa3 and US-Syv Where Data for 2014 Were Not Available 
and an Alternative Year Was Used
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Data Availability Statement
The half-hourly implementation of the P model is generated with RStudio and is available through GitHub public 
repository: https://github.com/GiuliaMengoli/P-model_subDaily. Data sets for this research are available in these 
in-text data citation references: Pastorello et al. (2020), [Creative Commons (CC-BY 4.0) license], Stocker 2020, 
[http://doi.org/10.5281/zenodo.4392703]; The LAI used in this study is available under (https://github.com/Gi-
uliaMengoli/P-model_subDaily/tree/main/LAI_data). It is based on MODIS collection 5 (Myneni et al., 2002) 
and adapted to fit the CHTESSEL configuration by Boussetta, Balsamo, Beljaars, Kral, and Jarlan (2013).
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